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ABSTRACT 

A tumor develops when a single normal cell transforms due to mutations in certain 

key genes. To continue growing, it requires new sources of nutrients, hence develops 

new blood vessels that continue feeding it from the blood leading to vascularization. 

Statistics from World Health Organization (WHO) records shows that incidences of 

brain tumors in the year 2014 were already at 1/12,500 persons. The purpose of this 

study was to develop a numerical simulation of vascular brain tumor that will help 

medical practitioners to predict the size of the tumor for prognosis purposes instead of 

exposing patients to radiations through multiple scanning. In this work numerical 

simulation was developed from partial differential equations models, whereby cell 

nutrients concentration(C) was the dependent variable x, y, z were spatial independent 

variables, t was a variable for different time schedules, P was the variable for cells 

proliferation, Pn was the variable for non- proliferating cells while N was the variable 

for necrotic cells. Objectives of study were, to develop a numerical simulation of 

vascular brain tumor growth in one, two and three dimensions, to determine the 

viable rate of consumption of the nutrients in tumor growth and development, to 

present validated results in tabular and graphical form, to determine the period within 

which angiogenic inhibitors are viable. In attaining the objectives above results were 

generated by Adomian Decomposition Method (ADM) whereby equations are 

decomposed into a series of Adomian polynomials. The method generates a solution 

in the form of a series whose terms are determined by a recursive relationship. 

Results obtained from the simulation of growth and dynamics of malignant brain 

tumor (glioma) compares well with those from medical literature. In one dimensional 

model, radius of the tumor in different time schedules was obtained, for example 

where the rate of diffusion of the nutrients was 11mm/year, in 560 days, simulation 

radius was found to be 25.4mm compared to an experimental radius of 25.0 mm. In 

two dimensional models, cross section area of the tumor in different time schedules 

was obtained, whereby in 560 days, simulation area was found to be 19.02cm
2
, 

whereas analytical area was 19.64cm
2
. In three dimensional models, volume of the 

tumor in different time schedules was obtained, whereby in 560 days, simulation 

volume was found to be 65.77cm
3
, whereas analytical volume was 65.48cm

3
. Thus 

obtained results were found to be consistent with available experimental data, hence 

may be used to complement traditional tumor diagnostic. Considering idealized cases 

of tumors, ADM gave realistic simulations, which can provide clinical practitioners 

with valuable information on the potential effects of therapies in their exact 

schedules. However for tumors with multiple distinct clones, current model may not 

be reliable thus further studies are needed to address this shortcoming. 
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CHAPTER ONE 

INTRODUCTION 

This chapter gives the background information of Adomian Decomposition Method (ADM) 

and also tumor development from avascular to vascular stage. It also gives the definition of 

some key terms, problem statement, justification and objectives of this work. 

1.0   Background Information 

The Adomian decomposition method for solving differential and integral equations linear or 

non-linear was proposed by the American physicist Adomian (1980). The method has been 

used to solve effectively and easily a large class of linear and non- linear ordinary and partial 

differential equations. 

It has the advantage of converging to the exact solution and can easily handle a wide class of 

both linear and non-linear differential and integral equations.  It has been found to be efficient 

since it requires less computational work while still maintaining high accuracy of the 

numerical solution. Also it has the ability to solve non-linear problems without linearization, 

has wide applicability to several types of problems in scientific fields since it develops a 

reliable analytical solution. The method is analytic and requires neither linearization nor 

perturbation. It can be applied directly for all types of differential and integral equations, 

linear or nonlinear, homogeneous or inhomogeneous with constant coefficients or with 

variable coefficients. 

In this work results are generated by using Standard Adomian decomposition method 

(SADM). This method involves separating the equation under investigation into linear and 

non-linear portions. The linear operator representing the linear portion of the equation is 

inverted and the inverse operator is then applied to the equation. Any given conditions are 

taken into consideration. The non-linear portion is decomposed into a series of Adomian 

polynomials. 
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 This method generates a solution in the form of a series whose terms are determined by a 

recursive relationship using these Adomian polynomials. 

It is fundamental to note that the development of a primary solid tumor begins with a single 

normal cell becoming transformed as a result of mutations in certain key genes (Friedman, 

2006). This transformed cell differs from a normal one in its escape from the body’s 

homeostatic mechanisms, leading to inappropriate proliferation and a tendency to override 

apoptosis (cell death). An individual tumor cell has the ability over successive divisions to 

develop into a cluster of tumor cells. Further growth and proliferation leads to the 

development of an avascular tumor consisting of approximately 10
6
cells. A solid tumor may 

typically be detected only when it attains a radius of 0.5mm, by then it contains about 10
9
 

cells. At this stage the cells feed on oxygen and other nutrients present in the local 

environment that is, it is at benign stage. In order to continue growing it requires new sources 

of nutrients, hence it secretes chemicals called tumor growth factors which stimulate the 

formation of new blood vessels that continue feeding the tumor from the blood. This is the 

process of angiogenesis. A tumor which has developed beyond this stage is said to be 

vascularized. After the early stages of growth, the tumor’s structure consists of an inner zone 

of necrotic cells (dead due to lack of nutrients) and an outer zone of living cells. This outer 

zone is further divided into a layer composed of non- proliferating cells and a layer largely 

composed of proliferating cells. 

According to WHO, global incidences of primary malignant brain and central nervous system 

tumors are 3.6 per 100,000 persons per year in males and 2.5 per 100,000 persons per year in 

females. The incidence rates are higher in more developed countries that is, males; 5.9 per 

100,000 persons per year and females: 4.1 per 100,000 persons per year. In less developed 
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countries males 2.8 per 100,000 persons per year while females’ incidences are 2.0 per 

100,000 persons per year. This discrepancy may partly be a reflection of poor facilities for 

diagnosis. 

 The incidence of malignant brain tumor in the UK is higher than the world average for both 

men (8.1 per 100,000), and women (5.3 per 100,000). There has been no significant change in 

these rates over the past 10 years. 

 In the USA, the rate is 7.6 per 100,000 for men and 5.3 per 100,000 for women. American 

men have a 1 in 149 lifetime risk of being diagnosed with a primary malignant brain tumor 

and a 1 in 204 chance of dying from a brain tumor. Women have a 1 in 200 lifetime risk of 

being diagnosed with a primary malignant brain tumor and 1 in 256 chance of dying from this 

cause. 

The model analyzed here devises a method to provide a reasonably realistic discrete size of a 

tumor in different time schedules for prognosis purposes. 

1.1 Definition of key terms 

1.1.1 Stability: A method is said to be stable when obtained solution undergoes small 

variations as there are slight variations in inputs and parameters. 

1.1.2 Adomian decomposition method: This is a series expansion method and is 

independent of small physical parameters as compared to well known perturbation theory 

hence giving the method greater flexibility and solution generality. 

 

1.1.3 Perturbation theory: Comprises Mathematical methods that are used to find an 

approximate solution to a problem which cannot be solved exactly by starting from the exact 
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solution of a related problem.  Perturbation theory is applicable if the problem at hand can be 

formulated by adding a small term to the mathematical description of the exactly solvable 

problem, while further terms describe the deviation in the solution due to the deviation from 

the initial problem. 

1.1.4  Primary tumor: The tumor at its initiated location which is traced to a single mutated 

cell, from which over a period of time  a colony of cells is formed. 

1.1.5 Benign: Where the mass of abnormal cells remains clustered together and confined to 

the cavity. 

1.1.6 Malignant: Where the tumor has emerged out of the cavity by breaking out through the 

basal membrane and then proliferating into the extracellular matrix. 

1.1.7 Vascular tumor: A tumor which has developed beyond the process of angiogenesis.  

1.1.8 Avascular tumor: A tumor in the advanced stage of development. It is approximately 

1mm in diameter. It contains approximately 10
6 
cells including the normal cells. 

1.1.9 Necrotic cells: These are dead cells which cannot be able to multiply. They are found at 

the inner core of the tumor. 

1.1.10 Quiescent cells: Cells which are not yet necrotic but as well cannot proliferate since 

they do not have an access to the nutrients. Found in the middle core of the tumor. 

 

1.1.11 Proliferating cells: Cells which are actively multiplying since they have an access to 

the nutrients. Found on the surface of the tumor. 

 

1.1.12 Magnetic Resonance Imaging (MRI) is a procedure in which radio waves and a 

powerful magnet linked to a computer are used to create detailed pictures of areas inside the 

body. These pictures can show the difference between normal and diseased tissues. 

 

http://www.mayfieldclinic.com/PE-MRI.htm
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1.1.13 Tumor angiogenesis: It is the growth of blood vessels between a tumor and its 

surrounding tissues. New blood vessels help the tumor to grow by feeding the cancer cells 

with essential nutrients and oxygen. 

