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Abstract: The emergence and dynamic prevalence of genetic disorders and infectious diseases with mutations
pose significant challenges for public health interventions. This study investigated the parameter estimation
approach and the application of the dynamic state-space Markov modeling of these conditions. Using extensive
simulations, the model demonstrated robust parameter estimation performance, with biases and mean-
squared errors decreasing as sample size increased. Applying the model to COVID-19 data revealed distinct
temporal patterns for each variant, highlighting their unique emergence, peak dominance, and decline or
persistence trajectories. Despite the absence of clear trends in the data, the model exhibited a remarkable
accuracy in predicting future prevalence trends for most variants, showcasing its potential for real-time
monitoring and analysis. While some discrepancies were observed for specific variants, these findings suggest
the model’s promise as a valuable tool for informing public health strategies. Further validation with larger
datasets and exploration of incorporating additional factors hold the potential for enhancing the model’s
generalizability and applicability to other evolving diseases.
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1 Introduction

Markov processes are stochastic processes with the Markov property, where all the information needed to
predict the future is fully contained in the current state without depending on previous states (i.e., the system
does not have “memory”) [32]. They are named after their creator, Andrey Markov (1856–1922), who presented
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the first results about Markov chains with a finite state space in 1906. An extension to a countably infinite state
space was formulated later [10,29]. These processes are associated with Brownian motion and the ergodic
hypothesis [26,33], two crucial concepts in statistical physics that significantly contributed to that field in the
early twentieth century [42].

In addition, Markov processes have evolved thanks to multiple scientific works, leading to several types:
discrete-time Markov process, continuous-time Markov process, hidden Markov process, semi-Markovian
Markov process [22], Markov process Markov decision [15], finite memory Markov process, etc. Then they
find their applications in various fields such as biology, voice recognition, finance, insurance, engineering,
population dynamics, health.

The main reason for their adoption in healthcare is the “memoryless property,” since complete informa-
tion often does not exist in patients suffering from a given medical condition [7,9]. Considering a probability
space (Ω, F , � ) with a filtration ( t� , ∈t I ) and (S , � ) a measurable space, a stochastic process = → ∈Z Z S: Ωt t I{ }

adapted to t� is said to have the Markov property if

∈ = ∈P Z B F P Z B Z ,r t s r t s( ∣ ) ( ∣ ) (1)

for each ∈B �, ∈s t I, , with <s t.
In other words, the Markov property essentially asserts that the conditional probability of the process

being in a certain state at a time t, given all the information available up to the time s, is equal to the
conditional probability of the process being in that state at time t, given only the current state at the time s.

If the set S is discrete, then

= = = = = = =− − − − − −P Z z Z z Z z Z z P Z z Z z, , …, .r n n n n n n r n n n n1 1 2 2 0 0 1 1( ∣ ) ( ∣ ) (2)

Furthermore, the world faces many diseases in which cells or viruses mutate over time, leading to new
variants. Genetic disorders and infectious diseases are notorious for such behaviors. In such a context, a
treatment plan for a disease could be ineffective when, in response, the cells change their background
(mutation) [3,19,36]. Therefore, to control such diseases, it is important to conduct studies highlighting their
progression. Several mathematical models have been developed for this purpose [13,25,48]. They are mostly
based on differential equations. Often limited by the availability of complete information on the patients’ past,
Markov processes are adapted to face that challenge. Many works have then used the Markov approach in
modeling diseases such as cancer [8,31,47], hepatitis [45], diabetes [6], malaria [34], HIV [27], and cardiovas-
cular diseases [18,40].

However, most of those Markov models assume that state spaces and propagation rates are constant. Such
hypotheses are not plausible when it comes to genetic disorders and infectious diseases with mutations.
Indeed, mutations lead to the appearance of new types of cells whose inclusion changes the state space
[17]. The need to develop models that, in addition to being able to only take into account information from
the present to predict the future, can also adjust to changes in state spaces is imperative [3]. These limitations
pave way to the need of Markov processes in genetics disorders, and infectious diseases modeling. Markov
processes in one dynamic state spaces would meet this need. Nevertheless, modeling the progression of these
diseases (genetic disorders and infectious diseases with mutations) by considering dynamic state spaces
involves increasing the number of parameters over time.

Furthermore, parameter estimation, a critical aspect of modeling, plays an important role in guaranteeing
the accuracy and predictive capabilities of models [24,37]. The precision with which model parameters are
estimated directly influences the fidelity of predictions, making it an essential focal point in research endea-
vors [20,30] aimed at comprehensively understanding and mitigating the impact of genetic disorders and
infectious diseases. In the context of genetic disorders and infectious diseases, the incorporation of mutations
introduces an additional layer of complexity. Maximum-likelihood estimation (MLE) methods are, moreover,
renowned for non-linear optimizations, in particular with their properties of consistency, asymptotic effi-
ciency, asymptotically normal distribution, and maximum informativeness [2,41]. They use likelihood func-
tions, logarithms, as well as derivatives. In particular, for Markov models in dynamic spaces, the complexity of
the likelihood functions makes the search for an analytical solution very complicated. Hence, there is need to
search for a numerical solution. This study aims to develop a dynamic state-space Markov model to enhance
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the understanding and prediction of the progression of genetic and infectious diseases, with a particular focus
on mutations associated with COVID-19.

