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ABSTRACT

Experiments that involve a mixture of ingredients are usually associated with
investigating optimal proportions of several factors used. Optimal designs lower the
costs of experimentation by allowing statistical models to be estimated with fewer
experimental runs. Thus, appropriate designs for experiments that allow for
parameter estimation without bias and with minimum variance are desirable. The
purpose of this study was to obtain optimal weighted centroid designs for maximal
parameter subsystem for third degree Kronecker model mixture experiments with
the assumption that errors are independent and identically distributed with mean
zero and common variance. The general objective was to obtain optimal weighted
centroid designs for maximal parameter subsystems for third degree Kronecker
model mixture experiments. The specific objectives of the study were to: Identify
the coefficient matrix K and the associated parameter subsystem of interest;
determine optimal moments and information matrix for two, three, four, and
generalized to m factors; derive optimal weighted centroid designs for third degree
Kronecker model for mixture experiments for A-, D- and E-optimality criteria and
finally, compute numerical optimal weighted centroid designs for the maximal
parameter subsystem. The Kronecker model approach was used to obtain the
coefficient matrix K and, consequently, the optimal moments. A set of weighted
centroid designs for the maximal parameter subsystem of interest was obtained by
the use of unit vectors and characterization of feasible weighted centroid designs
for the parameter subsystem. Information matrices based on maximal parameter
subsystem were also obtained for the two, three, four, and generalized to m factors.
Kiefer-Wolfowitz equivalence theorem was used to derive weights for the
respective weighted centroid designs for D-, A- and E- Optimality. Optimal weights
and values were computed numerically using Wxmaxima and R software. The
results obtained indicated that: Coefficient matrix K obtained had a full column
rank and helped in the identification of the linear parameter subsystem; the optimal
moments obtained reflected the statistical properties of designs and were useful in
finding the information matrix; the information matrix was important in obtaining

optimality criteria and with =” and 22" being the weights, for the average-
variance criterion (A- criterion) and the optimality criteria were both dependent on

. . . . (p)
the information matrix, as the number of m factors increases, a” decreases
while 2" increases and the value of the maximum criterion decreases. For the

. .. - . (p)
determinant criterion (D-criterion), as the number of m factors increase, %
(p)

decreases while <z" increases and the value of the maximum criterion decreases.
For the smallest eigenvalue criterion (E-criterion) as the number of m factors

increases, 2" increases while %" decreases and the value of the maximum
criterion decreases. This indicates that the maximal parameter design reflects well
the statistical properties due to increasing symmetry as the number of factors
increases. In conclusion, based on the maximal parameter subsystem third degree
mixture model with two, three, four, and generalized to m factors for D-, A- and E-
optimal weighted centroid designs for the parameter subsystem exists. The study
thus recommends the application of the designs obtained by experimenters in
designing of experiments to yield Optimal results in technological fields. This study
concentrated on optimal weighted centroid designs for maximal parameter
subsystem for third degree Kronecker model mixture experiments.


https://en.wikipedia.org/wiki/Statistical_model
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CHAPTER ONE

INTRODUCTION
1.0 Introduction
This chapter covers the background information, statement of the problem, justification
of the study, objectives of the study, significance of the study, and finally, the scope of

the study.

1.1 Background of the Study

A mixture experiment is an experiment where proportions of two or more components
are mixed to yield a product and are connected with the investigation of factors that are
thought to affect the response through the proportions at which they are mixed together.
According to Cornell (1990), the measured response in the general mixture problem is
thought to simply depend on the relative proportions of the components present in the

mixtures, not the amount of the combination.

Most kinds of products usually involve a mixture of ingredients and are dependent on
the investigation of a mixture of several factors. In many technological fields, most
experimenters struggle to optimize the output of the end product since the predictor
variables always have an impact on the general response of interest. The end product
has the required properties that are of interest to the experimenter. Every experimenter
wants to obtaining optimal results for an experiment; thus their major objective is to
estimate the absolute response or the parameters of a model that shows the link between
the response and the factors. When examining regression equations relating to the
response and the controllable component, an experimenter's goal is to; Identify whether

some combination of factors can be said to be the best in some way and also, to learn



more about the functions played by the various system factors in order to comprehend

the system as a whole.

Suppose that a mixture consists of m factors. Let t; represent the proportion of the it"

ingredient in the mixture. Then, t;, t,, ... ... , tmare coded such that ¢; > 0 subject to

restriction ), t; = 1. A simple regular-sided shape with m vertices in m-1 dimensions
serves as the experimental region for the mixture problem. Scheffe’ (1958) set the

framework for development of mixture tools (design and models).

Let [, = (1...1)" € R™ be the unity vector .The standard probability simplex T, is the

experimental domain. The experimental response, designated as Y;, is the outcome
under experimental condition teT, of an experiment that is taken as a real-valued

random variable with an unknown parameter ,¢ for the regression function for the
mixture experiments called the Kronecker models. Change in experimentation
condition has a great impact on the experimental response. Thus, a mixture experiment
involves varying the components of the mixture, and monitoring the variations that

occur in the responses of the end products.

Replications under responses from distinct conditions for conducting experiments as
well as identical conditions for conducting experiments, are therefore assumed to have
equal (unknown) variance,a? and to be uncorrelated. On the experimental domain T,,,,
the experimental design t is the probability measure with a finite number of support
points . If T assigns weights w1, Wo, ... to its points of support in T, , the experimenter
is then directed to draw proportions w1, wo, ... of all the observations under various
experimental settings. Draper and Pukelsheim (1998) came up with a set of regression

functions for mixture experiments called Kronecker or K-models. The models are based



on Kronecker algebra. Let t = (tl, ..... ,tm)' be a mx21vector to represent the factors in

a mixture. Kronecker square t ®t arranges the same numbers as a long m? x1 vector

and arranges the Kronecker product cube t ®t®tas a longm?®x1 vector and list of
triple products t;t;t; in lexicographic order. K-models have compact representation

and good symmetries attained as a result of duplication of terms. Symmetry is attained

along with a replication of terms.

Mixture experiments are common problems in many disciplines, such as the chemical
industries, food and processing industries. An example of a mixture experiment is of
cake formulations where the mixture ingredients are; sugar, flour, water, eggs and
baking powder, the interest of the experimenter is on the fluffiness of the cake, in that
the cake fluffiness is associated with the ingredient proportions on the mixture.
Similarly, in building construction concrete formed by mixing sand, water, and one or
more types of cement building, then the desired property is the hardness or compression
strength of the concrete, where the hardness is a function of the percentages of cement,
sand, and water in the mix and Fruit punch consisting of juices from apples, pineapple
,bananas ,mangoes and orange ,where the fruitiness flavor of the punch, which depends

on the percentages of apples, pineapple, bananas, mangoes, and orange that are

present in the punch. Cornell (1990) lists numerous examples and provides a thorough

discussion of both theory and in practice. Therefore, a mixture experiment

involves varying the proportions of two or more ingredients, called components of the
mixture, and studying the changes that occur in the measured properties (responses) of
the resulting end product. The objectives of the experiment may include determining:

which variables are most influential on the response, where to set the independent



variables so that the response is almost near the desired nominal value, where to set the
influential factors so that variability in response is small and where to set the

controllable factors so that the effects of uncontrollable factors are minimized.

1.1.1 Simplex Centroid Designs

Simplex centroid designs are described as mixture designs with which the coordinates
are zero or equal to each other as introduced by Scheffe (1963). The center (centroid),
mid-edges, and vertices of a triangle serve as the points of support in a simplex centroid

design. In general, an m-component simplex-centroid design typically specifies the

number of support points as 2" —1 . The support points correspond to m permutations
. 11 .

of (1,0,0, ... ,0 ) or pure blends, the permutations of E,E,O,O,---,O or binary

11 . .
55000] and finally, the overall centroid

m 1
mixtures, the [3j| permutations of [5

(i : 1 i). Every non-empty subset of the m components is included in the design,
mm m

and the components are only mixed together in the same proportions.

The mixture can be found at the centroids of the lower dimensions’ simplexes included
within the (m— [)-dimensional simplex, which is where the (m— I)-dimensional
simplex is located. Data on the response are gathered at the simplex-centroid design's
points, and a polynomial fit with the same number of parameters that must be estimated

as those at the related design's points is made, (Muriungi et al, 2017).

1.1.2 Weighted Centroid Designs

Simplex centroid designs were introduced by Scheffe’ (1963). The j elementary

centroid design7;, e {L ...... , m},mzz is the uniform distribution on all points with



1 o g :
the form ==>e;eT,. A convex combination #7(a)=> a;n, with
J R i1

a=(ay,...,a,)'€T, is called a weighted centroid design with a weight vector ¢ and is

restricted by Zai =1 .Hence, n(a) denote sets of all weighted centroid designs.
i=1

Weighted centroid designs were created using the vertex design points 7, and the

overall centroid design 7, as follows; n(a) = an, +a2772with weights o;,a, >0 and

o +a,=1

1.1.3 Maximal Parameter Subsystem

An experimenter may be interested in studying s out of total k components instead of
studying all the components or a single one. The study becomes possible through the
study of linear parameter subsystems that has the form of some k xs matrix K ; K'is

termed as the coefficient matrix of the parameter subsystem K'G .

Let M be a set of moment matrices .A parameter subsystem K'@ is estimable within
M if and only if the set M and the feasibility cone have a non-empty intersection, that

is, M nA(K) = ¢ .Letr,, =max{rankM:M e M}, be the maximal rank within M .

m+1

? j of parameter subsystems K'é that are estimable

m3><
The coefficient matrices K € R (
within M satisfy rankK <r,, . Consider the extreme case rankK =r,, , which
highlights the concept of estimating as many parameters as possible within a given

collection of M moment matrices. The parameter subsystem K'@ is called a maximal

parameter subsystem forM if and only if;

(1) M nA(K) #¢ and



1
(if) rankK =r,, .In this specific study, we have r,, = (m2+ j and K is called a

maximal coefficient matrix for mM.

1.2 Statement of the Problem

Planning and designing of experiments is key before performing any experiment to cut
the associated costs. Experimenters usually encounter a high cost of experimentation
due to poor experimental designs, thus appropriate designs for an experiment that
allows for parameter estimation without bias and with a minimum variance are
desirable. Prediction variance distribution should be very evenly distributed over the

design space.

Optimal weighted centroid designs for maximal parameter subsystem for third degree
Kronecker model mixture experiments have not been studied. Kiplagat, (2014), showed
optimal designs for second degree Kronecker model mixture experiments for maximal
parameter subsystem. The second degree maximal parameter subsystem provides
inadequate information leading experimenters to use more resources. Hence there was
need to extent the work to third degree in order to get more information and reduce the
cost. Since the larger the matrix the larger the information and the more optimal the

design, the more optimal it carries.

The general design problem was to obtain a design for a parameter subsystem with
maximum information. The full parameter subsystem cannot be estimated, to make it
estimable, the coefficient matrix of interest was then chosen. By dividing the factors
interacting with a total number of interacting parameters in the model, the whole

parameter subsystem was made estimable, thus making it possible to estimate as many



parameters as possible. The study sought to develop useful improved optimal designs

to be used in designing experiments.

1.3 Objectives of the Study

The study was guided by the following objectives:

1.3.1 General Objective
The general objective of the study was to generate optimal weighted centroid designs
for maximal parameter subsystem for third degree Kronecker model mixture

experiments.

1.3.2 Specific Objectives

The specific objectives of the study were to:

1. ldentify the coefficient matrix K and the associated parameter subsystem of
interest.

2. Determine optimal moments and information matrix for two, three, four and
generalize to m factors.

3. Derive optimal weighted centroid designs for third degree Kronecker model for

mixture experiments for A-, D- and E-Optimality criteria.

4. Compute numerical ¢, —Optimal weighted centroid designs for the maximal

parameter subsystem.

1.4 Justification of the Study

In a mixture experiment, the factors which are under study are the proportions of factors
of a mixture. There are many problems that deal with investigating a mixture of several
factors which influences the response through the ratios or the proportions which are

mixed together. A precise response prediction is required before experimentation for



any mixture experiment to be successful. The purpose is to establish the effect that a
factor or independent variable has on dependent variable. The A-optimality seeks to
minimize the average variance of the regression coefficients, D-optimality maximizes
the determinant of the information matrix and E-optimality maximizes the minimum
Eigenvalue of the information matrix. This optimizes the responses over the

experimental region.

1.5 Significance of the Study

This study is significant as it identifies optimal weighted centroid designs for
maximizing parameter subsystems in third-degree Kronecker model mixture
experiments. In practical terms,these optimal experiments reduce experimentation

Costs.

1.6 Scope of the Study

A class of weighted centroid designs is essentially complete, Klein (2004). Due to
completeness result, the study was limited to weighted centroid designs third degree
Kronecker model as put forward by Draper and Pukelsheim (1998). A group of
weighted centroid designs and characterized by feasible weighted centroid designs for
the maximal parameter subsystem for the mixture regression equation with two or more
factors was used to obtain the coefficient matrix. Optimal moments and information
matrices of the designs were obtained based on the coefficient matrix of interest.
Consequently, the unique D-, A- and E-optimal weighted centroid designs for third
degree kronecker model were then derived from the information matrices with the aid

of the use of the equivalence theorem.



CHAPTER TWO
LITERATURE REVIEW
2.0 Introduction
This chapter reviews the relevant literature for this specific study and the theoretical
discussions. The research gaps on A-optimality, D-optimality and E-optimality designs

were identified for the study.

2.1 Mixture Experiments
Mixture experiments were first discussed in Quenouille (1953). Later on, Scheffe’

(1958) made a systematic study and laid a strong foundation. Pukelsheim (1993) and

Gaffke and Heiligers (1996) gave a review of the general design environment on
mixture experiments. Klein (2004) and Cheng (1995) showed that the class of weighted
centroid designs is essentially complete for m > 2 for the Kiefer ordering. As a
consequence, the search for optimal designs may be restricted to weighted centroid
designs for most criteria particularly applied to mixture experiments, Kiefer (1959,
1975, 1978, 1985) and Galil and Kiefer (1977). Klein (2004) and Kinyanjui (2007)
showed how invariance results can be applied to analytical derivations of optimal

designs.

Piepel G. F and Cornell J.A. (1994). Studied mixture experiment approaches: examples,
discussion and recommendation A mixture of factors impacts the response through the
proportion in which they are mixed. The response is a measurable quality or property
of interest in the product. In this study, the assumption is made that the quantities of
factors in the mixture can be accurately measured by the experimenter. London, Griffin.
Scheffe’, H. (1958). Experiments with mixtures. The assumption is also made that, the

outcomes are always functionally related to the mixture composition and through
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variation of the composition by changing the number of ingredients, the responses will
as well vary. When examining regression equations relating to the response and the
controllable component, an experimenter's goal is to; Identify whether some
combination of factors can be said to be the best in some way and also, to learn more
about the functions played by the various system factors in order to comprehend the

system as a whole.

Galil and Kiefer (1977) showed how optimal designs can be restricted to weighted
centroid designs and applied to mixture experiments. A weighted Centroid design is
essentially complete for m>2 factors or kiefer ordering, Klein (2004). The search for
the best designs can therefore be limited to weighted centroid designs for the majority
of criteria, especially when applied to mixture experiments. The study was limited to
weighted centroid designs, with the third degree Kronecker model as put forward by

draper and Pukelsheim (1998).

On mixture experiments, a review was given for the general design environment,
pukelsheim (1993). Draper and Pukelsheim (1998) proposed the K-models, a group of
mixture models. Kiefer (1959, 1975, and 1978) and Galil and Kiefer (1977) provided
criteria applied to mixture experiments. Blend experiment strategy procedures are
presented by Cornell (2002) for simplex and polyhedral regions. Subsequent to
selecting appropriate design and performing mixture experiments, is fitting models
used to screen the components, predict response(s), determine ingredients effects on the
response(s), or optimize the response(s) over the experimental region. Scheffé (1958)
came up with linear mixture model in which the coefficient estimate for a component
is the predicted value of the response for that pure component. Darroch and Waller

(1985) presented D-optimal axial designs for quadratic and cubic additive
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mixture models. Draper and Pukelsheim (1999) showed that for first degree Kronecker
model vertex point designs are unique optimal designs under the Kiefer Ordering.
Alternative representation of mixture models based on Kronecker algebra of vectors
and matrices is offered by k-models. Gaffke, N., (1987). Further characterizations of

design optimality and admissibility for partial parameter estimation in linear regression.

It was assumed that every observation made during an experiment would have the same
variance o2 € (0,00) and unrelated. Draper, Heiligers, and Pukelsheim (2000)
demonstrated design improvement in terms of obtaining a large moment matrix under
Loewner ordering and improving symmetry, defining kiefer design. Majority of design
problems have symmetry features, remaining unchanged when subjected to a set of
linear transformations. Therefore, using invariant design for homogenous symmetric
K-models, aids in obtaining the key characteristics of effective experimental designs,
namely symmetry and balance. The Kronecker representation has more benefits which
entails; compact notation, useful invariance features and the regression terms being

homogeneous, Draper and Pukelsheim (1998) and Prescott, et al (2002).

Kinyanjui (2007) adopted General equivalence theorem in Pukelsheim (1993) to
investigate the @,, — optimal weighted centroid designs for k'€ as well as deriving

general forms for unique D-optimal, A-optimal and E-optimal designs fork'é&.

The class of weighted centroid designs is essentially complete for m > 2 for Kiefer
ordering, Klein (2002).The general design environment was given in Pukelsheim
(1993).Kinyanjui, Koske, and Korir (2008) showed how optimal designs in the second-
degree Kronecker model for mixture experiment with three ingredients was applied to

a simplex centroid design. Ngigi ,(2009) showed the optimality criteria for

¢p —optimal weighted centroid designs for K'@ in the second-degree model with
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m > 2 ingredients and how the general forms for the unique A-optimal, D-optimal and

E-optimal designs for K'@ are derived.

Cherutich (2012) showed how information matrices for non-maximal parameter
subsystems for second-degree mixture experiments were derived. Kiplagat, (2014),
showed optimal designs for second degree kronecker model mixture experiments for
maximal parameter subsystem. All the authors mentioned focused on the second degree

kronecker model.

The work done by Draper and Pukelsheim, (1998) was extended to polynomial
regression model for third degree mixture model. For third-degree mixture models,
Kiefer ordering of simplex designs was demonstrated by Korir (2008). The work is
further extended to third degree kronecker model by making use of equivalent theorem
when calculating weights. Kerich, (2012) showed optimal designs for third degree
Kronecker model mixture experiments. Cheruiyot, (2017) studied optimal designs for
third degree Kronecker model mixture experiments with application in blending of

chemicals for control of mites in strawberries.

The present work uses Kiefer’s @,, function as optimality criteria to weighted centroid
designs for maximal parameter subsystem for third degree Kronecker model mixture
experiments, where the moment matrix was improved to give more information in terms
of enhancing symmetry and generating a large moment matrix under Loewner ordering

yielding optimal values as desired.

2.2 Model and Notation

The linearmodel , y = f(£)' @ + €vvvvveiiii (D
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An experimental condition t is selected from the experimental domain T, with a real

. . . k
valued response Yy , a regression function y: T, = R an unknown parameter vector

0 € R and centered error term, £ , Draper and Pukelsheim,(1993). In any experiment,
it is assumed that errors are uncorrelated with a mean of zero and unknown variance o2

. Our attention is focusing on estimation of a system of linear function, k’'6 of the

N m+1
parameter subsystem 6 € R* where the coefficient matrix K € R [ 2 ] is assumed to

have full column rank.

If and only if there is at least one linear unbiased estimator for the parameter subsystem
k'6 under a design t, then the parameter subsystem k'6 with the entire column rank
coefficient matrix k is estimable. A necessary and sufficient condition for estimability

of k'6 under T is that the range of K is included in the range of M(t), R(k) S

‘R(M(T))
Thus, any moment matrix, A e NND(k) with R(k) < R(A) is called feasible for k'6.

The set A(k) = {A € NND(k): R(K) € R(A)} is called the feasibility cone for k'6.

Let M be a collection of moment matrices, then a parameter subsystem k'8 is estimable
within M if and only if there is a non-empty intersection between the set M and the

feasibility cone,. Thatis, M N A(K) = ¢.

Let r,, =max{rankM: M €M}, be the maximal rank within M . The coefficient

m+1

2

m3><
matrices K € ‘R ( j of the parameter subsystems K'@ that are estimable within M

satisfy rank K <r,, . As a result, have a look at the extreme scenario rankK =r,,,
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which illustrates the concept of estimating as many parameters as possible using a given

set of moment matrices.
Definition

The parameter subsystem K'@ is called a maximal parameter subsystem forM if and

only if;

(1) M ~A(K) = ¢ and

m+1
(if) rankK =r,, . In this specific study, we have r,, :( 2+ j and K is called

maximal coefficient matrix for wa ,Draper and Pukelsheim (1998).The whole
parameter vector 8, or any regular transform of it, is a maximal parameter subsystem
for the set M if it contains regular moment matrices. Hence, assume the set M to be
convex. Then, there is a matrix M, € M, with maximal range, that is, R(M) <
R(M,) for all My € M, Pukelsheim (1993). There may be many matrices Mywith this
property, the maximal range R,, = R(M,) is unique, Then, dim R,, = 1y, .This

construction is analogous to that of a minimal null space given by LaMotte (1977).

2.3 General Design Problem

According to Pukelsheim (1993), any design that solves the problem (2) below for a

fixed pe (-oo, 1] is called @, —optimal for K'@ in T. For all pe (-0, 1], the

existence of @, —optimal design for K'@ is guaranteed in Pukelsheim (1993).The

problem of finding a design with maximum information on the parameter subsystem

K'@ was formulate as,

Maximize ¢, (Ck (M (t))) with T T
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Subjectto Cx (M (1)) ePD(S)TeT . uininiiiiiiiiee e )

Where, Tm represents a collection of all designs and denoted by T. According to

Pukelsheim (1993), the side condition C,(M(z)) € PD(s) is the same as the

availability of an unbiased estimator for K'@ under 7. The design 7 is said to be
feasible for K'@. The formulation makes it easier to estimate maximal parameter

subsystem which is unbiased.

2.4 Coefficient Matrix and the Parameter Subsystem of Interest

A coefficient matrix is a rectangular array of numbers that represents the coefficients
of a system of linear equations Searle & Khuri, (2017). The rows of the matrix
correspond to the equations in the system, and the columns correspond to the variables
in the system. Each entry in the matrix is the coefficient of the corresponding variable
in the corresponding equation. In linear algebra, a coefficient matrix is a matrix
consisting of the coefficients of the variables in a set of linear equations. The matrix is

used in solving systems of linear equations Lyche, (2020).

The coefficient matrix K is the m x n matrix with the coefficient a_{ij} as the (i, j)"
entry. The system of equations is inconsistent if the rank of the augmented matrix (the
coefficient matrix augmented with an additional column consisting of the vector b) is
greater than the rank of the coefficient matrix. If the ranks of these two matrices are
equal, the system must have at least one solution. The solution is unique if and only if
the rank r equals the number n of variables. Otherwise, the general solution has n —r

free parameters, indicating an infinitude of solutions Bai & Wu, (2021).

The coefficient matrix is a fundamental concept in system identification, linear algebra,

and control systems, and it plays a crucial role in representing and analyzing systems
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of linear equations and dynamic systems Qi, Tao & Jiang, (2019). The associated
parameter subsystems and coefficient matrices are used in modeling, simulation, and

control system design.

In the field of control systems, the coefficient matrices A and B are fundamental to the
controllability of a system. The condition of controllability depends on these coefficient
matrices, as described by a theorem in the context of system dynamics Buedo-

Fernandez & Nieto,( 2020)

The coefficient matrix K provides a bridge between the parameter subsystem of interest
and the optimal weighted centroid designs for maximal parameter subsystems Lu,
Hydock, Radlinska & Guler, (2022). By understanding the structure of K, helps in
identifying feasible designs and apply optimality criteria to select the most efficient

design for their specific experimental objectives.

In the context of optimal design for mixture experiments, the coefficient matrix K plays
a crucial role in determining the parameter subsystem of interest and identifying
optimal weighted centroid designs for maximal parameter subsystems Wang, Fan &
Qiang, (2023). The parameter subsystem of interest represents a subset of the full
parameter space that is considered relevant for the specific experimental objectives.
Maximal parameter subsystems are those that encompass the largest possible subset of

parameters that can be estimated with the given experimental design.

To understand the relationship between the coefficient matrix K and the parameter
subsystem of interest, consider the third-degree Kronecker model mixture experiment
Sitienei, (2019). In this model, the response is assumed to be a polynomial function of

the mixture proportions up to the third degree. The coefficient matrix K, denoted as
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K 3, is a matrix that encodes the linear relationships between the third-degree

polynomial terms and the mixture proportions.

The parameter subsystem of interest for the third-degree Kronecker model is typically
defined to include all the linear, quadratic, and cubic terms, as well as some of the
interaction terms Wambui, Joseph & John,(2021). The specific choice of terms depends

on the experimental objectives and the properties of the response surface.

Optimal weighted centroid designs for maximal parameter subsystems are designs that
maximize the amount of information available for estimating the parameters of interest
Karatina, (2021). These designs are constructed using weighted centroid points, which
are points in the mixture space that represent mixtures of the components. The weights
associated with the centroid points determine the relative proportions of the components

in each mixture.

The coefficient matrix K plays a key role in determining the optimal weights for the
centroid points Gou, Sun, Du, Ma, Xiong, Ou, & Zhan, (2022). By analyzing the
structure of K, it is possible to identify a set of feasible weighted centroid designs that
satisfy the maximal parameter subsystem condition. These feasible designs can then be
evaluated using optimality criteria, such as A-optimality or D-optimality, to select the

design that provides the most efficient estimation of the parameters of interest.

