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ABSTRACT

Experimentation plays an important role in Science, Engineering and Industry. This is an

application of treatments to experimental units, and then measurement of one or more

responses.  It  is  part  of  scientific  method  which  requires  observing  and  gathering

information about how process and system work where some input variable x’s transform

into an output that has one or more observable response variables  y. Therefore, useful

results and conclusions can be drawn. In order to obtain an objective conclusion there is

need to plan and design an experiment and analyze the results. The approximation of the

response function y is called Response Surface Methodology. This study focused on the

existing six specific second order rotatable designs in three dimensions. These designs

were denoted by M1, M2, M3, M4, M5 and M6. A design matrix X was developed from the

designs, further their information matrices C1, C2, C3, C4, C5 and C6were obtained from

which  the  alphabetic  optimal  values  for  these  designs  were  evaluated,  the  optimum

values obtained were used to calculate the A-, D-, E- and T- relative efficiencies for both

calculus optimum and unit value designs, for instance to evaluate E- relative efficiency

the formula 
λmin(ε )

λmin(ε¿
)

where λmin(ε ) is the least E- optimum valuewhile λmin(ε
¿
) is

the respective least design optimal value. Finally the compound optimality criterion (DT-)

for all the six designs was also evaluated. In this study optimal values already evaluated

were  used  to  evaluate  efficiencies  and the  DT- optimality  criterion.  From the  results

Calculus optimum values designs are generally more efficient than Unit Value Designs,

on checking both the calculus optimum designs and unit value designs D- efficiency was

found to be the best as it gave a higher efficiency than the rest relative efficiency criteria.

On comparison of all designs M1was found to be most efficient as compared to the rest.

For DT- optimality M2 is DT- Optimal.
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CHAPTER ONE: INTRODUCTION

In this chapter the background information is  given , then statement  problem is also

stated,  next  justification  is  given,  then  further  on  the  purpose  of  the  study  is  given

followed by the objectives of the study both general objective and specific objectives and

finally the  significance of the study is given.

1.0 Background of the Study.

Response surface methodology (RSM) consists of a group of mathematical and statistical

techniques used in  the development  of an adequate functional relationship between a

response of interest, y, and a number of associated control (or input) variables denoted by

x1,  x2,  . . .  ,xk. In general, such a relationship is unknown but can be approximated by a

low-degree polynomial model of the form 

y = f ' (x)β+ ε

(1.1) 

where x = (x1, x2, . . . , xk), f (x) is a vector function of p elements that consists of powers

and cross- products of powers of x1, x2, . . . , xk up to a certain degree denoted by d (≥1), β

is a vector of  p  unknown constant coefficients referred to as parameters, and  ε is a

random experimental  error assumed to have a  zero mean. This is  conditioned on the

belief that model (1.1) provides an adequate representation of the response. In this case,

the quantity f ' (x)β represents the mean response, that is, the expected value of y, and is

denoted by μ(x). Two important models are commonly used in RSM. These are special

cases of model (1.1) and include the first-degree model (d = 1), 

y = β0 + ∑
i=1

k

β i x i + ε

(1.2) 

and the second-degree model (d = 2)with k factors is represented as follows

y = β0+

2

1 1 ,

k k k

i i ii i ij i j
i i ij i j

x x x x   

  

    
(1.3)

where

β0 is the intercept 
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βiis the linear coefficient for the ith factor 

βiiis the quadratic coefficient for the ith factor

βijis the cross product coefficient for the ith and jth factor

xi is the level of the ith factor

xij is the level of the ith and jth factor

 is the error term.

The purpose of considering a model such as (1.1) is threefold:

1. To establish a relationship, albeit approximate, between y and x1, x2, . . . ,xk that can be

used to predict response values for given settings of the control variables.

2. To determine, through hypothesis testing, significance of the factors whose levels are

represented by x1, x2, . . . ,xk

3. To determine the optimum settings of x1,  x2,  . . .  ,xk. That result in the maximum (or

minimum) response over a certain region of interest.

In order to achieve the above three objectives, a series of n experiments should first be

carried out,  in  each of which the response  y  is  measured (or observed)  for specified

settings of the control variables. The totality of these settings constitutes the response

surface design. For this study the existing six specific second order rotatable designs in

three dimensions developed by draper were utilized.

1.1 Problem Statement.

The study was focused on determination of the  D–, A–, T– and E–relative efficiencies.

Also the  DT– optimality criterion for existing specific six calculus optimum and unit

values specific second order rotatable designs in three dimensions was evaluated.

1.2 Justification.

For the existing six specific calculus value optimum and unit value designs their 

optimality criterion values have already been obtained in previous studies so for this 

study the relative efficiencies for both calculus optimum value designs and unit value 

designs were obtained. Also the compound DT- optimality criteria was evaluated.
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1.3 Purpose of the Study.

The result will foster the development and dissemination of the theory and applications of

statistics as efficient designs will result in improved production of goods and services.

1.4 Objectives of the Study

1.4.1 General Objective
To determine D–, A–, E– and T–Relative Efficiencies criteria and calculate the compound

DT- optimality criterion for the existing six calculus optimum and unit values specific 

second order rotatable designs in three dimensions.

1.4.2 Specific Objectives
i) To determine D–, A–, E– and T–Relative Efficiencies for the six Specific second

order rotatable designs in three dimensions for calculus optimum values and for

unit value designs.

ii) To  compare  relative  efficiencies  of  calculus  optimum  values  designs  with

relative efficiencies of unit value designs.

iii) To determine DT– optimality Criterion for both calculus optimum and unit value

designs.

1.5 Significance of the study

There  is  need  for  more  efficient  experimental  designs  to  get  maximum yields  at  a

reduced cost  and greater  speed.  This can be achieved when a researcher  uses more

efficient experimental designs.  In this study the focus was on second order rotatable

designs in three dimensions. Efficient designs minimize the inputs and maximize the

outputs. The study culminated in the identification of more efficient designs between

calculus  optimum  value  designs  and  unit  value  designs  and  determination  of  DT-

compound optimality.
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CHAPTER TWO: LITERATURE REVIEW.

2.0 Introduction.

In this chapter the relevant literature is reviewed. First the Literature on D–, A–, E– and

T–  Optimality  Criteria  from  which  Alphabetic  Relative  Efficiencies  Criteria  Are

Evaluated is given and finally the literature on DT- optimality Criterion is also given.

2.1 Optimality Criteria.

2.1.1The Design.
A well-defined experiment is an efficient method of learning about the world. Because

experiments in the world, and even in the carefully controlled conditions of laboratories,

cannot avoid random errors, statistical methods are essential for their efficient design and

analyses (Atkinson and Donev, 1992). 

The choice of design depends on the properties it is required, or desired, to have. Some of

the design properties considered in the early development of RSM include; orthogonality,

Uniform precision and rotatability.

Statistical design is about understanding where the variance comes from and making sure

that is where the replication is (Casella, 2008). Fisher (1947) compared a database to a

sample  of  gold  ore.  The  finest  analysis  could  only  extract  the  proportion  of  gold

contained in the ore. But a good design could produce a sample with more gold (Casella,

2008). 

By  “design”,  we  mean  the  synthesis  of  a  suitable  experiment  to  test,  estimate  and

develop a current conjectured model (Box and Draper, 1987). There are many statistical

issues to consider in the design of an empirical study. Among the problems are the control

of unwanted variation and the internal validity of the study. How can we be sure that a

study is internally valid? In other words, how can we be sure that the treatment effect is
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attributed to the variables that are manipulated and not mainly influenced by unwanted

variation? (Cox, 1958 and Cox and Reid, 2000).

The fundamental idea is the importance of the model related to the responses obtained in

the experiment to the experimental factors. The purpose of the experiment is to find out

about the model, including its adequacy. Experiments can be designed to answer a variety

of questions. Often, estimates of the parameters of interest together with the predictions

of  the  response  from the  fitted  model.  The variances  of  the  parameter  estimates  and

predictions depend on the particular experimental design used and should be as small as

possible. Poorly designed experiments waste resources by yielding unnecessarily large

variances and imprecise predictions.

In the past, statistical procedures were applied to data collected without a definite design.

However, even in the 19th century, many researchers felt the importance of rational choice

of experimental design (Viatcheslav, 2006). 

Fisher was the first to consider design problems systematically. His popular book (Fisher,

1935) passed through many editions and affected the development and applications of

experimental designs. Fisher’s approach is still developing (Viatcheslav, 2006). The paper

by Box and Wilson (1951) offers an approach to finding the conditions for some output

variable to be of maximal value. The approach is called Response Surface Methodology

and is outlined in the paper by Box and Draper (1987).

2.1.2 Rotatable designs
A design D is said to be rotatable if the prediction variance in Var[ˆy(x)] =  σ2 f ' (x)

(X ' X )
−1 f  (x).is  constant  at  all  points  that  are  equidistant  from the  design  center,

which, by a proper coding of the control variables, can be chosen to be the point at the

origin of the k-dimensional coordinates system. It follows that  
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Var[ ŷ (x)] is constant at all points that fall on the surface of a hyper sphere centered at

the origin if the design is rotatable. The advantage of this property is that the prediction

variance remains unchanged under any rotation of the coordinate axes. In addition, if

optimization of  ŷ (x) is desired on concentric hyper spheres, as in the application of

ridge analysis, which will be discussed later, then it would be desirable for the design to

be rotatable. This makes it easier to compare the values of  ŷ (x) on a given hyper

sphere as all such values have the same variance.

The necessary and sufficient condition for a design to be rotatable was given by Box and

Hunter (1957).  More recently,  Khuri (1996) introduced a measure of rotatability as a

function of moments of the design under consideration. The function is expressible as a

percentage taking large values for a high degree of rotatability. The value 100 is attained

when the design is rotatable. The advantages of this measure are:

1. The ability to compare designs on the basis of rotatability.

2.  The  assessment  of  the  extent  of  departure  from  rotatability  of  a  design  whose

rotatability may be ‘sacrificed’ to satisfy another desirable design property.

3. The ability to improve rotatability by a proper augmentation of a non-rotatable design.

A rotatable design is said to have the additional uniform precision property if Var[ ˆy(x)]

at the origin is equal to its value at a distance of one from the origin. This property, which

was also introduced by Box and Hunter (1957), provides for an approximate uniform

distribution of the prediction variance inside a hyper sphere of radius one. This helps in

producing some stability in the prediction variance in the vicinity of the design center.

Box  and  Hunter  (1957)  introduced  rotatable  designs  for  the  exploration  of  response

surface  designs.  Panda  and  Das  (1994)  introduced  first  order  rotatable  designs  with

correlated errors. Das (1997) introduced robust second order rotatable designs (RSORD).

