DSpace Repository

Production of Hydrocarbon Fuels from Polyethylene Plastic Wastes Using Thermal and Catalytic Pyrolysis

Show simple item record

dc.contributor.author Omol, Dan Kica
dc.contributor.author Acaye, Ongwech
dc.contributor.author Okot, Fred David
dc.contributor.author Bongomin, Ocident
dc.date.accessioned 2021-10-18T08:27:22Z
dc.date.available 2021-10-18T08:27:22Z
dc.date.issued 2020
dc.identifier.uri https://www.researchgate.net/profile/Ocident-Bongomin/publication/338774653_Production_of_Hydrocarbon_Fuels_from_Polyethylene_Plastic_Wastes_Using_Thermal_and_Catalytic_Pyrolysis/links/5e29af8692851c3aadd4f86a/Production-of-Hydrocarbon-Fuels-from-Polyethylene-Plastic-Wastes-Using-Thermal-and-Catalytic-Pyrolysis.pdf
dc.identifier.uri http://ir.mu.ac.ke:8080/jspui/handle/123456789/5305
dc.description.abstract Plastics have become an indispensable part of modern life today. The global production of plastics has gone up to 299million tones in 2013, which is believed to be increasing in the near future. The utilization of plastics and its final disposal pose a tremendous negative significance impacts on the environment. The aim of this study was to investigate the thermal and catalytic pyrolysis for production of hydrocarbon fuel from the polyethene plastic wastes. Catalysts used in the experiment were acid activated clay mineral and aluminum chlorides on activated carbon. The clay mineral was activated by refluxing it with 6M Sulphuric acid for 3hours. The experiment was conducted in three different phases: the first phase of the experiment was done without a catalyst where 88mL oil was obtained at a maximum temperature of 39 °C and heating rates of 12.5°C/minutes, reaction time of 4hours. The second phase involves the use of acid activated clay mineral where 100mL of oil was obtained and heating rates of 12.5°C/minutes and reaction time of 3hours 30minutes. The third phase was done using aluminum chlorides on activated carbon and 105ml oil was obtained at a maximum temperature of 400°C and heating rates of 15.5°C reaction time of 3hours 10minutes. From the results, catalytic pyrolysis is more efficient than purely thermal pyrolysis and homogenous catalysis (aluminum chlorides) shows a better result than solid acid catalyst (activated clay minerals) hence saving the energy needed for pyrolysis and making the process more economically feasible. en_US
dc.language.iso en en_US
dc.publisher Scientific Research Publishing en_US
dc.subject Plastics wastes en_US
dc.subject Pyrolysis en_US
dc.subject Catalyst en_US
dc.title Production of Hydrocarbon Fuels from Polyethylene Plastic Wastes Using Thermal and Catalytic Pyrolysis en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account