The application of the coefficient matrix K in real-life situations involves using it to
identify feasible designs and apply optimality criteria to select the most efficient design
for specific experimental objectives. This is particularly relevant in the context of
optimal design for mixture experiments. This concept has practical applications in

various fields, such as pharmaceuticals, food science, and material engineering.
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In pharmaceutical research, the development of drug formulations often involves
mixture experiments to optimize the composition of active pharmaceutical ingredients,
excipients, and other components Janczura, Sip & Cielecka-Piontek, (2022).. The
coefficient matrix K can be used to identify the optimal weighted centroid designs for
maximal parameter subsystems, ensuring that the experimental design provides the
most efficient estimation of the parameters of interest, such as drug potency, stability,

and bioavailability.

In food science, the formulation of food products often requires the optimization of
ingredient proportions to achieve desired sensory attributes, nutritional content, and
shelf stability Janczura, Sip & Cielecka-Piontek, (2022). By utilizing the coefficient
matrix K, researchers can identify the parameter subsystem of interest and design
optimal weighted centroid experiments to maximize the information available for

estimating the parameters related to taste, texture, and nutritional quality.

In material engineering, the development of composite materials involves blending
different components to achieve specific mechanical, thermal, and electrical properties
Hsissou, Seghiri, Benzekri, Hilali, Rafik, & Elharfi, (2021). The coefficient matrix K
can be applied to identify the optimal weighted centroid designs for maximal parameter
subsystems, ensuring that the experimental design provides the most efficient

estimation of the parameters related to material performance and durability.

By understanding the structure of the coefficient matrix K, researchers and practitioners
in these fields can effectively identify feasible designs and apply optimality criteria to
select the most efficient design for their specific experimental objectives, ultimately

leading to the development of high-quality products and processes.
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2.5 Moment and Information Matrices
According to Pukelsheim (1993),for any design 7, with the moment matrix M, the
information matrix for K'@ with k x s coefficient matrix k of column rank s can be

defined as C, M in that, the mapping C, from the cone NND (k) into the space

sym(s) is given by;
C A=min{LAL": L € R**, LK =1_{e NND(S).ccoccccc covrcen 3)

Pukelsheim (1993) demonstrated that the Loewner ordering is taken into account when
calculating this minimum across all left inverses L of K on the space sym(s) of S xS
symmetric matrices, defined by A< B if and only if B— A € NND(s),for 4,B €
sym(s) and that this minimum exists and also it is unique. The information matrix

C, (M (7)) of a design T with a moment matrix captures the amount of information

that 7 contains on K'@, Pukelsheim, (1993) and defined,

Ly = (KK K e R™™, e 4)

With K e R being maximal coefficient matrix for the convex set M, Pukelsheim

(1993). Then the information matrix mapping C, : NND(k)H sym(rM) satisfies,
C, = L,AL; forall Ac NND(k) with®R(A)= R, . Hence, C, isalinear mapping
on M and enjoys the inversion property A= KC, (A)K' for all Ae NND(k)with

R(A)c R,,, (Kinyanjui, 2007).
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If K'@ is a subsystem with any number of parameters and A€ NND(k) a given
matrix, there is a left inverse L = L(A) and is separate from A with R(A)c R, such

that C, (A) = L(A)L’', Pukelsheim (1993). The linearity of C, (M (7)) as a function of
M (z') entails linearity of C, (M (7)) as a function of 7. Additionally, the linearity

of C, is a generalization of the obvious identity C,, (A)= A forall Ac NND(k),

It claims that information matrices for the entire parameter vector are moment matrices.

Information matrices should therefore be viewed as modified moment matrices with the

matrix L, € R™* considering the model:

With the same experimental domain T, , the regressions function
Lof : T, — V™ | parameter vector S € R™ and the moment matrix

M (z)of a design 7. Then, for every design t on T, with SR(A)g R, , we then have

M(z)=C,(M(z)) andtheset M(z)={C,M;M e M} < NND(r,, )

is a convex set of moment matrix. Thus, the full parameter vector 23 is estimable within

M ,(Kinyanjui, 2007).

We then construct an information function ¢ : NND(s) > [0, oo] to examine design
problems for a parameter subsystem K'6.That is, ¢ ,is non-constant, it is upper semi-

continuous, positively homogenous, and super additive with regard to the Loewner

ordering. Instead of optimal designs, it is sufficient to think about optimal moment
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matrices. Let M be a subset of moment matrices, a moment matrix, M, € M is

called ¢ — optimalfor K'¢ in M if and only if it solves the design problem,

Maximize ¢ —(C,(M)) with M e M

Subjectto M e M~ A(K).

The optimal moments and information matrix depend on the number of moment
conditions specified for the model. For two moment conditions, the optimal moments
are the sample averages of the moment conditions, and the optimal information matrix

is the inverse of the sample covariance matrix of the moment conditions.

In general, the optimal moments are the sample averages of the moment conditions, and
the optimal information matrix is the inverse of the sample covariance matrix of the

moment conditions Schennach & Starck,( 2022).

In a mixture experiment, the experimenter is interested in the response of a mixture of
two or more components as the proportions of the components are varied. Weighted
centroid designs (WSCDs) are a popular choice for mixture experiments because they

are efficient and easy to implement Husain & Hafeez,( 2023).

There are a number of different criteria that can be used to assess the optimality of a
WSCD. One common criterion is A-optimality. An A-optimal design is a design that
minimizes the determinant of the Fisher information matrix Hajibabaei, Seydi &
Koochari, (2023). This means that an A-optimal design provides the most precise

estimates of the model parameters.

In the context of third-degree Kronecker model mixture experiments, a maximal

parameter subsystem is a parameter subsystem that contains as many parameters as
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possible Sitienei, (2019). A WSCD for a maximal parameter subsystem is a WSCD that

allows for the estimation of as many model parameters as possible.

Optimal WSCDs for maximal parameter subsystems in third-degree Kronecker model
mixture experiments have been studied by a number of researchers. Kerich et al. (2014)
developed a method for constructing A-optimal WSCDs for maximal parameter
subsystems in third-degree Kronecker model mixture experiments. They found that the
A-optimal WSCDs for maximal parameter subsystems are highly efficient and can be

used to estimate a large number of model parameters.

WSCDs are a valuable tool for mixture experiments. They are efficient, easy to
implement, and can be used to estimate a large number of model parameters. Optimal
WSCDs for maximal parameter subsystems are particularly useful in third-degree
Kronecker model mixture experiments (Kinyanyui, Kungu, Ronoh, Korir, Koske &

Kerich, 2014).)

2.6 Feasibility Cone

According to Pukelsheim (1993),the most important case occurs if the full parameter

vector o is of interest, that is, if K =1, and since the unique left inverse L of K is

then the identity matrix |, , the information matrix for @ reproduces the moment

matrix M,

C (M) =M e, (6)

According to Pukelsheim (1993), if the matrix M lies in the feasibility A(C), Gauss-

Markov Theorem provides the representation,



23

EURR!
Here the information matrix for C'6 is the scalar (C'M 10) ,in contrast to the moment

matrix M. The goal of information minimization seems acceptable. The feasibility cone

A(k) for a parameter subsystem K'6 is defined by;
A(k) ={A € NND(k);rangek < range A}.

A matrix A € sym(k) is called feasible for K'6 when A € A(k);a design ¢ is called

feasible for K'60 when M (&) € A(k). If k is of full rank, the representation is provided
by the Gauss-Markov theorem as C,(A)= (k’A*lk)_l , information matrices in

statistical inference assume this form, Pukelsheim, (1993).

2.7 Kiefer Optimality

The optimality properties of designs are determined by their moment matrices
Pukelsheim (1993). We compute optimal design for the polynomial fit model, the third
degree Kronecker model. This involves searching for the optimum in a set of competing
exchangeable moment matrices, Gregory et al, (2014). For mixture models on the
simplex, a better design is obtained, by matrix majorization that yields a larger moment
matrix due to increase of symmetry and Loewner ordering. The two criteria together
constitute the Kiefer design ordering and any such criteria single out one or a few
designs that are Kiefer optimal, Pukelsheim, (2006). In view of the initial
symmetrization step, it suffices to search for improvement in the Loewner ordering
sense, among exchangeable moment matrices only. First,obtain the exchangeable
moment matrices, then find the necessary and sufficient conditions for two
exchangeable third-degree K-moment matrices to be comparable in the Loewner matrix
ordering. The comparison of moment matrix inequalities reduces to the comparison of

individual moment inequalities which is part of the condition.
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A minimum complete class of designs for the kiefer ordering is the set of weighted
centroid designs. Completeness of a collection of weighted centroid designs (C)
indicates that for each design t that is not included in the set of weighted centroid
designs, there exist a member & in C which is kiefer better than 7. To mean that, it
must be shown that & has more information than t.M(¢) > M(t), and thus the two
moments are not kiefer equivalent. It must be shown that, weighted centroid design

satisfies M(&) > M(7) ,which in turn satisfies the kiefer optimality of M(&).

The assumption M(&) > M(z) cannot be true, as demonstrated by Draper and
Pukelsheim (1998), making the class C minimum complete. Thus, increased symmetry

and Loewner ordering can always be added to designs that are not weighted centroid.

2.8 Polynomial Regression

Scalar responses Y; are applicable to response surface models under the presumption
that observations made under same or dissimilar experimental conditions ¢, share a
common (unknown) variance, a2 , and are uncorrelated. Additionally, the models

operate under the presumption that the anticipated response E(Yt)z n(t,@) permits

fitting by a low-degree polynomial in t. According to Draper and Pukelsheim (1998),by

the use of the Kronecker product, we have the third-degree model as ,

n(t,0)=6, +O, + (t®t) 0+ (t®t®t)d, , and the mean parameter vector as,

fi}
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Each of the components is usually interpreted with 8,as the grand mean. The mx1

!

vector Oy, =(6;.....,6,) consist of the main effects 6, .The m°x1  vector

!

Oy = (0111,0112 ..... , Hmmm) consists of interaction effects of pure cubic effects 6., and

the three-way interaction effects 6;; with third degree restrictions 6, = 6;; for all i,j

jii
and the regression function t — f(t) conforms to the parameter vector ® and is, in

1
t
tdt
tOtXt

turn f(t)=

On the experimental domain T;,, ,an experimental design 7 is the probability measure
with a finite number of support points. Suppose the supports points are t,,t,,....t, and

T allocates weights w1, Wa, ... to the support points in T, , hence the experimenter is
thus instructed to draw the proportions w1, wy, ... of all observations under the relevant
experimental settings. For a linear model with regression function f(t), the statistical

properties of a design, T are captured by its moment matrix,
M(r):;wjf(tj)f(tj) = [P A2 (8)

in Draper and Pukelsheim (1998). Any such moment matrix that has been over
parameterized is rank deficient, and the least squares estimator's for ® dispersion
matrix is no exception. Consequently, the normal matrix inverses are unfortunately
nonexistent. This results in the generalized inverses being invoked, which also has an

equivalent performance.
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2.9 Optimal Weighted Centroid Designs

Smith, (1918) became the first to develop optimal designs for the regression problems,
later on, Kiefer, (1959) developed important computational procedures which are
important in finding optimum designs in regression problems of statistical inference.
Pukelsheim, (1993) examines the general design environment. According to Klein,
(2004) the class of weighted centroid designs for a design with at least two elements

for the Kiefer ordering is fundamentally complete.

The researcher showed that, in the second Kronecker model with ingredients

m > 2 for mixture experiments, for every design 7 € T and for every p € [-oo; 1] a
weighted centroid design 7 exist with (¢, ©C, e M)() 2 (8, o C, o M)(). There are

two steps followed for Kiefer design ordering. The ordering process for Kiefer designs
involves two parts. The majorization ordering comes first. The next step is to improve
the Loewner matrix ordering within a class of exchangeable moment matrices, Draper
and Pukelsheim (1998). For every design 7 € T there exist a weighted centroid design

n whose moment matrix M(n) becomes better upon M (r) according to Kiefer
ordering, with the moment matrices M (7) and M (¢ ), as seen in Draper and

Pukelsheim, (1998). In the Kiefer ordering, a moment matrix M has better information
than a moment N, if M is better than or equal to some intermediate matrix F under

Loewner ordering and F majorized by N in a group that leaves invariant problem.
M >> N < M >> F<N for some matrix F.

Moment matrix M is kiefer better than N if M>>N, but not when M and N are the same.
The moment matrices M and N are kiefer equivalent when M>>N and N>>M. If

symmetry is increased and a big moment matrix is obtained under Loewner ordering, a
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design can be enhanced to provide additional information. The two criteria demonstrate
that the acquired information is, thus, Kiefer optimum for the parameter subsystem. The
implication of the above is that any design which does not consist of a mixture of
elementary centroid designs can be improved upon,in terms of symmetry and Loewner

ordering, by using an appropriate combination of elementary centroid designs.

Other criteria within the class of weighted centroid are needed for more improvement,
for instance the average variance criterion, and determinant criterion as proposed by
Draper and Pukelsheim, (1998). The introduction of optimal designs was done by
Scheffe’ (1963). Exchangeable weighted centroid designs are those that are invariant

under permutations, Klein (2002).

Klein (2004) affirmed the benefits of the weighted centroid designs for the Kronecker
model thus summarizing the work done in theorem 6.4 and 7.4 by Draper, Heiligers

and Pukelsheim (1999).

Weighted centroid designs are used in the context of optimal experimental design,
particularly for mixture experiments involving a maximal parameter subsystem. The
weighted centroid design aims to optimize the precision of estimating model parameters
Shah, Zhe, Yin, Khan, Begum, Faheem & Khan, (2018). The computation of numerical
weighted centroid designs for the maximal parameter subsystem involves determining
the optimal values based on specific optimality criteria. The literature on this topic
discusses the computation of optimal designs for a maximum subsystem of parameters
in second-degree Kronecker model mixture experiments. It also addresses the
derivation of E-optimal weighted centroid designs based on maximal and non-maximal

parameter subsystems for various numbers of ingredients. Additionally, a well-defined
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coefficient matrix is used to select a maximal parameter subsystem for the model, as its

full parameter space is inestimable Kung’u, Koske & Kinyanjui, (2020).

For specific numerical computations and algorithms related to weighted centroid
designs for maximal parameter subsystems, consulting the referenced literature and
academic papers would provide detailed methodologies and approaches Wang, Fan &
Qiang, (2023). The first step in computing numerical weighted centroid designs is to
compute the information matrix of the design. The information matrix is a matrix of
second-order partial derivatives of the log-likelihood function with respect to the
parameters. The diagonal elements of the information matrix are the variances of the

parameter estimates.

The second step is to use the information matrix to compute the D-optimal, A-optimal,
and E-optimal designs. The D-optimal design is the design that minimizes the average
variance of the parameter estimates. The A-optimal design is the design that minimizes
the trace of the information matrix. The E-optimal design is the design that minimizes
the maximum eigenvalue of the information matrix Shahmohammadi & McAuley,
(2018). The third step is to compute the weights of the points in the design. The weights
are determined by the relative importance of the parameters. The weights can be
computed using a variety of methods, such as least squares or maximum likelihood
Mannarswamy, (2018). The final step is to evaluate the performance of the design. This
can be done by comparing the design to other designs, or by comparing the design to a

theoretical benchmark Bu, Majumdar & Yang, (2020).

Weighted centroid designs have various applications in real-life situations. One
application is in optimal experimental design, specifically for mixture experiments

involving a maximal parameter subsystem Ozbek & Eker, (2020). The goal of weighted
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centroid designs in this context is to optimize the precision of estimating model
parameters. This can be useful in industries such as pharmaceuticals or materials
science, where accurate parameter estimation is crucial for product development and

optimization.

In another real-life application, weighted mean centroids are computed for latitude and
longitude points, taking into account the spheroid ,Abd El-Sattar, Sultan, Kamel,
Khurshaid & Rahmann,(2021). This can be useful in geographic analysis or navigation
systems, where determining the center or average location of a set of points is important.
To compute numerical weighted centroid designs, several steps are involved. First, the
information matrix of the design needs to be computed, which consists of second-order
partial derivatives of the log-likelihood function with respect to the parameters Zhu,
Zhu & Au,( 2023). This matrix provides information about the variances of the

parameter estimates.

Next, different optimality criteria such as D-optimal, A-optimal, and E-optimal designs
can be computed using the information matrix ,Gichuki, Joseph & John, (2020). These
designs aim to minimize the average variance, trace, or maximum eigenvalue of the
information matrix, respectively. The weights of the points in the design are then
computed based on the relative importance of the parameters ,Marks et al., (2023). This
can be done using methods like least squares or maximum likelihood. Finally, the
performance of the design is evaluated by comparing it to other designs or theoretical
benchmarks. This allows for the selection of the most suitable design for the specific

application.
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2.10 Optimality Criteria

The function ¢ is an optimality criterion from the closed cone of non-negative definite
s x smatrices (Csxs) onto real line ¢ : NND(s) — R, with the properties that gives the

idea of whether an information matrix can be large or small. For one to make a good
decision, on the best model to be selected, some set are to be employed. There are
widely used optimality criteria used in statistics, which comprises of; The smallest
Eigen Value Criterion (E- Criterion), Average Variance Criterion (A- Criterion) and

the Determinant criterion (D- Criterion).

The need for the theory of optimal designs emerged from the requirement that an
experimental design be properly chosen before the experiment. The aim of investigating
the optimal theoretical designs is to provide a reliable benchmark for identifying the
most efficient and useful solutions to a problem. This was motivated by the fact the
available resource is inadequate that are used to conduct field experiments, hence,
making it sensible to get the most convenient way the optimal desired results could be

obtained by making use of the limited resources available.

Smith (1918) provided a criterion and also obtained optimal experimental designs for a
given set of regression problems. Wald (1943) showed the criteria of maximizing the
determinant of the matrix XX and Kiefer and Wolfowitz (1959) referred to it as the D-
optimality criterion. The design optimality criteria always deal with the optimal

properties of the given design matrix for a model matrix X.

The D-Criterion is used in most commonly used as well as the A-optimality and E-
optimality criteria which were later on developed as the parameter estimation criteria.
Additional developments in the generation of optimality criteria is found in the works

done by Elfving (1952) and Chernoff (1953) who reduced the trace of (X’X)* to get
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the regression designs. Ehrenfeld (1955) brought about the suggestion for minimizing
the suggested that maximizing the smallest eigenvalue of X’X can as well be used as a

criterion.

The idea of optimum experimental design is as well explained by doing the relationship
between the variance of the parameter estimates and that of the expected responses from
different designs and models. The general equivalence theorem, which leads to the
algorithms for the designs and models, is the outcome of the existing association
between the two sets of variances. The general equivalence theorem is the central result
where the dependence of the optimal design of experiments depends (Atkinson and
Donev, 1992). The methods for construction and the verification of the optimal designs
are offered, and the theorem is generally applied to a variety of given design
requirements. The goodness of a design is shown by the optimality criterion on either a
set of a given statistical properties or on a certain property. Here, the goal of
investigating optimal theoretical designs is to provide a yardstick for determining which
designs are the most effective and practicable. Pazman (1986) and Mandal (2000)
concentrated more on the D- optimality and also, Yang (2008) demonstrated the use of
an algebraic technique for constructing an A-optimal designs in generalized linear
models. Pukelsheim (1993) gave a comprehensive mathematical discussion which
offered a method that is used to compute the optimality criteria, where he brought about

the discussion on the D-optimality, and A- optimality criteria.

Optimal weighted centroid designs for maximal parameter subsystem for third degree
Kronecker model mixture experiments have not been studied. The general design
problem was to obtain a design for a parameter subsystem with maximum information.

The full parameter subsystem cannot be estimated, to make it estimable, coefficient
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matrix of interest was then chosen, by dividing the factors interacting with the entire
number of interacting parameters in the model, the full parameter subsystem was made
estimable, making it possible to estimate as many parameters as possible. The study
sought develop useful improved optimal designs that reduce the cost when used in

designing of experiments. This study sought fill the knowledge gap.

In the context of the third degree Kronecker model for mixture experiments, weighted
centroid designs are considered as an essentially complete class. These designs are
evaluated based on various optimality criteria such as A-, D-, and E-optimality Sitienei,
(2019). The weighted centroid designs are obtained by considering the coefficient
matrix and the associated parameter subsystem of interest using unit vectors. The
information matrices associated with the parameter subsystem of interest are then
generated for the corresponding factors, and the optimality criteria are applied to

evaluate the designs.

Optimal weighted centroid designs for the third-degree Kronecker model for mixture
experiments can be determined using A-optimality, D-optimality, and E-optimality
criteria Sitienei, Okango, & Otieno, (2019). A-optimality minimizes the average
variance of the parameter estimates, D-optimality maximizes the determinant of the
information matrix, and E-optimality minimizes the maximum eigenvalue of the
variance matrix.To determine the optimal weighted centroid designs for the third-
degree Kronecker model, the following steps can be followed. Define the third-degree
Kronecker model where the third-degree Kronecker model is a second-order model that

includes third-order interactions between the mixture components.

Define the optimality criterion where the optimality criterion is a measure of the

efficiency of a design. The three most common optimality criteria are A-optimality, D-



33

optimality, and E-optimality. A-optimality minimizes the average variance of the
parameter estimates. D-optimality maximizes the determinant of the information

matrix. E-optimality minimizes the maximum eigenvalue of the variance matrix.

Find the optimal weights for the weighted centroid design. The optimal weights for the
weighted centroid design can be found using numerical optimization techniques. The
optimal weights will depend on the optimality criterion and the number of mixture

components..

Apply the design to the mixture experiment. The optimal weighted centroid design can
be applied to the mixture experiment by selecting the mixture proportions according to
the weights of the design. The response can then be measured and used to estimate the

model parameters.

The optimal weighted centroid design for the third-degree Kronecker model will
depend on the optimality criterion, the number of mixture components, and the specific
mixture experiment. However, the optimal design will always provide more efficient

parameter estimates than a non-optimal design.

The application of weighted centroid designs involves defining the third-degree
Kronecker model, selecting the optimality criterion, finding the optimal weights for the
design, evaluating the efficiency of the design, and applying the design to the mixture
experiment. The optimal weighted centroid design for the third-degree Kronecker
model depends on the optimality criterion, the number of mixture components, and the
specific mixture experiment. However, it always provides more efficient parameter
estimates than a non-optimal design. These designs are used to optimize mixture
experiments and are evaluated based on various optimality criteria, making them a

valuable tool in the field of mixture experiments.
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For example, in the field of pharmaceuticals, when developing a new drug formulation,
it is important to determine the optimal proportions of different ingredients to achieve
the desired therapeutic effect. By using the weighted centroid designs, researchers can
systematically vary the proportions of the ingredients and evaluate the response of the
drug formulation. This can help in determining the optimal formulation that maximizes
the desired effect while minimizing any potential side effects. The optimality criteria
such as A-, D-, and E-optimality can be used to evaluate the efficiency of the designs
and select the most optimal one. This application can save time and resources by
providing a systematic approach to optimizing mixture experiments and improving the

effectiveness of drug formulations.
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CHAPTER THREE
RESEARCH METHODOLOGY

3.1 Introduction

Mixture experiments are associated with the investigation of several factors, which are
assumed to influence the response only through proportions in which they are mixed.
The mixture factors ty, t,, ... ... ,tmare coded in such a way that t; > 0 subject to
restriction ): t; = 1. A major impact of this constraint being that the linear models do
not have an intercept otherwise the regression coefficients cannot be estimated

uniquely.

LetI,, = (1...1)" € R™ be the unity vector .The standard probability simplex T,,, is the

experimental domain given as T, = {t = (t1,....tm) €[01]; 0t = 1}

...........

The experimental response Y, is the response under experimental condition teT
taken as real valued random variable with an unknown parameter €. The outcome of
the experiment Y, is the response under experimental conditions t € T, and is used as
a real valued random variable with the unidentified parameter

0 =04y, 01p0n 0, ) €R™.

Replications under responses from different experimental conditions and also the same
experimental condition are under the assumption of having equal (unknown)
variance,o? and are uncorrelated. The probability measure on the experimental domain

T,,, is the experimental design 7, and it has a finite number of support points.

Early seminar work was done by Scheffe’ (1958) who suggested and analysed

canonical model forms when the regression function for the expected response is a
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polynomial of degree one, two, or three. We refer to these as the S-polynomial or S-
models. In this paper, the alternative representation of mixture models is used to
investigate the third-degree mixture models with three factors. This version is based on

the Kronecker product algebra of vectors which was introduced by Draper

and Pukelsheim (1998). The Kronecker algebra gives rise to homogeneous model
function and moment matrices. We refer to the corresponding expressions as K-models

or K-polynomials.

Thus, the polynomial regression model for the third-degree mixture model is extended
to the work done by Draper and Pukelsheim (1998). Where, expected response and the

S-polynomial takes the following form,
E[Yt] = f(t)'H = 2{’;1 tiHL- + 22{2] ti tJBU ........................................ (9)

The expected response of a regression function when it is homogenous third-degree k-

Polynomial, takes the following form;
ElY,]=f()'0 = Xt X1 Xjm1 ti titj0;;; = (@t ® )6 v v e v ... (10)

where the Kronecker powers t% = (t®t®t),(m3><1) Vectors. Consist of the three-
way and pure cubic interactions of components of t in lexicographic order of subscripts
with 6 =0, =0, =0, =6, =0, for all i, j being the third degree restrictions.
According to Draper and Pukelsheim (1998), the advantages of the Kronecker model
includes; its more compact notation, practical invariance qualities, and homogeneity of
the regression terms. In an experiment, it is assumed that every observation has a

common variance o2 € (0,) and is uncorrelated. m(z) = [ f(£)f(t)'dt is the
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moment matrix for the Kronecker model, with homogeneous elements of degree six.

The moment matrix m () reflects a design’s statistical characteristics.

