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ABSTRACT

Resolution  of  a  design  refers  to  the  degree  to  which  estimated  main  effects  are
confounded with  estimated  two or  more  than  two-level  interactions.  Optimal  designs
reduce the costs of experimentation by allowing statistical models to be estimated with
fewer experimental runs. The purpose of this study was to construct optimal rotatable
designs through resolutions as well as explore and optimize response surfaces. Rotatable
designs were constructed through resolutions III and IV for three and four factors based
on  the  Central  Composite  Designs.  Information  matrices  based  on  the  parameter
subsystem of  interest  on the second-degree Kronecker  model  were obtained.  Optimal
rotatable  Weighted  Central  Composite  Designs  were  derived  and  optimality  was
accomplished through application of D-, A- , E- and I-optimality criterion. A generalized
form of the constructed D- and I-optimal rotatable WCCDs for m  factors was derived
together with the corresponding optimal values. The efficiency of the designs was also
determined  over  the  full  CCD.  A CCD  with  four  factors  was  used  to  illustrate  the
practicability of the derived rotatable designs where optimal conditions for effects  on
whiteness  of  cotton using Peracetic  Acid  in  the  presence of  a  Bleaching Agent  were
obtained by locating the stationary points. Optimal whiteness index was obtained using
full CCD and resolution IV CCD and the efficiency of the latter was found to be 0.9678.
The derived rotatable designs were found to beD-, A-, E- and I- optimal as well as more
efficient  than  uniformly  weighted  CCDs.  It  was  concluded  that  rotatable  designs
constructed through resolution R and assigning different weights to the support points are
better. The experimental runs are reduced hence economical and the resulting designs are
improved in terms of optimality and estimation efficiency. The results also showed that
the  D-optimal  resolution  III  design  gives  more  weight  to  the  cube  portion  while
resolution IV design gives equal weight to both portions. But A- and I- optimal designs
assign greater weight to the star portion than the cube portion. 

https://en.wikipedia.org/wiki/Statistical_model
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ABBREVIATIONS

CCD      - Central Composite Design

DOE    - Design of Experiments

FDs    - Factorial Designs 

FFDs       - Fractional Factorial Designs

GET    - General Equivalence Theorem 

RSM    - Response Surface Methodology

WCCDs - Weighted Central Composite Designs
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CHAPTER ONE

INTRODUCTION

1.0 Background Information

Optimal designs refer to a class of experimental designs that are optimal (“best”)

with  respect  to  some  statistical  criterion.  In  the  Design  of  experiments  (DOE)  for

estimating statistical models, optimal designs allow parameters to be estimated without

bias  and  with  minimum-variance.  Such  designs  reduce  the  costs  of  experimentation

byallowing statistical models to be estimated with fewer experimental runs. On the other

hand, a non-optimal design requires a greater number of experimental runs to estimate the

parameters with the same precision as an optimal design. Response Surface Designs are

experimental designs used for fitting response surfaces. They are used for the study of

response surface  methodology (RSM)  useful  for  modeling  and analysis  of  problems

where a response of interest is influenced by several variables and the objective is to

optimize  this  response  (Montgomery,  2005).  The  application  of  RSM  to  design

optimization aims at reducing the cost of expensive analysis methods.

In  many  experimental  situations,  the  relationship  between  the  response  and

independent  variables  is  a  functional  one.  For  example,  the  response  Y   may  be

represented as a suitable function  f  of  the levels  x1u , x2 u , …, xmu  of  the  m

factors and,  θ  the set of parameters. A typical model may be of the form:  

yu=f ( x1u , x2 u ,…,xmu ;θ+eu )
T (1.1)

https://en.wikipedia.org/wiki/Statistical_model
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where u=1,2 ,…,N  represents the  N  observations with  x iu  representing the

level of the ith  factor ( i=1,2,…,m )  in the uth  observation. The residual eu

measures  the  experimental  error  of  the   uth  observation.  The  expected  response

E( yu)  is called the response surface. In most RSM problems, the form of relationship

between the response and the independent variables is unknown as well as the set of the

parameters.  Thus  a  suitable  model  approximation  for  the  true  functional  relationship

between the response variable and the set of independent variables should be developed