 

1.1.14 Neurologic symptoms: Symptoms of disorders that affect the brain and the central 

nervous systems for example, muscles weakness, decreased alertness, unexplained pain 

among others.  
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1.2 Statement of the problem 

 WHO records show that incidences of brain tumors is already at 8/100,000 persons per year 

and is still increasing. According to American Brain tumor association’s statistics updated in 

2014, approximately 4,600 children are diagnosed with a brain tumor in the U.S per year of 

which 72 percent of these children are younger than 15 years. The Association also estimates 

that about 700,000 people will be diagnosed with a primary brain tumor in the US every year. 

Unfortunately, each year about 14,000 people die of brain tumors in the U.S. In less developed 

countries males’ incidences are at 2.8 per 100,000 persons per year while females’ are 2.0 per 100,000 

persons per year. This discrepancy may partly be a reflection of poor facilities for diagnosis. 

Substantial progress has been made in the various specialized areas of cancer research, yet the 

complexity of the disease lead to description of tumors as complex and dynamic. By virtual of 

being dynamic, patients diagnosed with tumor require immediate medical attention which 

may sometimes not be affordable or available. Therefore simulation carried out in this work 

will help medical practitioners to predict the size of untreated tumor for prognosis purposes 

instead of exposing oncologic patients to radiations through multiple scanning. 

1.3 Justification 

After understanding the complexity of the tumors, simulations must be developed which 

incorporates concepts from many scientific areas such as cancer research, applied 

mathematics and dynamical systems. The simulation carried out in this work is basically 

meant for predicting the size of tumor at given time schedules after detection. It can help in 

evaluation of the therapeutic potential of some treatment strategies owing to the size of the 

tumor. 
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For patients who are unable to undergo treatment immediately after scanning, medical 

practitioners can use the simulation to predict the size of the tumor for prognosis purposes in 

specific time schedules without further scanning hence not exposing patients to radiations 

through multiple scanning. 

1.4 Research Objectives 

1.4.1 General objective 

To carry out numerical simulation of vascular brain tumor growth from Partial Differential 

Equations models using Adomian Decomposition Method (ADM). 

1.4.2 Specific objectives 

(i) To perform numerical simulation of vascular brain tumor growth in one, two and three 

dimensions. 

(ii) To determine the viable rate of consumption of the nutrients in tumor growth and 

development. 

(iii) To present validated results in tabular and graphical form. 

(iv)  To determine the period within which angiogenic inhibitors are viable. 

1.5 Scope of the study 

The purpose of this research is to present this new and reliable method (ADM) for solving 

ordinary and partial differential equations. In presenting this work, the aim is also to test the 

proposed method in handling a generalization of various types of problems. Specifically this 

research provides a numerical simulation of vascular brain tumor growth by using the method. 
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Since its introduction, ADM has been attracting the attention of many mathematicians, 

physicist and engineers. It has been the subject of extensive analytical and numerical studies. 

In recent years, a large amount of literature has been developed concerning the method by 

applying it to large size of applications in applied sciences. Significant research has also been 

done in the modeling of tumors using theoretical models and computer simulations as outlined 

in the next chapter.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

In this chapter, some of the earlier work that has been done by researchers in the field of 

ADM and also tumor modeling using both theoretical models and computer simulations is 

outlined. 

2.1 Adomian Decomposition Method (ADM) 

Since its introduction, ADM has been attracting the attention of many mathematicians, 

physicist and engineers. It has an advantage of converging to the exact solutions and can 

easily handle a wide class of linear and non- linear differential and integral equations. 

It has been the subject of extensive analytical and numerical studies. A large amount of 

literature has been developed concerning the method by applying it to large size of 

applications in applied sciences. 

It is interesting to point out that a useful comparison between the Adomian decomposition 

method and the Picard method was conducted by Rach (1987) to show that the two methods 

are not the same and Picard’s method works only if the equation satisfies the Lipschitz 

condition. Bellomo and Monaco (1985) have shown significant advantages of decomposition 

method over perturbation techniques. Both studies can be used to formally show that the 

decomposition method is neither Picard’s method nor a form of perturbation techniques. 

Related phenomena were recently established to facilitate the convergence of the solution or 

to make savings in the computational work. Adomian and Rach (1992) introduced and defined 

the phenomena of noise terms. The noise terms were defined as the identical terms with 

opposite signs that appear in the first two components of the series solution of u(x). It was 

concluded that if a term or terms in the component u0 are cancelled by a term or terms in the 
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component u1, even though u1 contains further terms, then the remaining non- cancelled terms 

in u0 may provide the exact solution u(x). It was shown that the noise terms appear always for 

inhomogeneous equations. This development is proved to be useful in demonstrating a fast 

convergence of the decomposition series solution. 

The theoretical treatment of the convergence of Adomian decomposition method has also 

been considered in Abbaoui and Cherruault (1995), Hosseini and Nasabzadeh (2006). 

According to them the solution is found as an infinite series which converges rapidly to 

accurate solutions. The method has many advantages over the classical techniques; mainly it 

makes unnecessary the linearization of nonlinear terms, perturbation and other restrictive 

methods and assumptions.  

In his book, Adomian (1994) showed the possibility of obtaining explicit solutions of wide 

varieties of physically significant problems, for example, he analyzed the mathematical 

models of the dynamics involved in population of bacteria, viruses, antigens or tumor cells. 

These models are usually nonlinear hence their solution generally begins by some form of 

linearization or perturbation. He found that the method is independent of linearization, 

perturbation as well as discretization hence greatly reducing the CPU time. 

Wazwaz (1997) developed a necessary condition that is essentially needed to ensure the 

appearance of noise terms in the inhomogeneous equations. The necessary conditions for the 

noise terms to appear in the components u0 and u1 are that the exact solution u(x) must appear 

as part of u0 among other terms. In addition, the remaining non- cancelled terms of u0must 

satisfy the equation under discussion.  
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The new necessary condition developed by Wazwaz (1997) was formerly proved and tested to 

demonstrate the power of the noise terms whence these terms appear in the components u0 and 

u1. 

A new modification was proposed by Wazwaz (1999) which demonstrated a rapid 

convergence of the series solution compared to the standard Adomian method and therefore 

presented a major progress. This modified decomposition method has been showed to be 

computationally efficient in several examples that are important to researchers in applied 

fields. In addition the modified decomposition method may give the exact solution by using 

two iterations only and without using Adomian polynomials. In this modification, the 

modified form was established based on the assumption that the function f (x) can be divided 

into two parts namely )(0 xf  and )(1 xf . Under this assumption, we set 

)1.2.....(....................................................................................................).........()()( 10 xfxfxf

 

Accordingly a slight variation was proposed only on the component 
0u and

1u . The suggestion 

was that only the part 
0f be assigned to the zeroth component 

0u whereas the remaining part

1f be combined with the other terms to define
1u . Consequently the modified recursive relation 

was developed i.e. 

)(00 xfu  

),()()( 0

1

0

1̀

11 ALRuLxfu
 

),()( 1

1

1

1̀

2 ALRuLu  

)2.2(................................................................................,.........0),()( 1

1

1

1

2 kALRuLu kKk
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Where L is the highest order term which is assumed to be easily invertible and R is the 

remainder of the linear operator. 0Ru
 
represent the remainder of linear operator at 0

th
 iteration 

while 1kRu  represents the remainder of linear operator at 
th

k 1  iteration. A is the nonlinear 

operator at different iterations. Comparing the recursive scheme of the standard Adomian 

method 

That is, 

)(0 xfu  

),()( 0

1

0

1̀

1 ALRuLu  

)3.2......(..........................................................................................0),()( 11

1 kALRuLu kkk

 

 The recursive scheme above of modified decomposition method leads to the conclusion that 

in equation (2.3),the zeroth component was defined by a function ).(xf Whereas in equation 

(2.2) , the zeroth component )(0 xu was defined only by a part )(0 xf of )(xf . 

The remaining part )(1 xf  of )(xf is added to the definition of the component )(1 xu in equation 

(2.3).The slight variation in reducing the number of terms of u0 reduced the size of the 

computation work. Further, because of the dependence of the Adomian polynomials of the 

zeroth components )(0 xu in non-linear equations, the reduction of terms in
0u produced a 

reduction in the size of calculations. Furthermore, the slight variation in the definition of the 

components 
0u and 

1u may provide the solution by using two iterations only. However the 

success of the modified decomposition method depends entirely on the proper selection of 

functions
0f and .1f Wazwaz (1999) also noted that modified method does not always 

minimize the size of calculations needed and even requires much more calculations than the 

standard Adomian method. 
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Wazwaz, and El-sayed (2001) proposed the two step Adomian decomposition method 

(TSADM) to modify the standard Adomian decomposition method and make further progress 

beyond the achievement made so far in this regard.  