3.1.1 Kronecker Products

Draper and Pukelsheim (1998) proposed a set of mixture experiment models referred
to as K-models or Kronecker models. Kronecker model is another representation of
mixture models. The models are based on the vector and matrix algebra of Kronecker.

The expected responses for any mixture experiments studied using the kronecker
models, are homogeneous in factors. The mixture factors t;, may be written asa mx1
vector, t = (t;,....., t. ). Orthogonality is an important property that kronecker product

should preserve. If two matrices A and B are the orthogonal matrices, then, their

Kronecker product A® B are also said to be an orthogonal matrix .Kronecker product

bases third degree polynomial regression in the m variables t = (tl, ..... ,tm)'on matrix

of all the cross products.

ot ..t

|’ &t oty

2
tt'=t-2 tZ.tl t? tsz
bnlt,t, tt, - t3

. .. . 2 2
Instead of reducing the Box —hunter minimal set polynomials (t; ..., t ,tt ...t t )

.Some of the benefits enjoyed include: Transformational principles become
straightforward using the conformable matrix R. The kronecker model extends to third
degree polynomial regression and different terms are recurred depending on how many

times they arise.
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Given a matrix A and B with kxm and | xn respectively, where klxmn is the block

matrix and the definition of their Kronecker product is given as A® B. Where,

B

ale ak

Given a vector s e ®™ and also another vector t € R" their Kronecker product is a

special case.

SRt =|: - (Sitj)i:1,...m,j:1,...neinm”

t in lexicographic order

One of the key properties of Kronecker product is the product rule

(A®B)(s®t)=(As)®(Bt) .This has a good implication for transposition,
(A® B)' = (A") ® (B") ,for Moore-Penrose inversion, (A® B)" =(A")®(B") and for

the regular inversion (A®B)™ =(A")®(B™) .The other properties of Kronecker product
are (A®B)Q®C=AQ (B®C) for associativity, (A+B)QRC=A+0)QR
(B®C) for distributive  property. Trace (AQ®B) =trace(B® A) =

trace (A)Qtrace (B)

And tt' assembles the cross products '(itj in an mxm array. In second degree, a

representation of Kronecker square t®t arranges same numbers as long m? x1 vector.

And arranges the Kronecker product cube t ®t ®tas a longm?® x1 vector and a list of
triple products t;t;t; in lexicographic order, as suggested by Draper and pukelsheim

(1998).Transformation ~ with conformable matrix R amounts  to
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(Rt) ® (Rt) = (R®R)(t ®1) for second degree Kronecker model and

(RO®(Rt)®(Rt) = (R®R®R)(t®t®t) for third degree Kronecker model.

This greatly helps to facilitate the calculations in applying the Kronecker product to

response surface.

The first-degree K-model was of the following form,

m

E(Y,) = f(t)'0 == z Biti oeee e e 1)

i=1

The second degree Kronecker model was given as follows,

E(Yt) = f(t)le = (t ® t)'H = z Hiitiz + z (Bij + Bji)titj Cee aer res e wes ena s (12)
i=1 i,j=1
i<j

and the third degree model is of the following form; E(Y;) = f(t)'0 = (tQt Q
t)'@ = Z:Zl Hiiiti3 + er,r‘l]ﬁl Hiijtiztj ................................................. (13)

i#j

where f (t) =t ®t®t is an unknown parameter vector and also a regression vector. In

an experiment all the observations were made with an assumption that, they have
identical unknown variance and are unrelated. The Kronecker product has been applied
in this study to derive the exchangeable moment matrices since Kiefer design ordering
does not depend on the coordinate system that is used to represent the regression
function, though both Kronecker and the Scheffe’ are based on the same space of
regression polynomials, but differ in their choice of representing this space. Draper and

Pukelsheim, (1999) and Prescott, et. Al, (2002) put forward several
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advantages of the Kronecker model such as, the homogeneity of the regression terms,
great transparency, models have compact representation, more convenient invariance
properties and good symmetries attained as a result of duplication of terms. The terms
are replicated and the symmetry is achieved. We refer to the corresponding expressions
as K-models or K-polynomials. In particular, polynomial regression model for mixture
experiments as suggested by. Draper and Pukelsheim, (1 1999) in the first and second-

degree Kronecker mixture models in which they obtained the

results for Kiefer design ordering of mixture experimental design were reviewed. Most
of the designs enjoy the good symmetric properties, as they are unaffected by a set of
linear transformations and remain invariant. As a result, for the homogeneous
symmetric Kronecker models, invariant design is applied. it helps in attaining the
characteristics of a successful and good experimental design, which is, symmetrical and

also balanced.

3.1.2 Space of Design Matrices

3.1.2.1 Invariant symmetric block matrices for design of mixture experiments

A quadratic subspace of symmetric n X n matrices is a linear subspace 9 of sym(n)
with added feature that C € 99 implying that €2 € 9 . Rao, C.R.and Rao, M.B. (1998).
Matrix Algebra and its Application to Statistics and Economics. Which gave a brief
introduction to the subset and a few of its statistical uses. When specific invariance
characteristics of the information matrices used in the design are taken into
consideration, quadratic sub-spaces of symmetric matrices emerge. A specific quadratic
subspace case is examined, and the application of the analysis's findings to the designs

of the mixture experiment's third degree polynomial regression model is shown for



m > 2 factors. The canonical unit vectors in R™ is denoted by e; ey, ... ... ,em-The

m
canonical unit vectors in 9%(2) are denoted by E;;; with lexicographically ordered
index pairs (i,j),1 < i < j < m.Let9,, be the symmetric group which is of degree

m, and also, let perm(m) be the group of m x m permutation matrices.

Define, H ={H, = Re 0 ;T € 9, ¢ With
0 S,

m
R/r = Zeﬂ(i)ei, < perm(m) and
i=1

-1
<

m , m
S = ZE(ﬁ(a)ﬂj)T E. e pern{(zjj for all 78, where,

(@), 7z(j)) T is the pair of indices 7z(i),77(j) in ascending order. The set H

m+2 .. . .
is the subgroup of pern{( 2+ B and likewise is isomorphic to 9,,. And it acts on

m+2 i
the space sym(( ) D through the transformation of congruence (H,C)~ HCH’
and induces the subspace,
m+2 m+2 .
syrr{[ ) ] HJ = {C € sym[( ) D HCH for all He H}of symmetric H-
invariant matrices. Given that the orthogonal group's subgroup is H, space

2 . .
sym((m;r J H] is the quadratic subspace as given in Pukelsheim (1993). One of the

major components of our research is the quadratic subspace. Moment matrices that
are invariant under a finite subgroup of the orthogonal group, including permutations

and sign changes, were considered by Gaffke and Heiligers in (1996).
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While Galil and Kiefer (1977) treatment of the H-invariance is less formal and does not
mention the quadratic subspace, their numerical approach to the best mixture
experiment designs is guided by the structure and makes use of the eigenvalues of H-
invariant symmetric matrices. The invariance results can be extended to the analytical
derivations of optimal designs, as demonstrated by Klein (2004) and Kinyanjui (2007).
The eigenvalues and eigenvectors of invariant symmetric matrices are obtained by

spectral analysis.

3.1.2.2 Cubic Sub-Space

In a design problem, all information matrices lie under the cubic sub-space sym(s, H)

m+1
(s :( 2 J)as shown in Klein (2004), where optimality criteria was a guide for

analysis and the analysis of the cubic sub-space helped in solving design problem. In

a rotatable cubic model,

Draper, N. R., Heiligers, B. and Pukelsheim, F. (1998). Studied Kiefer ordering of
simplex designs for second-degree mixture models with four or more ingredients

demonstrated how to determine numerically optimal designs.

H is a sub-group of permutation matrix group-invariance of a matrix C e Sym(s)

means certain entries of C coincide. Invariant symmetric matrix has seven distinct

entries at most, Lemma 3.1 in Klein (2004).



Lemma 3.1

The identity matrices are defined as follows; U; =1, and w, =1

Uu,=11 -1, esym(m)

V, = Zm: E;(e +e +e;) eSR[r;)xm

i,j=1

A matrix C e sym(s, H) can be uniquely represented as follows,

(

m
2

J

43

,and
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al +bU2 v, +dV2
C=leV/+dV) el FW A+ GW, e s s s s (15)

with the coefficients a,b,c,d,....., g € ®. The terms that contain V., W> and W3 only

occur for m>3 and for m> 4 respectively.
Proof

The block structure of the matrices in H allows for the partitioning of any symmetric

matrix C e sym(s, H ), that is,

C, C
C :( - 12} ........................................................................... (16)
C12 C22

. (5 )m m
with C,, e sym(m), C,, e R and C,, € sym((ZD

C,, espan{U,,U,}, C,, espanfV,,V,} andC,, € span{W;,W,,W;}.

In equation (16), a unique representation of this, follows from the linear independence
of sets{U,,U,}, {V,.V,} and {W,W, W,}. The structure of sym(s,H) is then
turned , that is, the additional attribute that sym(s, H) closes when matrix powers are

formed. In equation (16), the block representation implied that, the powers of H-
invariant symmetric matrices involve the products of Ui V; and Wk. Multiplication

table for the matrices are presented by the following lemma.
Lemma 3.2

The results of multiplication of information matrices U, Vj and Wk are:



(i) Productsin spanfU,,U.,}

UuU,=U,U, =U,, UZ=m-1U, +(m-2)U,.

m-1 m-2
VV,=(m-YuU, +U,, Vz\/zz( 5 le+( 5 jUZ,

VV,=VNV,=(m-2)U,, UZ=(m-DU,+(m-2U,.
Uz_U,
(if) Products in spar{V,,V,}

VU, =V, +2V,, V,U, =(m=2)V, + (m-3)V,,
WV, = (M=2V, +2V,, WV, = (m=2)V, +2(m—-3)V,,

m-2 m-3
WV, = (m-3)V,, WV, = 2 1t 2 2

(iii) Products in spanfw,,W, ,W,}
VV, =2W, +W,, V,V, = (m—=2)W, + (m-3)W, + (m—-4)W,,

V. =VV =W, + 2W,, W2 =2(m—2)W, + (M —2)W, +4W,,

, [(m=2 m-3 m-—4
W3 = 2 1t 2 2t 2 37
WW, =WW, = (m—3)W, +2(m— AW,

Proof

Verification of elementary calculations were done using the following identities;
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U,+U, =11, V, +V, =1

A 1 and W, +W, +W, =11’

3) EJE)

With lemma (3.1), by use of symbolic manipulation and multiplication of scalars,

products of matrices in sym(s, H) can be calculated . From this result, calculations that

are involved in the design problem can be performed. Additionally, the multiplication

table can be simply integrated into a computer algebra system, as a side result of lemma

(3.1) and thetraceU, =traceW, =traceW, =0, the basis matrices;

U, 0 u, 0 0V 0V,
Bl: 'BZZ ’B3= ! ’B4= ! f
0 0 0 0 V, 0 V, 0

As given in lemma (3.2) form an orthogonal basis of sym(s,H) in reverence to the

Euclidean matrix scalar product (4, B) » traceAB .With respect to lemma (3.2),
results on Moore-Penrose inverses has the following implication, denoted by a

superscript + sign and also on schur compliments:

Corollary 3.1

For all m > 2 factors, supposing that the matrix C esym(s, H),is then partitioned
with diagonal blocks C,;,C,, and off diagonal block C, . Thus we have,
C; espan{U,,U,} , C,-C,C;C, espanU,,U,} , C;, espaniw, W,,W,} and

Cp— C2C1+1CI21 € Span{Wsz ’Ws}

Proof
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C 0
The affirmations on C,; and C,, follow from (Si c jesym(s,H)and that

22
quadratic sub-spaces are closed under Moore-Penrose inversion, (Rao, et al.1998,

corollary 13.2.3). Together with lemma (3.2), the implication of these results claims on

the schur complements of C,; and C,,.

3.1.3 Equivalence Theorem

The equivalence theorem thus provides the necessary and sufficient conditions for the

existence of ¢, —optimal designs. As shown in Pukelsheim (1993), the designr is
called feasible for K'@ .Suppose 7 («) satisfies the side condition Cx (M (t))e PD(s)
and Ci=Cx (M (77})) for j= (1, 2... m) and p €[-0,1].Then, n(«) is ¢,-optimal for

K'@ in T if and only if,

= traceC,(M(n(a)))? for all jed(a)

traceC;Cy (M (n(a)))”™ ( < traceC,(M(n(a)))? otherwise

Equivalence theorem is mostly used in checking the optimality of given designs. To
prove the equivalence theorem, sufficient conditions available from the following two

theorems are applied:
Theorem 3.1

Let a € T, be a weight vector of the weighted centroid design 7 («) and is feasible

for K'0 and also, let d(a) = {j = (1,2, ...m:aq; > 0)}, be a set of active indices.
Additionally, let C=C,(M(n(x))) and p € (—,1) .Then n(x) is ¢, -optimal for

K'@ in T if and only if,
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=trace” for all jeod(a)

traceC C ** _
Ik <traceC® otherwise

Proof
Kinyanjui (2007), gives the elaborate proof.
Theorem 3.2

Let pe(—o1) and n(a) with o €T be the weighted centroid design which is

¢, —optimal for K'@ in T. Then the following assertions hold:

If 5(ar) ={1,2}, then there is no further design 7 e T that is ¢, —optimal for K'@ in

T, that is, 77(«) IS unique.

If 6(a)={1,2,3}, then there is no further exchangeable design 7 T that is

¢, —optimal for K'9 inT.

If there is a non-exchangeable design which is ¢p —optimal forK'g, then all its

support points are centroids of depths 1, 2 or 3.

The proof of this Theorem is found in Kinyanjui, Koske, and Korir (2008) and Klein

(2004). A consequence of this theorem to this study is that we restricted the work to the
first two centroids 77, and 77, , hence derived optimal weighted designs that are

unique.

3.1.4 E-Optimal Weighted Centroid Design

The following theorems were made use in deriving the weighted centroid design for

the smallest eigenvalue criterion, ¢___ that is E-optimality criteria. The three
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theorems in Pukelsheim (1993) were adopted, which specifically focuses on E-

optimality.
Theorem 3.3

Assume the set M of competing moment matrices and convex, and intersects the

feasibility cone A(c) . Then a competing moment matrix M € M is optimal for ¢'@ in

M if and only if M lies in the feasibility cone A(c) and there exists a generalized

inverse G of M such that C'GAGc <¢'M ¢ for all AeM .

Theorem 3.4

Let o €T, , be a weight vector for the weighted centroid design 7(«),and is feasible

for K’ and also, let 0(cr) be the set of active indices, (d(a) ={j =L...m:«a; >(0}).
Let C =C, (M (n(«x))) and p € (—,1] . Then the following assertions hold

The weighted centroid design 7(«) is E-optimal for K’@ in T if and only if there is a
matrix g e sym(s, H) ~ NND(s) satisfying

=1 (C) for all jed(a)

traceE =1andtraceC E )
. {< Amin(C)  otherwise

where 4., (C), symbolizes the smallest eigenvalue of C.

Suppose 7(«a) is E-optimal for K'@ in T and E is a matrix satisfying the optimality
condition for 7(a) given in (i). Furthermore, let 77(/5) be a further weighted design

which is E-optimal for K’@ in T. then the information matrix
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C =C,(M((B))), satisfies

CK =4_ (C)E

min

Then the following theorem dictates on the choice of the matrix E of theorem (3.4)

above.
Theorem 3.5

LetM € M be a competing moment matrix which is feasible for k'€ and let +z € R°®

be an eigenvector matching to the information matrix's Ck(M) smallest eigenvalue.

!

Then , M is ¢p—optimal for k'@ in M and the matrix Ezﬁ satisfies the
z

normality inequality of theorem (3.4) if and only if M is optimal for z’k'@ inM .

If the smallest eigenvalue of Ck(M) has multiplicity 1, then M is ¢p —optimal for

k'@ in M ifand only if M is optimal for z’k'd inM .
Proof
Normality inequality shows that ¢ —optimality coincides with that theorem (3.3) for

scalar optimality. With E = ﬁ ,the normality inequality of theorem (3.4) reads,
z

2
Z'’kK'G'AGKz < L ,forall Ae M .
ﬁ'min(Ck (M ))

The normality inequality of theorem (3.3) is c'G'AGc <c'M "¢ forall Ae M
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with ¢=Kz , The right hand side and left hand sides are identical because of

2
c’M c=72KM Kz=2Cz :L,
A (C (M))

If the smallest eigenvalue of C, (M) has multiplicity 1, then the only choice for E is

!

_z
|2

Therefore, for the weighted centroid design, acquire the least eigenvalue and its
corresponding eigenvector of the information matrix in order to obtain the best designs
for the E-criterion. The information matrices used in our design can be uniquely

partitioned as follows, based on equation (16).

c, C
C :( . 12} ............................................................................. (19)
ClZ C22
for AeR
_[Cu =Y Ca e sym(s, H) (20)
c C W TH ) e e e e et s
21 22 1

Consequently, the characteristic polynomial is denoted by,

7. (A)=det(C -1 ) =det(C, - Al )det|C_—w )-C (c -au J'c! |
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where the matrix [(CZZ—Awl)—C (Cn—/iul)‘1C£1J is the schur complement of

21

C,,—4U_ and lies in the span W, W, W,} The eigenvalues of the information

matrix C make up the roots of this polynomial, which are computed as follows:

Lemma 3.3

Leta,.....,ge R withd, fand g occurring only when m >3 and for m > 4 respectively.

Moreover, define,
D, = a+(m—1)b—e—2(m—2)f—(m;ZJg} +2(m-1)2c+(m-2)d]*..... 21)

D, =[a—b—e—(m—4)f +(m-1)g] +4(m—2)c—d)*....cccocoorrirnn (22)

Then, in the case of m> 4 the matrix C has eigenvalues

Ay, == a+(m—1)b+e+2(m—3)f+(m_2jgi\/ﬁl} ........................ (24)

1T
/14’5:5_&1—b+e+(m—4)f—(m—3)gi /DZ] .................................... (25)
. .o m(m=23) .

with the multiplicities: — 1 and (m—1) respectively.

In the case of m=2, only the eigenvalues 4 ,4,,4, whereas for m=3 there are four

eigenvalues 1, , 45, 4,andA; .
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The proof of this lemma is provided in Klein (2004).

3.2 Coefficient matrix
The coefficient matrix was computed using the parameter subsystem of interest. The

Kronecker regression function's maximum parameter subsystem was chosen with the

aid of the coefficient matrix. The Kronecker model’s full parameter vector 6 € R is
not estimable, it was made estimable through the study of a linear parameter subsystem
of interest K'@, the focus was to estimate a system of linear function, K'@ of the

m+1
X]

parameter subsystem @< R™ , where the coefficient matrix K e R [Zj was

regarded as possessing full column rank.
Letes, e2..em denote the unit vectors in R™ and E;; denote the canonical unit vectors

that are ordered lexicographically according to their indicesi, j € {1,2,..m}° with

i < j and the unit vectors e is for this study the Kronecker product of the unit vectors
e;,&;and e, thatis, the set e;; =e, ®¢, ®e;,fori<j, i,j= {1 2... m}.
The maximal coefficient matrix K which has a full column rank, which aided in the

selection of the maximal parameter subsystem for the Kronecker regression function

with a fixed number of factors, was then defined as;

3 m+1
K=(K;K,) ER™ e (26)
where
m 1 m
Kl = Zemei'l{z = g{ i,j=1 (eil-j + eiji + ejl-i + ejﬁ + ejij + ew)} ........... (27)
i=1 i#j

and



54

The matrix K is of full column rank. The parameter subsystem which was considered

in this study was denoted by the following:

(Hiii)lgism
) 3
K'o=1{1 {(eﬁj + 05 +0,; + 0, +0,; + 9ijj),1<i,j<m} eR °’Forall @ € R™....(28)
6

m+1)

where K = (K Ky) € 8™ U2 ) 29)

The relevant subsystems are represented by the vectors on the right hand. In the full
parameter model, the parameter subsystem of interest is a maximal parameter sub-

system.

3.3 Optimal Moments and Information Matrix
Kronecker product was utilized to obtain the moments; R software was used to derive
the numeral values. The moment matrix reflected well the statistical properties of the

design = . The moment matrix is given as,

M) = [ fOf@®)dr €

where an entry of M (1) is the sixth moments of a design t, the regression function

f (t) is purely cubic and NND (m?®) is the cone of non-negative definite m®xm?® matrices.
A design 7 is the experimental domain's probability measure with a set number of
support points. The experimenter is instructed to take a percentage T ({t}) of all
observations made under experimental condition F by the S € supp (1) of each support
point. In a simplex centroid design, the moment matrix can be partitioned into sub-

moments in the following ways ,
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m(n) = a;m(ny) + a,m(ny)+........... FAmMMyy) v e v v v (31)

C, (M) is the information matrix for K'@ with K xS coefficient matrix K and full

column S. K maximal coefficient matrix was defined in equation (26 ) as;

K = (K Ky) € RE XS (32)

L was deﬁned aS; L ES (K’K)_lK’ .................................................. (33)

Where L is the coefficient matrix's left inverse, such that,

C,(M(@)=LM(Z)L"ENND ...coiiiiiii it e v e v e e e ee e (34)

The entire parameter vector 6 € R™  of the Kronecker model was not estimable , the

parameter subsystem K'6 was then considered to fit the model, where K € R* .

The information matrix then records the quantity of information a design 7 has on

K'6.

m+1

C.(M (r)):min{LM (()L':Len ( ? ]; LK = I[M]} is the information matrix for

2

m+1
2

m+1 m+1
the j™ centroid. Where I( ]denotes the( ; JX( 2+ j identity matrix and L is the

m+1
left inverse of K. With regard to Loewner ordering on the space sym& 5 )J of

. (m+1 m+1 . . L .
symmetric X ) matrices , the aforementioned minimum is understood.

The information matrix C, (M (7)) is the precision matrix of the best linear unbiased
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estimator for K'@under the design 7 ,Pukelsheim (1993). The linear transformation

of moment matrices yields the information matrices for K'Q.

3.4 Optimal Weighted Centroid Designs
The set of competitors in a design problem, may be greatly diminished. In a mixture

experiment with m factors, the j*" elementary centroid design n; .jeil,..,mj,m=

i
2 is the uniform distribution on all points taking the form E_Zek eT, withl <kl<
i=1

k2 < -+ <kj<m. There is m elementary centroid designs 7; for the m factors,

placing equal weights %on the points having j out of their m components equal to
[

1
= and zeros elsewhere.
J

The vertex design points 7, and the overall centroid design 7, was then used to
construct weighted centroid designs as follows; for the weights «,«, >0 with

a, +a, =1, the design n(«) = an +a,n, is a weighted centroid design.

The collection of weighted centroid designs in the third-degree mixture model with m

factors, n(a) :{051771 tota n (al,..., am)’ e T} is a convex and serves as the kiefer

m
ordering's minimal complete class. Convex combination 77(05)=Zaj77j with
j=1

a=(ay,...a,) €T, is called a weighted centroid design with a weight vector « and

is limited by Z“i =1. Regarding the aim function of the design problem, the

=t

collection of weighted centroid designs represents a nearly complete class of designs.
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In other words, there is a weighted centroid design n € T, for each design T € T with

(8, °Cc oM Jn)= (g, °C, oM )z).
Hence, the design problem reduces to , maximize (¢p oC, oMo n) witha € T),
subject toC, (M (n(«))) € PD(s)

The necessary and sufficient conditions for the existence of 4, —optimal designs are

provided by the equivalence theorem. As shown in pukelsheim (1993), the designr is

called feasible for K'9 .Suppose 7 («) satisfies the side condition Ck (M (t))e PD(s)
and Cj=Cx (M (7)) for j=(1,2... m)and p e[-0,1].Then, n(«) is ¢,-optimal for

K'@ in T if and only if,

=traceC (M (n()))" for all jed(a)

traceC,C, (M (()))" <traceC, (M (n(a)))” otherwise

With S(a)={j \ @j > 0}. The case p=-» , E-optimality, thus, has the same
optimality criterion, Klein (2001). The aforementioned optimality criteria are difficult
to solve in the absence of knowledge of the information matrices. But the invariance
arguments will help to make the issue simpler. The general explanation of invariance
strategies in experimental design was provided by Pukelsheim,( 1993). Weighted
centroid designs are interchangeable and invariant under permutation ingredients, Klein

(2002).

3.5 Optimality Criteria
Due to the weighted centroid designs' completeness result, the optimal design problem

was significantly diminished, results of theorem 3.2 of Draper, Heiligers and
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Pukelsheim (2000). The optimality criteria are represented by a variety of functions that
are specified on the set of the information matrices and have some statistical
significance. Thus, if such a function reaches its maximum, designs are said to be at

their best.

Moment matrices determine the properties of optimal designs as shown in Pukelsheim
(1993). Polynomial fit model optimal designs are then computed. In the design of

experiments, the optimal is sought among a collection of contending moment matrices.
Prominently optimality criteria are: the average-variance criterion ¢ -1, the determinant
criterion ¢, and the smallest eigenvalue criterion (E-criterion) and corresponds to
parameter values -1, 0 and—oco respectively. These are particular cases of the matrix

means ¢, with the parameter p € [—oo; 1].

The D-optimality criterion, which looks for designs that maximize the determinant of
the information matrix, is the most frequently used optimality criterion to choose the

designs. D- optimality's objective is essentially a parameter estimation criterion.