(Montgomery, 2013).  Attempts can be made to approximate the response surfaces by

using derived polynomial equations, such that the objective of the study now becomes the

estimated response surface whose statistical  properties are determined by the moment

matrix

M (ξ )=∫ f ( x ) f ( x )T dξ . (1.2)

The information that a design with moment matrix M  contains for the model

response surface f ( x )T θ   is represented by the information surface given by

iM ( x )={
1

f ( x )T M−1 f ( x )
, for f (x )∈range M

0 , otherwise
(1.3)

And in terms of information matrices 

iM ( x )=C f ( x ) (M (ξ ) ) . (1.4)

Many  experiments  involve  the  study  of  the  effects  of  two  or  more  factors.

Factorial designs (FDs) are most efficient for thesetype of experiments. A complete two-

level factorial design 2m  is one in which each of the treatment combinations appears
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an equal number of times. Thus such a design assigns equal weight 
1
l

 to each of the

l=2m  vertices of  [−1;1 ]
m  (Pukelsheim,  1993).  This  design finds application in

three areas as outlined by Myerset al.,(2009) among which is that  a  2m   design is a

basic  building  block  used  to  create  other  response  surface  designs.  For  example,

augmenting  a  2m   design  with  axial  runs  and  center  points,  a  central  composite

designis obtained and it  is one of the most important designs for fitting second-order

response surface models.  

The successful use of two-level fractional factorial designs (FFDs) is based on

three ideas:

a) Main effects and low-order interactions dominate the system or process when there

are many variables under consideration. For a large number of factors m , the total

number of observations will be N=2m−p , and this is kept relatively small as m

gets large. The goal is to create designs that allow the experimenter to screen a large

number  of  factors  without  having  a  very  large  experiment  in  which  case  the

assumption is that only a few are very important. This is called sparsity of effects. 

b) The  projective  property  where  fractional  factorial  designs  can  be  projected  into

stronger designs in a subset of the significant factors.

c) Sequential experimentation referring to cases where it is possible to combine the runs

from two or more FFDs to sequentially form a larger design to estimate the factor

effects and interactions of interest. That is, one can add runs to a fractional factorial to

resolve difficulties (or ambiguities) in interpretation.
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Examples of response surface designs are the Central Composite designs (CCDs)

and the Box-Behnken designs. The CCDs comprise of three portions: a 2m  factorial

(or  fractional  factorial)  design,  center  points  (used  for  fitting  first-order  model)  and

2m  axial points at a distance  α  from the origin (added when the second-order

terms are further incorporated). For rotatability, the value of  α  should be equal to

2m /4 (Box et al., 1957). But if a 2m−p  fractional factorial design is used in place of

full 2m  factorial, then

α=2(m−p )/4  .  (1.5)

Hence a CCD is useful and powerful in sequential experimentations. In a CCD,

the cube portion may be a two-level FFD of resolution R. Resolution of a design refers to

the degree to which estimated main effects are confounded with estimated two or more

than two-level interactions. In other words, a resolution R design is a design in which no

interaction of p factors is confounded to an interaction of less than R-p factors. Two-level

fractional factorial designs are investigated in detail by Box and Hunter (1961). 

The concept of design resolution is a useful way to categorize fractional factorial

designs according to the class patterns they produce. A saturated design is one whose

design’s resolution is specified, number of runs is fixed and it accommodates only a

certain maximum number of factors.  

This thesis concentrates onmomentmatrixgiven in equation (1.2)on page 2,for the

second-order  Kroneckermodel.  The  Kronecker  representation  has  several  advantages

such  as  offering  attractive  symmetry,  more  compact  notations,  more  convenient

invariance  properties,  and  the  homogeneity  of  the  regression  terms
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(DraperandPukelsheim, 1998; Prescott et al.,2002). The benefits are that distinct terms

are repeated appropriately, according to the number of times they can arise.