The TSADM may provide the solution by using one iteration only compared with the standard 

Adomian method and the modified method.  

A comparative study between the TSADM and the modified decomposition method is 

conducted to illustrate the efficiency of the TSADM. Comparing the standard Adomian 

method and the modified method, it can be seen that the TSADM may provide the solution by 

using one iteration only. Furthermore, the number of terms in f is small in many practical 

problems. 

Chen et al.(2004) established an algorithm that can be easily programmed and be used to 

calculate Adomian polynomials for nonlinear terms in the differential equations. The basic 

goal is to mechanize the computation of the decomposition method by maple program, so that 

we can obtain the approximate solutions conveniently. However, though the program always 

provides effective analytical solutions in this field, there are some open problems about the 

Adomian decomposition method such as the general convergence of 

)4.2......(..................................................................................................................................
0n

nu

 

and the error estimation of the approximate solution 

 

)5.2........(........................................................................................................................
1

0

n

i

in uu

 

So he observed that the results produced by the program should be dealt with carefully. 
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Aminataei and Hosseini (2007) compared the stability of Adomian decomposition method 

with other numerical methods. In comparison with the solution obtained by using the finite 

difference method, the conclusion was that Adomian decomposition method is weaker in 

stability than finite differences but stronger in convergence. 

The general conclusion was that Adomian decomposition method, despite its greater 

efficiency in solving differential equations suffers certain weaknesses. 

Liu (2009) used the orthogonal polynomials to modify the Adomian decomposition method. 

The method of employing Legendre and Chebyshev polynomial to improve the Adomian 

decomposition method was presented in his paper, he concluded that both orthogonal 

polynomials; Chebyshev and Legendre can be successfully used to improve the Adomian 

decomposition method and the obtained approximated solution is more accurate than the one 

obtained through regular ADM. Comparatively, Chebyshev polynomials provides better 

estimation than Legendre polynomials. According to him the partial sums of Chebyshev 

expansion of a continuous function on [-1,1] converge faster than those of any other 

polynomials, however he observed that Legendre polynomials were superior because of unit 

weight function and hence easier for application. 

Biazar et al. (2009), extracted a general iterative method from an Adomian decomposition 

method and compared it to the variation iteration method. They achieved this goal and 

presented a general iteration formula which seems to be effective. In conclusion, the two 

methods led to the results which were exactly the same; hence they recommended that the 

method be used for solving other functional equations.  
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Kumar and Singh (2010) presented an efficient numerical algorithm for solving singular two-

point linear and non-linear problems which is based on the modified Adomian decomposition 

method (MADM). Also they proposed a new operator for solving singular boundary value 

problems (BVPS) which gives lesser error compared to MADM and other existing techniques 

given in the literature. 

The method successfully worked to give very reliable and accurate solutions to the singular 

problem. The method gives convergent approximations and handles non-linear problems. In 

this method, there is no need for linearization of nonlinear terms. 

For nonlinear problems, MADM is seen to be a very good choice to achieve a high degree of 

accuracy while dealing with both linear and nonlinear problems.  

Adomian decomposition method is implemented directly in a straight forward manner without 

using restrictive assumptions. Comparing the results with other existing methods it has been 

proved that MADM is a more powerful method for solving various kinds of singular boundary 

value problems. 

Also comparing MADM with the finite difference method (FDM), cubic Spline method, 

MADM is less stable than finite differences and other methods but has a better convergence. 

It can be concluded that MADM has a greater convergence in solving singular boundary value 

problems. 

The new method is also not much affected by computational round off errors and there is no 

necessity of large computer memory and time, compared with the FDM and other methods. 

Emad et al.(2011), advanced the ADM for solving two- point nonlinear boundary value 

problems with Neumann boundary conditions. The aim of their work was to introduce a direct 

approach for solving ordinary and partial second order boundary value problems with 
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Neumann boundary conditions. This extension is based on a new definition of the inverse 

linear operator. The main advantage of this approach is the direct way of dealing with the 

Neumann boundary conditions. 

In addition, a unique solution results or a class of approximate solutions is otherwise obtained. 

The ADM is validated by discussing several linear and nonlinear ordinary and partial two 

point boundary value problems. It is shown that, for a sufficiently small number of 

components the approximate and exact solutions become nearly identical. 

Emad et al.(2012) developed a new straight forward approach for solving ordinary and partial 

second-order boundary value problems with Neumann boundary conditions. This approach 

depends mainly on the Adomian decomposition method with a new definition of the 

differential operator and its inverse, which has been modified for Neumann boundary 

conditions. The effectiveness of the proposed approach is verified by several linear and 

nonlinear examples.  

Wanjau et al.(2016) Compared the convergence of ADM and that of fourth order Runge Kutta 

method by applying them in obtaining a numerical simulation of Third order Ordinary 

differential equation. According to the results obtained ADM has a better convergence than 

fourth order Runge Kutta method. 

Significant research has also been done in the modeling of tumors using theoretical models 

and computer simulations. Previous modeling has been done on a range of tumor behaviors, 

including proliferative growth of tumor core. 
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2.2 Tumor Modeling  

Some of the earliest work in modeling of tumors using a three dimensional cellular automaton 

on a cubic lattice was carried out by Dutching and Vogelsaenger (1985) for very small 

tumors.   These automaton rules were designed to reflect nutritional needs for tumor growth.  

Other important factors, such as surrounding cells and mechanical pressure, however, 

remained unconsidered. 

Adam (1986) used an ordinary differential equation to model the growth of the tumor which 

reflected mass conservation of tumor cells, coupled with a reaction-diffusion equation. His 

main interest was about the distribution of nutrients within the tumor. He found that the 

distribution of nutrients within the tumor is basically governed by fluid dynamics principles. 

Qi et al. (1993) considered a two dimensional cellular automaton tumor model. However, 

cells could only divide if one of their nearest neighbors was empty; this created an 

unrealistically small fraction of tumor which may divide. Furthermore, dead tumor cells were 

assumed to simply dissolve away rather than accumulating into a necrotic core, as is seen in 

real tumors.  

Smolle and  Stettner (1993) showed that the macroscopic  behavior  of a tumor  can be 

affected  by the presence of growth  factors at the  microscopic  level  and added the concept 

of cellular migration  to the behavior of the cells. However, their work was qualitative and 

designed to show the range of behaviors obtainable from a simple model. 

Chiocca et al.(2000) developed a three dimensional cellular automaton model which describes 

tumor as a function of time. The algorithm takes into account that growth starts out from a 

few cells, passes through a multi cellular tumor spheroid (MTS) stage and proceeds to the 
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macroscopic stages. According to their work an idealized case of a tumor is essentially 

spherical within a small degree of randomness. However, their algorithm gave simulation on 

only four designated time points i.e. spheroid stage, detectable lesion, diagnosis and death. 

Their algorithm could not provide information about the rate of diffusion of the nutrients 

within the proliferative rim of the tumor. 

 Nicholson (2001) considered diffusion and related transport mechanisms in brain tissue. He 

highlighted the role of diffusion in brain function. According to him, the spaces between cells 

can be likened to the water phase of foam and many substances move within this complicated 

region.  

Diffusion in this space can be accurately modeled with appropriate modifications of classical 

equations. Besides delivering glucose and oxygen from the vascular system to the brain cells, 

diffusion also moves informational substances between cells, a process known as volume 

transmission. Diffusion is also essential to many therapies that deliver drugs to the brain. 

Cheng (2005) developed a mathematical model for the quantitative description of the 

dynamics of avascular tumor growth. The model was formulated as a set of partial differential 

equations describing the spatial-temporal changes in cell concentrations based on reaction-

diffusion dynamics and the law of mass conservation. His model was solved using standard 

finite difference techniques. He observed that even though the results compared well with 

those of experimental data, they could only be obtained at discrete points depending on the 

step sizes provided. This created a shortcoming since tumor growth is a dynamic process. 

Friedman (2006) presented generic PDE models which governs the growth and development 

of tumors. He observed that the tumor region is a three dimensional region (t) which varies 
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with time (t).Within (t) there are several types of cells as well as several different 

chemicals such as oxygen and other nutrients. The densities of the cells and the concentration 

of the chemicals satisfy a system of partial differential equations. However a major difficulty 

in the analysis of the models was due to the fact that the region (t) is one of the unknowns 

hence becoming a free boundary problem. By being generic models he never specified the 

parameters and hence never obtained the simulation.  