The maximization of the information matrices' determinant is equivalent to the

minimizing of the dispersion matrices' determinant. The D-optimality is then given by,

: m+1
The determinant criterion, D-, ¢,(C) = (detC)* , where s :( 5 j

The D-criterion has an important property in optimal designs because it minimizes the
variances and also the covariance of the parameter estimates and for the smallest Eigen
value criterion, it also, minimizes the largest Eigen value of the dispersion matrix and

is given as follows,
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The smallest eigenvalue criterion, E-, ¢..(C)= }“min(c)-

The Eigen value criterion ¢ is one extreme member of the matrix means Py

corresponding to the parameter P = —oo. And the average variance criterion minimizes

the average variances and is given by,
1 -1
The average variance criterion, A-, ¢ ,(C) = (—traceclj .
S

In this study, the information function matrix means ¢pwas used, as expressed in

Pukelsheim (1993).Kiefers ¢, -criteria provides an amount of information inherent
m+1 m+1
to,Cx (M (1)) € PD(s) with Cx (M (1)) € PD (m; 1), the set of ( ) J x( ) ]are

positive definite matrices. Defined as follows,

Ain (C) if p =
1

$,(C) = det(C)(m; j if p=0

P
1
m+1
2

For all C in PD(s), the set of positive definite sxsmatrices ,where /Imin(C ) refers to

traceC” | if pe[-o1]\{0}

the smallest eigenvalue of C.by definition, ¢p(C) is a scalar measure which is a

function of the eigenvalues of C for all pe [_ 00'1]' (Pukelsheim, 1993). And Kiefers

¢ ,-criteria provides an amount of information inherent to Cx (M (1)) € PD(s).
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3.6 Numerical Optimal Weighted Centroid Designs

The weighted centroid designs' optimal weights and values were then generated
numerically using the R and Wxmaxima software. These were based on the general
expressions for the weight vectors and the optimal values for each case of a design with

m factors.
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CHAPTER FOUR
RESULTS AND DISCUSSION
4.0 Introduction
Results and analysis of the study objectives as stated in the research methodology are
presented in this chapter. This chapter contains optimal moments and information
matrices and the derivations of A-, D- and E-optimal weighted centroid designs under

study for m=2,m=3, m=4and generalized to m factors.

4.1 Optimal Moments and Information Matrices

Coefficient matrix K was first defined, which was used in the identification of the
parameter subsystem K'@ of interest. The moment matrices were then generated and
information matrices Cx obtained. Starting with m=2, 3, 4 and generalized to m factors.

The information matrices obtained was then used to obtain the optimality criteria.

4.1.1 Optimal Moments and Information Matrices For M=2 Factors.

Table 4.1: Simplex Centroid Design For M=2 Factors

Design points t1 to
1 1 0
2 0 1
; 1o
2 2

with the elementary centroid designs given below,

(33 e

NI RPN -
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Lemma 4.1,

The corresponding coefficient matrix K for the m=2 factors is as follows;

_ 0]
1
6
0 O l
6
0 O l
ok DS
0O 0 =
6
0 O l
6
0 O l
6
0 1 0]
Proof,
2 ' '
Kl = €iii€i = €116, +€,2,€; and
i=1

12 1
K, = gZi,j=1(eiij + e + ejii) =3 (e112 + €121 + €122 + €211 + €212 + €321)..(35)
i%)

and

The matrix K is of full column rank. The parameter subsystem which was considered

in this study was denoted by the following:

(Hiii)lgiSm
) 3
K'Q= 1{(9“1. +0;+ 0, +0; + 0 +9ijj),m,jgm} eR *‘Forall 9 € R™
6

m+1
where K = (Ky; K,) € g (")
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The relevant subsystems are represented by the vectors on the right hand. In the full
parameter model, the parameter subsystem of interest is a maximal parameter sub-
system.

definee;; =¢; ®e; De;, g =€ Ve ®e

ji

and eJ'ii :ej ®ei ®9i iyjzly 2,3,

=
@D
>
(@}
@D
D
W
=
=
I
N
o -
7
®
SN
o
N7
®
N
o B
~
I
OO O O O o o o k-
@D
N
N
N
I
R
= o
~
®
TN
= o
~
®
R
= o
~
I
R O O O O O O o

D
e
=
N

Il
VR
o ~
N—
®
VR
o =
N—
®
VR
= o
N—
Il
©O 0O 0o oo r o
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O O O «+1 O O O O

o

O O O O 1 O O O

o

hence,

@

e111

(©

e112



e,=0 0 1 0 0 0 0 O

e,=0 0 0 1 0 0 0 O

e,,=0 0 0 0 1 0 0 O

e,,=0 0 0 0 0 1 0 O

e,=0 0 0 0 0 0 1 O

e,,=0 0 0 0 0 0 0 1

substituting these in equation (35) gives,

P O O O O O O O

O O O O O O O -

9
Il
OolroalIROIROIROIRPRIRLRO

hence, the coefficient matrix is given as,

65



K = [Kll KZ] =

_ O O OoO O o o o

o o0 © O O © O

Theorem 4.1

66

OG\IHG\IHG\IHO\IHO\IHO\IHOI
L
~
w
(@)
—/

The information matrix C, (M (n(«))) for a mixture design 7(«) with m=2 factors is

then given by,

C, =C(M(n(@))) =

Proof

64

a,

64
Sa,

32

[32a, +a,

o 3%
64 32

320, +a, 3a,
64 32
3a, 9,
32

16 |

Consider the moment matrix for m=2 factors which is given by,

Hs
Hsy
Hsy
Hyp
Hsy
Hyp
Hyp
Hss

M (n(a)) =

Hsy
Hyp
Hyp
Hzs
Hap
Hss
Hss
Hyp

Hsy
Hyp
Hyp
Hss
Hyp
Hs3
Hs3
Hyp

Hyp
Hss
Hss
Hyp
Hss
Hyp
Hyp
Hsy

Hsy
Hyp
Hyp
Hss
Hyp
Hs3
Hs3
Hyp

Hyp
Hss
Hss
Hyp
Hss
Hyp
Hyp
Hsy

Hyp
Hss
Hss
Hyp
Hs3
Hyp
Hyp
Hsy

i,
Hyp
Hyp
Hsy
Hyp
Hsy
Hsy

M |
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where the sixth moments are defined as,

1 (1) =It16dﬂ, #51(77) Z_[tftzdﬂl Haz (17) :jtft%dn, #33(77) thlstgdﬂ-

. . . : 1
there are m elementary centroid designs 7; , for m factors, placing equal weights ™
( J j

. L . 1
on the points having j out of their m components equal to = and zeros elsewhere.
J

m
A convex combination n(a):Zajnj with a = (e, @,,..,a,) €T, is called a
j=1

weighted centroid design with the weight vector « such that ZO‘J =1.In a case of
j=1

two factors the weighted centroid design is given as follows,

2
n(a) :Zajnj =a,n +a,na=(a,,,00) €T, +a, =L v, (38)

j=1

with a =(e,,,,00) €T, and e, + ¢, =1.

The sixth order moments are:

1 j—-1 :
/Js(77]) = js_m and ,U51(77]) = ,U42(77j) = ,U33(77j) = mforjz (1, 2,..., m).
when m=2 factors, the moments are given as:
1 1
Hs (1) ZE ' My (111) = 1y (1) = pgs (7,) =0 , #5(11,) :a and

1
/U51(772) = ,u42(772) = ,U33(772) = a
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hence, the moment matrices for a given designs 7, and 7, are:

M (77,) = and

O O OO0 O O ON|R
O OO0 OO0 o O
O OO0 OO0 o o
O OO0 OO0 oo o
O OO0 OO0 oo o
O OO0 O oo o o
O OO0 O oo o o

NIPFO O O O OO O

M (17,) = 64 64 64 64 64 64 64 64

the designs 7, and 7, information matrix is then obtained as follows,

1
L=(KK)'K'=|0
0

= O O
= O O

the information matrix for the designn, , is then given by,



C,=LM(n)L’ =

O O Nk
oN |, O

And information matrix for the design 7, is given by,

C,=LM(n,)L =

=C, (M (n,))

69

0= C (M (N,)) e e ceeeeeees e e (41)

finally, for the design r(«), the information matrix is given as;

C, (M(n())) = ,C, (M (11,)) + @,C, (M (71,)) .

replacingC, and C, yields,

320, +a, a, 3a,

64 64 32

a 2a,+a, 3o

C, =C,(M(n = —Z —— 2
« = C(M(n(2))) i " o
3a, 3a, 9,
. 32 32 16 |

Which is the desired information matrix for m=2 factors.

4.1.2 Optimal Moments And Information Matrices For M=3 Factors.

Table 4.2: Simplex Centroid Design For Three Factors

Design points f1

to t3




3 0 0 1
2 2
1 1
5 2 2
0 11
6
1 1 1
7 3 3 3

with the elementary centroid designs given as,

1Y 1
1)(0)(O 250 3
1 1 1
n=<0L[1L 0= Z}O0 = ==
2111112 3
0)lo)l1 ol|=]]1 1
21 = =
2 3
Lemma 4.2

The coefficient matrix K for m=3 factors is as follows;

K:[K1’K2]
6 0000000000000000°0°0
000000000000O06GO0O0O0DO0TUO
_}0000000000000000000
5010110000112 020000°0°0
00100010100000000°0°1
00000000000000120121°0

O O oo o o
[an B OO O O
O O oo o o
_ O Oo o o
_ O Oo o o
(e B OO O O
_ O oo o o

IO O ooy o OI
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Proof,

3
Ky =D €€ = €118, 16,58, +€53,€;", and

i=1

3

1

K2 = E Z (eiij + eiﬁ + ejii+ejji + ejij + el”) ............................ (44)
g,j=1
kl i#] J

—|ei13 €131 €311 €331 €313 €133

16112 €121 €211 €221 €212 €122
223 €232 €322 €332

and

The matrix K is of full column rank. The parameter subsystem which was considered

in this study was denoted by the following:

(Hiii)lgism
(%) :
K'o = 1{(9“1.+9iji+.9j“+9m+¢9jij+¢9ijj),1<i,j<m} eN For all 6e®R™
6

m+ 1)

where,K = (K;; K,) € ("2
The relevant subsystems are represented by the vectors on the right hand. In the full

parameter model, the parameter subsystem of interest is a maximal parameter sub-

system.



1
define, ej; =¢€; ®e; ®e; forij=1,23,¢e =|0}|, ¢,
0

72



Thus,

€111 = (1

€112 = (0

€113 = (0

€01 = (0

€122 = (0

€123 = (0

€131 = (O

€130 = (0

72



€133 = (0

€11 = (0

ey =(0

€213 = (O

€01 = (0

ey =(0

€203 = (O

€31 = (0

€3 = (O

73



€,3=(0 0 00 000O0O0O0O

e50=(0 00 00 00O0O0O0O

es0=(0 0 00 00O0O0O0O0O

es=(0 0 0 0 0 O

es1=(0 0 0 0 0 0O

es»=(0 0 0 0 00O

e;3=(0 0 0 0 0 O

es0=(0 0 0 0 0 O

e =(0 0 0 0 00O

0

0

74
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©0000000D00O0O0O0O0OO0O0OOO0OOOOOO0OOO0 1,

€333

Substituting the above in equation 44 gives,

!

],

1000O0O0O0OO0OOO0OO0OOOOOOOOOOOOOOOGO
0 000O0OOOO0OOO0OOO0O1O0O0OO0OOO0OOOOOOOODO
0 00O0OO0OOOOOOOOOOOOOOOOOOOOOOT1

{

Kl

!

}

0101100001101 00O0O0O0O0O0OO0OO0ODO0ODOCOCO0OTGO
001000101 00O00O0OO0OO0OO0OO0O1O01O0O0OO0O11IO0O0
coooo000O0OO0OO0OO0OO0OOOO1IO011O0O0O0OO0OI1II1ICO0T1IO

z{

K, =
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therefore, the coefficient matrix K is given as ,

K, K, ]

K =

6 0000O0OO0OO0OO0OOOOOOOOOOOOOOOOOOD®O
0 00O0O0OOOOOOOOOS®GOOOOOOOOOOOODPO

(o} e

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

oo

O

oo

O

O

oo

oo

oo

oo

O

O

oo

O

oo

001000101 O00O0O0OO0OO0OO0O0O0O1O0O1O0OO0OO0OBITITO0OO®
0O 0000OO0OOOO0OOOOO1I1O0O1I1O0O0O0OO1II1IO0T1O0

— | ©

.. (45)

Theorem 4.2

3 factors is given by,

The information matrix C, (M (77(«x))) for a mixture design 7(a) with m



C, =C (M(n(@) =

Proof,

©
S8

R
N

‘l\)

H
(o)
N

w w
© M|mQ I\)|NQ

320 +a
1 2

Thus, consider the moment matrix for m=3 factors which is then given by,

A B C
M(#(«))=|B D E
C E F

where,
_ﬂe Hsy  Hs

Hsi  Hzpp  Han

Hsi Mz Han
A=\ fy My My
Hu1  Han Ha;

Hur Han Hax
| Hap M3z Mgz

Hap
Hs3
Han
Hs3
Haz
Hzpn
Hspn
Mz
M2

Ha1a
Han
Han
Han
Hazoy
Hon
Hzoy
Mo
Hzo1

Han
Han
Han
Han
Hazo
Hooo
Hzo
Moo
Hao1

Hap
Hao

M3
Hazo
Hsn
Hss
Hz

Hyy |

7

w w
o I\:,|,\,5QN|,\,Q o

3a
16




Ha3
Hao1
Ha3

H3o
H3o
Hsn
Hazo

Hag
Hao
M3z
Haog
Haog
Hoz
Haoy
Hopo
Han

Hss
Hyp
Hsn
Hyp
Hsy
M
Hzxn
Hann
Mz

Ha1a
Han
Han
Han
Hz
Hoz
Hzoy
Ha
Hao1

Haog
Haoy
Hooo
Hany
Han
Hazoy
Hooo
H3o1
M3z

Hap
Hss
Han
Hs3
Hyp
Hson
Hson
Mz
H2p

Han
M3z
M3z
Hazog
Hzog
Hoz
Mg
Hopo
Hapy

Hs3
Hayp
Hsn
Hap

Hina
H3o
Han
Hsn

Hao1
Hao
Moo
Hao1
Hy1a
Haog
Hoz
Hazpn
Hann

Hzoq
Hap
Hon
Han
Hisn
Hzoy
Hom
Hzo1
Hzo1

Hzoy
Ha
Hao1
Ho
Hzog
Hzog
Hzoq
Hapy
Han

Haog
Han
Haoy
Han

Hap
Hspn
Hap
Hs3

Ha1n
Haoy
Haoy
Hapy
Hazoy
Hooo
Hazoy
Ha
M3z

Mz
Hs3
Hzpn
Hapo
Hzpn
Hs3
Hsn

Hzoy
Han
Hopo
Han
Han
Hao1
Hooo
M3
M3z

Haog
Hann
Hono
Han
Haig
Hao1
Hooo
Hao1
Hao

Hzoy
Ha
Hao1
Hozo
Hzoq
Hzoq
Hzoq
Hapn
Han

Hzpn
Ha
Mgz
Ha
Hsy

Han
Hap
Hzz

Hzoq
Hom
Han
Hom
Hazo
Hzo
Hzoy
Hao1

Haa |

78



_/U411
Hsn
Hsn
Hsn

E =]t
Hazo
Hzpn
Mo

| M3

Hap
Mz
Hss
Mz
F =]t
Hzz
Hss
Hzp
Hap

Hzoq
Han
Hom
Han
Hain
Hzoy
Hoz
Hao1
Hao1

Hsn
Hazo
M3
Hrop
Hsp
Hao
Hao
Hao
Han

Hzoq
Hon
Hazp
Hon
Haz
Hzo
Hzoy
Hzo1
Ha1n

Hszs
Mz
Hyp
Hzo
Hzp
Hann
Hayp
Hann
Hsy

Haog
Haoy
Hooo
Han
Han
Hazoy
Hoo
M3z
M3z

Hsn
Hazo
H3o
Hroop
Hzo1
Hzo1
Hzo
H3o
Hann

Hzp
Han
Hsn
My
Hsy
Hap
Hzz
Hap
Hss

H;
Hz
Hspn
Hzo
Hap
Hss
Hspn
Hss
Hap

Hoz
Haoy
Haoy
Hany

Hszs
Hson
Hszs
Hap

Hz
Mz
My
Hz
Hss
Hyp
M
Hap
Hsz

Haog
Hozo
Han
Hozo
Hazo1
Hazo1
Hazoy
M3z
Ha1a

Has
Hany

Hz
Hzon
My
Hyp
My
Hsz,

where the sixth moments are defined as follows,

Ho
Han
Han
Han

Hs3
Mz
Hss
Hap

Hz
Hz
My
Hz
Hss
Hyp
Hann
Hap

Hzp |
Hsn
Han
M3
Hszs
Hayp
My
Hap

Hsy |

Hap
My
Hsy
Hapn
Hap
Hsy
Hsy
Hsy

79

442
; = |tit;dn ,u42(77):_|.t1t2d77 ,
us) =[tdn ) =[ttdn | ) =[085

1 = 7 = 7 = |t’t;tid
() J.tftztad 1 M (17) J‘tlstzztsd 1+ Moo (17) Itl 2347
411 ,

i [ ual weights
there are m elementary centroid designs 7, , for m factors, ,placing eq g

1
elsewnhere.
i ing j i onents equal to — and zeros
on the points having j out of their m comp q J

: . L S,
In a case of three factors, the weighted centroid design is given a

()
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2
n(a) = Zajnj =am +a,na=(a,a,00)eT,,a,+a, =l (47)
=1

The sixth order moments are:

1
ﬂe(nj): i*m ;

j-1

51 (117) = 4, (05) =u33(f7,-)=m,

_ _ _ -n04-2 -
ﬂ411(77j)—ﬂ321(77j)—/'1222(77j)— j3m(m—1)(m—2)’forJ (1,2,..., m).

when m=3, the moments are:
1
e (17,) = g v M (70) = pay (1) = s (1) =0 1140, (1,) = gy (1) = pp, (17,) =0,

1 1
He(17,) = % sy (17,) = 1, (,) = w5 (m7,) = @and Ha11(115) = apy (7)) = o (17,) =0

for designs 7, ,the moment matrices are given as,

A B C
M(n)=|B D E
C, B K

where,
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O 0O 0O 0O O OO
O 0 0O 0o 0O OO O O
O 0 0O 0o 0O OO O O
O 0O 0O o 0O OO 0 O
O 0 0O 0o 0O OO 0 O
O 0O 0O o 0O OO 0 O
O 0O 0O 0o 0O OO 0 O
O 0O 0O o 0O OO 0 O
O 0 0O 0o 0O OO 0 O

—|M
[

’
11

1
Al = gelle

09><9

= 09><9

O 0O 0o 0o 0o OO OO
O 0O 0o 0o 0o OO OO
O 0O 0O 0o 0o OO OO
O 0O 0O 0o 0O OO O O
1
3

O 0 0 O

O 0 0 O

O 0O 0O 0o 0o OO OO
O 0O 0O 0o 0o OO OO
O 0O 0O 0o 0o OO OO
O 0 0o o o OO 0O O

22 =

’

€e,,e
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for designs n,,the moment matrices are given as,

Az Bz Cz
M(nz): Bz Dz Ez
Cz Ez Fz
_i 1 1 1 1 0 1 0 1 ]
96 192 192 192 192 192 192
11 45 21 45 0 0 0
192 192 192 192
1 1 9 o0 oL oL
192 192 192 192
111 T
A = 192 192 192 192
1 1 1 1
—_— — 0 — — 0 0 0 0
192 192 192 192
0 0 0 0 0 0 0 0 0
T T D
192 192 192 192
0 0 0 0 0 0 0 0 0
R R T T
192 192 192 192 ]
1 51 500 L o L
192 192 192 192
0 0 0 O 0 O 0 0] 0
1 o5l 500 L o L
192 192 192 192
0 0 0 O 0 O 0 0 0
C2= 0 0 0 O 0 O 0 0 0
0 0 0 O 0 O 0 0] 0
1 51 500 L o L
192 192 192 192
0 0 0 O 0 O 0 0 0
1ol 500 L o L
1192 192 192 192 |




T Y S
192 192 =~ 192 192
T Y S
192 192~ 192 192
0 0 0 0
L1, 1y 0
192 192 192 192
B
192 192 ~ 192 96 192 ~ 192
0 0 0 0 1o L
192 192 192
0 0
114, 1
192 192 192
0 o 0o + 1 o L1
192 192 192
0 000 O 0 0 O
0000 O O 0 O
0000 O O 0 O
0000 O O 0 O
o000 + Lt o Lt
192 192 ~ 192
o000 + Lt o L
192 192 192
0000 O 0 0 O
o000 + 1 o L
192 192 ~ 192
o000 + 1 o L
i 192 192 ~ 192
Lo oo o L oo
192~ 192 192
0 00 0 0 0 0 0
Lo oo o L oo
192 192 192
0 00 0 0 0 0 0
o0 0 0 ~ 1 o L
192 192 192
o0 0 0 ~ o L
192 192 192
Lo oo o L oo
192~ 192 192
o0 0 0 ~ t o L
192 192 192
1,1 5,1 1 1 71
(192~ 192~ 192 192 192 192

o

= =
ROWO|FRO|F O O O
N N

H
— ©
N

H
[{e)
N

e T
POOIRPO|FPFO O O O
NN .

=
[l {®]
N

=
(o]
N
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for the designs », and 7, ,the information matrix is obtained as follows,

L=(KK)"K'
100000000000000000000000O0O0 O]
000000000O00CO0O0100000O0O0CO0O0O0COO0T®O
00000000000000000O0000O0O000O0CO01
0101100001101 0000000000000°0
001000101000000000101000100
000000000000001011000011010]
.................................................................................................. (48)
the information matrix for the design », , is given by,

L0 0 0 0 0]

0 4 0000
B , 1000 § 0 0 0]
C,=M(n)L'= 000000 =Cr (M(N)) it s e e, (49)

0 00O0O0OTO

0 0 0 0 0 O]
while the information matrix for the design 7, is given by,

% 1w m wu wm U

1 1 1 0 1

192 9 2 = 2

1L 1 1L g L 1
C.=LM(n )L'=|%2 12 9 2 2 |=C (M(n))
2 2 L 1 0 = 0 0 k 277 .. (50)

= 0 % 0 § O

10 % % 0 0 g

finally, for the design n(«) ,the information matrix is then given as;

C, (M(7())) = a,C, (M (1)) + a,C, (M (12,)) .
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replacingC, and C, yields,

320 +a a a a a
17 22 T2 T2 2 0
96 192 192 32 32
a 320 +a a a a
T2 17 T2 T2 0 T2
192 96 192 32 32
a a 320 +a a a
T2 Z2 1”7 0 T2 2
_ _ 192 192 96 32 32
C, =C,M@@)=| X < 2
—2 -2 0 —2 0 0
32 32 16
a a 3o
-2 0 -2 0 —2Z 0
32 32 16
a a 3a
0 _2 _2 0 0 _ 2
32 32 16
................................................................................................ (51)

This is the desired information matrix for three factors.