Das (1999, 2003b) studied RSORD. In response surface methodology, good estimation of

the derivatives of the response function may be as important or perhaps more important

than estimation of mean response. Estimation of differences in responses at two different

points in the factor space will often be of great importance. If difference in responses at

two points close together is of interest then estimation of local slope (rate of change) of
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the response is required. Estimation of slopes occurs frequently in practical situations.

For instance, there are cases in which we want to estimate rate of reaction in chemical

experiment, rate of change in the yield of a crop to various fertilizer doses and rate of

disintegration of radioactive material in animal.

2.1.3Response Surface Methodology and Second Order Designs

2.1.3.1 Response Surface Methodology
Response Surface Methodology is a basic tool in statistical analysis of experiments where

the yield is believed to be influenced by one or more controllable factors. To cut on costs,

an  experimenter  has  to  make  a  choice  of  the  experimental  design  prior  to

experimentation.

Box and Wilson (1951) discussed experimental designs whose purpose is found using

smallest number of observations, the point on a response surface at which the maximum

output  or  yield  is  achieved.  They  compared  the  performances  of  some  experimental

designs and introduced the concept of composite designs for the first time. The dominant

assumption of Box and Wilson’s  (1951) paper is that the response can be approximated

by  a  polynomial  in  the  levels  of  the  various  treatment  factors  involved.  Different

experimental designs are then compared in terms of variance – covariance matrix of the

parameter estimates.

According to Dean and Voss (1999), Response Surface Methodology was developed by

Box  and  Wilson  (1951)  to  aid  the  improvement  of  manufacturing  processes  in  the

chemical  industry.  The  purpose  was  to  optimize  chemical  reactions  to  obtain,  for

example, high yield and purity at low cost. This was accomplished through the use of

sequential experimentation involving factors such as temperature, pressure, duration of

reaction, and proportion of reactants. The same methodology can be used to model or
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optimize any response that is affected by the levels of one or more quantitative factors.

The general scenario is as follows. The response is a quantitative continuous variable

(e.g., yield, purity, cost), and the mean response is a smooth but unknown function of the

levels  of  p  factors  (e.g.,  temperature,  pressure),  and  the  levels  are  real-valued  and

accurately controllable. The mean response, when plotted as a function of the treatment

combinations, is a surface in  p  +  1 dimensions, called the  response surface. Response

Surface Methodology comprises a group of techniques for empirical model building and

model exploitation. By careful design and analysis of experiments, it seeks to relate a

response, or output variable to the level of a number of predictors or output variables that

affect it (Box and Draper, 1987).

The objective of obtaining a response surface is two-fold:

(i) To locate a feasible treatment combination x for which the mean response

is maximized (or minimized, or equal to a specific target value); and

(ii) To estimate the response surface in the vicinity of this good location or

region, in order to better understand the “local” effects of the factors on the

mean response (Dean and Voss, 1999). 

2.1.3.2 Second Order Designs
Consider the functional relationship

 , ; 1,2,...,u u uy x u N    
where  yu is  the  uth  observed  response  value,

( , )ux   is  a  given  function,  with  unknown  parameter  vector   
/

1 2, ,..., k   
,

1 2, ,..., N   are random values corresponding to the observed error and  1 2, ,..., Nx x x  are

experimental  conditions  belonging to  the  set   usually  called  the  design  region.  The
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opportunity to represent the result  of real experiments in form  yu=η (xu β )+εu has

been shown in many examples (Pukelsheim, 2006 and Fedorov, 1972). The function   is

usually unknown and its choice is central to the model building process (Box and Draper,

1987). In this thesis, a second – degree polynomial was considered. According to Box

and Draper (1987), experiments in which all factors are quantitative frequently take place

at or near the maximum or minimum of the response, that is, in the neighborhood of

conditions which are optimum according to some criteria. In order to model the curvature

present, a full second order model is required. 

2.1.4Optimal design theory

The tool that is used to design experiments is the theory of optimum experimental design.

The ideas of optimum experimental design are introduced through the comparison of the

variances  of  parameter  estimates  and the  variance  of  the  predicted  responses  from a

variety of designs and models. The relationship between these two sets of variances leads

to the general equivalence theorem which, in turn, leads to algorithms for designs and

models.  The  General Equivalence Theorem is the central result on which the optimal

design of experiments depend (Atkinson and Donev, 1992). The theorem applies to a

wide variety of design criteria. It provides methods for the construction and checking of

optimum designs.  The general  equivalence theorem states  that the equivalence of the

following three conditions on design

(i) The design  minimizes 
  M 

(ii) The design  maximizes the minimum over    of  ,x 
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(iii)  The  minimum over   of   , 0x  
,  this  minimum occurring  at  the

points of support of the design.

The  general  equivalence  theorem  provides  necessary  and  sufficient  conditions  for  a

moment matrix to be   optimal for the parameter system of interest in a compact and

convex set of competing moment matrices where   is an information function.

Optimal design theory was initiated by Kiefer (1985). According to him, the experimental

design  is  a  discrete  probability  measure  defined  by  the  set  of  various  experimental

conditions and weight coefficients corresponding to them. The coefficients show how

many experiments (with respect to their total amount) should be performed under the

condition. Here, the optimality criteria are represented as various functions defined on the

set of information matrices and possessing some statistical sense. A design at which such

a functional attains its extremum is called the optimal one. 

2.1.5 The Design Efficiency.

Kuhfeld (2010) referred to design efficiency as design goodness. The goodness of an

experimental  design (efficiency) can be quantified as a function of the variances and

covariances of the parameter estimates. Efficiency increases as the variances decrease.

Designs should not be thought of in terms of the dichotomy between orthogonal versus

non-orthogonal but rather as varying along the continuous attribute of efficiency. Some

orthogonal  designs  are  less  efficient  than  other  (orthogonal  and  non-orthogonal)

alternatives. Orthogonality is not the primary goal in design creation. It is a secondary

goal,  associated  with  the  primary  goal  of  minimizing the  variances  of  the  parameter

estimates. Degree of orthogonality is an important consideration, but other factors should

not be ignored.

The  goodness  or  efficiency  of  an  experimental  design  can  be  quantified.  Common

measures of the efficiency of an (ND × p) design matrix X are based on the information
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matrix XTX. The variance covariance matrix of the vector of parameter estimates β  in

a least-squares analysis is proportional to(XTX)−1. More precisely, it equals  ∂ 2(XTX)
−1. The variance parameter, ∂ 2, is an unknown constant.

2.2 DT- compound optimality Criterion.

2.2.1 Optimality Criteria.
Optimality  criteria  is  based  on  how well  parameters  or  a  response  are  estimated  or

researched. Design optimality criteria are primarily concerned with optimal properties of

the  X/X  matrix  for  the  model  matrix  X.  By  studying  the  optimality  criteria,  the

experimenter can determine the adequacy of a proposed experimental  design prior to

running it. If several alternative designs are proposed, the optimality properties can be

compared to aid in the choice of design. The most common empirical model used as an

approximation of the true model over the experimental region is a polynomial. The use of

the  X/X matrix in design evaluation stresses the importance of the assumption that the

empirical  model  is  adequate.  This  implies  that  the  X/X  optimality  criteria  are  highly

model  dependent.  Although  a  design  may  be  best  among  several  designs  by  one

optimality  criterion,  it  may perform poorly  when evaluated  by  a  different  optimality

criterion.  Hence,  the  choice  of  a  design  will  itself  depend  upon  the  choice  of  the

evaluation criteria. 

According  to  Pukelsheim  (2006),  real  optimality  criteria  are  functions  with  such

properties  as  are  appropriate  to  measure  largeness  of  information  matrices.  These

functions  have  properties  as  discussed,  that  is,  positively  homogenous,  superadditive,

non-negative,  non-constant  and  upper  semi  continuous.  Such  criteria  are  called

information  functions.  The  most  prominent  information  functions  are  matrix  means

 , ;1p P   
. They comprise the classical optimality D-, A-, E- and T- criteria as special
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matrix  means  where  our  interest  is.  These  criteria  are  as  stated  in  the  methodology.

Mutiso (1998) developed theory for the optimum estimation of the free letter parameters

in the rotatable design point sets first considered by Draper (1960) for which Kosgei

(2002) obtained alphabetic optimality criteria.

CHAPTER THREE: METHODOLOGY.

3.0 Introduction.

In this chapter explanations on determination of D–, A–, E– and T–Relative Efficiencies

for the specific second order rotatable designs in three dimensions both for unit values

and calculus optimum values designs are given furthermore comparison of the relative

efficiencies  of  calculus  optimum  values  designs  with  unit  value  designs  given  is

undertaken  thereby  demonstrating  preferred  Relative  efficiency  criterion.  Finally,  the

DT– optimality Criterion for both calculus optimum and unit value designs is determined.

The designs were developed by Draper (1960), Mutiso (1998) used differential calculus

and the general equivalence theorem to estimate the free or arbitrary letter parameters

with substitution of value one in the free letter parameters being demonstrated by Kosgei

(2002) in evaluating the optimality criteria. The methods of evaluation of the particular

criteria as given by Pukelsheim (1993) were utilized.

3.1Determination of D–, A–, E– and T–Relative Efficiencies for the Specific Second

Order Rotatable designs.

3.1.1The Calculus Optimum values and unit value designs Second Order Rotatable 
Designs.
This section gives the second order rotatable designs both Calculus optimum values and

unit value designs that were used to obtain alphabetic optimality criteria which were used

in calculation of relative efficiencies.

3.1.2 Calculus optimum designs.

The Twenty Four Points Three Dimensional Specific Rotatable Design of Order Two
We consider the design
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M1= S(f,f,0) + S(c1,0,0) + S(c2,0,0)

This gives the following set of points

(f,f,0)          (f,0,f)         (0,f,f)

(-f,f,0)         (-f,0,f)       (0,-f,f)

(f,-f,0)         (f,0,-f)       (0,f,-f)

(-f,-f,0)        (-f,0,-f)     (0,-f,-f)

(c1,0,0)        (0,0,c1)     (0,c1,0)

(-c1,0,0)       (0,0,-c1)   (0,-c1,0)

(c2,0,0)         (0,0,c2)    (0,c2,0)

(-c2,0,0)    (0,0,-c2)        (0,-c2,0)

The  moment  conditions  that  the  set  of  twenty-four  points  should  satisfy  to  form  a

rotatable arrangement of order two are:

∑
u=i

24

x iu
2 = 2(c1

2+c2
2+4f2) = 24λ2

(3.1)

∑
u=i

24

x iu
4 = 2(c1

4+c2
4+4f4) = 72λ4

(3.2)

∑
u=i

24

x iu
2 x ju

2  = 4f4 = 24λ4

(3.3)

Resulting into the following design;

M1=( S( f,f,0 )+S(0 . 70711067f,0,0)+S(1 .1501633f,0,0 )) .



