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NUMERICAL RANGE OF INNER PRODUCT TYPE
INTEGRAL TRANSFORMERS ON HILBERT SPACES

PRISCAH MORAA1, DAVID AMBOGO2∗ AND FREDRICK NYAMWALA3

Abstract. In this paper we compute the algebraic numerical range for inner
product type integral transformers and show that the basic properties of the
algebraic numerical range holds for this operator.

1. Introduction

Linear operator theory in Hilbert spaces has grown exponentially in the last
decade. In this study, our focus is on integral operators, in particular the inner
product type integral transformers. The inner product type integral transfor-
mation was introduced by Danko, [3] and is defined using the Gel’fand inte-
gral. To begin with, let H be a seperable complex Hilbert space, B(H) be the
space of all bounded linear operators and (Ω,Σ, µ) be a measure space. Let
A : Ω 7→ B(H) : t 7→ At = A(t) be an operator-valued function. The opera-
tor valued function is said to be weakly∗-measurable (weakly∗-integrable) if the
scalar-valued function t 7→ 〈Atg, h〉 is measurable (integrable) for all g, h ∈ H.
If 〈Af, f〉 is integrable for all f ∈ H, then the mapping f 7→

∫
Ω
〈Atf, f〉dµ(t)

represents a quadratic form of the unique bounded operator
∫

Ω
Atdµ(t) satisfying〈∫

Ω

Atdµ(t)f, g

〉
=

∫
Ω

〈Atf, g〉 dµ(t) for all f, g ∈ H. (1.1)

as well as

tr
{∫

Ω
Atdµ(t)Y

}
=
∫

Ω
tr{AtY }dµ(t),∀ Y ∈ B(H), Y =

f ∗ ⊗ f which is a rank one operator and f ∈ DA, where
DA = {f ∈ H :

∫
Ω
||Atf ||2dµ(t) <∞ and (Af)(t) = Atf}

The unique bounded operator
∫

Ω
Atdµ(t) is called the Gel’fand integral or weakly∗-

integral of the operator valued function At over Ω.

For every f ∈ H, the function t −→ ‖Atf‖ is also measurable (see [9]) and if
additionally

∫
Ω
‖Atf‖2dµ(t) < ∞ for all f ∈ H, then there exists weak∗-integral∫

Ω
A∗tAtdµ(t) ∈ B(H) satisfying
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Ω
A∗tAtdµ(t)f, f

〉
=
∫

Ω
〈A∗tAtf, f〉dµ(t) =

∫
Ω
‖Atf‖2dµ(t).

The family (At)t∈Ω will be called square-integrable B(H)−valued functions. The
space of all such functions will be denoted by L2

t (Ω, µ, B(H)), that is, the Banach
space of all weakly ∗-measurable functions A : Ω 7→ B(H) : t 7→ At such that∫

Ω
‖Atf‖2dµ(t) <∞ for all f ∈ H endowed with the norm

‖A‖L2
t (Ω,µ,B(H)) = ‖

∫
Ω

A∗tAtdµ(t)‖
1
2 for any A ∈ L2

t (Ω, µ, B(H)). (1.2)

Let A,B : Ω −→ B(H) be weakly ∗-measurable operator valued (o.v) functions
and ∀ X ∈ B(H), the function t 7→ AtXBt is also weakly µ∗-measurable. If
these functions are Gel’fand integrable for all X ∈ B(H), then there is a unique
bounded operator

∫
Ω
AtXBtdµ(t) satisfying Equation (1.1) ∀X ∈ B(H) with the

domain DA,B = {f ∈ H :
∫

Ω
||Atf ||2||Btf ||2dµ(t) < ∞}. The linear transfor-

mation X 7→
∫

Ω
AtXBtdµ(t) is called an inner product type (i.p.t.) integral

transformer on B(H) and we denote it by

T{A,B} =

∫
Ω

AtXBtdµ(t) =

∫
Ω

At ⊗Btdµ(t). (1.3)

We note that when µ is a counting measure on N, then Equation (1.3) becomes

T{A,B} =
n∑
i=1

AtXBt. (1.4)

Transformers of the form (1.4) are called elementary operators and have been
widely investigated (see [2], [8], [9] and references there in). The inner product

type integral operators have been studied by several authors. Danko [3], using the
Cauchy-Schwartz inequality showed that T{A,B} is bounded and its norm given
by ∥∥T{A,B}∥∥ ≤√∫Ω

‖A∗tAt‖dµ(t)
√∫

Ω
‖B∗tBt‖dµ(t)