The outcomes of this study hold the potential to not only enhance fundamental understanding of genetic
disorders and infectious diseases but also inform the development of targeted interventions and therapeutic
strategies. In investigating dynamic state-spacemodeling in the context of genetic disorders and infectious diseases,
this research provides a robust foundation for advancing precision in medicine and public health initiatives.

This article is structured into five main sections. The first one is about the definition of the key concepts
used. The second section is related to the materials and methods. The third one describes the parameters
estimation approach. In the fourth section, the results of the simulation study are presented. The last section is
about the application with real data severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

2 Definitions

Definition 1. A Markov process is a type of stochastic process in which the future probabilities are only
determined by the process’s current state, independent of any previous states. Formally, it is a sequence of
random variables Z Z, ,…1 2 possessing the Markov property, i.e.,

= = = = = = =− − − − − −P Z z Z z Z z Z z P Z z Z z, , …, ,r n n n n n n n n1 1 2 2 0 0 1 1( ∣ ) ( ∣ ) (3)

with P B Ar( ∣ ) being the conditional probability of B given A. The set of all the possible values that Z can take is
called the state space. The transition probabilities are the probabilities of moving from a given state to
another one. When they are constant over time, the Markov chain is said to be time-homogeneous.

Definition 2. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm for MLE
Suppose that we want to estimate θ, a vector of the parameters, using the MLE method, which consists of

maximizing the log-likelihood function, Llog :

=θ L θarg max log .
θ

MLE { ( )} (4)

The BFGS algorithm applied to that optimization problem is as follows:
Initial step: Let >ε 0 be the stopping criteria. State initial values θ1 and a symmetric positive definite

matrix Q
1
.

Step 1: If ∇ <L θ εlog k‖ ( )‖ , stop. If not, state = ∇d Q L θlogk k k( ), choose >α 0k and compute = −+θ θ α dk k k k1 ,
with ∇∇, the gradient.

Step 2: Compute +Q
k 1

= + + −
+

+Q Q
a a

a b

b Q b a a

a b

a b Q Q b a

a b
,

k k

k k

t

k k

t

k

t

k k k k

t

k k

t

k k

t

k k k k

t

k

t
k

1 2( )
(5)

with

= ≡ −+a α d θ θ ,k k k k k1 (6)

= ∇ − ∇+b L θ L θlog log .k k k1( ) ( ) (7)

We then replace k with +k 1 and return to Step 1.

Definition 3. Genetic disorders are medical conditions caused by changes in the DNA sequence of genes or
chromosomes [11]. These changes can be inherited from one or both parents, or they can happen on their own.
Genetic disorders are classified into three types: single-gene disorders, chromosomal disorders, and complex
disorders. Mutations in a single gene cause single-gene disorders, whereas chromosomal disorders are caused
by missing or altered chromosomes. Mutations in two or more genes, as well as environmental and lifestyle
factors, cause complex disorders. Cystic fibrosis, sickle cell anemia, Down syndrome, and muscular dystrophy
are examples of common genetic disorders [46].
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Definition 4. Infectious diseases are illnesses or conditions caused by infectious agents (bacteria, viruses,
fungi, or parasites) that enter the body and can cause an infection.

A bacterium cell is a type of prokaryotic cell with a simple internal structure and no nucleus. Bacteria can
be found almost anywhere on Earth in various shapes (cocci: round, bacilli: capsule-shaped, spirilla: spiral-
shaped) and sizes (0.2 to 2μm). They are critical to the planet’s ecosystems and human survival. Some of them
can survive extreme temperatures and pressures. They are also used in biotechnology, food processing, and
the production of antibiotics and other chemicals [1,4,23,44]. The harmful ones are called pathogenic bacteria.
Furthermore, viruses are made up of nucleic acid fragments wrapped in a protein. They enter healthy cells
and replicate using the cell’s replication systems. The viruses cause cellular membranes to rearrange, resulting
in the formation of specific intracellular compartments known as replication organelles (ROs), which are
required for viral replication [28,39]. Viruses are much smaller than bacteria. Bacteria are on the microscopic
scale, while viruses are on the nanoscopic scale (25–250 nm).

Fungi are found on decaying plant and animal matter and have two types of cells: yeast cells and mold
cells. Yeast fungi (size between 3–5μm) are found all over the world on plants, in soil, and in sugary mediums
such as fruit. Mold fungi are composed of multicellular filaments known as hyphae [14,21]. Moreover, para-
sites are living organisms that gain an advantage by attaching to a host at the expense of the host’s health.
They can range in size from tiny parasites such as malaria, which is about 4μm long, to much larger ones such
as tapeworms, which can grow to be several meters long. Parasites can enter the body of a host and exploit its
resources, often evading the host’s immune system. Depending on the parasite’s ability to adapt and suppress
the host’s immune response, this ability to evade the immune system can result in chronic or severe infec-
tions [38,43].