14

The free letter parameter in the twenty four points design was estimated using the 

differential calculus and general equivalence theorem resulting into  =1.1072569 which ḟ

makes the design M1 calculus optimal whence;

M1=(S(1.1072569, 1.1072569, 0)+S(0.7829487,0,0)+S(1.2735263,0,0)).

The Thirty-Two Points Three Dimensional Specific Rotatable Design of Order Two
We consider the design,

M2= S(p,q,q) + S(a,a,a)

This gives the following set of points

(p,q,q)       (q,q,p)        (q,p,q)         (a,a,a)

(-p,q,q)      (-q,q,p)       (-q,p,q)        (-a,a,a)

(p,-q,q)      (q,-q,p)        (q,-p,q)        (a,-a,a)

(p,q,-q)      (q,q,-p)         (q,p,-q)        (a,a,-a)

(-p,-q,q)     (-q,-q,p)        (-q,-p,q)      (-a,-a,a)

(-p,q,-q)      (-q,q,-p)        (-q,p,-q)      (-a,a,-a)

(p,-q,-q)      (q,-q,-p)         (q,-p,-q)      (a,-a,-a)

(-p,-q,-q)     (-q,-q,-p)        (-q,-p,-q)     (-a,-a,-a)

The moment conditions that the set of thirty-two points should satisfy to form a rotatable

arrangement of order two are:

∑
u=1

32

x iu
2 =8p2+16q2+8a2= 32λ2

(3.4)

∑
u=1

32

x iu
4 = 8p4+16q4+8a4= 96λ4

(3.5)

∑
u=1

32

x iu
2 x ju

2 = 8q4+16q2p2+8a4 = 32λ4 (3.6)

Resulting into the following design;
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M2=( S( 4 .472136a,1.7971477a,1 .7971477a )+S( a,a,a )) .

The  free  letter  parameter  in  the  twenty  four  points  design  was  estimated  using  the

differential calculus and general equivalence theorem resulting into â = 0.2982861which

makes the design M2calculus optimal whence;

M2 = (S(1.3338955, 0.5360318) + S(0.2982681, 0.2982681, 0.2982681)).

The Twenty-Two Points Three Dimensional Specific Rotatable Design of Order Two

We consider the design,

M3=S(a1,a1,a1) + S(a2,a2,a2) + S(c,0,0)

This gives the following set of twenty-two points

(a1,a1,a1)        (a2,a2,a2)

(-a1,a1,a1)       (-a2,a2,a2)          (c,0,0)

(a1,-a1,a1)         (a2,-a2,a2)         (-c,0,0)

(a1,a1,-a1)         (a2,a2,-a2)         (0,c,0)

(-a1,-a1,a1)       (-a2,-a2,a2)         (0,-c,0)

(-a1,a1,-a1)       (-a2,a2,-a2)         (0,0,c)

(a1,-a1,-a1)        (a2,-a2,-a2)         (0,0,-c)

(-a1,-a1,-a1)       (-a2,-a2,-a2)

The moment conditions, which this  set of twenty-two points should satisfy to form a

rotatable arrangement of order two are;

∑
u=i

22

x iu
2 = 8a1

2+8a2
2+2c2= 22λ2 (3.7)

∑
u=i

22

x iu
4 = 8a1

4+8a2
4+2c4= 66λ4 (3.8)

∑
u=i

22

x iu
2 x ju

2 = 8a1
4+8a2

4= 22λ4 (3.9)
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Resulting into the following design;

M3=( S(0 . 03162277c,0 .03162277c,0 . 03162277c )+S(0 .5823371c,0 .5823371c, 0.5823371c )+ S(c, 0, 0 )) .

The  free  letter  parameter  in  the  twenty  four  points  design  was  estimated  using  the

differential  calculus  and general  equivalence  theorem resulting  into ĉ  =  1.5494481

making the design M3calculus optimal whence;

M3=(S(0.4899784,  0.4899784,  0.4899784)  +  S(0.9023011,  0.9023011,  .9023011)+

S(1.5494481, 0, 0)).

The Twenty Points Three Dimensional Specific Rotatable Design of Order Two

We consider the design,

M4=S(a3,a3,a3)+S(c3,0,0)+S(c4,0,0)

This design gives the following set of points

(c3,0,0)

(-c3,0,0)

(0,0,c3)           (a3,a3,a3)

(0,0,-c3)         (-a3,a3,a3)

(0,c3,0)          (a3,-a3,a3)

(0,-c3,0)        (a3,a3,-a3)

(c4,0,0)         (-a3,-a3,a3)

(-c4,0,0)        (-a3,a3,-a3)

(0,0,c4)         (a3,-a3,-a3)

(0,0,-c4)        (-a3,-a3,-a3)

(0,c4,0)

(0,-c4,0)
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The  moment  conditions  that  the  set  of  points  should  satisfy  to  form  a  rotatable

arrangement of order two are:

∑
u=1

20

x iu
2 =8a3

2+2c3
2+2c4

2=20λ2 (3.10)

∑
u=1

20

x iu
4 =8a3

4+2c3
4+2c4

4=60λ4 (3.11)

∑
u=1

20

x iu
2 x ju

2 =8a3
4=20λ4 (3.12)

Resulting into the following design;

M4=( S( a3 ,a3 ,a3 )+S(0 .8944271a3 , 0,0 )+S(1 .6470981,0,0 )) .

The  free  letter  parameter  in  the  twenty  four  points  design  was  estimated  using  the

differential calculus and general equivalence theorem resulting intoâ3 = 0.6277576 which

makes the design M4 calculus optimal whence;

M4=(s(0.6277576, 0.6277576, 0.6277576)+s(0.5614834, 0,0)+s(1.0339784,0,0)).
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Twenty Six Points Three Dimensional Specific Rotatable Design of Order Two

We consider the design.

M5= S(f,f,0)+S(a4,a4,a4)+S(c5,0,0)

The design gives the following set of points

(f,f,0)          (f,0,f)       (0,f,f)

(-f,f,0)        (-f,0,f)     (0,-f,f)

(f,-f,0)      (f,0,-f)      (0,f,-f)

(-f,-f,0)    (-f,0,-f)     (0,-f,-f)

(a4,a4,a4)       (-a4,-a4,-a4)     (c5,0,0)

(-a4,a4,a4)      (-a4,-a4,a4)      (-c5,0,0)

(a4,-a4,a4)    (-a4,a4,-a4)    (0,0,c5)

(a4,a4,-a4)     (a4,-a4,-a4)      (0,0,-c5)

(0,c5,0)          (0,-c5,0)

The  moment  conditions  which  the  set  of  twenty  six  points  should  satisfy  to  form a

rotatable arrangement of order two are:

∑
u=1

26

x iu
2 =8f2+8a4

2+2c5
2=26λ2

(3.13)

∑
u=1

26

x iu
4 =8f4+8a4

4+2c5
4=78λ4

(3.14)

∑
u=1

26

x iu
2 x ju

2 =4f4+8a4
4=26λ4

(3.15)

Resulting into the following design;
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M5=( S(0 .7162612a4 ,0 .7162612a4 ,0)  +S(a4 ,a4 ,a4 ) + S(1.6470981a4 , 0, 0 )) .

The  free  letter  parameter  in  the  twenty  four  points  design  was  estimated  using  the

differential  calculus  and  general  equivalence  theorem  resulting  into â4

=0.9359294which makes the design M5calculus optimal whence;

M5=(S(0.6703699, 0.6703699, 0) +S(0.9359294, 0.9359294, 0.9359294) + S(1.5993168,

0, 0)).

Thirty points three dimensional specific rotatable design of order two

We consider the design,

M6=S(p,q,q)+S(c6,0,0)

This gives the following set of points

(c6,0,0)               (0,0,c6)      (0,c6,0)

(-c6,0,0)              (0,0,-c6)       (0,-c6,0)

(p1 q1 q1)      (q1q1 p1)         (q1 p1 q1)

(-p1 q1 q1)     (-q1q1 p1)        (-q1 p1 q1)

(p1 –q1 q1) (q1 –q1 p1)       (q1 –p1 q1)

(p1 q1 -q1)     (q1q1 –p1)       (q1 p1 –q1)

(-p1 –q1 q1)    (-q1 –q1 p1)     (-q1 –p1 q1)

(-p1 q1 –q1)    (-q1q1 -p1)      (-q1 p1 –q1)

(p1 –q1 –q1)    (q1 –q1 –p1)     (q1 –p1 –q1)

(-p1 –q1 –q1)    (-q1 –q1 -p1)   (-q1 –p1 –q1)

The moment conditions for the set of the thirty points to form a rotatable arrangement of

order two are:

∑
u=1

30

x iu
2 =8p1

2+16q1
2+2c6

2=30λ2(4.7)     (3.16)
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∑
u=1

30

x iu
4 =3= 8p1

4+16q1
4+2c6

2=90λ4

(3.17)

∑
u=1

30

x iu
2 x ju

2 =8q1
4+16p1

2q1
2= 30λ4

(3.18)

For i≠j=1,2,3 with all sums of powers and products up to and including power four being

zero.

The excess of ∑
u=1

30

x iu
4 =3 ∑

u=1

30

x iu
2 x ju

2

is given by

Resulting into the following design;

M6=( S(3 . 8729833c6 ,1. 5610253c6 , 1 . 5610253c6 ) +S(c6 ,0,0)) .

The  free  letter  parameter  in  the  twenty  four  points  design  was  estimated  using  the

differential  calculus  and  general  equivalence  theorem  resulting  into ĉ6

=0.3357566which makes the design M6calculus optimal whence;

M6=(S(1.3003797, 0.5241245, 0.5241245) +S(0.3357566,0,0)).

3.1.3 Unit Value Designs.
When  the  unit  values  were  substituted  in  the  free  or  arbitrary  letter  parameters  the

following designs were obtained from Mutiso (1998). 

M1 = ( S(1,1,0 ) + S(0 .7071067,0,0)  + S(1 .1501633,0,0 ))

M2 = ( S( 4 .472136, 1. 7971477,1.7971477 ) + S(1,1,1))

M3 = ( S(0 .3162277,0.3162277,0 .3162277 ) + S(0 .5823371,0.5823371,0 .5823371)+S(1,0,0))

M4 =( S(1,1,1 )+S(0 .8944271,0,0)+S(1 .6470981,0,0))

M5=( S(0 .7162612, 0.  7162612, 0)  +S(1,1,1)  + S(1 .7088007, 0, 0 ))

M6=( S(3 .8729833, 1. 5610253, 1. 5610253)  +S(1,0,0)) .
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3.1.4 The Relative Efficiencies Method.
Here the methods used in evaluating the relative efficiencies of the designs are given. The

calculus optimum and unit values obtained in Mutiso (1998) for the free letter parameters

are used in evaluating the relative efficiencies.