Examples of quadratic models include, the Scheffé model, the Kronecker model

and the intercept (or slack variable) model.  The three models are of the form:

The Full quadratic model: Y x=θ0+∑
i=1

m

θi xi+∑
i=1

m

θ ii xi
2
+∑

i , j=1

m

θij x i x j+εi (1.6)

The S-model:  Y x=θ0+∑
i=1

m

θi xi+∑
i , j=1

m

θij x i x j+εi             (1.7)

For the Kronecker model, only the quadratic and interaction terms exist.  This may be

expressed as:

E(Y x)=θ0+∑
i=1

m

θi xi
2
+∑

i , j=1

m

γ ij x i x j (1.8)

These  three  reduced  models  are  re-parameterizations  of  one  another such  that  the

parameters  of  the  quadratic  terms  in  the  Kronecker  model  are  equivalent  to  the

parameters of the linear terms in the S-model whereas the parameters of the interaction

terms can be obtained from the parameters of the S-model using the relation:

γ ij=β ij+β i+β j (1.9)

As the number of factors in a second-order model increases, the number of terms

also  increases.Therefore,  economic  second-order  designs  with  reasonable  prediction

variance are highly desirable. 

1.1 Statement of the Problem

Several  methods  have  been  used  to  construct  rotatable  designs.  The  resulting

designs  have  been shown to be  D-,  A-  and E-optimal.  Chigbu and Orisakwe (2011)

constructed rotatable designs by varying cube and star points of CCD and obtained D-, A-
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and  E-optimal  values.ChigbuandUkaegbu(2014)  investigated  the  small  composite

designsand the minimum-run resolution V designs using the G- and I-optimality criteria

by replicating the star and cube portions.

While the central composite design (CCD) is widely applied in many fields to

construct a second-order response surface model with quantitative factors to help increase

the precision of the estimated model,  attention has mainly been given to  the designs

where the cube portion is obtained from a full factorial design (Pukelsheim, (1993); Li

(2006)).  Construction  of  rotatable  designs  through  resolutions  has  received  minimal

attention. Lavricet al., (2007) fitted a full quadratic model using a four factors CCD data

on optimum conditions  for effects  on whiteness  of  cotton and obtained  85  as the

predicted value of the whiteness index. This thesis therefore sought to construct rotatable

designs  through  resolutions  and  to  explore  and  optimize  response  surfaces  with

application to the data obtained by  Lavric et al., (2007) about effects on whiteness of

cotton using four factors CCD.

1.2 Objectives of the study

This thesis sought to achieve the following objectives.

1.2.1 The general objective of the study

The general  objective of  this  study was to  construct  optimal  rotatable  Central

Composite Design through resolutionsbased on the second order Kronecker model with

application to optimization of whiteness of cotton. 

1.2.2 Specific objectives

The specific objectives were to:
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(a) Construct rotatable designs through resolutions III and IV for three and four factors

based on the Central Composite Designs (CCDs). 

(b) Derive the Optimal Rotatable Weighted Central Composite Designs (WCCDs).

(c) Determine the WCCDs D-, A-, E- and I- optimal values and their corresponding

efficiencies.

(d) Illustrate the practicability of the derived optimal rotatable CCD using four factors

experimental data about effects on whiteness of cotton.

1.3 Significance of the study

The  factorial  designs  are  widely  used  in  experiments.In  recent  years  more

emphasis has beenplaced by the chemical and processing field on finding regions where

there is animprovement in response instead of finding the optimum response (Myers et al,

1989). In practice, the experimenter aims at obtaining optimal designs with minimum

cost. As the number of factors in a 2m  factorial design increases, the number of runs

required for a complete replicate of the design exceed budget. When experimentation is

expensive or time consuming, CCDs with cube portion obtained from fractional factorial

designs are more appropriate.One of the aims ofdesign of experiment is to extract as

much as possible information from a limited set of experimental study.

This study sought to address thisbyconstructingoptimal rotatable designs through

resolution  III  andIVbased  on  the  CCD which  can  be  run  sequentially,  and  are  very

efficient  in  providing  much  information  on  experiment  variable  effects  and  overall

experimental error in a minimum number of required runs. Further a with resolution IV

designall main effects can always be estimated unbiasedly and two-factor interactions can

also be estimated.
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1.4 Scope of the study

Considerations  throughout  this  thesis  were  restricted  to  three  and four  factors

CCD  constructed  through  resolutions  III  and  IV  with  no  center  points.  Some

experimental  data with four factors about  effects  on whiteness of cotton was used to

illustrate the practicability of the derived optimal rotatable CCD.

