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ABSTRACT 

Solar energy is abundantly available and it is a choice to drive the energy transition in 

sub-Saharan Africa. However, harvesting the maximum power from the sun is 

challenging since it is not always available at all times. Also, the most commonly used 

perturb and observe technique for harvesting maximum power suffers from slow 

response time and oscillations around the maximum power point. In addition to that, 

batteries which are a popular option for energy storage for use in times of no sunshine 

are costly and have short life-cycle. Hence, they need to be effectively managed to 

extend their useful life. The main objective of this research was to model and simulate 

a solar/battery hybrid energy system with a Maximum Power Point Tracking (MPPT) 

control strategy and to optimize the battery charging/discharging cycle life. The specific 

objectives were to: analyse the daily energy supply (solar radiation levels) and energy 

consumption at the study site; model and simulate a solar/battery hybrid system; design 

and simulate a Maximum Power Point Tracking (MPPT) control strategy; and optimize 

the solar system performance and the battery charging/discharging cycle life. The 

research was based at Moi University. The solar radiation and temperature data were 

collected from the Moi University Meteorological Weather Station. The power 

consumption was measured using the PCE360 power analyzer. The solar battery hybrid 

systems were modelled and simulated using HOMER Pro version 3.10.3. The MPPT 

was designed and simulated in MATLAB/Simulink using Perturb and Observe (P&O) 

technique, which incorporated a Proportional Integral Derivative (PID) controller, 

tuned using metaheuristic GA. The efficiency of the tracker was calculated using the 

EN5030 European standard for converter efficiencies. The charging/discharging of the 

batteries was done using a bidirectional converter integrated with a GA tuned PID 

controller. The battery state of charge was steadily monitored and maintained at 30% 

minimum. The measured average solar radiation and temperature were 4.9 kWh/m2/day 

and 18oC, respectively. The daily peak power consumption for the Administration 

building and Library were 86 kW and 93 kW respectively. From the HOMER Pro 

simulations, the results obtained gave an optimal system size of 90 kW for the 

Administration Building and 100 kW for the Margaret Thatcher Library. Also, the net 

present costs were Ksh27,000,000 ($191,314) for the Administration building and 

Ksh32,000,000 ($226,743) for the Margaret Thatcher Library while the payback period 

in both cases was 6 years. The MPPT had a settling time of 0.025 seconds and a tracking 

efficiency of 99.5%. The study concluded that maximum power point tracking 

significantly enhances solar energy harvesting. It is recommended that the strategy for 

tracking the maximum power point be utilized to boost the output power from solar PV 

system in Moi university’s Administration and Library Buildings and any other similar 

institution. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The need for universal access to electricity has sparked a passionate global search 

among researchers. This urgent issue has driven them to investigate cutting-edge, eco-

friendly methods for producing electrical power, while also improving present 

techniques to increase both cost-efficiency and energy sustainability. Researchers are 

devoting their efforts to the twin goals of cleaner energy production and the 

optimization of present generation methods as the globe struggles with the ever-

increasing demand for electricity. This complex project aims to pave the road for a more 

sustainable and environmentally conscious future in addition to meeting society's 

present energy demands (Bose, 2010; Odou et al., 2020; Park et al., 2014) (Chauhan & 

Saini, 2014). Fossil fuel with its limited nature and utilized in conventional energy 

generation plants has also driven the shift toward cleaner power generation (Prasad et 

al., 2006). Clean energy technologies are thought to be safer routes to drive the energy 

transition in the power sector because of the adverse environmental effects coming from 

thermal and coal power plants (J. Ahmad et al., 2018; Alshammari & Asumadu, 2020; 

Aziz et al., 2018, 2019; Bentouba & Bourouis, 2016; Bhandari et al., 2014; Corbus & 

Bergey, 1997; Cristóbal-Monreal & Dufo-López, 2016; Fazelpour et al., 2014a; 

Gebrehiwot et al., 2019; H. U. R. Habib et al., 2019; Kazem & Khatib, 2013; Landi D, 

Castorani V, 2019; Mokhtara et al., 2020, 2021; Murugaperumal et al., 2020; 

Murugaperumal & Ajay D Vimal Raj, 2019; Patel & Singal, 2018; Ramesh & Saini, 

2020; Vai et al., 2020). 

Energy plays an important role in the development of every nation (Yimen et al., 2018). 

Access to electricity is still very limited especially in most rural communities in Africa 

because of their geographical locations making grid extension difficult. This has led to 
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millions of people with a majority from rural communities going without electricity. 

According to the energy progress joint report 2023 by the International Renewable 

Energy Agency (IRENA), World Bank (WB), International Energy agency (IEA), 

United Nations Statistics Division (UNSD) and the World Health Organisation (WHO), 

over 675 million people in the world as at 2021 still lack access to electricity and over 

80% of this population live in sub-Saharan Africa (IEA et al., 2023).  A majority of this 

population is in sub-Saharan Africa with a greater percentage coming from the rural 

communities. Furthermore, according to the 2030 agenda for sustainable development 

by the United Nations on its sustainable development goal number 7 which seeks to 

ensure access to affordable, reliable, sustainable and modern energy for all, effort needs 

to be made in the line of renewable energy for this goal to be achieved (UN, 2015). At 

the time when technology and industrialization are growing at a fast rate, the means of 

providing clean electrical energy in a relatively cheap cost to all remains a problem 

(Rehman, 2021). For this reason, alternative ways for local power generation must be 

sought so as to provide sustainable energy to all especially to those people who are not 

connected to the grid and have no hopes for grid extension reaching them in the near 

future. 

Sustainable and cost-effective electricity can be provided to all, no matter their 

geographical locations by using renewable energy sources such as solar photovoltaic 

(PV), wind, biomass and mini hydro (Naveen et al., 2020; Rehman, 2021). These are 

all sources of energy which can be replenish over time making then clean and renewable 

energy sources (Rehman, 2021). It should also be noted that most, if not all, these 

sources of energy are readily available in all rural communities in sub-Saharan Africa. 

They can therefore be harnessed to provide electricity to the communities that have 

been left in darkness due to the lack or inadequate supply from the traditional grid. 
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Different approaches can be used in the process of harnessing these sources of energy 

such as the construction of standalone power systems with or without battery backup, 

construction of hybrid renewable energy system (HRES) and the construction of grid 

connected hybrid systems in areas where the grid network is available but not sufficient 

to supply electricity to all the population available. Therefore, utilizing solar/battery 

hybrid systems can become a major solution to the energy problem in Africa. 

Resources for RE are variable. Due to the constant variation in solar radiation and wind 

speed, respectively, solar and wind, for instance, are not stable. Additionally, solar 

photovoltaic (PV) systems use solar modules to capture solar energy, but due to the 

poor conversion efficiency of these modules, there are limitations on the amount of 

solar energy that can be harvested to its full potential (Alex, 2005; Fazelpour et al., 

2014b; Ludin et al., 2021; Rehman, 2021; Van Beuzekom et al., 2015; Zahraee et al., 

2016), (Bounechba et al., 2014; Ngan & Tan, 2011). These factors have led to the 

current employment of various control strategies to monitor the maximum power from 

these energy systems. 

The Maximum Power Point (MPP) in PV systems is where output power reaches 

its peak, and its location is continuously affected by temperature and solar radiation. 

An operating point should thus be at MPP, which is a point on the PV curve displaying 

the maximum power that can be harvested from a certain PV module at a given time as 

shown on Figure 2 below, in order to track the maximum power of the PV generator. 

Consequently, MPPT (Maximum Power Point Tracking) algorithms must continuously 

track the MPP (Gebrehiwot et al., 2019; Giallanza et al., 2018; Kazem & Khatib, 2013; 

Murphy & Mcdonnell, 2017; Murugaperumal et al., 2020; Park et al., 2014), (Jalal & 

Mehdi, 2021). MPPT is a technique used to maximize energy extraction from PV 

modules. Utilizing solar tracking techniques increase the overall efficiency of PV 
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systems especially in partial shading conditions and reduce the overall system cost of 

PV systems (Hohm & Ropp, 2003). The difficulty with MPPT systems is capturing the 

maximum output power from the PV system by tracking voltage prediction and 

appropriately varying duty cycle (Bendib et al., 2015a, 2015b; P.-C. Chen et al., 2015; 

da Rocha et al., 2020; Mao et al., 2020; Ram et al., 2017; Seyedmahmoudian et al., 

2016; Subudhi & Pradhan, 2012). Figures 1.1 and 1.2 show the variation of current, 

voltage, and power for a typical solar module during temperature and solar radiation 

variations. 

 

Figure 1.1: Characteristics of a solar module (I-V and P-V) under varying temperature 

(Bounechba et al., 2014)(Ngan & Tan, 2011).  
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Figure 1.2: Characteristics (I-V and P-V c) of a solar module under varying solar 

radiation (Bounechba et al., 2014)(Ngan & Tan, 2011) 

The statistics show that temperature change has a greater impact on a solar module's 

output voltage than it does on its output current. In contrast, the module's current is 

significantly more affected by variations in solar radiation than its output voltage is. 

The solar module's overall output power changes in both situations. The solar module's 

overall output power changes in both situations (Salas et al., 2006). Additionally, when 

a PV module is exposed to full sunlight conditions and when partial shading occurs, its 

I-V and P-V properties are never the same. While the I-V and P-V cures are 

homogeneous under full sunlight with only one maximum power point, local maxima 

are seen under partial shade, making it challenging to track the global maximum. These 

conditions are illustrated in Figure 1.3. 
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Figure 1.3: PV module characteristics under partial shading and uniform sunshine 

conditions (R. Ahmad et al., 2019a) 

1.2 Problem Statement 

Optimal design and control of solar/battery hybrid renewable energy systems still 

remain a problem. The solar resource is variable and intermittent and the conversion 

efficiency for solar modules is still very low, ranging between 13% and 22%. Therefore, 

maximum power should be harvested from the sun when available to supply the loads 

and charge the batteries. To harvest this maximum power, tracking systems are 

required. Currently, the tracking is done using Maximum Power Point Trackers 

(MPPTs). Different control strategies have been developed for these trackers. One of 

the most used control strategies in most commercial MPPTs is the Perturb and Observe 

(P&O) which is cost effective. Though the P&O strategy is widely used, it has 

limitations as it suffers from oscillations around the Maximum Power Point (MPP) 

during the tracking process and has a slow response time. Lead acid batteries on the 

other hand which are frequently used for storage have a short life span ranging from 3-

6 years. This poses a problem because it increases the long run maintenance cost of the 



7 
 

PV system. Therefore, developing suitable control strategies to harness maximum 

power from the sun with minimal oscillations and improved tracking time and also to 

effectively control the charging and discharging of batteries to enhance their 

performance and increase their life span becomes necessary. This will improve the 

overall efficiency of solar/battery systems. 

1.3 General Objective 

The main objective of this work is to model and simulate a solar/battery hybrid 

renewable energy system with Maximum Power Point Tracking (MPPT) control 

strategy and optimize the battery charging/discharging cycle life. 

1.4 Specific Objectives 

The specific objectives of this work are to: 

i) Analyse the daily energy supply (solar radiation levels) and energy 

consumption at the study site; 

ii) Model and simulate a solar/battery hybrid system; 

iii) Design and simulate a Maximum Power Point Tracking (MPPT) control 

strategy; 

iv) Optimize the solar system performance and the battery charging/discharging 

cycle life. 

1.5 Justification of the Study 

Growing usage of renewable energy sources, like solar energy, is essential for tackling 

the world's energy problems and cutting greenhouse gas emissions. Researching 

solar/battery hybrid renewable energy systems aids in the creation of ecologically 

responsible and sustainable energy solutions.  
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Solar PV energy is harvested from the sun and it is influenced by environmental factors 

such as temperature and solar radiation. The power output from PV systems is however 

variable. Because of this, the energy efficiency of the system can be improved by 

integrating batteries and using MPPT control techniques, allowing for greater solar 

energy harvesting and raising the overall system performance. As a result, effective 

energy management is made possible by modelling, simulating, and optimizing a 

solar/battery hybrid system with MPPT control technique. Through this, researchers 

and system designers can pinpoint the best operating points, boost power generation, 

and efficiently control battery charging and discharging by correctly modelling the 

system's constituent parts and putting cutting-edge control algorithms to work. 

Also, they can find the most dependable and cost-efficient system topologies, 

component size, and control strategies through simulation and optimization. With the 

use of this knowledge, practical solar/battery hybrid systems may be designed and put 

into operation, which will lower installation costs, improve system performance, and 

boost the affordability of renewable energy sources. 

In addition to that, the advancements in control methods, algorithms, and techniques 

are continually being implemented to improve MPPT control techniques. The 

development of renewable energy technologies is facilitated by studying and analysing 

the performance of various MPPT algorithms in a solar/battery hybrid system. This 

allows for the identification of the most appropriate and effective control technique. 

Potential for real-world applications such as off-grid systems, rural electrification 

initiatives, and remote area power delivery are a few examples of real-world scenarios 

that could benefit directly from the research's conclusions and insights. Researchers can 
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support the use and uptake of renewable energy solutions in a variety of contexts by 

improving the design and control of solar/battery hybrid systems. 

Furthermore, promoting the use of solar energy and improving renewable energy 

systems is consistent with efforts to combat climate change and advance global energy 

sustainability. Research on solar/battery hybrid systems will help lessen dependency on 

fossil fuels, reduce carbon emissions, and promote a more sustainable and 

environmentally friendly energy future. 

In conclusion, it is justified to carry out research on the modelling, simulation, and 

optimization of a solar/battery hybrid renewable energy system with MPPT control 

strategy given its potential to increase energy efficiency, improve system reliability, 

lower costs, and support the creation of sustainable energy solutions. 

1.6 Structure of the Thesis 

In order to better understand the research work, this thesis has been divided in to five 

chapters as follows. 

Chapter 1 which is the first and current chapter is the introductory chapter which talks 

about the background of the work, the problem statement, the objectives, the 

justification, and the general structure of the thesis. 

Chapter 2 is dedicated for literature review. It gives the generalities of photovoltaic 

systems, maximum power point tracking techniques, battery storage systems, and 

related works that have been carried out on this topic. 

Chapter 3 is the methodology chapter. It lays emphasis on the study site, the methods 

and tools used for data collection, and the software tools and simulation techniques 

used. 
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Chapter 4 is the result and discussion chapter which presents the results obtained from 

the findings and also discusses the significance of the results. 

Chapter 5 is the general conclusion which concludes the on the overall outcomes of this 

research. Also, the contributions, recommendations and perspectives of this work are 

also outline in this chapter. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

Reduction of carbon emissions, safeguarding the environment and the health of the 

population, influence climate and sea level changes, are the push factors towards the 

constant drive for renewable energy alternatives. Due to the free and abundant 

irradiance and bright weather in different parts of the world, solar energy has drawn 

attention recently (Sibai, 2014). Currently, it is regarded as a noble mission to develop 

PV solar energy as a clean and environmentally beneficial energy source. In this 

mission, the sun is purposefully given a new purpose in addition to the one it has always 

served: to supply energy for Earthly life. The sun will also serve the additional purpose 

of providing solar electricity, which will supply the Earth with energy for human 

comfort and wellbeing.  

Photovoltaic (PV) panels have been around for a while, but recently they have 

become more affordable and popular. Due to the solar energy industry's explosive 

growth, PV systems are now a common alternative energy source in most parts of the 

world. To satisfy consumers demands, many solar panels must be connected together. 

Either the solar panels are connected in parallel or series to boost the system voltage or 

the load current respectively. The best performance from connecting these solar panels 

in series or parallel is only possible if they are similar and share the same properties. 

Because it relies on the photovoltaic effect, the direct conversion of solar radiation into 

electricity is frequently referred to as a photovoltaic (PV) energy conversion. The 

development of a potential difference at the intersection of two distinct materials in 

response to visible or other radiation is generally referred to as the photovoltaic effect. 

Therefore, "photovoltaic" refers to the entire field of solar energy conversion into 

electricity. Literally, "light-electricity" is what photovoltaic means. 
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2.2 Solar PV Energy 

Photovoltaic is a method to convert solar radiation into electricity using semiconductors 

that exhibit the photovoltaic effect. Photovoltaic (PV) technologies are based on the use 

of solar cells. These cells can be interconnected in series (to increase the voltage) and 

parallel (to increase the current to give a PV module or panel (Villalva et al., 2009).  A 

combination of these modules forms an array (Bagher et al., 2015). The sun’s radiation 

hits the semiconductor material within the PV cell and excites electrons resulting in 

electric power. These electrons are carried through the PV cell to an electrical circuit. 

Each PV solar cell is protected by a layer of plastic or glass. A collection of solar panels 

is called an array. Each array is designed to produce a certain voltage and current. Each 

is then attached to an inverter that converts the Direct Current (DC) of the array to 

Alternating Current (AC) (Behl et al., 2012).  

Photovoltaic generation of power is caused by electromagnetic radiation separating 

positive and negative charge carriers in absorbing material. If an electric field is present, 

these charges can produce a current for use in an external circuit. Such fields exist 

permanently at junctions or inhomogeneities in photovoltaic (PV) cells as ‘built-in’ 

electrostatic fields and provide the electromotive force (EMF) for useful power 

production. The cell itself provides the source of EMF. It is important to appreciate that 

photovoltaic devices are electrical current sources driven by a flux of radiation. 

Efficient power utilization depends not only on efficient generation in the cell, but also 

on dynamic load matching in the external circuit (Twidell, 2021). 

2.3 Solar Cell and Model 

There exist different types of solar cells, among which are monocrystalline, 

polycrystalline, amorphous, and thin film as shown in Figure 2.1 (Bagher et al., 2015). 
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Figure 2.1: Types of solar cells (Eteiba et al., 2013) 

A solar cell can be modelled by a light source (represented by a photo-current Iph) in 

parallel with a junction diode and shunt resistance (Rsh), then in series with a series 

resistance (Rs). The model of a solar cell is shown below (Eteiba et al., 2013). 

 

Figure 2.2: Equivalent circuit of a PV cell (Eteiba et al., 2013) 

The equations governing the operation of this solar cell as presented by (Villalva et al., 

2009) and (Eteiba et al., 2013) are: 

I = Iph − Id − Ish…………………………………………………………….……2.1 

Id = Io ∗ exp[(
qVd

AKTc
) − 1]……………………………………………………..…..2.2 

Ish =
V+IRs

Rsh
…………………………………………………………………………2.3 
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Vd = V + IRs………………………………………………………………………2.4 

I = Iph − Io ∗ exp[(
q(V+IRs)

AKTc
) − 1] −

V+IRs

Rsh
……………………………………….2.5 

VT =
KTc

q
……………………………………………………………………………2.6 

I = Iph − Io ∗ exp[(
V+IRs

AVT
) − 1] −

V+IRs

Rsh
…………………………………………..2.7 

Where Io is the diode saturation current, Vd is the diode voltage, V is the terminal 

voltage of the solar cell, VT is the thermal voltage, K is the Boltzmann constant, q is the 

electronic charge, Tc is the temperature, and A is the diode ideality constant. 

2.4 Factors Affecting Energy Harvesting from PV Systems 

Though solar modules are used to harvest energy from the sun, several factors hinder 

the proper performance of these modules. These factors can be grouped into four main 

categories which are: environmental, installation, constructional, and maintenance 

factors. 

2.4.1 Environmental factors 

Installing solar modules outdoors, where they can bask in direct sunlight, is crucial if 

you want to maximize their power output capacity. These PV modules' effectiveness 

and overall performance are closely correlated with a variety of environmental factors. 

Their efficiency is greatly influenced by variables like irradiance, temperature, dust 

buildup, soiling, wind exposure, shade, and humidity levels. 

2.4.1.1 Irradiance 

The intrinsic fluctuation of solar resources has a substantial impact on solar power 

generation, which is frequently achieved by photovoltaic (PV) panels. This fluctuation 

is influenced by a number of variables, each of which has a significant impact on how 



15 
 

well PV panels perform. The temporal feature of this variability is particularly 

important since it has a complex relationship between its level and the resolution of 

time measurements; as time resolution rises, variability increases. The dynamic 

character of solar irradiance is caused by a number of factors, making it difficult to fully 

understand. These variables include the sun's position in the sky, time of day, 

geographical location, seasonal variations, and meteorological conditions. The sun's 

position changes during the day, changing its height, which in turn affects the irradiance 

levels that PV panels get. The amount of sunlight that reaches the solar modules can be 

greatly reduced by cloud cover, which is one of the most important factors influencing 

irradiance changes. It's interesting to note that incident irradiance—the amount of light 

that reaches PV modules—is not exclusively dependent on light from the sun; it is also 

influenced by reflected light from the environment and nearby objects. Although both 

direct and reflected solar irradiation play important roles, direct solar irradiation often 

has a more noticeable impact on PV panel performance. Nevertheless, it becomes more 

difficult to precisely estimate incident irradiance when neighbouring objects cast 

shadows or reflect sunlight onto the panels. It is essential to arrange solar panels 

optimally in order to maximize the absorption of solar radiation. This requires tilting 

the panels toward the sun, with the tilt angle depending on the location's latitude. PV 

module output increases as irradiance levels do, while a decrease in irradiance causes a 

decrease in output. So, in order to fully utilize solar power generation, it is crucial to 

comprehend and manage the complex nature of solar irradiance (Bounechba et al., 

2014)(Ngan & Tan, 2011). 

2.4.1.2 Temperature 

The overall power generation efficiency of a photovoltaic (PV) panel is significantly 

influenced by the operational temperature of the PV panel. The PV module's electrical 
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performance suffers as its temperature rises, which reduces the efficiency with which it 

can turn sunshine into energy. This issue happens as a result of the fact that PV modules 

are made to convert just a small portion of solar energy, usually around 20% into 

electricity, with the remaining 80% being absorbed as heat. As a result, it becomes 

crucial to maintain and regulate module temperature in order to increase solar 

installations' overall effectiveness and electrical production. Effective temperature 

control techniques not only increase energy output but also extend the life of PV panels, 

making them an important factor in the design and upkeep of solar systems. The 

bandgap energy of the PV cell material and module temperature have a significant 

relationship. At high working temperatures, bandgap energy often declines. It affects 

the cell's ability to absorb photons of longer wavelengths and often lengthens the 

lifespan of minority carriers. The open-circuit voltage (Voc) is decreased as a result of 

these components' minor increases in the light-generated current (Isc), which lowers the 

cell Fill Factor overall (FF). The number of series and shunt resistances in a solar cell 

and its circuit are determined by the fill factor. The PV module's ability to generate 

electricity relies on the Isc and Voc. 

Every 1°C increase in solar cell temperature results in a 0.03%–0.05% reduction in 

electrical efficiency in the absence of cooling. The PV performance is influenced by 

the encapsulating or cover materials' thermal dissipation and absorption characteristics 

(Bounechba et al., 2014)(Ngan & Tan, 2011).  

2.4.1.3 Dust and soiling 

It becomes clear that a complex interplay of atmospheric variables can have a 

considerable impact on photovoltaic (PV) panel performance when evaluating the 

effect of environmental factors on photovoltaic (PV) panel efficiency. The difficulty of 

increasing solar energy conversion is exacerbated by airborne pollutants, water vapor, 
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dust particles, and air molecules. These components create a barrier that prevents 

sunlight from reaching the PV panels directly, reducing their effectiveness. Airborne 

dust particles are a major factor in these obstacles. These particles serve as light-

scattering agents and are frequently larger than the wavelength of incoming solar 

beams, decreasing the quantity of solar radiation that reaches the PV surface. If these 

particles are not removed, they may build up and eventually cover the surface of the 

PV module with a thick coating. It's interesting to note that this dust layer can change 

optically, changing its properties. This modification increases light reflection and 

absorption while reducing surface transmissibility, increasing the output of the PV 

module as a whole. Several meteorological factors might affect the amount of dust that 

collects on PV modules. This buildup is affected by a number of variables, including 

wind speed, humidity levels, the likelihood of rain, the origin and kind of dust particles, 

the quantity of PV module surface covering, and technological considerations. The 

problem gets worse in dry, desert areas where there is a lot of dust and little rain. 

Without routine upkeep, output power generation might decline and occasionally fall 

to just 50% of its maximum capability. Dust particles gather on the surface of the 

module mostly as a result of gravity. These particles can collect water vapor in areas 

with higher relative humidity, resulting in "soiling," a sticky, adhering substance 

resembling mud. The performance of the PV module is severely impacted by this 

occurrence. Said et al.'s research shows that a mere 45-day period of dust deposition 

can significantly lower the overall glass cover transmittance by 20%. PV panels are 

shaded by soil in both soft and hard ways, which reduces their ability to produce energy. 

Smog and other environmental conditions can cause soft shading, whereas the presence 

of a significant soil mass or muck on the panel might cause hard shading. Interestingly, 

strong shading does not affect current flow since the cells that are not shaded continue 
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to receive solar irradiance even while it lowers module voltage on some PV module 

cells. Additionally, the characteristics of dust vary geographically, and various types of 

dust have various impacts on light transmission. Since the patterns of dust buildup are 

geographically diverse, so is the loss of PV power caused by soiling. It is important to 

note that the tilt angle of PV panels also has a significant impact on the buildup of 

soiling and how it affects output power. The need for careful maintenance and cleaning 

procedures in the pursuit of the best possible solar energy conversion is further 

underscored by the fact that panels with flatter orientations or lower tilt angles are 

particularly vulnerable to the negative effects of soiling. 

2.4.1.4 Shading 

Shading refers to the obstruction of the light's path to the PV panel. Self-shading, soft 

shading, and hard shading are a few examples of the various shading kinds. The 

accumulation of waste, such as leaves, bird droppings, snow, and dust, leads to the 

development of hard shading. Additionally, poles, trees, and structures also prevent 

sunlight from forming a distinct and definitive shape. On the other side, air particles 

like dust, fog, and smoke lessen the strength of the sun's rays and provide the PV module 

a soft shade. Due to improper spacing, previous rows of solar modules can self-shade. 

Depending on the shading scenario, array arrangement, and module position, the output 

of a PV module is significantly reduced by partial or total shade. Partial shadowing has 

a substantial impact on a PV module's output since no current can flow through the 

shaded cells. Therefore, cells that are shaded work in a zone of negative voltage and 

lose energy instead of creating it because the current created in cells that are not shaded 

flows into those that are. Less energy is produced because the Maximum Power Point 

Tracker (MPPT) in gloomy areas deviates from the global Maximum Power Point. 
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2.4.1.5 Wind 

A photovoltaic module's ability to generate power is influenced by the wind's 

properties, such as wind speed and direction. The performance of PV is affected by a 

variety of factors, including wind, module temperature, surface structure, and dust 

deposition. The most affordable cooling method is to use convective heat transfer by 

natural wind flow as much as possible. Rather than wind direction, wind speed has a 

much greater impact on how much the temperature of PV cells rise. Surface form and 

structure have a clear impact on convection cooling of PV panels. It may be possible 

for glass cover surfaces with structure and grooves to perform in colder weather and at 

higher wind speeds. However, the cooling effect is substantially stronger for the flat 

surface at low wind speeds. Furthermore, the wind removes dust from the PV module 

surface and prevents dust accumulation. 

2.5 Maximum Power Harvesting from PV Systems 

The variability of the solar resource coupled with the daily movement of the sun has 

led to the design of solar trackers and Maximum Power Point Trackers (MPPTs) to 

enable maximum power to be harvested from the available solar radiations. Most often, 

solar trackers are mechanically designed to follow the movement of the sum on daily 

basis. In this category of trackers, we have single axis and double axis trackers. On the 

other hand, MPPTs are designed based on the converter technology using soft 

computing techniques. 

A single axis tracker follows the sun every day as it moves from East to West. In a 

single axis solar tracking system, the sun is tracked using a single pivot point. Tilted, 

vertical, and horizontal single axis tracking systems are the three primary variants of 

this technology. The face of the system module is aligned parallel to the axis of rotation 

in a horizontal single axis tracking system, and the axis of rotation is horizontal with 
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respect to the ground. Tropical regions frequently use this kind of construction. In a 

vertical single axis tracking system, which is typically used in high latitude settings, the 

face of the system module is positioned at an angle with respect to the axis of rotation 

when the axis of rotation is vertical with regard to the ground. At the tilted single axis 

tracking system, where the axis of rotation is positioned between the horizontal and 

vertical axes, the face of the system module is positioned parallel to the axis of rotation 

(Wang et al., 2016). The primary drawback of a single axis tracking system is that it 

can only follow the sun's daily motion, not its yearly motion. Additionally, because the 

tracking device rotates around just one axis, its efficacy is greatly diminished during 

cloudy days (Tanaka & Nakatake, 2009). Figure 2.3 below shows the schematic 

diagram for single and double axis solar trackers. 

 

Figure 2.3: Single and Double Axis Trackers (Hong et al., 2016) 

A dual axis solar tracking device rotates around two pivot points and tracks the sun 

along two separate axes. It is divided into azimuth-altitude tracker and tip-tilt dual axis 

tracker, and it tracks the sun in both north-south motion and east-west motion. The tip-
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tilt dual axis tracker provides solar tracking that is concentrated on the panel's slope's 

rotational axis as well as its horizontal axis. The azimuth-altitude dual axis tracker 

provides solar tracking that is concentrated on the slope of the panel's vertical and 

rotational axes. These types of solar trackers often have both horizontal and vertical 

axes. With dual axis tracking in active systems, four Light Dependent Resistors (LDRs), 

a controller, and two motors are used typically. When the signal is detected by the 

controller from the four LDRs, each motor turns the system in one axis. The four LDRs 

are positioned in separate rotational directions (Fathabadi, 2016; Hafez et al., 2018; 

Hong et al., 2016). 

Single and dual axis tracking, the two main types of tracking, have differing qualities 

from one another. Despite the fact that dual axis tracking is more sophisticated, more 

expensive, and requires more instruments and equipment, almost the same energy has 

been put in by researchers in developing the techniques (Hafez et al., 2018). The key 

benefit why the dual axis tracker is used over a single axis tracker is its ability in 

tracking the sun's movement throughout the year, including changes in its altitude from 

season to season, in addition to its movement throughout the day, as with single axis 

tracking. When compared to a single tracking system, this advantage makes dual 

tracking more effective and has a larger solar energy gain. 