3.1.4.1 D-efficiency.

This measure is related to the D-optimality criterion, the D- efficiency is evaluated by the

formula;

D ( ξ ) = [
M (ξ)
M ¿

(ξ)
]

Where M (ξ)  is the determinant of the information matrix and ξD
¿

is D optimal

3.1.4.2 A-efficiency.

This measure is related to the A-optimality criterion and to calculate this efficiency the

formula below is used

A( ξ )= 
tr (m−1

(ξ A
¿

))

tr (m−1
(ξ ))

Where A( ξ ) is the average variance of the information matrix and ξ A
¿

 is A optimal.

3.1.4.3  T-efficiency.

This  measure  is  related  to  the  T-optimality  criterion,  the  formula  below  is  used  in

calculating T- efficiency

T ( ξ ) = 
∆1(ξ )

∆1(ξT
¿
)

where T (ξ)  is the trace of the information matrix and ξT
¿

 is T-optimal



22

3.1.4.4  E-efficiency.

This measure is related to the E-optimality criterion and its efficiency is given by;

E( ξ ) = 
λmin(ξ)

λmin(ξ¿
)

Where λmin(ξ )  is the Eigenvalue of the information matrix and ξE
¿

 is E-optimal

3.2 Comparison of the relative efficiencies of calculus optimum values designs with

Unit Value Designs.

After  the  evaluation  of  the  D–,  A–,  E– and T–Relative  Efficiencies  for  the  Specific

Second  Order  rotatable  designs  both  calculus  optimum  and  unit  values,  the  values

obtained  are  expressed  as  a  percentage  and  the  best  relative  efficiency  criterion

demonstrated,  the  higher  the  percentage  the  more  efficient  a  design  is.  Designs  that

produce average relative efficiency value close to 100% are the most efficient designs.

3.3 The DT- Optimality Criterion.

Atkinson (2008) introduced DT–optimality which is a combination of D– optimality and

T–optimality for discriminating between models. It provides a specified balance between

model discrimination and parameter estimation. The criterion to be maximized is

Δ2(¿ξ)+( K
p ) log|M 1(ξ )|

ϕDT
(ξ )=(1−k ) log¿

Where ϕDT (ξ ) a  convex  combination  of  two  design  criteria,  the  first  criterion  is

Δ2(¿ξ)
log¿

 , the logarithm of the T–optimality and the second is D–optimality. Then the

designs which maximize the above criterion are called DT–optimum and are denoted by

ξDT
¿ .  K is  the degree of  the design.  In  this  research K=3 and p is  the number of

parameters and for this research P = 7.
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CHAPTER FOUR: RESULTS AND DISCUSSIONS.

4.0 Introduction.

In this chapter  the  D–, A–, E– and T–Relative Efficiencies for the six Specific second

order rotatable designs in three dimensions both for calculus optimum values and unit

value  designs  was  determined,  the  relative  efficiencies  of  calculus  optimum  values

designs  were compared with relative efficiencies of  unit  value designs  and finally  to

determine the DT– optimality Criterion for both calculus optimum and unit value designs

is determined.

4.1 Determination of D–, A–, E– and T–Relative Efficiencies for the Specific Second

Order.

In this section the relative efficiencies for both unit values and calculus optimum values 

are evaluated using the alphabetic optimum criterion values earlier evaluated

4.1.1The Calculus optimum values Designs.

4.1.1.1The particular optimality for the Twenty Four Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M1=(S(1.1072569, 1.1072569, 0)+S(0.7829487,0,0)+S(1.2735263,0,0))

The design matrix X is given by
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1. 0000    1 .1100     1 . 1100     0             1. 2300    1. 2300         0
1 .0000   -1 . 1100    1 .1100     0             1 . 2300    1. 2300         0
1 .0000    1 .1100   -1 .1100     0             1 . 2300    1. 2300         0
1 . 0000   -1 .1100  -1 . 1100     0             1 .2300    1 .2300         0
1 .0000    0 . 7800    0               0            0 . 6100    0                  0
1 . 0000   -0 .7800   0               0            0 .6100    0                  0
1 . 0000    1. 2700    0               0             1 . 6100    0                 0
1. 0000   -1 .2700   0               0             1 . 6100    0                 0

1. 0000    1 .1100    0               1 .1100    1 . 2300    0                 1. 2300
1 .0000   -1 . 1100   0               1. 1100    1 . 2300    0                 1.2300
1 .0000    1 .1100    0             -1 . 1100    1 . 2300    0                 1.2300
1 . 0000   -1 .1100   0             -1 . 1100    1 .2300    0                 1. 2300
1 . 0000    0             0              0 .7800     0            0                 0 .6100
1 . 0000    0             0            -0. 7800     0            0                 0 . 6100
1 . 0000    0             0              1 .2700     0            0                 1 .6100
1. 0000    0             0            -1. 2700     0            0                 1 . 6100

1 .0000    0             1 .1100     1 . 1100     0            1. 2300        1 . 2300
1 .0000    0           -1 . 1100     1. 1100     0            1 .2300        1 .2300
1 .0000    0             1 .1100   -1. 1100     0            1 .2300        1 .2300
1 . 0000    0          -1. 1100    -1. 1100     0            1. 2300        1. 2300

1 .0000    0            0 . 7800     0              0            0 . 6100        0
1 . 0000    0          - 0 .7800     0              0            0 .6100        0
1 . 0000    0            1. 2700     0              0            1 .6100         0
1. 0000    0          -1 .2700     0              0            1 . 6100         0

¿
righ
¿
¿
¿

[ ¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [ ¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] ¿
¿

¿

The information matrix c1  for the design M1 is given by

c1=¿

1. 0000    0 .5949    0 . 5949    0. 5949         0           0           0
0. 5949    0 .7516    0 . 2505    0. 2505         0           0           0
0. 5949    0 .2505    0 . 7516    0. 2505         0           0           0
0. 5949    0 .2505    0 . 2505    0. 7516         0           0           0

0             0             0             0                  0 . 5949  0           0
0              0             0             0                 0           0 .5949  0
0              0             0             0                 0           0           0 .5949

¿
righ
¿
¿
¿

[¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ]¿
¿

¿
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D-optimality

This criterion is obtained by finding the determinant of the information matrix c1 given
by the formula ØO (C) = (det C) 1/7andfor this design the D-Criterion gives 
0.5184684.

T-optimality

This criterion is obtained by finding the trace of the information matrix c1 the trace is

given  by  the  formula  
φ1 (C )=

1
s

trace(C )
and  for  this  design  the  T-Criterion  gives

0.71991756.

E-optimality 

This criterion is obtained by finding the smallest eigen value of the information matrix

c1 given by the formula Ø-∞(C)= λmin(C) and for this design the E-Criterion gives

0.08817.

A-optimality

This criterion is obtained by finding the maximum average- variance of the information

matrix  c1 given by the formula Ø-1 (C)=1/s(trace c-1)-1 if C is positive definite and

for this design the A-Criterion gives 0.00685555.

4.1.1.2 The particular optimality for the Thirty-Two Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M2 = (S(1.3338955, 0.5360318) + S(0.2982681, 0.2982681, 0.2982681))

The design matrix X is given by
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    1.0000    1 .3300    0 .5400    0 .5400    1. 7700    0. 2900    0 .2900
    1.0000   -1 .3300    0 . 5400    0. 5400    1.7700    0 .2900    0 .2900
    1.0000    1 .3300   -0 . 5400    0. 5400    1.7700    0 .2900    0 .2900
    1.0000    1 .3300    0 .5400   -0 . 5400    1.7700    0 .2900    0 .2900
    1.0000   -1 .3300   -0 .5400   0 .5400    1 .7700    0 .2900    0.2900
    1.0000   -1 .3300    0 . 5400  -0 .5400    1 .7700    0 .2900    0.2900
    1.0000    1 .3300   -0 . 5400  -0 .5400    1 .7700    0 .2900    0.2900
    1.0000   -1 .3300   -0 .5400  -0 .5400    1. 7700    0. 2900    0 .2900
    1.0000    0 .5400    0 .5400    1.3300    0. 2900    0 .2900    1 .7700
    1.0000   -0 . 5400    0. 5400    1. 3300    0 .2900    0 . 2900    1.7700
    1.0000    0 .5400   -0 . 5400    1. 3300    0 .2900    0 . 2900    1.7700
    1.0000    0 .5400    0 .5400   -1. 3300    0 .2900    0 . 2900    1.7700
    1.0000   -0 . 5400   -0 .5400   1 .3300    0 . 2900    0.2900    1.7700
    1.0000   -0 . 5400    0. 5400  -1 .3300    0 . 2900    0.2900    1.7700
    1.0000    0 .5400   -0 . 5400  -1 .3300    0 . 2900    0.2900    1.7700
    1.0000   -0 . 5400   -0 .5400   -1 . 3300    0. 2900    0 .2900    1 .7700
    1.0000    0 .5400    1 .3300    0 .5400    0. 2900    1. 7700    0 .2900
    1.0000   -0 . 5400    1. 3300    0. 5400    0 .2900    1 .7700    0 .2900
    1.0000    0 .5400   -1 . 3300    0. 5400    0 .2900    1 .7700    0 .2900
    1.0000    0 .5400    1 .3300   -0 . 5400    0 .2900    1 .7700    0 .2900
    1.0000   -0 . 5400   -1.3300    0 .5400    0 .2900   1.7700    0.2900
    1.0000   -0 . 5400    1. 3300   -0 .5400    0 .2900   1.7700    0.2900
    1.0000    0 .5400   -1 . 3300   -0 .5400    0 .2900    1. 7700    0. 2900
    1.0000   -0 . 5400   -1.3300   -0 . 5400    0. 2900    1.7700   0 .2900
    1.0000    0 .3000    0 .3000    0.3000    0 .0900    0 .0900    0.0900
    1.0000   -0 . 3000    0. 3000    0 .3000    0 . 0900    0. 0900    0 .0900
    1.0000    0 .3000   -0 . 3000    0 .3000    0 . 0900    0. 0900    0 .0900
    1.0000    0 .3000    0 .3000   -0 .3000    0 . 0900    0. 0900    0 .0900
    1.0000   -0 . 3000   -0 .3000    0 .3000    0.0900    0 .0900   0 . 0900
    1.0000   -0 . 3000    0. 3000   -0 .3000    0.0900    0 .0900   0 . 0900
    1.0000    0 .3000   -0 . 3000   -0 .3000    0.0900    0 .0900   0 . 0900
    1.0000   -0 . 3000   -0 .3000   -0 . 3000    0. 0900    0 . 0900   0.0900

¿
righ
¿
¿
¿

[¿ ] [¿ ] [ ¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [ ¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] ¿
¿

¿

 The information matrix c2  for the design M2 is given by



27

c2=¿

    1. 0000    0 .6107    0 . 6107    0. 6107         0            0           0
    0 .6107    0 . 8347    0. 2782    0 .2782         0            0           0
    0 .6107    0 . 2782    0. 8347    0 .2782         0            0           0
    0 .6107    0 . 2782    0. 2782    0. 8347         0            0           0
    0             0             0             0                  0 . 6107   0           0
    0             0             0             0                  0            0 .6107  0
    0             0             0             0                  0            0           0 .6107
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The optimum values for this design are;

D-optimality = 0.588535

T-optimality= 0.7623315.