1.5 Thesis layout

In  this  thesis,  Chapter  one  gives  an  introduction  of  experimental  designs  for

optimization  and second-degree  Kronecker  model.  The statement  of  the problem,  the

objectives, the scope and the significance of the study are also given. Work previously

done on two-level  fractional  factorial  designs,  response surface designs  based on the

CCD, optimality criteria as well as some background information on whiteness of cotton

is reviewed in Chapter two.

An investigation of the methodology used in achieving the general objective of

this study is done in Chapter three.  Factors three and four basic  2m−p  ( for p=1 )

designs are constructedthrough resolutions III and IV and a description of the CCD is

given.  Characterization of the coefficient matrix of the maximum parameter subsystem

K ' θ is done and the conditions for the existence of rotatable matrices are outlined.

Theorems applied in this thesis as well as the various optimality criteriaused to derive

optimal rotatable weighted central composite designs are stated. 

Chapter fourdeals with the interpretation and explanation of the findings of this

study  with  regard  to  the  stated  research  objectives.Rotatable  CCDs  and  their

corresponding momentandinformation matrices are obtained.Optimal Rotatable WCCDs
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for three and four factors are obtainedusing the General Equivalence Theorem for D-, A-,

E and I- optimality criteria. Numerical results foroptimal rotatable WCCD and uniformly

weighted CCD are given and their efficiencies computed. Further, the practicability of the

derived rotatable designs is illustrated using four factors CCD on effects of whiteness of

cotton.  An  analysis  of  the  same  is  done.In  Chapter  five,  a  summary  is  given  and

conclusions  drawn.Recommendations  for  further  research  emanating  from  this  work

closethis research thesis. This is followed by references and an appendix section.

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This  literature  review  discusses  someresearched  areas  that  relate  to  this

study.Response Surface Designs, Two-level fractional factorialdesigns, and Second-order

rotatable designs are discussed separately as well as optimality criteria and efficiency.
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Further, a review is done on the Central Composite Designs and Whiteness of Bleached

Cotton.

2.1 Response Surface Designs

In  recent  years,  the  use  of  optimal  designs  in  industrial  experimentation  has

grown rapidly, due to the fact that the methodology is now being introduced in standard

DOE text books (Montgomery,2005) and also because facilities for constructing optimal

designs have become readily available. Optimization process involves three major steps:

performing  the  statistically  designed  experiments,  estimating  the  coefficients  in

mathematical model and predicting the response as well as checking the adequacy of the

model as explained by  Sunitha, et al.,(2015). The aim of thisstudywas to evaluate the

efficacy  of  the  mathematical  model  CCDandRSM  in  optimizing  parameters  for

enhancing  plant  growth  of  Pearl  millet.  The  study  revealed  that  RSM  could  be

usedeffectively  to  optimize  growth  of  Pearl  milletand  the  CCD  is  simple,  efficient,

economical, timesaving and can be adopted for optimizing crop yields.

2.2 Two-Level Fractional Factorial Designs and Design Resolution

The  regular  fractional  factorial  designs  were  introduced  by  Box  and  Hunter

(1961). These designs later became the standard tools for factor screening. Draper and

Lin  (1990)  carried  out  a  study  on  the  maximum  number  of  factors  that  can  be

accommodated  in  a  specified  resolution  R  design.  Construction  and  analysis  of  half

fraction factorial design is studied in details by Montgomery (2013).

2.3 Second-Order Rotatable Designs

Box  and  Hunter  (1957)  introduced  rotatable  designs  for  the  exploration  of

response surfaces. The study of rotatable designs mainly emphasizes on the estimation of
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absolute  response.  Narasimham,  et  al.,  (1983)constructed  Second  Order  Rotatable

Designs (SORD) using a pair of incomplete block designs.  Victorbabu and Rajyalakshmi

(2012) studied a new method of construction of Robust Second Order Rotatable Designs

using balanced incomplete block designs. Rajyalakshmi and Victorbabu (2014) suggested

an empirical study of Second - Order Rotatable Designs under tridiagonal correlation

structure of errors using central composite designs.