Also, in [3], Danko showed that this operator
∫

Ω
At⊗Btdµ(t) leaves every unitary

invariant norm ideal space C‖.‖(H) invariant.
Dragoljub [1], used the Cauchy-Schwartz and the Aczel-Bellman inequalities to
show that if µ is a σ-finite positive measure on Ω and if each of the measur-
able families (o.v function), (At)t∈Ω and (Bt)t∈Ω consists of commuting normal
operators such that

∫
Ω
A∗Adµ ≤ I and

∫
Ω
B∗Bdµ ≤ I, then∣∣∣∥∥∥√I −

∫
Ω
A∗Adµ×

∫
Ω
B∗Bdµ

∣∣∣∥∥∥ ≤ ∣∣∥∥X − ∫Ω
AXBdµ

∣∣∥∥, for every

X ∈ C|‖.|‖(H).

The Cauchy-Schwartz operator inequalities and norm inequalities for elementary
and inner product type integral transformers have also been investigated, as well
as, convergence properties related to these transformers, which depends on the
stucture of norm ideals in which they act (see [5]).
In [4], Danko further determined an exact formula of finding the norm of i.p.t.
integral transformer

∫
Ω
At ⊗Bt on the Hilbert-Schmidt class as



NUMERICAL RANGE INTEGRAL TRANSFORMERS ON HILBERT SPACES 3

‖
∫

Ω
At ⊗Btdµ(t)‖B(C2(H)) =

limn−→∞
2n

√∫
Ω2n tr

(∏n
k=1 At∗n+1−k

Asn+1−k

)
tr
(∏n

k=1 BskBt∗k

)∏n
k=1 dµ(sk)dµ(tk).

whenever
∫

Ω
‖At‖p‖Bt‖pdµ(t) < ∞ for some p > 0. It is shown in [6], that the

Cauchy-Schwartz inequality and the Landaü inequality in the unitary invariant
norm ideals holds for the inner product type integral transformers through the
application of the Kortkine identity.
In [7], Danko obtained results on the relationship between the spectra of the
inner product type transformers and the unit disc. In particular if (At)t∈Ω and
(Bt)t∈Ω are weakly∗ measurable families of bounded Hilbert space operators then
the transformers X −→

∫
Ω
A∗tXAtdµ(t) and X −→

∫
Ω
B∗tXBtdµ(t) on B(H)

have their spectra contained in the unit disc and for all bounded operators X,

‖∆AX∆B‖ ≤ ‖X −
∫

Ω
A∗tXBtdµ(t)‖

Where ∆A = s−limr−→1(I+
∑∞

n=1 r
2n
∫

Ω
...
∫

Ω
|At1...Atn|2dµn(t1, ..., tn))−

1
2 , where

r is the spectral radius, with the spectral radius given by

r
(∫

Ω
A∗ ⊗Bdµ

)
≤
√
r(
∫

Ω
A∗ ⊗ Adµ)r(

∫
Ω
B∗ ⊗Bdµ).

The results obtained by Danko and other authors are based on the norm inequal-
ities of the inner product integral transformers. However, the numerical range
of the inner product type integral transformers in Hilbert spaces has not been
done. In this paper, we shall establish the numerical range of this operator and
show that the Toeplitz-Haursdorff property for the usual numerical range holds
for this operator.

Properties of inner product type integral transformers have applications in a quan-
tum chemical system by considering the bounded and self-adjoint Hamilitonian
operator which helps in estimating the ground state energies of the chemical sys-
tems using other subsystems. The study of numerical ranges and numerical radii
have applications to areas such as iteration methods, operator theory, Krein space
operators, dilation theory, factorization of matrix polynomials, C∗−algebras and
unitary similarity.

2. Main results

In this section, we define the algebraic numerical range of the inner product
type integral operator T{A,B} and show that the basic properties of the numerical
range are satisfied. We shall also show that

Co
{∫

Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}− ⊂ V (T{A,B}).

where Co is the convex hull and V (T{A,B}), the algebraic numerical range of
T{A,B}.