3 Materials and methods

3.1 Genetic disorders and infectious diseases with mutation progression model

We consider a cellular population composed of mutant cells and non-mutant cells. The following parameters
and variables are used (Table 1).

For d types of mutant cells ( ≥d 1), the non-mutant cell number increasing and decreasing rates
are, respectively, − ∑ − ∑= =λ γ l m1 s

d

s s

d

s1 1( )( ) and − ∑ =μ l ms

d

s1( ). For the mutant cells, they are, respectively.
∑ − ∑ + ∑= = =λ γ l m α ms

k

s s

d

s s

d

s s1 1 1( )( ) and ∑ = β ms

d

s s1 .
Furthermore, depending on the number of mutant cell types (k), the state space can be l m, 1( ),

l m m, ,1 2( ), ⋯ ⋯l m m m, , d1 2( ).
Let us denote by ⋯l m m m, ,t t t dt1 2( ) the process state after the tth event (death or division); =Y l m,t t t1( )

(for =k 1); =Y l m m, ,t t t t1 2( ) (for =k 2); = ⋯Y l m m m, , ; ;t t t t dt1 2( ) (for =k d).
• For =k 1

Table 1: Description of the parameters and variables

Parameter Description

λ Non-mutant cell division rate
μ Non-mutant cell death race
γ

s
Non-mutant cell probability of changing background (mutation) to cell type s after division

αs Mutant cell type s division rate
β

s
Mutant cell type s death rate

l Total number of disease cells
ms Number of mutant cells type s

4  Mouhamadou Djima Baranon et al.



The transition probabilities are mathematically expressed as follows:

= + = =
− −

+P Y l m Y l m
λ γ l m

1, ,
1

Φ
,r t t

l m

1 1 1

1 1

, 1

[ ( ) ∣ ( )]
( )( )

(8)

= + + = =
− +

+P Y l m Y l m
λγ l m α m

1, 1 ,
Φ

,r t t

l m

1 1 1

1 1 1 1

, 1

[ ( ) ∣ ( )]
( )

(9)

= − = =
−

+P Y l m Y l m
μ l m

1, ,
Φ

,r t t

l m

1 1 1

1

, 1

[ ( ) ∣ ( )]
( )

(10)

= − − = =+P Y l m Y l m
β m

1, 1 ,
Φ

,r t t

l m

1 1 1

1 1

, 1

[ ( ) ∣ ( )] (11)

with = − + + +l m λ μ m α βΦl m, 1 1 1 11
( )( ) ( ), the total sum of the rates, ensuring that the overall probability is

normalized to 1.
• For =k 2

The transition probabilities are expressed as follows:

= + = =
− − − −

+P Y l m m Y l m m
λ γ γ l m m

1, , , ,
1

Φ
,r t t

l m m

1 1 2 1 2

1 2 1 2

, ,1 2

[ ( ) ∣ ( )]
( )( )

(12)

= + + = =
− − +

+P Y l m m Y l m m
λγ l m m α m

1, 1, , ,
Φ

,r t t

l m m

1 1 2 1 2

1 1 2 1 1

, ,1 2

[ ( ) ∣ ( )]
( )

(13)

= + + = =
− − +

+P Y l m m Y l m m
λγ l m m α m

1, , 1 , ,
Φ

,r t t

l m m

1 1 2 1 2

2 1 2 2 2

, ,1 2

[ ( ) ∣ ( )]
( )

(14)

= − = =
− −

+P Y l m m Y l m m
μ l m m

1, , , ,
Φ

,r t t

l m m

1 1 2 1 2

1 2

, ,1 2

[ ( ) ∣ ( )]
( )

(15)

= − − = =+P Y l m m Y l m m
β m

1, 1, , ,
Φ

,r t t

l m m

1 1 2 1 2

1 1

, ,1 2

[ ( ) ∣ ( )] (16)

= − − = =+P Y l m m Y l m m
β m

1, , 1 , ,
Φ

,r t t

l m m

1 1 2 1 2

2 2

, ,1 2

[ ( ) ∣ ( )] (17)

with = + − − + + + +λ μ l m m α β m α β mΦl m m, , 1 2 1 1 1 2 2 21 2
( )( ) ( ) ( ) .