On the other hand, MPPTs use soft computing techniques to harvest maximum power. 

In this category, based on their tracking strategies, MPPT techniques can be divided 

into four groups: the classical methods, the intelligent methods, the optimization 

methods, and the hybrid methods. based on their tracking strategies, MPPT techniques 

can be divided into four groups: the optimization methods, the classical methods, the 

hybrid methods, and the intelligent methods (Bollipo et al., 2020), (R. Ahmad et al., 
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2019a; De Brito et al., 2013; Eltawil & Zhao, 2013; Jalal & Mehdi, 2021; Jayalalitha & 

Kavya, 2020; Karami et al., 2017; Mohamed & Elbarbary, 2021; Motahhir et al., 2019; 

Rezk & Eltamaly, 2015; Subudhi et al., 2013a; Verma et al., 2016; Yadav et al., 2020; 

Zainudin, 2010). Also, each tracking method's effectiveness varies depending on its 

ability to track maximum power as the weather condition changes (R. Ahmad et al., 

2019b; Bollipo et al., 2020; Subudhi et al., 2013b). The different MPPT techniques are 

shown Table 2.1.  

Table 2.1: Classification of MPPT techniques (Bollipo et al., 2020) 

Class Sub-class Acronym 

Classical MPPT 

control 

techniques 

Perturb and observe P&O 

Constant Voltage CV 

Ripple Correlation Control RCC 

Hill Climbing HC 

Improved Perturb and Observe IP&O 

Short Circuit Current SCC 

Open Circuit Voltage OCV 

Adaptive Reference Voltage ARV 

Incremental Conductance InC 

Look-Up Table Based MPPT LTB 

MPPT 

Intelligent MPPT 

control 

techniques 

Artificial Neural Network ANN 

Fuzzy Logic Controller FLC 

Sliding Mode Control SMC 

Fibonacci Series Based MPPT FSB 

MPPT 

Gauss Newton Technique GNT 

Optimization 

techniques 

Particle Swarm Optimization PSO 

Cuckoo Search CS 

Artificial Bee Colony ABC 

Ant Colony Optimization ACO 

Grey Wolf Optimization GWO 

Genetic Algorithms GA 

Hybrid 

techniques 

Adaptive Neuro Fuzzy Inference System ANFIS 

Fuzzy Particle Swarm Optimization FPSO 

Grey Wolf Optimization Perturb and Observe GWO-

P&O 

Particle Swarm Optimization Perturb and 

Observe 

PSO-P&O 

Hill Climbing Adaptive Neuro Fuzzy Inference 

System 

HC-

ANFIS 
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2.5.1 Classical MPPT control techniques 

These techniques are easy to implement because of their reduced algorithmic 

complexity. Under steady irradiance conditions, they are most efficient since the PV 

module only produces a maximum power point which is global. However, during 

tracking, these approaches show quick oscillations around the MPP, which reduces their 

effectiveness. Additionally, the real MPP cannot be tracked because these traditional 

methodologies ignore the impact of partial shading (R. Ahmad et al., 2019b; De Brito 

et al., 2013).  

2.5.1.1 Perturb and Observe (P&O) MPPT Techniques 

It is among the most used control techniques in commercial MPPT controllers (Mousa 

et al., 2021), (Bollipo et al., 2020). In essence, this approach monitors the variance in 

PV module power (dP). At this point, the PV module voltage's sign (dV) is also 

confirmed in order to modify the duty cycle (D) for upcoming updates and corrections. 

The power and voltage (P-V) curve data of the PV module is typically used to monitor 

the progression of the operational point of the module's output power (J. Jiang et al., 

2016). The actual point is located on the left of the MPP if the gradient (dP/dV) is 

positive. The real point is located at the right side of the MPP if the change is negative. 

Till the moment where dP/dV is zero, the process is repeatedly repeated. Therefore, this 

point is the PV module's tracked MPP. The perturbation frequency, also referred to as 

the MPPT frequency, is defined as the number of perturbations made each second 

(Elgendy et al., 2012)(Alik et al., 2015).  

The P&O methods for voltage perturbation use the general equations (2.8, 2.9, 2.10) 

below. When the step size for duty cycle control is either fixed or variable, there is a 

difference (adaptive control). A duty ratio that regulates the converter to either increase 

the voltage V(t) by ΔV or lower the voltage by ΔV is created when the power P(t) is 
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measured and compared to the previous maximum value P(t-1). This difference, or 

Delta, is then utilized to form the duty ratio. 

P(t) = V(t) ∗ I(t)………………………………………………………..……..……2.8  

Delta = P(t) − P(t − 1)………………………………………………..…...………1.9 

V(t) = V(t − 1) ± ΔV……………………………………...….……….……..……2.10 

Figure 2.4 below shows the classification of different P&O MPPT methods while 

Figure 2.5 shows the flowchart followed by this method. 

 

Figure 2.4: Classification of P&O Algorithms (Mousa et al., 2021) 

 

Figure 2.5: Block diagram of the P&O method (Bollipo et al., 2020) 

2.5.1.2 Conventional P&O Algorithms 

System designers must decide on a certain step size to use in the monitoring process 

when using the traditional P&O (Perturb and Observe) method with a fixed perturbation 
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strategy. Tracking speed and perturbation step size are two crucial elements of this 

tracking system. When using fixed perturbation levels, the magnitude of steady-state 

oscillations is inversely proportional to the step size. Larger step sizes typically result 

in larger oscillations, but regrettably they also slow down the system's reaction. This 

leads to a well-known trade-off between increasing responsiveness more quickly and 

reducing steady-state oscillations, which is a problem with the traditional method. 

Furthermore, MPPT (Maximum Power Point Tracking) with a set step size is 

intrinsically dependent on the particular features of the system to which it is applied. 

As a result, more complexity and restrictions are created because the perturbation step 

size is not maintained constant and may change depending on the system setup. The 

block diagram of this common method is shown in Figure 2.6b. In contrast, the classic 

P&O method's hill-climbing strategy can be improved by using an adaptive 

perturbation approach, where the perturbation value in this case is voltage. 10% of the 

open-circuit voltage is the initial setting for the voltage perturbation step. The 

perturbation value of each succeeding step is decreased to 0.5% of the open-circuit 

voltage as the algorithm advances, thereby halving the step size at each iteration. 

Although this adaptive strategy has produced encouraging results, it has some 

drawbacks. The established steps of the method continue to limit its adaptability, and 

much of its success depends on the open-circuit voltage, a variable subject to variations 

as a result of shifting environmental factors. As a result, the approach does not attain 

full adaptability since it continues to be influenced by outside circumstances that are 

outside its control. (Karami et al., 2017).                      
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Figure 2.6: Block diagram of conventional P&O with (a) adaptive perturbation (b) 

fixed step pertubation (Karami et al., 2017) 
 

Table 2.2 compares these different conventional P&O MPPT algorithms. It is noted that 

these methods are less complex making them cost effective. Also, the time of response 

for the adaptive step size is better than that of the fixed step size 

Table 2.2: Contrasting traditional P&O algorithms 

SN Parameter for Comparison Fixed step 

size 

Adaptive step 

size 

1 Time of response Not fast Fast 

2 Complexity Easy Simple 

3 How it performs under varying temperature and 

solar radiation?  

Moderate Good 

4 Does it oscillate at MPP? Yes Yes but 

minimal 

5 Cost Moderate Moderate 

6 Efficiency Low High 

7 Memory requirement No Depends 

 

2.5.1.3 Improved (Modified) P&O (IP&O) Method 

The standard P&O approach has been improved by the improved P&O method. In this 

method, the tracking reference voltage is scaled by a factor of 0.8 of the open circuit 

voltage of the PV module in order to avoid using extra power to follow the global MPP. 

There are two types of modified P&O: one with a fixed perturbation step and the other 

with an adaptive perturbation.  
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Instead of using the module voltage as the perturbed signal in the modified P&O with 

fixed perturbation step, this method uses the converter duty ratio. The removal of the 

PI/hysteresis controller after the MPPT block, which enables direct control of the 

converter duty-cycle, simplifies the control technique. The trade-off conundrum that 

was previously mentioned still exists because the perturbation step is fixed and designer 

dependent. Figure 2.7b displays the modified P&O with fixed perturbation step. To 

enhance the effectiveness of P&O procedures, the adaptive calculation of the 

perturbation value is used in place of the fixed values used in the conventional P & O 

approach.  

Because it employs a variable duty ratio, the modified P&O with adaptive step size is 

more sophisticated. This method has some drawbacks despite its good performance, 

such as a high computational burden against accuracy trade-off and a reliance on 

predetermined constants. The block diagram of a modified P&O with an adaptive 

perturbation step is shown in Figure 2.7a (Karami et al., 2017). 

 
Figure 2.7: Block diagram of modified P&O with (a) adaptive perturbation (b) fixed 

step size and (Karami et al., 2017) 

The comparison of the modified P&O methods in Table 2.3 also reveals an 

improvement in the fixed step size method's reaction time metrics. These comparisons 
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show that the P&O systems are typically less sophisticated, which lowers their cost and 

increases their adoption in various industries. 

Table 2.3: Comparison of modified P&O algorithms 

SN Parameter for Comparison Fixed step 

size 

Adaptive step 

size 

1 Time of Response  Fast Fast 

2 Difficulty Moderate Moderate 

3 How it performs under varying temperature 

and solar radiation? 

Good Very good 

4 Does it oscillate at MPP? Minimal Minimal 

5 Cost Moderate High 

6 Efficiency High High 

7 Memory requirement Yes Yes 

 

In the work of Kolluru et al. (2018), a new P&O MPPT controller with a 0.05s settling 

time and the ability to measure 10% more power from the PV source was designed. In 

MATLAB Simulink, their model was simulated. According to their research, utilizing 

their controller will increase the amount of power that can be harvested from the PV 

system compared to not using the tracker (Kolluru et al., 2018). Sera et al. (2013), 

presented a detailed analysis of the two most popular hill-climbing Maximum Power 

Point Tracking (MPPT) algorithms which were InC and P&O. The two methods were 

analyzed from both a mathematical and a practical implementation perspective. Their 

mathematical analysis revealed that there is no difference between the two. 

Experimental proof of this was provided in accordance with European Standard EN 

50530. Efficiency deviations of 0.13% under dynamic and even 0.02% under static 

conditions were achieved) (Sera et al., 2013). Pandey et al. (2019), suggested a P&O 

method for capturing peak power from solar panels. By combining this method with an 

MPPT controller, their system was able to match the output power provided by the 

Panels to the variable load power required. SIMULINK in MATLAB was used to 

simulate their work (Pandey & Srivastava, 2019). The direct duty ratio perturbation and 
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the reference voltage perturbation approaches employed for the P&O MPPT algorithm 

implementation were thoroughly analyzed, along with experimental results by (Elgendy 

et al., 2012). Using a 1080-Wp experimental set-up, they investigated the impacts of 

the perturbation rate and step size on system behavior, the selection criteria for these 

parameters, and the calculated energy usage at slow and fast changing weather 

conditions. Irradiance and temperature transients were responded to more quickly using 

the reference voltage perturbation technique. Its flaw was that if a high perturbation rate 

was utilized, or if low-pass filters were used to remove noise from the array current and 

voltage feedback signals, it would lose stability. For solar irradiation that changes 

slowly, their experimental system's energy usage efficiency was calculated to be 97.2%. 

Due to energy loss during the perturbation and recovery phases when irradiance varies, 

the efficiency was somewhat lower at 97% for quickly changing irradiance. Direct duty 

ratio control, on the other hand, had a worse performance at fast changing irradiance 

and higher utilization of energy and stability characteristics at a slower transient 

response. They discovered that the experimental system's energy usage efficiency was 

99% for the slowly changing irradiance and 97.9% for the rapidly changing irradiance, 

respectively. They came to the conclusion that direct duty ratio perturbation permits 

high perturbation rates up to the rate of pulse width modulation (PWM) without a 

general loss of system stability. 

2.5.1.4 Hill Climbing (HC) Method  

This method consists of perturbing the duty ratio of the power converter (Rizzo & Piegari, 

2010). It is not directly the same as P&O, though they have a similar core premise. To 

execute MPPT, P&O requires a perturbation in terminal voltage, whereas the hill 

climbing approach requires a perturbation in duty ratio (Verma et al., 2016)(Jately et 

al., 2021). This means that the duty ratio used to control the converter is keeps changing 
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as the PV power deviates from the maximum value at any given instant. The disturbance 

on the duty ratio determines the tracking direction on the PV power curve. Equation 

(2.11) is the governing equation for the duty ratio. 

D(i) = D(i − 1) ± S………………………………………………………... …….2.11 

D(i − 1) is the duty at (i − 1)th iteration, D(i) is the duty ratio at ith iteration which goes 

to control the converter and S is the step size. Depending on the algorithm employed, 

the step size S may be fixed. The calculation for the variable step is in (Jately et al., 

2021). 

The step size can either be positive or negative depending on the direction where the 

power point is being located on the curve. If the change in power and voltage are both 

positive or negative, then S will be negative. If the change in power and voltage have 

different signs, then S will be positive. 

2.5.1.5 Constant Voltage (CV) 

The set voltage value for MPP assumed by the constant voltage MPPT algorithm is the 

same as the value actually observed under the manufacturer's Standard Test Conditions 

(STCs). This set voltage is thought to be in the range of 72% to 88% of the open circuit 

voltage (Leedy et al., 2012; Ngan & Tan, 2011; Noh et al., 2002). A feedback control loop is 

then used to modify the duty ratio of a MPPT converter using this fixed value as a 

reference. This method is easy to implement since the only requirement for building the 

MPPT control is to measure the array voltage. Both analog and digital circuits can be 

used (Elgendy et al., 2010). The relationship between the voltage at MPP (Vmpp) and 

the open circuit voltage (Voc) is given by equation (2.12). 

Vmpp = k ∗ Voc……………………………..........................................……………2.12 
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where k is a constant which lies between 0.72 ≤ k ≤ 0.8. The flowchart of the CV method 

is depicted in Figure 2.8. 

 

Figure 2.8: Flowchart of the CV method (Ngan & Tan, 2011) 

The solar module is temporarily isolated from the Maximum Power Point Tracker 

(MPPT) during the voltage comparison process. The measurement of VOC, or the 

open-circuit voltage, is made possible by this significant step. The optimal operating 

point is then established by the MPPT using equation (2.12) and a predefined value of 

k, with the goal of achieving the estimated Vmpp (maximum power point voltage). To 

ensure optimal power extraction, the MPPT repeatedly adjusts the module's voltage 

until it precisely lines up with the Vmpp. The MPPT continues this iterative process 

until it is able to accurately identify the Maximum Power Point (MPP), optimizing the 

solar system's overall efficiency. To fully utilize solar energy, this practice of constant 

adjusting and tracking is necessary. Leedy et al. (2012), presented a CV MPP algorithm 
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that adjusts the reference voltage automatically to account for varying environmental 

conditions (Leedy et al., 2012).  

2.5.1.6 Ripple Correlation Control (RCC) 

When a power converter is connected to a solar photovoltaic (PV) array, it causes 

current and voltage variations known as ripples to appear. These oscillations, which are 

a natural result of the power converter's switching mechanism, spread across the PV 

array and have a significant impact on how well it performs as a whole. As a result, 

these ripples are crucial in determining how much power the PV array produces. A 

cutting-edge tracking technique called Ripple Correlation Control (RCC) has been 

created in order to make use of any potential advantages offered by these ripples. RCC 

makes use of the correlation between the derivatives of PV voltage or current 

fluctuations and those of PV power variations. The goal is to control the power gradient 

towards zero using this correlation in order to reach the PV array's maximum power 

point (MPP). In light of the operational dynamics, the operating point of the PV array 

is located below the MPP when the voltage or current grows simultaneously with the 

power production. The operational point, however, surpasses the MPP when the voltage 

or current rises while the power output falls. The secret to increasing solar energy 

harvesting and solar PV system efficiency lies in this complex dance of ripples and 

control mechanisms (Karami et al., 2017). The advantage with RCC is that it does not 

introduce any external disturbance into the system, rather it makes use of the current or 

voltage ripple already present in the system. Without the aid of any module parameters 

or measurements, the method converges asymptotically at maximum speed to the MPP 

(Ho et al., 2004; Kimball & Krein, 2007; Leedy et al., 2012). Equation (2.13) below is 

made use of by this method (Verma et al., 2016). 
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dP

dt
∗

dV

dt
= 0 or 

dP

dt
∗

dI

dt
= 0…………………………….…………..………………2.13 

2.5.1.7 Open Circuit Voltage (OCV) 

This is a tracking technique which assumes that the voltage at MPP is the open circuit 

voltage of the solar module multiplied by a constant coefficient ranging from 0.7 to 0.8 

(Salman et al., 2018). Due to its straightforward process, this approach is simple to use. 

Although straightforward, it has the drawback of requiring the load to be disconnected 

each time the open circuit voltage needs to be monitored. This causes supply disruptions 

and, as a result, lowers system efficiency (Sarvi & Azadian, 2021). It is therefore not a 

recommended technique to use in areas where continuity of supply to the load is of 

ultimate importance. 

2.5.1.8 Short Circuit Current (SCC) 

Similar to the open-circuit voltage tracking technique, this tracking method is based on 

the well-established linear connection between the photovoltaic (PV) current at the 

Maximum Power Point (MPP) and the short-circuit current. Equation (2.14) uses a 

proportionality constant indicated as K1 to show how it works. K1 is a characteristic 

that is mostly influenced by the fill factor, the current weather, and the particular PV 

cell type in use. It is commonly calculated to be around 0.85 for poly-crystalline PV 

modules. But in real-world applications, this constant is frequently dynamically 

changed by regular PV scans that are carried out every few minutes. After that, up until 

the next computing cycle, the system makes use of this revised estimate. The control 

flowchart hence closely mimics the open-circuit voltage method. It is important to 

remember that this method has similar benefits and drawbacks to the open-circuit 

voltage control technique. It's crucial to emphasize the practical applications of this 

tracking method in addition to its core ideas. The system can adapt to shifting weather 
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conditions, the impacts of shadowing, and the aging of PV cells by continually 

monitoring the PV current at MPP and altering the proportional constant K1 in real-

time, so maximizing energy yield. On the other hand, the requirement for frequent PV 

scans may result in increased computing burden and possible responsiveness problems. 

Additionally, this strategy is susceptible to variations in fill factor and might not always 

be appropriate for all PV system configurations, just like the open-circuit voltage 

strategy (Karami et al., 2017).  

IMPP = K1 ∗ Isc…………………………………………………………………..…2.14 

K1 Varies between 0.78 to 0.92 (Alghuwainem, 1994). 

2.5.1.9 Adaptive Reference Voltage (ARV) 

This method, which is comparable to the CV method, also takes the local climate into 

account. In addition to the voltage, additional sensors are employed to measure the 

temperature and solar radiation. Here, the solar radiation is divided into several 

divisions for a specific temperature, and the equivalent reference voltage is recorded in 

an offline table. The corresponding proportional integral controller used, compensates 

the error between the PV voltage and the reference voltage to generate a duty cycle used 

to control the converter (Bollipo et al., 2020). This method is capable of maintaining its 

efficiency even under varying solar radiation. This is shown in the work done in 

(Lasheen et al., 2017). 

2.5.1.10 Incremental Conductance (InC) 

This is yet another common technique for monitoring maximum PV system power. The 

method uses the PV modules' voltage and current to determine the MPP. This technique 

can track MPP in a variety of atmospheric situations. The essential equations 

underlying this approach are described in depth in (Subudhi et al., 2013b). Despite 
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being more difficult to implement than P&O, this method is made simpler by the 

development of DSPs (Digital Signal Processors) (Liu et al., 2008a) (Jately et al., 2021).  

2.5.1.11 Look-Up Table Based (LTB) Method 

 This method successfully synchronizes the array's operational state to maximize its 

output at the peak power point. It accomplishes this by carefully comparing the solar 

array's voltage and current values as they are now measured with a vast database of 

previously recorded data. This vast database includes many system setups that are 

adjusted to various insolation and temperature conditions. Additionally, it features 

precisely compiled maximum power points that are specially designed for different 

solar photovoltaic (PV) arrays. By using this technique, we guarantee that the array 

continually performs at its peak level, producing the highest amount of power 

production under a variety of environmental circumstances. This methodology offers 

helpful information for system optimization and performance monitoring in addition to 

aligning the operating point of the array with the maximum power point. With a variety 

of data available, we may adjust system settings to accommodate altering 

environmental circumstances, improving energy generation efficiency and ensuring the 

solar PV systems' long-term viability. We are able to make wise judgments, maintain 

optimal system performance, and maximize the energy harvest from solar arrays under 

a variety of conditions thanks to our ongoing data-driven strategy (J.-A. Jiang et al., 

2005). The method's major flaw is the requirement for bulk storage memory. As 

tracking accuracy rises, there are more operating circumstances, which calls for more 

data storage. Due to the tracking scheme's array-specificity, implementation is 

challenging, and saving and archiving all potential system states is inconvenient. The 

method's major flaw is the requirement for bulk storage memory. As tracking accuracy 

rises, there are more operating circumstances, which calls for more data storage. Due 
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to the tracking scheme's array-specificity, implementation is challenging, and saving 

and archiving all potential system states is inconvenient (Verma et al., 2016). 

2.5.2 Intelligent MPPT control techniques 

These approaches accomplish MPPT using soft computing techniques. These methods 

are more sophisticated since their algorithms make use of machine learning. 

2.5.2.1 Artificial Neural Network (ANN) 

A soft computing technique called the Artificial Neural Network (ANN) is inspired by 

the way our brain functions. These machine learning-capable computer models are 

represented as interconnected neurons in order to produce a network that resembles a 

biological neural network (artificial nodes). Throughout the training process, 

connection weights are adjusted to achieve the ideal fit, which is reference voltage 

comparable to MPP (Verma et al., 2016)(Messalti et al., 2017). As seen in Figure 2.9, 

it has three levels: input, hidden, and output layers. One can use PV module parameters 

like Voc and Isc, atmospheric data like temperature and irradiance, or a combination of 

the two as input variables. Using the hidden layer method, the output reflects the duty 

cycle signal that instructs the converter to follow the MPP. The weight Wij is applied to 

the connection between nodes i and j. Node-to-node linkages are weighted in the neural 

network technique based on a training process in which PV parameters are evaluated 

and recorded over months or years to determine the appropriate weight for each node. 

The disadvantage of this strategy is that because the neural network must be specifically 

trained for the PV module being used, it cannot be modified to operate on numerous 

types at simultaneously. Additionally, the parameters of the PV panel change with time, 

requiring regular neural network training to accurately follow the MPP (Karami et al., 

2017). More research work to ensure that an algorithm trained on one PV system can 

be used on other system to track MPP is needed to make this method globally useful. 
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Figure 2.9: Layers of Artificial Neural Network (ANN) 

2.5.2.2 Fuzzy Logic Controller (FLC) 

Fuzzy logic is a collection of multiple-valued logic, in contrast to binary logic, which 

only has two states: true or false. The concept of partial truth is introduced by the fuzzy 

logic variable range of zero to one, where the variable value can either be totally true 

or completely false. Fuzzy logic is a collection of multiple-valued logic, in contrast to 

binary logic, which only has two states: true or false. The concept of partial truth is 

introduced by the fuzzy logic variable range of zero to one, where the variable value 

can either be totally true or completely false (Verma et al., 2016). Because they continue 

to track the MPP despite incorrect inputs, fuzzy computation trackers are considered 

intelligent. Since fuzzy controllers generally function through three important stages: 

fuzzification, rule base lookup tables, and defuzzification; they do not necessarily rely 

on mathematical models. The membership function used in the initial modeling stage 

converts the numerical input variables into linguistic variables using the five unique 

fuzzy levels NB (negative large), NS (negative small), ZE (zero), PS (positive small), 

and PB (positive big). The ability of fuzzy computation trackers to intelligently 

continue pursuing the Maximum Power Point (MPP) despite defective or incorrect 

inputs is one of its most striking traits. By achieving this intelligent behavior without 

the need for a traditional mathematical model, fuzzy control systems are further 

demonstrated to be robust and adaptable. The use of these fuzzy levels (NB, NS, ZE, 
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PS, and PB) also improves the controller's capacity to recognize subtleties in input data, 

further enhancing performance. Fuzzy controllers are therefore effective in situations 

where mathematical models may be difficult to construct or impossible, and they 

guarantee accurate control and tracking of crucial operational points. The equations 

(2.15 and 2.16) by Ngan and Tan can be used to derive the input parameters of an MPPT 

fuzzy logic controller, which are typically an error E and a change in error ΔE (Ngan & 

Tan, 2011). 

E(i) =
Ppv(i)−Ppv(i−1)

Vpv(i)−Vpv(i−1)
……………………………………………………………….2.15 

ΔE(i) = E(i) − E(i − 1)……………………………………………...……………2.16  

Table 2.4 shows the output of the fuzzy controller, which is represented by ΔD (change 

in duty-cycle) of the power converter. After calculating E and ΔE and converting them 

to linguistic variables. At the defuzzification stage, the linguistic output variable of the 

fuzzy logic controller is converted to a numerical variable, producing an analog signal 

that powers the power converter to the MPP. The MPPT fuzzy logic controller performs 

brilliantly in a variety of environmental conditions. But its success depends on choosing 

the right error computation and creating the rule base table (Karami et al., 2017)(Bendib 

et al., 2015a; X. Li et al., 2019). There is no requirement for mathematical modeling 

while using this approach for MPPT. Additionally, when less oscillations are seen, the 

stability of the system surrounding the MPP is improved. However, this strategy makes 

it challenging to fine-tune the control rules, scaling factor, and membership function. 

To maximize the application of this approach in MPPT development, more study is 

needed in these areas. 
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Table 2.4: Fuzzy Logic Rule Table 

 

2.5.2.3 Sliding Mode Control (SMC) 

For nonlinear systems, the sliding mode control technique is employed. For MPPT, this 

control technique is used in two modes of operation: approaching mode and sliding 

mode. At MPP, the change in power with respect to voltage or current is equal to zero 

as shown in equation (2.18) (Kihal et al., 2019; Verma et al., 2016).  

P = VI = I2R……………………………..……………………………...………...2.17 

dP

dI
= 0 which implies: 

2R + I
dR

dI
= σ = 0…………………………………………………………………2.18 

Where σ is the sliding surface (Kim et al., 2006), I is the current, the power is P, V is 

the voltage, and R is the resistance. The duty ratio δ which is then used to control the 

converter in the system to track the MPP is updated based on the value of σ. Δδ is the 

change in duty ratio, δi is the duty ratio after the ith iteration while δ(i + 1) is the 

updated duty cycle after the (i + 1)th iteration given by equation (2.19). 

δ(i + 1) = {
δi + Δδ for σ > 0
δi − Δδ for σ < 0

………………………………………….…………2.19 

This technique's MPPTs can precisely track the maximum power due to its very 

effective mathematical model. Its drawback is that the selection of the sliding surface 

has a significant impact on how well the tracking performs. 
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2.5.2.4 Fibonacci Series Based (FSB) Method 

Tracking the MPP throughout the full search region lengthens processing times and 

raises serious issues with data storage. This FSB tracking method effectively addresses 

the issue by shortening the search period by limiting the range of operation. This 

complex iterative algorithm first refines its search before scanning the range in search 

of the optimal position. In order to identify which direction the change should be made, 

it employs two roughly equivalent locations between Vmin and Vmax in that it alters its 

operating range using the prior iteration values. This technique is comparable to a 

divide-and-conquer tactic (Miyatake et al., 2004; Ramaprabha et al., 2012; Zhang et al., 

2019). The iterative sequence which is used to fast-track the MPP is given in equation 

(2.20) below (Bollipo et al., 2020). 

R(n+2) = R(n+1) + Rn , (n = 1,2,3, … and R1 = R2 = 1)…………………..……2.20  

Where R represent the points which are used on the PV curve to track the MPP. 

It however requires complex calculations to track the MPP. This is a setback to this 

method which needs some adjustments. 

2.5.2.5 Gauss Newton Technique (GNT) 

The Gauss-Newton approach (Xiao et al., 2007), as compared to other mathematical 

computing algorithms, which uses a root-finding approach, has the fastest tracking 

speed. Its algorithm uses the first and second derivatives of the change in power to 

calculate the direction and quantity of iterations necessary to solve the governing 

equation (Bollipo et al., 2020; Subudhi et al., 2013b). Due to the advanced level of 

mathematical modeling, it has a complex construction, which is a drawback. Through 

additional research in this area, this intricacy can be made simple. 
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2.5.3 Optimization techniques 

The pursuit for a best solution is needed in several areas in engineering and science. 

The process of altering a device's inputs or attributes using a mathematical method in 

order to get the best minimal or maximum output is known as optimization. For any 

system to be optimized, one needs to have the objective function or cost function or 

fitness function which is the input to the optimization process, and the result is the 

system's fitness function. The main tool required to solve complex problems is 

optimization. Five classifications can be used to categorize optimization techniques. 

One method of optimizing a system is to use the trial-and-error approach. Here, the 

procedures have an impact on the result without being aware of the limitations that are 

in charge of generating the result. Another method is using the cost function for 

optimization which is expressed mathematically. Also, optimization can be one 

dimensional where only one variable is contained in the optimization process. In case 

of many variables, multi-dimensional technique is necessary. The method of 

optimization becomes challenging as the number of variables increase. While static 

optimization is time independent, dynamic optimization depends on time. Finding the 

optimum solution to the static problem is challenging, but the addition of the time 

component makes tackling dynamic problems even more complex. While continuous 

variables have an unlimited number of possible values, discrete variable optimization 

only has a finite number of possible values. Variables frequently have boundaries or 

restrictions. Unconstrained optimization permits the variable to take any value, whereas 

constrained optimization adds variable equalities and inequalities into the cost function. 