Friedman (2013) developed a partial differential equation model of the growth and response to 

treatment of prostate cancer. He considered existence and uniqueness of solutions for proven 

radially symmetric case. Finally, numerical simulations of a tumor growing in two dimensions 

with radial symmetry were carried out in order to evaluate the therapeutic potential of 

different treatment strategies. 

The simulations were able to reproduce a variety of clinically observed responses to treatment 

and suggested treatment strategies that may result in tumor remission, underscoring the 

model’s potential to make a significant contribution in the field of prostate cancer 

therapeutics. He proved that for tumor cell growth rate the tumor radius was not consistent but 

had oscillatory behavior. 

Konukoglu et al (2010) defined gliomas as tumors arising from glial cells of the central 

nervous system (CNS).According to them, they form an invasive class of tumors with poor 

prognosis following their Anaplastic transformation. A severe impediment to their treatment 

is the diffuse and heterogeneous rate of invasion that leads to invisible outer tumor, 

undetectable under current imaging resolutions. This heterogeneous pattern of spread has 
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partly been attributed to the anisotropic invasion of glioma cells along aligned structures in 

the brain, such as the bundled neural fibre tracts characteristics of white matter. 

Hillen and Painter (2013); presented a model of glioma invasion along the aligned neural fibre 

tracts. According to them, the invasion is facilitated by the directed movement of cells along 

the aligned neural fibre tracts that form a large component of the white matter. Diffusion 

Tensor Imaging (DTI) provides a window for visualizing this anisotropy and gaining insight 

on the potential invasive pathways. They demonstrated the results in a simple model for 

glioma growth exploiting both synthetic and genuine DTI datasets to reveal the potentially 

crucial role of anisotropic structure on invasion. 

Naveja et al. (2014) presented a model which was stated upon fundamental assumptions to 

produce a predictor of the clinical outcomes of patients undergoing a tumor resection. They 

used an ODE model validated for predicting the immune system response and the tumor 

growth in oncologic patients. 

The model could be further extended to a personalized prognosis predictor and tools for 

improving therapeutic strategies. 

In this work a model of vascular primary brain tumor is developed and its numerical 

simulation obtained using Adomian decomposition method. The method has an advantage in 

that it does not require discretization or linearization of nonlinear problems. 

Chapter three below gives the model formulation as well as the step by step description of 

Adomian Decomposition Method. 
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CHAPTER THREE 

METHODOLOGY AND MODEL FORMULATION 

3.0 Introduction 

This chapter outlines the procedure for ADM which facilitate development of the simulation 

for the models. The section as well outlines the steps of model formulation based on 

information obtained from WHO records. 

3.1 Application of Adomian decomposition method in obtaining a numerical simulation 

of vascular brain tumor growth. 

Fluid dynamics often give rise to non-linear differential equations. These problems                                                                                     

end to be more difficult to solve, often with no known exact solution. As such researchers are 

continually looking for ways to accurately and efficiently solve these problems. 

Many methods have been developed to solve the non-linear differential equations, but there is 

need for a method which requires high accuracy with lower number of iterations. 

In this work standard numerical method was developed and applied in solving a nonlinear 

PDE model governing the diffusion of nutrients in the tumor. This new algorithm is derived 

from the standard Adomian decomposition method (ADM) so as to present an alternative to 

such classic schemes as the explicit Runge-Kutta methods for engineering and biological 

models. 

Under this method, the model is separated into linear and nonlinear portions. The linear 

operator representing the linear portion of the equation is inverted and the inverse operator is 

then applied to the equation. Initial conditions for tumor growth and development are taken 
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into consideration. The nonlinear portion is decomposed into a series of Adomian 

polynomials. 

 

This method generates a solution in the form of an infinite series which converges to accurate 

solutions. Also there is graphical representation of the solution for the purposes of better 

comparison and analysis. 

 

3.2 Description of the method 

 

Where F represents a general nonlinear differential operator involving both linear and 

nonlinear terms, the linear term is decomposed into L+R where L is easily invertible and R is 

the remainder of the linear operator. For convenience, L may be taken as the highest order 

derivative. Thus the equation may be written as; 

gNRL
………………………………………………………………..…….(3.1) 

 

 

NRgL
.…………………………………………………………...………..(3.2) 

 

NLRLgLLL 1111

…………………………………………..………..………..(3.3) 

 

Computing left hand side of (3.3) yields; 
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Where F represents a general nonlinear differential operator and 0  is the dependent variable 

at th0  iteration. 1 is the dependent variable at first iteration among others.
 

Hence taking 0  = gLctbta 12
 and substituting equations (3.7) and (3.8) into equation 

(3.6); 
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The series converges since,  
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where L is the highest order derivative and R is the remainder of the linear operator, N 

represents nonlinear terms. 

1L   Operator, which is a multiple integral from 0 to t (that is definite integral within a specific 

time schedule), is then operated on equation (3.16) to yield: 

NuLRuLgLLuL 1111

……………………………………..……………………...(3.17) 

The left side of equation (3.17) will be obtained as: 
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Suppose the answer to equation (3.16) is as follows: 
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Then, the substitution of equation (3.20) for equation (3.19) will yield: 
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From (3.22), the series can be generated as, 
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3.3 Model Formulation. 

Information obtained from WHO records indicate that a tumor (also called a neoplasm or 

lesion) is abnormal tissue that grows by uncontrolled cell division. Normal cells grow in a 

controlled manner as new cells replace old or damaged ones. For reasons not fully understood, 

tumor cells reproduce uncontrollably. Basically brain tumor is a mass of abnormal cells 

growing in the brain, that is; 

 

Fig. 3.1;3-Dimensional brain tumor geometry by Francisco Jose Torres -2015 

 

It compresses and displaces normal brain tissues applying pressure on the tissues hence 

causing neurologic symptoms. 

The figures below show images of brain tumors at different positions of the brain or for 

patients undergoing certain forms of medication. 
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Fig.3.2; Shows a brain tumor of a patient undergoing resection which involves cutting a 

window in the skull (craniotomy) to remove the tumor. 

 

 

 

 

 

 

 

Fig.3.3: Chemotherapy for high-grade glioma. From the website of Mayfield clinic. 
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Fig. 3.4: Vascular brain tumor that typically develops in the cerebellum, at the back of the 

brain, from the website of Weill Cornel Medical College. 
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Brain tumors are named after the cell of origin. They may be primary (starting in the brain) or 

secondary (spreading to the brain from another area). They may also be classified according to 

the behavior of the cells that is their aggressiveness in the process of mitosis. The least 

aggressive brain tumor is said to be benign while the most aggressive is said to be malignant. 

Tumors are also classified as Grade I through Grade IV.  The more aggressive and dangerous 

the tumor is, the higher the grade.  

 Grade I: Also called Pilocytic Astrocytoma. It grows slowly and has well-defined borders, 

occurs most often in children and teens, accounts for only two percent of all brain tumors.  

Grade II: Also called Low-grade Astrocytoma. It grows slowly and is Common among men 

and women in their 20s to 50s.  

Grade III: Also called Anaplastic Astrocytoma. It grows faster and more aggressive than 

grade II astrocytomas. It is Common among men and women in their 30s to 50s and accounts 

for two percent of all brain tumors.  

Grade IV: Also called Glioblastoma (GBM). It is the most common, accounting for about 

50% of all brain tumors. Most fatal of malignant primary brain tumors in adults and is one of 

a group of tumors referred to as gliomas. Has a Median survival rate of 15 months. Grows 

faster and is more aggressive than grade III one. 
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Benign brain tumors are not cancerous but malignant ones are cancerous. Treatment options 

vary depending on the tumor type, size, location, whether the tumor has spread, age and 

medical health of the person.  

The following figures show the diagrammatic representation of the two types of brain tumors. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Fig.3.5: MRI scans of benign (a) and malignant (b) brain tumors. 

Benign tumors have well defined edges and are more easily removed surgically. Malignant 

tumors have an irregular border that invades normal tissue with finger-like projections.  

In this work the model of malignant brain tumor (glioma) is considered since it is the most 

common type as it accounts for about 50 per cent of malignant brain tumors. The simulation is 

compared with available experimental data for an untreated GBM tumor from medical 

literature. 

In model development we consider the suggested model in Sheralt and Chaplain (2001) for 

the interaction between the proliferating and non-proliferating (quiescent) cells, namely  
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The figure below shows interaction between the different tumor cells. 

 

Fig.3.6:A schematic diagram for the interaction between the proliferating, non- proliferating 

and necrotic cells. 

 

Where P are the Proliferating cells and nP are non- proliferating (quiescent) cells. 
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Interactions between different tumor cells give different regions of a tumor reflecting an ideal 

case as shown in the diagram below. 