• For ≥k 2

The transition probabilities are expressed as follows:

= + = =
− ∑ − ∑

+
= =

P Y l m m Y l m m
λ γ l m

1, , …, , , …,
1

Φ
,r t d t d

s

d

s s

d

s

l m m m

1 1 1

1 1

, , , … , d1 2

[ ( ) ∣ ( )]
( )( ) (18)

= + + = =
− ∑ +

+
=

P Y l m m Y l m m
λγ l m m α

1, 1, …, , , …,
Φ

,r t d t d

s

d

s

l m m

1 1 1

1 1 1 1

, , … , d1

[ ( ) ∣ ( )]
( ) (19)

= + + = =
− ∑ +

+
=

P Y l m m m Y l m m
λγ l m m α

1, , 1, …, , , …,
Φ

,r t d t d

s

d

s

l m m

1 1 2 1

2 1 2 2

, , … , d1

[ ( ) ∣ ( )]
( ) (20)

…………………

= + + = =
− ∑ +

+
=

P Y l m m Y l m m
λγ l m m α

1, , …, 1 , , …,
Φ

,r t d t d

d s

d

s d d

l m m

1 1 1

1

, , … , d1

[ ( ) ∣ ( )]
( ) (21)
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= − = =
− ∑

+
=

P Y l m m Y l m m
μ l m

1, , …, , , …,
Φ

,r t d t d

s

d

s

l m m

1 1 1

1

, , … , d1

[ ( ) ∣ ( )]
( ) (22)

= − − = =+P Y l m m Y l m m
m β

1, 1, …, , , …,
Φ

,r t d t d

l m m

1 1 1

1 1

, , … , d1

[ ( ) ∣ ( )] (23)

= − − = =+P Y l m m m Y l m m
m β

1, , 1, …, , , …,
Φ

,r t d t d

l m m

1 1 2 1

2 2

, , … , d1

[ ( ) ∣ ( )] (24)

…………………

= − − = =+P Y l m m Y l m m
m β

1, , …, 1 , , …,
Φ

,r t d t d

d d

l m m

1 1 1

, , … , d1

[ ( ) ∣ ( )] (25)

with = + − ∑ + ∑ += =λ μ l m α β mΦl m m s

d

s s

d

s s s, , … , 1 1d1
( )( ) ( ) .

3.2 Probability mass function

Let us define w w w w, , ,…, d1 2 , and x as follows:

= −+w l l ,t t1( ) (26)

= −+w m m ,t t1 1 1 1( ) ( ) (27)

= −+w m m ,t t2 2 1 2( ) ( ) (28)
………

= −+w m m ,d d t d t1( ) ( ) (29)

= + + ⋯+x w w w w .d1 2 (30)

Four different values are possible for x :
1: When the total number of disease cells increases due to the non-mutant cells; 2: when the total number

of disease cells increases due to one of the mutant cell types; −1: when the total number of disease cells
decreases due to the non-mutant cells; −2: when the total number of disease cells decreases due to one of the
mutant cell types.

Using the transition probabilities and considering those four possibilities, the probability mass function
can be derived as follows:

∑ ∑ ∑ ∑ ∑

∑ ∑

= =
⎛

⎝
⎜

− − ⎞

⎠
⎟

⎛

⎝
⎜

− + ⎞

⎠
⎟

×
⎛

⎝
⎜

− ⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= = = = =

= =

− −

P X x

λ γ l m λ γ l m α m

μ l m β m

1

Φ Φ

Φ Φ
,

r

s

d

s s

d

s

l m m

x

s

d

s s

d

s s

d

s s

l m m

x

s

d

s

l m m

x

s

d

s s

l m m

x

1 1

, , … ,

1 1 1

, , … ,

1

, , … ,

1

, , … ,

d d

d d

1

1

1

2

1

1

1

2

� �

� �

( )
( )( ) ( )( )

( )

( ) ( )

( ) ( )
(31)

with ∈ − −x 1, 2, 1, 2{ } and xi� ( ) is an indicator function defined as: =x 1i� ( ) if =i x , and =x 0i� ( ) if not.

4 Parameter estimation

The MLE method can be used to estimate the parameters. To do so, the probability mass function (equation
(31)) is needed.
• For =k 1

The probability mass function (pmf) is given by the following equation:
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⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜= =
⎛
⎝

− − ⎞
⎠

⎛
⎝

− + ⎞
⎠

⎛
⎝

− ⎞
⎠

⎛
⎝

⎞
⎠

− −

P X x
λ γ l m λγ l m α m μ l m β m1

Φ Φ Φ Φ
r

l m

x

l m

x

l m

x

l m

x

1 1

,

1 1 1 1

,

1

,

1 1

,1

1

1

2

1

1

1

2� � � �

( )
( )( ) ( ) ( )

( ) ( ) ( ) ( )

(32)

with ∈ − −x 1, 2, 1, 2{ } and = − + + +l m λ μ m α βΦl m, 1 1 1 11
( )( ) ( ).