Definition 2.1. Let T{A,B} =
∫

Ω
At⊗Btdµ(t). The algebraic numerical range of

T{A,B} is defined as

V (T{A,B}) =
{
f(
∫

Ω
At ⊗Btdµ(t)) : f ∈ P (Ω)

}
where P (Ω) is the set of states in Ω.
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Lemma 2.2. Let λt ∈ W (At) and βt ∈ W (Bt),where W (At) is the usual numer-
ical range of At, then λtβt ∈ W (At ⊗Bt) and W (At ⊗Bt) ⊂ V (At ⊗Bt)

Proof. Let λ ∈ W (At ⊗Bt). Then

λ = 〈At ⊗Bt(x⊗ y), (x⊗ y)〉, ‖x⊗ y‖ = ‖x‖ = ‖y‖ = 1

= tr{y ⊗ x(At ⊗Bt)x⊗ y}
= 〈Atx, x〉〈Bty, y〉
= λtβt

For the second part, we define a linear functional gx⊗y by

gx⊗y(X) = tr{X(x⊗y)(x⊗ y)}, with‖x⊗ y‖ = ‖x‖ = ‖y‖ = 1, (2.1)

then

|gx⊗y(X)| ≤ ‖X(x⊗y)(x⊗ y)‖
≤ ‖x⊗ y‖ × ‖X(x⊗ y)‖
≤ ‖X(x⊗ y)‖
≤ ‖X‖

This implies that ‖gx⊗y‖ = 1. Since gx⊗y(IH) = tr(x⊗ y)(x⊗ y) = tr(x⊗ x)(y⊗
y) = 〈x, x〉〈y, y〉 = ‖x‖2‖y‖2 = 1, then ‖gx⊗y‖ = gx⊗y(IH) = 1; therefore gx⊗y is
a state on B(B(H)).

Then we have,

gx⊗y(At ⊗Bt) = tr{(x⊗ y)(At ⊗Bt)(x⊗ y)}
= tr{〈Atx, x〉(y ⊗B∗t y)}
= 〈Atx, x〉〈Bty, y〉
= λtβt

= λ

=⇒ λ ∈ V (At ⊗Bt)

Therefore, {λtβt : λt ∈ W (At), βt ∈ W (Bt)} ⊂ V (At ⊗Bt)
Hence, W (At ⊗Bt) ⊂ V (At ⊗Bt). �

Remark 2.3. From Lemma 2.2, it follows that
∫

Ω
λtβtdµ(t) ∈ W (T{A,B})

Theorem 2.4. Let T{A,B} =
∫

Ω
At⊗Btdµ(t), and

{∫
Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}
⊂

V (T{A,B}), then

Co
{∫

Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}− ⊂ V (T{A,B}).

Proof. Let x, y ∈ H such that ‖x‖ = ‖y‖ = 1. Recall the state as defined in
Equation (2.1),

∀F ∈ B(B(H)) : gx⊗y(F ) = tr{(F(x⊗y)(x⊗ y)},

where tr is the trace function, with ‖x⊗y‖ = ‖x‖ = ‖y‖ = 1, then gx⊗y is a state
on B(B(H)) as shown in Lemma 2.2 above.
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For T{A,B} =
∫

Ω
At ⊗ Btdµ(t), let S = At ⊗ Bt, using the state as defined in

Equation (2.1),

gx⊗y(S) = tr{Sx⊗y(x⊗ y)}
= tr{(At ⊗Bt)x⊗y(x⊗ y)}
= tr{(Atx⊗Bty)(x⊗ y)}
= tr{(At(x⊗ x))(Bt(y ⊗ y))}
= 〈Atx, x〉〈Bty, y〉

This implies that

gx⊗y(T{A,B}) =

∫
Ω

〈Atx, x〉〈Bty, y〉dµ(t)

=

∫
Ω

λtβtdµ(t).

Thus, {∫
Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}
⊂ V (T{A,B})

Since the algebraic numerical range V (T{A,B}) is compact and convex, then

Co
{∫

Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}− ⊂ V (T{A,B}).

�

Theorem 2.5. The algebraic numerical range for inner product type integral
transformers satisfies the following properties

i. V (T ∗{A,B}) = V (T{A,B})

ii. V (U∗T{A,B}U) = V (T{A,B})
iii. V (T{A,B} + S{A,B}) ⊆ V (T{A,B}) + V (S{A,B})
iv. V (αT{A,B} + βI) = αV (T{A,B}) + β

Proof. i. Let S = At ⊗ Bt, then S∗ = B∗t ⊗ A∗t , and using the state defined
in Equation (2.1),

gx⊗y(S
∗) = tr{S∗(x⊗y)(x⊗ y)}

= tr{(B∗t ⊗ A∗t )(x⊗y)(x⊗ y)}
= tr{(B∗t x⊗ A∗ty)(x⊗ y)}
= tr{(B∗t (x⊗ x))(A∗t (y ⊗ y))}
= 〈B∗t x, x〉〈A∗ty, y〉
= 〈A∗ty, y〉〈B∗t x, x〉
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This implies that

gx⊗y(T
∗
{A,B}) =

∫
Ω

〈A∗ty, y〉〈B∗t x, x〉dµ(t)