Through the transformation of variables, a constrained optimization problem can be 

transformed into an unconstrained problem. 
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In their original form, many optimization algorithms have been devised. Finding the 

global maxima or minima of the objective function, also known as the global optima, 

is the aim of global optimization. To identify good parameters or designs to be used, 

one needs to make use of optimization algorithms. The most commonly used 

optimization algorithms are the metaheuristic optimizations techniques. This is a set of 

algorithms and problem-solving techniques which are used to find suitable solutions to 

complicated optimization problems. These methods are especially useful for solving 

issues where computing an exact solution is difficult because of the magnitude, 

complexity, or abundance of potential solutions. Because of their ability to solving 

complex problems, engineering optimization problems can be solved using 

metaheuristics techniques. Although this optimality is not always possible to obtain, 

optimization algorithms are the tools and approaches used to solve optimization 

problems. The fact that uncertainty is virtually always present in real-world systems 

further complicates this quest for optimality. Therefore, in engineering and industry, 

we strive for optimal design (X.-S. Yang & Deb, 2014). 

2.5.3.1 Particle Swarm Optimization (PSO) 

This method is regarded as the most effective tool among the several MPPT algorithms 

because of its quick computing speed, straightforward concept, simple application, high 

accuracy, and capacity for nonlinear problem optimization. As a result, a multiple MPP 

under partial shading solution that is satisfactory in comparison to prior methods can 

be discovered. PSO's core idea is influenced by how huddled birds or schooling fish 

behave (S. Kumar et al., 2019). PSO requires specific particles to form a swarm of 

roving wasps across the search space in order to identify the optimum answer. Each 

particle tries to change its traveling velocity based on its previous flying experiences. 
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The swarm velocity and position can be obtain using equations (2.21 and 2.22) 

respectively. 

Ci
(k+1)

= wCi
k + m1r1Pbest(i) + m2r2gbest…………………………..………….....2.21 

Si
(k+1)

= Si
k + Ci

(k+1)
…………...……………………………………………..……2.22  

Where Ci
(k+1)

 is the velocity of ith swarm for iteration (k + 1), w is the learning factor, 

m1, m2 are position constants, r1, r2 are random numbers ranging from 0 to 1, gbest is 

best position for the swarm of particles, and Si
(k+1)

 is the position of ith swarm for 

iteration (k + 1) (Ishaque et al., 2012; Khare & Rangnekar, 2013; Miyatake et al., 

2011). 

The identification of a specific region, known as the solution space, each of which 

accumulates a possible problem-solving degree, serves as the theoretical basis of PSO. 

It is anticipated that at the initial stage, a large number of randomly distributed particles 

in the search area will be preserved in the ideal location (Kaewkamnerdpong & Bentley, 

2005). Global ideal positions will be maintained for all vacant roles. The step size for 

these particles is then altered. The cost function for every particle is then calculated and 

its results are compared to earlier results. The previous procedures are then repeated 

until the same results are obtained. PSO uses the converter duty cycle and output power 

as its objective functions to determine the Global Maximum Power Point (GMPP) of a 

PV array. When a population that represents the duty cycle is initialized and the 

associated voltage and current are measured, the power is calculated. The update 

procedure is repeated if the power rises until the global maximum power is reached. 

Global ideal positions will be maintained for all vacant roles. The step size for these 

particles is then altered. The cost function for every particle is then calculated and its 
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results are compared to earlier results. The previous procedures are then repeated until 

the same results are obtained. PSO uses the converter duty cycle and output power as 

its goal functions to determine the Global Maximum Power Point (GMPP) of a PV 

array. When a population that represents the duty cycle is initialized and the associated 

voltage and current are measured, the power is calculated. The update procedure is 

repeated if the power rises until the global maximum power is reached (Mao et al., 

2019; Rezk et al., 2017) (Rezk et al., 2019)(Chowdhury & Saha, 2010). Because this 

method is bio-inspired, it has the capability of tracking the GMPP with a high tracking 

speed under varying weather and partial shading conditions. This method however has 

a demerit which is the complex nature of its objective function which depends on the 

velocity of the particles. Further research on this algorithm should look at the means of 

simplifying this objective so as to reduce the complexity of the system. 

2.5.3.2 Cuckoo Search (CS) 

The cuckoo search (CS) approach is a parasitic reproduction strategy that was 

biologically inspired by cuckoo birds. The cuckoo is a fascinating bird because in 

addition to making beautiful noises, it reproduces aggressively. 

Some species, such as the ani and Guira cuckoos, lay their eggs in communal nests, but 

they may also take the eggs of other species out of the nests in order to increase the 

likelihood that their own eggs will hatch (Pavlyukevich, 2007; Wolpert & Macready, 

1997; X.-S. Yang & Deb, 2009, 2013, 2014). The obligate brood parasitism is practiced 

by several species, who lay their eggs in the nests of other host birds (typically other 

species) (X.-S. Yang & Deb, 2014). 

The following three idealized principles can be used to simply describe the common 

Cuckoo Search. The number of host nests is determined, and the host bird discovers the 
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cuckoo egg deposited there. Next, the best nests with high-quality eggs will be passed 

down to the following generations. The number of host nests is determined, and the 

host bird discovers the cuckoo egg deposited there. Next, the best nests with high-

quality eggs will be passed down to the following generations.(X.-S. Yang & Deb, 

2013). Each cuckoo lays one egg at a time and deposits it in a randomly selected nest. 

In this situation, the host bird has two options: either get rid of the egg or simply quit 

the nest and construct a brand-new one (X.-S. Yang & Deb, 2009). 

The levy flight mechanism is used in CS to describe the procedures involved in finding 

a nest (Pavlyukevich, 2007). A levy flight is essentially a random walk through which 

the step sizes for levy distributions are generated. Step sizes for CS are bigger than for 

standard PSO because of the levy flight mechanism. It allows for a convergence that is 

rapid. The step size gets smaller as the particles get closer to the MPP, until it reaches 

zero (Mohapatra et al., 2017)(Rezk et al., 2017; X.-S. Yang & Deb, 2014). This method 

of MPPT is advantageous in that, it has a high convergence speed and efficiency. It also 

has a lesser number of tuning variables as compared to PSO which gives it a more 

robust performance. On the other hand, its composite mathematical function which is 

being used in the algorithm for tracking leaves the method with a disadvantage. 

Through more research, this complexity can be minimized and this method optimized 

to give outstanding performance. 

2.5.3.3 Artificial Bee Colony (ABC) 

The Artificial Bee Colony (ABC) algorithm is a straightforward, bio-inspired technique 

that only needs a few controllable parameters. Additionally, the algorithm convergence 

criteria are not dependent on the system's beginning conditions. Swarm-based meta-

heuristics are used to solve multidimensional and multimodal optimization problems 

quickly. The three main categories of artificial bees are workers, observers, and scouts. 
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A bee who is actively seeking food or using a source of food production is said to be 

employed; a bee who is waiting in the hive for a decision regarding a food source is 

said to be an observer (onlooker); and a scout bee is used to conduct a random search 

for a new food source. The three groups work in concert to find the best solution quickly 

through communication and cooperation. Maximum power is the ABC algorithm's food 

source, while duty cycle is its food position. The Artificial Bee Colony (ABC) 

algorithm is a straightforward, bio-inspired technique that only needs a few controllable 

parameters. Additionally, the algorithm convergence criteria are not dependent on the 

system's beginning conditions. Swarm-based meta-heuristics are used to solve 

multidimensional and multimodal optimization problems quickly. The three main 

categories of artificial bees are workers, observers, and scouts. A bee that is actively 

seeking food or using a source of food production is said to be employed; a bee that is 

waiting in the hive for a decision regarding a food source is said to be an observer 

(onlooker); and a scout bee is used to conduct a random search for a new food source. 

The three groups work in concert to find the best solution quickly through 

communication and cooperation. Maximum power is the ABC algorithm's food source, 

while duty cycle is its food position (Mohapatra et al., 2017). This method uses very 

few parameters which is advantageous. However, it has some drawbacks, including 

complexity, a poor tracking speed, and occasionally, the ability to only track the local 

MPP rather than the GMPP. Research focus in this area should be on reducing the 

complexity, improving the tracking speed and ensuring that the GMPP is always 

tracked at all times. 

2.5.3.4 Ant Colony Optimization (ACO) 

This probabilistic approach assists in identifying the ideal result based on the ant's 

foraging behavior. The PSO method has been modified to create this approach. After 
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measuring the power coming from the PV module and applying it to the converter, it 

provides the best duty cycle. To reduce the number of local maximum power points on 

the I-V curve, ACO is utilized in both centralized and distributed type MPPT controllers 

(Mohapatra et al., 2017). Some advantages of this method are; its convergence is not 

dependent on the initial sample position which makes the convergence speed faster, it 

has a simple control strategy, low cost, and is capable of tracking under partial shading 

conditions. The disadvantage with this method is that the approach used for estimation 

is complex. 

2.5.3.5 Genetic Algorithm (GA) 

Darwin's notion of theoretical determination and the influence of the natural part serve 

as the foundation for GA. GA is intended to extract the most appropriate results from 

the nonlinearity of the many optimization challenges. Each answer is interpreted as a 

binary matrix with chromosomal definitions. The population solution raises the quality 

of these agents, bringing their fitness levels up to date. Due to its slow speed in tracking 

the MPP, GA is frequently not applied to the MPPT issue right away. As an alternative, 

GA is used to optimize other global MPP algorithms in order to track the MPP very 

quickly and accurately. Similar to this, the GA is used to train an ANN to predict the 

maximum voltage and current at the MPP of the PV array. Additionally, the economic 

design of PV arrays employing various inverters has been stratified using GA (Rezk et 

al., 2019). 

GA uses different encoding schemes which transform the problem to be solved into 

chromosomes. The different encoding techniques used are the tree encoding, value 

encoding, permutation encoding, and binary encoding. Binary encoding is most 

commonly used in which the data value is converted in to binary strings giving several 

chromosomes. Permutation encoding on the other hand is best suited for queuing or 
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ordering problems. Meanwhile in tree encoding, every chromosome is a tree of some 

objects, commands or functions in programming language and it is best suited for 

evolving expressions or programs. The processes involved with optimization using GA 

are explained in (Malhotra et al., 2011). 

2.5.3.6 Grey Wolf Optimization (GWO) 

The wolf strategy to hunting prey is used in this optimization method (Rezk et al., 

2019). Grey wolves typically hunt in three stages, first searching for prey, then 

encircling prey, and lastly attacking prey. Grey wolves are divided into four levels, with 

the leader level, also known as alpha (α) wolves, providing the greatest answers to 

optimization issues. Beta (β) and delta (δ) wolves, respectively, are the names of the 

second and third better solutions. The last category is known as omega (ω) wolves, and 

they are thought to be the lowest classification of grey wolves. In actuality, wolf 

cooperation and effective communication speed up the process of finding the best 

answer (Q. Li et al., 2017)(Rajkumar et al., 2017)(Cherukuri & Rayapudi, 2017). During 

MPPT using this method, a search space is created in which the MPP is found. This can 

be likened to the grey wolfs surrounding an area in which their prey is found. The 

behaviour of surrounding the prey (tracking the MPP) can be determined using 

equations (2.23 and 2.24). The alpha (α) wolves are regarded as the best fit (fittest 

position for the MPP) while beta (β) and delta (δ) wolves are said to have the best 

solution receptivity. Omega (ω) wolves, however, are thought to be the candidate 

solution's leftovers (Diab & Rezk, 2019). 

D = |C. Xp (t) − X(t)|…………………………………………………….…...…2.23 

X(t + 1) = Xp (t) − A. (D)…………………………………..……………..……2.24  
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In the above equations, D represent the grey wolves’ vector, t is the current position, 

Xp is the position vector of prey, X is the position vector of grey wolves, A and C are 

the coefficient vectors which can be calculated using the equations in Mohanty et al. 

(Mohanty et al., 2015) and Rezk et al. (Rezk et al., 2019). This method is advantageous 

in that it is more efficient at tracking, has no transient or steady-state oscillations, is 

more robust, and is faster. It has a number of drawbacks, including a high computational 

complexity, a huge search space, and a high cost. 

2.5.4 Hybrid techniques 

2.5.4.1 Adaptive Neuro Fuzzy Inference System (ANFIS) 

This hybrid approach makes use of fuzzy logic control methods and artificial neural 

networks. This approach is quite effective in approximating the GMPP due to the right 

membership function design. The membership functions are capable of adaptively 

changing themselves based on the input provided at a given moment, allowing the 

ANFIS technique to be utilized in PV systems with partial shade situations. In this 

approach, the FLC is utilized to regulate the non-linear inputs without necessarily 

requiring any prior system knowledge, while the ANN is used to decrease tracking error 

and optimize parameters (Abido et al., 2015; Abu-Rub et al., 2012; Al-Majidi et al., 

2019; Belhachat & Larbes, 2017; Hassan et al., 2017; Junaid Khan et al., 2020; Kharb 

et al., 2014; S. Kumar et al., 2020; Mohammed et al., 2016). Because of the complexity 

of the algorithm used in this method, it is not cost effective for MPPT. 

2.5.4.2 Fuzzy Particle Swarm Optimization (FPSO) 

The FLC and the PSO are combined in this approach. The tracking efficiency of the 

controller is increased overall by utilizing these two highly refined strategies. Because 

of its parameter adjustability and minimal mathematical processing, this hybrid method 

is highly recommended. Because of this improvement in these two parameters, this 
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combinational method gives the best membership function distribution. This method 

has been reported in (Letting et al., 2012; Priyadarshi et al., 2018). It has advantages 

such as reduced switching losses, avoids the use of proportional integral controllers by 

self-tuning the membership function which reduces its complexity. It has a 

disadvantage that while designing the fuzzy rules, some approximations with trial-and-

error methods have to be included based on human intelligence. This is a major setback 

in this method. 

2.5.4.3 Grey Wolf Optimization Perturb and Observe (GWO-P&O) 

In this hybrid approach, P&O is employed later to enable faster convergence to GMPP 

while GWO is used in the early stages of MPPT. As a result, the computational cost is 

reduced and the search space of GWO is also reduced. The whereabouts of the wolves 

indicate the converter's duty cycle. The need of a PI controller is fully eliminated in the 

MPPT implementation. The tracking capabilities, convergence speed, and efficiency of 

this method are all higher than those of the conventional GWO and P&O methods 

(Mohapatra et al., 2017). The method's disadvantage is that it requires complex 

mathematical computation. 

2.5.4.4 Particle Swarm Optimization Perturb and Observe (PSO-P&O) 

At the beginning of the algorithm, PSO is used for global search, and P&O is used at 

the end. The GMPP is located using the PSO method. GMPP is detected by the hybrid 

method more quickly than the conventional PSO method (Mohapatra et al., 2017). 

Additionally, it lessens the output power fluctuations that occur when tracking. On the 

other hand, it has an expensive hardware implementation, a complex control structure, 

and poor convergence if the GMPP is outside of the search area. Every time the GMPP 

departs from the search space, the poor convergence issue needs to be addressed. 
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2.5.4.5 Hill Climbing Adaptive Neuro Fuzzy Inference System (HC-ANFIS) 

The Adaptive Neuro Fuzzy Inference System (ANFIS) and Conventional (HC) 

methodologies are used in this study's hybrid methodology, which was carefully 

designed to solve the inherent drawbacks of each individual approach. According to 

procedures (Lasheen & Abdel-Salam, 2018), this novel MPPT has demonstrated superior 

speed compared to conventional methods. Figure 2.10, which depicts the various stages 

involved, offers an informative look into the algorithm's workflow. The ambient 

temperature (T) and solar radiation (G), which indicate the dynamic conditions 

affecting the performance of the photovoltaic (PV) system, are the initial input 

parameters for the ANFIS module. The ANFIS module then determines the duty cycle 

(D), a crucial factor in MPPT. The HC mechanism activates using the computed duty 

cycle as input. The HC system expertly calculates the ideal duty ratio using additional 

data inputs from the PV system, specifically the PV voltage (Vpv) and the PV current 

(Ipv). The power converter uses this computed duty ratio as a reference point while it 

dynamically modifies its operation to efficiently track and optimize the maximum 

power point (MPP) of the PV system under the current environmental circumstances. 

In addition to improving tracking speed, this synergistic combination of ANFIS and HC 

methods also optimizes the overall MPPT performance, ensuring effective energy 

conversion in photovoltaic systems.  
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Figure 2.10: Flow diagram of the HC-ANFIS MPPT technique 

This method is advantageous because it has a faster tracking rate and doesn't require 

mathematical modeling. On the other hand, the system has drawbacks due to the 

complicated design of the membership function and the laborious training of the ANN. 

The ease of designing membership functions and the introduction of novel training 

methods for ANNs will encourage widespread adoption of the MPPT technique. 

2.6 Summary of related works done on the different MPPT techniques 

On the many MPPT methodologies that were previously described, some researchers 

have done research projects while applying the different methods. Table 2.5 gives a 

summary of a few of these studies. 
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Table 2.5: Summary of related works for different MPPT methods 

MPPT Method Reference Year Observations 

P&O (Killi & Samanta, 2018) 2018 A P&O algorithm based on voltage sensors was presented. They were able to successfully improve the dynamic and 

steady-state tracking performance of the PV system at a cheaper cost thanks to their simulation and experiment results. 

CV (Leedy et al., 2012) 2012 They developed a constant voltage algorithm for tracking maximum power point that adapts the reference voltage 

automatically to account for shifting environmental conditions. Their work was simulated using MATLAB/Simulink, 

and the simulation and experimental results agreed. 

RCC [73] 2007 Their work focused on a more dependable and energy-efficient digital formulation. The RCC technique was used to 

create a maximum power point tracker for a solar panel with a tracking efficiency of more than 99 percent and a speedy 

convergence rate. 

HC (Jately et al., 2021) 2021 On a small-scale experimental prototype, the performance of eight hill-climbing algorithms for two different step sizes 

was evaluated under both uniform and rapid fluctuations in low irradiance. Their statistical analysis shows that the 

adaptive HC drift-free MPPT algorithm outperforms traditional HC algorithms in low irradiance situations when applied 

with the optimal perturbation step-size. 

IP&O (Kamran et al., 2020) 2020 The MPP is included in the 10 percent portion of the power curve's search space that is constrained by this suggested 

technique, which also begins perturbation and observation inside of that area. In MATLAB/Simulink, the proposed P&O 

algorithm was examined. The solar tracker made sure that the solar module received steady and maximum irradiation 

throughout the day as the sun moved across the sky. The steady-state oscillations at the MPP and the response time to 

changing weather conditions were both slowed down because of the algorithm's constrained search space. With the 

proposed system, the proposed P&O algorithm was tested, and the results demonstrated that it performed satisfactorily. 

IP&O (A. I. M. Ali & 

Mohamed, 2022) 

2022 For a solar PV system simulation utilizing MATLAB/SIMULINK software, they suggested an improved MPPT 

technique. Their findings supported the theoretical analysis of the suggested technique, which increases the tracking 

accuracy of PV systems to 99.7%. 

SCC (Fapi et al., 2021) 2021 In comparison to the traditional fractional SCC technique, they constructed an enhanced MPPT utilizing the SCC 

approach and gained greater accuracy, lower oscillations, and reduced energy losses. 

OCV (Hmidet et al., 2021) 2021 The suggested method ensures a quick response, fewer oscillations around the MPP, and a system efficiency of 98% due 

to the extraction of maximum power in their design utilizing the fractional OCV method. 

ARV (Lasheen et al., 2017) 2017 They demonstrated that despite the ARV method's resemblance to the CV method and its ability to retain efficiency 

despite changes in solar radiation. 

InC (Liu et al., 2008b) 2008 For MPP tracking, a modified variable step InC MPPT algorithm was suggested. To track the maximum power from the 

PV array, the proposed system may automatically alter the step size. This technique has the potential to simultaneously 

increase the MPPT's accuracy and speed. Additionally, it is straightforward and quick to apply in DSPs. Their method 

was tested experimentally with a DSP and verified using simulation results from MATLAB-Simulink. They employed 

a 0.025-second sample interval. According to their test results, tracking accuracy was 99.2% and response time was 1.5 

seconds. 
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LTB MPPT (Yue et al., 2021) 2021 In their article, an unique 2-D lookup table-based MPPT system was developed. A 2-D optimal-duty-cycle table is used. 

They came to the conclusion that the method is deserving of advancement because it outperforms the fixed-step P&O 

MPPT in terms of power tracking. 

ANN (Yaichi et al., 2014) 2014 They determined that their new way of employing the ANN to track the maximum power point could successfully track 

the MPP. 

FLC (A. Ali et al., 2014) 2014 The FLC approach outperforms the P&O method in a variety of weather circumstances, according to their comparison 

of the two methods. 

CS (Rezk et al., 2017) 2017 The PSO, INC, and CS are examined in this paper, and the results demonstrate that the CS outperforms the PSO in 

conditions of partial shade. 

ANFIS (Mahdi et al., 2020) 2020 When a non-shaded real weather profile was introduced to the system, simulation results utilizing the ANFIS MPPT 

technique demonstrated the system's capacity to track the MPP under partial shading conditions and respond to changing 

weather. 

 (Al-Majidi et al., 2019) 2019 An ANFIS technique was used in this study based on a sizable amount of data, experimentally trained to prevent high 

error from training in the system. These numbers were obtained in 2018 through experiments carried out experimentally 

on a PV array. To evaluate the performance of the proposed ANFIS technique, simulation was performed in 

MATLAB/Simulink. Using a real measurement test on a partly overcast day, the average effectiveness of the suggested 

approach under various climatic conditions was computed. The findings demonstrate that, with an efficiency of more 

than 99.3 percent, the suggested method precisely records the maximum power that is optimal. 

FPSO (Sa-ngawong & 

Ngamroo, 2015) 

2015 They developed a hybrid FPSO system to stabilize the frequency under a variety of loading conditions, and they came 

to the conclusion that the frequency stability was superior to that achieved when only the FLC is utilized. 

GWO-P&O (Mohanty et al., 2016) 2016 They put out a brand-new hybrid maximum power point tracking (MPPT) approach that blends P&O and GWO methods. 

GWO handles the earliest stages of MPPT, with the P&O algorithm being used in the last phase to speed up convergence 

to the global peak. The MPPT avoids the computational expense associated with a GWO-based MPPT method as a result. 

A faster convergence to the GMPP was desired, hence the hybrid technique was used to minimize the size of the GWO 

search space. An experimental setup was made in order to put the suggested MPPT technique to the test. It was first built 

in MATLAB/Simulink. The acquired data showed that the suggested MPPT outperformed both the GWO and PSO-P&O 

MPPT algorithms in all weather situations. 

PSO-P&O (Avila et al., 2017) 2017 In their research, they tracked the maximum power from a 1.2 MW PV system under partial shadowing conditions using 

a hybrid PSO-P&O approach. Their findings demonstrated appropriate dynamic and steady-state reactions. 

HC-ANFIS (Lasheen & Abdel-

Salam, 2018) 

2018 Their findings demonstrated that the maximum voltage could be anticipated and that irradiance and temperature could 

be measured in real time. 
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2.7 Criteria for comparing different MPPT techniques 

Because MPPT controllers are designed using a variety of technological approaches, 

their comparison is based on many criteria. In Ahmad et al. (2019), some criteria have 

been presented for ranking MPPTs. This is shown in Table 2.6. 

Table 2.6: Criteria for determining MPPT rankings (R. Ahmad et al., 2019a) 

Criterion Considerations Ranking 

Complexity of Algorithm  

Just like P&O Best 

Needs little correction of the P&O algorithm 

 

It’s a combination of other methods and P&O 

Makes use of artificial intelligence or bio-inspired 

algorithm 

High le of AI 
Very 

complex 

Hardware implementation 

Uses DC-DC converter with I and V sensor Best 
requires modification of DC-DC converter 

 

For duty cycle modulation of converter, it uses PI/PID 

controller  

high-tech embedded system is used 
Very 

complex 

Tracking Speed 

0 ms to 100 ms  Best 

100 ms to a few hundred milliseconds 
 

From a few hundred milliseconds to seconds  Very slow 

Uniform condition 

Efficiency  

97% to ≈100% Best 

93% to 96.9% 
 

<92.9% 
Less 

efficient 

Ability to track accurately 

under partial shading 

Tracks global maximum 

Better performance than an MPPT of the same 

complexity 

Best 

Not being able to track GMPP under partial shading 

 
Performs better than P&O 

Often caught in the local maximum, similar to P&O 
Less 

accurate 

 

2.8 Comparative analysis of different MPPT techniques 

It's also important to select the best tracker for the job when using MPPT controllers to 

get the most power out of PV systems. These MPPT controller design strategies are 

different from one another in a number of ways. Cost, response time, and efficiency 
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stand out as important considerations to keep in mind when making decisions among 

the comparison factors of importance. Cost, circuitry, complexity, response time, 

periodic tuning, sensing parameters, stability, precision, and the partial shading (PS) 

condition have all been taken into consideration when making the comparison in this 

work. The comparison is summarized in Table 2.7 below. Additionally, comparing the 

effectiveness of the various strategies has been done using values from published 

research, as shown in Figure 2.11. 

Table 2.7: Comparison of different MPPT techniques (Karami et al., 2017; 

Viswambaran et al., 2016) 

MPPT 

Method 
Cost 

Circuitry 

(A/D) 
Complexity 

Response 

Time 

Periodic 

Tuning 

Sensed  

Parameters 
Stability Accuracy PS 

ANFIS E D High Fast Yes V, I Stable Medium Yes 

ANN E D High Medium Yes V, I or G, T VS High Yes 

FLC AF D High Medium Yes V, I VS High Yes 

GA AF D High Fast No V, I VS Medium Yes 

GWO-

P&O 
AF D High Medium Yes V Stable High Yes 

HC-ANFIS AF D High Fast No V, I VS High Yes 

PSO-P&O AF D High Fast Yes V, I Stable Medium Yes 

ACO AF D Low Fast Yes V, I VS Medium Yes 

ARV IE A/D Low Medium Yes V, I NS Medium No 

CS VE D Low Fast No V, I VS High Yes 

CV IE A Low Slow Yes V NS Low No 

FPSO VE D Low Fast No V, I VS High Yes 

FSB MPPT AF D Low Very Fast Yes V, I VS High Yes 

GWO AF D Low Medium Yes V VS High Yes 

HC IE D Low Medium No V, I Stable Medium No 

LTB MPPT IE D Low Fast Yes G, T or I, T 
Memory-

based 
High No 

OCV IE A Low Slow Yes V NS Low No 

P&O IE A/D Low Slow No V, I NS Medium No 

RCC E A Low Fast Yes V, I VS High Yes 

SCC IE A/D Low Slow Yes I NS Medium No 

ABC E D Medium Fast No V, I VS Medium Yes 

InC E D Medium Varies No V, I Stable  Medium No 

IP&O E D Medium Medium No V, I Stable High No 

PSO AF D Medium Fast Yes V, I VS Medium Yes 

GNT AF D Very High Fast No V, I Stable Medium No 

SMC E D Very High Very fast No V, I VS Medium Yes 

VS: Very Stable, NS: Not Stable, V: Voltage, I: Current, VE: Very Expensive, E: 

Expensive, IE: Inexpensive, AF: Affordable, T: Temperature, G: Irradiance, PS: Partial 

Shading Condition, A: Analog, D: Digital 
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Due to difficulties in tracking the global MPP, conventional approaches are often not 

suitable for MPPT in regions with Partial Shading (PS) conditions, as seen by the 

comparison above. When partial shading occurs, intelligent, hybrid, and optimization 

approaches are more appropriate for tracking the global MPP. Comparing the 

conventional procedures to the other three approaches, they are less expensive and less 

complex. Several efficiency values from various MPPT methods have been published 

(Bollipo et al., 2020). From the data presented, PSO-P&O have the highest efficiency 

going up to 100% while the least efficiency of 54.12% was reported with the HC 

method. 

 

Figure 2.11: Reported efficiencies obtained from different MPPT techniques 

 

2.9 Power Converters Used in PV Systems 

Power converters are extensively used in solar PV systems. These converters generally 

play different roles such as converting a constant DC input voltage to a regulatable 

voltage, converting AC current to DC current, or enabling bidirectional flow of current 

to and from battery storage systems (Rashid, 2001).  
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2.9.1 DC-DC Converters 

These are power electronic circuits capable of converting a constant input DC voltage 

to a regulatable output DC voltage. Some of these converters are buck converters, boost 

converters, buck-boost converters, and cuk converters. 

2.9.1.1 Buck Converter 

Here, the conversion is done such that the output voltage from the converter is always 

smaller than the input voltage. For this reason, the buck converter is also referred to as 

a step-down converter. The circuit diagram for this power converter is shown in Figure 

2.12. 

 

Figure 2.12: Buck converter 

From the circuit on Figure 2.12, the relationship between the output voltage (Vo) and 

the input voltage (Vin) for the buck converter is given by equation (2.25) (Daniel W. 

Hart, 2011; Rashid, 2001). 

Vo =∝ Vin…………………………………………………….……………………2.25 

Where α is the duty ratio which determines the controllability of the switch. The 

minimum value of the inductance (L) to maintain a continuous current flow is given by 

equation (2.26). 

Lmin =
(1−∝)R

2f
………………………………………………………….…………..2.26 
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Where R is the load resistance in (Ω), f is the switching frequency in (Hz), and Lmin is 

the minimum inductance in (H) with L > Lmin.  

During buck converter design, the current ripple of the inductor is often used as a 

design criterion. The current ripple for the inductor is given by equation (2.27). 

∆iL =
(1−∝)Vo 

Lf
………………………………………..………………..……….…..2.27 

Also, to maintain a constant output voltage, a suitable capacitor must be used. The 

capacitance of this capacitor depends on the output voltage ripple (∆Vo) given by 

equation (2.28). 