Assuming a dataset of N observations, the likelihood function is defined as follows:

∏ ⎜ ⎟ ⎜ ⎟
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⎡
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⎛
⎝
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⎠
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⎠
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⎛
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⎛
⎝

⎞
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⎤

⎦
⎥

=

− −

L λ γ α μ β X
λ γ l m λγ l m α m

μ l m β m

, , , ,
1

Φ Φ

Φ Φ
.

n

N
n n
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x
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x

n
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( ) ( )

( ) ( )
(33)

Let us state =L λ γ α μ β X Llog , , , , log
1 1 1

( ∣ ) . The log-likelihood function is

∑ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
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(34)

To find the values of the parameters that maximize the log-likelihood function (equation (33)), there is a need
for the derivative of Llog for each parameter. This gives five equations (one for each parameter λ, γ

1
, α1, μ, β

1
).
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• For =k 2
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The probability mass function (pmf) is
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with ∈ − −x 1, 2, 1, 2{ } and = + − − + + + +λ μ l m m α β m α β mΦl m m, , 1 2 1 1 1 2 2 21 2
( )( ) ( ) ( ) .

Assuming a dataset of N observations, the likelihood function is
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The log-likelihood function is
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The first derivatives with respect to the parameters are given by
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• For ≥k 2

The probability mass function (pmf) is
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with ∈ − −x 1, 2, 1, 2{ } and = + ( − ∑ ) + ∑ += =λ μ l m α β mΦl m m s

d

s s

d

s s s, , … , 1 1d1
( ) ( ) . The likelihood function is
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The log-likelihood function is
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The first derivatives are
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The search for analytical solutions using the aforementioned equations would be quite complex. In practice,
this optimization needs to be solved numerically rather than analytically. The limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, a Quasi-Newton method, has been chosen in this study for
various reasons. Quasi-Newton methods are widely recognized for their effectiveness in nonlinear optimiza-
tion, are frequently incorporated into various software libraries, and prove particularly advantageous when
the computation of the Hessian matrix is challenging [12]. Among the quasi-Newton methods, the BFGS method
stands out as the most popular and effective [5,35]. The L-BFGS algorithm, an extension of the BFGS method,
addresses the computational challenges associated with a high number of parameters [16].

For the general case ( > =k 2), we want to estimate =θ λ μ γ α β γ α β, , , , , …, , ,
d d d1 1 1

( ), the vector of the para-
meters, by maximizing the log-likelihood function Llog :
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The BFGS algorithm applied to that optimization problem (equation (59)) is as follows:
Initial step : Let >ε 0 be the stopping criteria. State initial values θ1 and a symmetric positive definite matrixQ

1
.
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stop.
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choose >α 0k and compute = −+θ θ α dk k k k1 , with ∇∇, the gradient.
Step 2: Compute +Q
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with

= ≡ −+a α d θ θ ,k k k k k1 (63)
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We then replace k with +k 1 and return to Step 1.

5 Simulation study

For this simulation study, three main scenarios have been considered: one type of mutant cells, two types of
mutant cells, and five types of mutant cells with sample sizes of 30, 100, and 500. Monte-Carlo experiments with
1,000 replications have been conducted. For each parameter, we compute the mean, the bias, and the mean-
squared error (MSE) defined as
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where θ is the true value vector.
Practically, we sort the data based on the variable Z such that from index 1 to N1, the value of =Z 1, from

+N 11 to N2, =Z 2, from +N 12 to N3, = −Z 1 and +N 13 to N , = −Z 2. Then, Z has the following distribution
(Table 2).

The log-likelihood function can be simplified as follows:
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This formula (equation (68)) is easier to compute compared to the previous one (equation (53)).

5.1 Scenario 1: One type of mutant cells ( ==k 1)

For λ, the mean estimates exhibit a gradual convergence toward the true value as sample size increases. The
bias decreases from 0.0968 to 0.0007 as the sample size expands from 30 to 500, indicating a diminishing
systematic error in estimation. Moreover, the MSE decreases substantially from 0.0450 to 0.0091, highlighting
the improved accuracy of estimation with larger sample sizes. Similar trends can be observed for γ

1
, α1, μ, and

β
1
. As the sample size grows, biases decrease, indicating a reduction in systematic errors, and MSE values

decline, reflecting enhanced precision in estimation (Table 3).

Table 2: Conceptual distribution of the variable Z for a dataset of N observations

Z 1 2 1 2 Total

Number of observations N1 N N‒2 1 N N‒3 2 N N‒ 3 N

Table 3: Parameter estimation statistics for =k 1

Parameter True value Sample size 30 Sample size 100 Sample size 500

Mean Bias MSE Mean Bias MSE Mean Bias MSE

λ 0.198 0.2948 0.0968 0.0450 0.2065 0.0085 0.0147 0.1987 0.0007 0.0091
γ

1
0.486 0.5262 0.0402 0.0458 0.4813 0.0047 0.0472 0.4859 0.0001 0.0418

α1 0.172 0.1935 0.0215 0.0269 0.1726 0.0006 0.0227 0.1720 0.0000 0.0221
μ 0.224 0.2656 0.0416 0.0276 0.2256 0.0016 0.0247 0.2241 0.0001 0.0266
β

1
0.414 0.2909 0.1231 0.0420 0.3981 0.0159 0.0253 0.4138 0.0002 0.0245
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5.2 Scenario 2: Two types of mutant cells ( ==k 2)

For λ, μ, γ
1
, α1, β

1
, γ

2
, α2, and β

2
, we observe similar patterns to those in the previous table. Specifically, biases

tend to decrease as sample size increases, indicating improved accuracy in estimation. Moreover, MSE values
generally decrease with larger sample sizes, suggesting enhanced precision. Notably, for parameters such as
α1, α2, β

1
, and β

2
, biases are relatively high for smaller sample sizes (30) but decrease substantially as the

sample size increases, indicating the influence of sample size on the accuracy of estimation (Table 4).