=

∫
Ω

〈y, Aty〉〈x,Btx〉dµ(t)

=

∫
Ω

λtβtdµ(t)

Since
{∫

Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}
⊂ V (T{A,B}), then V (T ∗{A,B}) =

V (T{A,B}).
ii. Let S = U∗At ⊗BtU , then

gx⊗y(S) = tr{Sx⊗y(x⊗ y)}
= tr{(U∗At ⊗BtU)x⊗y(x⊗ y)}
= tr{(U∗Atx⊗BtUy)(x⊗ y)}
= tr{(U∗At(x⊗ x))(BtU(y ⊗ y))}
= 〈U∗Atx, x〉〈UBty, y〉

This implies that

gx⊗y(T{A,B}) =

∫
Ω

〈U∗Atx, x〉〈UBty, y〉dµ(t)

=

∫
Ω

U∗U〈Atx, x〉〈Bty, y〉dµ(t)

=

∫
Ω

〈Atx, x〉〈Bty, y〉dµ(t) (Since U∗U = UU∗ = I)

=

∫
Ω

λtβtdµ(t)

It implies that
{∫

Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}
⊂ V (T{A,B}).

iii. Let T{A,B} =
∫

Ω
At ⊗Btdµ(t), S{A,B} =

∫
Ω
Pt ⊗Qtdµ(t), then

T{A,B} + S{A,B} =

∫
Ω

At ⊗Btdµ(t) +

∫
Ω

Pt ⊗Qtdµ(t)

=

∫
Ω

(At ⊗Bt + Pt ⊗Qt)dµ(t)

Let G = At ⊗Bt + Pt ⊗Qt, then

gx⊗y(G) = tr{G(x⊗y(x⊗ y)}
= tr{(At ⊗Bt + Pt ⊗Qt)x⊗y(x⊗ y)}
= tr{(At ⊗Bt(x⊗ y) + Pt ⊗Qt(x⊗ y))((x⊗ y)}
= tr{((Atx⊗Bty) + (Ptx⊗Qty))(x⊗ y)}
= tr{(Atx⊗Bty) + (y ⊗ x)(Ptx⊗Qty)((x⊗ y)}
= tr{(Atx⊗ x)(Bty ⊗ y) + (Ptx⊗ x)(Qty ⊗ y)}
= 〈Atx, x〉〈Bty, y〉+ 〈Ptx, x〉〈Qty, y〉
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This implies that

gx⊗y(T{A,B} + S{A,B}) =

∫
Ω

〈Atx, x〉〈Bty, y〉+ 〈Ptx, x〉〈Qty, y〉dµ(t)

=

∫
Ω

〈Atx, x〉〈Bty, y〉dµ(t) +

∫
Ω

〈Ptx, x〉〈Qty, y〉dµ(t)

=

∫
Ω

λtβtdµ(t) +

∫
Ω

γtδtdµ(t)

It implies that{∫
Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt) +

∫
Ω
γtδtdµ(t) : γt ∈ W (Pt), δt ∈ W (Qt)

}
⊂

V (T{A,B}) + V (S{A,B}).

iv. V (αT{A,B} + βI) = αV (T{A,B}) + β
Now, αT{A,B} + βI = α

∫
Ω
At ⊗Btdµ(t) + βI

Let S = α(At ⊗Bt) + βI, then

gx⊗y(S) = tr{S(x⊗y)(x⊗ y)}
= tr{(α(At ⊗Bt) + βI)(x⊗y)(x⊗ y)}
= tr{(α(At ⊗Bt)x⊗y + βIx⊗y)(x⊗ y)}
= tr{(α(Atx⊗Bty) + β(x⊗ y))(x⊗ y)}
= tr{α(Atx⊗Bty)(y ⊗ x) + β(x⊗ y)(y ⊗ x)}
= tr{α(Atx⊗ x)(Bty ⊗ y) + β(x⊗ x)(y ⊗ y))}
= α〈Atx, x〉〈Bty, y〉+ β〈x, x〉〈y, y〉
= α〈Atx, x〉〈Bty, y〉+ β

This implies that

gx⊗y(αT{A,B} + βI) =

∫
Ω

α〈Atx, x〉〈Bty, y〉dµ(t) + β

=

∫
Ω

αλtβtdµ(t) + β

Hence

α
{∫

Ω
λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}
+ β ⊂ αV (T{A,B}) + β.