∆Vo =
(1−∝)Vo 

8LCf2  ……………………………………………..………………………2.28 

The capacitance (C) in Farads (F) of the capacitor is calculated using equation (2.29). 

C =
(1−∝)Vo 

8Lf2(∆Vo)
 ……………………………………………..……………..…………2.29 

2.9.1.2 Boost Converter 

This is another type of DC-DC converter that converts a constant input DC voltage to 

a regulatable output DC voltage whose magnitude is greater than the input. The inductor 

if often chosen such that the current flow is continuous and the capacitor is chosen to 

maintain a constant voltage across the load. The circuit diagram for this converter is 

shown in Figure 2.13. 
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Figure 2.13: Boost converter 

The relationship between the input voltage and the output voltage is given by equation 

(2.30). 

Vo =
VS 

1−∝
…………………………………...……………………………………….2.30 

The minimum inductance for continuous current flow in the boost converter is given 

by equation (2.31). 

Lmin =
∝(1−∝)2R

2f
…………………………………………………………...………..2.31 

In the calculation of the inductance, the current ripple of the inductor is often used. 

This current ripple is related to the inductance as in equation (2.32). 

L =
∝Vin 

∆iLf
……………………………………..………………………………….…..2.32 

Similar, the output ripple voltage is given by equation (2.33). 

∆Vo =
∝Vo 

RCf
…………………………………………………………..……………..2.33 

From equation (2.33), the capacitance of the capacitor is calculated as shown in 

equation (2.34). 

C =
∝Vo 

Rf(∆Vo)
……………………………………………………………….………..2.34 
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2.9.1.3 Buck-Boost Converter 

This converter can either step-up or step down the output voltage when a given input 

voltage is applied. Because the switch (S) and the diode (D) are not allowed to conduct 

at the same time, the input voltage cannot be coupled directly to the load. Therefore, 

the value of the capacitor (C) must be chosen such that a constant voltage is applied to 

the load during the interval when the switch is open. The circuit diagram for this 

converter is shown in Figure 2.14 below. 

 

Figure 2.14: Buck-Boost converter 

For this converter, the output voltage is related to the input voltage by: 

Vo =
−∝VS 

1−∝
………………………………………………………………..………..2.35 

For specified input and output voltages, the required duty ratio is obtained from: 

∝=
|Vo|

VS+|Vo|
……………………………………………………………….………..2.36 

From equation (2.35), we can deduce that the output voltage is greater than the input 

voltage when ∝ > 0.5 (boost mode) and it is smaller than the input voltage when ∝ < 

0.5 (buck mode).  
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For continuous current flow, the value of the inductance must be large and the minimum 

value for this inductance is calculated as in equation (2.37). The output voltage ripple 

and the value of capacitance to maintain a constant output power can be computed using 

equations (2.33) and (2.34) respectively. 

Lmin =
(1−∝)2R

2f
………………………………………………………...…………..2.37 

2.9.1.4 Cuk Converter 

In Figure 2.15, the Cuk switching topology is depicted. There is a polarity reversal on 

the output, and the amplitude of the output voltage can be either higher or lower than 

that of the input. To reduce the amount of harmonic content in the dc supply, the input 

inductor serves as a filter. Energy transfer for the Cuk converter is dependent on the 

capacitor C1, as opposed to earlier converter topologies where it was linked to the 

inductor. 

These premises form the basis of the analysis: The capacitors C1 and C2 are very large 

and have constant voltages across them, the inductors L1 and L2 both have very large 

inductances, making the currents across them constant, the voltage and current 

waveforms are periodic, indicating that the circuit is in steady state operation, and the 

diode and switch are ideal. 

 
Figure 2.15: Cuk converter 
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By analysing the circuit in Figure 2.15, the relationship between the currents across the 

inductors L1 and L2 with the duty ratio is given by equation (2.38). 

IL1 =
∝IL2 

1−∝
…………………………………………………………………...……..2.38 

Furthermore, the output voltage is related to the input voltage as shown in equation 

(2.39). 

Vo =
−∝VS 

1−∝
……………………………………………………………….………..2.39 

The negative sign in the expression shows that there is a polarity reversal between the 

input and the output. The ripple output voltage for this converter is calculated using the 

equation (2.40). 

∆Vo =
(1−∝)Vo 

8C2L2f2  ……………………………………………………………………2.40 

The ripple voltage across the capacitor C1 is given by equation (2.41). 

∆VC1 =
∝Vo 

RC1f
 ………………………………………………………………………2.42 

The ripple currents across the inductors L1 and L2 are respectively given by equations 

(2.43) and (2.44). 

∆iL1 =
∝VS 

L1f
………………………………………………………………….……..2.43 

∆iL2 =
∝Vin 

L2f
………………………………………………………………………..2.44 

To maintain a continuous current flow across the inductors L1 and L2, the minimum 

inductances that must be chosen can be calculated using equations (2.45) and (2.46). 

L1,min =
(1−∝)2R

2f∝
…………………………………………………………………..2.45 
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L2,min =
(1−∝)R

2f
…………………………………………………………..………..2.46 

2.9.2 DC-AC Converters 

DC-AC converters or Inverters are electronic devices that convert direct current (DC) 

into alternating current (AC). They are necessary for many applications that require AC 

power, including houses, businesses, and electronic equipment. There are various 

varieties of inverters, such as pure sine wave inverters, which provide high-quality AC 

power comparable to that of the grid, modified sine wave inverters, which are 

acceptable for the majority of appliances but are less efficient than pure sine wave 

inverters, and square wave inverters, which are less prevalent but are best for basic 

applications. Solar power systems employ inverters to transform DC electricity 

generated by solar panels into useful AC power. Additionally, they are utilized in UPSs, 

which offer backup power during power outages (Bellar et al., 1998; Séguier & 

Labrique, 2012). 

2.9.3 AC-DC Converters 

In order to change alternating current (AC) into direct current (DC), electrical 

equipment or circuits called AC-DC converters or rectifiers are employed. They 

function by allowing current to flow in one direction, thereby changing the AC 

waveform to create a pulsing DC output. Rectifiers are crucial parts in many 

applications where a constant DC voltage is necessary, such as power supplies for 

machinery and electronic equipment (Singh et al., 2003). They are classified as half-

wave or full-wave. Half-wave rectifiers produce a pulsing DC output by only allowing 

one-half (either the positive or negative) of the AC input waveform to pass through. 

Half-wave rectifiers are easier to construct and less costly as compared to full wave 

rectifiers. Full-wave Rectifiers on the other hand provide a smoother pulsing DC output. 
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Compared to half-wave rectifiers, they are more effective. Rectifiers are frequently used 

in power supply to change the mains (wall outlet) AC voltage into a stable DC voltage 

suited for electronic appliances and devices (Castro et al., 2003; G. C. R. Kumar & Rao, 

2012; Power & Science, n.d.; Séguier & Labrique, 2012; Singh et al., 2003). 

Additionally, they convert AC voltage to DC voltage needed to charge batteries in 

battery charging circuits. In addition to that, rectifiers are also employed in motor 

control systems to drive DC motors, which are frequently utilized in industrial settings, 

by converting AC power to DC. 

These electronic circuits are essential parts of electrical and electronic systems because 

they enable the conversion of AC power to DC power, which is necessary for numerous 

tasks like powering industrial operations and electronic gadgets. The type of rectifier 

selected will rely on the particular needs of the application and the required level of DC 

output quality (Erickson, 2004). 

2.9.4 Bidirectional Converters 

A bidirectional converter, often referred to as a bidirectional DC-DC converter, is an 

electrical component or circuit that can efficiently and controllably convert direct 

current (DC) power in both the DC to DC and DC to DC directions. These converters 

are utilized in a variety of applications, but are particularly useful in energy storage, 

electric car, and renewable energy systems that require the bidirectional flow of energy 

(Gorji et al., 2019). 

These converters have several functions in different electrical applications. They are 

used in storage systems such as batteries and supercapacitors. In these storage systems, 

bidirectional converters play a crucial role. During the charging process, energy is 
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channelled through this converter to charge the battery. When discharging, the energy 

stored in the battery flows through the converter to the load or to the grid. 

Another area where bidirectional converters are used is in EVs (electric vehicles). 

Bidirectional converters allow for the charging of electric vehicles from an external 

power source (such as a charging station) as well as the discharge of power from the 

vehicle's battery to power the electric motor or supply power to external loads. Due to 

their bidirectional capabilities, EVs can serve as mobile energy storage systems in 

applications such as vehicle-to-grid (V2G) and vehicle-to-home (V2H) (Onar et al., 

2012). 

Bidirectional converters are essential for controlling the electrical flow in renewable 

energy sources, such as solar and wind power. When there is extra energy, they can 

convert it back to DC for storage in batteries or for feeding into the grid. They can 

transform the DC electricity produced by solar panels or wind turbines into AC power 

for use in homes or companies. 

Bidirectional converters are used in UPS systems to guarantee a consistent and 

dependable power supply to key loads during power outages. UPS stands for 

Uninterruptible Power Supplies. Depending on the situation, they can alternate between 

rectifier mode (which converts AC grid power to DC for charging the battery) and 

inverter mode (which converts DC battery power to AC for powering the load) (Govind 

et al., 2022). 

Bidirectional converters are used in microgrid systems to control the energy flow 

between various distributed energy resources, including solar panels, wind turbines, 

and energy storage equipment. They allow the grid to run independently or in tandem 

with the primary grid while maximizing energy usage. 
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In order to handle sudden changes in power direction and amplitude, bidirectional 

converters are made to be extremely efficient. They are crucial elements in 

contemporary energy management and conversion systems because they depend on 

cutting-edge power electronics and control systems to guarantee the smooth and 

controlled movement of energy in both directions. 

In this work only one application of the bidirectional converter is utilized which is 

during the charging and discharging process of batteries. The circuit configuration of 

this converter is shown in Figure 2.16. 

 

Figure 2.16: Generalized structure for a bidirectional DC-DC converter (Forouzesh et 

al., 2017) 

2.10 Energy Storage Systems 

2.10.1 Introduction 

As additional producing capacity employs intermittent renewable energy sources, the 

demand for energy storage in electricity networks is becoming more critical (May et 

al., 2018). The world's current electrical grid systems, however, are not built to handle 

the widespread integration of variable energy sources without substantially disrupting 

the grid. According to general consensus, the grid system can be seriously disrupted if 

intermittent renewable energy penetration rises to more than 20%. Large-scale 

electrical energy storage systems can undoubtedly help to improve the grid's 
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dependability, enable complete integration of sporadic renewable sources, and 

efficiently control power generation in addition to helping to reduce many of the 

inefficiencies and defects that are intrinsic to it. Electrical energy storage has further 

two important benefits. First of all, it separates power generation from the load or 

electrical consumer, simplifying the management of supply and demand. Furthermore, 

it makes distributed storage possible for small grids, or microgrids, greatly enhancing 

grid security and therefore energy security. Therefore, energy storage systems are a 

potential option for managing independent solar PV systems as well as integrating 

variable renewable energy sources into grids (Bragard et al., 2010).   

2.10.2 Types of Energy Storage Systems 

Energy storage systems can be divided into five major categories: mechanical, 

electrochemical, electrical, chemical, and thermal. 

Pumped hydro, flywheel, and compressed air systems are examples of mechanical 

storage systems. The electromechanical systems use a variety of battery types, 

including flow batteries, sodium sulphate batteries, lead acid batteries, and lithium-ion 

batteries. Double layer capacitors and superconducting magnetic energy storage are two 

of the electrical storage techniques. Fuel cells are a component of chemical storage 

systems, and thermal storage uses sensible heat storage as its final component. The 

various classes are displayed in the following Figure 2.17. 
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Figure 2.17: Classification of energy storage systems (Asian Development Bank, 

2018) 

 

2.10.3 Mechanical storage systems 

Mechanical energy storage systems (MESSs) are desirable because they outperform 

traditional energy storage systems in a number of areas, including cost-

effectiveness and long-term viability. This is because these systems use mechanical 

methods for energy storage. When the involved object is stationary, the energy is stored 

as potential energy, and when the object is moving, it is stored as kinetic energy. 

Flywheel energy storage systems (FESS), pumped hydro energy storage (PHES), and 

compressed air energy storage are the three different forms of MESSs (CAES) (C. K. 

Das et al., 2018; Mahmoud et al., 2020a). 

Pumped Hydro Energy Storage (PHES) is a MESS that has a long-life cycle, is flexible, 

and requires little maintenance. Pumping system, hydro turbine, and upper reservoir are 

the three basic components (Guezgouz et al., 2019). The PHES is depicted in Figure 

2.18 as an example.  
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Figure 2.18: Pumped Hydro Storage System (Mahmoud et al., 2020b) 

When there is a surplus of electrical energy, water is pumped from the lower reservoir 

to the upper one by the electric pump, where it can be used again when needed to 

generate electricity using the generator (Haque & Rahman, 2012). This system is based 

on the potential gravitational energy, which allows the upper container to offer a 

positive pressure difference with regard to the lower one, allowing the hydro turbine to 

generate power. In order to improve the performance of the system for modern PHES, 

the turbomachines are replaced by a reversible pump-turbine (Javed et al., 2020). The 

major advantages of this storage system are: high efficiency, low cost/kWh, stability, 

and long discharge time. It is disadvantageous in that it has a low energy density and 

occupies a large area during installation. 

The second type of MESS is the Flywheel Energy Storage System (FESS) which 

involves rapidly spinning a rotor (flywheel) and storing the energy as rotational energy 

in the system (Amiryar & Pullen, 2017). Electrical energy is used to accelerate the rotor, 

and that energy is subsequently stored as kinetic energy as the flywheel rotates. As a 
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result of the concept of energy conservation, the flywheel's spinning speed is reduced 

when this energy is withdrawn from the system by connecting it to a generator for 

electricity generation. An example of a FESS is shown in Figure 2.19 below. 

 

Figure 2.19: Flywheel energy storage system with hydrostatic transmission (Carrillo 

et al., 2009) 

The overall efficiency of a FESS is determined by the design of each component, and 

one of the key goals is to reduce power transmission losses, which are influenced by 

the type of bearing used; magnetic bearings were found to be the optimum option 

(Martin et al., 2016). The FESS can also be connected to three distinct types of electric 

machines: synchronous machines, induction machines, and switching reluctance 

machines. Aside from energy storage, flywheels are utilized to extend the life of 

batteries when used with renewable energy sources due to their intermittent nature 

(Barelli et al., 2019). In addition to that, FESS has a fast response with considering 

economic aspects (Aanstoos et al., 2001). The major advantage with this storage system 

is that it causes no pollution, long life span, and can discharge huge amount of energy 

in few minutes. On the other hand, it has the disadvantage that it has limited 

charge/discharge and cannot stand alone with PV systems (Mahmoud et al., 2020b). 
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The third and final type of MESS is the compressed air energy storage (CAES) system. 

CAES is based on a straightforward principle. Electrically driven compressors charge 

the store by converting electric energy into potential energy, or more accurately exergy, 

of pressured air. The compressed air is kept in any type of compressed air 

storage volume such as expired well, underground salt caverns, gas chambers, or 

underground mines and can then be released on demand to generate electricity by 

expanding the air through an air turbine (Budt et al., 2016). A wide range of CAES 

concepts exist at various stages of development, each aimed at a distinct application 

and with its own set of strengths and disadvantages. CAES technologies are classified 

as diabatic, adiabatic, or isothermal, depending on the idealized process being pursued. 

Though this technology is still in its early stage of development, it has advantages which 

are; long discharge time, fast start-up, low cost per kWh, its stable, and has a long 

service life. However, this storage method also have disadvantages such as low 

efficiency and the use of natural gas to reheat the air before expansion which leads to 

carbon dioxide emission (Haisheng et al., 2013; Luo et al., 2014). The energy storage 

and conversion system block diagram is shown in Figure 2.20 below.  

 

Figure 2.20: CAES system 
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2.10.4 Electrical storage systems 

Electrical energy storage systems can broadly be classified into two namely 

superconducting magnetic energy storage (SMES) and double layer capacitor (DLC) or 

supercapacitor. These storage systems are so classified because of their ability to store 

energy in the presence of electric charge or electromagnetic fields caused by the passage 

of electric current through these materials. This storage systems are well known for 

their high-power capabilities but low energy densities. The functional principles of 

these different types of electrical storage systems are discussed in the proceeding 

paragraphs. 

Supercapacitors are electrochemical capacitors that lie between dielectric capacitors 

and batteries and can store a lot of energy. Their design architecture is similar to that of 

batteries, with two electrodes separated by an electrolyte and a separator to prevent the 

electrodes from shorting. They have extremely high capacitances, ranging from several 

hundred farads per gram to 1700 F/g, depending on the storage method, electrode 

material choice, microstructure, and electrolyte. Despite the fact that they hold charge 

of higher magnitude than dielectric capacitors, their low energy density prevents them 

from being used as stand-alone storage systems. They can, however, be beneficial in a 

variety of high-power but low-energy applications (Gür, 2018a). The power density of 

supercapacitors can go as high as 10kW/kg which is about 2 to 3 times that of batteries.  

In addition to the high-power density, supercapacitors have a long cycle life of up to 

100 000 cycles. On the other hand, they have very low energy density which is less than 

5 Wh/kg (Burke, 2007; Gür, 2018b). The schematic diagram of a double layer capacitor 

is shown in Figure 2.21 below. 
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Figure 2.21: Double layer capacitor storage system (H. Chen et al., 2009a) 

Another category of electrical energy storage system is the superconducting magnetic 

energy storage (SMES) system. This is one of the very few direct electric energy storage 

systems. The magnetic flux density (B) formed by the passage of persistent direct 

current is stored in a superconducting magnet with shorted input terminals. The current 

remains constant due to the absence of resistance in the superconductor (Buckles & 

Hassenzahl, 2000). It stores electric energy as direct electric current flowing via a 

superconducting inductor (coil) that is circular and allows current to circulate endlessly 

with nearly no loss. The magnetic field formed by the flow of electric current can also 

be employed to store energy in SMES. The inductor is immersed in liquid helium 

housed in a vacuum-insulated cryostat to retain its superconducting condition. The 

coolant can be liquid helium at 4.2 K or super fluid helium at 1.8 K, and the conductor 

is usually composed of niobium-titanium (H. Chen et al., 2009b). When the shorted 

terminals are opened, the stored energy is transmitted to a load in part or all by lowering 

the coil's current via negative voltage (positive voltage charges the magnet). As a result, 

the SMES is a current source. Superconducting magnet with supporting structure, 

cryogenic system (cryostat, vacuum pumps, cryocooler, etc.), power conditioning 

system (interface between the superconducting magnet and the load or electric grid), 
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and control system are the four main components or subsystems shown schematically 

in Figure 2.22.  

 

Figure 2.22: SMES System (Tixador, 2008a) 

Since the vast majority of grids operate in AC, a rectifier/inverter is often part of the 

power conditioning system, as it is required to convert DC from the superconducting 

coil to AC and vice versa. Mechanical concerns limit its energy density to a modest 

value on the order of 10 kJ/kg, but its power density can be exceedingly high. SMES is 

particularly appealing for high-power and short-time applications (pulse power sources) 

because of its high power density. A SMES releases its energy fast and with outstanding 

energy transfer conversion efficiency (greater than 95 percent). The superconducting 

magnet at the heart of a SMES must meet requirements such as low stray field and 

mechanical design suited for containing significant Lorentz forces (Tixador, 2008b). 

UPS (Uninterruptible Power Supply), FACTS (Flexible AC Transmission System), and 

pulse power sources for specific applications are the three major uses of SMES 

(Mukherjee & Rao, 2019). 

2.10.5 Chemical storage systems 

One of the commonly used chemical storage system is the fuel cell as shown in Figure 

2.23. A fuel cell is a device that converts electrochemical energy into electrical energy 
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(Haseli, 2018). It generates electricity using external fuel (anode side) and oxidant 

sources (cathode side). In the presence of an electrolyte, these react. The reactants and 

reaction products move in and out of the cell in general, but the electrolyte remains in 

the cell. As long as the flows are maintained, fuel cells can operate nearly indefinitely. 

A reversible fuel cell is one that can be used to produce electricity and chemical B by 

consuming chemical A, and then reversed to produce chemical A by consuming 

electricity and chemical B. Fuel cells differ from batteries in that they need reactants 

that must be replaced, whereas batteries chemically store electrical energy in a closed 

system. Furthermore, when a battery is charged or depleted, the electrodes in the battery 

react and change, but the electrodes in a fuel cell are catalytic and relatively stable (H. 

Chen et al., 2009b). There are numerous fuel and oxidant combinations that can be used. 

Hydrogen is used as the fuel and oxygen is used as the oxidant in a hydrogen cell.  

 

Figure 2.23: Schematic diagram of a fuel cell (Stambouli & Traversa, 2002) 

Hydrocarbons, alcohols, and even metals are examples of other fuels. Air, chlorine, and 

chlorine dioxide are examples of other oxidants. A hydrogen fuel cell for instance 

produces electricity and water by combining hydrogen and oxygen, as and a reversible 
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hydrogen fuel cell can produce hydrogen and oxygen using electricity and water 

(Aardahl & Rassat, 2009). Hydrogen-based energy storage systems are gaining popularity 

right now, especially because of their ability to integrate with renewable energy 

sources. An electrolyser unit, which converts electrical energy into hydrogen, a 

hydrogen storage system, and a hydrogen energy conversion system, which converts 

the stored chemical energy in hydrogen back to electrical energy, are the fundamental 

elements. There are also a number of techniques to generate hydrogen directly from 

thermochemical or photochemical processes using concentrated solar energy, although 

they are still in the early phases of development (Rahman et al., 2020). 

2.10.6 Thermal storage systems 

To capture and store energy in the form of heat, thermal energy storage is an essential 

method. One of the most often used techniques in this area is sensible heat storage 

(SHS). It entails heating or chilling a solid or liquid medium intended for storage, such 

as water, sand, molten salts, or rocks. Water stands out as the best option out of these 

due to its usefulness and adaptability. Since it has so many uses in both the home and 

industrial sectors, water has actually emerged as the lynchpin of thermal energy storage. 

Recent years have seen major developments in the use of thermal energy storage, 

especially with regard to sensible heat storage. This technology is now essential for 

reducing energy usage and meeting the rising need for sustainable energy solutions. 

Thermal energy storage systems improve overall energy efficiency by storing extra heat 

during times of low demand and releasing it when needed. Water has special qualities 

that make it particularly ideal for this purpose, making it the chosen medium for 

sensible heat storage. It is a reliable source of heat thanks to its high specific heat 

capacity, which enables it to absorb and hold significant amounts of thermal energy. 

Furthermore, water is an appealing option from an economic and practical perspective 
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due to its abundance, low cost, and ease of handling. Residential heating and cooling 

systems use thermal energy storage using water in the domestic domain. Homeowners 

can lessen their dependency on conventional energy sources by storing excess heat 

produced by renewable energy sources like solar panels or heat pumps for later use. 

Similar to this, water-based thermal energy storage is essential in industrial settings for 

a number of activities, including steam generation, chemical reactions, and temperature 

control in manufacturing facilities (Alva et al., 2018). Underground sensible heat 

storage (SHS), in both liquid and solid mediums, is widely used in large-scale 

applications to take advantage of its outstanding benefits. Its affordability, which makes 

it a financially viable solution for a range of energy storage demands, is one of its main 

advantages. Additionally, SHS systems provide increased safety because they don't 

employ harmful materials, reducing threats to the environment and human health. SHS 

systems take advantage of the storage medium's inherent features as they dynamically 

interact throughout charging and discharging processes. The system's operating 

temperature, the amount of storage material used, and the medium's specific heat 

capacity are the key determinants of how much heat is stored. This delicate interplay 

guarantees that SHS continues to be a flexible and effective method of regulating 

thermal energy, offering a long-term solution for a variety of large-scale applications 

(Sarbu & Sebarchievici, 2018). 

These different storage technologies are more appropriate for different power 

requirements and discharge durations as depicted by Figure 2.24. Power-to-gas (P2G) 

storage systems are promising technologies for seasonal electricity storage. 

Supercapacitors on the other hand are only capable of storing energy for a very short 

period. 



79 
 

 

Figure 2.24: Battery technologies for different purposes (Asian Development Bank, 

2018). 

Electrochemical storage systems will be exploited in this section by describing the 

different types of battery storage systems. 

2.11 Battery Storage systems and types of Batteries 

For the grid and other renewable energy systems, batteries have traditionally been the 

most popular type of energy storage. Grid storage systems involve converting grid 

electricity to direct current (DC) and storing it in a battery. The grid is then supplied 

with the retrieved stored energy using the same converter technology (Bose, 2013). In 

other renewable energy systems like the PV systems, energy is stored directly in the 

batteries without necessary using a converter. Electrochemical energy storage in 
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batteries is desirable because it is portable, easy to set up, inexpensive, and provides a 

virtually instantaneous response to input from the battery as well as output from the 

network to the battery. Among the several battery chemistries available, lead acid 

batteries provide a dependable, affordable option that may be customized for various 

energy storage applications (May et al., 2018; Parker, 2001). There are various battery 

kinds that might be either primary or secondary batteries that are used for storage. 

Primary batteries are discharged after usage and cannot be recharged. The majority of 

primary batteries are known as "dry cells" because they are enclosed in an absorbent 

(semi-solid) substance. There are various battery kinds that might be either primary or 

secondary batteries that are used for storage. Primary batteries are discharged after 

usage and cannot be recharged. The majority of primary batteries are known as "dry 

cells" because they are enclosed in an absorbent (semi-solid) substance. Examples are 

1.5 V alkaline batteries. Secondary batteries, on the other hand, can be electrically 

recharged to their original precharge state after use by passing current through them. 

Examples include car and laptop batteries (EU, USAID, 2017). The most commonly 

used secondary batteries today are the Leads Acid batteries and the Lithium-ion 

batteries. 

2.11.1 Terms used in battery storage systems 

Capacity: When a battery is fully charged, its capacity is the total amount of electrical 

charge that may be extracted from it up until a particular voltage is reached. It is 

expressed in Ah (Ampere hours). The actual capacity of a battery is dependent on a 

number of real-world circumstances, including the charging mode, discharge current (a 

low discharge rate permits greater actual capacity), and operating temperature. A 

battery's nominal capacity is tested under specific conditions, often 20 ° C. The lead-

acid battery's capacity, discharge rate (duration), and temperature are depicted in the 
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following graph on Figure 2.25 (EU, USAID, 2017). The graph shows that lead acid 

batteries perform poorly at extremely low temperatures. This means that temperature 

should be considered before installation of lead acid batteries. 

 

Figure 2.25: Effects of temperature on Lead Acid battery capacity (EU, USAID, 

2017) 

State of charge (SOC): State of charge is the term used to describe a battery's level of 

charge. The percentage is provided. The capacity of a battery as compared to its nominal 

capacity is known as the state of charge. A 100 Ah battery's SOC is 60 percent if it has 

only been charged up to 60 Ah. By measuring the open circuit voltage on the battery 

terminals and comparing it to the battery's state of charge chart supplied by the 

manufacturer, the SOC can be ascertained. 

Depth of discharge (DOD): The depth of discharge is the percentage of the battery's 

capacity that has been discharged relative to its initial charge. The percentage is 

provided. A battery's DOD is 80 percent, for instance, if it is rated at 200 Ah and only 

160 Ah of that capacity has been used. 

Life cycle: A cycle is the name given to the process of discharging and recharging. A 

battery can only be used for a specific number of cycles, which is how battery life is 

stated in terms of cycle life. The number after which the battery capacity is dropped to 

80% of its nominal capacity is often stated by the manufacturer. A battery's cycle life 

is influenced by its type, quality, and daily discharge rate. The cycle life decreases with 
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the depth of discharge during a cycle, as seen in Figure 2.26. The battery in solar 

systems is discharged at night and replenished during the day, therefore a cycle typically 

lasts one day (EU, USAID, 2017). 

 

Figure 2.26: Relationship between cycle life and DOD for lead acid batteries (EU, 

USAID, 2017). 

Self-discharge: Lead-acid batteries undergo a process known as self-discharge that 

causes them to lose energy whether or not they are linked to a load. The battery's self-

discharge is influenced by the environment's temperature as well as the battery's kind, 

age, and condition. This is shown in Figure 2.27.  
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Figure 2.27: Self-discharge rate of lead acid batteries at different temperatures (EU, 

USAID, 2017). 

This shows that at higher temperatures, lead acid batteries have a high self-discharge 

rate. For instance, a 100% fully charged lead acid battery will self-discharge below 50% 

over a period of 6 months if stored at a temperature of 60oC. 

Float life: The period of time an unused battery will endure while stored and kept in a 

fully charged state by routine charging is known as the float, or shelf life. The quality 

of the battery and storage temperature affect the float's longevity. The battery life is 

significantly shortened by a high storage temperature. For instance, a long-lasting, high-

quality gel battery can have a float lifespan of 20 years when maintained at 20 ° C, but 

at 30 ° C, its lifespan is just 10 years (EU, USAID, 2017). In Table 2.8 are the float 

lives of PbA batteries at different temperatures. 

Table 2.8: Float life of different lead acid batteries at different temperatures  

Average operating  

Temperature (oC) 

AGM, deep  

cycle (years) 

Gel, deep  

cycle (years) 

Gel, long life  

(years) 

20 7-10 12 20 

30 4 6 10 

40 2 3 5 
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2.12 Types of Secondary Batteries 

2.12.1 Lead Acid (PbA) Battery 

This is a type of rechargeable battery which is made up of lead-acid, a cheap chemical 

and is mostly used in energy storage applications in cars and renewable energy 

installations. Lead-acid batteries employ a diluted sulfuric acid (H2SO4) electrolyte, a 

lead (Pb) negative electrode, and lead dioxide (PbO2) as the positive electrode (with a 

specific gravity of about 1.30 and a concentration of about 40 percent). When a battery 

discharges, the sulfuric acid dissolves into water and the positive and negative 

electrodes produce lead sulphate (PbSO4). In the event that the battery is charged, the 

opposite result happens (HIOKI, 2020). There are basically two main types of lead-acid 

batteries namely sealed lead acid (SLA) batteries and the flooded battery (EU, USAID, 

2017).  