2.4 Second-Order Kronecker Model

Prescott and Draper (2009) examined three quadratic models, the Scheffé model, the

Kronecker  model  and the intercept  (or slack variable)  model  using data  arising from

mixture experiments thus the models did not contain the constant term ( θ0 ). The three

models were of  the form given in equations  (1.6),  (1.7)  and (1.8)  respectively.  They

concluded thatbecausethe estimates obtained are predicted responses at locations remote

from the observed data, then the coefficients estimates do not seem to be representative of

the data. The study proposed an alternative method of transformation where more design

points within a larger region of the mixture space can be included. Coefficients estimates

were now found to be more consistent. 

2.5 Optimality Criteria and Efficiency

An optimality criterion is a criterion which summarizes how good a design is, and

it is maximized or minimized by an optimal design. Most often, all the available criteria

in literature may be classified into four types; information-based criteria, distance-based

criteria, compound criteria and other types criteria. Information-based criteria are related

to the information matrix XT X . This matrix is important because it is proportional to
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the inverse of the variance-covariance matrix for the least-squares estimates of the linear

parameters  of  the  model  of  interest  as  investigated  by  El-Monsef,  et  al.,  (2009).The

Information-based criteria considered include D-, A-and E-optimality criterion. The D-

optimality criterion is estimation based and aims to minimize the variance of the factor-

effect estimates. On the other hand an I-optimality criterion is prediction based and aims

to minimize the average variance of prediction over the region of experimentation. For

this  reason,  the  I-optimality  criterion  would  be  a  more  appropriate  one  than  the  D-

optimality criterion for generating response surface designs (Goos and Bradley, 2012).

The General Equivalence Theorem for I-Optimality was used by GoosandSyafitri(2014)

to  investigate  V-optimal  mixture  designs  for  the  qth  degree model  using the  simplex

centroid design.  In this  study,  optimal  rotatable Weighted Central  Composite Designs

were derived and optimality was accomplished through the application of D-, A- , E- and

I-optimality  criteria  which  follows  from  the  General  Equivalence  Theorem

(Pukelsheim,1993; Goos and Bradley, 2012).

2.6 Central Composite Designs

The central composite designs comprise some  of the most popular and commonly

used classes of experimental designs for fitting the second order (Box and Wilson, 1951).

These designs are mixtures of three building blocks: cubes, stars and center points where

the cube portion may be obtained from a fractional factorial design of resolution down to

resolution III. This allows smaller factorial fractions to be used.Several examples have

been publishedwhere the recommended fractional design for the central composite differs

dramatically from the fractional design standing alone (Hartley (1959), Draper and Lin,

1990)).  Several  authors  have  continued  the  quest  for  smaller  designs.  Lucas  (1974)
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computes the D-criterion for saturated composite designs constructed using a subset of

points from the saturated resolution V designs ofRechtschaffner (1967) whose study had

used four different design generators to construct minimal point designs for estimating

second - order surface. The study compares different CCDs using |XT X|  criterion. 

When  a  mass  of  α  is  placed  on  the  cube-plus-star  design  and  a  mass  of

(1−α)  is  placed  on  the  center  point  portion,  the  bottom  line  is  that  rotatability

generates a complete class of designs with a single parameter α   no matter how many

factors m  are being investigated (Pukelsheim, 1993)and the constructed design is an

improvement  of  the  standardized  design.   Oehlert  (2002)  constructed  two-level

equireplicated irregular fractions with resolution V.  Chigbu and Orisakwe (2011) study

On Optimal Partially Replicated Rotatable and Slope Rotatable CCDs investigated two,

three and four factors central composite design using three rational variations: the one

cube plus one star, the replicated cubes plus one star, and the one cube plus replicated

stars.Each variation was considered for two to four factors where D-, A- and E-optimal

values were obtained. The D-values for replicated cubes plus one star variation were

found to be greater than those of one cube plus replicated stars and based on rotatability

restriction the designs are A- and E-optimal. Li (2006)investigated split-plot second-order

designs using the CCD by exploring the impact of a split-plot structure on traditional

central  composite  designs  and  made  concrete  and  practical  recommendations  on  the

choice of α  for both wholeplot factors and subplot factors. The CCD was constructed

by two sets of points plus  nc  center runs that is a  2k or a  2k− p  Resolution V

fractional factorial design for all factors and the 2k  axial runs for each factor with a

distance of α  from the center.
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Yin-Jie  (2007)  constructed  minimal-point  designs  for  second-order  response

surface  using  a  two-stage  method  to  find  the  composite  designs.  The  minimal-point

designs were equal-weight designs and were formulated as:

ξ=
n1+1

p
ξ1+(1−

n1+1

p )ξ2 where ξ1  is the design of the first-order portion and one

center point,  n1  is the number of the support points of the first-order design, and

ξ2  is the equal-weight design with the ( p−n1−1)  distinct added support points.A

comparison was made with central composite designs, other small composite designs and

minimal-point  designs  by  relative  efficiencies  and  the  proposed  composite  designs

performed well in general.  

Ray-Bing et al., (2008) constructed small composite designs for a second-order

response  surface  which  they  referred  to  as  Conditionally  Optimal  Small  Composite

Designs. A two-stage method which reduces the number of runs for the first-order designs

was used with only one center point and the proposed composite designs were found to

be D-optimal and in cases where they are not, they have reasonably high D-efficiencies.

The study proposed that this construction method can be easily extended to the composite

designs with more than one center points and other optimal criteria can be adopted and

were represented as ξ=
n c
n

ξc+
n1

n
ξ1+

n2

n
ξ2 where ξc  is the one-point design at center

point, 0, with nc  replications. ξ1 is the selected first-order design with n1  number

of  supports  points. ξ2 is  the  equal-weight  design  for  n2  added  points,  and

n=n1+nc+n2 .
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Chuan-Pin and Mong-Na (2011) investigated D-optimal designs for models where

the qualitative factors interact with, respectively, the linear effects, or the linear effects

and two-factor  interactions  or  quadratic  effects  of  the  quantitative  factors.  The study

showed that, at each qualitative level, the corresponding D-optimal design also consists

of three portions as central composite design, i.e. the cube design, the axial design and

center points, but with different weights. Rajyalakshmi and Victorbabu (2014) suggested

an  empirical  study  of  second-order  rotatable  designs  under  tri-diagonal  correlation

structure of errors using central composite designs.

2.7 Whiteness of Bleached Cotton

Textile preparation of cotton typically includes scouring and bleaching at  high

temperature and high pH. Substantial amounts of wastewater are produced that must be

treated prior to being released to receiving fresh water. Recent research in laboratories

has  focused  on  the  development  and  application  of  compounds  that  enhance  the

bleaching  process.  Lavric  et  al.,(2007)studied  the  effects  of  temperature,  pH  and

concentrations  of  activator  and  peracetic  acid  on  the  bleaching  performance  using  a

statistical design of experiment. A full CCD was used to determine the optimal conditions

for bleaching cotton with Peracetic acid in the presence of a bleaching activator. The term

pH refers to a scale which measures acidity or alkalinity: a pH of 0-6.9  isacid , a pHof

7.0 is neutral  and a pH of 7.1-14.0 is alkaline. A quadratic design was developed and was

shown to be statistically valid with  R2
=0.984  with the results revealing that all the

linear terms, the quadratic terms of temperature and Peracetic acid and the interaction

term of temperature and pH were significant. According to a study on Optimization of
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Parameters of Cotton Fabric Whiteness by Fijul, et al., (2014), whiteness index increases

with the increase of time and after 800 C   it decreases. But at 800 C optimum results

are  obtained.  Theoretical  results  derived in  this  thesis  were illustrated  using the data

generated by Lavric et al., (2007).

CHAPTER THREE

METHODOLOGY

3.0 Introduction

In this chapter,the second-degree Kronecker model (1.8) for three and four factors

to be fitted is given and an explanation of how to construct correspondingbasic 2m−p  (

for p=1 )  designs  through  resolutions  III  and  IV is  highlighted.  These  were  then

augmented with axial points to obtain rotatable CCDs ( ξ ). Conditions for rotatability

of the second–order moment matrices are given as well as the form of the coefficient

matrix for parameter subsystem of interest and the information matrices for the rotatable

designs. Further, theorems which wereused to obtain the rotatable WCCDs based on the

General Equivalent Thoerem for D-, A-, E- and I-optimality are stated and a procedure is

givenon how the WCCDs were obtained. The formulae for computing D-, A-, E- and I-

optimal values and their relative efficiencies are stated. The type of data that was used to

illustrate the theoretical results and the method of presenting the results are outlined in

this chapter.
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3.1 Design of the studyand the Model

Information matrices (1.4) based on the parametersubsystem of interest and their

corresponding  rotatable  CCDs  for  fitting  second  -  degree  Kronecker model

wereinvestigated.  