E-optimality =0.119857.

A-optimality = 0.00826251.

4.1.1.3 The particular optimality criteria for the Twenty-Two Points Three 
Dimensional Second Rotatable Design of Order Two.
Consider the design;

M3=(S(0.4899784,  0.4899784,  0.4899784)  +  S(0.9023011,  0.9023011,  .9023011)+

S(1.5494481, 0, 0))

The design matrix X of M3 is given by
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    1. 0000    0 . 4900    0. 4900    0. 4900    0 . 2400    0. 2400    0. 2400
    1. 0000   -0 . 4900    0 . 4900    0. 4900    0. 2400    0 .2400    0 .2400
    1. 0000    0 . 4900   -0 . 4900    0. 4900    0. 2400    0 .2400    0 .2400
    1. 0000    0 . 4900    0. 4900   -0. 4900    0. 2400    0 .2400    0 .2400
    1. 0000   -0 . 4900   -0 .4900    0 . 4900    0 .2400    0 . 2400    0. 2400
    1. 0000   -0 . 4900    0 . 4900   -0 . 4900    0 .2400    0 . 2400    0. 2400
    1. 0000    0 . 4900   -0 . 4900   -0 . 4900    0 .2400    0 . 2400    0. 2400
    1. 0000   -0 . 4900   -0 .4900   -0 .4900    0 . 2400    0. 2400    0. 2400
    1. 0000    0 . 9000    0. 9000    0 . 9000    0. 8100    0 .8100    0 . 8100
    1. 0000   -0 . 9000    0 .9000    0 . 9000    0 .8100    0 . 8100    0. 8100
    1. 0000    0 . 9000   -0 .9000    0 . 9000    0 .8100    0 . 8100    0. 8100
    1. 0000    0 . 9000    0. 9000   -0 .9000    0 .8100    0 . 8100    0. 8100
    1. 0000   -0 . 9000   -0 .9000    0. 9000    0 . 8100    0. 8100    0 .8100
    1. 0000   -0 . 9000    0 .9000   -0 . 9000    0 . 8100    0. 8100    0 .8100
    1. 0000    0 . 9000   -0 .9000   -0 . 9000    0 . 8100    0. 8100    0 .8100
    1. 0000   -0 . 9000   -0 .9000   -0 .9000    0. 8100    0 .8100    0 . 8100
    1. 0000    1 .5500     0               0         2 . 4000    0             0
    1. 0000   -1 .5500     0              0         2. 4000    0             0
    1. 0000     0             1 . 5500      0                0          2 . 4000    0
    1. 0000     0           -1 .5500      0                0          2 . 4000    0
    1. 0000     0             0               1 . 5500       0          0             2 . 4000
    1. 0000     0             0             -1.5500       0          0             2 . 4000
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The information matrix c3  for the design M3 is given by

c3=¿

    1. 0000     0 .6016    0 . 6016    0. 6016         0           0             0
    0 .6016    0 .7860    0 . 2620    0. 2620         0            0             0
    0 .6016    0 . 2620    0. 7860    0. 2620         0            0             0
    0 .6016    0 . 2620    0. 2620    0. 7860         0            0             0
   0              0             0             0         0 .6016   0             0
   0              0             0             0           0            0 . 6016    0
   0              0             0             0          0            0             0 . 6016
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After evaluating the various criteria the following values were obtained

D-optimality = 0.540062.

T-optimality = 0.737534.

E-optimality = 0.101498.

A-optimality = 0.36672210.

4.1.1.4 The particular optimality criteria for the Twenty Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M4=(s(0.6277576, 0.6277576, 0.6277576)+s(0.5614834, 0,0)+s(1.0339784,0,0))

The design matrix X of M4 is given by

    1.0000    0 .5600 0            0                 0 .3100     0            0
    1.0000   -0 . 5600 0            0                 0 . 3100     0           0
    1.0000    0          0            0 .5600        0              0             0 . 3100
    1.0000    0          0            -0 .5600       0              0            0 .3100
    1.0000    0          0 .5600   0                  0             0 . 3100   0
    1.0000    0         -0 . 5600   0                  0              0 .3100  0
    1.0000    1 .0300   0            0                  1 .0600     0           0
    1.0000  -1 .0300   0            0                  1 .0600     0           0
    1.0000   0            0            1 . 0300          0             0           1 . 0600
    1.0000   0            0           -1 .0300         0             0           1 .0600
    1.0000   0           1 . 0300   0                   0             1 . 0600    0
    1.0000   0         -1 . 0300   0                 0            1 . 0600     0
    1.0000   0 .6300  0 . 6300   0. 6300          0 . 4000    0 . 4000    0.4000
    1.0000   -0 . 6300 0. 6300   0 . 6300          0. 4000    0 . 4000    0 . 4000
    1.0000   0 .6300  -0 . 6300  0 . 6300          0. 4000    0 . 4000    0 . 4000
    1.0000   0 .6300  0 . 6300   -0 .6300         0 . 4000    0 . 4000    0 . 4000
    1.0000   -0 . 6300 -0 .6300  0 . 6300         0.4000    0 . 4000    0 . 4000
    1.0000   -0 . 6300 0. 6300   -0 . 6300        0. 4000    0. 4000    0 . 4000
    1.0000   0 .6300  -0 . 6300   -0 . 6300      0. 4000     0. 4000    0 . 4000
    1.0000   -0 . 6300 -0 .6300   -0 . 6300     0 . 4000     0. 4000     0.4000
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The information matrix c4  for the design M4 is given by
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c4=¿

    1. 0000    0 .2961    0 . 2961    0. 2961         0          0           0
    0 .2961    0 .1864    0 . 0621    0. 0621         0          0           0
    0 .2961    0 . 0621    0. 1864    0. 0621         0          0           0
    0 .2961    0 . 0621    0. 0621    0 .1864         0          0           0
    0             0             0             0                  0 .2961 0           0
    0             0             0             0                  0          0 .2961  0
    0             0             0             0                  0          0           0 .2961
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The following are the various optimum values for this design

D-optimality = 0.787020.

T-optimality= 0.3496119.

E-optimality = 0.037407.

A-optimality = 0.13023463.

4.1.1.5 The particular optimality criteria for the Twenty Six Points Three 
Dimensional Second Rotatable Design of Order Two.
Consider the design;

M5=(S(0.6703699, 0.6703699, 0) +S(0.9359294, 0.9359294, 0.9359294) + S(1.5993168,

0, 0))

The design matrix X of M5 is given by
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    1. 0000    0 .6700    0 . 6700    0             0. 4500    0 . 4500         0  
    1. 0000   -0 .6700    0. 6700   0             0 . 4500    0. 4500         0
    1. 0000    0 .6700   -0 .6700   0             0 . 4500    0. 4500         0
    1. 0000   -0 .6700   -0 .6700  0             0 . 4500    0 . 4500         0
    1. 0000    0 . 9400    0. 9400    0 . 9400    0. 8800    0 .8800    0 . 8800
    1. 0000   -0 .9400    0 .9400    0 . 9400    0 .8800    0 . 8800    0. 8800
    1. 0000    0 . 9400   -0 .9400    0 . 9400    0 .8800    0 . 8800    0. 8800
    1. 0000    0 . 9400    0. 9400   -0 .9400    0 .8800    0 . 8800    0. 8800
    1. 0000    0             1 . 6000      0             0             2 . 5600         0
    1. 0000    0 .6700    0               0 . 6700    0. 4500    0           0 . 4500
    1. 0000   -0 .6700    0             0 . 6700    0 . 4500      0           0. 4500
    1. 0000    0 .6700    0             -0 .6700    0 . 4500     0           0. 4500
    1. 0000   -0 .6700    0            -0 .6700    0 . 4500     0             0 . 4500
    1. 0000   -0 .9400   -0 . 9400   -0 .9400    0. 8800    0 .8800    0 . 8800
    1. 0000   -0 .9400   -0 . 9400    0. 9400    0 . 8800    0. 8800    0 .8800
    1. 0000   -0 .9400    0 .9400   -0 . 9400    0 . 8800    0. 8800    0 .8800
    1. 0000    0 . 9400   -0 .9400   -0 . 9400    0 . 8800    0. 8800    0 .8800
    1. 0000    0          -1 .6700         0        0            2 . 5600     0
    1. 0000    0           0 .6700    0 . 6700        0            0. 4500    0 . 4500
    1. 0000    0          -0 . 6700    0. 6700       0           0 . 4500     0. 4500
    1. 0000    0          0 .6700   -0 .6700        0          0 . 4500      0. 4500
    1. 0000    0           -0 . 6700   -0 .6700     0          0 . 4500      0. 4500
    1. 0000    1 .6000    0              0       2 . 5600  0               0
    1. 0000   -1 .6000    0             0       2. 5600  0              0
    1. 0000    0            0               1 . 6000     0          0               2 . 5600
    1. 0000    0            0              -1 .6000    0          0              2 . 5600
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The information matrix c5  for the design M5 is given by

c5=¿

1. 0000    0 .6046    0.6046    0.6046         0            0             0 
0. 6046    0 .8015    0.2672    0 .2672         0            0             0
0. 6046    0 .2672    0.8015    0 .2672         0            0             0
0. 6046    0 .2672    0.2672    0.8015         0            0             0

0             0             0             0                  0 . 6046   0             0
0             0             0             0                  0            0 . 6046    0  
0             0             0             0                  0            0              0 .6046

¿
righ
¿
¿
¿

[¿ ] [ ¿ ] [¿ ] [¿ ] [¿ ] [¿ ]¿
¿

¿

The various optimum criteria for this design yields the following values

D-optimality= 0.549356.

T-optimality = 0.7454531.

E-optimality = 0.107413.

A-optimality = 0.13023463.