5.3 Scenario 3: Five types of mutant cells ( ==k 5)

Across all parameters, biases tend to decrease as sample size increases, indicating improved accuracy in
estimation. Moreover, MSE values generally decrease with larger sample sizes, suggesting enhanced precision.
For each parameter, there are notable differences in biases and MSE values across different sample sizes.
Generally, larger sample sizes lead to smaller biases and MSE values, indicating more accurate and precise
estimation. Notably, parameters such as αi and β

i
exhibit relatively high biases and MSE values for smaller

sample sizes (30), but these decrease substantially as the sample size increases, highlighting the influence of
sample size on the accuracy of estimation (Table 5).

Table 4: Parameter estimation statistics for =k 2

Parameter True value Sample size 30 Sample size 100 Sample size 500

Mean Bias MSE Mean Bias MSE Mean Bias MSE

λ 0.145 0.1818 0.0368 0.0188 0.1422 0.0028 0.0064 0.1448 0.0002 0.0036
μ 0.154 0.1620 0.0080 0.0082 0.1477 0.0063 0.0078 0.1584 0.0044 0.0087
γ

1
0.217 0.2449 0.0279 0.0145 0.2149 0.0021 0.0146 0.2169 0.0001 0.0139

α1 0.113 0.1870 0.0740 0.0232 0.1312 0.0182 0.0125 0.1126 0.0004 0.0087
β

1
0.275 0.2283 0.0467 0.0207 0.2517 0.0233 0.0143 0.2747 0.0003 0.0074

γ
2

0.27 0.2955 0.0255 0.0133 0.2662 0.0038 0.0132 0.2705 0.0005 0.0119
α2 0.11 0.1854 0.0754 0.0234 0.1306 0.0206 0.0124 0.1103 0.0003 0.0083
β

2
0.274 0.2253 0.0487 0.0208 0.2579 0.0161 0.0141 0.2738 0.0002 0.0065

Table 5: Parameter estimation statistics for =k 5

Parameter True value Sample size 30 Sample size 100 Sample size 500

Mean Bias MSE Mean Bias MSE Mean Bias MSE

λ 0.059 0.0359 0.0231 0.0015 0.0353 0.0237 0.0012 0.0585 0.0005 0.0008
μ 0.066 0.0441 0.0219 0.0015 0.0455 0.0205 0.0013 0.0662 0.0002 0.0015
γ

1
0.095 0.0972 0.0022 0.0026 0.0927 0.0023 0.0025 0.0951 0.0001 0.0024

α1 0.066 0.1182 0.0522 0.0074 0.0802 0.0142 0.0040 0.0662 0.0002 0.0027
β

1
0.117 0.1204 0.0034 0.0046 0.1098 0.0072 0.0046 0.1173 0.0003 0.0038

γ
2

0.095 0.0972 0.0022 0.0026 0.0928 0.0022 0.0025 0.0951 0.0001 0.0024
α2 0.062 0.1199 0.0579 0.0077 0.0794 0.0174 0.0039 0.0623 0.0003 0.0023
β

2
0.117 0.1102 0.0068 0.0047 0.1149 0.0021 0.0048 0.1170 0.0000 0.0036

γ
3

0.095 0.0972 0.0022 0.0026 0.0928 0.0022 0.0025 0.0951 0.0001 0.0024
α3 0.07 0.1226 0.0526 0.0071 0.0819 0.0119 0.0039 0.0699 0.0001 0.0029
β

3
0.12 0.1229 0.0029 0.0047 0.1098 0.0102 0.0048 0.1195 0.0005 0.0037

γ
4

0.095 0.0972 0.0022 0.0026 0.0930 0.0020 0.0025 0.0951 0.0001 0.0024
α4 0.07 0.1203 0.0503 0.0074 0.0749 0.0049 0.0032 0.0700 0.0000 0.0029
β

4
0.12 0.1201 0.0001 0.0046 0.1118 0.0082 0.0047 0.1202 0.0002 0.0039

γ
5

0.095 0.0974 0.0024 0.0026 0.0928 0.0022 0.0025 0.0951 0.0001 0.0024
α5 0.066 0.1147 0.0487 0.0070 0.0777 0.0117 0.0038 0.0657 0.0003 0.0028
β

5
0.119 0.1208 0.0018 0.0044 0.1117 0.0073 0.0050 0.1186 0.0004 0.0036
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6 Real-life data applications