4.1.3 Optimal Moments And Information Matrices For M=4 Factors.

Table 4.3: Simplex Centroid Design For Four Factors

Design points t1 to t3 ta
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1/2 12 0 0
6 172 0 172 0

7 172 0 0 1/2
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1/2

1/2

1/2

1/2

1/2

1/2

10

173 173

1/3

11

1/3

1/3

1/3

12

1/3

1/3

1/3

13

13 1/3

1/3

14

14 14 1/4

1/4

15

with the elementary centroid designs given as,

O O |NH| N

———
OHA|NOH | N
N——

\IJ
oOd|NH|NO
N

—|NO Od |

N\
—AlNO A |NO
N—

—A|lNH|NO ©

Il
o~
Iy

AT | T T <

Il
<

n

Od MAH MAH| M

A MNMOA| M| ™M

A MNA MO A| M

A MNMAH MNMAH| MO

I
o
<

Lemma 4.3



The coefficient matrix K, for m=4 factors is given as follows;
K =(Ky,K3)
Proof,

for m=4

4
Kl = €iii€ = e111ell+ezzze2 I+e33363 '+e44494" and
i=L
( \

K2=

N~

%) )

(€112 T €121 T €211 T €212 + €122 + €221)
€113 + €131 + €311 + €331 + €313 + €433
1) €114t €141 T €411 + €441 T €414 + €144
€223 T €232 + €327 + €332 t €323 + €233
€224 T €242 + €422 + €447 €424 + €244
\€334 T €343 T €433 + €443 + €434 + €344/

I
o
A

O O O

4
! Z (eiij + eiji + ejii + ejji + ejij + el”) [

87

define, e, =€, ®¢, ®e,  ij=12,34



Thus,

1
e =|0
111

0

0
e =|0
112

0

0
e =|0
113

0

0
e =|0
114

0

0
e _=|0

121

88



122

e
123

124

e
131

132

89



133

e
134

141

e
142

143

90



144

211

212

213

214

91



221

e
222

223

e
224

231

92



232

e
233

234

e
241

242

93



243

e
244

311

e
312

313

94



314

e
321

322

e
323

324

95



331

e
332

333

e
334

341

96



342

e
343

344

411

412

97



413

214

421

e
422

423

98



424

e
431

432

e
433

434

99



100

441

e
442

443

o o o o o 06 0O 0O0O0O O 0 O 0 0 0 0 0 0 0 0 o
e,=/0 0 0 0 O 0 0 0 O 0 0 O 0 0 0f,
0 0O 0 O 0 1

Therefore, substituting equation 52 gives the coefficient matrix as,

K=(K,K3)
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Theorem 4.3

For a mixture design 7r(«) ,the information matrix C, (M (r7(«r))) with m=4 factors is given by,

2,40, @ 2y G G @ &G g g
128 384 384 384 64 64 64
@ Rera, @ & & g G &
384 128 384 384 64 64 64
L R A
384 384 128 384 64 64 64
L2y 2y B T T T T R
384 384 384 128 64 64 64
Egi f%i 0 0 %;; 0O 0 0 0 0
C.=C.M@@)=| ° 0 . 2
%2 0 %2 0 0o X% o9 0o 0 o0
64 64 32
3
% 0 0 %2 0 % 0 o0
64 64 32
0 %2 %2 0 0 0 o0 * g o
64 64 32
0 %2 0 %2 0o 0 o0 0 % g
64 64 32
3
0 0 %2 %2 o 0 o0 o0 o0
64 64 32

Proof,
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Consider the moment matrix for m=4 factors which is given by,

M (7(a)) =

w 0O T
< C 4.0
X £ C
< X < w»



Hsy
Hap
Hayy
My
Hap
Has
Hsn
Hsn
Hayy
Han
Han
My
Hyyy
Hsn
Ha1n
| M3y

Hayp

Hag

Hsn
Hsn
Has

Hayp

Hsn
Hsn
Hsn
Han
Hago
Hap1y
Han
Hsn
Hapn
Hago

Hyyy
Hap
Hap
Hapg
Hap
Hap
Haoy
Hoon
Hap
Hoo
Hap
Hpn
Hany
Hoon
Hoy
Hon

Hyy
Han
Ha111
Ha
Ha
Ha
Hao1g
Hoo,
Ha111
Hoy
Ha1g
Ha1g
Hap
Hooo
Hoy
Ha

Hap
Has
Han
Han
Hss
Hap
Han
Hsn
Han
Han
Hago
Hap1y
Han
Han
Hapny
Hazo

Has
Ha
Hsn
Han
Hap
Hsy
Hyy
Hyn
Hsn
Hyn
Han
M3y
Hyn
Hyn
Hain
Han

Hap
Hax
Hox
Hooy
Hax
Hiyyy
Hap
Hai1g
Hox
Hax
Hap
Hp
Hoon
Hayg
Mooy
Hon

Hap
My
Hoon
Hooo
My
Hyyy
Hay11
My
Hoon
Ha111
Hpn
Hy
Hoz
Mo
Hoon
Hap

Hyy
Haxn
Haxn
M1y
Hax
Haxn
Hooo
Hoo1n
Haxn
Hox
Haxn
Ho1
Hai1y
Hoo1y
Mooy
Ho

Haxn
Haxn
Hooo
Hoo1n
Ha
Hyy
Han
Hai11
Hooo
Haxn
Haxn
Ho1
Hoo1n
Hai1g
Mooy
Hon

Haxn
Haoy
Haxn
Hooy
Hooy
Haxn
Haxn
Hoonn
Han
Haxn
Hyyy
Hayg
Hoon
Hoon
Ha111
Hon

Hay
Hp
Hoon
Hooy
Hon
Hay
Hpn
Hoon
Hoon
Hoy
Hany
Hpn
Hoon
Hoon
Hon
Hay

Hyy
Ha
Ha111
Ha
Ha
Ha
Hao1g
Ho,
Ha111
Hooy
Hao1g
Hao1g
Han
Hooo
Hooy
Han

Hapn
Hap
Hoo1n
Hox
Hax
Hiyyy
Hayg
Haxn
Hoon
M1
Ho1
Ho
Hox
Han
Mooy
Hax

Hang
Hpn
Hoon
Hoon
Hon
Haipy
Hyon
Hoo
Hoon
Hooy
Hany
Hpu
Hoon
Hoon
Hoon
Ha1y

Haxn
Hay
Hon
Haxn
Hooy
Haxn
Hoou
Haxn
Hoo11
M1y
Hoon
Hayg
Hap
Haxn
Ha1g

Hyyy |
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where



Hg

Hsy
Hsy
Hsy
Hsy
Hy
Hy
Hn
Hsy
Hin
Hip
Hin
Hsy
Hin
Hy
Hap

Hsy

Hy,

Hy
Hy
My,

Mgy

Ha
Han
Hyn
Hsn
Han
Han
Hyn
Hax
Han
Ha

Hsy

Hin
My

Hy
Hy
Hap
Hsn
Han
Hiyp

Han
Hss

Hsn
Hin
M1y
Hsn
Hsn

Hsy

Han
Hy
Hyp

Hy
Han
Han
Hsn
Han
My
Han
Han
Hyp

Hap
Hap
Hgs

Hsy

Hip

Hy
Hy
My

Hsy

Ha
Han
Hyn
Han
Hax
Han
Hyn
Hax
Han
Ha

Hy,

Hgs

Ha
Ha
Hgs

Hy

Ha
Han
Hsn
Hsn
Moz
Ha
Hax
Hax
Hon
Haz

My
Mz
My
M1y
Mz
Hap
Moz
Hoyy
Hap
Mo
Mz
Hog
M1y
Hog
Hop1y
Hopyy

My
Hap
Hayy
Hap
Hap
Hap
Hap11
Mo
Hayg
Mg
Mg
Mg
Hap
Mo

o

Hsp

Hsy

Hin
My

Hy
Hy
Hsn
Hsn
Han
Hiyp

Han
Hss

Hsn
Hin
M1y
Hsn
Hsn

My
Mz
M1
M1t
Han
My
Hap
Hoy
My,
Mg
M1
Hog
M1t
Haqq
Hap1y
Hop1y

Hyp

Hsn
Hss

Hsn
Hsn
Haz
Hsn
Hom
Hgs

Han
Hyp

Hsn
Hsn
Ho
Hsn
Haoz

Hy
Ha111
M1
My
Ha111
Hapn1
Haop11
Moy
My
Mg
M1
Hop
M1
Mg
Moy
My

Hsy

Hyn
Hy
Hiyy

My
Hsn
Han
Han
Han
My
Hsn
Hsn
Hyp

Hsn
Hsn
Hgs

My
Hap
M1y
My
My
Hap
Hap11
Mo
Hayg
Mg
Mg
Mg
Mz
Mo

Hoyg

Hsp

Hygg
Hay
My
My
Hay
Hapn1
Hop11
Mooy
My
Mg
M1
Hop
M1
Mg
Hapy
My

Hip ]
Hax
Haz
Hgs
Hax
Mo
Ho
Han
Han
Ha
Han
Hax
Hgs
Haz
Hax

Hyp J
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Hsy

Hyn
Hap

Hyn
My
Hap
Hsp
M1y
Hap

Hsx
Hss

Hsp
Hyn
M1
Hsp
Hsx

Hagy
Hap
Hag

Hai1g
Hapy
Hapy
Hop
Hop1g
Hapn
Hapo
Hap
Hop1g
Hai1g
Hop1g
Hap11
Hapn

Hyp

My
Hss

Han
My
Hog
My
Moo
Hss

Hay
Hyp

Hsy
Hsx
Mo
My
Mo

Haygg
Hai1g
My,
My,
Hai11
Hapn
Hop1g
Hop1g
My,
Hap11
Ha1
Hop
My,
Hop1g
Hapo
Ha1

Hagy
Hap
Hapn
Ha1g
Hapy
Hapy
Hop
Hop1g
Haxn
Hapo
Hapy
Hop1g
Haiyg
Hop1g
Hap11
Hapn

Hap
Hap
Hop
Hop1g
Hapy
Haygy
Hap
Hayg
Hox
Hapy
Hapy
Hop1g
Hop1g
Hai1y
Hap11
Hapn

Ha1
Hop
My
Hop1g
Hapo
Ha1
Hap
Hop1g
My
Hap1
Haygy
Haiyg
Hop1g
Hap1g
Ha111
Hapn

Hai1
Hap1y
Hap11
Hap11
Hap11
Hai11
Hap1y
Hap11
Hap11
Ha11
M1
Hap11
Hap11
Hap1y
Hap11
Hai11

Hyp

Hax
Mgy

Hax
Hsx
Mo
Hax
Moo
Hss

Hsx
Hyp

Hax
Hax
Moo
Hsx
Mo

Ha1
Hop
My,
Hop1g
Hopo
Ha1
Ha1
Hop1g
My
Ha1
Hagy
Haiyg
Hop1g
Hop1g
Hai11
Haon

Hs

My
Hyp

M
Hsp
Mo
My
M1y
Hyp

Hsp
M
My
M
M1y
M
Hsp

Ha1
Hon
My
Hox
Hap1g
Hap11
Ha111
Hoy
My
Ha111
Hayy
Hap1
Hox
Hon
Hap1
Ha1

Hagy
Ha111
My
My
Ha111
Hap1y
Hoy
Hon
My
Hop1g
Ha1
Hox
My
Hon
Hop
Ha1

Ha111
Hoy
Hon
Hon
Hop1g
Ha111
Hoy
Hon
Hon
Hap1g
Ha111
Hon
Hon
Hon
Hap1g
Ha111

Ha1
Hoy
My
Hox
Hap1g
Hap1y
Ha11q
Hoy
My
Ha111
Hagy
Hap
Hop
Hon
Mz
M1

Ha1
Hoy
Hox
My
Hop1g
Hap1y
Hon
Ha111
Hox
Hop1g
M1
Hap
My
Ha111
M1
Hagy
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Hzy

Han
Hin
Hap

Han
Hap
Hai
Hap
Han
Hain
Han
Hap
Hap

Hap
Han
Has

Hay
Mo
M1
Hap
Mo
Mo
Hoonn
Ho
Han
Moy
Honn
Hon
Hap
Ho
Hon
Hap

Ha
Mg
Han
Ha1
Hang
Hot

Haoppy

Hapny

Ha1
Hot
Ha
Mo
Hao1
Hot
Hony
Ha1

Hap

Hap
Hap
Hgy

Hap
Hoz
Hognn
Hap
Hap
Hop
Hox
Hap
Hg

Hap
Han
Hap

Hayy
Ha
Han
Ha1
Ha1
Ha
Hopt
Ho
Hag
Moyt
Hopt
Hopn
Ha
Hap
Hopt
Ha1

Han
Hapn
Hon
)
Haon
Hag
Hayn
Hap1
Hopt
Han
Hoot
Hon
)
Hap
Hon
Hap1

M1

Moy
Hon
Hony
Hon
Mg
Hoonn
Hon
Moy
Mo
Hang
Hon
Moy
Mo
Hoonn

M

Ha1
Mo
Hon
Hap1
Ha
Hao1
Hon
Hap1
Hopt
Hot
Hot
Han
Haon
Hap
Hang
Hay

Hay
Han
Hap
Hap
Han
Hop
Hon
Hon
Mo
Hop
Han
Ho
Hap
Mo
Ho
Hap

Hag
Mot
Hon
Hon
Hon
Mg
Hopy
Hon
Mot
Mot
Haigg
Hon
Moyt
Moy
Hon
Hang

Hap1
Hopt
Hapn
)
Hon
Hopt
Hayn
Hon
Haon
Han
Hag
Hapn
Ho
Ho
Ha
Hapr

Ha
Moy
Hox
Ha
Hon
Moy
Hoony
Mg
Hop
Mo
M3
Ha1
Hao
Han
Ha
Hayy

Hy

Han
Han
Has

Han
Ha
Hoy
Han
Hap
Ho
Hop
Han
Has

Han
Han
Hy

Hap
Ho
Hon
Hap
Ho
Hap
Honn
Hap
Moy
Moy
Hoonn
Han
Mo
Hap
Hayn
Hay

Ha1
Hot
Haox
Ha1
Hon
Hot
Hon
Hang
Hap
Hot
Ha
Ha1
Ha1
Han
Ha1
My

Has

Han
Han
Hyp

Han
Han
M
Han
Han
Hain
Han
Han
Hyp

Hi
Hany

Hsy |
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Hap
Has
Han
Han
Hss
Hap
Han
Han
Han
Han
Moz
Hapny
Han
Han
Hapn
| oz

Has

Hy

Hsn
Hsn
Hyp

Hsy

Hyn
Hyn
Hsn
Hyn
Haz
Han
Han
Hyn
My
Hax

Hap
Hap
Mo
Hop11
My
My
Hap
Mg
Mo
Hap
My
Mooy
Mooy
M1y
Hap11
Hop11

Hap
Hap
Hopn1
Mo
My
Hyn
Hai1g
Hap
Hop11
Ha111
Hop11
Mooy
Mo
Hap
Hap11
M1

Hss

Hap

Han
Han
Hip

Hz

Hin
Hin
Han
Hun
Hsn
Ham
Han
Hin
My
Hsn

Hyp
Hsy
Hyn
Hyn
Hsy
Hg

Hsy
Hsy
Hyn
Hsy
Hyp
Hay
Hyn
Hs
Hyn
Hy,

Han
Han
Han
M
Hyn
Hs
Hap
Hyn
Han
Hip
Hgs
Han
Han
Han
Han
Hsn

Han
Hn
M1
Han
Hun
Hg

Han
Hyp

M1
Hun
Hsn
Han
Han
Hyp

Han
Hss

My
My
Hop
Hap1y
M1
Hay
My
Hop1y
Hop
My
M1
Hoy
Hog
Hain
Hop1y
M1

Han
Hyn
Han
Hany
Hyn
Hsy
Hyp
Hyn
Han
Hyp
Hgs
Han
My
Hyn
Han
Hsn

Moz
Han
Han
Hapn
Hsn
Hap
Has
Han
Han
Hss
My
Han
Hapn
Han
Han
Hap

Hon
Hayg
Hoo1g
Hoog
Haiqq
My
Hap
Hap
Hoog
My
My
Hox
Hon
Hap
Mo
M1

Hap
Hap
Hoog
Mo
My
Hiyy
Hayg
Hap
Hoog
M1y
Hop11
Hon
Mo
Hap
Hoog
My

Han
Han
Hain
Han
Hin
Hsy

Han
Hap

Hain
Han
Hsn
Han
Han
Hiyp

Han
Hss

Hoog
Hain
Hopn1
Hap11
Hayg
Ha
Hap
Hap
Hap11
Hap
Hap
Hop
Hog
Hap
Hi
Hapq

Mo
Han
Ho
Hsn
Haz
Hyp

Han
Mgy

Ho
Hsn
Moz
Han
Han
Mgy

Hsn

Hyy |
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Hyyy
Hap
Han
M1
Han
Hap
Hapo
Hopyg
Hap
Hip
Hap
Hapnt
M3
Haon
Hopyg
| Hop11

My
My
Mg
Mo
M3
Mgy
Hap
Ha111
Hap
Hapy
Mz
Hapn
M1
Ha111
Hap11
Ha

Hap
Hap
Hap
Hapn
Hop
Hap
Hap
Hopg
Hap
Hap
My
Han
Hap1y
Haon
Ham
Haon

Ha111
Ha
Hap11
M1
Haon
Ha111
Mo
Hap11
Mo
Hap11
M1y
Haon
Hapn
Hap
Hop11
Mg

Hap
Hap
Hop
Hapn
Hap
Hayy
Hay
Ha1n
Moy
Hap
Hay
Hapnt
Hap1y
Hain
Hop1g
Hapn

Hsn
H
Han
Han
Hy
Hsy

Hap

Hy
Han
Hyp

Hgs

Han
Han
Hu
Hsn
Han

Haz
Ha
Han
Hom
Han
Hyp

Hgs

Hsn
Hap
Hgs

Hyp

Hsn
Hon
Hap
Hsn
Hoo

Hap11
M1y
Hap11
Mo
Ha11
Mgy
My
Hay,
Mo
Hap,
Mz
Mo
M1
My
Mo
M

M
Hapy
Han
Hapn
Hip
Han
Mz
Hopg
Hapn
Mz
Hyy
M1t
Hap1y
Haon
Ha1n
Hapn

Hoz
Ha
Ha
Hon
Hay
Hip

Hg

Hsn
Ha
Hgs

Hyp

Han
Mo
Ha
Hsn
)

Hsn
Han
Hy
Han
Hap
Hgs

Hip

Hsy
Hu
Hp

Hsy

Hy
Han
Ha
Hy
Ha

Hap11
Mo
Ha11
Mo
Hapn
Mz
My
Mo
M1y
Hapy
Mgy
Hapy
M1
Mo
Hap,
M

M3
Hap1y
Hopg
Hapny
Hapnt
Ha111
Hapn
Hopg
Hapny
Hopg
Ha11
Hapny
Hap1y
Hapn
Hopg
Ha111

Hap11
M1y
Hap11
Mo
Ha111
Mgy
My
Hapy
Mo
Hap
M
Mo
M1
My
Mo
Mz

Hopig
Hapn
Haim
Haony
Hapny
Han
My
Hop
Ha11
Mz
Hayy
My
Hap1y
Hap
Mz
Hap

Hap11
Mo
Hap11
M1y
Hapn
Mz
Mo
My,
Mo
Mo
M
Hapy
Ha111
My
My,

Hay |
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Ha
Mz
Han
Hsp
Mz
Hap
Hon
Hap
Hain
Hon
Ha1
Haou
Mz
Ha
Haou
| Hapy

Hsp
Hap
Hay
Haz
Hip
Ha
Han
Hap
Hou
Han
Ha1
Hayu
Hox
Hap
Haou
Hip

Hain
Hpn
oy
Haou
Hopn
Hain
Hpn
Hai
Hou
Hpn
Hain
Hon
Hopn
Hayu
Haou
Han

Hap
Hox
Hau
Hsp
Hox
Hap
Hopn
Hap
Hayu
Hopn
Ha1
Hain
Hp
Hap
Hin
Hay

Hap
Mg
Hau
Haz
Mz
Ha
Han
Hap
Hayu
Han
i
Haou
Hox
Hap
Haon
Mz

M
Hin
M
M
Han
Hs
Han
Hayp
Ham
Han
Han
M
Han
Hay
M
Hss

Haou
Mgy
Haut
Hou
Mgy
Hy
Mg
Mz
Hayu
Mg
Haz
Ha
Hpn
Haz
Ha
Mz

Hagy
Han
Haopny
Han
Han
Hay
Han
M
Hapny
Han
Hago
Han
Han
M
Han
Ha

Hzn
Hpn
Hayu
Haou
Hopn
Mz
Hpn
Hau
Hayu
Hpn
Mz
Haou
Hopn
Hayu
Haon
Mgy

Haou
Mgy
Hayu
Hou
Mgy
Ha
Mg
Mz
Hayu
Mg
Hap
Ha
Hpn
Haz
Ha
Mg

Hou
Hon
Ha1g
Haou
Hon
Hap
My
Ha
Mz
Mg
Hy
Hsxn
Hon
Ha
Hspn
Mg

Haou
Hpn
Haut
Hznn
Hpn
My
Hop
Mz
Hayu
Hop
Hap
Hsp
Mgy
Ha
Hzpn
Hay

Hsp
Hox
Haur
Hsxn
Hox
Hap
Hpn
Hap
Hayu
Hpn
Hao1t
Mz
Mz
Haz
Hzn
Hyy

Hago
Han
Hopn
Mz
Han
Hyp
Han
M
Hopn
Han
Hago
Han
Han
M
Mz
Hyp

Haou
Hopn
Hayut
Hzn
Hon
Hap
Hop
Hap
Hayut
Hop
Hap
Hspn
Mg
Hap
Hspn
Hyy

Hap
Han
M1y
Han
Han
Has
Han
Hap
Ham
Han
Han
Han
Han
Hay
Han

Hsy |
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110

'u321 ’u33 H 321 'u321 'u222 ’u321 H 2211 ’u33 ’u321 'u42 ’u321 ’u321 ’u2211 ’u321 H 222
'u411 ’u3111 ’u3111

’u42

'u2211

'u2211

'u2211

'u222 ﬂ321 ’u2211 'u222 ’u321 ’u321 ’u2211 ﬂ321 ’u321

321

'u33

=

’u42 ’u321 ’u321 ’u321 ’u411 ’u3111 ’u42 ’u411 'u51 ’u411 ’u321 ’u3111 ’u411 ’u321
’u411

’u321

'u2211 ’u321 ’u222 'u2211 ’u2211 ’u3111 'u2211 ’u32l ’u3111 ’u321 ’u222 ’u2211 ’u321 ’u321
'u3111 'u3111

321

'u321

3.

‘u2211

’u2211

‘u2211

‘u321 'u2211 ’u2211 ’u321 ’u321 ’u2211 ‘u321 ’u321 ‘u411

H 222

H 321 ’u2211 ’uSZl ‘u42 H 33 'u321 H 321 H 33 ’u42 ’u321 H 2211 ’u321 ’u321 H 222

’u321

222

3.

’u411 'u3111 'u321 ’u33 'u42 ’u321 ’u411 ’u42 ’u51 'u411 ’u3111 ’u321 'u411 ’u321

'u321

321

3.

'u2211 ’u222 ’u321 ’u321
'u321 ’u3111 'u411 'u321

H 3111 ’u2211 H 2211 ’u321 ’u321 H 222 'u3111 ’u321 'u411 ’u321
’u42 H 321 ’u321 ’u321 ’u411 ’u3111 ’u42 ’u411 ’u51 H 411

H 2211
’u321

211

o™
o>

SRS

’u411 'u3111 ’u321 ’u33 'u42 ’u321 ’u4ll ’u42 'u51 ’u411 'u3111 ’u321 ’u411 'u321
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where the sixth moments are defined as,

us)=[todn () =[t03dn |, w,(n)=[tidn  p () = [ti6tidy,
Hypy (17) = jtftzzt§dﬁ ) My (17) = Itftgt;dni My, (17) = ftftztstzd??,

ﬂzzn(’?) = thtststzdﬂ-

. . : . 1
there are m elementary centroid designs #; for m factors ,placing equal weights 7
[Jj

on the points having j out of their m components equal to l and zeros elsewhere.
J
for a case of four factors, the weighted centroid design is given as follows,
2
n(a) = Zajnj =an, +a,n,a=(a,a,,00)eT,,a+a,=1.................. (54)
j=1

The sixth order moments are:

j-1

ﬂe(nj):% e (177) = pay () = s () = —5————,
J'm j'm(m—1)

(-9 -2)
j’m(m-1)(m-2)

/1411(771') = /1321(77,') = ﬂ222(77j) =

U029 o132, .om)
i*m(m—1)(m—2)(m—3)° ,2, ..., m).

ﬂ2211(77j) = /13111(77]) =

for a case when m=4, these moments are given as:

for j=1
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1
e () = Z s sy (1) = 1y (1) = 135 (17,) = 0, 140, (17,) = 0 (11,) = 40, (m,) = 0 @nd,

Moy (1) = g1, (17,) =0

For j=2

1 1
s (17,) = 58 s sy (17,) = 1y, (1) = 155 (0,) = ﬁ v Mgy () = oy () = 1y, (17,) = 0
and,

M1 (17,) = 313, (7,) = 0

For the designs 7, and7, ,the moment matrices are:

p’ Qr R’ Sr
Q’ -I-r U( V/
M(nl): R! Ur W’ X!
Sr V' X' Y!'

where, the entries are 16x16block matrices

! 1 ! 1 ! ! 1A 1 ’
P'= ZelleluQ = 016><16 JR'=045,46,5"=04546, T' = Zezzezz )

! ! ’ 1 ! ! ! 1 !
U'= 016><16 V= 016><16 W= Ze33e33v X'= 016><16 ,and Y'= Ze44e44

Similarly,

Pﬂ Qﬂ Rrr S!r
Q” -I-!r UI! V”
M(772)= R" Uﬂ Wﬂ er
SN V" XN YII
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for the designs », and 7, , the information matrix is obtained as follows

L = (KK)K') Z[A B C oo oot s eeessessossees esesses s s (55)

the information matrix for the design, is given by,

1

ENIS

o

o O
o

1

ENE

C,=LM ()L = = C, (M(N,)) e (56)

OO0 O OO O oo o o
OO O OO O oo o o
OO O OO O OO o o
OO O OO O OO o o
OO O OO O OO o o

OO O OO OO O O
OO O OO O oo o

OO O OO O oo o
OO O OO O oo
OO O OO O O=skF

while the information matrix for the design 7, is given by,

1 1 1 1 1 1 1

- = — == — — 0 0 0
128 384 384 384 64 64 64
T T
384 128 384 384 64 64 64
o111, 14 1y 1
384 384 128 384 64 64 64
N 11
384 384 384 128 64 64 64
11 0 0 3 0 0 0 O

C,=C(M(z,))=LM(n,)L'=| G+ 04 2,

— 0 — 0 0O — 0 0 0 O
64 64 32
1 0 0 1 0 O 3 0O 0 O
64 64 32
0 11 0 0O 0 O 3 0 O
64 64 32
0 1 0 £l 0 0 o0 O 3 0
64 64 32
0 0 R 0 0 o0 o0 O 3
64 64 32
.......................................................................................... (57)

finally, for the design 7(«), the information matrix is given as follows;



C, (M(n())) = a,C, (M (1)) + a,C, (M (12,)) -

replacingC, and C, yields,

which is the desired information matrix for four factors.

4.1.4 Generalized Moments And Information Matrices For m> 2 Factors.

Theorem 4.4

For a mixture experiment, the information matrix for m factors is given by;

320, +a,

128

%
384
320, +a,

128

32a, +a,

128

a,

32m

Cc =C(a)=¢,C,+a,C, =

Proof,

L+
32m(m-1)
3a, v
16m(m-1)

!

U

3a,
16m(m-1)
9,

\Y

8m(m-1) [Z‘J

123
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al, +bU, cV, +dV,
C-= eV, +dv, e|[m] T A (59)
2

With the coefficients a,b,c,d,e,..., g € R. The terms containing V2, W», and W3 only

occur for m >3 and also for m >4, respectively.

For a given symmetric matrixC < sym(s), partitioning can be made according to the

block structure of matrices , that is
C — (Cl’l ClZ] '
ClZ C?_Z
. [ijm m
With C,; e sym(m),C,, e R andC,, € sym 5 )

and for j=1

1
Cuy = EUI’ Cp1=0,and Cy, =0

and for , Uz ,Uz and V1 are as defined in lemma (3.1).
while for j=2

Luy+—1 Cm:#Vandcmlem,
32m ' 32m(m-1) 2?2 16m(m-1) ? gm(m-1) [Zj

C11,2 =

thus we have,



125

=1 0
Gl ol M ™ 7 berrees et st ettt et b bbbt neheb s et e (60)
0 0
and,
L U, + 1 u, LV
32m 32m(m-1) 16m(m-1)
CZ = 3 , 9 I .................................................... (61)
16m(m—1) 8m(m-1) [';j

finally, for the design r(«) , the information matrix is then given as;

C, (M(n())) = a,C, (M (1)) + a,C, (M (12,)) .

replacingC, and C, yields,

32a, +a, a, 3a,

L+ u, ———V
32m 32m(m-1) 16m(m—1)
Cy =C(a)=,C, +a,C, = 3a, » 9, ... (62)
16m(m-1) 8m(m-1) [;‘)

Which is the generalized information matrix Cy corresponding to the parameter

subsystem of interest K'€. The information matrix Cy so obtained was used to generate

unique optimal weighted centroid designs.