 

Fig.3.7: A detailed description of different regions of a tumor by Chiocca et al (2000) 

 

A detailed description of different regions of a tumor where; 

Rn represents the necrotic region which is a function of time (t).  
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n
is the distance from the proliferating rim to the necrotic region. It represents the region of  

Non-proliferative cells. 

Rt  represents the entire radius of the tumor. 

p
 
the distance from the edge of the tumor to non-proliferative cells i.e. the proliferative 

region. 

NB: an individual cell only divide if free space exists within a certain distance of it. This 

distance must also be represented by
p
. 

 

Fig. 3.8: An ideal tumor by Grimes et al (2016) where 0r  is the tumor radius, nr represents the 

necrotic radius while pr  represents the radius from necrotic to non-proliferating rim. 
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The figures below indicate a real tumor developing over a period of time; 

Fig.3.9:The development of the cross-central section of a tumor in time. 

(a) Tumor spheroid at approximately 69 days (b) Detectable lesion at approximately 223 days 

(c) Diagnosis stage at approximately 454 days (d) Fatal stage at approximately 560 days. 

The black outer region is comprised of proliferating cells, the white region is non-proliferative 

cells and the black inner region is necrotic cells. The scales are in millimeters. Chapter four 

below gives the numerical results, graphical representation and the discussion for the models. 
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                                                   CHAPTER FOUR 
RESULTS AND DISCUSSION 

 

4.0: Introduction  

This chapter gives the simulation procedure, results and discussion for one, two and three 

dimensional models. Analysis of the results is done through tabular and graphical 

representation. 

4.1: One dimensional model. 

This section gives the simulation procedure, results and discussion for one dimensional model 

which provides the tumor radius at selected time points. Results obtained are validated by 

experimental data obtained from WHO medical records. With mass conservation applied to 

the cells, the set of equations governing the evolution of proliferating, non- proliferating, 

necrotic cells densities, {Sheralt and Chaplain (2001)} and also nutrients access from 

underlying tissues in one dimension ,{Friedman (2006)} can be developed as; 
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nhp : represents the rate at which non-proliferative cells which are completely deprived of 

nutrients undergo necrosis. 

Equation (4.4) represents the access of nutrients from underlying tissues. 

This is the equation of interest in this work, whereby 

CD and  are positive constants and )(xf is a source term which is a non-linear function 

depending on location x . )(xf is the nutrients consumption rate in one dimension. 

Proportionality constant ( CD ) is approximated as a ratio of 1 hour/ 1 day, a day being taken as 

a period of approximately 24 hours, hence the exact model for simulation in one dimension 

becomes; 
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)(xf is taken as 4x for integral convenience  since  a lower index for  )(xf  will trivialize the 

source term  thus trivializing the polynomial which may results to tumor avasculature. Thus 

from (4.5),  
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Where 0)0,(xC  is the initial condition, that is, at 0t , technically it is assumed that there 

is no spheroid. Thus applying the inverse operator 1L  to both sides of equation (4.6) yields; 
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Model (4.6) generates the solution in a series of the form; 
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Therefore from equation (4.7) to (4.15), the solution in a series form is given by;
 

………….(4.17) 

 

Where ),( txC is the level of nutrients concentration in one dimension which gives the radius 

of the tumor. 
4x is the rate of nutrients consumption which is assumed to be directly 

proportional to the rate of tumor expansion. Chaplain et al (1994) estimated 1for vascular 

tumors and 0 for avascular tumors while spatial variable 4x  is held as unity since tumor 
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vasculature is assumed to commence at approximate radius of 1cm. In this work 4x  is 

approximated as yearcm /0.1 and t  is variable for time at selected points, equation (4.17) 

generates the results given in the tables below.
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The table below gives the results for one dimensional model at yearmmx /104  

 Results generated from equation (4.17) alongside the ones obtained from medical literature 

are as tabulated below. 

   Table 4.1: Comparison between experimental and simulation radius at 

yearmmx /104  

Time 

In years 

Experimental 

Radius(mm) 

Simulation 

Radius (mm) 

Absolute Error  

(mm) 

%(Error/Experi

mental Radius) 

0.611 5.0 7.2 2.2 44.0 

0.685 8.0 8.2 0.2 2.5 

0.767 10.5 9.4 1.1 10.5 

0.849 12.0 10.5 1.5 12.5 

0.945 13.5 12.1 1.4 10.4 

1.027 15.0 13.5 1.5 10.0 

1.137 16.5 15.3 1.2 7.3 

1.244 18.5 17.3 1.2 6.5 

1.389 22.0 20.1 1.9 7.8 

1.534 25.0 23.1 1.9 7.6 

1.712 30.0 27.1 2.9 9.7 
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Fig. 4.1: Experimental and simulation radius against time in years at yearmmx /104 . 

 

 

 

 

 

 

 

 

Table 4.1 gives the comparison between experimental and simulation radius when the rate of 

nutrients consumption is assumed to be 10mm/year. Friedman (2006) noted that, a primary 

tumor can grow up to a typical size of 1mm without requiring new supply of nutrients, that is 

it is at benign stage, hence reaction-diffusion model cannot provide a viable simulation at the 

initial stages of tumor growth and development. At this stage the spheroid does not require 

new supply of nutrients and is said to be avascular. He also noted that a solid tumor can 

typically be detected only when it attains a diameter of 1cm.Table 4.1 above gives the 

simulation of a tumor at selected time points from the detectable level. At this stage tumor 

has a very high rate of growth which can be attributed to the presence of enough space for 

cells proliferation. This explains the sharp rise in the test case immediately after detection.  
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The model provides realistic results for only one selected point that is during the initial levels 

but unrealistic results in the latter part of growth and development of the spheroid, hence 

10mm/year is not a viable rate of nutrients consumption in the entire life of tumor growth and 

development. Rate of nutrients consumption which is less than or equal to 10mm/year is 

therefore not viable in this reaction-diffusion process.   

Fig 4.1 gives the plots of experimental and simulation radius versus time in years where the 

rate of nutrients consumption is assumed to be 10mm/year. There is no convergence and 

hence 10mm/year is not a viable rate of nutrients consumption within this duration of tumor 

growth and development. 
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The table below gives the results for one dimensional model at yearmmx /114  

By slightly raising the rate of nutrients consumption to yearmm /11 then results generated 

from equation (4.17) alongside the ones obtained from medical literature are as tabulated 

below. 

Table 4.2: Comparison between experimental and simulation radius at 

yearmmx /114  

Time 

 in years 

Experimental 

Radius(mm) 

Simulation 

Radius 

(mm) 

Absolute 

Error (mm) 

%(Error/ 

Experimental 

radius) 

 

0.611 5.0 7.9 2.9 58.0 

0.685 8.0 9.0 1.0 12.5 

0.767 10.5 10.3 0.2 1.9 

0.849 12.0 11.6 0.4 3.3 

0.945 13.5 13.3 0.2 1.5 

1.027 15.0 14.8 0.2 1.3 

1.137 16.5 16.8 0.3 1.8 

1.244 18.5 19.0 0.5 2.7 

1.389 22.0 22.1 0.1 0.5 

1.534 25.0 25.4 0.4 1.6 

1.712 30.0 29.8 0.2 0.7 
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Fig. 4.2: Experimental and simulation radius against time in years at yearmmx /114 . 

 

Table 4.2gives the comparison between experimental and simulation radius when the rate of 

nutrients consumption is assumed to be 11mm/year. Apart from the very initial levels of 

tumor detection, it can be observed that results are very realistic since they compare well with 

the experimental ones and hence reaction-diffusion model is viable.11mm/year is the viable 

rate at which the tumor consumes the nutrients in this reaction-diffusion model. Friedman 

(2013) noted that for tumor cell growth rate, the tumor radius was not consistent but had 

oscillatory behavior which is also noted in this simulation. 

Fig. 4.2 gives the plots of experimental and simulation radius (in mm) versus time in years. 

Apart from the initial stages of growth and development of a tumor, there is good 

convergence between experimental and simulation curves. 
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The table below gives the results for one dimensional model at yearmmx /124  

Taking yearmmx /124 as the rate of nutrients consumption while t is variable for 

different time schedules (in years), then results generated from equation (4.17) alongside the 

ones obtained from medical literature are as tabulated below. 