4.1.1.6 The particular optimality criteria for the Thirty Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M6=(S (1.3003797, 0.5241245, 0.5241245) +S(0.3357566,0,0))

The design matrix X is given by
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    1. 0000    0 .3400         0         0    0 .1200         0         0
    1. 0000   -0 . 3400         0         0    0 . 1200         0         0
    1. 0000    1 .3000    0 .5200    0 . 5200    1. 6900    0. 2700    0 .2700
    1. 0000   -1 .3000    0 . 5200    0. 5200    1. 6900    0 .2700    0 . 2700
    1. 0000    1 .3000   -0 . 5200    0. 5200    1. 6900    0 .2700    0 . 2700
    1. 0000    1 .3000    0 .5200   -0 . 5200    1. 6900    0 .2700    0 . 2700
    1. 0000   -1 .3000   -0 . 5200    0 .5200    1 .6900    0 . 2700    0. 2700
    1. 0000   -1 .3000    0 . 5200   -0 .5200    1 .6900    0 . 2700    0. 2700
    1. 0000    1 .3000   -0 . 5200   -0 .5200    1 .6900    0 . 2700    0. 2700
    1. 0000   -1 .3000   -0 . 5200   -0 . 5200   1. 6900    0. 2700    0 .2700
    1. 0000     0              0              0 . 3400   0             0            0 . 1200  
    1. 0000     0             0             -0 .3400   0             0            0 .1200
    1. 0000    0 .5200    0 . 5200     1. 3000    0. 2700    0 .2700    1 .6900
    1. 0000   -0 . 5200    0. 5200    1. 3000    0 .2700    0 . 2700    1. 6900
    1. 0000    0 .5200   -0 . 5200    1. 3000    0 .2700    0 . 2700    1. 6900
    1. 0000    0 .5200    0 . 5200   -1. 3000    0 .2700    0 . 2700    1. 6900
    1. 0000   -0 . 5200   -0 .5200    1 .3000    0 . 2700    0. 2700    1. 6900
    1. 0000   -0 . 5200    0. 5200   -1 .3000    0 . 2700    0. 2700    1. 6900
    1. 0000    0 .5200   -0 . 5200   -1 .3000    0 . 2700    0. 2700    1. 6900
    1. 0000   -0 . 5200   -0 .5200   -1 . 3000   0. 2700    0 .2700    1 .6900
    1. 0000     0    0 .3400             0             0             0 . 1200    0
    1. 0000    0   -0 . 3400             0             0             0 .1200    0
    1. 0000    0 .5200    1 .3000     0 . 5200    0. 2700    1. 6900    0 .2700
    1. 0000   -0 . 5200    1. 3000    0. 5200    0 .2700    1 .6900    0 . 2700
    1. 0000    0 .5200   -1 . 3000    0. 5200    0 .2700    1 .6900    0 . 2700
    1. 0000    0 .5200    1 .3000   -0 . 5200    0 .2700    1 .6900    0 . 2700
    1. 0000   -0 . 5200   -1. 3000    0 .5200    0 . 2700    1. 6900    0. 2700
    1. 0000   -0 . 5200    1. 3000   -0 .5200    0 . 2700    1. 6900    0. 2700
    1. 0000    0 .5200   -1 . 3000   -0 .5200    0 . 2700    1. 6900    0. 2700
    1. 0000   -0 . 5200   -1. 3000   -0 . 5200    0. 2700    1. 6900    0 .2700
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The information matrix c6  for the design M6 is given by
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c6=¿

    1. 0000    0 .6050    0 . 6050    0. 6050         0            0             0
    0 .6050    0 . 8036    0. 2679    0 .2679         0            0             0
    0 .6050    0 . 2679    0. 8036    0 .2679         0            0             0
    0 .6050    0 . 2679    0. 2679    0. 8036         0            0             0
         0         0            0             0                  0 . 6050   0             0
         0         0            0             0                  0            0 .6050    0
         0         0            0             0                  0            0             0 . 6050
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This design gives the following optimum values

D-optimality= 0.550390.

T-optimality= 0.746528.

E-optimality = 0.108414.

A-optimality=0.38081157.

4.1.2 Relative Efficiency for Calculus values optimum designs.

Table 4.1: A summary of calculus Optimum Values from Calculus Optimum 
Designs.

A D E T

M 1 0.00685555 0.518684 0.08817 0.71991675
6

M 2 0.00826251 0.588535 0.119857 0.7623315

M 3 0.36672210 0.540062 0.101498 0.737534

M 4 0.13023463 0.536882 0.037407 0.3496119

M 5 0.37913341 0.549356 0.107413 0.7454531

M 6 0.38088115
7

0.550390 0.108214 0.746528
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4.1.2.1 A-efficiency.

This measure is related to the A-optimality criterion and evaluated as:

A( ξ )= 
tr (m−1

(ε A
¿

))

tr (m−1
(ε ))

Table 4.2 Calculus optimum values A-efficiencies.

From the table above M1 is
the most efficient design

4.1.2.2 D-efficiency.

This measure is related to

the D-optimality criterion:

D ( ξ ) = [
M (ε )
M ¿

(ε )
]

Table 4.3 Calculus 
optimum values D-
efficiencies.

M 1 = 
0.00685555
0.00685555

 = 100%

M 2 = 
0.00685555
0.00826251

 = 82.972%

M 3 = 
0.00685555
0.36672210

 = 1.869%

M 4 = 
0.00685555
0.13023463

 = 5.264%

M 5 = 
0.00685555
0.37913341

 = 1.808%

M 6 = 
0.00685555
0.380881157

 = 1.800%

M 1 = 
0.51684
0.51684

 = 100%

M 2 = 
0.51684
0.568535

 = 90.907%

M 3 = 
0.51684
0.540062

 = 95.700%

M 4 = 
0.51684
0.536882

 = 96.267%

M 5 = 
0.51684
0.549356

 = 99.516%

M 6 = 
0.51684
0.550390

 = 93.904%
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From the table above M1 is the most efficient design

4.1.2.3 T-efficiency.

This measure is related to the T-optimality criterion:

T ( ξ ) = 
∆1(ε)

∆1(ε T
¿
)

Table 4.4 Calculus optimum T-efficiencies.

4.1.2.4 E-efficiency.

This measure is related to

the E-optimality criterion:

E( ξ ) = 
λmin(ε )

λmin(ε¿
)

where λmin(ε )  is the 

Eigen value of the 

information matrix.

Table 4.5 Calculus 
optimum values E-
efficiencies.

M 1 = 
0.3496119

0.719916756
 = 47.563%

M 2 = 
0.3496119
0.7623315

 = 45.861%

M 3 = 
0.3496119
0.737534

 = 47.403%

M 4 = 
0.3496119
0.3496119

 = 100%

M 5 = 
0.3496119
0.7454531

 = 46.899%

M 6 = 
0.3496119
0.746528

 = 46.832%

M 1 = 
0.037407
0.08817

 = 42.426%

M 2 = 
0.037407
0.119857

 = 31.210%

M 3 = 
0.037407
0.101498

 = 36.855%

M 4 = 
0.037407
0.037407

 = 100%

M 5 = 
0.037407
0.107413

 = 34.825%

M 6 = 
0.037407
0.108214

 = 34.568%
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From the table above M4 is the most efficient design

4.1.3The Unit Value Designs.

4.1.3.1 The particular optimality for the Twenty Four Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M1=(S(1, 1, 0)+S(0.7071067,0,0)+S(1.1501633,0,0))

The design matrix for M1 is given by;

1     1          1            0          1            1         0
1   -1          1            0          1            1         0
1     1        -1            0          1            1         0
1     -1       -1           0          1            1         0
1     0. 71      0          0           0 .5        0        0
1    -0 .71     0          0           0 .5        0        0
1     1. 15      0          0           1 .32       0       0
1     -1 .15    0          0           1. 32       0       0
1     1           0          1            1            0       1
1     -1         0          1            1            0       1
1     1           0          -1          1            0       1
1     -1         0          -1          1            0       1
1     0           0          0 . 71      0            0       0 . 5
1     0           0          -0 .71    0            0       0 .5
1     0           0          1 . 15      0            0       1 .32
1    0           0          -1. 15     0            0       1 .32
1     0           1           1           0            1       1
1     0           -1        1            0            1       1
1     0           1        -1            0            1       1
1     0           -1     -1             0            1       1
1     0           0 .71     0           0            0 . 5    0
1     0          -0 .71    0           0            0 .5    0
1     0           1 .15     0           0            1 .32  0
1     0         -1. 15     0           0            1 .32  0
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and its information matrix 
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C1=

1   0 . 4852     0. 4852 0 . 4852      0             0    0
0 .4852   0 .5           0 .1667         0 . 1667      0             0     0

0 .4852   0 .1667       0 .5    0 .1667      0             0     0
0 .4852   0. 1667     0 .1667 0 . 5            0            0     0

0   0       0 0     0 . 4852 0     0
0   0      0 0      0 0 .4852     0
0   0       0 0     0 0     0 . 4852 
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D-optimality

This criterion is obtained by finding the determinant of the information matrix c1 given
by the formula ØO (C) = (det C) 1/7andfor this design the D-Criterion gives0.398647.

T-optimality

This criterion is obtained by finding the trace of the information matrix c1 the trace 

is given by the formula 
φ1 (C )=

1
s

trace(C )
and for this design the T-Criterion 

gives0.565103.

E-optimality 

This criterion is obtained by finding the smallest eigen value of the information matrix c1

given by the formula Ø-∞(C)= λmin(C) and for this design the E-Criterion 
gives0.072085.

A-optimality

This criterion is obtained by finding the maximum average- variance of the information matrix
c1 given by the formula Ø-1 (C)=1/s(trace c-1)-1 if C is positive definite 

and for this design the A-Criterion gives0.005366.

4.1.3.2 The particular optimality For the Thirty-Two Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M2 = (S(4.472136, 1.7971477,1.7971477) + S(1,1,1))

The design matrix X for M2isgiven by
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1     1. 33     0 .54     0 .54      1 . 77     0. 29     0 .29
1     -1 .33    0 .54     0 . 54      1. 77     0. 29     0 . 29 
1     1. 33     -0 .54    0 .54      1. 77     0. 29     0 . 29
1     1. 33     0 .54     -0 .54     1. 77     0 .29     0 . 29
1     -1 .33    -0 .54    0.54      1 .77     0 .29     0 . 29
1     -1 .33    0 .54     -0 .54     1 .77     0 .29     0 . 29
1     1. 33     -0 .54    -0 .54     1 .77     0 . 29     0. 29
1     -1 .33    -0 .54    -0 .54     1 .77     0 . 29     0 .29
1     0. 54     0 .54      1 .33      0 . 29     0. 29     1 .77
1     -0 .54    0 .54      1. 33      0. 29     0 .29     1 .77
1     0. 54     -0 .54     1. 33      0. 29     0 .29     1 . 77
1     0. 54     0 .54      -1 .33     0. 29     0 . 29     1. 77
1     -0 .54    -0 .54     1. 33      0 .29     0 . 29     1. 77
1     -0 .54    0 .54      -1.33     0 .29     0 . 29     1. 77
1     0. 54     -0 .54     -1.33     0 .29     0 . 29     1. 77
1     -0 .54    -0 .54     -1 .33     0 . 29     0. 29     1 .77
1     0. 54     1 .33       0 .54      0 . 29     1. 77     0 .29
1     -0 .54    1 .33       0 . 54      0. 29     1 .77     0 .29
1     0. 54     -1 .33      0 . 54      0. 29     1 .77     0 .29
1     0. 54      1 .33      -0 . 54     0. 29     1 .77     0 . 29
1     -0 .54    -1 .33      0. 54      0 .29     1 .77     0 . 29
1     -0 .54    1 .33       -0 . 54     0 .29     1 .77     0 . 29
1     0. 54     -1 .33      -0 . 54     0 .29     1 .77     0 . 29
1     -0 .54    -1 .33      -0 .54     0 . 29     1. 77     0 .29
1     0. 30     0 .30        0 . 30      0 . 09     0 . 09     0. 09
1     -0 .30    0 .30        0. 30      0 .09     0 . 09     0 .09
1     0. 30     -0 .30       0. 30      0 .09     0 . 09     0 .09
1     0. 30     0 .30        -0 .30     0 . 09     0. 09     0 .09
1     -0 .30    -0 .30       0 .30      0 . 09     0 .09     0 . 09
1     -0 .30    0 .30        -0 .30     0 . 09     0 .09     0 . 09
1     0. 30     -0 .30       -0 .30     0 . 09     0 .09     0 . 09
1     -0 .30    -0 .30       -0 .30     0. 09     0 . 09     0. 09
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and its information matrix  C2  is;