4.2 A-Optimal Weighted Centroid Design

For the average variance criterion, ¢ ,, optimal weighted centroid designs was obtained.
This criterion minimizes the average variances. The general equivalence theorem was
adopted. The theorem provides the necessary and sufficient condition which is

applicable to the specific problem.
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4.2.1 A-Optimal Weighted Centroid Design For M=2 Factors.

Lemma 4.4

In third-degree Kronecker model for a mixture experiments with two factors, the

unique A-optimal weighted centroid design for the K’ is,

7 (a(A) ) = oy + ctonpy = 0.60328332777; +0.3967166731,

Where, n, is the vertex design point and n, is the overall centroid
The maximum value of A-criterion for the K'@ in two factors is given by
V(¢,) =0.26558569¢

Proof

The inverse of equation 43 is then given by;

2 0 -1
a, 3o,
Cl=| 0 2 -1 RO ()
a, 3o,
-1 -1 16¢a,+a,
| 3, 3a, 9,0,
from [C(M (7(e))I”* = [C(m(n()))"T* =[C(e)] ",
37 1 16, +192, |
% 9} 27ala,
16, +19
C2= L 37 e R R OO (64)
9a; 9a; 270 a,
16a, +192,  16a, +19a, 256 +32a,a, +19;
| 27dlq, 27ala, 8lolal |

for j=1, the design is A-optimal if and only if,
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traceC,C, (M (5(e) ? =traceC, (M ((e)))"*

Thus,

[ 37 1 16, +19%, ]

18a} 18a’ 54a/ a,

1 1

CCr=| s 3 O Oy | e e (65)

18c; 18c; S4a/a,

0 0 0
traceC,C,” = 37 37 T e (66)

+ +0=
18a) 18a’ 9o

traceC,' = 2 + 2 n 16a, +a, _16a, +37a,
a o a, 9,

hence, traceC,C, (M (17(c))) 2 =traceC, (M (17(x))) ™

37 16a, +37a,

9a? 9a,a,
which then reduces to,
21} —Tha, +37=0,
solving this polynomial with ¢ + ¢, =1
yields o, =0.603283327 or o =2.920552619¢
take o, =0.603283327since o, € (0.1).

similarly, for j=2,
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- -1 16, +a, |
18ayc, 18aya, 5S4,
c,ct=|—* e (67)
18, 18a,a, 5S4y,
-1 -1 16, + a,
| 3,  3aa, o s
traceC,C,” = -1, -t 16 +;Z2 = 162 ........................................... (68)
18, 180y, 9,0, 9,

Therefore, traceC,C, (M (17(a))) 2 =traceC, (M (17(x))) ™

16  16a, +37a,

5 , and reduces to
9, 9,

21a’ +32a, -16=0,

solving this polynomial withe, + @, =1.
yields o, =0.396716673r —1.92052619¢
take ap =0.396716673since «, € (0,1).

therefore,

n(a(A))=a1771+a2772=0.603283327771+O.396716673772 is the unique A-optimal

weighted centroid design for the K'@ in m=2 factors.

The average variance -criterion is then given by,

-1
V(o) =G*traceC(a)‘1j , Where’s= (m; 1), =3

for m=2,
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traceC,' = 2,2 16a+a, _16a,+37a,
al a]_ 90(10(2 galaZ

-1 -1
1MJ (%78892) _ 0.26558569¢

Thus, V(¢ )= ( 3

3 9,0,

The maximum value of the A-criterion for the K'@ in two factors is

V(4,) = 0.26558569¢

4.2.2 A-Optimal Weighted Centroid Design For M=3 Factors

Lemma4.5

In third-degree Kronecker model for the mixture experiments for the three factors, the

unique A-optimal weighted centroid design for K’ is,

n(a®) = ayny + ayn, = 0.46502n, + 0.53498n,
Where, n, is the vertex design point and n, is the overall centroid
The maximum value of the A-criterion for K'@ in three factors is
V(¢ ,)=0.1192420

Proof,

The inverse of equation 51 for m=3 factors is given as,
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fa b b c c d]
b ab c d c
4 _|b b a dcc
C, = C oo d e e ——————— s (69)
c d c d e d
d ¢ ¢ d d e]
where, a = 02 = 3 c=——32_ 4-0 and
64a, o, (64a, + a,) 64a, + @,
o= 16(64¢, +3a,)
3a, (64, + )
[C(M ()] =[C(M(m(a))) '] =[C(e)]*, we get
i h h g g k]
h i h g k
2 |h h it k g ¢
C. = G g K [ s s (70)
g k g f j f
kg g f f Jj]
where;

i=d®+2c®+2b*+a’ h=2cd +c”+b* +2ab
g=ce+d?+cd+bd+bc+ac

k =de+2cd +ad +2bc

j=e?+3d*+2c®

f =2de+d? +2cd +¢?
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the design is A-optimal, for j=1, if and only if

traceC,C, (M (7(a))) > =traceC, (M (n(a))) .

Then,
GGy ?

&' h' n 9 g9 Kk

Roi' kg kg
R Rk g g 71)

0 0 O 0 0 O

0 0 O 0 0 O

L0 0 O 0 0 0
i,_d2+2c2+2b2+a2 h,_2cd+c2+b2+2ab

3 ’ 3 ’
g,_ce+d2+cd+bd+bc+ack,_de+20d+ad+2bc
3 3

and trace C,Co

a’+2b%+2c*+d? +a2+2b2+202+d2 +a2+2b2+202+d2
3 3 3

=@{"+1"+i"+0+0+0) =

+0+0+0

= 207 20 % (72)

and traceC_' =a+a+a+e+e+e=3(a+e)

hence, traceC,C, (M (5(a))) 2 =traceC, (M (57(c))) ™

2 2 2
o 192 9 -3a, L9 -32 L0-3 192 N 16(64c, +3c,)
64a, o, (64a, + a,) 64a, +a, 64a, 3a,(64a,+a,)

which reduces to,




179928 + 544782 — 262890 —131250:% — 243, =0

solving this polynomial with o + o, =1for &, € (0,) yields

and also, for j=2,

CZCk_Z =

where,

[ an

hﬂ
hﬂ

Iﬂ

I"

"

h”

"

h”
I "

el!
I "

h"
hl!

M

n

|”
I”

4

"

k”

n

fl!
f!/

"

k"

n

f!l

f”

a; = 0.46502 or — 3.44570

a, = 0.46502

kn_

n
"
f n
f n

Q" =%(a2 +3b% +3c® +2ab+ 6ac + 6¢h + 6ce + 7d * +8cd + 6bd),

9" = Elz(Gez +27d? +18¢? +12de+17cd +ad + 5bc + 3ce + 3bd + 3ac)

K" = %(150b+ ac+ec+14de+7d? +15cd + 6¢? +3bc),

I":é(a2 +6ce+7d? +8cd + 6bd + 6bc + 8ac + 3c? +3b2),

132
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i’ :%(Be2 +10d” +6¢* + ce +cd +bd +bc+ac)
e" = %(3de+80d +3ad +6bc+c? +b? +2ab) and

f"zé(lZde+7d2 +15cd +6¢% +ad +3bc+ce +bd +ac)

traceC' =a+a+a+e+e+e=3(@a+e)

traceCZCk*2 =i"+i"+i1"+ "+ "+ =331"+]") or

9—16(a2 +30b° +3c® + 2ab+ 6ac + 6¢b + 6¢e + 7d * +8cd + 6bd) +

%(Be2 +10d? +6¢* +ce +cd + bd +bc+ac))

traceC,C} = é(a2 +18e* +57d % +40c”® +12ce +14cd +12bd +12bc +12ac+3b* + 2ab)

therefore,

traceC,C, (M (1(cx)))* =traceC, (M (57())) ™

3—12(612 +18e? +57d2 +40c? +12ce +14cd +12bd +12bc +12ac+3b? + 2ab) = 3(a + e)
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2 2 2
- 192 1 16(64a, +32,) +57(0) + 40 -32 19 16(64a, +3a,) ,[ -32
64e, 3a, (64a, + ) 64, +a, 3a, (64a, +a,) | 64a; +0,
19 192 x| 412 =32 [ -3 19 192 . -32 .
64e, 6da, +a, |\ a,(64a, +a, 6da, | 64a, +a,
2
3i +
a,(64a, +a,
) 192 [ -3a, _39%3 16(64c, +3a, s 192
64a, | o, (640, +0, 3a, (64, +a2 64,

which reduces to,

17992827 +1444422 —3715518% + 4266177’ — 2263605z, + 448452=0

solving this polynomial with o, +a, =lyields

a, =0.534980r4.44570

o, =0.53498 , e (0,1)

Therefore,n(a™®) = a;n; + a,n, = 0.46502n; + 0.53498n,
is the unique A-optimal weighted centroid design for the m=3 factors.

The average variance -criterion is then given by,

m+1

5 ) and s=6

V() = G*traceC(a)‘lj , Where s = (

for m=3,

traceC.! = 9 N 16(64c, +3a,)
a, a,(6da, +a,)

implying that,
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-1 a

1 16(64*0.46502+ 3*0.534

Vg ) - Le[ 8, 16(64%0.46502+3x0.53499 - (Leos1788
/76 |0.46502 0.5349864*0.46502+0.53499) 6

=0.1192420. Therefore, the maximum value of the A-criterion for K'@ in m=3 factors

is,
V(¢ ,) = 0.1192420.

4.2.3 A-Optimal Weighted Centroid Design For The M=4 Factors.

Lemma 4.6

In third-degree Kronecker model for the mixture experiments with four factors, unique

A-optimal weighted centroid design for the K'6 is,

n(a(A))Z an, +an, =04437n +0.55628

Where, n, is the vertex design point and n, is the overall centroid

maximum value of the A-criterion for K'@ in four factors is
V(¢ ,)=0.06491356.

Proof,

The inverse of equation 58 is given as
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B arr b!! bﬂ bn C” C” Cﬂ d " d " d "]
b” aﬂ b!l b!l C” d " d " C” C” d "
b” bn a” b!l d " C” d " CN d " C”
bn brr bn arr d " d " C" d " C" C”

C" d " d " en d " d " d " d " d "
C" d " C" d " d " err d " d " d " d "
C” d " d " C” d " d " e” d " d " d "
d " C” C” d " d " d " d " en d " d "
d " C” d " C” d " d " d " d " en d "
d " d " C" C" d " d " d " d " d " en

C, =C,(M(n(@)" =

................................................................................................ (74)
where a" = i1 b" = —40.’2 ’ c" = —-32 , e" = 64(246!1 + az)
a, o, (48a, + a,) 48a, + a, 3a, (48, + )
and d” =0,from[C(M (7(2)))]* =[C(m(17()))"]* =[C(a)]*, we get
i h h h g g g k k k]
h i h h g k k g g Kk
h h i h k g k g k g
h h h 1 k k g k g ¢
_ k k| I I m
M@= Y L L PR (75)
g k g k I ] I I m |
g k k g I 1 jom |
k g g k I I m j | I
k g k g I m | I i
'k k g g m | ([ . J
where;

i:3d”2+3C”2+3b”2+a”2, j:e”2+7d”2 +2C2,

h=d"? +4cd +c"? +2b"% + 2ab, g=c"e”"+3d"* +2c"d" +2b"d" +b"c" +a"c",
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k= d’e”+2d"? +3c"d"+b"d" +a"d" + 2b"c”, I= 2de+5d* +2cd +c?,

m=2d""+4d"? + 4cd

the design is A-optimal, for j=1, if and only if,

traceC,C, (M (17())) * =traceC, (M (1(c))) *.

|’ hr hr h! gr gr gr k/ kr kl
hr Ir hr hr gr kr kr gr gr kr
hr hr ir hr kr gr kr gr kr gr
hr hr hr Ir kr kr gr kr gr gr
cc 2=0 0 0 00 0 000 O
O 0 0o o0 0 0 0 O0 O
0 00O 0 00O 0 00 O
0 0O 0 0O 0 00 O
0 0O 0 0O 0 00 O
(000 000 00O O]
where,
i’ B 3d "n2 +3C”2 +3b”2 +ar/2 h'_ du2 _|_4Cndﬂ+cu2 _|_2b”2 +2allbﬂ
4 o 4 ’

3 C"e”+3d "2 +20”d"+2b"d N+bIIC"+a”C"
B 4

d"e"+2d "2 +300d "+blld N_"_a”d N+2b"C”
4

and k' =

a”2+3bn2+3CﬂZ+3d"2
4

2
A L4 Tt | 4 32 +3(0)2
a, a,(48a, + ;) 48a, + 1,

traceC,C,” = 4( j =a"* +3b"* +3c"* +3d"?
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48c; 3072 16

2

B alz (48, + ) (48a1 +a, )2 a;

traceC.' =4a”" +6e" =4 4 +6 64(24c, + ;)
a, 3a2 (480{1 +a2)

_128(a, +24a,) +E
a,(a, +48a;) « '

Therefore, traceC,C, (M (7(a))) % =traceC, (M (17(c)))*

48a} 3072 16 _128(a, +24a,) 16
ol (48a;, +a,) (48, +a,) af ay(a, +48a))

this reduces to,

43616Q + 2304640 —1094592° —9760,” — 2304, = 0
solving this equation with o, +a, =1 yields
o, =0.44372r00r —5.72245
o, =0.44372for o, € (0,])

Similarly, for j=2
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I" h" h" h” g" g" g" k” k” kﬂ_
h” IN hl! h” g!l kl! k(! gﬂ g” k”
h” hl! I 14 h 14 k 14 g 14 k 14 g 14 k 14 g 14
h” h” h" I 14 k 14 k 14 g 14 k 14 g 14 g 14
C C 7 _ n” n” pll p” jll III III IN I(V mll (78)
,Cy I
n” p” p" n” I " I 14 j!! ml! I " I "
p!! nl! nl! pﬂ I " I ”n m” J n I /4 I /4
p” nﬂ pﬂ n” I " m!! I 14 I n J " I "
i p!! p!! n" n" m” II! I” I!I I!! jﬂ_
where,

i"= %1(6%”2 +10c"? +11h"* +3a"* +40c"d" + 2a"b" +18c"e" + 360"d" +180"c" +18a"c"),

j" = é(ZZd "2 4 4¢"d" +7¢" + 20" + 2a"h" + 3e")

h = 3;4(a"2 +500"+640'd" +7¢" +110" + 82’ + 66" + 180"d" + 300'c” + 6a’c” +12d'6" + 6’0"

9" = 512 (2¢"e" +44d" +13c"d" +5b"d" + 4b"c” + 2a"c” + 2d"e" + a"d" + 3" + 9¢"?),
1

k” — @(zod ”e”+49d "2 +32C”d ”+4b"d ”+2a”d ”+5b"C”+C”e"+a"C”-i-GC”Z),

n" = é(a”2 +22d"? +4c"* +5b"? +16¢"d" + 2a"b" +6¢"e" +12b"d" + 6b"c" + 6a"c”),
p" — 3_12(7d !!2 +13C"d 14 + C”Z + 2b"2 + 2aﬂbﬂ + 3d I!e" + 3b”d 14 + 3aﬂd 14 + 6b"cll),
and

m" = é(m " +28d"% +30c"d" +2b"d" +a’d” + 4b"c”)
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traceC,C,> =4i" +6j"

4(£1 (66d"* +10c"® +110"* +3a"* +40c"d" + 2a"h" +18c"e" + 360b"d " +18b"c" +18a"c")) +

6(% (22d"2 +4c"d" + 7" + 2" + 2a"b" +3¢"2)),

1067 n\2 2026 n\2 @ n\2 &92 " " 18 nan "2 E nan % nA "
1 1168 (d") +1gﬁ (") + % (b") + % (c"d")+ % (a"v")+6e +96(ce)+96(bd )
6], 18, .18, ,,
+96(bc)+96(ac)
................................................................................................. (79)
Therefore,

traceC,C, (M (()))? =traceC, (M (n(a)))

2 2
1067\, 2026 -32 587 -4a, 1192 -32
(0) + + + *0 |+
16 96 48051 ta, 96 a, (48051 +a, 96 4805l ta,
2
578( 4, - 4a, P 64(24051 + az) N 8 -32 64(24051 + az) N
16|96 | o, 0(1(4805l +a2) 3a, (480:1 +a2) 96( 48, +a, 3o, (480:1 +a2)

6 4, | 18] 4o,  -32 18/ 4, -32

— | *()|+= 4+

96| a (48a + ) 96| a (48 +)) 48a +a. | 96| a 48a +a
1 1 2 1 1 2 1 2 1 1 2

_ {4[ 4 J . 6[ 64(24a, +a,) ]}
a, 3a, (4805l + 052)

which reduces to,

— 436160 + 4485440y, —12485568x° —14904688,” —8111328x, +1642928=0,
solving this equation with ¢, + a, =1 yields

a, =0.556280r1or6.72245
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a, = 0.55628for «, € (0,1).
Therefore, r(a® )= an, +an, =04437n +0.55628 is the A-optimal weighted
centroid design that is unique for K'@ in m=4 factors.

The average variance -criterion is then given by,

-1
V(g ,) = (%*traceC(a)lj , Wheres = (m; 1), s=10

andtraceC,' =4a" +6e" = 4[i] + 6(
o,

64(24c, +a,)
3a, (48, + ¢,)

128, +24a,) +E
a,(a, +48a;) « '

1 *( 128(0.55628+24+044379 16 Dl )

Implying that, V =
PIYINg @) (10 0.55628(0.55628+ 48*0.44372  0.44372

1, -
(E (154.051)]

=(15.4051)"

=0.06491356
Therefore, for the A-criterion ,the maximum value for the K'@ in m=4 factors is

V(¢.,) =0.0649136.
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4.2.4 Generalized A-Optimal Weighted Centroid Design Form>2 Factors

Theorem 4.6

In third-degree Kronecker model for the mixture experiments with m>2 factors,

unique A-optimal design for the K'@ is given by;

77(05A) =, T A, .

Where, n, is the vertex design point and n, is the overall centroid with ¢«
the solution of acg, +ba’+ca+de,+e=0 and «, the solution of
a'al +b'ay +c'al+d'a,” +ea,+1 =0, so that o, +a, =1and a,a, (0,1)

The A-criterion maximum value for K’'@ in m factors is,

V(4.,) = GtraceC(a)lj_

" Im(m+1)

2 (32m*(m-Da, +m*(m-2)a, N (8m* —16m* +8m?)(32(m -1, + Mar,)
o, [32(m-Dea, + (M-2)a, ] 18a,(32(m -1, + (M -2)e,)

Proof

Supposing that , 77(«) is A-optimal for K'@ in T,also, let o =(¢;,2,,0,..,0) €T, be a
weight vector with d(a) ={1,2} .and letC(a) =C, (M (17(«x))) .The weighted centroid

design n(a) is A-optimal for K'@ if and only if,

trace(C,C(a)?) =trace(C(a)™) for je{l2}, 50
i <trace(C(a)) otherwise I

A uniqgue representation of a matrix C e sym(s, H) is given as,
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al_, +bU, cV, +dV,
C= OV 40V, el 4 W, 4 W, froeemesss s sosviissss s s s e (81
Y
with the coefficientsa,b,c........,g € R. The terms that contain V2, W2 and W3 only

occur for m>3 and for m >4, respectively.

trace[l(ij= m(”;_l) and trace (W)=0, trace(l,,)=m Also trace(l,) = m(mz+1)

2

The cubic property of C(a)e Sym(s,H) allows us to determine C(a)™ through

. . This result in

(")

solving the system of linear equationC(a) X =1
3zm(m-Deoy +m(m-2)a,
au[32(m -1y +(M=-2)a,] ) 16m(m-1)

(m-2)a, U 332(m-Dey, +(M-2)a,
Cla)™ =| a,[32M =D, +(M-2)az,]

_ 16m(m-1) V' (@’ -8m)(E2m e, +ma,),
3EAM-Da+M-2)a2) 4 @omm-1)a, +(M-2)a,) H

............................................................................................... (82)
now obtain C(a) as follows,

jl+ku, IV
Cla)? =[C(a)* P =| v’ n%] ........................................................... (83)

where,

. 9472m*(m® - 2m + 1)’ +576m*(m? - 3m + 2) @, +9IM*(M? — 4m + 4)ar;
9a2[32(m -, + (M- 2)ax, T
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_128m*(m® - 2m + D +576m?(m? —3m + 2) o, + 9IM*(M? — 4m + 4) )

k ,
9’ [32(m -1, + (M- 2)ar, ]
- 256m*(37m* —74m +1)a” +576m?(m? —3m + 2) oy, +9M?*(M* — 4m?* + 4m —8)a’
927 [32(m -1, + (M- 2)ax, [
and

. 1024m*(m* - 2m° +5m” — 4m+1)a +64m°(m’ - 3m’ + 3m -Yarer, + M (37m° - 72m + 36+ 2m°)ar}
8102[32(m-1)e, + (M- ), | '

now compute «,,«, €[0,1] as follows.
for j =1, traceC,C(a) =traceC(a) .

now from equations (60) and (83) we get

ik,
CCla)? = [Eul oY EVJ ...................................................... (84)
0

J, kand | are as in equation (83).

hence,

traceC,C(a) ™ = trace(iu1 + hU 2] = trace(lulj +trace(hu 2) = trace(lulj, but
m m m m m

trace[%uzj =0 and trace(U,) =0 gives,

2 2 2 2 2 3 2 )
traceCC(a) 2 = 272N = 2m +Daf + 5T6m(m’ - 3m + A, + Im'(m’ — 4m + )}
97 132(m -1t + (M- 2)]

from equation (82)
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32m(m—1)a1+m(m—2)a2U B (M-2)a, U+ (8m” —8m)(32(m 1), + Mar,) V'V
traceC(a) " = trace ¢ [39(m -y + (M-2)at,] * erf32AM-Da, +(M-2a,] ° 9, (32m(M—-Det, + (M-2)ar,) M

32m*(m -1, + m*(m-2)a, . (8m? —8m)(32(m -1, + Max,) *(m(m —l)j
= [32(m-a, +(M-2)a,] 9a,(32(M -1, +(M-2),) 2

but trace(U,) = 0.Therefore, traceC,C(a) =traceC(a) ™,

- 9472m*(m?® —2m + D’ +576m*(m® —3m + 2) oy, + IM*(M? — 4m + 4)ar?
9’ [32(m -, + (M- 2)ar, ]

trace |, _Mn(m-1)
(o)™

32m*(m-1)a, + m*(m-2)a, . (8m? —8m)(32(m -1, + Max,) |
=| o[32(m-a, +(M-2)a,] 9a, (32(M -1, +(M—2)x,) [mj ,

2

upon inserting the simplex restriction «; + &, =1 it reduces to

A, +0a +Col 00 +8 = 0urrs et e et e st et i (87)

where,

a = (-186m"* +7930m® + 436m* — 7680m),
b = (9m° +16418n* —31793n® +8076m* —512m),

c = (-27m° —7689m* +15620m° — 6140m?),

d =(27m° +9m* +27m°® —1116m* —3701m), and
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e = (-9m° +36m* —36m?)

when polynomial (87) is solved, it yields values of «; where we pick «,in that

a, € (02) .Also, for j=2, equation (61) and (83) gives the following,

i1, +kU, IV
CCa)?=| v’

. j (m-1)k 3
where, j = + + '
32m 32m(m-1) 16m(m-1)

: ( k j (m-2)k 3l J
k' = + + + :
32m 32m(m-1) 32m(m-1) 16m(m-1)

, I (m-=2D)l 3n , 3ml 9n

I'= + + and n'=| ——+—|,
32m 32m(m-1) 16m(m-1) 16m(m-1) 8

j,k,and lare as in equation (83).but,

trace(U,) =0

traceC,C(a)? = trace(j'U, + k’U2)+trace(n'\%j = trace(j’U1)+trac{n’l(m]J

2

traceC,C(a) 2 =m ), (m-Dk 3l +[m(m—1)j Sml__ 90
? 32m  32m(m-1) 16m(m-1) 2 16m(m-1) 8

_9472m*(m? —2m + 1) +576m*(m? —3m + 2)eyax, +9M*(M* — 4m + 4) )
32x9a/[32(m -1, + (M- 2)a,

1 128m*(m? —2m + 1)’ +576m*(m* —3m + 2)a,x, +9m*(m* — 4m + 4) o

32 9a2[32(m —Dex, + (M -2, I
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_ 768m°(37m* —74m + 1) +1728m°(m* —3m + 2)ayr, + 27Tm* (M’ —4m’ + 4m —8)ar;
9x160[32(m -1 ey + (M- 2)a, [

9. 1024m*(m* —2m* +5m* —4m+1) o +64m*(m® —3m* + 3m -L)e,cx, + m* (37mM? = 72m + 36+ 2m*)r

+_
16 81 [32(m-De, +(M-2)ax, ]’
_ 3 256m?(37m* — 74m + 1o’ +576m*(m? —3m + 2)a,cr, + 9M*(Mm® — 4m* + 4m — 8)r?
16 927 [32(m -1, + (M- 2)ax, [
............................................................................................... (89)
therefore,

traceC,C(ar) * =traceC(a) ™

9472m*(m? —2m + 1)’ +576m*(m® —3m + 2) o, + IM*(M? — 4m + 4)r}
32x9a/[32(M -, + (M- 2)a,

1 128m*(m* —2m + 1) +576m*(m? —3m + 2)aax, +9M*(M* — 4m + 4)

32 9’ [32(m -1, + (M- 2)r, ]

_ 768m*(37Tm’ — 74m + 1)a’ +1728m° (M’ —3m + )y, + 27m* (M’ —4m”* + 4m —8)ar;
9x16a2[32(m -1 e, + (M- 2)ar, [

3 256m*(37m’ — 74m +1)a? +576m*(m* —3m + 2)a,r, +9M*(M* — 4m* + 4m — 8) o’

16 92 [32(m -1, + (M- 2)ax, [

1024m*(m* —2m® +5m?* —4m + 1)} +64m*(m* —3m* +3m -V, ax, +
9 m*(37m? —72m + 36+ 2m*®)a?