In this section, we showcase the practicality and utility of the discrete Markov model on dynamic state space
using real-world COVID-19 data from the California Department of Public Health (CDPH). The prevalence of
circulating SARS-CoV-2 variants in California is being determined by the CDPH through the analysis of data
from CDPH Genomic Surveillance and California reportable disease information exchange, the department’s
communicable disease reporting and surveillance system. Over time, viruses undergo mutations, leading to
the emergence and disappearance of various variants. Some variants become widespread and persist, while
others are transient. Across specialized laboratories statewide, a fraction of all positive COVID-19 tests have
their genomes sequenced to identify circulating variants. Eight main variants have been followed daily (from
January 1st, 2021, to November 30, 2023): alpha, beta, delta, epsilon, gamma, lambda, mu, and omicron

The dataset is available through this link: https://data.chhs.ca.gov/sk/dataset/covid-19-variant-data/resource/
d7f9acfa-b113-4cbc-9abc-91e707efc08a

The data exploration has been done based on progression analysis (through line plots), violin plots, and
decomposition (trend, seasonality, residuals).

6.1 Progression of each SARS-CoV-2 variant over time

Figure 1 show the progression of each SARS-CoV-2 variant over time.
Each variant, excluding omicron, demonstrates distinct temporal dynamics characterized by a heightened

incidence in 2021, featuring significant peaks in the first half and a subsequent substantial decline in the latter
half of the year. Post-2021, variants like alpha, beta, delta, epsilon, gamma, lambda, and mu have virtually
vanished from the epidemiological landscape. Conversely, the omicron variant has emerged as a prominent
factor from 2022 onward, showcasing an evolution marked by pronounced fluctuations in subsequent days.

Figure 1: Progression of the variants over time.
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It is noteworthy that, despite the nearly eradicated prevalence of the aforementioned variants, others
persist with sustained presence. While their incidence is relatively modest from 2022 onward, their endurance
underscores the intricacies of the epidemiological scenario. This observation also underscores the imperative
for continual surveillance to evaluate the trajectory of SARS-CoV-2 variants and adjust public health strategies
accordingly.

6.2 Violin plots of the SARS-CoV-2 variants

The violin plots (Figure 2) show various distributions for each of the variants. Only the omicron variant is showing a
clear box plot, underlying the high randomness of the disease progression over time.

Figure 2: Violin plots for each type of variant: (a) violin plot for alpha variant, (b) violin plot for beta variant, (c) violin plot for delta variant,
(d) violin plot for epsilon variant, (e) violin plot for gamma variant, (f) violin plot for lambda variant, (g) violin plot for mu variant, (h) violin
plot for omicron variant, (i) violin plot for other variants.
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6.3 Decomposition of the SARS-CoV-2 variants

In Figures 3 and 4), the data are decomposed into three key components: trend, seasonality, and random
effects for each variant. Diverse trends and seasonality are observed in the data depending on the variant. But
for none of them, there is no clear trend, meaning that there is no consistent and sustained upward or
downward movement in the data across any variant. That indicates that the data points exhibit significant
fluctuations that are not readily explained by underlying trends or seasonality. Then, the data have high
random variations over time and outliers.

Figure 3: Decomposition plots for alpha, beta, delta, epsilon, gamma, and lambda variants: (a) alpha variant decomposition, (b) beta
variant decomposition, (c) delta variant decomposition, (d) epsilon variant decomposition, (e) gamma variant decomposition, and (f)
lambda variant decomposition.
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6.4 Parameter estimated values

Using the L-BFGS algorithm, the estimated values of the parameters are computed and presented in Table 6. It
is important to note that α1 and β

1
, α2 and β

2
, α3 and β

3
, α4 and β

4
, α5 and β

5
, α6 and β

6
, α7 and β

7
, α8 and β

8
are,

Figure 4: Decomposition plots for mu, omicron, and other variants: (a) mu variant decomposition, (b) omicron variant decomposition,
and (c) other variants decomposition.

Table 6: Parameter estimated values

Parameter Estimated values Parameter Estimated values

λ 0.3099 β
4

0.3112

μ 0.8931 γ
5

0.0694
γ

1
0.0694 α5 0.0787

α1 0.1095 β
5

0.2990

β
1

0.2837 γ
6

0.0694

γ
2

0.0694 α6 0.0777
α2 0.0779 β

6
0.3007

γ
3

0.0694 γ
7

0.0694
α3 0.0040 α7 0.0769
β

3
0.0087 β

7
0.3000

γ
4

0.0694 γ
8

0.0694
α4 0.1190 α8 0.0026
β

2
0.3006 β

8
0.0062
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respectively, the division and death rates for the SARS-CoV-2 variant alpha, beta, delta, epsilon, gamma,
lambda, mu and omicron; λ and μ are, respectively, the division and death rate for the other category variant;
γ

1
, γ

2
, γ

3
, γ

4
, γ

5
, γ

6
, γ

7
, and γ

8
are, respectively, the other category background changing (after division) to variant

alpha, beta, delta, epsilon, gamma, lambda, mu, and omicron.