The SLA battery can also be subdivided into valve regulated lead acid (VRLA) and 

absorbent glass mat (AGM) (Ogunniyi & Pienaar, 2017). These batteries also find 

applications in other systems such as uninterruptible power supplies (UPS), emergency 

lighting, power backup for cellular repeater towers, internet hubs, banks, hospitals, 

airports, and others.  

They are advantageous in that they are simple to manufacture, low cost per watt-hour 

high specific power, capable of high discharge currents with ability to supply high surge  

currents (RAND, 2018), and good performance at low and high temperatures 

(BATTERY-University, 2021a). PbA batteries, on the other hand, have low specific 

energy, a poor weight-to-energy ratio, a sluggish charging rate, a requirement for 

storage in a charged state to prevent sulfation, a limited cycle life since repetitive deep-

cycling shortens battery life, and negative environmental effects. PbA batteries, on the 
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other hand, have low specific energy, a poor weight-to-energy ratio, a sluggish charging 

rate, a requirement for storage in a charged state to prevent sulfation, a limited cycle 

life since repetitive deep-cycling shortens battery life, and negative environmental 

effects (EHS, n.d.), (Ci et al., 2016; Crompton, 1996; May et al., 2018). Figure 2.28 

shows the image of a lead acid battery. 

 
 

Figure 2.28: Image a Lead Acid Battery (May et al., 2018; RS Components, 2021). 

 

i) Charge efficiency in lead acid batteries 

Not all of the ampere hours (Ah) that travel from the charger to the battery are utilized 

for charging. The battery's state of charge has a significant impact on charging 

efficiency. The charging efficiency is almost 100 percent up to a SOC of 70 percent. 

As a result, it is impossible to provide a precise number for charging efficiency because 

it greatly relies on the operating mode and the type of charger. The charging efficiency 

often falls between 70 and 95 percent (EU, USAID, 2017). 

ii) Lead acid batteries in operation  

Gassing: There is a minor gas formation in the battery if the charging procedure has 

brought the battery up to 80% of its capacity. This occurs as a result of lead peroxide 

(PbO) remaining after the majority of the sulfuric acid has been taken off the electrodes. 

Smaller levels of charging current are needed to complete the charging process because 

the battery is almost fully charged. The water molecules are next divided into oxygen 
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and hydrogen by the remaining power, which allows a gas to escape from the battery. 

This gas leaks into the atmosphere when the batteries are flooded. The battery should 

be positioned in a well-ventilated area since the combination of hydrogen and oxygen 

is highly combustible. Gas persists inside VRLA batteries under low pressure where it 

interacts with other gases to form water. High charging voltages can cause too much 

gas to be created, in which case a valve allows the gas to escape into the environment. 

As no battery water may be supplied to make up for the water loss, the leakage of gas 

from VRLA batteries must be prevented. Gassing results in electrolyte loss, which 

raises the acid content, loss of electrode material because some of the electrode material 

outgasses, and a potential short circuit because of electrode particles that detonate and 

fall to the bottom of the cell (HIOKI, 2020; Ribeiro et al., 2001). The electrolyte is also 

mixed when a flooded battery is gassed, which has positive effects on battery 

maintenance. Numerous chargers have the ability to conduct a balancing program. This 

procedure significantly raises the charging voltage in order to initiate gassing for around 

one hour. A flooded battery's suggested equalization voltage is in the range of 2.6 volts 

per cell at 20 °C (Parker, 2001).  

Sulfation: Large lead sulphate crystals growing on the electrodes cause sulfation (as 

opposed to tiny crystals which can be easily broken down when charged). These 

substantial crystals obstruct the electrode pores, raising the internal resistance of the 

battery. As a result, the surface area where chemical reactions occur in the battery is 

reduced. Extreme sulfation will eventually render the battery useless. Sulfation 

typically happens when a battery is discharged for an excessively long time, the 

electrolyte level is extremely low as a result of gassing and evaporation, or the battery 

will never be fully charged. The actions listed below must be done to avoid sulfation. 

Charge the battery all the way as soon as you can. As lead sulfate is more soluble with 
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a lower acid density, raise the cell's acid content. Don't discharge the battery too much. 

Make flooded batteries equal (but never VRLA types as this will result in water loss 

that cannot be refilled) (EU, USAID, 2017). 

iii) Battery storage and maintenance  

The following guidelines can be used for Lead Acid battery storage. This battery should 

not be stored in a discharged state. Charge the batteries regularly to avoid sulfation. The 

battery should be stored at low temperatures, as high temperatures increase self-

discharge. In terms of battery maintenance, Lead Acid battery terminals should be 

regularly cleaned to avoid short circuits or surface leaks. Also, the connections should 

regularly be checked to make sure they are tight.  

2.12.2 Lithium-ion (Li-ion) batteries  

Lithium-ion batteries have become widely used in energy storage systems (S. Yang et 

al., 2019). They can intercalate lithium ions reversibly in positive electrode materials 

made of lithium compounds, and they can accommodate lithium in the solid state in 

negative electrode materials made of carbon or graphite (May et al., 2018). They are 

the most widely adopted energy storage system in the world. They are used as a backup 

power for load leveling, frequency and voltage regulation, to stabilize power supply 

and to help integrate renewable energy (WORLD BANK GROUP: KOREA’ S ENERGY 

STORAGE SYSTEM DEVELOPMENT :, 2020). The most energy-dense battery 

chemistries are Li-ion batteries, which are also regarded as secure. To increase battery 

life, no planned cycling or memory is needed. Li-ion batteries are rapidly being used 

for electric mobility and are found in electronic equipment including cameras, 

calculators, laptop computers, and mobile phones. Lithium cobalt oxide (LiCoO2), 

lithium manganese oxide (LiMn2O4), lithium nickel manganese cobalt oxide 

(LiNiMnCoO2), lithium iron phosphate (LiFePO4), and lithium titanate are some of the 
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numerous types of Li-ion batteries that are available (Li4Ti5O12) (Asian Development 

Bank, 2018; BATTERY-University, 2021a). Compared to PbA batteries, Li-Ion 

batteries are more expensive than PbA batteries. 

i) Lithium cobalt oxide (LiCoO2) 

A cobalt oxide cathode and a graphite carbon anode make up this battery. The cathode 

is composed of layers. Lithium ions go from the anode to the cathode during discharge, 

and they move in the opposite direction during charging. These batteries' short 

lifespans, poor thermal stability, and constrained load capacities are their main 

drawbacks. 

ii) Lithium manganese oxide (LiMn2O4) 

The materials research bulletin reported the first study on manganese spinel-infused 

lithium-ion batteries in 1983. This architecture allows for the formation of a three-

dimensional spinel structure, which enhances ion flow on the electrode and lowers 

internal resistance while enhancing current handling. High thermal stability and 

improved safety are additional benefits of the spinel structure; nonetheless, cycle and 

calendar lifespan are constrained although not to the same extent as PbA batteries, and 

they are still not as economical as PbA batteries (Manthiram et al., 2017). 

iii) Lithium nickel manganese cobalt oxide (LiNiMnCoO2) 

One of the most effective Li-ion systems uses nickel, manganese, and cobalt as the 

cathode. These systems can be modified to function as energy cells or power cells, 

similar to lithium-manganese (Asian Development Bank, 2018; BATTERY-

University, 2021a). 
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iv) Lithium iron phosphate (LiFePO4) 

Phosphate was first used as a cathode material for rechargeable lithium batteries in 1996 

by researchers from the University of Texas and other institutions. Low resistance and 

strong electrochemical performance are characteristics of lithium phosphate. The 

primary advantages of this battery are its high current rating, lengthy cycle life, 

outstanding thermal stability, and increased safety (Ling et al., 2021). 

v) Lithium titanate (Li4 Ti5O12) 

In the anode of a conventional lithium-ion battery, lithium titanate takes the role of 

graphite and crystallizes into a spinel structure. Lithium manganese oxide may be used 

as the cathode. With a nominal cell voltage of 2.40 V, quick charging capabilities, and 

a high discharge current of 10 C, or 10 times the specified capacity, lithium titanate is 

a battery material. It is claimed that the cycle count is higher than that of a typical Li-

ion. Safe and with good low-temperature discharge properties is lithium titanate 

(Mauger & Julien, 2017). The image of a Li-ion battery are shown in Figure 2.29. 

 

Figure 2.29: Image of a Li-ion Battery (Lithium-Ion Battery, n.d.; May et al., 2018) 

Li-ion batteries typically have benefits and drawbacks. Li-ion batteries have several 

benefits, including high specific energy and high load capacities with power cells, long 

cycle and extended shelf life, high capacity, low internal resistance, good coulombic 

efficiency, simple charge algorithm, and comparatively quick charge times. To prevent 

thermal runaway when under stress, degradation at high temperatures and while stored 
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at high voltage, and the inability of a rapid charge at subfreezing temperatures (<0°C, 

<32°F), they need protection circuitry (Sandhya et al., 2014). 

2.12.3 Nickel cadmium (NiCd) batteries 

Due to their resilience in the face of mechanical and electrical stress, these batteries are 

frequently utilized in industrial applications. They have been utilized as energy storage 

for utilities, however they are rather pricey (May et al., 2018), (Ogunniyi & Pienaar, 

2017). These batteries have a high cycle count with correct maintenance, can be charged 

extremely quickly with little stress, operate well under load, can be stored discharged, 

function well in low temperatures, have the lowest cost per cycle, and are available in 

a variety of sizes and performance options (May et al., 2018). 

Its drawbacks include memory effect, periodic full discharge requirements, poor 

specific energy compared to newer systems, and the ability to be revived. Because 

cadmium is a dangerous metal that cannot be disposed of in landfills, it has a low cell 

voltage of 1.20 V and takes a lot of cells to reach a high voltage (Asian Development 

Bank, 2018; BATTERY-University, 2021a). 

2.12.4 Nickel-metal hydride (NiMH) batteries  

These batteries are not employed in battery energy storage systems since they are more 

expensive than NiCd batteries (May et al., 2018). The sealed NiCd battery's tried-and-

true positive electrode chemistry is combined with the energy-storing abilities of metal 

alloys created for cutting-edge hydrogen energy storage concepts to create the NiMH 

battery. These batteries work better than conventional rechargeable batteries and have 

less voltage depression and higher capacity. Currently, they are widely used in high-

end portable electronics, where run time and other battery performance factors play a 

significant role in purchasing decisions. They are advantageous in that they have a high 
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energy density, which translates into long run times or a reduction in the space needed 

for the battery, simplify integration into products currently using nickel-cadmium 

batteries due to the many design similarities between the two chemistries, and provide 

superior service over other primary battery types at extremely low-temperature 

operation (-20°C). Their drawbacks include short service life, which means that after 

200–300 deep cycles, performance begins to decline, especially at high load currents. 

Although a NiMH battery is capable of generating high discharge currents, repetitive 

discharge with high load currents shortens the battery's cycle life. Shallow, rather than 

deep, discharge cycles are preferred. The best outcomes are obtained with load currents 

between 0.2 and 0.5 C-rate. Because NiMH produces more heat during charging and 

needs a longer charge time than NiCd, they need a more complicated charge algorithm. 

They have a significant self-discharge because NiMH batteries self-discharge roughly 

50% more than NiCd batteries (Amanor-Boadu et al., 2018; Smith et al., 2016; Xing et 

al., 2011) (Hesse et al., 2017). 

2.12.5 Sodium Sulfur (NaS) Batteries  

This particular molten metal battery is made of sulfur and sodium. It is made of low-

cost materials and has a high energy density, high charge and discharge efficiency (89 

percent to 92 percent), and a long cycle life. Such cells are typically utilized for large-

scale non-mobile applications like power grid energy storage due to their high operating 

temperatures of 300°C–350°C (to maintain the electrodes in liquid state and obtain 

good ionic conductivity in the electrolyte, which is a solid ceramic substance). The 

electrolyte is beta-alumina (b-Al2O3), which at the operating temperature conducts 

sodium ions. When discharged, sodium and sulfur combine to create sodium 

polysulfide (Sudworth & Tiley, 1985a). They are favourable due to their high cycle life, 

good energy and power density, liquid electrodes, low-cost potential, flexible operation 
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as they can operate under a variety of settings (rate, depth of discharge, temperature), 

and high energy efficiency. Although they have these benefits, they also have some 

drawbacks, such as the need to operate above 300°C, the highly reactive nature of 

metallic sodium (a material used in construction), which ignites when exposed to water, 

and the additional cost of building the enclosing structure to prevent leakage. They also 

have strict operation and maintenance requirements (Jones, 1977; Sudworth & Tiley, 

1985b). 

2.12.6 Flow batteries  

This is an electrical storage device that is a blend between a conventional battery and a 

fuel cell.  Liquid electrolyte of metallic salts is pumped through a core that consists of 

a positive and negative electrode, separated by a membrane. The ion exchange that 

occurs between the cathode and anode generates electricity (BATTERY-University, 

2021b). Vanadium ions or other chemical elements are employed in an oxidation-

reduction reaction to charge and discharge these batteries. They offer several great 

qualities, including a long lifespan with nearly no electrode and electrolyte degradation, 

high safety because to their lack of combustible elements, and the ability to operate at 

room temperature. They also have some potential for utility energy storage. 

Although different chemistries are employed in flow batteries, all of them have energy-

producing cells with remote storage of active materials, making it feasible to create 

batteries with very large capacity (Ogunniyi & Pienaar, 2017). In vanadium redox batteries 

(VRBs), distinct valence states of vanadium sulphate solution are circulated through 

cells with carbon felt electrodes and are separated by an ion selective membrane. On 

discharge, V2+ becomes V3+ at the negative electrode and V5+ becomes V4+ at the 

positive electrode. The quantity of the vanadium sulfate solution, and consequently the 

battery's capacity, is not constrained because it is kept in tanks. Reverse reactions take 
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place during recharge, and the materials are renewed. Although the batteries' claimed 

lifespan is very lengthy, in reality they are complicated and expensive to make. Due to 

the size of the battery that is anticipated, only a few demonstrator systems have been 

deployed thus far, and VRB batteries are only suited for utility energy storage (May et 

al., 2018). 

Zinc bromine (ZnBr2) battery is another type of flow battery. The cell reaction is for Zn 

to react with Br2 to form zinc bromide (May et al., 2018). 

As an organic complexing agent in aqueous solution, Br2 is injected into the cells' 

carbon electrodes and microporous plastic separator. Although Br2 is held in tanks and 

metallic Zn is deposited on charge, the Zn electrode places a restriction on the capacity 

for any particular design. The predicted life is shorter, but the costs are lower than VRB 

batteries. It's important to manage bromine leakage because it can be dangerous. 

Compared to other flow batteries, Zn-Br2 batteries have only sometimes been 

employed in utility applications. Other flow battery types exist, such as those made of 

iron and chromium, although they have not been widely utilized (BATTERY-

University, 2021b). 

The benefits of flow batteries are as follows: Long service life because redox flow 

batteries can withstand an indefinite number of charge and discharge cycles without 

degrading, with a system endurance duration of 20 to 25 years. The electrolytes can 

also be utilized temporarily. Additionally, the batteries are adaptable. Redox flow 

batteries enable flexible design since the output and capacity of a battery can be created 

independently of one another. Additionally, the batteries enable cost-effective power 

generation by allowing a single system to handle both short and long periods of output 

variance. Furthermore, flow batteries are extremely safe because they may function at 
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standard temperatures and are made of non-combustible or flame-resistant materials. 

The likelihood of a battery fire is really slim. Additionally, flow batteries have a few 

drawbacks, including the following: complexity due to the need for auxiliary 

containment vessels, pumps, sensors, flow management, and power control. 

Additionally, they minimal energy density When compared to other types of batteries, 

flow batteries often have lower energy densities (BATTERY-University, 2021b), (May 

et al., 2018). 

2.13 Summary of Different Battery Characteristics 

Table 2.9 below gives a summary of the different battery technologies in terms of 

energy density, round trip efficiency, life span, cost, and eco-friendliness. The low cost 

of PbA batteries as compared to other battery technologies have made them to be widely 

used in energy system (Anuphappharadorn et al., 2014; Podder & Khan, 2016). This 

has made it a battery of choice in most low-income countries as compared to Li-ion 

batteries (Keshan et al., 2016). The cost of flow batteries is also low and promising 

though the battery is not widely used as compared to PbA batteries since the technology 

is still under development. 

Table 2.9: Summary of battery characteristics (Asian Development Bank, 2018; Korea 

Battery Industry Association 2017 “Energy Storage System Technology and Business 

Model,” 2017). 

Battery 

type 

Energy 

Density 

(kW/kg) 

Round Trip 

Efficiency 

(%) 

Life Span 

(years) 

Cost ($/kWh) 

Li-ion 150-250 95 10-15 400-700 

Na-S 125-150 75-85 10-15 500-650 

Flow 60-80 70-75 20-25 100-300 

Ni-Cd 40-60 60-80 5-10 315-490 

PbA 30-50 60-70 3-6 150-200 
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Figure 2.30 below shows the specific energy in watts hour and specific power in watts 

that can be stored by different battery technologies per kilogram. 

 
Figure 2.30: Comparison of different battery storage technologies by source (An Li, 

2015). 

 

From Table 2.2 and Figure 2.30, it can be seen that lead acid batteries are among the 

batteries with the smallest energy density and life cycle. Therefore, it is imperative to 

properly manage these batteries when used for storage in energy systems.  

2.14 Battery States and Their Effects on Lead Acid Batteries 

The operational effectiveness, safety, dependability, and economics of battery-powered 

energy systems, such as renewable energy systems, depend heavily on battery 

management. High-performance battery management systems cannot be produced by a 

simple, black-box simulation of batteries that measures simply voltage, current, and 

surface temperature due to intricate electrochemical dynamics and multi-physics 

coupling. A crucial enabling technology for enhanced battery management is the ability 

to estimate and monitor essential internal conditions with accuracy and reliability. 
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Effective charging, temperature, and health management of batteries requires a 

thorough understanding of the many battery states, including State of Charge (SOC), 

State of Energy (SOE), State of Health (SOH), State of Power (SOP), State of 

Temperature (SOT), and State of Safety (SOS) (Hu et al., 2019). 

2.14.1 State of Charge (SOC) 

State of Charge (SOC) is one of the critical factors which is often taken into 

consideration in most Battery Management Systems (BMSs). It is the available capacity 

(Qa) expressed as a percentage of the nominal capacity (Qn) of a battery. The nominal 

capacity of a battery is the maximum amount of charge that can be stored in the battery. 

The formular used to express the SOC of a battery is given by equation (2.47) below 

(Hannan et al., 2017). 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) − ∫
𝐼(𝑡)∗ƞ

𝑄𝑛

𝑡

𝑡0
𝑑𝑡…………………………………………..……2.47 

Where SOC(t) is the SOC value at the time (t), SOC(t0) is the SOC at the initial time 

(t0), ƞ is the coulombic efficiency that reflects the ratio of the fully discharged energy 

to the charged energy required to recover the original capacity of the battery. 

Accurate SOC data is necessary for BMSs since it shows how much energy is still 

available in a battery during operation. Such state information is used for the battery 

itself to give a prior information for charging/discharging techniques, ensuring battery 

operations under safe and reliable conditions. In a lab setting, the reference values of 

SOC are often produced through a carefully regulated coulomb counting approach that 

accumulates the charge transferred after knowing the initial SOC value (Chang, 2013). 

However, it is challenging to directly measure the battery SOC in practical applications 

due to the intricate electrochemical reactions and strong coupling properties. As a 

result, precisely predicting the SOC in real time becomes a crucial feature in BMSs, 
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which in turn attracts a lot of research attention. Different methods have been used for 

SOC estimation. Some the methods are Open-Circuit Voltage (OCV) method, the 

coulomb counting method, and the Kalman filter method. 

2.14.1.1 Open-Circuit Voltage Method 

Open-Circuit Voltage (OCV) Method: The OCV method estimates SOC by relating the 

battery's open-circuit voltage to its state of charge. It involves constructing a lookup 

table or mathematical model that correlates the battery's terminal voltage with its SOC. 

The OCV method is relatively simple, low-cost, and suitable for many battery 

chemistries. However, its accuracy may be affected by various factors such as 

temperature, aging, and load dynamics (Chang, 2013; A. K. M. A. Habib & Hasan, 

2023; Hannan et al., 2017; Hu et al., 2019; Maharjan et al., 2009; Morstyn et al., 2016; 

Xie et al., 2018). 

2.14.1.2 Coulomb Counting 

Coulomb counting estimates SOC based on the principle of charge conservation. It 

measures the current flowing into or out of the battery and integrates it over time to 

determine the SOC. This method is commonly used in portable electronics where the 

battery operates under constant current or voltage conditions. However, it is susceptible 

to errors caused by measurement inaccuracies, variations in battery efficiency, and 

parasitic losses (Chang, 2013). 

2.14.1.3 Model-Based Methods 

Model-based methods employ mathematical models of the battery's electrochemical 

behavior to estimate SOC. These models can be based on electrical circuit models, 

equivalent circuit models (ECM), or electrochemical models such as the Doyle-Fuller-

Newman model. Model-based approaches consider various battery parameters, 
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including internal resistance, polarization, and diffusion dynamics. They can provide 

accurate SOC estimates but require knowledge of battery characteristics and complex 

algorithms, making them computationally intensive (Chang, 2013). 

2.14.1.4 Kalman Filtering (KF) 

Kalman filtering combines measurements from different sensors, such as voltage, 

current, and temperature, with a mathematical model to estimate SOC. It utilizes a 

recursive algorithm that incorporates system dynamics, noise characteristics, and 

measurement uncertainties. Kalman filtering is widely used due to its ability to handle 

non-linearities, uncertainties, and time-varying conditions. It can provide accurate SOC 

estimates but requires accurate system modelling and knowledge of noise 

characteristics (Chang, 2013). 

2.14.1.5 Extended Kalman Filtering (EKF) 

Extended Kalman Filtering is an extension of the Kalman filter that considers non-

linearities in the battery model. It incorporates a battery model with non-linear state 

equations into the estimation process. EKF iteratively linearizes the non-linear model, 

updating the SOC estimate based on the current measurement. EKF can provide 

accurate SOC estimates for batteries with complex dynamics and non-linear 

characteristics (Chang, 2013). 

2.14.1.6 Artificial Intelligence (AI) Techniques 

AI-based methods, such as neural networks, support vector machines, and fuzzy logic, 

have been increasingly employed for SOC estimation. These techniques utilize 

historical data and training algorithms to establish a relationship between battery inputs 

(current, voltage, temperature) and SOC. AI-based methods can capture complex 

battery behavior and adapt to varying operating conditions. However, they require 
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substantial training data, computational resources, and careful model selection to 

achieve accurate SOC estimation. 

2.14.2 State of Health (SOH) 

Battery state of health (SOH) estimation is crucial for assessing the overall condition 

and remaining useful life of a battery. SOH provides insights into a battery's capacity 

degradation, impedance changes, and other performance parameters. Accurate SOH 

estimation helps optimize battery usage, plan maintenance schedules, and avoid 

unexpected failures. Several methods and techniques have been developed for battery 

SOH estimation.  

2.14.2.1 Capacity-Based Methods 

Capacity-based methods estimate SOH by comparing the actual capacity of a battery to 

its initial capacity. This approach involves periodically measuring the battery's charge 

and discharge capacity and tracking its degradation over time. The ratio of current 

capacity to initial capacity provides an estimation of SOH. However, capacity-based 

methods require full charge and discharge cycles, which can be time-consuming and 

may not capture the complete degradation behaviour. 

2.14.2.2 Coulomb Counting 

Coulomb counting, mentioned earlier in the SOC estimation section, can also be 

utilized for SOH estimation. By tracking the charge and discharge cycles and 

comparing the coulombic efficiency, which is the ratio of discharged capacity to 

charged capacity, one can estimate the degradation and changes in the battery's internal 

resistance. A decrease in coulombic efficiency over time indicates a decline in SOH 

(Hu et al., 2019). 



100 
 

2.14.2.3 Impedance Spectroscopy 

Impedance spectroscopy measures the complex impedance of a battery at different 

frequencies to determine its internal resistance, polarization, and diffusion behaviour. 

By analysing the impedance spectra over time, changes in battery impedance can be 

correlated with SOH. However, impedance spectroscopy requires specialized 

equipment and can be time-consuming, limiting its application in real-time monitoring. 

2.14.2.4 Voltage-Based Methods 

Voltage-based methods estimate SOH by analysing the battery's terminal voltage under 

different operating conditions. By establishing voltage profiles at various states of 

charge and discharge, changes in voltage characteristics can be correlated with battery 

degradation. This approach is relatively simple and can provide insights into SOH, but 

it may not capture the complete degradation behaviour and can be influenced by 

external factors like temperature and load dynamics (Hu et al., 2019). 

2.14.2.5 Model-Based Methods 

Model-based methods utilize mathematical models of battery behaviour to estimate 

SOH. These models can be based on equivalent circuit models, electrochemical models, 

or physics-based models. By comparing the simulated responses of the model with 

actual measurements, changes in SOH can be estimated. Model-based approaches can 

provide accurate SOH estimation but require detailed knowledge of the battery's 

electrochemical behaviour and accurate parameterization of the model. 

2.14.2.6 Machine Learning and Data-Driven Approaches 

Machine learning techniques, such as neural networks, support vector machines, and 

decision trees, can be employed to estimate SOH. These approaches utilize historical 

data, including battery performance and environmental parameters, to establish a 
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relationship between input variables and SOH. By training a model on the available 

data, it can predict the SOH of a battery. However, these methods require significant 

amounts of training data and may not capture complex degradation mechanisms. 

2.14.2.7 Aging Models and Estimation Algorithms 

Aging models, such as the calendar aging or cycle aging models, are used to simulate 

the degradation processes in batteries. These models consider factors such as 

temperature, cycling conditions, and aging mechanisms to estimate SOH. Estimation 

algorithms, such as particle filters or adaptive filtering, can then be applied to update 

the SOH estimate based on measured data. These methods can provide accurate and 

dynamic SOH estimation but require accurate modelling of the aging mechanisms. 

2.14.3 State of Temperature (SOT) 

Battery state of temperature (SOT) refers to the measurement and monitoring of the 

temperature of a battery. Temperature plays a critical role in the performance, safety, 

and lifespan of batteries. Monitoring and controlling the SOT is essential for optimizing 

battery operation, preventing overheating or excessive cooling, and ensuring safe and 

efficient battery management. 

The temperature of a battery can affects various aspects of its behaviour and 

performance, including capacity, internal resistance, self-discharge rate, cycle life, and 

chemical reactions within the battery. Therefore, accurate and real-time monitoring of 

the SOT is crucial for maintaining battery health and maximizing its performance.  

The amount of storage capacity that a battery can hold depends on temperature.  

capacity loss can occur in both high and low severe temperatures.  Additionally, a 

battery's internal resistance rises at extremely cold temperatures and falls at extreme 

hot conditions. Voltage drops, decreased efficiency, and power loss can all be caused 
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by elevated internal resistance. Furthermore, higher temperatures cause a faster loss of 

energy while the battery is not in use due to an increase in battery self-discharge rates. 

More significantly, a battery's cycle life is impacted by temperature. Low temperatures 

can increase a battery's lifespan whereas high temperatures can shorten it by 

accelerating deterioration. Specific battery chemistries have optimal temperature 

ranges. 

2.15 Software tools used for HRES designs 

Some of the most commonly used software tools for HRES design are HOMER, 

MATLAB, iHOGA and RETScreen, (Cuesta et al., 2020; Kaur, 2017; Sinha & 

Chandel, 2014).   

2.15.1 HOMER 

HOMER is an acronym which means Hybrid Optimization Model for Electric 

Renewables. It is the most widely used and freely available with premium payable 

packages. It is user friendly as compared to other commercial software. The software 

is used for optimization, sensitivity analysis and quick feasibility of hybrid systems and 

microgrid systems. It functions based on input parameters given by the user and was 

developed by the National Renewable Energy Laboratory (NREL) USA since 1993 

(Sinha & Chandel, 2014). HOMER generates outputs like optimal sizing, net present cost, 

cost of energy, capital cost, capacity shortage, excess energy generation, renewable 

energy fraction, and Fuel Consumption from inputs like load demand, renewable energy 

resources (solar radiation, wind speed, water flow rate, biomass), component details 

with cost, constraints, and system control. The majority of HRES research has utilized 

HOMER. (Gebrehiwot et al., 2019) A hybrid model is developed by Gebrehiwot et al. 

(2019) to electrify a remote Ethiopian community. Utilizing the Hybrid Optimization 
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of Multiple Electric Renewables (HOMER) model, they evaluated the available 

primary data, created a load profile, and arrived at the best system at the lowest possible 

cost for the community. They also conducted a sensitivity analysis to assess how 

changes in the wind speed, solar radiation, and fuel price might affect the configuration 

of the ideal system. They concluded that a solar photovoltaic (PV), wind turbine, diesel 

generator and battery backup was the best option to electrify the village from an 

economic perspective to supply the peak demand of the village which was 19.6 kW. 

The results also showed that the energy generation cost was 0.207 $/kWh, net present 

cost (NPC) of $ 82 734 with a carbon dioxide emission reduction of 37.3 tons a year. 

The system configuration is shown on Figure 2.31 below. 

 

Figure 2.31: Proposed HRES for Golbo II village in Ethiopia (Gebrehiwot et al., 

2019) 

 

Murugaperumal et al. (2020) used HOMER to optimize a PV-wind-bio generator HRES 

to supply a remote rural district of Korkadu in India. The forecasted loads for the district 

included agricultural, commercial, residential and industrial. They proposed a 

dispatched strategy which saw the contribution of solar power to be 86.8%, bio 

generator 0.5% and wind 12.7% to meet the load demand with 6.8% of battery bank 

losses and 1.78% of converter losses. The different available load patterns for the 
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village were calculated using the short-term load forecasting technique. Optimal 

techno-economic simulation results showed that the NPC of the system is Rs 1.2 million 

while the COE is 13.71 Rs/kWh compared to other dispatched strategies. Also, a 

suitable reduction in greenhouse gas emissions was observed, indicating 0.196 kg/year 

of carbon dioxide (CO2), 0.25 kg/year of carbon monoxide (CO) and 0.291 kg/year of 

nitrous oxide (NO) (Murugaperumal et al., 2020).    