Table 4.3; Comparison between experimental and simulation radius at yearmmx /124  

Time 

 in years 

Experimental 

Radius(mm) 

Simulation 

Radius (mm) 

Absolute 

Error (mm) 

%  (Error/ 

Experimental 

Radius) 

 

0.611 5.0 8.6 3.6 72.0 

0.685 8.0 9.8 1.8 22.5 

0.767 10.5 11.2 0.7 6.7 

0.849 12.0 12.7 0.7 5.8 

0.945 13.5 14.5 1.0 7.4 

1.027 15.0 16.1 1.1 7.3 

1.137 16.5 18.3 1.8 10.9 

1.244 18.5 20.7 2.2 11.9 

1.389 22.0 24.1 2.1 9.5 

1.534 25.0 27.7 2.7 10.8 

1.712 30.0 32.5 2.5 8.3 
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    Fig. 4.3: Experimental and simulation radius against time in years a yearmmx /124

. 

 

Table 4.3: gives comparison between experimental and simulation radius where the rate of 

nutrients consumption is assumed to be 12mm/year. The error associated with simulation 

increases hence rate of nutrients consumption which is greater or equal to 12mm/year is not 

viable in growth and development of a tumor within this duration. 

Fig. 4.3: gives the plots of experimental and simulation radius in mm versus time in years. 

Since the results obtained from the selected time points fail to compare well, then there is 

weaker convergence between the two curves. Due to higher rate of consumption of nutrients, 

the results obtained from selected time points are also high. 
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In order to obtain the results in months, equation (4.4) need to be formulated as; 

4
2

720
xC

x

t

C
xx …………………………………………………..………...….…..……..(4.18) 

Where proportionality constant ( CD ) is approximated as a ratio of 1 hour/ 1 month, a month 

being taken as a period of approximately 30 days. 

Solving equation (4.18) by ADM provide equation (4.19) below 

.........
1059872.5105552.110184.521600120

(),(
12

6

9

5

6

432
4 ttttt

txtxC …...…(4.19) 

Results generated from equation (4.19) and ones obtained from medical literature are as 

tabulated. 

Table 4.4: Comparison between experimental and simulation radius in Months. 

 Time 

 in Months 

Experimental 

Radius(mm) 

Simulation 

Radius (mm) 

Absolute 

Error (mm) 

%( Error/ 

Experimental Radius) 

 

8.2 8.0 9.7 1.6 21.2 

9.2 10.5 10.9 0.4 3.8 

10.2 12.0 12.2 0.2 1.7 

11.3 13.5 13.6 0.1 0.7 

12.3 15.0 15.0 0.0 0.0 

13.6 16.5 16.8 0.3 1.8 

14.9 18.5 18.6 0.1 0.5 

16.6 22.0 21.0 1.0 4.5 

18.4 25.0 23.7 1.3 5.2 

20.5 30.0 26.9 3.1 10.3 
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Fig.4.4: Experimental and simulation radius against time in Months. 

 

Table 4.4 gives comparison between experimental and simulation radius in months. Even 

though the simulation provides good results at some points, it can generally be observed that 

results provided do not compare well with experimental ones. This can be attributed to the 

fact that results provided in months are highly affected by rounding-off errors since months 

are not uniform. As well this highly affects the computation of the approximate rate of 

consumption of nutrients. 

Fig.4.4 gives the plots of experimental and simulation radius versus time in months. There is 

weak convergence particularly on the extremes which is attributed to the rounding off errors 

as highlighted in above paragraph. 
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In order to obtain the results in days, equation (4.4) need to be formulated as; 

4
2

8760
xC

x

t

C
xx ………………………………………..……………………………….(4.20) 

Where proportionality constant ( CD ) is approximated as a ratio of 1 hour/ 1 year, an year being 

taken as a period of approximately 365 days. 

Solving equation (4.20) by ADM provide the series (4.21) below 

13

5

9

4

6

32
4

104.3103.9102.31460
(),(

tttt
txtxC ……..…………..…….(4.21) 

Results generated from equation (4.21) and ones obtained from medical literature are as 

tabulated. 

Table 4.5: Comparison between experimental and simulation radius in days. 

Time 

 in Days 

Experimental 

Radius(mm) 

Simulation 

Radius (mm) 

Absolute  

Error (mm) 

%( Error/ 

Experimental Radius) 

 

250 8.0 9.0 1.0 12.5 

280 10.5 10.3 0.2 1.9 

310 12.0 11.6 0.4 3.3 

345 13.5 13.3 0.2 1.5 

375 15.0 14.8 0.2 1.3 

415 16.5 16.8 0.3 1.8 

454 18.5 19.0 0.5 2.7 

507 22.0 22.1 0.1 0.5 

560 25.0 25.4 0.4 1.6 

625 30.0 29.8 0.2 0.7  
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Fig.4.5: Experimental and simulation radius against time in days. 

 

Table 4.5 gives comparison between experimental and simulation radius against time in days. 

Results obtained in days from one dimensional model are very realistic since they compare 

well with the experimental ones. Taking the year to be approximately 365 days, then it is 

possible to obtain good approximations for the simulation in this specific model. 

Fig.4.5 gives the plots of experimental and simulation radius versus time in days. The two 

curves reflect good convergence.  
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Numerical simulation using Finite Volume Method. 

In this case the one dimensional model is divided into small volumes within the domain of 

250 to 560 days since reaction diffusion model is only viable after vascularization. Finite 

volume method is applied by integrating the equation over controlled volumes. The 

discretized equations are derived and finally, numerical simulation is obtained so as to 

demonstrate the convergence of the two methods. 

Equation (4.4) can be presented as; 

4

2

22

24
p

p
x

x

x

t …………………………...……………………..………….....(4.22)
 

Where  is the variable for nutrients concentration. 

x  and t  are variables for space and time respectively. 

px defines the nodal points. 

Where 0)0,( 0x  is the initial condition, that is, at 0t , technically it is assumed that 

there is no spheroid. 

Applying finite volume method on equation (4.22) then the discretized equations obtained are; 

67.2227.1 21  

8167.1166300067.2816 321
 

14.233.1393.10 432
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144330980650 543
 

2.13167.21654033.323 654
 

4.878105024201370 765
 

6.1713153033801850 876
 

5.4087.276013.32 987
 

2.5011273057803050 1098
 

81.172500108303770160 1098      ……………………………...…………..….(4.23) 

Solving the discretized equations (4.23) by MATLAB provides the results tabulated below 

under the FVM Column.  

The table below gives the solutions obtained from equation (4.4) by both ADM and FVM. 
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Table 4.6: Comparison between experimental and simulation radius via ADM and FVM. 

Time 

 in 

Days 

Experimenta

l 

Radius(mm) 

ADM 

Simulation 

(mm) 

Error 

(mm) 

%  

Error 

 

FVM 

Simulatio

n 

(mm) 

Error 

(mm) 

%  

Error 

 

250 8.0 9.0 1.0 12.5 7.8 0.2 2.5 

280 10.5 10.3 0.2 1.9 8.2 2.3 21.9 

310 12.0 11.6 0.4 3.3 9.8 2.2 18.3 

345 13.5 13.3 0.2 1.5 12.4 1.1 8.1 

375 15.0 14.8 0.2 1.3 15.7 0.7 4.7 

415 16.5 16.8 0.3 1.8 19.1 2.6 15.8 

454 18.5 19.0 0.5 2.7 22.2 3.7 20.0 

507 22.0 22.1 0.1 0.5 24.2 2.2 10.0 

560 25.0 25.4 0.4 1.6 24.7 0.3 1.2 
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Fig. 4.6: Experimental and simulation radius in both ADM and FVM against time in 

days. 

Table 4.6 gives comparison between experimental and simulation radius against time in days. 

Results obtained via ADM are more realistic than those obtained via FVM since they compare well 

with the experimental ones. ADM gives better approximations for the simulation in this specific 

model. 

Fig.4.6 gives the plots of experimental and simulation radius both in ADM and FVM versus time 

in days. ADM reflect better convergence than FVM. 
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4.2: Two dimensional models. 

 

This section gives the simulation procedure, results and discussion for two dimensional 

models which provides the tumor cross sectional area at selected time points. Results obtained 

are validated by comparing them with analytical results obtained by extrapolating the radius. 

With mass conservation applied to the cells, the set of equations governing the evolution of 

proliferating, non- proliferating, necrotic cells densities and also nutrients access from 

underlying tissues  in two dimensions can be developed from one dimensional model for 

Sheralt and Chaplain (2001) to give;   

…...….........….…(4.2

4) 
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Where: 

CD and  are positive constants. 
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nrP ; Represents the rate at which non-proliferative cells which are completely deprived of 

nutrients undergo necrosis. 