Figure 5: Prediction plots for alpha, beta, delta, epsilon, gamma, and lambda variants: (a) alpha prediction, (b) beta prediction, (c) delta
prediction, (d) epsilon prediction, (e) gamma prediction, and (f) lambda prediction.
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6.5 Prediction of the SARS-CoV-2 variants

Based on the estimated values of the parameters, the progression of the disease can be followed. For the SARS-
CoV-2 type s variant, we have the following progression formula:

∑⎜ ⎟= + − +
⎛
⎝

−
⎞
⎠

++
=

m α β m λγ l m ε1 .s t s s s t s

s

d

s t s, 1 ,

1

,( ) (69)

For each of the variants, namely alpha, beta, delta, epsilon, gamma, lambda, mu, omicron, and others, a
comprehensive analysis has been conducted, delving into the predictive values that have been calculated
and represented within the confines of a unified graph (Figures 5 and 6). This graphical representation offers a
profound insight into the relationship between the predicted values and the corresponding raw data. Remark-
ably, the predictive values seamlessly align with the raw data over time, elucidating the robustness and
efficacy of the predictive model. Upon closer inspection, discernible patterns emerge, unveiling nuanced
distinctions among the variants. Notably, the disparities between the raw data and the predicted values
manifest more prominently for the beta and lambda variants in contrast to their counterparts. Furthermore,
unlike the decomposition illustrated in Figures 3 and 4, where inconsistencies may arise, the predictive model
adeptly captures and reflects the intricate temporal variations with precision and fidelity. This underscores
the model’s robustness in discerning underlying patterns and extrapolating future trajectories.

Figure 6: Prediction plots for mu, omicron, and other variants: (a) mu prediction, (b) omicron prediction, and (c) other variants
prediction.
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7 Discussion

The outcomes of the simulation study reveal a significant trend: an increase in sample size across all examined
scenarios consistently leads to a decrease in both bias and MSEs. This discovery carries substantial implica-
tions for statistical inference and data analysis. The decrease in bias indicates an improvement in estimation
accuracy, with larger sample sizes resulting in estimates that closely align with true population parameters.
This reduction in bias reflects the enhanced precision and reliability of estimates derived from larger samples.
Furthermore, the diminishing MSEs suggest a decrease in variability around the estimates, highlighting the
increased stability and robustness of the estimators as the sample size grows. Additionally, the observed trend
signifies an enhancement in statistical power, as larger sample sizes make statistical tests more sensitive to
detecting true effects or differences.

Moreover, the utilization of the Markov model on dynamic state space with COVID-19 data has produced
promising results, notably demonstrating a close alignment between predicted values and observed raw data.
This convergence between predicted and actual values holds significant implications for comprehending the
dynamics of the pandemic and guiding decision-making processes. The agreement between predicted values
and raw data underscores the model’s effectiveness in capturing the underlying dynamics of COVID-19 pro-
gression, instilling confidence in its predictive capabilities for accurate forecasting of key epidemiological
metrics.

However, additional validation efforts are indispensable to ensure the model’s robustness and general-
izability across a wide range of scenarios. By employing larger datasets and extended timeframes, the model’s
performance can be assessed under varying conditions. This comprehensive evaluation will not only
strengthen the model’s credibility but also provide valuable insights into its limitations and potential areas
for improvement. Moreover, incorporating additional variables such as demographic information, environ-
mental factors, and vaccination rates is a crucial step toward enhancing the model’s capacity to reflect the
complex dynamics of real-world disease progression.

Finally, expanding the model to account for the reversibility of mutations could provide deeper insights
into disease evolution. Mutations can lead to the emergence of new variants with altered transmission
dynamics, virulence, or immune escape properties. This enhanced model can contribute to a more compre-
hensive understanding of the disease’s evolution and facilitate the development of effective countermeasures
against emerging variants.

8 Conclusion

This study developed a dynamic state-space Markov model of genetic disorders and infectious diseases with
mutations, as well as an approach to parameter estimation based on the L-BFGS algorithm. The simulation
scenarios underlined the performance of the model: as sample size increased, the model demonstrably
improved its ability to estimate parameters, as evidenced by consistently decreasing biases and MSEs.
These simulation results established a strong foundation for the model’s application in real-world settings
with complex disease dynamics.

Applying the model to real-world COVID-19 variant data from California revealed distinct temporal
patterns for each variant. Despite the data’s complexities, the model displayed remarkable accuracy in pre-
dicting future prevalence trajectories for most variants, closely aligning with observed data points. This
underscores its robustness and potential for real-time monitoring and analysis. The accurate prediction of
future prevalence trends could empower timely resource allocation, targeted vaccination campaigns, and effective
containment measures, ultimately contributing to enhanced pandemic management and preparedness.

However, further validation with larger datasets and longer timeframes is crucial to solidify the model’s
generalizability. Moreover, incorporating additional factors such as demographics, environmental influences,
and vaccination rates could enhance its ability to capture the real-world complexities of disease dynamics.
Furthermore, the model can be extended taking into account the reversibility of mutations.
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