Ramesh and Saini (2020) studied the effects of using lead acid (LA) batteries, lithium-

ion (Li-Ion) batteries and diesel generators with and without scheduling on the 

performance of a standalone HRES for a remote area in Kamataka, India. They found 

a 35% drop in NPC and cost of energy for the proposed HRES when Li-Ion batteries 

are used as compared to their lead acid counterparts. They also found that a saving in 

NPC and COE of $155,977 and 0.027 $/kWh respectively could be made when diesel 

generators are scheduled. Their investigation also saw the effect of running the system 

without the diesel generator. Here, they concluded that the system was most feasible 

without the diesel generator and the most optimized HRES was the PV/micro-hydro/Li-

Ion battery, giving a NPC of $467,644 and COE of 0.106 $/kWh (Ramesh & Saini, 

2020). 
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Figure 2.32: Configuration of the proposed HRES used (Ramesh & Saini, 2020) 

Aziz et al. (2018) in order to power a remote rural town in Iraq, they investigated the 

technological, financial, and environmental viability of using a PV-diesel-battery 

hybrid energy system. Using a multi-input module, they evaluated the optimization and 

the sensitivity analysis using HOMER software.  

 

 

 

 

 

 

Figure 2.33: Setup of the PV-diesel-battery HES (Aziz et al., 2018) 

The performance of the system during the course of the project was taken into account, 

along with the impact of component deterioration, load growth, and fuel price 

variations. The findings show that the most practical and cost-effective setup includes 
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a diesel generator with a 20 kW capacity, 15 batteries, and a 6 kW power converter, 

with an NPC of $ 162703. Furthermore, the system performance is significantly 

impacted by the multi-year input changes, and the batteries degrade by 24.2% towards 

the end of their lifespan. Additionally, over the course of the project, PV output is 

decreased by 10% while diesel production is increased by 25.6%, resulting in a 23.1% 

rise in CO2 emissions. The system's economic performance suffers as a result of the 

PV and batteries being highly sensitive to changes in ambient temperature, which 

causes the annual output energy of the batteries to increase from 5496 kWh to 5871 

kWh while decreasing their lifespan from 26.5 months to 23.5 months and the annual 

PV production from 18268 kWh to 17332 kWh. 

Khavari et al. (2016) assessed the viability of a HRES for the electrification of remote 

area in Binalood, Iran. They used HOMER to assess the techno-economic benefits of 

using the system and their results show that the wind-diesel-battery storage hybrid 

system was the most efficient to to supply the load of this locality with a total cost of 

$1,130,941 for 1000 kWh/d and 142 kW power peak (Khavari et al., 2016). 

A techno-economic and environmental analysis of various hybrid systems to provide 

energy to a typical rural Iraqi community was provided by Aziz et al. (2019). Since the 

multi-year module hasn't been covered in the literature yet, they employed HOMER 

software to optimize the systems. The research revealed that the PV-hydro-diesel-

battery HRES, which also had acceptable technical and environmental performance 

standards, was the most cost-effective alternative with an NPC of $113201. Over the 

course of the project's 20-year lifespan, the production of PV electricity is reduced by 

9.1% while the production of diesel electricity, CO2 emissions, and served load are 

increased, respectively, by 90.8%, 91.7%, and 8.8%. The NPC for the multi-year 

module increased by 22.5% as compared to the single-year module. Additionally, the 
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sensitivity analysis of a few little-discussed variables, such as water pipe losses, 

generator minimum load, battery roundtrip efficiency, battery set point state of charge, 

capacity shortage, and PV capital cost multiplier and multi-year, revealed that changes 

in these variables significantly affect the system's power flow and economic analysis. 

On Figure 2.34 below, the hybrid model applied in this work is depicted. 

 

Figure 2.34: PV-hydro-diesel-battery HRES (Aziz et al., 2019) 

 

Bagheri et al. (2018) presented a novel systematic framework to identify optimal hybrid 

renewable solutions for urban areas at neighborhood scales, Figure 2.35. 
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Figure 2.35: HRES for the area (Bagheri et al., 2018) 

 

In particular, they examined the role of economies of scale in the techno-economic 

feasibility and environmental performance of hybrid renewable energy systems. They 

demonstrated this by assessing the impact of the economics of scale (at the 

neighborhood scales of 1/500, 1/250, and 1/100 of the city's electrical load) on the life-

cycle costs of optimal hybrid HRESs for Vancouver, Canada. Their results indicated 

that the total NPC of the optimized systems were 59, 116 and 290 million USD, while 

the leveled costs of electricity (COE) for the three studied scales were almost identical 

that is 0.300–0.307 USD/kW h. They compared the proposed scenarios regarding gross 

atmospheric emissions, land requirements and economic performance and found that 

the mid-scale 1/250 with 6.3MW of solar PV and 3MW gasifier with waste input of 

about 117 t/day was preferable to the larger 1/100 and smaller 1/500 scale systems. 

They further recommended that results from the study could help decision-makers in 
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creating effective policies and mechanisms to advance the integration of HRESs in 

cities. 

Balachander et al. (2020) proposed a refined hybrid electrical power network to supply 

a single residential electrical load located in Coimbatore, Tamilnadu. They used a PV-

Wind-Diesel hybrid system and optimization done with HOMER. The results showed 

that the lowest NPC and initial COE was 51.20 INR/kWh. The results also indicated 

that the initial cost of the overall system was high. Greenhouse gas emissions were also 

significantly high in the optimized system (Balachander et al., 2020).  

Bentouba and Bourouis (2016) evaluated the technical and economic feasibility of 

using a hybrid generation system to satisfy the electricity demand for Timiaouine town, 

located in the extreme South Western part of Algeria with more than 200 families not 

connected to the power grid. They optimized the system using HOMER and the 

optimization results showed that a wind-PV-diesel generator system could supply 100% 

of the electricity demand with a COE of 0.176 $/kWh and a reduction in carbon 

emissions by 593.125 tons/year (Bentouba & Bourouis, 2016).  

Cano et al. (2020) analyzed the impact of a HRES composed of PV-batteries-biomass-

hydrokinetic turbines in Cuenca-Ecuador. In order to identify novel patterns in the 

behavior of sources in relation to electric demand, they developed three types of energy 

dispatch: charge cycle, load following, and combination cycle. The items such as net 

present cost and cost of energy were assessed for the various types of control, they 

added, taking into account the different types of biomasses the gasifier utilized. 

Increasing the minimum state of charge in the batteries was observed to raise system 

costs according to the sensitivity analyses, but it was also seen to decrease CO2 

emissions and biomass use. However, it was determined that the renewable system was 
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able to supply the demand without deviating from any standards despite the realization 

that the fluctuation in component costs effects the system's overall cost (Cano et al., 

2020). 

S. Das et al. (2020) explored the feasibility of distributed generation with available local 

renewable resources for a remote village on the Himalayan Mountains of a northeast 

state of India. They used HOMER simulation and multi-criteria decision-making 

approach to optimized the decentralized wind-hydro-battery HRES and reported a 

minimum COE of $0.63/kWh and CO2 emissions of 481 kg/year for optimum 

uninterrupted power supply. The schematic diagram of the system is shown on Figure 

2.36. 

 

Figure 2.36: Schematic diagram of the hybrid system (S. Das et al., 2020) 

Elkadeem et al., (2019) made a comprehensive feasibility analysis of a gird-isolated 

HRES for electrification of agriculture and irrigation area in Dongola, Sudan. They 

proposed a systematic and integrative framework combined with techno-economic 

optimization analysis for adequate planning and design of HRES. The simulation 
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results using HOMER software indicate that solar-wind-diesel-battery-converter hybrid 

system is of optimal performance and superiority over the studied cases to serve the 

load demand of the investigated area. The NPC was seen to be $24.16 million and 

leveled COE of 0.387 $/kWh was recorded. They also achieved a positive return on 

investment of 39.94% and around 95% reduction in both carbon emissions and fuel 

consumption compared to the base case. 

(Yimen et al., 2018) performed a techno-economic analysis and optimization of a 

pumped-hydro energy storage based 100%-renewable off-grid HRES for the 

electrification of Djoundé, a village in Northern Cameroon. They used HOMER 

software to optimally design the system with 81.8 kW PV array and a 15 kW biogas 

generator, where they obtained a COE of 0.256 euro/kWh and total NPC of 370,426 

euros. The schematic diagram used in this study is presented in Figure 2.37 below. 

 

Figure 2.37: HRES schematic diagram (Yimen et al., 2018) 

 



112 
 

(Kenfack et al., 2009) optimized a microhydro-PV hybrid system for a village in 

Cameroon using HOMER software and reported encouraging results which could 

satisfied the load demand of the community optimally. (MUH, 2017) made a 

comparative assessment of HRESs in Cameroon with optimization done using HOMER 

software and reported that PV-wind-small hydro-battery HRES was the most feasible 

system all over the country with a cost of energy of $0.674/kWh, $0.677/kWh, 

$0.583/kW for West, Center-South, and Northern parts of Cameroon respectively. 

(Nfah et al., 2007) modelled a Solar-diesel-battery HRES for the electrification of 

typical rural households and schools in remote areas of the then Far North Province 

(Far North Region today) of Cameroon. They discovered that the energy needs of 

typical rural families in the range of 70-300 kWh/yr may be satisfied by solar-diesel-

battery hybrid power systems. Additionally, they discovered that a hybrid solar-diesel-

battery power system using a 1440Wp solar array and a 5kW single-phase generator 

running at a load factor of 70% only needed 136 generator hours per year to provide a 

normal secondary school with 7 kWh per day. Their findings demonstrated that all of 

the systems studied had a renewable energy proportion that ranged from 83 to 100 

percent. They came to the conclusion that increasing the number of people who have 

access to electricity in the Far North Province is possible without resorting to grid 

extensions, adding more thermal power plants to the Northern grid, or expanding the 

number of independent diesel plants that supply electricity to the province's then remote 

areas (Far North Region today). (Nfah & Ngundam, 2008) again modelled a wind-diesel-

battery hybrid power systems to supply electricity to remote areas of the then Far North 

Province (Far North Region today) of Cameroon. They again found that the hybrid 

power system based on a combination of two wind turbines rated 290W and a 5 kW 

single phase generator operating at a load fraction of 70% required only 106 generator 
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hours per year to supply 2585 kWh/year or 7 kWh/day to a typical secondary school. 

They saw that the renewable energy fractions attained in feasible systems were in the 

range 70–100%. (Nfah et al., 2008)also performed an off-grid simulation study for 

generation options for remote villages in Cameroon. (Nfah & Ngundam, 2009) made a 

feasibility study on a pico-hydro and PV hybrid power systems for remote villages in 

Cameroon with simulations performed using the HOMER software. (Mbaka, 2013) 

evaluated an optimal photovoltaic hybrid system for remote villages in Far North 

Cameroon using a recent iterative optimization method based on desired annual number 

of generator hours and the Net Present Value technique reported that PV hybrid systems 

are the optimal solutions for the electrification of remote villages in the Far North 

Region of Cameroon. 

Ray et al., (2013) carried out optimization and economic analysis for different 

combinations of PV, battery and diesel hybrid energy systems in the quest for finding 

the optimal system to supply reliable power to rural communities in the North-Eastern 

state of India. Their findings showed that the PV-diesel-battery hybrid power system 

was the best combination with a COE of 0.118 $/kWh. 

2.15.2 MATLAB    

MATLAB means Mathematics Laboratory. It is a sophisticated highly performant 

software used across many disciplines. It is also used in modelling and simulating 

HRESs. 

Mokhtara et al. (2020) presented a novel approach by optimally designing an off-grid 

hybrid solar PV-diesel-battery system for the electrification of residential buildings in 

arid environments with a dwelling in Adrar in Algeria used as a case study. Their 

approach integrated the demand-supply management (DSM) with particle swarm 
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optimization. The proposed design was first modelled using MATLAB and optimised 

by using the total NPC. They validated these results using HOMER software. The 

system configuration is shown on Figure 2.38 below. 

 

Figure 2.38: Investigated HRES (Mokhtara et al., 2020) 

The results showed that total NPC is reduced by 18% and energy demand is reduced by 

7% comparatively to when only supply-side management is used. Also, the PV-Li-ion 

was seen to be the best configuration with total NPC of $23,427 and cost off energy 

(COE) 0.23 $/kWh. In addition to this, energy consumption is reduced by 19% while 

carbon dioxide emission is reduced by 57%. The optimal configuration with the least 

COE was obtained using the wind-diesel hybrid system. 

(Patel & Singal, 2018) carried out a study on the economic analysis of an integrated 

renewable energy system (IRES) for rural electrification having scattered settlement. 

In the study, the IRES model is designed using a hybrid of solar-wind-biomass-biogas 

energy sources to supply the load demand of Khatisitara village of Gujarat state in India. 

In their work, they used the distribution losses as a design parameter and the 

optimization for the NPC is performed using the PSO algorithm in MATLAB 
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environment and the results validated using the Genetic Algorithm (GA). Their 

simulation results show that for the study locality, the distribution losses were 

significant but using the IRES was more feasible than using the grid extension for rural 

electrification. Their proposed IRES is shown below. 

 

Figure 2.39: Proposed IRES (Patel & Singal, 2018). 

Habib et al., (2019) proposed a design optimization methodology power management 

strategy (PMS) for wind-diesel-battery-converter hybrid renewable energy system 

(HRES) for a residential load located in a remote rural area in Pakistan. They first 

investigated the optimal component sizing using the actual meteorological and load 

profile data for the locality. Using HOMER software, they compared the techno-

economic and environmental parameters of several hybrid setups after modeling and 

analyzing each one. For the developed HRES, a suitable PMS based on the battery's 

state of charge (SOC) is suggested and implemented in the MATLAB/Simulink 

program. The goal of this PMS was to keep the battery SOC within a safe range while 
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maintaining load balancing and maximizing wind output. They also applied model 

predictive control (MPC) to lower overall harmonic distortion and enhance output 

voltage profile (THD). In comparison to employing a diesel generator, the wind-battery 

converter provided a total NPC of $14,846 and COE of 0.309 $/kWh, representing a 

76.7 percent decrease in both total system cost and energy cost. It also resulted in a 

100% reduction in carbon emissions. With a surplus of 30.1 percent energy, the load 

demand is satisfied. They added that the research could help researchers and system 

planners create and use HRES more effectively, hence reducing the sharp rise in load 

demand for both urban and rural areas. 

 

Figure 2.40: HRES proposed diagram (H. U. R. Habib et al., 2019) 

(Jagjeevanram, 2020) proposed a hybrid PV-wind-diesel power system with a control 

scheme to maintain the consumption rate of the diesel generator at a very low level 

while maximizing the use of the renewable energy sources. The control strategy was 

simulated in MATLAB’s Simulink. 
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2.15.3 iHOGA 

Improved Hybrid Optimization by Genetic Algorithm (iHOGA) is developed by 

University of Zaragova, Spain. It is C++ based hybrid optimizer used for optimum 

sizing of hybrid renewable energy systems. Components included are photovoltaic 

system, wind turbines, fuel cells, converters, generators, storage devices etc. it uses the 

mono and multi-objective optimization using genetic algorithm (Kaur, 2017). It takes 

input data such as constraints, resource data, component data, economic data and gives 

output information such as multi objective optimization, life cycle emission, probability 

analysis and buy-sell energy supply analysis (Sinha & Chandel, 2014). Joyti and 

Daigavane (Fulzele & Daigavane, 2018) used iHOGA to design a hybrid PV-wind-

battery system incorporating an inverter. Their work was based on analysing the 

sensitivity of the system to produce an optimal solution for rural electrification. 

2.15.4 RETScreen 

RETScreen is another hybrid optimization software, developed at Canmet Energy 

Diversification Research Laboratory (CEDRL), Natural Resources Canada for 

evaluating both financial and environmental costs and benefits of different renewable 

energy technologies for any location in the world. It uses visual basic and C language 

as working platform (Van Beuzekom et al., 2015). It has two modules, RETScreen 4 

and RETScreen Plus. RETSCreen 4 is an excel based software used to develop energy 

efficient models. Input parameters include climate database, Project database, product 

database, hydrology database (Kaur, 2017; Sinha & Chandel, 2014). (C. Li & Yu, 2016) used 

RETScreen to design optimal PV-diesel-battery HRESs for households having a peak 

load of 5.7 kW and a daily energy need of 10.275 kWh in Urumqi area in China. These 

systems were more economical and cleaner making it the best option for the area.  
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In addition to the software used are also some control techniques. The most commonly 

used control techniques as these systems requires sophisticated controls for their 

optimal performance as the sources of energy are often intermittent are the Particle 

Swarm Optimization (PSO), Artificial intelligence Technique (AIT), Genetic 

Algorithm (GA), Simulated Annealing Algorithm (SAA) and the Linear Programming 

(LP) technique (Zahraee et al., 2016).  

In (Cristóbal-Monreal & Dufo-López, 2016), a solar PV-battery-diesel engine hybrid 

standalone system is analysed and optimised in terms of cost and weight to supply 

electrical energy to mobile facilities especially in remote rural areas. The genetic 

algorithms and the multi-objective evolutionary algorithms techniques were used with 

an applicable example of the method done to a temporary hospital in Central African 

Republic. The system configuration is shown on Figure 2.41 below. 

 

Figure 2.41: Solar PV-battery-diesel generator hybrid standalone system (Cristóbal-

Monreal & Dufo-López, 2016). 

Mokhtara et al., (2021) presented a methodology for an optimally designed PV-wind-

diesel-battery hybrid renewable energy system with the effects of building energy 

efficiency and the climate diversity on the optimal size of the HRES considered with 

findings performed. They proceeded by first undertaking a multi-spatial analysis 

through a common geographical information system tool (ArcGIS 10.2) to come out 

with the renewable energy potential map for Algeria. They then formulated a multi-
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objective problem to minimize COE, maximize system reliability and renewable 

fraction (RF). From the renewable energy map, seven zones were identified and one 

location was chosen from each zone making up seven locations. 

They found that with low efficiency buildings, PV-wind-diesel-battery is found the best 

configuration for Adrar and Tindouf, while PV-diesel-battery gives the best results for 

the other locations. They also found that with highly efficient buildings in Biskra and 

Tamenrast locations, PV- battery systems produced the best results with 100% 

penetration of renewable energy and COE of 0.12 $/kWh. This optimal system with 

building efficiency considered can be used to reduce the over 40% of energy consumed 

by buildings worldwide (Landi D, Castorani V, 2019). The system layout is shown on 

Figure 2.42 below. 

 

Figure 2.42: PV-wind-diesel-battery HRES (Mokhtara et al., 2021) 

Alshammari & Asumadu (2020) used the Harmony Search (HS), Jaya and Particle 

Swarm Optimization (PSO) algorithms to size an optimum HRES made up of wind-

PV-biomass-battery technologies for a small rural community with a goal of having a 

cost effective, efficient and reliable system capable of satisfying clients’ electricity 

demands. They compared the results from the three algorithms and concluded that the 

PV-biomass-wind-battery configuration was the least costly and best performant with 
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a total NPC of $581,218 and 0.254 $/kWh COE. The system configuration is shown on 

the diagram below. 

 

Figure 2.43: PV-wind-biomass-battery HRES (Alshammari & Asumadu, 2020). 

In (Corbus & Bergey, 1997), an existing diesel generator was retrofitted to a wind-

hybrid diesel system with battery storage to power Costa de Cocos, a small resort 

located in the state of Quintana Roo, Mexico. The HRES was composed of 15 kW diesel 

generator, wind turbines with capacity of 7 kW and a battery storage for backup having 

a capacity of 5 kWh. This HRES was able to supply up to 95 % of the available load in 

the resort and the rate of fuel consumption was reduced, hence reducing the 

environmental pollution.  

Fazelpour et al (2014a) investigated the feasibility of a standalone hybrid power system 

to supply a hotel of 125 rooms with an energy consumption of 2 628 000 kWh and a 

peak demand of 620 kW in Kish Island, Iran. The results of their optimization showed 

that the wind-diesel-battery storage hybrid system was the most feasible to supply the 

required load demand of the hotel with five 20 kW wind turbines, one 600 kW diesel 
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generator and 242.76 kWh battery capacity having a total NPC of $7,236,000 and a 

COE of $0.318/kWh. 

 

 

 

 

 

 

Figure 2.44: Hybrid power system flow diagram (Fazelpour et al., 2014a; Rehman, 

2021) 

Vai et al. (2020) presented an optimal design of a low-voltage (LV) distribution 

network for rural electrification using PV and battery storage with a non-electrified 

village in Cambodia used as a case study. The design was aimed at searching for an 

optimal topology of a LV distribution system by siting and sizing of a PV and storage 

over a period of 30 years. The shortest-path algorithm (SPA) and first-fit bin-packing 

algorithm (FFBPA) were first used to search for the optimal radial topology that 

minimizes the total length of the distribution line and improves the load balancing. 

They, further optimized the locations of decentralized BES (DeBES) using a genetic 

algorithm (GA) to eliminate the under-voltage constraints due to the load consumption. 

Also, they demonstrated two iterative techniques to size the maximum peak power of 

PV and the minimum number of DeBES that can be connected to a LV network without 

violating the voltage and current constraints. A sizing strategy of centralized BES 

(CeBES) was then developed to avoid power reversal into the medium-voltage (MV) 
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network. Lastly, a study was done using the Monte Carlo approach to determine the 

impact of load profile uncertainties on the topology which showed that a ±5% slight 

variation in the case study does not have an undesirable impact on the system. 

(Kazem & Khatib, 2013) in their work presented a method for determining PV array, wind 

turbine, diesel generator, and battery storage optimal sizes installed in a building 

integrated system. Their aim was to design a system that will supply reliable electricity 

in a building at a minimum cost and at a maximum availability of power. They 

combined climatic factors like temperature, sun energy, and wind speed with 

mathematical models for the system's individual parts. The findings indicated that the 

PV array, wind turbine, diesel generator, and battery for a system located in Sohar, 

Oman, were obtained with optimal size ratios of 0.737, 0.46, 0.22, and 0.17, 

respectively, which is the daily energy generated by the source to the daily energy 

requirement. A system with a 30 kWp solar array, an 18 kWp wind farm, and a 5 kVA 

diesel generator was used as a case study. The system was designed to supply 200 kWh 

of load demand each day. It was discovered that the solar panel installation, wind farm, 

and diesel generator generated 36 percent, 55 percent, and 9 percent of the total energy 

produced, respectively, with a COE of 0.17 dollars per kWh. Additionally, they came 

to the conclusion that the suggested optimization strategy produced findings that were 

more accurate than those produced by the HOMER software. They combined climatic 

factors like temperature, sun energy, and wind speed with mathematical models for the 

system's individual parts. The findings indicated that the PV array, wind turbine, diesel 

generator, and battery for a system located in Sohar, Oman, were obtained with optimal 

size ratios of 0.737, 0.46, 0.22, and 0.17, respectively, which is the daily energy 

generated by the source to the daily energy requirement. A system with a 30 kWp solar 

array, an 18 kWp wind farm, and a 5 kVA diesel generator was used as a case study. 
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The system was designed to supply 200 kWh of load demand each day. It was 

discovered that the solar panel installation, wind farm, and diesel generator generated 

36 percent, 55 percent, and 9 percent of the total energy produced, respectively, with a 

COE of 0.17 dollars per kWh. Additionally, they came to the conclusion that the 

suggested optimization strategy produced findings that were more accurate than those 

produced by the HOMER software. 

Ahmad et al., (2018) made a study on the techno-economic feasibility of a grid-tied 

hybrid microgrid system for local inhabitants of Kallar Kahar near Chakwal city of 

Punjab province in Pakistan and investigated the potential for electrical power 

generation via PV-wind-biomass hybrid system. They carried out an assessment of 

solar energy, wind and biomass resources for grid integration. Their hybrid microgrid 

system was modeled using the Homer Pro software. After the modelling, optimization 

and sensitivity analysis was performed to ensure the robustness and cost-effectiveness 

of the proposed hybrid microgrid system. After due analysis, they concluded that 

surplus power was supplied to the national grid during low local demand of the load. 

The system could generate more than 50 MW. The cost of hybrid system for peak load 

of 73.6 MW was 180.2 million USD and leveled cost of energy was 0.05744 $/KWh.  

Drouilhet, (1999) in his work came up with a control system to overcome the issues 

faced by designers of of wind-diesel-battery hybrid power system dominated by wind 

penetration in the United States. This control algorithm was used in a wind-diesel-

battery hybrid power system installed is a village in Wales, Alaska having 

installedcapacities of 130 kW for wind, 360 kW for diesel and 130 kWh battery storage.    
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2.16 Conclusion 

In this chapter, a literature review to understand: the concepts and techniques used for 

maximum power point tracking, energy storage systems, hybrid energy systems and 

some software tools used for the modelling of solar PV systems has been presented. In 

the proceeding chapter, the methodology adopted to accomplish the specific objectives 

will be presented. 
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CHAPTER THREE: METHODOLOGY 

3.1 Introduction 

This chapter dwells on the methodology that was adopted for the realization of the 

different objectives. The work had four specific objectives. Firstly, the study site where 

the work was carried out has been described. This is followed by the method of data 

collection. Moving forward, the method used to model the system in Homer Pro is 

explained and the design approach used for the MPPT in MATLAB/Simulink 

presented. A block diagram of the system is shown below. 

 

Figure 3.1: System Block Diagram 

 

3.2 Study Site 

Moi University is an institution of higher learning in Kenya. Its main campus is located 

between Latitude 0.286694oN and Longitude 35.294028oE in the town of Eldoret. 

Figure 3.2 below is a google earth view of the campus. The main source of power 

supply for the University comes from the grid. Because of this, the University spends 

huge sums of money for utility bills monthly. In this study, the Administration building 
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and the Margaret Thatcher Library are used for the power consumption data collection 

which is used for the design of optimal PV systems to supply the two buildings. 

 

Figure 3.2: View of Moi University Main Campus' Administration Building (Source: 

Google Earth) 

3.3 Data Collection 

The power consumption data for the Administration building and Margaret Thatcher 

Library (represented as LOAD on Figure 3.3) for a period of one month each were 

logged using the PCE-360 Power Analyser. This was done during the examination 

period which is the peak month of power consumption. Also, to accompany this, data 

from an inventory on power consumption for the different appliances in these two 

buildings (Appendix 1) were used to enable a better appraisal of the logged data. The 

logging was done for 5 seconds intervals to ensure that detailed information about the 

power usage was obtained. The temperature and solar radiation data from November 

2017 to January 2022 was collected from the meteorological weather station of the 
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University and these values were compared to those provided by National Aeronautics 

and Space Administration (NASA) in their database.  

  

Figure 3.3: Power Consumption Data Collection Using the PCE-360 Power Analyser 

From Figure 3.3, L1, L2, L3, and N stands for line 1, line 2, line 3, and neutral 

respectively. I1 to I4 are the currents while U1 to U3 are the phase voltages. 

The Administration building and Margaret Thatcher Library are powered from a three 

phase four wire system. In order to measure the power consumption for the two 

buildings, the device was logged as shown on Figure 3.3. The red voltage test lead was 

connected to line 1 and to U1. This terminal measures the phase voltage for line 1. The 

yellow voltage test lead was connected to line 2 and to U2. This voltage test lead 

measures the phase voltage for line 2. The blue voltage test lead was connected to line 

3 and to U3. This voltage test lead measures the phase voltage for line 3. The neutral 

test lead labelled N was connected to the black neutral wire. In addition to the voltage 

test leads are the current probes labelled I1, I2, I3, and I4. The current probe I1 measures 

the line current for line one. The current probe I2 measures the line current for line 2. 
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The current probe I3 measures the line current for line 3, while the current probe I4 

measures the neutral current. The meter also measures the power factor of the system 

and computes the active, reactive, and apparent powers. 

More so, while using this device, some precautions need to be followed. The meter is 

designed to be safely used under temperatures ranging from 0oC to 40oC. The test leads 

are not allowed to be used if they appear damaged and the maximum input limits to the 

device must not be exceeded. Some of the quantities the device measures are shown in 

Table 3.1 below. The range is the maximum value the instrument can measure and 

should not be exceeded. 

Table 3.1: Some quantities measured by the PCE-360 power analyzer 

Quantity Unit Range Accuracy 

AC Voltage V ≤ 999.9 ± 0.3% 

AC Current A ≤ 999.9 ± 0.5% 

Active Power measurement P  kW ≤ 999.9 ± 1.0% 

Apparent Power measurement S kVA ≤ 999.9 ± 1.0% 

Reactive Power measurement Q  kVAR ≤ 999.9 ± 1.0% 

Power factor - -1 ≤ PF ≤ 1 Calculated 

accuracy is ±15 

digits  

 

3.4 Solar PV-Battery Optimization Using HOMER Pro Software 

After collecting the necessary data required, the simulation of the hybrid system was 

done using the HOMER Pro 3.10.3 software. This software was chosen because it has 

the capability of performing technical and economic feasibility studies of hybrid energy 

systems. It also has built-in components which can be readily used to model renewable 

energy system. In addition to that, HOMER Pro has been extensively used by other 

researchers as seen in the literature and has proven to be reliable in energy system 
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modelling. The configuration of the HOMER Pro environment is shown in Figure 3.4. 