16 8102[32(m -1)e, + (M—2)e, 1

32m*(m-1)a, + m*(m-2)a, . (8m? —8m)(32(m -y, + mezr,) , M(m—1)
= a[32(m-Dea, + (M-2)c,] 9,(32(Mm -, + (M—2)x,) 2

upon inserting the simplex restriction e, + , =1 it reduces to,



Al +b'a) +0ad +d'a,” €0 T =0 e e e e e (90)

where, a’ = (186m* —7930m° — 436m° + 7680m),
b’ = (9m® +15488m* + 7851Im° +10256m° —38912m),

¢’ =(-9m° —56123n* +32252m°® —30524m? + 78848m),

d’ = (73590m* —64571m° + 33280m° —83572m),

e’ = (—41729m* + 40644m°® —13832m? + 47848m) and

f’ = (8588m* —8252m? +1256m? —11892m)

Hence, solving the polynomial (90) gives values of ar, from where we choose ¢, so

that, &z, € (0,1) . Which is the unique solution in (0, 1) for the m factors, as weight vector.

The two equations in conditions (86) and (89) is satisfied through the construction of

!

the weight vector & = (o, 2,"”,0,...,0)"

hence, 7(a?) = a,n, + a1, is the A-optimal for the K'@ in T.
Therefore adopt the definition of Average-variance criterion
-1
1 o m+1 ) )
v(¢_1):[—traceC(a) J , Where s:( 5 J to obtain the optimal value for m
S

factors, as provided in Pukelsheim (1993). Since trace (W) =0 , trace(l,)=m

m(m +1)

trace(l,) = , Hence, v(¢ )= traceC(a) ™ | for m-factors, from

o

equation (86),
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32m’(m-Da, + m* (M- 2)a, .\ (8m? —8m)(32(m - ey, + Mar,) |
traceC(a) " =| a[32(m-1)a, +(M-2)a,] 9ar,(32(m 1), + (M- 2)ez,) [j

2

,trace(l))=m

_m(m-1)
2

implying,

V(d,) = (%traceC(a)‘lJ_

2 32m*(m-Da, + m’ (M- 2)a, . (8m* —16m*® +8m?)(32(m -1, + Mar,)
mm+D)\ «[32(m-Da, + (M-2)a,] 18, (32(m-Dea, + (M-2),)

The actual value is then obtained by substituting the values of ¢, and «, from the

solutions of equations (87) and (90).

4.3 D-optimal Weighted Centroid Designs

For the determinant criterion ¢,, optimal weighted centroid designs is derived, that is

the , D-optimality criteria. The D- criterion has an important property in optimal designs

because it minimizes the variance and the covariance of the parameters estimates.

4.3.1 D-Optimal Weighted Centroid Design For M=2 Factors

Lemma 4.7

In third-degree Kronecker model for the mixture experiments with the two factors, the

unique D-optimal design for the K'@ is,

ﬂ(a(D)) =oq1, T a,,.

Where, n, is the vertex design point and n, is the overall centroid

F
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The D-criterion maximum value for the K6 in two factors is, v(¢,) = 0.27516060z

Proof,

For p=0 , n(a) is ¢,—optimal for K'@ in T if and

traceC;C(a)™ =traceC(a)° =tracel for all je{1,2}.

1, =
a, 6c,

cC =l 0 ]
ok a, 6o,
0O 0 0

with,

1 2

traceC,C(a) ™ = 1 e 0 = e e et e e,

a, o a,

andtraceC’ =tracel, =3,

2
traceC,C(a) " =tracel, 2. 3=, = 3 .and
al

only if the

............ (92)
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CoC = 0 0 = | e (93)

a, Q,

1
traceC,C(a) " =tracel, < 1 _3s a =3
a,

Therefore, D-optimal weighted centroid design is the unique for the K'@ in two factors

. 2 1
is 7(a™) = aun, +a,n, = PR
the D-criterion maximum value is then obtained as,

v(4,) = (det[C(e)])s , and ;s = (m;l] given that m =2, then, v(4, ) = (det[C()])s -

for the design with two factors, the information matrix is given as below,

320, +a, a, 3a, |

64 64 32

a 2a,+a, 3a

C,=C,(M(n = —Z —— 2
« = C(M(n(a))) 54 o1 2
. 32 32 16 |

by substituting for the values of ¢, and«,,

0.338541666 0.005208333 0.031250000
C(a)=| 0.005208333 0.338541666 0.031250000|...........ccvvveverennnnnn. (95)
0.031250000 0.031250000 0.187500000
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Det[C,]=0.02083333=.

Hence, the optimal value for K'@ in two factors is
1 1

V(dy) = (det[C(ax)])3 =(0.0208333333 = 0.27516060z.

4.3.2 D-Optimal Weighted Centroid Design For M=3 Factors.

Lemma 4.8

In the third-degree Kronecker model for the mixture experiments with three factors ,D-

optimal design is unique for K'@ is,

U(a(D)) = ol T a0,
Where, n, is the vertex design point and n, is the overall centroid
The D-criterion maximum value for the K'@ in three factors is

V(¢,) =0.125

Proof,

Forp=0, n(a) is ¢, —optimal for K'@ in T if and only if
traceC;C(a)™ =traceC(a)° =tracel for all je{1,2}.

Thus,



ab b c c d
b a b ¢ d c
1 |b b a dc c

CC, = C oo o d e d e ——————————
c d cd e d
d ¢c ¢c d d e

where:

a1 — % =32 4=0.e=0

b=—* — C=—+—"—
a, a,(64a, + ;) 3(64c, +,)
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1 1 1 3
traceC;C(a) '=—+—+—+0+0+0=—

a; a;

andtraceC; =tracel, =6.

Thus, traceC,C(a) ™" =tracel, < 3. 6, a, = R
a, 2

similarly,
abb ccd
b ab c dc

4 _|b b a dcc

C,C. = e e f g h h [
e f e h g h
f e e h h g

where,

a=0 b= -a, 32a, q -1

1 C = H =
32¢,(64a, + ) 3a, (64, + ) 3(64a, + ;)

-3a, 1 -1

B 16, (64a, + at,) B a,

aq

18201
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Thus,

traceCZC(a)*l=0+0+0+i+i+izi
a, a, a, %

traceC,C(a) " =tracel, =6 ,

Therefore, D-optimal weighted centroid design is unique for K'@ in m=3 factors is

1 1 .
n(@®)=amn, +a,n, = E771 +5772 as required.

the D-criterion maximum value is then obtained as follows,

v(4,) = (det[C (a)])% , where s = (m; 1] :

Form=3,v(¢, ) = (det[C(a)])s.

for a design with three factors, the information matrix is given as below,



155

320 +a a a a a
1 2 2 ] 0
96 192 192 32 32
a 320 +a a a a
Z2 1 Z2 T2 0 T2
192 96 192 32 32
a a 32a +a a a
Z2 Z2 1 " 0 2 2
_ _ 192 192 96 32 32
C,=C,Mm@)=| 1 » 2
-2 —2 0 —2 0 0
32 32 16
a a 3a
T2 0 t 2
32 32 16
a a 3a
0 _2 _2 0 0 __2
32 32 16
................................................................................................ (100)
substituting for the values of «, and «, we get
0.34375 0.00260 0.00260 0.01563 0.01563 0
0.00260 0.34375  0.002604167 0.015625000 0 0.015625000
C. _|0.002604167 0.002604167  0.34375 0 0.01525000 0.015625000
“ 7| 0.015625000 0.015625000 0 0.10938 0 0
0.015625000 0 0.015625000 0 0.10938 0
| 0 0.015625000 0.015625000 0 0 0.10938
................................................................................................ (101)

Det[C, ] = 0.0000038147

hence the optimal value of the D-criterion for K'@ in three factors is given as,

v(#,) = (det[C()])s = (0.0000038147s = 0.125

4.3.3 D-Optimal Weighted Centroid Design For M=4 Factors.

Lemma 4.9
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In the third-degree Kronecker model for the mixture experiments with four factors,
unique D-optimal design for K'@ is,

D
( )) = oyl + a0,

Where, n, is the vertex design point and n, is the overall centroid

The D-criterion maximum value for the K'6 in four factors is
v(¢,) =0.07080

Proof,

Forp=0, n(a) is ¢, —optimal for K'¢ in T if and only if
traceC,C(a)™ =traceC(a)" =tracel for all je{,2}.

Thus,

CC, "=

o0 O o9 o o 95 T
O o o0 Q TS99 T T
OO0 Q 00 O 9T T T

OO0 o OO0 O oo o o
O DD QO OO0 O OoQ o o
O QO O OO0 O OO0 QO o

OO0 QO 00 O T o T O
O o0 o oo o a9 o o
OO0 O oo O oo 9 o
OO0 O 0O O oo O o

1 - _
a=—,b= %2 ,C= 8 ,d=0,e=0
a, a,(48a, + a,) 48a, +a,
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traceClc(a)*l:i+i+i+i+0+0+0+0+0+0
a o o o

= et eomeneet sesmeeeee s esmeees et s sese et et eeees e rseees e enree (103)
a,
AndtraceC. =tracel,, =10.
1 4
Thus ,traceC,C(a) ™ =tracel,, & — =10
a,
_ 2
a, = 5
abb bcc cdd d
b ab bc¢cd dc c d
b ba bdoc dc d c
b b b add c d c c
cci=| T T 9 9 8.0 0 0 0 9| (104)
f g f ggegggg
f g g f gge g gy
g f f g g 9 g e g g
g f g f g g g g e g
g g f f g g g g g e
where,
-a 8« _
a=0b= 2 C= 1 ,d = ! ,ezi,
32a (48a. + ) a (48a +a) 6(48c. +a) a
1 1 2 2 1 2 1 2 2
-
f=009= 2
8a (48 + )
1 1 2

withtraceCZC(a)‘l:0+0+0+0+i+i+i+i+i+i_
a, a, o, &, o, «q
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2

Therefore, the unique D-optimal weighted centroid design for K'@ in m=4 factors is

expressed as n(a®) = oy, +a,n, = %771 +§772 as required.

The maximum value of the D-criterion is obtained as follows,

1 m+1
v(¢,) = (det[C()])s , and s =[ ) J

for m=4,then,v(g, ) = (det[C (c)])o .

for the design with four factors, the information matrix is given by,
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32a, +a, a . a, I
128 384 384 384 64 64 64
o Swta, o G %oy g % &
384 128 384 384 64 64 64
% 4 Smte, 4 0 L oo % o %
384 384 128 384 64 64 64
% % 4 Bota, o G B O
384 384 384 128 64 64 64
% & 0 M 0 0 0 0 o
C, =C, M@= % o4 . 2
uck 0 -z 0 0 =2 0 0 0 0
64 64 32
3
& 0 0 g 9 o9 o 0
64 64 32
3
0 & & 0 0 0 0 X 9
64 64 32
3
0 & 0 %2 0 0 0 0 X
64 64 32
0 0 2 22 0 0 0 0 8,
64 64 32
substituting for the values of o, and «, gives the following,
(02578125 0.0015625 0.0015625 0.0015625 0.0093750 0.0093750 0.0093750 0 0 0 T
0.0015625 02578125 0.0015625 0.0015625 0.0093750 0 0 0.0093750 0.0093750 0
0.0015625 0.0015625 0.2578125 0.0015625 0 0.0093750 0 0.0093750 0 0.0093750
0.0015625 0.0015625 0.0015625 0.2578125 0 0.0093750 0 0.0093750 0.0093750
_ 0.0093750 0.0093750 0 0 0.1125 0 0 0 0 0
0.0093750 0 0.0093750 0 0 0.1125 0 0 0 0
0.0093750 0 0 0.0093750 0 0 0.1125 0 0 0
0 0.0093750 0.0093750 0 00 0 01125 0 0
0 0.0093750 0 0.0093750 0 0 0 0 0.1125 0
L 0 0 0.0093750 0.0093750 0 O 000 0.1125 |
................................................................................................ (106)

Det[C, ]=0.000000000®316764

Hence the maximum value for K'@ in m=4 factors is given as,

1 1
V(¢,) = (det[C(a)])w0 = (0.000000000@38147)10 = 0.07080

4.3.4 Generalized D-Optimal Weighted Centroid Design For m>2 Factors

Theorem 4.7
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In the third -degree Kronecker model for the mixture experiments with m> 2 factors,

unique D-optimal design for K'6 is,

(D))

n(@™)=am +a,n,.

where,

_, _ (m?—63m+58)+ J(m* +122m® + 3597m? — 7564m + 3844)
v 2(31m? + m —30)

_ (-63m? +61m + 2) —,/(12033n* — 31622m° + 26893 — 7052m — 252)
B 2(31m? + m —30)

«,

and, n; is the vertex design point and n, is the overall centroid

The optimal value of D-criterion for the K'€@ in m>2 factors is given by,

Vg,) = (detC(a))é - {(Sm(ri +1)J( m(rr?+ 1)jm}[m;1]

Proof

Let & =(a,,,,0,..,0) €T, be a weight vector with a(«) ={1,2} and supposing that

n(«) is D-optimal for the K'@ in T.
LetC(a) =C, (M (n(«))) .Equation (14) implies that for p=0,

=trace(C(a)®) for je{l2}

e (107
<trace(C(x)®) otherwise (107)

trace(C,C ‘1){
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from equation (24) a unique representation for any matrix C  Sym(s), is given as

follows,

al, +bU, cV
C= cV’ s | D EE T RP (108)

with the coefficientsa,b,c,d e R .

again, partitioning of any given symmetric matrix C € Sym(s) , can be done in

accordance to the block structure of the matrices inH , as shown below,
C — (Cl,l ClZJ '

c:12 C:22
withC,, e sym(m),C,, € R™ and C,, e R' Klein (2004).

and for j =1, traceC,C, ()" =traceC(a)’ =trace(l)

From equations (60) and (83), we get

a b c
~ —U,+—uU, —V
Clck(a)lz m®' m 2 m
0 0

_32m(m -y, + m(m - 2)a, b -m(m-2)a,
S qB2Am-Deo, +(M-2)a,] ' ay32(m-Da, +(M-2)a,]

where, a ,and

co —16m(m-1)
3(32(m -1y + (M—-2)ax,)

resulting in,
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trace(C,C, (a)™) = trace(%ul + %U Zj +0= traceiul, since trace(U,) =0
m

Therefore,

trace(C,C, (@)) = {m 32m(m -1, +m(m - 2)a, }

me, [32(m -, + (M- 2)a, ]
_32m(m-Da, + m(m-2)«,
o [32(M -1, +(M-2)a,]

m+1 m+1
also for m factors, trace(l ) = 5 , Wheres = , |

hence, traceCC, (o) =traceC(a)’ =trace(l),

zm(m-a, + m(m-2)a, (M+1 _(m(m+1))
a[32(m-Da, +(M-2a,] | 2 ) 2 )

this reduces to
(31m? + m—30)a? + (M —63m +58), —2(M—2) = 0

solving this polynomial together with o, + «, =1 yields

~(M*—63m +58) ++/(m* +122m® + 3597m? — 7564m + 3844)
2(31m? + m — 30)

1 o, €(0,1) .

again, from equations (61) and (83), we obtain

aWUl+bWU2 C!I!V
RN () R B Y LR L. VR oo (112)
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m 32(m —1)061 m - (m - 2)052
where, a" = , b"= :
32e,[32(M -1, + (M- 2) e, ] 32a,[32(m -1, + (M - 2)r, ]
o 32(m-1e, 4" = 32(m -1,

" aB2m -+ m-2a,] ™ T aB2AM D, + (M-2)r,]

hence,

trace(C,C, (@) ™) = {m[ 32(m - 2)a j+ 32(m ~J)a, I }

320, [32(m-Ner, + (M-2)a,] ) &, B2(M =D, + (M—2)ax,) [2]

B 32m(m-2)a, s 32(m-1)e, *[m(m —1)}
(320, [32(m -1, +(M—-2)er,] ) @,(B2(M 1), + (M —2)ar,) 2

Therefore,

traceC,C, ()™ =trace(l) = traceC(c)°,

R 32m(m-2)e, .\ 32(m-De, *(m(m—l)) _(m+1
320,[32(m -, +(M-2)e,]) «,(32(m-1)e, +(M-2)a,) 2 2

_ (m(m + 1)]

L2

which reduces to,

(31m* +m-30)a; +(-63m’ + 61Im + 2)a, + (32m° —64m +32) =0

solving this polynomial together with ¢, + o, =1Yields
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Y (-63m? + 61m + 2) —/(12033n* —31622m° + 26893n? — 7052m — 252)
? 2(31m? + m — 30)

o, €(01).

From equation (62), for a design with m factors, the information matrix is given by,

32a, +a, - a, u, 3a, v
32m 32m(m-1) 16m(m-1)
Ck (o) :alcl +0£2C2 = 3a2 V' 90[2
16m(m-1) 8m(m-1) (;‘j

Thus the optimal value of the D-criterion for the K'9 in m> 2 factors is given as,

V(g,) = (detC(a))% - {(8m(:1 +1)J( m(mz+ 1)Jm}[m;1]

. _(m*—63m+58) J(m* +122m° + 3597m? — 7564m + 3844)
! 2(31m? + m — 30)

, _ (-63m’ +61m +2) - J(12033m* —31622m° + 268937 — 7052m — 252)
2 2(31m? + m —30)

m+1
and s= .

lemma 4.7, 4.8 and 4.9 given earlier serves as particular examples for m=2, m=3, and

m=4 factors.
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4.4 E-Optimal Weighted Centroid Designs
The optimal weighted centroid designs for the smallest eigenvalue criterion are

calculated.

4.4.1 E-Optimal Weighted Centroid Design For M=2 Factors

Lemma 4.11

In the third-degree kronecker model with two factors, the weighted centroid design
n(@®)=an +a,n =053488 +0.46511n_is the E-optimal for K'6 in T.

Where, n, is the vertex design point and n, is the overall centroid  The

maximum value of E-criterion for the K'@ in m=2 factors is
g )=4 _(C)=0.209302

Proof

The information matrix for m=2 factors is given as:

[32a +a o 3a

1 2 _2 _ 2

64 64 32

a 320 +a 3a

C =C (M(n = —2 1 2 2
k k( ((a))) 64 64 32

3a 3a 9«

2 2 2
i 32 32 16 |

A unique representation of any matrix Ce sym(s,H) is of the form given below,



166

the information matrix Ck (M (n(a))) for m=2 factors, is given as

Co al, +bU, cV,
eV, eW,

with the coefficients; a, b, ¢, ee R, as the terms that contain V2, W2 and W3 only
occurs for m > 2 factors.

from lemma (3.1), we have,

b
A R A I (S T
= [ = = a-C ............
v, oW, 0 1 10 1 (117)

from lemma 3.3, the eigenvalue for two factors is computed as follows,

D, =[a+b-dJ +2[2c] =
[32al+a2 a T {ZxBaZ} 1161 —1266¢, +361

L2 42
64 64 16 32 322
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the eigenvalues are;

132a ta, a,

A a+(2-Lo+d+ —L1 4 2, 24
23 [ \/> 64 64 16

11610{12 —~12660 +361
32°

:ibg—sa + [11610” ~12660 +361]
64 1 1 1

with multiplicity 1.

2
32a +a, o, % 289 —306c. +81
[a pra=yb ] 6421+162i\/[ T J

with multiplicity m-1, The eigenvalues that occur for m=2 are,

A =iﬁ9—3a + 1161” ~1266a +361]
2 64 1 1 1

A =i£l9—3a — 1161 —1266a +361]
3 64 1 1 1

!

Z

The choice for the matrix E is E = z e R°, if the smallest eigenvalue of Ck (M)

|l
has multiplicity 1, where z e )®° is an eigenvector corresponding to the smallest

eigenvalue of the information matrix Ck (M) .The smallest eigenvalue is

=i£l9—3a — [11610” ~1266c +361]
64 1 1 1
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now let 1 =ib9—3a —\/1161052 —-1266a +361
min 64 1 1 1

Then, lmm is the eigenvalue of C and corresponds to eigenvector, say Z,then,

(C-A1)z=0 or Cz = 4z with =0

z
1
Let 7= Z, ,be the eigenvector of C which corresponds to A
z

3

Then, (C —imml)z = 0 Implies that,

320, -18+1161” 12662 +361 o, %,
64 64 3
a, 320, —18+\/1161af ~12660 +361 %,
64 64 3
%, %, 17-3%, +\/11610512 ~1266 +361
3 3 64
Let, p=34c, —18+ \/(1161a12 —12660, +361),q=c, and

r=17-33¢, +,/(1161z? —1266c, +361)

giving the following equations,

Pz, +pz,+ 6qz3 =0
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qz, + pz, + 6qz3 =0
6qz1 + 6qz2 +rz, = 0

Solving these equations we get eigenvector corresponding to /lmin as,

z1 1
Z= z,|= 1
2 —-12q
r
hence,
1 1 -12q
— —1r2q 2 2r? +144q2
zz'=| 1 1 ; ,and ||Z|| :r—z ........................ (118)
-12q -12q 144q°
r r r?
and the matrix E is given as,
r? r? —12qr
o 2r2+144q2 2r2+144q2 2r2+l44q2
7z r? r? —12qr 1
= ” = . : - - > | (119)
2| 2r2 +1449%  2r2 +144q%>  2r? +144q
—12qr —12qr 144q°
2r? +1449°%  2r® +1449°  2r® +144q°

and from equation (41)
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r’ r? —-12qr
2(2r? +1449%)  2(2r? +1449%)  2(2r? +1449%)
2 2 _
CE=|—y S e L (120)
! 2(2r° +144q9°) 2(2r° +1449°) 2(2r° +144q9°)
0 0 0

r2 r2 r2 r2
ClE = 2 T 2 Nt 2 2N o2 2
2(2r° +144q°) 2(2r° +144q°) 2(2r° +144q°) 2r°+144q
Hence,

tracecCE=1 ©

2
PG S :ibg—sa L1617 1266, +361] (121)
2r* +1449> 64 L . L
Substituting the values
p=34c, —18+ /(1161 —12662, +361),q=a, and

r=17-33¢, +,/(1161z? —1266c, +361)
Reduces the equation (121) to

2674944 af —13616640a; +28512000¢,' —31380480a; +19111680a; — 6096384 a, +
794880 =0
Solving this polynomial yields the roots;

o, =0.999719819r0.5555555@r0.53488372] as the possible values of &
a, € (0,)) and a,=1-a

Substituting /Imm we get,
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a, =0.55555555¢

A =ib9—3a — [11612 ~12660 +361]=O.208333333
min 64 1 1 1

o, =0.99971981

A =i£l9—3a —\/1161052 —1266a. +361(=0.00015760!
min 64 1 1 1

a, =0.53488372]

A =i£l9—3a —\/1161042 —1266c. +361(=0.20930232¢%
min 64 1 1 1

Therefore, lmin is maximum when a = 0.53488372%and a,= 0.46511627¢

For m=2 factors. The optimal E-criterion is

g )=4_(C)=0.20930232¢

4.4.2 E-Optimal Weighted Centroid Design For M=3 Factors

Lemma4.12

In third-degree kronecker model with m=3 factors, the weighted centroid design
n(@®)=an +a,n, =059208n +0.40792n is the E-optimal for the K' in T.
Where, n, is the vertex design point and n, is the overall centroid

The maximum value of the E-criterion for the K'@ for m=3 factors is

vig_)=4_(C)=007164
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for third-degree kronecker model with m=3 factors, the information matrix

C,(M(n(a))) is given as,

al, +bU, cV, +dV,

C= oV, +dv, e|[m] A TW, A QW [reveersees e o s s s s

from lemma (3.1),with matrices; Ul,UZ,Vl,VZ,Wl,W2 and W3we|| defined

Proof

for m=3 factors, the information matrix is then given as:

320+« a a
1 7 22 Z2
96 192 192
a 320 +«a a
2 17 Z2
192 96 192
a a 320+«
2 22 1
C =C, M@= 2 P %
_2 _2 0
32 32
a a
2 0 2
32 32
a a
0 _2 _2
32 32

A unique representation for any matrix C e sym(s, H) is of the form

al, +buU, cV, +dV,

C= cV, +dv, el[mj 4 W, 4 QW frerees st ssssssns s sssssess s e (123
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With the coefficients; a,..., g€ R, with the terms that contain V2, W2 and W3 only

occurring for m > 3 and for m > 4 respectively.