1       6 . 8649       6 . 8649             6 . 8649      0           0     0
 6 .8649       105 . 465635 .1552 35 .1552 0            0    0

6 . 8649       35. 1552 105. 4656 35 .15520            0     0
 6 .8649       35 .155235 . 1552105 . 4656 0            0    0
 0        000             6 . 8649            0     0
 0        0000                     6 . 8649      0

0        0 000            0               6 . 8649      
¿
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the resultant optimum values for this design are;

D-optimality= 3.467942.

T-optimality = 48.284494.

E-optimality =0.194797.

A-optimality= 0.025489.

4.1.3.3 The particular optimality criteria for the Twenty-Two Points Three 
Dimensional Second Rotatable Design of Order Two.
Consider the design;

M3 = (S(0.3162277, 0.3162277, 0.3162277) +S(0.5823371, 0.5823371, 0.5823371)+

S(1, 0,0))

The design matrix for M3 is given by;
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1     0. 32     0 .32       0 .32        0. 1     0 .1     0 . 1
1     -0 .32    0 . 32       0. 32       0 .1      0 . 1     0. 1
1     0. 32     -0 . 32      0. 32       0 .1      0 . 1     0. 1
1     0. 32     0 .32       -0 . 32      0 .1      0 . 1     0. 1
1     -0 .32    -0 . 32     0 .32        0 . 1     0. 1      0 .1
1     -0 .32    0 . 32       -0 .32      0 . 1     0. 1      0 .1
1     0. 32     -0 . 32      -0 .32      0 . 1     0. 1      0 .1
1     -0 .32    -0 . 32      -0 . 32      0. 1     0 .1      0 .1
1     0. 58     0 .58        0 . 58       0. 34     0 .34      0 .34
1     -0 .58    0 . 58        0. 58       0 .34     0 . 34      0. 34
1     0. 58     -0 . 58       0. 58       0 .34     0 . 34      0. 34
1     0. 58     0 .58       -0 . 58       0 .34     0 . 34      0. 34
1     -0 .58    -0 . 58       0 .58       0 . 34     0. 34      0 .34
1     -0 .58    0 . 58       -0 .58       0 . 34     0. 34      0 .34
1     0. 58     -0 . 58      -0 .58       0 . 34     0. 34      0 .34
1     -0 .58    -0 . 58      -0 . 58       0. 34     0 .34      0 . 34
1      1             0             0             1        0           0
1     -1           0             0            1           0          0 
1     0             1             0            0           1          0
1     0            -1            0            0           1           0
1     0             0             1           0            0           1
1     0             0            -1           0          0             1
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and its information matrix 

C3 =

1 0 .2506 0 .2506    0 . 2506     0          0 0
0 .2506    0 . 1365 0. 0455    0 .0455     0           0 0
0 .2506    0 . 0455 0 .1365    0 . 0455     0          0 0
0 .2506    0. 0455 0 .2620    0 .1365     0           0 0

0             0 0    0        0. 2506    0 0
0             0 0    0        0          0 . 2506 0
0             0 0    0        0          0 0 . 2506
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For this design the following optimum values were obtained

D-optimality= 0.535518.

T-optimality= 0.308693.

E-optimality = 0.032551.

A-optimality=0.106874.

4.1.3.4 The particular optimality criteria for the Twenty Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M4=(s(1,1,1)+s(0.8944271, 0,0)+s(1.6470981,0,0))

The design Matrix X forM4 is given by;

1    0. 89    0         0          0 .79    0        0
1    -0 .89   0         0          0 . 79    0        0
1    0         0         0. 89     0         0        0 . 79
1    0         0         -0 .89    0         0        0 .79
1    0         0. 89    0          0         0 .79   0
1    0         -0 .89   0          0         0 . 79   0
1    1. 65    0         0          2 . 72    0        0
1    -1 .65   0         0          2 .72    0        0
1    0         0         1. 65     0         0        2 . 72
1    0         0         -1.65    0         0        2 . 72
1    0         1. 65    0          0         2 . 72    0
1    0         -1. 65   0          0         2 . 72    0
1    1         1           1           1         1         1
1    -1       1           1           1          1        1
1    1      -1            1           1         1         1
1    1        1         -1           1         1          1
1    -1   -1           1            1         1          1
1    -1     1         -1            1         1         1
1    1    -1         -1             1        1          1
1    -1   -1        -1             1       1           1
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and its information matrix 
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C4=

1   0 .4771   0 . 4771    0. 4771       0 0  0
0 . 4771   0 . 4320   0. 1440    0. 1440       0 0  0
0 . 4771   0 .1440   0 . 4320    0. 1440       0 0  0

0 .4771   0. 1440   0 .1440    0 . 4320 00  0
    0      0          0 00 . 4771 0  0
    0      0          0 0 0      0 . 4771  0
    0      0          0 00 0           0 . 4771 
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This design yields the following optimum values;

D-optimality=0.536882.

T-optimality=0.532477.

E-optimality = 0.021841.

A-optimality=0.117436.

4.1.3.5 The particular optimality criteria for the Twenty Six Points Three 
Dimensional Second Rotatable Design of Order Two.
Consider the design;

M5=(S(0.7162612, 0. 7162612, 0) +S(1,1,1) + S(1.7088007, 0, 0))
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1   0 .72     0 .72       0        0 . 52      0. 52        0
1   -0 .72    0 . 72       0        0. 52      0. 52        0
1   0 .72    -0 . 72       0        0. 52      0 .52        0
1   -0 .72   -0 . 72       0        0 .52      0 .52        0
1      1         1          1          1           1          1
1     -1         1          1          1           1          1
1      1        -1          1          1           1          1
1      1         1         -1          1           1           1
1      0       1 . 71        0         0          2 . 92        0
1    0. 72       0       0 .72    0 . 45           0        0 . 45
1   -0 .72       0       0 . 72    0. 45           0        0 . 45
1    0. 72       0      -0 . 72    0. 45           0        0 . 45
1   -0 .72       0      -0 . 72    0 . 45           0        0. 45
1     -1          -1       -1         1             1          1
1     -1          -1        1         1             1          1
1     -1           1       -1         1             1          1
1      1          -1       -1         1             1          1
1      0         -1. 71    0          0          2 . 92        0
1      0         0 . 72     0 .72      0          0 . 45      0 . 45
1      0         -0 .72    0 . 72     0          0. 45      0 . 45
1      0         0 . 72     -0 . 72    0          0. 45      0 . 45
1      0         -0 .72    -0 . 72    0          0. 45      0. 45
1   1. 71          0        0       2 . 92          0           0
1   -1 .71         0        0       2 . 92          0           0 
1      0            0        1 . 71     0            0        2 . 92 
1      0            0       -1. 71     0            0        2 . 92
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and its information matrix 
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C5=

10 .6902 0.6902 0. 6902 0     0           0
0 .6902 1 .0446 0 .3482 0 .3482 0     0           0
0 .6902 0 .3482 1 .0446 0 .3482 0    0           0
0 .6902 0 .3482 0.3482 1 .0446 0     0           0

0000  0 .6902     0          0
0000 0               0 . 6902       0
00000     0               0 .6902

¿
righ
¿
¿
¿

[ ¿ ] [¿ ] [¿ ] [ ¿ ] [¿ ] [¿ ] ¿
¿

¿

D-optimality= 0.651276.

T-optimality= 0.886307

E-optimality = 0.118976.

A-optimality = 0.437355.

4.1.3.6 The particular optimality criteria for the Thirty Points Three Dimensional 
Second Rotatable Design of Order Two.
Consider the design;

M6=(S(3.8729833, 1.5610253, 1.5610253) +S(1,0,0))

The design matrix X for M6 is given by;
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1    1     0          0         1     0         0
1    -1    0          0         1     0         0
1    3. 87     1 .56     1 .56    14 . 98     2 . 43    2. 43
1    -3 . 87    1. 56     1. 56    14 . 98     2. 43    2 . 43
1    3. 87     -1 . 56    1. 56    14 . 98     2. 43    2 . 43
1    3. 87     1 .56     -1 . 56   14 . 98     2. 43    2 . 43
1    -3 . 87    -1. 56    1. 56    14 . 98     2. 43    2 . 43
1    -3 . 87    1. 56     -1. 56   14 . 98     2. 43    2 . 43
1    3. 87     -1 . 56    -1. 56   14 . 98     2. 43    2 . 43
1    -3 . 87    -1. 56    -1 .56   14 . 98     2 . 43    2. 43
1    0          0           1         0           0        1
1    0          0           -1        0           0        1
1    1. 56     1. 56      3 .87    2 . 43     2. 43    14 .98
1    -1 .56    1 .56      3 . 87    2. 43     2 . 43    14 . 98
1    1. 56     -1 .56     3 . 87    2. 43     2 . 43    14 . 98
1    1. 56     1. 56      -3 . 87   2. 43     2 . 43    14 . 98
1    -1 .56    -1 . 56     3. 87    2. 43     2. 43    14 . 98
1    -1 .56    1 .56      -3 . 87   2 . 43     2. 43    14 . 98
1    1. 56     -1 .56     -3 . 87   2. 43     2. 43    14 . 98
1    -1 .56    -1 . 56     -3 .87   2 . 43     2. 43    14 .98
1    0          1       0         0          1    0
1    0          -1      0         0          1    0
1    1. 56     1. 30       1. 56    2. 43     14 .98   2 . 43
1    -1 .56    1 .30       1 .56    2 . 43     14 . 98   2. 43
1    1. 56     -1 .30      1 .56    2 . 43     14 . 98   2. 43
1    1. 56     1. 30       -1 .56   2 . 43     14 . 98  2. 43
1    -1 .56    -1 . 30      1. 56    2. 43     14 . 98   2 . 43
1    -1 .56    1 .30       -1 . 56   2. 43     14 . 98   2 . 43
1    1. 56     -1 .30      -1 . 56   2. 43     14 . 98   2 . 43
1    -1 .56    -1 . 30      -1. 56   2. 43     14 .98   2 . 43
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and its information matrix C6 is;

C6=

15 . 3663 5 . 3663 5 . 3663 000
5. 3663  63 .2337 21 . 0779 21 . 0779 000

5 .3663  21 .0779 63 .2337  21 .0779 000
5 .3663  21 .0779 21 .0779 63 .2337  000

0000       5 . 3663 0          0
0000 0      5 . 3663      0

000000       5 . 3663 

¿
righ
¿
¿
¿

[¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] [¿ ] ¿
¿

¿

This design gives the following optimum values;

D-optimality=2.983628.