The input information to the software were solar radiation, temperature, power demand, 

choice of solar module, choice of battery storage, and the cost of all the components 

used in the system. When this information was input into the software, the simulations 

were done for different sensitivity cases. The outputs produced after the simulations 

were the optimization results for the best system to be used with the component sizes, 

the Net Present Cost (NPC) of the System, Levelised Cost of Energy (LCOE), initial 

capital cost, and the simple Pay Back Period (PBP). 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.4: Input and Output Parameters Used by HOMER Pro 

Sensitivity analysis for the system was done using solar radiation as the main sensitivity 

variable. This was done to determine the impact of solar radiation on the optimal design 

of the system. The net present cost and the levelized cost of energy were used for the 

selection of the optimal system. 

The different components which were used in the simulation are specified in the 

proceeding paragraphs. 
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3.4.1 Grid 

The Administration building and the Margaret Thatcher Library are both powered by 

the utility grid. For this reason, utility bill costs for a period of one year were used to 

determine the amount the University is spending annually on electric bills for the two 

buildings. Knowing this cost, the amount was then used to evaluate the payback period 

of the proposed solar PV/battery system designed to replace the grid. The choice of 

completely replacing the grid by the solar PV system was made because solar PV is 

reliable and clean compared to the utility grid and also, as an academic institution, 

having a reliable power supply especially in the Margaret Thatcher Library to enable 

students to study effectively is important. In addition to that, having such a system 

installed on campus will be a major contribution towards the green campus initiative 

(Chung et al., 2023). Also, according to the 2019 Energy Act of Kenya, power can be 

sold back to the grid through net-metering for systems below 1MW at a maximum Fit-

in Tariff of Ksh12/kWh (The Energy Act, 2019, 2019). This means that unused energy 

during the day can be sold to the grid. 

3.4.2 Solar PV 

In the HOMER Pro environment, the cost, orientation, and performance characteristics 

of the photovoltaic (PV) array can be entered. Also, the effect of temperature on the 

power production from the PV module is specified. Added to this page is the area where 

the capital cost, replacement cost, and the operation and maintenance (O&M) costs are 

specified. The capital cost is the initial purchase price, the replacement cost is the cost 

of replacing the PV system at the end of its lifetime, and the O&M cost is the annual 

cost of operating and maintaining the PV system. When these costs were being 

specified, all the costs associated with the PV system were considered which were the 

cost for PV panels, wiring, installation, mounting hardware, and the tracking system. 
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Furthermore, the cost of the PV system was considered to vary linearly with the PV 

size. 

The SunPower E20-327 monocrystalline solar module with a peak power of 327W was 

chosen for the simulation. This module has an efficiency of 20.4%. It was selected 

because of its high conversion efficiency and its high rated power per module which 

will limit the installation space to be occupied by the overall system. The characteristics 

of this module are shown in Table 3.2. Given that the power output (Pout) of a PV 

module is often affected by aging, temperature, and solar radiation, the equation (3.1) 

can be used to calculate Pout (Adaramola et al., 2014)(Murugaperumal & Ajay D Vimal Raj, 

2019). 

𝑃𝑜𝑢𝑡 = 𝑃𝑝𝑣𝑓𝑝𝑣 (
𝐺𝑇

𝐺𝑇,𝑆𝑇𝐶
) [1 +∝𝑝 (𝑇𝐶 − 𝑇𝐶,𝑆𝑇𝐶)]…………………………….……..3.1 

In equation (3.1), Ppv  is the rated power of the PV module under Standard Test 

Conditions (STC), fpv is the derating factor of the PV module (%) which was 88% for 

this simulation, GT is the solar radiation incident on the PV module (W/m2), GT,STC is 

the incident radiation at STC (1000 W/m2), ∝p is the power temperature coefficient 

(%/oC) which was -0.38 %/oC, TC is the PV cell temperature (oC) which was 45oC for 

this simulation, TC,STC is the PV cell temperature at STC (25 oC). 

3.4.3 Battery Storage 

Just like PV modules, the HOMER Pro storage page allows for the selection of 

appropriate battery to use from a variety of different battery technologies. Also, the cost 

of batteries including capital cost, O&M cost, and replacement cost are added here.  

In this work, lead acid batteries were chosen. This is because it is the battery of choice 

that is mostly used in solar PV systems especially in sub-Saharan Africa due to its low 
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cost as compared to other battery technologies such as lithium ion (Anuphappharadorn 

et al., 2014). The summary for the selected battery is shown in Table 3.2. 

3.4.4 Inverter 

Since solar PV systems produce electricity in DC form and not AC, an inverter is 

needed to convert DC to AC to enable the AC loads to be powered and also to permit 

power fit-in to the grid. In this work, the 120kW MTP-4110F 3 phase hybrid inverter 

was selected with characteristics tabulated in Table 3.2. 

3.4.5 Charge controller 

Because the system was to be simulated with a battery storage system, the SOLARCON 

SCM-360400 charge controller was chosen. The role of a charge controller in a PV 

system is to regulate the charge and discharge cycles of the batteries. It protects the 

batteries from either overcharging or over discharging. The electrical parameters can 

be seen in Table 3.2. 
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Table 3.2: Choice of Components for the PV system 

Components Type Parameters Values and Units 

    

Solar 

Module 

SunPower E20-

327 

Rated power 327Wp 

  Rated voltage (Vmpp) 54.7V 

  Rated current (Impp) 5.98A 

  Short circuit current 

(Isc) 

6.46A 

  Open circuit voltage 

(Voc) 

64.9V 

  Dimension 1.558x1.046m 

  Efficiency 20.4% 

    

Battery Lead acid Trojan 

SAGM 12 205 

Nominal voltage 12V 

  Capacity 219Ah 

  Roundtrip efficiency 85% 

  Maximum charging 

current 

41A 

  Maximum discharge 

current 

300A 

    

Inverter MTP-

4110F,3phase 

hybrid. 

Rated Power 120kW 

    

  AC input frequency 50/60Hz ± 3Hz 

  AC output frequency 50/60Hz±0.01% 

  AC output voltage 380/400/415V(L-L), 

220/230/240V(L-N) 

  Efficiency 96% 

    

Charge 

Controller 

SOLARCON 

SCM-360400 

Maximum PV power 124kWp 

  Maximum current 400A 

  Vmp of PV 255-330Vdc 

  Output DC voltage 360V 

  Efficiency 98% 
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The schematic diagram including all the components which were used for simulation 

in HOMER Pro is shown in Figure 3.5.  

 

Figure 3.5: Schematic Diagram Designed with HOMER Pro for Simulation: (a) 

Margaret Thatcher Library and (b) Administration Building 

3.4.6 Economic parameters 

According to the Central Bank of Kenya, the current discount rate is 7.5% and the 

inflation rate is estimated to remain at an average of 7.1% in 2022 (Central Bank of Kenya, 

2022). In this simulation, 12% was used for both discount and inflation rates to consider 

worst case scenarios. 

The main economic matrices used in evaluating the economic feasibility of the project 

were the Net Present Cost (NPC) and the Levelized Cost of Energy (LCOE). The total 

NPC is the present value of all the cost incurred by the system over its lifetime (which 

include capital costs, replacement costs, O&M costs, fuel costs, emissions penalties, 

and the costs of buying power from the grid) minus the present value of all revenue 

earned over the lifetime (which include salvage value and grid sales revenue). HOMER 

calculates the LCOE using equation (3.2) (Adaramola et al., 2017). 

𝐿𝐶𝑂𝐸 =
𝐶𝑎−𝐶𝑏𝐻𝑠

𝐸𝑠
…………………………………………………………………….3.2 
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Where Ca  is the total annualized cost of the system (Ksh/Year), Cb  is the boiler 

marginal cost (Ksh/kWh), Hs is the total thermal load served (kWh/year) and for PV 

systems that do not serve any thermal loads, Hs is zero. Es is the total electrical load 

served (kWh/year). Ca is calculated in HOMER using equation (3.3) (Rohani & Nour, 

2014)(Eze et al., 2022). 

𝐶𝑎 = 𝐶𝑅𝐹. 𝐶𝑁𝑃𝐶……………………………………………………………………3.3 

𝐶𝑅𝐹 =
𝑖(1+𝑖)𝑛

(1+𝑖)𝑛−1
……………………………………………….………………..…..3.4 

Where CNPC is the total NPC, i is the annual real discount rate (%), n is the number of 

years (project lifetime), CRF is the capital recovery factor. The real discount rate i is 

calculated in HOMER using equation (3.5). 

𝑖 =
𝑟−𝑓

1+𝑓
 ……………………………………………………………………….……..3.5 

Where r is the nominal discount rate which is the rate at which money can be borrowed 

and f is the inflation rate. 

3.5 MPPT Technique Used 

The Perturbed and Observe (P&O) MPPT techniques was used to harvest maximum 

power from the PV system. This method was chosen because of its less complex 

computational ability, making the tracking system cost effective as compared to other 

tracking methods. In addition to that, a PID controller which was tuned using Genetic 

Algorithms (GA) was incorporated to the system to reduce the settling time and 

minimize the oscillations around the maximum power point. The flow chart for the 

MPPT technique is shown in Figure 3.6.  
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Figure 3.6: Flow chart of the P&O method (Bollipo et al., 2020) 

As depicted by the flow chart of Figure 3.6, the tracking of the maximum power point 

is done as follows. Firstly, the system measures the PV voltage at a given instant [V(t)] 

and the PV current at a given instant [I(t)]. The PV power at that instant is then 

calculated by multiplying the PV voltage and the PV current. This calculated power is 

then compared with the actual PV power that was supposed to be generated based on 

the available solar radiation. If the change in power is zero, it means the measured 

power is the actual maximum power generated. This will cause the control algorithm 

to end and goes back to measure the PV voltage and current.  

If the measured PV power is different from zero and positive, the control algorithm then 

compares the measured PV voltage V(t) to its previous value V(t-1). If the measured 
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PV voltage is greater than its previous value, then the algorithm increments V(t). If the 

measured PV voltage is less than its previous value, then the algorithm decrements V(t). 

On the other hand, if the change in power is less than zero, the control algorithm then 

compares the measured PV voltage V(t) to its previous value V(t-1). If the measured 

PV voltage is greater than its previous value, then the algorithm decrements V(t). If the 

measured PV voltage is less than its previous value, then the algorithm increments V(t). 

This process is repeated until the maximum power point is tracked. 

3.6 Tuning of the PID controllers Using Genetic Algorithms 

In the tuning of the PID controllers in the system to fine the optimal controller gains for 

effective MPPT and optimal charging and discharging of the battery, we used Genetic 

Algorithms (GA). Effectively charging and discharging of batteries enable them to last 

longer and harvesting more power from the sun improves the overall system efficiency. 

The step-by-step GA approach used in finding the optimal controller gains is explained 

below as shown in Figure 3.7. 

 
Figure 3.7: Flowchart for optimization using GA 
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Firstly, the problem was defined which was to optimize the controller gains Kp 

(proportional gain), KI (integral gain), and Kd (derivative gain).  

The objective function which was used is the Integral Absolute Error (IAE) between 

the input solar PV voltage (V) and the reference voltage (Vref). This objective function 

(e) is shown in equation (3.6) (Hassan et al., 2019). This is because the output voltage 

from the PV module is the main functional parameter to determine the duty cycle at 

which the boost converter is switched. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒 = ∫ |𝑉 − 𝑉𝑟𝑒𝑓
𝑡

0
|𝑑𝑡……………………………………………………3.6  

The minimum value of the error signal was obtained at all times which was used to 

generate the pulse width modulation signal to control the boost converter for maximum 

power point tracking. 

The algorithm begins with an initial random population which was 100 for this 

optimization. The algorithm then creates a sequence of new populations. At each step, 

the algorithm uses the individuals in the current generation to create the next 

population. To create the new population, the algorithm performs the following steps: 

scores each member of the current population by computing its fitness value. These 

values are called the raw fitness scores. Scales the raw fitness scores to convert them 

into a more usable range of values. These scaled values are called expectation values. 

Selects members from the population called parents and the selection method used in 

this work is the Roulette Wheel which uses the fitness values of the population to select 

the parents. Some of the individuals in the current population that have lower fitness 

are chosen as elite. These elite individuals are passed to the next population. The parents 

then produce offsprings either by making random changes to a single parent known as 

mutation or by combining the vector entries of a pair of parents which is crossover and, 
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in this case, the uniform crossover was used because it randomly selects chromosomes 

from both parents to produce offsprings. Once the offsprings are produced, the current 

population is replaced with the offsprings to form the next generation. The algorithm 

stops when one of the stopping criteria is met which in this case was the maximum 

number of generations which was 25.  

3.7 Modelling of the Solar/Battery Hybrid System in MATLAB 

The solar/battery system was modelled using SIMULINK in MATLAB. This is because 

the Simulink library in MATLAB contains built-in blocks of solar modules, controllers, 

and other function blocks which can be configured to meet system requirements. In 

addition to that, MATLAB/ Simulink has also been used for similar research as seen in 

the literature to perform energy system modelling and to model MPPT controllers. The 

configuration of the system is as shown.  
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Figure 3.8: MATLAB simulation block diagram 

 

Ipv is the PV current, Vpv is the PV voltage, Ib is the battery current, Vb is the battery 

voltage, Ibc is the battery charging current, Vbc is the battery charging voltage. 

 

To perform the MPPT, a boost converter was used to control the output voltage from 

the PV module. Also, a bidirectional converter was used for the charging and 

discharging processes of the battery. The MATLAB/Simulink model for MPPT is 

shown in Figure 3.9. The Simulink models for the power inverter and the battery system 

are respectively shown in Appendix F and Appendix G. The MATLAB Function block 

contains the P&O algorithm used for the MPPT. The main parameters of interest used 

are the PV voltage and the PV current. These two parameters are used to compute the 

available power of the PV system which is then compared with the actual PV power 
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that was supposed to be generated for a given solar radiation value. If the calculated 

value of power is not equal to the expected power to be generated by the system, the 

tracking algorithm begins. The algorithm performs the tracking using the PV voltage. 

Based on the difference between the measured voltage and the reference voltage 

(considered to be the open circuit voltage of the PV system), an error signal is 

generated. This error signal is optimized by the GA to ensure that the minimum possible 

error is sent to the PID controller. This controller then generates an appropriate pulse 

width modulation (PWM) signal which drives the boost converter to track the 

maximum available power. The tracking process is repeated until the MPP for the PV 

system is found. 

 

Figure 3.9: MATLAB/Simulink model for MPPT control strategy 

3.8 Conclusion  

In this chapter, the different methods used for data collection and design of the system 

have been presented in detail. The software tools selected for the simulation of the 

system have also been presented. In addition to that, the GA methodology adopted for 

the tuning of the controllers for MPPT and battery charging/discharging has been 

explained. The results will then be presented and discussed in the proceeding chapter.  
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CHAPTER FOUR: RESULTS AND DISCUSSION 

This chapter presents and discusses the results obtained. It has been done following the 

specific objectives which were outlined in Chapter 1. The results and discussion have 

been combined in the same chapter to ease the flow of information as each result is 

presented and discussed immediately. Firstly, the results on the solar radiation, 

temperature, and power consumption are presented and discussed. This is followed by 

the results for the system model in Homer Pro, the results of the MPPT, and the results 

of the charge and discharge of the batteries. 

4.1 Daily Solar Radiation 

The average monthly observed solar radiation on the horizontal surface at Moi 

University main campus in Eldoret is shown on Figure 4.1. The maximum solar 

radiation of 5.7 kWh/m2/day occurred in the month of February while the lowest solar 

radiation of 4.03 kWh/m2/day occurred in the month of July with the average annual 

solar radiation of 4.93 kWh/m2/day at this site, which is approximately 5 hours of daily 

sunshine. This is a good capacity to be exploited for solar PV energy generation. Also, 

the site-specific data and the data collected from the National Aeronautics and Space 

Administration (NASA) database are plotted. From these two data sets, the month with 

the highest radiation remains February (6.71 kWh/m2/day as per NASA data) and the 

lowest month remains July (5.10 kWh/m2/day as per NASA data). In addition to that, 

the annual average solar radiation for this site according to NASA is 5.90 kWh/m2/day. 

The two annual averages differ from each other by 0.97 kWh/m2/day. This difference 

is because the data provided by NASA covers a very large geographic area as opposed 

to the data which was measured on site. The   clearness index on the other hand is a 

measure of how bright or cloudy the sky is. It varies between zero and one with zero 

meaning a completely cloudy sky and one meaning a perfectly sunny day. It should be 
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noted that, site specific data is always advantageous to be used when dealing with solar 

PV installations. 

 

Figure 4.1: Solar radiation 

4.2 Daily Temperature Variation 

The average monthly temperatures were analyzed and the results showed that the 

hottest month is February with an average monthly temperature of 18oC while the 

coldest month is July with an average monthly temperature of 15oC as shown in Figure 

4.2. This means that solar panels installed within this site will perform much better as 

external cooling systems will not be needed for cooling of the solar panels. Cooling of 

solar panels is often needed because temperature has an effect on the output power of 

solar modules. For the solar panel that was selected for the simulations, the operating 

temperature is 45oC and the power temperature coefficient is -0.38 %/oC. This power 

temperature coefficient is calculated based on the industry standard test conditions used 

to characterize solar panels which is 25oC. For every degree rise in temperature above 

25oC, the solar panels output will drop by that specified power temperature value. In 

this work, because the temperature collected on site showed that the temperatures will 

barely go above 25oC, the simulations were done using the industry standard value. 
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Furthermore, the temperature collected on site was compared with the National 

Aeronautics and Space Administration (NASA) data. The results showed a slight 

variation of about 3oC. This is because the temperature found on the NASA database 

for a particular location covers a broader area. This is why it is always important to 

collect site specific data when designing solar PV systems. 

 

Figure 4.2: Average monthly temperature variation in the study site 

4.3 Load Profile for the Administrative Building 

The average peak and base loads demand for the Administrative building were 

respectively 64kW and 30kW. The average consumption during weekdays (Mondays 

to Fridays) was 41kW while the average consumptions on Saturdays and Sundays were 

28kW and 25kW respectively. The overall average weekly load was 37kW. Also, 

because the load varies randomly during the day, random variability constants of 4% 

for day-to-day and 4% time-step were used for simulations because the loads does not 

vary much each day as could be seen from the data collected for different days. Due to 

these variability constants, the peak load increased to 86 kW as determined by the 

HOMER software. Furthermore, during weekends, the power demand for this building 
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is low with a peak value of 31 kW on Saturday as shown on Figure 4.3. This means that 

most of the energy generated during the day on Saturdays and Sundays will be sold to 

the grid. 
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Figure 4.3: Load Profile for the Administration Block 

4.4 Load profile for the Margaret Thatcher Library 

The results depicted on Figure 4.4 shows that the power consumption in the library is 

higher than that of the Administration block on weekdays and on weekends.  
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Figure 4.4: Load Demand Profile for Library 

A combination of factors relating to working hours and user activity account for the 

excessive power consumption that was found in the library on weekdays from 7 am to 

9 pm. This is the time when the library usually welcomes visitors. As a result, the library 

is open from 7 am to 9 pm, during which time lighting, computers, and other electrical 

devices are used to serve users and support their activities. Users, such as students, 

researchers, and staff members, are most active during this time period. They use 

lighting, plug-in electronic gadgets, and use computers as they read, study, research, 

and engage in other academic tasks. The combined effect of these activities results in 

higher power demand. 
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Furthermore, the annual load variation from the HOMER Pro simulation is shown in 

Figure 4.5. From the results, it shows that throughout the year, high power demand 

occurs during the day. 

 

Figure 4.5: Yearly load profile for the Margaret Thatcher Library 

 

4.5 Results for the simulation of a solar PV/Battery system using HOMER Pro 

 

Figure 4.6: Battery State of Charge for the Margaret Thatcher Library 

Figure 4.6 shows the charging spectrum for the batteries. From the figure, it shows that 

the batteries will always be charged between 80% to 100% for a greater part of the year. 

This means energy will always be available for use during hours of no sunlight. Also, 

the battery bank size was computed using the maximum energy consumption to ensure 

that the batteries are not drained during peak loads. 

 

Figure 4.7: Battery state of charge for the Administration building 
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Similarly, the battery state of charge for the Administration building is shown in Figure 

4.7. It shows that the solar PV system is providing enough energy to charge the batteries 

throughout the year. This is good as storage is an essential element in solar PV 

standalone systems. This shows that the loads will always be powered even during days 

with poor solar radiations. 

Table 4.1 below gives a technical summary for the simulated solar PV/battery system. 

Table 4.1: Technical summary of the solar PV/Battery system 

SN Parameter Margaret 

Thatcher Library 

PV System 

Administration 

building PV 

System 

Total 

1 Annual energy 

consumption 

395,263 kWh 371,520 kWh 766,783 kWh 

2 Average monthly 

energy consumption 

32,938 kWh 30,960 kWh 63,898 kWh 

3 Average daily 

energy consumption 

1,098 kWh 1,032 kWh 2,130 kWh 

4 Scaled Average 

daily peak demand 

93 kW 86 kW 179 kW 

5 System size 100 kW 90 kW 190 Kw 

6 Power per PV 

module 

327 W 327 W - 

7 Number of PV 

modules 

306 276 582 

8 Battery capacity 4,575 Ah 4,300 Ah 8,875 Ah 

 

From the HOMER Pro simulations, the annual energy consumption for the Margaret 

Thatcher Library and the Administration building were respectively 395,263 kW and 

371,520 kWh, giving a total energy consumption of 766, 783 kWh. The average 

monthly energy consumptions were 32,938 kWh and 30,960 kWh while the average 

daily energy consumptions were 1,098 kWh and 1,032 kWh respectively for the two 

buildings. 
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In Table 4.2, the cost for installing and running the Solar PV/battery system is 

presented. This gives a total net present cost of 59,000,000 Ksh and a total replacement 

cost of 33,000,000 Ksh. The replacement cost is less than the net present cost because 

the life time of the system was 25 years which coincides with the life time of the solar 

PV modules. This means much replacement will be done for the batteries as they have 

a relatively short life span. Also, the total cost of the system gave 92,000,000 Ksh 

meanwhile the University spends 16,412,016 Ksh on utility bills for the two buildings 

annually. This means that the amount spent on installing the PV system can be 

recovered in 6 years using the simple Pay Back Period (PBP). Therefore, the system is 

economically beneficial for the University and it is strongly recommended to be 

implemented to save on annual utility bills. 

Table 4.2: Economic summary of the solar PV/Battery systems 

SN Parameter Margaret 

Thatcher 

Library PV 

System  

Administration 

building PV 

System 

Total 

1 Capital expenditure 32,000,000 Ksh 27,000,000 Ksh 59,000,000 Ksh 

3 Replacement cost 20,000,000 Ksh 13,000,000 Ksh 33,000,000 Ksh 

3 Annual cost of 

energy from Utility 

bills 

8,815,980 Ksh 7,596,036 Ksh 16,412,016 Ksh 

4 Pay Back Period 6 years 6 years - 

 

4.6 Fitness Curves for the Tuning of the PID controllers Using Genetic Algorithms 

Figures 4.8 and 4.9 respectively show the fitness curves for the tuning of the PID 

controllers, which are controlling the MPPT tracking process and the battery charging 

and discharging processes. Since the main objective for the optimization was to tune 

the PID controllers and obtain optimal proportional, integral and derivative gains which 

will give the smallest possible errors, the best fitness for the MPPT PID controller gave 

86.5𝑥10−4 while that for the battery charging PID controller gave 10.8𝑥10−4.  
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Figure 4.8: Fitness curve for MPPT PID controller 

 

Figure 4.9: Fitness curve for Batter charging/Discharging PID controller 

4.6 Results for the MPPT Tracking using MATLAB/Simulink 

To evaluate the performance of the maximum power point tracking control strategy, the 

solar PV system incorporating the tracking algorithm was simulated in 

MATLAB/Simulink. The solar radiation was varied while maintaining the temperature 
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at 25oC. From the simulations, a settling time of 0.025 seconds was obtained. This time 

is smaller compared to that obtained by (Kolluru et al., 2018). The results are shown in 

Figure 4.10. Also, to test the effectiveness of the tracking system, the Ropp test was 

used as shown in Appendix H. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Tracking of Maximum Power Point 

4.7 Results for the Optimization of the solar system performance and the battery 

charging/ discharging   

The maximum power point tracking system was to determine its impact on the overall 

efficiency of the solar PV system. The output power was mesured with and without the 

maximum power point tracker. The efficiency was calculated using the EN5030 

European standard for converter efficiencies as shown in equation (4.1). 

𝜂 =
𝑃𝑉 𝑃𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑡ℎ𝑒 𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒 𝑐𝑜𝑢𝑙𝑑 ℎ𝑎𝑣𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑥100………….……..……………4.1 
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From the calculation, a tracking efficiency of 99.5% was obtained when the tracking 

control strategy was used as compared to 97.2% which was obtained without the 

tracking system. This means that while the Maximum power point tracking algorithm 

was implemented, the output power from the solar PV system increased compared to 

when no tracking algorithm was implemented. Figure 4.11 shows the output power of 

the solar PV system with and without the solar tracking system.  

 

Figure 4.11: Power output of the solar PV system with and without the Maximum 

Power Point Tracker 

 

These results show that the efficiency of solar PV systems can significantly be 

improved by making use of MPPT systems. These results are achieved because of the 

appropriate tuning of the PID controllers to have their optimal control gains using 

genetic algorithms. 

In addition to the increased efficiency of the Solar PV system, the battery state of charge 

was also controlled such that the minimum stage of charge was 30%. This is because 
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the cycle life of batteries is limited by the number of charge and discharge cycles of the 

battery. Because lead acid batteries which were used in this work have a short cycle 

life, monitoring of the SOC is therefore important to enhance the overall cycle life of 

the battery. Figure 4.12 below shows the charging and discharging of the batteries. 

Initially, the battery state of charge (SOC) was considered to be 100%. The battery was 

then discharged to 30% and back to 100% as set by the controller. 

 

Figure 4.12: Battery State of Charge (SOC) Control 

4.9 Output Three Phase Voltage Waveforms from The Inverter 

From the simulations, the three phase voltages from the power inverter (Simulink model 

shown in Appendix F) as shown on Figure 4.13 were pure sine wave with a line voltage 

of 415 V as expected given that it is the nominal 3 phase voltage from the utility grid. 

This makes the inverter suitable for use even with sensitive loads. 
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Figure 4.13: Three phase voltage waveforms from the inverter 

 

4.10 Conclusion for Chapter 4 

This chapter presents the results obtained from the simulations. It also discusses the 

research findings. Among the results are the power consumption for the two buildings 

which is the major achievement for the first objective, the HOMER simulation results 

which solves the second objective, the MATLAB/Simulink results for the MPPT and 

battery charging which solves the third objective, and the results for the tuning of the 

controllers using genetic algorithms enabling proper MPPT to optimize the PV system, 

and hence addressing the fourth objective. 
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CHAPTER FIVE: CONCLUSION, RECOMMENDATIONS, AND 

FUTURE PERSPECTIVES 

5.1 Conclusion 

Solar photovoltaic energy which is a promising clean energy source to facilitate energy 

access and decarbonize the ecosystem by replacing conventional fossil fuel-based 

power plants, requires more research to improve its efficiency. For this reason, the main 

objective of this research was to model and simulate a solar/battery hybrid energy 

system with a Maximum Power Point Tracking (MPPT) control strategy and to 

optimize the battery charging/discharging cycle life. The specific objectives were to: 

analyze the daily energy consumption within Moi University Administration building 

and Margaret Thatcher Library; model and simulate a solar/battery hybrid system using 

HOMER Pro; design and simulate a Maximum Power Point Tracking (MPPT) control 

strategy using MATLAB/Simulink; and optimize the solar system performance and the 

battery charging/discharging cycle life using Genetic Algorithms (GA). 

To address the first specific objective of the work which was to analyze the daily energy 

consumption within Moi University Administration building and Margaret Thatcher 

Library, data was collected on site and the results showed that more energy is consumed 

by the Margaret Thatcher Library compared to the Administration Library between 6:00 

PM and 9:00 PM. This is justified by the fact that during this period, students are 

studying in the library while little or no work is done within the Administration 

building. 

In the second specific objective which was to model and simulate a solar/battery hybrid 

system using HOMER Pro, the solar PV/battery system for the two buildings was 

simulated using HOMER Pro. The results showed a system with an optimal solar PV 
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size of 90 kW to power the Administration Building and 100 kW to power the Margaret 

Thatcher Library. Also, the two systems had a short payback period, optimal power 

supply, and appropriate charging of the storage batteries which should be used to 

provide energy to the Administration building and the Margaret Thatcher Library. 

In the third specific objective which was to design and simulate a Maximum Power 

Point Tracking (MPPT) control strategy using MATLAB/Simulink, a maximum power 

point tracker was designed and simulated using the Simulink library in MATLAB 

version 2022b. A tracking system having a settling time of 0.025 seconds and a tracking 

efficiency of 99.5% was obtained. This settling time was found to be shorter than that 

obtained from literature. 

To optimize the solar system performance and the battery charging/discharging cycle 

life using Genetic Algorithms (GA) which was the last specific objective, the PID 

controller parameters in both the tracking system and the charging/discharging system 

for batteries were tune using GA. With this, optimal controller gains for the two systems 

were obtained. These optimal parameters were then used which contributed to the short 

settling time and higher tracking efficiency obtained for the solar PV system. This also 

enabled proper control for the charging and discharging processes for the batteries. 

Conclusively, this study has addressed successfully the challenges linked with energy 

harvesting from solar photovoltaic systems for a reliable and continuous power supply, 

with a focus on the Administration building and Margaret Thatcher Library at Moi 

University. This study has shown that it is possible to maximize solar energy utilization 

while effectively managing energy storage by using a solar/battery hybrid energy 

system with a sophisticated Maximum Power Point Tracking (MPPT) control strategy 

and the optimization of battery charging/discharging cycles using Genetic Algorithms 
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(GA). Accurate system design and performance evaluation have been made possible by 

the use of on-site solar radiation and temperature data, as well as rigorous simulation 

methodologies using HOMER Pro and MATLAB/Simulink software tools. The 

outcomes show the economic viability of such hybrid systems by revealing the potential 

for significant cost savings and short payback periods. Additionally, the system's total 

efficiency has increased thanks to the integration of PID control and GA optimization, 

ensuring the batteries' prolonged cycle life. This research ultimately offers important 

insights that will help academic and other commercial institutions move toward more 

sustainable energy solutions as solar energy adoption and management tactics develop. 