�

Theorem 2.6. The algebraic numerical range V (T{A,B}) is convex.

Proof. To show that V (T{A,B}) is convex, we need to show that the intersection of
every line with V (T{A,B}) is connected or empty. Since T{A,B} is a bounded linear
operator on H, let

∫
Ω
λtβtdµ(t) and

∫
Ω
γtδtdµ(t) be distinct points of W (T{A,B})

with
∫

Ω
λtβtdµ(t) = 〈T{A,B}x, x〉 ,

∫
Ω
γtδtdµ(t) = 〈T{A,B}y, y〉 These values are lin-

early independent and hence 〈T{A,B}x, x〉 6= 〈T{A,B}y, y〉, for if we let x = ay, a ∈
C, |a| = 1, ‖x‖ = 1 = ‖y‖, then

∫
Ω
λtβtdµ(t) = 〈T{A,B}x, 〉 = 〈T{A,B}ay, ay〉 =

〈aT{A,B}y, ay〉 =
∫

Ω
γtδtdµ(t), which is a contradiction. Similarly, y 6= ax for any
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a ∈ C so that x and y are linearly independent. Now let L = span {x, y}, a two
dimensional subspace of H and let PL be the projection onto L and T ∈ B(H).
Since x, y ∈ L,

∫
Ω
λtβtdµ(t),

∫
Ω
γtδtdµ(t) ∈ W (PLT{A,B}|L) ⊆ W (T{A,B}) ⊂

V (T{A,B}). But since L is two dimensional, W (PLT{A,B}|C) is convex. Hence,
t
∫

Ω
λtβtdµ(t) + (1 − t)

∫
Ω
γtδtdµ(t) ∈ W (PLT{A,B}|C) ⊆ W (T{A,B}) ⊂ V (T{A,B})

for 0 < t < 1. Since
∫

Ω
λtβtdµ(t),

∫
Ω
γtδtdµ(t) ∈ W (T{A,B}) were arbitrary, then

V (T{A,B}) is convex as desired.
�

Theorem 2.7. The operator T{A,B} =
∫

Ω
At ⊗Btdµ(t) is self adjoint if and only

if V (T{A,B}) is real.

Proof.

V (T{A,B}) =

{
f(

∫
Ω

At ⊗Btdµ(t)) : f ∈ P (Ω)

}
=

{∫
Ω

〈Atx, x〉〈Bty, y〉dµ(t)

}
=

{∫
Ω

λtβtdµ(t) : λt ∈ W (At), βt ∈ W (Bt)

}
=

∫
Ω

〈A∗ty, y〉〈B∗t x, x〉dµ(t)

=

∫
Ω

〈y, Aty〉〈x,Btx〉dµ(t)

=

{∫
Ω

λtβtdµ(t) : λt ∈ W (A∗t ), βt ∈ W (B∗t )

}
Hence, we have that

∫
Ω
λtβtdµ(t) =

∫
Ω
λtβtdµ(t), which implies that V (T{A,B})

is real.
Conversely,
f(T{A,B}) =

∫
Ω
〈Atx, x〉〈Bty, y〉dµ(t) = f(T ∗{A,B}) =

∫
Ω
〈A∗ty, y〉〈B∗t x, x〉dµ(t)

This implies that,
f(T{A,B}) − f(T ∗{A,B}) = 〈Atx, x〉〈Bty, y〉 − 〈A∗ty, y〉〈B∗t x, x〉 Since At and Bt are

self adjoint operators, we have 〈Atx, x〉 − 〈A∗ty, y〉 = 0, for ‖x‖ = ‖y‖ = 1 and
Btx, x〉 − 〈B∗t y, y〉 for ‖x‖ = ‖y‖ = 1.
Hence f(T{A,B}) − f(T ∗{A,B}) = 〈Atx, x〉〈Bty, y〉 − 〈A∗ty, y〉〈B∗t x, x〉 = 0. =⇒
f(T{A,B}) − f(T ∗{A,B}) = 0 =⇒ f(T{A,B} − T ∗{A,B}) = 0. Since f is a linear

functional on B(H), then f 6= 0 and therefore T{A,B}− T ∗{A,B} = 0 Which implies

that T{A,B} = T ∗{A,B}. That is, T{A,B} =
∫

Ω
AtXBtdµ(t) is self-adjoint. �
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