Equation (4.27) represents the access of nutrients from underlying tissues 

This is the equation of interest in this work, whereby 

Proportionality constant ( CD ) is approximated as a ratio of 2 hours/ 1 day and ),( yxf is the 

nutrients consumption rate in two dimensions, hence the exact model for simulation in two 

dimensions becomes; 

 

………………………..………………...………………(4.28) 

Applying the inverse operator 1L  to both sides of equation (4.28) where 0)0.,( yxC  is the 

initial condition, yields; 

)(
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244 tyx …………………...…………………………………….....………….……..….(4.30) 
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In this model ADM generates the solution in series of the form; 

),,(............),,(),,(),,(),,(),,( 3210 tyxCtyxCtyxCtyxCtyxCtyxC n

…..........(4.42) 

Where 

0,,lim tyxCn
n  

Therefore from equation (4.29) to (4.41), the solution in a series form is given by;
 

)
175,142835630315

2

451563

2
(),,(
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3244 ttt

t
ttt

tttyxtyxC

...(4.43) 

Where ),,( tyxC is the level of nutrients concentration in two dimensions which gives the 

cross section area of the tumor. Taking 44 yx  as the rate of consumption of the nutrients and 

t as variable for time at selected points, then equation (4.43) generate the results given in the 

tables below. 
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The table below gives the results for two dimensional models at yearcmyx /21.1 244 . 

Taking 
2444 xyx  that is yearcm /21.1 2

as the rate of consumption of the nutrients in 

two dimensions, results generated from equation (4.43) alongside the analytical ones are 

tabulated below. 

Table 4.7: Comparison between analytical and simulation cross section area at

yearcmyx /21.1 244

 

Time in 

Days 

Analytical Cross 

section Area 

(cm
2
) 

Simulation 

Cross section 

Area (cm
2
) 

Absolute  

Error (cm
2
) 

%{error/Analytical 

area} 

 

280 3.47 2.10 1.37 39.5 

310 4.52 2.55 1.97 43.6 

345 5.73 3.16 2.57 44.9 

375 7.07 3.75 3.32 47.0 

415 8.56 4.69 3.87 45.2 

454 10.76 5.81 4.95 46.0 

507 15.21 7.65 7.56 49.7 

560 19.64 10.01 9.63 49.0 

625 28.29 13.82 14.47 51.1 
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Fig. 4.7: Analytical and simulation cross section area against time in days a

yearcmyx /21.1 244 . 

 

Table 4.7 gives the comparison between analytical and simulation cross section area where the rate 

of consumption of the nutrients in two dimensions is assumed to be 1.21cm
2
/year. The model 

provides unrealistic results owing to the percentage error reflected at selected time points. It is 

observed that two dimensional model is not viable at this rate of nutrients consumption. 

Fig.4.7 gives the plots of analytical and simulation cross section area against time in days. The 

model fails to converge at this rate of nutrients consumption. 
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The table below gives the results for two dimensional model at yearcmyx /3.2 244 . 

Taking 444 2 xyx  as the rate of consumption of the nutrients in two dimensions, results 

generated from equation (4.43) alongside the analytical ones are tabulated below. 

Table 4.8: Comparison between analytical and simulation cross section area at 

yearcmyx /3.2 244

 

Time in 

Days 

Analytical 

Cross section 

Area (cm
2
) 

Simulation 

Cross section 

Area (cm
2
) 

Absolute  

Error (cm
2
) 

%( Error/ 

Analytical Area) 

 

280 3.46 4.00 0.54 15.6 

310 4.52 4.85 0.33 7.3 

345 5.73 6.00 0.27 4.7 

375 7.07 7.13 0.06 0.9 

415 8.56 8.92 0.36 4.2 

454 10.76 11.04 0.28 2.6 

507 15.21 14.54 0.67 4.4 

560 19.64 19.02 0.62 3.2 

625 28.29 26.27 2.02 7.1 
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Fig.4.8: Analytical and simulation cross section area against time in days at 

yearcmyx /3.2 244

. 

 

Table 4.8 gives comparison between analytical and simulation cross section area where the 

rate of consumption of the nutrients is assumed to be 2.3cm
2
/year. The tumor is already 

vascularized and the model provides realistic results. It is observed that 2.3cm
2
 /year is the 

viable rate of nutrients consumption in two dimensional model since 67% of the values are 

within the confidence level. 

Fig. 4.8 gives the plots of analytical and simulation cross section area against time in days. 

The obtained simulations undergoes high variations as the region becomes wide which can be 

attributed to the instability of the method (ADM) since it has weak stability on wide regions. 
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The table below gives the results for two dimensional model at yearcmyx /4.2 244 . 

Taking 444 2 xyx  that is yearcm /4.2 2
as the rate of consumption of the nutrients. Results 

generated from equation (4.43) alongside the analytical ones are as tabulated below. 

Table 4.9: Comparison between analytical and simulation cross section area at 

yearcmyx /4.2 244  

Time in 

Days 

Analytical 

Cross section 

Area (cm
2
) 

Simulation 

Cross section 

Area (cm
2
) 

Absolute  

Error (cm
2
) 

%(Error/ 

Analytical Area)  

 

280 3.46 4.17 0.71 20.5 

310 4.52 5.06 0.54 11.9 

345 5.73 6.26 0.53 9.2 

375 7.07 7.44 0.37 5.2 

415 8.56 9.31 0.75 8.8 

454 10.76 11.52 0.76 7.1 

507 15.21 15.17 0.04 0.3 

560 19.64 19.85 0.21 1.1 

625 28.29 27.41 0.88 3.1 
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Fig. 4.9: Analytical and simulation area against time in days at yearcmyx /4.2 244  

 

Table 4.9 gives comparison between analytical and simulation cross section area where the 

rate of consumption of the nutrients is assumed to be 2.4cm
2
/year. Simulation provides 

unrealistic results since 67% of the values are outside the confidence level hence 

yearcmyx /4.2 244
 is not a viable rate of nutrients consumption in the two dimensional 

model. 

Fig. 4.9 gives the plots of analytical and simulation cross section area against time in days. 

The obtained simulation fails to converge well in the lower stages of tumor growth and 

development which can be attributed to high rate of consumption of the nutrients.  
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4.3: Three dimensional models. 

This section gives the simulation procedure, results and discussion for three dimensional 

models which provides the tumor volume at selected time points. Results obtained are 

validated by comparing them with the analytical results obtained by extrapolating the radius. 

With mass conservation applied to the cells, the set of equations governing the evolution of 

proliferating, non- proliferating, necrotic cells densities and also nutrients access from 

underlying tissues in three dimensions can be developed from one dimensional model for 

Sheralt and Chaplain (2001) to give ;   
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Where; 

CD and  are positive constants. 
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nvP ; Represents the rate at which non-proliferative cells which are completely deprived of 

nutrients undergo necrosis. 

Equation (4.47) represents the access of nutrients from underlying tissues. 

This is the equation of interest in this work, whereby 

CD
 
is the proportionality constant and ),,( zyxf  represents the nutrients consumption rate 

after the process   angiogenesis has taken place. 

A proportionality constant of 3 hours/ 1 day is very high hence creating weakness in 

convergence of the model. By taking the constant as 2 hours/ 1 day, then the exact model for 

simulation in three dimensions becomes 

444222 )(
12

1
zyxCzCyCx

t

C
zzyyxx

…………………………...…………….……...(4.48) 

Applying the inverse operator 1L  to both sides of equation (4.48) where 0)0,.,( zyxC  is 

the initial condition, yields; 

)(
12

1
),,,( 22214441

zzyyxxtt CzCyCxLzyxLtzyxC  
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tzyxtzyxC 444

0 ),,,(
         ………………...…………...……….…………...(4.49)
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In this model, ADM generates the solution in a series of the form; 

),,,(),,,( tzyxCtzyxC n .......2,1,0n
          ……………………………………..…….(4.65) 

Whereby; 

0,,,lim tzyxCn
n

 

Therefore from equation (4.49) to (4.64) the solution in a series form is given by;
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Where ),,,( tzyxC is the level of nutrients concentration in three dimensions which gives the 
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volume of the tumor and 444 zyx  is the rate of consumption of the nutrients in three 

dimensions, developed from 4x , which is the rate of nutrients consumption in one 

dimensional model and t  is a variable for time at selected points then equation (4.66) generate 

the results given in the tables below. 

The table below gives the results for three dimensional model at yearcmzyx /331.1 3444

Taking yearcmxzyx /331.1)( 334444  as the rate of nutrients consumption in three 

dimensions, then results generated from equation (4.66) alongside the analytical ones are as 

tabulated. 