5.2 Recommendations 

Hybrid solar system adoption is advised for Moi University and similar institutions 

based on the research's findings. These systems should include integrated Maximum 

Power Point Tracking (MPPT) control mechanisms. These systems can more efficiently 

harness solar energy, improve energy sustainability, and do so while spending less 

money on maintenance. 

Academic institutions and other organizations should give priority to investments in 

renewable energy infrastructure in order to ease the energy transition in sub-Saharan 

Africa. This includes setting up solar power systems with improved designs to 

efficiently satisfy energy demands. 

Given the significance of energy storage in solar systems, it is urged to conduct more 

research on cutting-edge battery technologies that have longer cycle lives and are more 

affordable. This will enhance overall system performance and assist in addressing the 

constraints of the available battery options. 
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It is important to continuously track data on solar radiation, temperature, and energy 

consumption trends to ensure the best possible performance of solar energy systems. 

Real-time maintenance and system changes will be possible. 

Governments and organizations should aggressively support public awareness 

campaigns about the advantages of adopting solar energy. Also, public awareness and 

policy support is much needed. The energy transition can also be accelerated by 

supportive policies like incentives and subsidies for renewable energy projects. 

5.3 Contributions 

This study contributes to the area of solar energy adoption in academic institutions 

which is a good pathway towards having green campuses. 

In the domain of control engineering, the study contributes by using an alternative 

method for tuning PID controllers by adopting metaheuristic genetic algorithm 

optimization technique, instead of the conventional approaches. 

This work also contributes in the area of maximum power point tracking in PV systems 

by using a cost-effective and less complex approach to solve the problem of high 

settling time during maximum power point tracking. 

In the area of energy storage, the study contributes in energy management in battery 

storage systems by continuously monitoring and keeping the battery state of charge 

within acceptable bounds to enhance battery life. 

In addition, the work contributes in the area of data-driven design by using site specific 

data for the design of solar PV systems. 
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This work through its advocacy for renewable energy adoption aligns with 

sustainability goals and contributes to the reduction of greenhouse gas emissions, hence 

the fight against climate change and a more environmentally friendly energy landscape. 

The research also contributes in the area of renewable energy system modelling through 

the use of software and simulations. 

5.4 Further Research 

To address the drawbacks of conventional batteries and further improve energy system 

efficiency, future research can examine the integration of other energy storage 

technologies, such as supercapacitors or sophisticated flywheel systems. 

Researching the viability of microgrid systems on educational institutions or in other 

small, localized locations can be a worthwhile course of action in order to build self-

sustaining energy ecosystems, this would include integrating several renewable energy 

sources, such as solar, wind, and possibly biomass. 

As a result of how climate change affects solar energy production, future research may 

concentrate on creating technology and adaptive strategies to lessen the influence of 

shifting weather patterns on solar energy output. 

Future research on predictive maintenance and energy optimization in solar systems 

may benefit from the application of artificial intelligence and machine learning 

techniques. 
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APPENDICES 

Appendix A: Solar radiation Data for Moi University 

MONTHS 2018 2019 2020 2021 AV. 

Measured 

data 

Measured 

clearness 

index 

NASA 

data 

NASA 

clearness 

index 

JANUARY 4450 5805 4823 5230 5077 5.077 0.505 6.24 0.624 

FEBRUARY 5895 6221 5889 4797 5701 5.701 0.549 6.71 0.648 

MARCH 4497 6253 5383 5770 5476 5.476 0.521 6.59 0.628 

APRIL 4183 5566 4837 5271 4964 4.964 0.487 5.94 0.581 

MAY 4784 5135 4821 4525 4816 4.816 0.499 5.68 0.568 

JUNE 4163 3669 4255 4899 4247 4.247 0.456 5.33 0.569 

JULY 4432 4311 3637 3730 4028 4.028 0.427 5.1 0.538 

AUGUST 4432 4578 4228 4080 4330 4.330 0.437 5.33 0.536 

SEPTEMBER 5754 4859 4524 4523 4915 4.915 0.476 6.19 0.599 

OCTOBER 5403 5477 4600 5146 5157 5.157 0.498 5.97 0.578 

NOVEMBER 5762 5268 5085 5153 5317 5.317 0.527 5.62 0.56 

DECEMBER 5397 4508 5638 4823 5092 5.092 0.514 6.05 0.614 
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Appendix B: Temperature Data for Moi University 

Months 2O18 2O19 2020 2021 

Measured 

Average NASA 

JANUARY 16 17 17 17 17 20 

FEBRUARY 18 19 17 17 18 21 

MARCH 16 19 17 18 18 22 

APRIL  15 19 17 17 17 21 

MAY 16 18 16 16 16 20 

JUNE 15 16 15 16 15 20 

JULY 15 15 15 15 15 19 

AUGUST 15 15 15 15 15 20 

SEPTEMBER 16 15 15 16 16 20 

OCTOBER 16 16 16 16 16 21 

NOVEMBER 17 16 16 17 17 20 

DECEMBER 17 16 17 17 17 20 
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Appendix C: Power Demand data for Administration building 

HOURS 

MON 

P (kW) 

TUE P 

(kW) 

WED P 

(kW) 

THUR P 

(kW) 

FRI P 

(kW) 

SAT P 

(kW) 

SUN P 

(kW) 

0 26 32 33 30 31 30 29 

1 26 30 31 31 30 30 29 

2 26 30 30 31 30 30 28 

3 26 30 29 31 30 30 28 

4 25 29 29 31 30 29 29 

5 25 29 28 30 30 29 29 

6 26 27 27 27 28 27 29 

7 26 32 33 33 31 24 24 

8 50 56 54 54 54 26 26 

9 66 65 65 65 59 26 24 

10 65 63 64 65 61 27 23 

11 63 60 63 61 59 28 22 

12 63 62 65 60 57 27 22 

13 60 62 62 58 52 27 23 

14 59 61 60 58 49 26 21 

15 59 62 62 57 49 25 21 

16 53 55 51 51 39 25 21 

17 33 35 32 32 26 26 21 

18 33 31 34 31 33 29 25 

19 33 33 34 34 32 31 28 

20 34 33 33 34 32 31 27 

21 33 34 33 33 31 30 27 

22 32 32 32 32 29 30 26 

23 32 34 31 31 29 29 26 
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Appendix D: Power Demand data for Margaret Thatcher Library 

HOURS 

MON 

P(KW) 

TUE 

P(KW) 

WED 

P(KW) 

THUR 

 

P(KW) 

FRI 

P(KW) 

SAT 

P(KW) 

SUN 

P(KW) 

0 13 13 12 13 12 12 12 

1 13 13 12 12 12 12 12 

2 13 13 12 13 12 12 12 

3 13 13 12 13 12 12 12 

4 12 13 12 12 12 12 12 

5 12 12 12 12 12 12 12 

6 11 12 12 11 21 10 11 

7 43 44 37 33 48 10 10 

8 52 51 50 55 54 10 10 

9 57 55 56 58 57 29 10 

10 58 56 61 60 58 39 10 

11 57 57 61 60 62 42 10 

12 58 56 60 58 59 43 10 

13 60 56 60 58 58 44 20 

14 59 55 60 58 56 44 29 

15 57 57 61 56 54 44 29 

16 52 51 54 51 51 43 29 

17 44 45 45 44 45 42 13 

18 44 45 44 45 44 43 12 

19 43 45 44 48 44 42 13 

20 45 46 29 47 44 44 13 

21 46 46 12 46 20 19 13 

22 16 16 12 15 12 12 13 

23 13 12 11 12 12 12 13 
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Appendix E: Loads and Energy Consumption Inventory for Administration 

Building and Margaret Thatcher Library 

 

ADMINISTRATION BLOCK 
 

 Area Lamp 

Rating 

(W) Quantity Total  Daily  Total Energy  

  Type   Power  
Runni

ng  Consumption  

     (kW)  Hours  (kWh)  

           

 PABX 4ft 36 8 0.288 9  2.592  

          

 Washroom 4ft 36 4 0.144  8  1.152  

 ADM 20 4ft 36 10 0.36 8  2.88  

          

 Chief Accountant 4ft 36 24 0.864  8  6.912  

 Personal Claim 4ft 36 12 0.432 8  3.456  

          

 Expenditure 4ft 36 8 0.288  8  2.304  

 Examination 4ft 36 12 0.432 8  3.456  

          

 Vote Book 4ft 36 12 0.432  8  3.456  

 Finance Officer 4ft 36 42 1.512 8  12.096  

          

 Washroom 4ft 36 1 0.036  8  0.288  

 Kitchen 2ft 18 1 0.018 8  0.144  

          

 Budgetary Control 4ft 36 12 0.432  8  3.456  

 Room 9 4ft 36 8 0.288 8  2.304  

          

 Room 11 4ft 36 8 0.288  8  2.304  

 Room 6,7,4,2 4ft 36 22 0.792 8  6.336  
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 Salary 4ft 36 24 0.864  8  6.912  

 Room 11 4ft 36 8 0.288 8  2.304  

          

 Room 30 4ft 36 8 0.288  8  2.304  

 Room 31 4ft 36 8 0.288 10  2.88  

          

 Customer Care Office 4ft 36 2 0.072  8  0.576  

 ADM 33 4ft 36 16 0.576 10  5.76  

          

 ADM 34 4ft 36 16 0.576  8  4.608  

 ADM 35 4ft 36 16 0.576 8  4.608  

          

 ADM 36 4ft 36 16 0.576  8  4.608  

 ADM 39/41 4ft 36 16 0.576 8  4.608  

          

 ADM 42 4ft 36 4 0.144  8  1.152  

 Kitchen 5ft 58 1 0.058 8  0.464  

          

 ADM 44 4ft 36 14 0.504  8  4.032  

 Procurement 4ft 36 28 1.008 8  8.064  

          

 Procurement 1 4ft 36 8 0.288  8  2.304  

 Senior Procurement 4ft 36 14 0.504 8  4.032  

          

 Procurement Corridor 4ft 36 22 0.792  8  6.336  

 QA1 4ft 36 8 0.288 8  2.304  

          

 QA2 4ft 36 7 0.252  8  2.016  

 QA3 4ft 36 7 0.252 8  2.016  

          

 QA4 4ft 36 4 0.144  8  1.152  
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 QA5 4ft 36 2 0.072 8  0.576 

         

Room 9 4ft 36 6 0.216  8  1.728 

Assistant Procurement 

Officer 4ft 36 4 0.144 8  1.152 

        

Room 6(Central 

Services) 4ft 36 4 0.144  8  1.152 

Procurement Office 2 4ft 36 4 0.144 8  1.152 

        

Legal Offices 4ft 36 20 0.72  8  5.76 

ADM 47 4ft 36 8 0.288 8  2.304 

        

Letting Corridor 4ft 36 28 1.008  8  8.064 

Righting Corridor 4ft 36 28 1.008 8  8.064 

        

Security Desk 4ft 36 17 0.612  8  4.896 

 2ft 18 2 0.036 8  0.288 

        

Stairs to 1st Floor 2ft 18 6 0.108  8  0.864 

Stairs 2ft 18 3 0.054 24  1.296 

        

Corridor (Next to DVC 

Student 4ft 36 11 0.396  24  9.504 

Affairs)         

        

Corridor 4ft 36 22 0.792 4  3.168 

        

Recruitment Room 128 4ft 36 10 0.36  24  8.64 

ICT Server Room 4ft 36 8 0.288 24  6.912 

        

Registrar Admin ADM 

121 4ft 36 4 0.144  8  1.152 

ADM 119 4ft 36 4 0.144 8  1.152 

        

ADM 111 4ft 36 8 0.288  8  2.304 

Reception Office 1 4ft 36 8 0.288 8  2.304 

        

Reception Office 2 4ft 36 8 0.288  8  2.304 

Registrar Rm 112 

Reception 4ft 36 8 0.288 8  2.304 

        

Office 4ft 36 8 0.288  8  2.304 

Rm 106 Reception 4ft 36 8 0.288 8  2.304 

        

Office 1 4ft 36 8 0.288  8  2.304 

Office 2 4ft 36 8 0.288 8  2.304 

        

ADM 105 Reception 4ft 36 8 0.288  8  2.304 

Office 1 4ft 36 8 0.288 8  2.304 
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Rm 103 Front Office 4ft 36 4 0.144  8  1.152 

Office 1 4ft 36 8 0.288 8  2.304 

        

Machine Room ADM 

102 4ft 36 8 0.288  8  2.304 

Central Corridor 5ft 58 16 0.928 24  22.272 

        

Corridoor to South 

Wing 4ft 36 12 0.432  24  10.368 

CERM-ESA 2ft 18 1 0.018 8  0.144 

        

Reception 4ft 36 1 0.036  24  0.864 

Project Leader 4ft 36 1 0.036 8  0.288 

        

Project Coordinator 4ft 36 1 0.036  24  0.864 

Auditorium 4ft 36 20 0.72 8  5.76 

         

Control Room 4ft 36 1 0.036  8  0.288 

Lounge 4ft 36 2 0.072 8  0.576 
        

Resource Center 4ft 36 3 0.108  8  0.864 

Gents CFL 11 2 0.022 24  0.528 
        

Ladies CFL 11 2 0.022  24  0.528 

 4ft 36 1 0.036 24  0.864 
        

Wing 2 Corridor 4ft 36 27 0.972  24  23.328 

Alumni Office 

Secretariat 4ft 36 8 0.288 8  2.304 
         

ADM 134    0    0 

ADM 133    0    0 
         

ADM 135    0    0 

Deputy Registrar 4ft 36 8 0.288 8  2.304 
        

Assistant Registrar 

Reception   8 0  8  0 

Office 1 4ft 36 8 0.288 8  2.304 
        

Office 2 4ft 36 8 0.288  8  2.304 

Alumni Office ADM 

135 4ft 36 8 0.288 8  2.304 
        

Rm 141 4ft 36 8 0.288  8  2.304 

Office 4ft 36 8 0.288 8  2.304 
        

Rm 139 4ft 36 8 0.288  8  2.304 

ADM 142 Front Office 4ft 36 8 0.288 8  2.304 
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Office 2 4ft 36 8 0.288  8  2.304 

Office 1 4ft 36 8 0.288 8  2.304 
         

Deputy Registrar    0    0 

ADM 143    0    0 
        

Kitchen 2ft 18 1 0.018  8  0.144 

Peace and 

Reconciliation    0    0 
         

Rm 146    0    0 

Rm 147 4ft 36 110 3.96 8  31.68 
        

Admission Registry Rm 

149 4ft 36 18 0.648  8  5.184 

Deputy Registrar Rm 

150 4ft 36 8 0.288 4  1.152 
        

ADM 154 4ft 36 12 0.432  8  3.456 

ADM 153 Reception 4ft 36 8 0.288 8  2.304 
        

Office 1 4ft 36 12 0.432  8  3.456 

Office 2 4ft 36 8 0.288 8  2.304 
        

Ladies 4ft 36 2 0.072  24  1.728 

Gents 4ft 36 2 0.072 24  1.728 
        

V C'S Waiting Room 4ft 36 4 0.144  12  1.728 

Reception 4ft 36 12 0.432 12  5.184 
        

VC Office 4ft 36 16 0.576  12  6.912 

Toilet CFL 11 2 0.022 12  0.264 
         

Kitchen 2ft 18 1 0.018  8  0.144 

Boardroom 4ft 36 12 0.432 12  5.184 

        

Corridor 4ft 36 16 0.576  24  13.824 

DVC ARE Reception 4ft 36 16 0.576 12  6.912 

        

Office 4ft 36 18 0.648  12  7.776 

Washroom 2ft 18 1 0.018 12  0.216 

        

Waiting Room 4ft 36 8 0.288  12  3.456 

Assistant Registrar 4ft 36 8 0.288 12  3.456 

        

DVC Finance Reception 4ft 36 8 0.288  12  3.456 

Waiting Room 4ft 36 8 0.288 12  3.456 

        

Office 4ft 36 12 0.432  12  5.184 

Washroom 4ft 36 4 0.144 12  1.728 
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Reception 2 4ft 36 8 0.288  12  3.456 

DVC Student Affairs 4ft 36 8 0.288 12  3.456 

Reception         

        

Office 4ft 36 10 0.36  12  4.32 

Washroom 2ft 18 1 0.018 12  0.216 

        

Waiting Room 4ft 36 8 0.288  12  3.456 

DVC Planning 

Reception 4ft 36 10 0.36 12  4.32 

        

Office 4ft 36 12 0.432  12  5.184 

Washroom CFL 11 2 0.022 12  0.264 

        

Waiting Room 4ft 36 2 0.072  12  0.864 

Examination 4ft 36 8 0.288 12  3.456 

        

Deputy Registrar 4ft 36 8 0.288  4  1.152 

Reception 4ft 36 8 0.288 2  0.576 

        

Transcripts Office 4ft 36 8 0.288  2  0.576 

Certificate Issue 4ft 36 8 0.288 2  0.576 

        

Secretary Exam 4ft 36 8 0.288  2  0.576 

Assistant Registrar 4ft 36 8 0.288 2  0.576 

        

Administrator Exam 4ft 36 8 0.288  2  0.576 

Machine Room Front 

Area 4ft 36 8 0.288 2  0.576 

        

Machine Room 1 4ft 36 4 0.144  2  0.288 

Machine Room2 4ft 36 2 0.072 2  0.144 

        

Machine Room 3 4ft 36 4 0.144  2  0.288 

Exam Issue Desk 4ft 36 3 0.108 2  0.216 

        

Corridor 4ft 36 9 0.324  12  3.888 

Council Office 4ft 36 34 1.224 12  14.688 

        

Stairs 2ft 18 1 0.018  12  0.216 

Development Office 4ft 36 10 0.36 12  4.32 

        

Senior QS 1 4ft 36 3 0.108  12  1.296 

Secretary Exam 4ft 36 4 0.144 12  1.728 

Senate Chambers 2ft 18 72 1.296 12  15.552 

        

 5ft 58 2 0.116  12  1.392 

Washroom 4ft 36 2 0.072 24  1.728 
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Stairs 3rd Floor 4ft 36 2 0.072  12  0.864 

Development Corridor 4ft 36 3 0.108 12  1.296 

        

Integrity Office 4ft 36 4 0.144  2  0.288 

Development Office 2 4ft 36 4 0.144 12  1.728 

        

Benevolent Office 4ft 36 2 0.072  12  0.864 

Fire Officer 4ft 36 1 0.036 12  0.432 

        

Sewerage OfficeR 4ft 36 1 0.036  12  0.432 

Corridor to Internal 

Audit 4ft 36 2 0.072 24  1.728 

        

Stairs to 3rd Floor 4ft 36 18 0.648  24  15.552 

Com Tech Office 4ft 36 3 0.108 12  1.296 

        

Computer Room 4ft 36 8 0.288  12  3.456 

Corridor 4ft 36 2 0.072 12  0.864 

        

Lecture Room 9 4ft 36 54 1.944  12  23.328 

CTO 4ft 36 7 0.252 12  3.024 

        

Resource Clerk Admin 4ft 36 4 0.144  12  1.728 

Room 318 4ft 36 2 0.072 12  0.864 

        

Seminar Room 5 4ft 36 18 0.648  12  7.776 

Washroom 4ft 36 2 0.072 12  0.864 

        

Cafeteria Walkway 4ft 36 3 0.108  12  1.296 

Cafeteria Corridor 4ft 36 2 0.072 24  1.728 

        

Cafeteria 4ft 36 29 1.044  12  12.528 

Stairs 4ft 36 1 0.036 24  0.864 

        

Kitchen Eatery 4ft 36 4 0.144  12  1.728 

Kitchen Store 4ft 36 2 0.072 4  0.288 

        

Eatery Store Office 4ft 36 1 0.036  8  0.288 

Eatery Store 4ft 36 2 0.072 4  0.288 

        

Stairs 2ft 18 2 0.036  24  0.864 

General Audit Office 4ft 36 16 0.576 8  4.608 

        

Deputy Chief Auditor 4ft 36 4 0.144  8  1.152 

Internal Auditor 4ft 36 4 0.144 8  1.152 

        

Chief Internal Auditor 4ft 36 8 0.288  8  2.304 

Reception         

        

CIA 1 4ft 36 8 0.288 8  2.304 
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CIA2 4ft 36 12 0.432  8  3.456 

Extension & Outreach 4ft 36 16 0.576 8  4.608 

         

Corridor ADM 248 4ft 36 16 0.576  8  4.608 

Weather Station 4ft 36 4 0.144 8  1.152 

        

Corridor 4ft 36 9 0.324  24  7.776 

VLIR Reception 4ft 36 4 0.144 8  1.152 

        

Room1 4ft 36 7 0.252  8  2.016 

Room 2 4ft 36 7 0.252 8  2.016 

        

Corridor 4ft 36 14 0.504  24  12.096 

Office 1 4ft 36 7 0.252 8  2.016 

        

Office 2 4ft 36 4 0.144  8  1.152 

IGERD 4ft 36 8 0.288 8  2.304 

        

Director 4ft 36 8 0.288  8  2.304 

ADM 254 Reception 4ft 36 7 0.252 8  2.016 

        

Program Coordinator 4ft 36 8 0.288  8  2.304 

Meeting Room 4ft 36 8 0.288 8  2.304 

        

Manager 4ft 36 8 0.288  8  2.304 

Cloak Room 4ft 36 4 0.144 8  1.152 

        

Ladies CFL 11 2 0.022  8  0.176 

 2ft 18 2 0.036 8  0.288 

        

Gents CFL 11 3 0.033  8  0.264 

 2ft 18 2 0.036 8  0.288 

        

Vlirous 4ft 36 4 0.144  8  1.152 

ICT Kitchen 4ft 36 1 0.036 8  0.288 

        

ICT Office 245 4ft 36 8 0.288  8  2.304 

ADM 244 4ft 36 8 0.288 8  2.304 

        

ADM 242 4ft 36 8 0.288  8  2.304 

ICT Director 241 4ft 36 8 0.288 8  2.304 

        

Reception 4ft 36 8 0.288  8  2.304 

Director Office 4ft 36 8 0.288 8  2.304 

        

Directorate of 

Research 237 4ft 36 8 0.288  8  2.304 

Director Research 4ft 36 8 0.288 8  2.304 

        

Research ADM 238 4ft 36 8 0.288  8  2.304 
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MUHACU ADM 240 4ft 36 8 0.288 8  2.304 

        

Deputy Registrar 

ADM 234 4ft 36 8 0.288  8  2.304 

Reception 4ft 36 8 0.288 8  2.304 

        

Office 1 4ft 36 8 0.288  8  2.304 

Office 2 4ft 36 8 0.288 8  2.304 

        

Deputy Registrar 4ft 36 8 0.288  8  2.304 

ADM 233 4ft 36 8 0.288 8  2.304 

        

Office 1 4ft 36 8 0.288  8  2.304 

Office 2 4ft 36 8 0.288 8  2.304 

         

Central Area 4ft 36 4 0.144  24 3.456 

Corridor 4ft 36 12 0.432 24 10.368 

       

Office 201 4ft 36 8 0.288  8 2.304 

Corridor (Next to VC 

Office) 4ft 36 6 0.216 8 1.728 

       

Chairman of Council 

Office 4ft 36 16 0.576  8 4.608 

Reception 4ft 36 8 0.288 8 2.304 

       

Meeting Room 4ft 36 8 0.288  8 2.304 

Deputy Registrar 

Council 4ft 36 8 0.288 8 2.304 

Secretariat        

       

ADM 224 4ft 36 8 0.288  8 2.304 

    74.793   749.032 
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LIBRARY 

  

Area 

  

Lamp 

  

Rating 

  

Quantity 

  

Total 

  

Daily 

  

Total Energy 

  

                

     Type   (W)      Power(kW)   Running   Consumption   

                 Hours      

                       

 Security Desk   Mercury  250 16 4 24 96  

            

  Issue Desk   6ft   72   84   6.048   24   145.152   

     CFL  11 10 0.11 24 2.64  

            

  Exhibition   6ft   13   128   1.664   24   39.936   

          12 0 24 0  

            

  Corridoor   5ft   58   8   0.464   24   11.136   

 Audio Visual   5ft  58 10 0.58 8 4.64  

            

  Common Staffroom   5ft   58   4   0.232   8   1.856   

 Acquisitions   6ft  72 24 1.728 8 13.824  

 Cataloguing                     

            

  Acquisitions Office   4ft   36   15   0.54   8   4.32   

 General Office   6ft  72 14 1.008 8 8.064  

            

  Library Office   6ft   72   20   1.44   8   11.52   

 ICT Office   6ft  72 6 0.432 8 3.456  

            

  Basement Stairs   5ft   58   5   0.29   24   6.96   

 Basement   5ft  58 3 0.174 24 4.176  

            

  Washrooms   2D   6   4   0.024   24   0.576   

     2D  28 12 0.336 24 8.064  

                       

 Basement  5ft   58   6   0.348   24   8.352   

 Corridoor                            

Office 1  5ft  58   3   0.174   8   1.392   

                           

 Office 2  5ft   58   20   1.16   8   9.28   

LB 07  5ft  58   2   0.116   8   0.928   

                           

 LB 08 Darkroom  5ft   58   3   0.174   0   0   

Security Room  5ft  58   4   0.232   8   1.856   

                           

 LB 05  5ft   58   4   0.232   8   1.856   

Kitchen  5ft  58   1   0.058   8   0.464   

                             

                 21.564       386.448   
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ADMINISTRATION BLOCK 

Month Power Power Power Energy Consumed (kWh) Power Cost Unit Cost 

 Demand Consumed Factor    Factor (KES) (KES/kWh) 

 (kVA) (kW) (pf)    Surcharge   

       (KES)   

    High Low Total    

    Rate Rate Energy    

      Consumed    

Feb-18 93 88 0.95 18167 9597 27,764 0 652,034 23.48 

          

Mar- 97 92 0.95 18004 9307 27,311 0 660,379 24.18 

18          

Apr-18          

          

May- 93 88 0.95 19157 9576 28,733 0 690,642 24.04 

18          

Jun-18 98 93 0.95 17392 9147 26,539 0 574,434 21.64 

          

Jul-18 96 94 0.98 19016 9631 28,647 0 623,109 21.75 
          

Aug- 99 96 0.97 20740 10840 31,580 0 637,282 20.18 

18          

Sep-18 98 96 0.98 19428 11565 30,993 0 620,271 20.01 
          

Oct-18 106 103 0.97 22052 11306 33,358 0 668,665 20.05 
          

Nov- 96 93 0.97 21056 11230 32,286 0 643,409 19.93 

18          

Dec-18 92 89 0.97 16178 12412 28,590 0 580,337 20.30 
          

Jan-19 88 86 0.98 19751 11038 30,789 0 618,980 20.10 

          

Feb-19 93 90 0.97 19082 10662 29,744 0 626,490 21.06 
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MARGARET THATCHER LIBRARY 

 

Month Power Power Power  
Energy Consumed 

(kWh)  Power Cost  Unit Cost 

 Demand Consumed Factor          Factor (KES)  (KES/kWh) 

 (kVA) (kW) (pf)          Surcharge    

             (KES)    

                 

     High   Low   Total      

     Rate   
Rat

e   Energy      

           
Consume

d      

Feb-18 110 87 0.79 22897  6395  29292  94,873.68 797,728  27.23 

              

Mar-18 103 81 0.79  

1824

1   

420

3   22444  72,718.56 627,080  27.94 

                 

Apr-18                 

                 

May-18 100 78 0.78 17373 4020 21393 75,089.00 601,362 28.11 

          

Jun-18 102 83 0.81 20927 6012 26939 64,073.96 659,562 24.48 

          

Jul-18 103 90 0.87 24384 6904 31288 14,667.02 691,324 22.10 

          

Aug-18 100 90 0.90 22690 6292 28982 - 595,751 20.56 

          

Sep-18 129 112 0.87 23238 6311 29549 27,118.44 663,488 22.45 

          

Oct-18 140 116 0.83 31585 7830 39415 79,807.28 894,264 22.69 

          

Nov-18 140 110 0.79 32644 8985 41629 82,556.60 930,697 22.36 

          

Dec-18 132 111 0.84 19523 7998 27521 50,531.04 647,058 23.51 

          

Jan-19 133 111 0.83 26647 6880 33527 69,929.44 791,084 23.60 

          

Feb-19 137 113 0.82 29777 8338 38115 89,900.00 916,585 24.05 

          

Total      370,094 721,265.02 8,815,983 24.09 

          

Average 119.0833 98.5 0.83      23.82 
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Appendix F: Simulink model for the power inverter 
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Appendix G: Simulink model for the battery controller 
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Appendix H: Ropp Test 

This standard irradiance profile for testing MPPT controllers was developed by (Ropp 

et al., 2011). The irradiance profile is divided into static and dynamic sections to 

account for real world scenarios of irradiance variations.  

 

The test profile begins with an irradiance of 200 W/m2 for 60s and slowly ramps up to 

1000 W/m2 after 80s with a ramp up rate of 10 W/m2/s. The irradiance is then 

maintained at 1000 W/m2 for 60s and then rapidly ramps down to 200 W/m2 in 4s with 

a fast downward ramp rate of -200 W/m2/s. The irradiance stays low at this steady value 

for 60s before a fast ramp up occurs, taking the irradiance to the medium condition of 

600 W/m2 in just 2s at a ramp up rate of 200 W/m2/s. This medium irradiance stays 

steadily for 120s before quickly ramping down to 200 W/m2 in 2s at a rate of -200 

W/m2/s. From this point, the irradiance remains steadily at 200 W/m2 for 60s and then 

quickly ramps up to 1000 W/m2 in 4s, stays constant for 60s and then ramps down 

slowly to 200 W/m2 in 80s. 
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The figure shows the Ropp irradiance profile and the tracked power using the designed 

MPPT tracker. 
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