The information matrix Ck(M (n(a))), for the case m=3 factors is written as follows,

al +bU, ¢V, +dV,
C= ¢V, +dV, el[mj + fw,
2

from lemma (3.1),

1 1 1 1) (1 0 O 0 1 1
u=I.=10 1 0|,U=II -1 =1 1 1|-|]0 1 0|=|1 1

1 3 2 33 3
0 1 1 1) 0 0 1 1 1 0

1 1 0
Vl:Elz(e1+e2)’+E13(el+e3)’+E23(e2+e3)'= 1 0 1
0 1 1
0 1
V_Ee+Ee+Ee 0 1 O
12 3 13 2 23 1
1 0
0 1
W =E E +EE +EE +EE +EE +E E =1 0
12 13 12 23 13 12 13 23 23 12 23 13
1 1

Thus the information matrix
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1 0 O 0 1 1 1 1 0 0 0 1
a0 1 Of+bh1 0 1 cl O 1(+df0 1 O
C- 0O 0 1 1 1 0 0 1 1 1 0 O
1 1 0 0 0 1 1 0 O 0 1 1
cfl O 1(+df0O 1 O ef0 1 Of+fl1 0 1
0o 1 1 1 0 O 0 0 1 1 1 0
fa b b ¢ ¢ d]
b a b ¢ d ¢
b b a d ¢ ¢
Cocod e £ fleeeeee (124)
c d ¢ f e f
d ¢ ¢ f f e
2o +a a 3o
a= L2 p=—2c=—%,d=0e=—2and
_0o 96 192 32 16

From lemma 3.3, for the above matrix, the eigenvalues are computed as follows

1530112 —114a +25

D, =[a+2b—e] +4[2c-df = 76

134010;12 ~14130x, +4825
36864

D, =[a—b—ef +4fc—df =

The eigenvalues are

4, =%[a+2b+ei\/ﬁl]=4i8:3al+51\/153af —114al+25]

1 1 ; ]
A :E[a—b+e4_r /DZ]:@?% +37+ /13401 14130, + 4825

The eigenvalues 4,4, 4,, 4, that occur for m=3 are,



A =i[3a +5+\/153a2—114a +25],with multiplicity 1
2 48 1 1 1

A :i[s(x +5- /15327 114 +25], with multiplicity 1
3 48 1 1 1

A = i[250: +37+\/134O]a2 —14130x +4825], with multiplicity 2 and
438401 ! :

2 :i[zsa +37—\/13401a2 ~14130x +4825], with multiplicity 2
3g4 1 : 1

5

The smallest eigenvalue is

y) =i[3a +5—\/153a2 —114a + 25|, with multiplicity 1
3 48 1 1 1
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get an eigenvector z that corresponds to the smallest eigenvalue of the matrix Ck (M).

A € R, is the eigenvalue of a matrix C if,

(C-A1)z=0 or Cz = 4z with =0

[

N

where 7 = ,be the eigenvector of C that corresponds to A

I

(5]

<“<‘<Q:<‘<‘<

[}

Hence, as given in equation (124)

(C - ﬂmm I )Z = 6 suggests that,



Y1 0
P g q 69 6g O
Y, 0
a p 9 6g 0 6q
9 9 p 0 6g 6qfYs| (O
6g 6g o r 0 0|y, - 0
6 0 6 0O r O
\ | Vs | |0
0O 6g 6g 0 O r
Ye 0
where p =250¢1—9+\/(1530¢12 ~114c, +25),q=1-a,

r=—3a, +1+ /(1530 —114a, +25)
giving the following equations,

py, +qy, +ay, +6ay, +6qy, =0

Py, + Py, +ay, +6ay, +ay, =0

ay, +ay, + py, +60qy, +6qy, =0
6ay, +6ay, +ry, =0

6ay, +6qy, +ry, =0

6ay, +6ay, +ry, =0

by solving these equations, the eigenvector corresponding to imm IS written as,

176

and



177

1
Y, 1
Y, 1
;- Y, _ -12q
y r
y“ -12q
> r
Ye -12q
r
hence,
=12 -12 -12
1 1 1 q q q
r r r
=12 =12 =12
111 d a d
r r r
=12 =12 =12
11 1 q q q . )
Zz' _ r r r ||Z||2 _ 3I’ ‘|‘432q
T| -12q9 -12q -12q 144q° 1449 144q° |’ Tz
r r r r r’ r’
—-12q -12q -12q 144q° 1449> 1449°
r r r r re r’
—-12q -12q -12q 1449° 1449° 1449°
r r r r r? r?
and the matrix E is given as follows,
r r r? —12gr —12gr —12¢gr
3r°+432¢7 37 +432q7  T+432¢° 37 +432¢7 317 +432¢7 317443277
re 7 e —12gr —12gr —12gr
37 4432¢° 3t +432¢7 3P 4+432¢7 3P +432¢0 3P +432¢° 3t +432¢°
r r r —12gr —12gr —12¢gr
|37 +432¢" 3P +432g7 374432 37 +432¢7 37 +432¢7 37 +432¢°
- —12gr —12gr —12gr 14447 1444° 1444
37 +432¢7 37 44327 3t +432¢7 3T +432g0 37 +432¢0 317 +432¢°
—12gr —12gr —12gr 144g° 144g~ 1444~
30 +432¢° 3 +432¢7 3P 4432¢7 3t 4432¢7 344327 3t 443247
—12¢gr —12gr —12gr 144g° 144g° 1444*
30 +432¢" 3P +432¢7 37 +432¢7 3P +4324° 37 +432¢7 3P +4324
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a weighted centroid design n(«) is E-optimal for K'@ in T if and only if

traceCj E=4 ©)

a a a b b b

a a a b b b

a a a b b b

ol O 125

CE 0 0 0 0 O O (125)

0O 0 0 0 0 O

0 0 0 0 0 0

2 -12qr
Where a:%,b= 5 d >
3(3r° +4329°) 3(3r° +4329°)
2 2 2 2

traceC E = 2r <+ 2r S+ 2r ~+0= 2r 5

! 3(3r°+4329°) 3(3r°+4329°) 3(3r°+4329°) 3r° +432q

traceCj E= /”me (C), implies

2

r

W:%[sal +5— (15307 —114a +25.....ooovirciceec (126)
r-+ q

This simplifies to

881280516 - 3300480515 + 5473440514 — 5055840513 + 260064a12 ~652800r, +5376=0

substituting values of g and r and solving this polynomial yields the roots;

a = 0.148800r0.592080r0.71178as the possible values of a,

a € (0,) and a,=1-a
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substituting A,
min

a, =0.14880

=i[3a +5- /1530 —114a, +25|=0.04302
48 1 1 1

min

when a =0.59208

min

=i[3a +5- /1530 ~114a, +25|=0.07164
48 1 1 1

a =0.71178

=i[3a +5- /1530 ~114a, +25|=0.05234
48 1 1 1

Therefore, lmin is maximum when a, = 0.59208 and a, = 0.40792

as given in Pukelsheim (1993), the smallest eigenvalue criterion V(g )= 2 (C)

—00

2 :i[sa +5- 15327 —114e +25|=0.07164
48 1 1 1

The optimal value for m=3 factors E-criterion is given as,

vlg )= _(C)=0.07164

4.4.3 E-Optimal Weighted Centroid Design For M=4 Factors

Lemma 4.13

In third-degree kronecker model for m=4 factors, the weighted centroid design
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n(@®)=an +a,n =063866n +0.36133%N is the E-Optimal for the K'0 in

T. Where, n, is the vertex design point and n, is the overall centroid
The maximum value of the E-criterion for K'@ for m=4 factors is given by,
V(4. )= A.;,(C)=0.069741

Proof

The information matrix for m=4 factors is as follows:

320, +a, a, a a, B %G G 0 0
128 384 384 384 64 64 64
a, 320, +a, a, a, % 0 B %y
384 128 384 384 64 64 64
a, a 32a, +a, a, 0 L oy X o, %
384 384 128 384 64 64 64
A a a 320, +a, 0 0 B g % %
384 384 384 128 64 64 64
% % 0 0 33“22 0 0 0 0 0
C, =C,(M(n(a)))= a, a %,
— 0 0 0 0 0 0 0
64 64 32
%2 0 0 % 0 0 % o5 g
64 64 32
0 % i 0 0 0 o % 0
64 64 32
0 % 0 i 0 0 0 o0 =
64 64 32
3
0 0 % i 0 0 0 o0 o0 %
64 64 32
32051 +a, 1 a, a, 3a2
where a=——-—-—"% | =—= Cc=— , d=0, e=—= f=0 and
128 384 64 32
g=0...ovveeeeree(128)

a unique representation for any matrix C e sym(s, H) is of the form,
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al_, +bU, cV, +dV,

m

With the coefficients; a,....... ,g€ R,with the terms that contain V2, W2 and W3

only occurring for m > 3 and for m > 4 respectively.

The information matrix Ck(M (n(a))) , for m=4 factors, is given as follows,

al_ +bU, cV, +dV,
C=|cv/+dv, B+ TW, 4 QW frrveer sesemssnss s v s s (130)
)
from lemma (3.1),
1 0 0 O
U=I=0 1 0 O |
t 410 0 1 O
0 0 0 1
1 1 1 1 1 0 0 O 0O 1 1 1
U:Hr_lzllll_OlOO:lOll
2 44 411 1 1 1{]/0 0 1 O] |2 1 0 1
1 1 1 1 0O 0 0 1 1 1 1 O
1
V=Zi4,j:1(e_)69{4><l=(e +e +e +e )= .
icj 1 2 3 4 1
1

Thus the information matrix,



1 0 0 O 0 1 1 1
aU +bU oV 0 1 0 O 1 0 1 1
= vwl=[%0 0 1 o +b 1 1 0 1
cV'’ d—
m 0 0 0 1 1 1 1 0
i ck 1 1 1)
32051 ta, b a, _a, 3a
Where a = b= , , d=0, e——annd =0
128 384 51" 32 g

from lemma (3.3),

128 384 | 32

5 , |3a +a a 3a. |’ a
D =[a+3b—-e—4f —gf +6[2c—2d] =| 2 —2+3 = |-—2| +6| =

45607 — 2580, +49
- 4096

128 384

) ) 32051+052 a, 3a2 ? a, 2
D,=[a-b-e+f]' +4(4-2)c] = Ty +4(2)gz

60250 —5810c;, +2089
B 36864

the eigenvalues are,

J@5&ﬁ—z5&a+4q
4096

~58100 +2089)

45

A [a b+e+r] 29a +19+\/(60250(12

36864

The eigenvalues 4,4,,4,,4,, 4, that occur for m=4 are,

3a 3-3a

2

A =e-2f+g=—=-=
! 32 32

L with the multiplicity 2

=R P PR

—

182
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1 456a2 2580, +49)

A, = 128 a +7 + 2006 with multiplicity 1
1 456a — 2580 +49)

3 = 128 a +7- 2006 with multiplicity 1

1 i N
/14 = 384 with multiplicity 3

(60250:2 ~5810a, +2089)
290 +19+ L L
36864

with multiplicity 3

5

1 (602522 —58100 +2089)
A =——| 29 +19- ! 1
384 36864

The smallest eigenvalue is,

\/(4560{2 — 2580, +49)
9 +7— ! !

2096 with multiplicity 1

Then, an eigenvector z, corresponding to the smallest eigenvalue of the matrix Ck (M)

.A € R, is an eigenvalue of a matrix C if

(C-A1)z=0 or Cz = 4z with =0
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[N

N

w

S

where Z = , be the eigenvector of C correspondingto A

oo ~ (2]

‘<*<‘<‘<(;<‘<“<‘<“<

©

<
=
o

Thus from equation (128)
(C —ﬂmml)z = 0 suggests that,

Y1
Y,

Ys
006q06q6qy4

01 Ys
0| Ye
01y,
0
0
r

P q
qQ P
qQ 4
qQ 4

o o T O o
o
o
»
o
o
»
o
o
»
o)

6q 6q r

6g 0 6q 0

6g 0 0 6 O

0 6g 6g 0 O Ve
0 Yo
0

Yio

0 6g 0 6qg
0 0 69 6q

O O OO O OO o o o

O O O o =
O O O =
O O = O o o

where p=11z —3+ /(15327 —114c +25),q=1-a, and

r=-2l +5+,/(153x? —114a, +25)
1 1 1
giving the following equations,

py, +qy, +ay, +ay, +6ay_ +6qy,_ +6qy, =0



py, + py, +y, +qy, +6qy, +6qy, +6qy, =0

ay, +qy, + py, +dy, +6qy, +6ay, +6qy,_ =0

ay, +qy, +ay, + py, +6ay, +6qy, +6aqy, =0

6ay, +6ay, +ry, =0

6ay, +6qy, +ry, =0

6ay, +6ay, +ry, =0

6ay, +6qy, +ry, =0

6ay, +6ay, +ry, =0

6ay, +6ay, +ry =0,

185



186

by solving these equations gives the eigenvector that corresponds to /lmin as,

<
N e

w

IS

© ~ (o2}

NI
Il
S S I TR I

©

<
=
S

hence,

" =

r2

1
1
1
1
_| —12q
r
—-12q
r
—-12q
r
—-12q
r
—-12q
r
—12q
r
1 1 1 1 -129 -129 -129 -129 -129 -12g
r r r r r r
1 1 1 1 -129 -129 -129 -129 -129 -12q
r r r r r r
1 1 1 1 -129 -129 -129 -129 -129 -12
r r r r r r
1 1 1 1 -129 -129 -129 -129 -129 -12q
r r r r r r
12q -12q -12q -12q 14dq®  14dq®  14dq®  14dg?  144g° 144’
r r r r r r2 r2 r2 r r?
12q -12q -12q -12q 144g® 14dq>  14dq®  14dg?  144q®  14dg’
r r r r r r2 r2 r2 r r?
12q -12q -12q -12q 144g® 14dq>  14dq®  14dg?  144q°  14dg’
r r r r r? r r r2 r re
12q -12q -12q -12q 144q® 144> 14dq®  144g?  144g°  14dg’
r r r r r r rl rl r re
1q -12q -12q -12q 144q® 144q>  14dq>  14dg®  144g°  14dg’
r r r r r r rl rl r re
12q -12q -12q -12q 144g® 144q> 14dq>  144g®  144q°  14dg’
r r r r r r rl rl r re
4r? +864q°
B (131)
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and the matrix E is given as,

.. (132)

in T if and only if

a weighted centroid design n(«) is E-optimal for K'@

lmin (C) !

traceC E

]

.. (133)

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

360>
4(r* +216q°)

-3qr
4(r? +216q°)

2
4(4r® +864q°)

where a
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2 2 2 2

r r r r r
2 T 2 T 2 T 2 N A2 2
A(4r° +864q°) 4(4r° +864q°) 4(4r°+864q°) 4(4r°+864g9°) 4r° +864q

traceClE = [

traceCj E=24_ (C), implies that,

r? 1
4r? +864q° 128

[9a +7- 1530 ~114a + 25| ..o (134)
1 1 1

This simplifies to,

1931940:16 —8631360515 + 22312809514 —31297920{13 + 20252649:12 —552096x +46224=0

substituting values of g and r and Solving this polynomial yields the roots;

a, =0.6386610r0.1728920r0.369951as the possible values of a,
a €(0hand o, =1-¢,
substituting 4__ when,

a, =0.638661

:i[ga +7—[153a? —114a +25|=0.069741
128 1 1 1

min

when o =0.172892

N 15307 ~114a_+ 25 = 0.04230
min 128 1 1 1

when « = 0.369951
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=i[9a +7 - [15327 —114c +25]=0.06553
128 1 1 1

Therefore, lmin is maximum when a = 0.638661and a, = 0.3613489

According to Pukelsheim (1993), the smallest eigenvalue criterion is given as

Ve, )=4,,(C)

:i[ga +7— /1537 —114a, + 25 |=0.069741
128 1 1 1

The optimal value for m=4 factors E-criterion is given as,
V(4 )= 2,,(C)=0.069741

4.4.4 Generalized E-Optimal Weighted Centroid Design For m>2 Factors

Theorem 4.14

In third degree kronecker model with m factors, the weighted centroid design is given

as,
ne®)=an +an
11 2 2
Where, n, is the vertex design point and n, is the overall centroid

The E-criterion maximum value for the K'@ with m factors is

W )=2_(c)- m[(ﬁm—%)al +(m+17)-D|

where D = (256m? +162m —63)” —(30m? — 708m + 30k, +(m? +34m + 289)
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Proof,

From lemma 3.1 ,a unique representation for any matrix C < sym(s, H) is of the form

aU1+bU2 cV
C=
cV’ d\ﬂ
m

the information matrix c(Mm(n(«))) for m factors, can be written as follows,

aU1+bU2 cV
C=
cV'’ d\ﬂ
m

with the coefficients a,b,c,d e R

from lemma (3.1),

1 0 0
1
U-=I1,=
0 1
1 1) (1 0 .. 0y (11 1
0 1 10
U:ll'—l:. . e . .:
2 mm m
1 1) 10 o 1) 1 0

and
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V:Zi"ll(ei)einmxl:(el+e2+ ....... +e )=

The information matrix c(M(n(«))) is then given by,

1 0 0) (0 1 ARG
0 1 10
aU1+bU2 v R b c
C (M(nle)))= =
Mba)-| v
m :
0 1 1 . . 0 1
ot ) d(y)
32a +a 3a 3a
B S | R S T2y
2m  * 32m(m-1) F ABm(m=d) e (136)
3a, ' 9%, vV
16m(m-1) 8m(m—-1) m
from lemma (3.3) for m factors,
D =[a+(m-1p—df +2(m-1)f2cf ... (137)

R2a +a. (M-Da 9a ? 2x3a. |’

1 2 + 2 2 + ( _1) 2
32m 32m(m-1) 8m(m-1) 16m(m-1)
(225m? +162m — 63 + (30m? — 708m + 30), +(m? +34m + 289))

256m*(m—1)

D, =[a—b—d] +4(m—-2)2cf ..o (138)
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2

320 +a a 9a ? 2x 3

— 1 2 _ 2 _ 2 + 4(m _ 2) 2
32m 32m(m-1) 8m(m-1) 16m(m-1)
(961m? +516m - 252)? + (62m* — 2632m + 120}, + (m” + 68m + 1156)

1024m?(m -1)*

The eigenvalues are:

%3=%k+mp4k+diJBﬂ

320 + m-1 9
1 o e, n ( )0(2 n ) i\/B
32m 32m(m-1) 8m(m-1)

2
1
=m[(15m—33)a1 +(m+17)+ JB]

D = (256m? +162m —63)> — (30m? — 708m + 30)x, +(m? +34m + 289)

Ay =%[a—b+d i\/ﬁz]

1 {32051 +a, a, 9, \/—}
== - D,

+ t
2|  32m 32m(m-1) 8m(m-1)

1
- s g =Gk, +(m+34)+ /0

hence the smallest eigenvalue is

1 €
] :M[@Sm—%)al +(m+17)-D] . let

1

= m[(lSm—SB)al +(m+17)-vD]

A
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where D = (256m? +162m —63)2 — (30m? — 708m + 30, +(m? +34m + 289)
2 isthe eigenvalue for C that corresponds to the eigenvector, Z,then,

min

(C-A1)z=0 or Cz = 4z with 70

let,Z=| ° |, represent the eigenvector of C that corresponds to A

m+1

Hence, (C — A1) is givenas,

(16m+2)z, -18++/D a 3a
L U + 2 U — 2V
32m(m-1) 1 32m(m-1) 2 16m(m—-1)
3a, v (—15m—3)a1+(—m+19+\/5)\/\/
16m(m-1) 32m(m-1) m
Let, p=(@6m+2m)z —18+VD,q=c, =1-¢, and

r=(-15m-3)e, +(-m+19)++D
and D = (256m? +162m - 63)x* — (30m* — 708m + 30}, + (m? +34m + 289)

Thus, (C-A1)2=0

z 0
1 pu +quU_ 6qV
&S —F—— S
32m(m-1)|  6qVv’ AN .
m
z 0
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solving these equations for Z,

7 1
1
z = = .
1
—cmq
JA
m+1 r

Where c=3 represents the even number for factors and c varies for the odd numbers of

factors as the eigenvector corresponds to lmin

Hence,
—cmq
— U1+U2 ; Vv ”2”2 ) mr? +c2m?q? "
= _Cmq ’ C2m2q2 VV y - r2 .............................. ( )
Vv ———
r r m
- 2 U +U —cmqV
E- 77 _ r 1 2 r (142)
||Z||2 mrz +C2m2q2 _Cmqv, C2m2q2 VV ..............................
r r’ m
and from equation (60)
ce. T [Tu+tu -y
1 mr2+czmzqz m Om 0

from theorem (3.4) a weighted centroid design n(«) is E-optimal for K'6 in T if and

only if traceC E=4_ (C)



195

rZ r2 _ r2

ot =
m(mr? +c’m?q?) m(mr? +c’m?q?®) (mr? +c*m?q?)

For j = 1,traceClE =

hence traceCE=4_ (C)

r.2

mr2+c2m2q) 32m(m 1)

= ( [(15m 33a, +(M+17) - \/_]
putting 4=, =1-a and r =(-15m-3)a, +(-m+19)+/D
and D = (256m? +162m —63)a” — (30m? — 708m + 30, + (m? +34m + 289)

Solving the polynomial using Wxmaxima software, the value of «

is then chosen such that «, € (0,1); now substitute the value to A__and get the values

that maximizes the /1 thus the optimal E-criterion is,

V(g )=4(C)= [(15m 33, +(m+17)~ D]

32m(

Table 4.4: Summary of ¢, —optimal weights forK'9, m =2,3,4

m p a,” a, (p) v,

2 —00 0.534882 0.465110 0.209302
-1 0.603283 0.396716 0.265585
0 0.66666667 0.33333333 0.275160

3 —00 0.592080 0.407921 0.071642
-1 0.465023 0.534982 0.1192420
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0 0.50000000 0.50000000 0.125000

4 —00 0.638661 0.361339 0.06974
-1 0.443721 0.556281 0.064913
0 0.40000000 0.60000000 0.070800

A numerical example using fruit blending experiment of three components

mixture experiment

The D optimal design for three factors can now be applied to three factor numerical
example .Three fruits (Mangoes, passion, and banana) were involved in the
experiment. The response on a scale 1-7 was taken as the average score . The twenty
one data values are from seven support points for the weighted centroid design each
replicated three times. The points comprised the three pure blends, three binary blends,

and the three fruits together in the mixture.

Consider the following simplex centroid design for three factors as the initial

design

Design points t1 to t3 Average score

1 1 0 0 123
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2 0 1 0 105

3 0 0 1 89

4 L1y 135
2 2
1 0 1

5 2 2 126
0 1 1

6 2 2 128
1 1 1

7 3 3 3 118

Where t1=passion,t2=passion and t3=Bananas

From equation 97, o =

N |-

.-l
And from equation 99 2

The unique D-optimal weighted centroid design for K'6é in m=3 factors is

1 1
n(a®)=amn, +a,n, = S+,

Therefore, the corresponding A-optimal for the above designs is as follows,

Design points f1 to t3
1 E 0 0
2
2 0 E 0
2
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4 4
1 1
il 0 il
5 4 4
1 1
0 il -
6 4 4
1 1 1
7 6 6 6

CHAPTER FIVE
CONCLUSION AND RECOMMENDATION
5.0 Introduction
This chapter presents conclusions, recommendation and recommendations for further

research work for this study.

5.1 Conclusion

The study was done based on the selection of the optimality criteria. Kiefer-Wolfowitz
equivalence theorem was then applied to each design. All considerations were limited
to the weighted centroid designs due to the completeness result. The coefficient matrix
K was obtained by use of unit vectors and characterization of feasible weighted
centroid designs. Depending on the coefficient matrix K'@ of interest selected, the
optimal moments and information matrices were then obtained. Consequently, unique
A-, D- and E-optimal weighted centroid designs were obtained for the third degree
Kronecker model with m > 2 factors. From the results obtained, the unique A-, D- and
E-optimal weighted centroid designs for the K@ exists, for third-degree model with
m>2 factors for the selection of the coefficient matrix unique to this study. The

(p)

weights 2", a” and the appropriate optimum value V, =(#, °C, oM on)(a') for
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respective factors were obtained numerically for selected values of p e [-w,1] .The

results obtained indicated that: Coefficient matrix K obtained had a full column rank
and helped in identification of the linear parameter subsystem; the optimal moments
obtained reflected the statistical properties of designs and was useful in finding the
information matrix; The average-variance criterion (A- criterion) and the optimality
criteria were both dependent on the information matrix, as the number of m factors

)

increases, al(p) decreases while aép increases and the value of the maximum criterion

decreases. For the determinant criterion (D-criterion), as the number of m factors

)

increases, al(p) decreases while aép increases and the value of the maximum criterion

decreases. For the smallest eigenvalue criterion (E-criterion) as the number of m factors

increases, al(p) increases while aép) decreases and the value of the maximum criterion

decreases. This indicates that the maximal parameter design reflects well the statistical
properties due to increasing symmetry as the number of factor’s increases unlike the
other designs. In conclusion, results based on maximal parameter subsystem, third
degree mixture model with two, three, four, and generalized to m factors for D-, A- and
E-optimal weighted centroid designs for the parameter subsystem exist and thus the
goal for this specific study was achieved. The study brought in improvement in D-, A-
and E-optimal designs as the study improved from second degree Kronecker model
maximal parameter subsystem to third degree Kronecker model maximal parameter
subsystem in which the information matrix obtained carries more information . The D-
optimality criterion, which looks for designs that maximize the determinant of the
information matrix, is the most frequently used optimality criterion to choose the
designs. The D-optimality criterion has a very important property in optimal designs

,it minimizes the variance and the covariance of the parameter estimates.
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5.2 Recommendation

In this study, the third degree mixture Kronecker model was considered adequate and
reliable for use in estimation and prediction in mixture experiments to yield optimal
results. The Kronecker model is useful in situations where decisions are made on the
amounts of the various components have to be decided to give desired properties of the
mixture. Therefore, the study recommends use of designs obtained by experimenters in

designing of experiments to yield optimal results in technological fields.

5.3 Recommendations for Further Research Work

This study concentrated on optimal weighted centroid designs for maximal parameter
subsystem for third degree Kronecker model mixture experiments. The study
recommends that the third degree Kronecker model can be extended to fourth degree
Kronecker model mixture experiments. The fourth degree will develop more improved
designs, since the symmetric matrix will be larger than second and the third degree

carrying more information and more optimal values.
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