Table 4.10: Comparison between analytical and simulation volume at 

yearcmzyx /331.1 3444

 

Time in Days Analytical 

Volume (cm
3
) 

Simulation 

Volume (cm
3
) 

Absolute  

Error (cm
3
) 

% (Error/ 

Analytical 

volume) 

280 4.85 3.99 0.86 17.7 

310 7.24 5.22 2.02 27.9 

345 10.31 7.11 3.20 31.0 

375 14.14 9.22 4.92 34.8 

415 18.82 12.99 5.83 31.0 

454 26.53 18.08 8.45 31.9 

507 43.41 28.18 15.23 35.1 

560 65.48 43.78 21.70 33.1 

625 113.14 74.99 38.15 33.7 
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Fig. 4.10: Analytical and simulation volume against time in days at yearcmzyx /331.1 3444  

 

Table4.10 gives the comparison between analytical and simulation volume where the rate of 

nutrients consumption in three dimensions is assumed to be 1.331cm
3
/year. The model provides 

unrealistic results as reflected at selected time points. It is observed that three dimensional model is 

not viable at this rate of nutrients consumption. 

Fig. 4.10 gives the plots of analytical and simulation volume at yearcmzyx /331.1 3444 . There 

is no convergence at this stage of vascularization once the rate of consumption of nutrients is 

1.331cm
3
/year.  
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The table below gives the results for three dimensional models at yearcmzyx /0.2 3444

Taking 4444 2 xzyx yearcm /0.2 3
 as the rate of consumption of the nutrients in three 

dimensions, results obtained from equation (4.66) alongside the analytical ones are as tabulated 

below. 

Table 4.11: Comparison between analytical and simulation volume at 

yearcmzyx /0.2 3444

 

Time  

in Days 

Analytical 

Volume (cm
3
) 

Simulation 

Volume (cm
3
) 

Absolute Error 

(cm
3
) 

% (Error/ 

Analytical 

volume) 

 

280 4.85 5.99 1.14 23.5 

310 7.24 7.85 0.61 8.43 

345 10.31 10.69 0.38 3.69 

375 14.14 13.85 0.29 2.05 

415 18.82 19.53 0.71 3.77 

454 26.53 27.17 0.64 2.41 

507 43.41 42.35 1.06 2.44 

560 65.48 65.77 0.29 0.44 

625 113.14 112.68 0.46 0.41 
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Fig. 4.11: Analytical and simulation volume against time in days at 

yearcmzyx /0.2 3444

 

 

Table 4.11 gives the comparison between analytical and simulation volume where the rate of 

consumption of the nutrients is assumed to be 2.0cm
3
/year. Analytical volume is obtained by 

extrapolating the radius.It is observed that simulation of three dimensional models provides very 

realistic results at most of the selected time points. Three dimensional models give better results 

than two dimensional models since 78% of the values obtained are within the confidence level. 

Generally, one dimensional model is the best in this work owing to its high level of convergence as 

well as realizing better results at 89% of the values obtained at the selected time points, 

nevertheless tumors are three dimensional objects hence three dimensional model give better 

approximations. 

280 310 340 370 400 430 460 490 520 550 580 610
0

10

20

30

40

50

60

70

80

90

100

110

time (days)

v
o
lu

m
e
 (

c
m

3
)

Comparison between Analytical and simulation volume

 

 

Analytical Volume

Simulation Volume



78 
 

Fig. 4.11 gives the plots of analytical and simulation volume against time in days. Simulation in 

this model gives strong convergence. 

The table below gives the results for three dimensional models at  

yearcmzyx /1.2 3444 Taking  yearcmzyx /1.2 3444 that is > yearcm /0.2 3
as the rate 

of consumption of the nutrients in three dimensions, then results generated from equation (4.66) 

alongside the analytical ones are as tabulated. 

Table 4.12: Comparison between analytical and simulation volume at 

yearcmzyx /1.2 3444

 

Time 

in Days 

Analytical 

Volume (cm
3
) 

Simulation 

Volume (cm
3
) 

Absolute  

Error (cm
3
) 

% (Error/ 

Analytical 

volume) 

280 4.85 6.29 1.44 29.7 

310 7.24 8.23 0.99 13.7 

345 10.31 11.22 0.91 8.8 

375 14.14 14.55 0.41 2.9 

415 18.82 20.50 1.68 8.9 

454 26.53 28.53 2.00 7.5 

507 43.41 44.46 1.05 2.4 

560 65.48 69.08 3.6 5.5 

625 113.14 118.31 5.17 4.6 
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Fig.4.12: Analytical and simulation volume against time in days at 

yearcmzyx /1.2 3444

 

 

Table 4.12 gives the comparison between analytical and simulation volume where the rate of 

consumption of the nutrients is assumed to be 2.1cm
3
/year. It is observed that an attempt to 

raise the rate of nutrients consumption will increase the volume at selected time points. This 

confirms that the only viable rate of nutrients consumption in this model is 2.0cm
3
/year.  

Fig. 4.12 gives the plots of analytical and simulation volume against time. Simulation in this 

model fails to converge owing to high rate of nutrients consumption. 

The next chapter gives concluding remarks and recommendations regarding this work. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The model presented in this work focuses on the quantitative description of the dynamics of 

vascular brain tumor growth. It can be concluded that; 

(i) Diffusion in the brain function plays a very vital role in delivery of nutrients to the 

tissues{Nicholson (2001)}hence it can be concluded that growth and development of a tumor 

is governed by a diffusion model where concentration of the nutrients (C) is the dependent 

variable, zyx ,,  are spatial independent variables and t  is the variable for time. 

(ii)Viable rates of nutrients consumption were found to be; 

(a)  1.1cm/year for one dimensional model since 89% of the values at selected time points 

were found to be within 95% degree of confidence. 

(b) 2.3cm
2
/ year for two dimensional model since 67% of the values at selected time points 

were found to be within 95% degree of confidence. 

(c) 2.0 cm
3 

/ year for three dimensional model since 78% of the values at selected time points 

were found to be within 95% degree of confidence. 

(iii) Results obtained from the simulation predict the dynamics of GBM tumor proliferation at 

selected time points and they are realistic since they compare well with the data obtained from 

the medical literature. 
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(iv) Angiogenic inhibitors, that is drugs taken to hinder the process of angiogenesis can only 

be viable within 250 days since after this period reaction diffusion model is viable meaning 

the tumor is already vascularized. 

 

5.2 Recommendations 

 

Based on the results of this research, it is recommended that; 

(i) Medical practitioners be using the volume in approximating the size of tumors in place of 

radius since volume is more realistic as tumors are three dimensional objects. 

(ii) ADM gives a series solution which must be truncated for practical applications. Although 

the series can be rapidly convergent in a small region, it has very slow convergence in the 

wider region and the truncated series solution is inaccurate in that region which restricts 

the application area of the method. Convergence of one dimensional model is faster than 

both two and three dimensional models.  

(iii)Parabolic models are not viable in early stages of growth and development of GBM 

tumors.  

(iv) For GBM tumors )(tR as t where R  is the tumor radius and t is time which is 

practically unrealistic, hence further research is recommended on ADM so as to give the 

behavior of the tumor where angiogenesis fails to take place. 

(v) While the results confirm that ADM is able to produce realistic simulations in idealized 

cases, research is recommended to illustrate whether it has the ability to give the 

simulations of models of more complex situations that is where there is multiple distinct 

tumor clones. 
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APPENDIX 

clf 

XLOW =i.e. minimum along the x axis; 

XINC = i.e. step size along the x direction; 

XHIGH =i.e. maximum along the x axis; 

YLOW = i.e. minimum along the y axis 

YINC = i.e. step size along the y axis 

YHIGH = i.e. maximum along the y axis 

% 

A = [i.e. column for the time] 

% 

B = [i.e. column for the experimental data] 

% 

C=[i.e. column for the simulation ] 

% for k=1:11 

%  A(k) = graph1(k,1); 

%  B(k) = graph1(k,2); 

%  C(k) = graph1(k,3); 

% end 

h=plot(A(:),B(:),'b-*');hold on 

K=plot(A(:),C(:),'g-*');hold on 

%m=plot(D(:),C(:),'b.');hold off 

%h=plot(A(:),B(:),C(:),D(:)) 

xlabel('time (days)','FontSize',15) 
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ylabel('volume(cm3)','Fontsize',15) 

grid 

Title('Comparison btnexpt& simulation radius') 

% 

axis([XLOW XHIGH YLOW YHIGH]) 

%set(gca,'xtick', [YLOW:YINC:YHIGH])%..NOTE THESE ARE THE Y-VALUES, i.e. 

cross-stream direction! 

%set(gca,'ytick', [XLOW:XINC:XHIGH])%..NOTE THESE ARE THE X-VALUES, i.e. 

streamwise direction! 

% 

set(gca,'xtick', [XLOW:XINC:XHIGH])%..NORMAL NOTATION 

set(gca,'ytick', [YLOW:YINC:YHIGH])%..NORMAL NOTATION 