T-optimality=29.542809.

E-optimality= 0.178871.

A-optimality=1.127848.
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4.1.4 Relative Efficiency for Unit Value Designs.

Table 4.6: A Summary of Unit Values from Calculus Optimum Designs

4.1.4.1 A-efficiency.

This measure is related to

the  A-optimality  criterion

and  is  evaluated  by  the

following formula:

A( ξ )= 
tr (m−1

(ε A
¿

))

tr (m−1
(ε ))

Table 4.7: Unit Values A-
Efficiencies.

A D E T

M 1

0.005366 0.398647 0.072085 0.565103

M 2

0.025489 3.467942 0.194797 48.284494

M 3

0.106874 0.535518 0.032551 0.308693

M 4

0.117436 0.536882 0.021841 0.532477

M 5

0.437355 0.651276 0.118976 0.886307

M 6

1.127848 2.983628 0.178871 29.542809

M 1 = 
0.005366
0.005366

 = 100%

M 2 = 
0.005366
0.025489

 = 21.052%

M 3 = 
0.005366
0.106874

 = 5.021%

M 4 = 
0.005366
0.117436

 = 4.570%

M 5 = 
0.005366
0.437355

 = 1.227%

M 6 = 
0.005366
1.127848

 = 0.476%
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From the table above M1 is the most efficient design

4.1.4.2 D-efficiency.

This measure is related to the D-optimality criterion:

D ( ξ ) = [
M(ε )
M ¿

(ε )
]

Table 4.8: Unit values D- efficiencies.

From the table above M1 is

the most efficient design

4.1.4.3 T-efficiency.

This measure is related to
the  T-optimality
criterion:T  ( ξ )  =

∆1(ε)

∆1(ε T
¿
)

Table 4.9: Unit Values T- 
Efficiencies.

M 1 = 
0.398647
0.398647

 = 100%

M 2 = 
0.398647
3.467942

 = 11.495%

M 3 = 
0.398647
0.535518

 = 74.441%

M 4 = 
0.398647
0.536882

 =74.252%

M 5 = 
0.398647
0.651276

 =61.210%

M 6 = 
0.398647
2.983628

 = 13.361%

M 1 = 
0.308693
0.565103

 = 54.626%

M 2 = 
0.308693
48.284494

 = 0.633%

M 3 = 
0.308693
0.308693

 = 100%

M 4 = 
0.308693
0.532477

 = 57.973%

M 5 = 
0.308693
0.886307

 =34.829%

M 6 = 
0.308693
29.542809

 = 1.045%
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From the table above M3 is the most efficient design

4.1.4.4E-efficiency.

This measure is related to the E-optimality criterion:

E( ξ ) = 
λmin(ε )

λmin(ε¿
)

Where λmin(ε )  is the Eigen value of the information matrix.

Table 4.10: Unit Values E- Efficiencies.

M 1 = 
0.021841
0.072085

 = 30.299%

M 2 = 
0.021841
0.194797

 = 48.047%

M 3 = 
0.021841
0.032551

 = 67.098%

M 4 = 
0.021841
0.021841

 = 100%

M 5 = 
0.021841
0.118976

 = 18.357%

M 6 = 
0.021841
0.178871

 = 12.210%
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From the table above M4 is the most efficient design

4.2 Comparison of the Relative Efficiencies of Calculus Optimum Values Designs 
with Unit Value Designs.

Aeff Deff Eeff Teff

Calc opt Unit
Values

Calc opt Unit
Values

Calc opt Unit
Values

Calc opt Unit
Values

M 1  100% 100% 100% 100% 42.426% 30.299% 47.563% 54.626

%

M 2 82.972% 21.052% 90.907% 11.495% 31.210% 48.047% 45.861% 0.633%

M 3 1.869% 5.021% 95.700% 74.441% 36.855% 67.098% 47.403% 100%

M 4 5.264% 4.570% 96.267% 74.252% 100% 100% 100% 57.973

%

M 5 1.808% 1.227% 99.516% 61.210% 34.825% 18.357% 46.899% 34.829

%

M 6 1.800% 0.476% 93.904% 13.361% 34.568% 12.210% 46.832% 1.045%

Ave 32.289 22.058 96.049 55.793 46.647 46.002 55.760 41.518
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Following from the values obtained in section 4.1 then the comparisons of the relative 

efficiencies for both calculus optimum and unit values is done here.

Table 4.11: A summary of the Relative efficiencies of the six specific second order 
rotatable designs of order two in three dimensions both calculus optimum and unit 
values

From the table above it is seen from the averages that calculus optimum values designs 

obtain a higher average as compared to unit value designs therefore more efficient than 

unit value designs, furthermore it is still evident from the individual efficiencies of the 

designs that calculus optimum values generally obtain higher relative efficiency values.

4.3 DT-Optimality

This criterion is obtained by finding the DT–optimality which is a combination of D– 

optimality and T–optimality given by:

Δ2(¿ξ)+( K
p ) log|M 1(ξ )|

ϕDT
(ξ )=(1−k ) log¿

4.3.1 The DT-optimality Criterion for the Calculus optimum Designs.
M 1 (The twenty four points) 

ϕDT
(ξ )=(1−3 ) log 0.719916756+(3

7 ) log|0.51684|

= 0.162588

M 2 (The thirty-two points)

ϕDT
(ξ )=(1−3 ) log 0.7623315+( 3

7 ) log|0.568535|

= 0.130608

M 3 (The twenty-two points)

ϕDT
(ξ )=(1−3 ) log 0.737534+( 3

7 ) log|0.540062|
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= 0.149769

M 4 (The twenty points)

ϕDT
(ξ )=(1−3 ) log 0.3496119+( 3

7 ) log|0.787020|

= 0.868250

M 5 (The twenty-six points)

ϕDT
(ξ )=(1−3 ) log 0.7454531+( 3

7 ) log|0.549356|

= 0.143668

M 6 (The thirty points)

ϕDT
(ξ )=(1−3 ) log 0.746528+( 3

7 ) log|0.550390|

= 0.142767

The  results  above  for  designs  M 1 ,  M 2 ,  M 3 ,  M 4 ,  M 5  and   M 6

represent the compound DT- optimum criterion values for calculus optimum designs.

4.3.2 The DT-optimality Criterion for the unit value Designs.
M 1 (The twenty four points)  

ϕDT
(ξ )=(1−3 ) log 0.5702211+(3

7 ) log|0.3849673|

= 0.310238

M 2 (The thirty-two points)

ϕDT
(ξ )=(1−3 ) log 1.5401845+( 3

7 ) log|0.8734885|

= -0.400320

M 3 (The twenty-two points)

ϕDT
(ξ )=(1−3 ) log 0.8641483+(3

7 ) log|0.5472958|
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= 0.014636

M 4 (The twenty points)

ϕDT
(ξ )=(1−3 ) log 0.3592492+( 3

7 ) log|0.200834435|

= 0.590424

M 5 (The twenty-six points)

ϕDT
(ξ )=(1−3 ) log 0.3621662+( 3

7 ) log|0.194937713|

= 0.577854

M 6 (The thirty points)

ϕDT
(ξ )=(1−3 ) log 0.4677112+(3

7 ) log|0.319476573|

= 0.447661

The  results  above  for  designs  M 1 ,  M 2 ,  M 3 ,  M 4 ,  M 5  and   M 6

represent the compound DT- optimum criterion values for unit value designs.
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Table     4.12  A Summary  of  the  DT-  Optimality  Criterion  for  Both  Calculus
Optimum and Unit Value Designs.
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M 1

M 2 M 3 M 4 M 5 M 6

Calc optimum 0.162588 0.130608 0.149769 0.868250 0.143668 0.142767

Unit Values 0.310238 -0.400320 0.014636 0.590424 0.577854 0.447661

From the table above calculus optimum values obtain less optimum values making them
optimum
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CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS.

5.0 Introduction.

In this chapter the conclusions and recommendations and further work are outlined here. 
The general comments on the study are also given.

5.1Summary.

It was found that the designs which were calculus optimum were generally more efficient

as  compared  to  the  Unit  value  designs  as  it  was  evident  from  the  average  values

calculated in table 4.3. From the Calculus optimum Designs it was found that the D-

efficiency was the highest  amongst  all  the other  relative efficiency criteria.  The Unit

value designs were found to be more efficient when D- relative efficiency Criterion was

utilized. Amongst all the calculus optimum designs the D- efficiency Criterion is found to

be the best. When the designs were considered the design M 1 was found to be the most

efficient because it has higher efficiency values than the rest of the designs.

It  was  observed  that  increasing  or  reducing  the  number  of  design  points  does  not

necessarily increase or reduce efficiency.

For the DT- optimality Criterion the design with the least value was optimal and in this

regard M 2  was found to be the most optimal design when the individual designs were

taken into account. For calculus optimum values designs M2was found to be the most

optimal design and for unit value designs M3 was found to be optimal.

In general it  was found that calculus optimum values designs were found to be more

optimal under the DT- compound optimality criterion.

5.2 Conclusions.

For Relative efficiency criteria, Calculus optimum designs are more efficient as 
compared with unit value designs. And when the compound DT- optimality criterion is 
analyzed the again Calculus optimum designs are DT- optimal as compared with unit 
value designs.

5.3 Recommendation.

It is observed that the calculus optimum values designs were more efficient as compared

with unit value designs. Calculus optimum values designs are also optimal therefore they
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are the best designs to be chosen for experimentation because they will minimize the

inputs but maximize the outputs and at the same time saving on time and money. 

5.4 Further Work

It’s recommended that there is need to calculate the relative efficiencies of higher order 

designs both calculus optimum and unit values. More compound optimality criteria for 

the designs be calculated and the relationship between alphabetic optimality and 

compound optimality criteria analyzed.
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