Definition 3.1.

In an m−way  second - degree model m≥ 2 , the regression function is taken 

to be:

f ( x )=(
1
x

x⨂ x ):Τ √m→ Rk
                            (3.1)

with Τ √m the ball of radius  √m in Rk   and k=1+m+m2 . The moment matrix 

of a design τ∈T  is given in (1.2). The portion x⨂ x  is an m2×1  matrix and 

represents the mixed products for i≠ j  twice, as x i x j  and as x j xi . The 

experimental domain Τ √m is left invariant by arotation R∈R=Orth(m) , and 

commutes with the regression function f  according to 

f (Rx )=(
1
Rx

(R⊗R )(x⊗ x))=(
1 0 0
0 R 0
0 0 R⊗R) f (x) .     (3.2)

Therefore f  is invariant relative to the (1+m+m2
)×(1+m+m2

)  matrix group

Q2={(
1 0 0
0 R 0
0 0 R⊗R) :R∈Orth(m)}⊆Orth(k) .     (3.3)

Thus the second-degree Kronecker model is
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E (Y x)=f ( x )
'
θ=θ0+∑

i=1

m

θi x i+∑
i=1

m

θii x i
2
+∑

i , j=1

m

(θij+θ ji) x i x j                 (3.4)    

Where Y x  the observed response under the experimental conditions  x∈T , is taken 

to be a scalar random variable and 

Θ=(θ0 ,θ1 , …, θ11 , θ22 , ... ,θmm) '∈Rm2

istheparameter vector.(3.5)

An m−way  second – degree Kronecker model (3.1) for  m≥ 2   of the K-

regression function f was fitted.  This involves the Kronecker product whose powerful 

properties make f   superior to any other form of parametrizing the second - degree 

model (Pulkelsheim, 1993).  The model (3.4) has (1+m+m2
) parameters and is 

expressed as:

(a) m=3

η (θ , x )=θ0+θ1 x1+θ2 x2+θ3 x3+θ11 x1
2
+θ12 x1 x2+θ13 x1 x3+θ21 x2 x1+θ22 x2

2
+θ23 x2 x3+θ31 x3 x1+θ32 x3 x2+θ33 x3

2

. (3.6)

(b) m=4

η (θ ,t )=θ0+θ1 x1+θ2 x2+θ3 x3+θ4 x4+θ11 x1
2
+θ12 x1 x2+θ13 x1 x3+θ14 x1 x4+θ21 x2 x1+θ22 x2

2
+θ23 x2 x3+θ24 x2 x4+θ31 x3 x1+θ32 x3 x2+θ33 x3

2
+θ34 x3 x4+θ41 x4 x1+θ42 x4 x2+θ43 x 4 x3+θ44 x4

2

. (3.7)

3.1.1 Fractional Factorial Designs

In this section, a method of constructing resolution R  design of m -factors in

n  runs is explained. 

Let X  be the n  by m  design matrix, with high and low levels of a factor

denoted by +1 and -1 respectively. To construct one-half fraction, a full  2m−1  factorial

design is written down, then the mth  factor is added by identifying its plus and minus

levels  with  the  signs  of  ABC … (M – 1) .  M=ABC …(M – 1) implying  that
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I=ABC … M where  A ,B ,C ,…, M=x1, x2, x3 ,…, xm  respectively.  When

additional factors are added to the interactions, generators are created. The set of distinct

words  formed  by  all  possible  products  of  any  subset  of  the  factors  involving  p

generators gives the defining relation which contains 2p  terms including the identity

term I .  For a set of generators

W={W 1 ,W 2,…, W p } , we have IW=WI=W and W 2
=I . 

Another way is to partition the runs into two blocks with the highest-order interaction

ABC … M  confounded.

3.1.2 Fold-Over Designs

Estimated main effects are confounded with two factor interactions in resolution

III  designs.  To  eliminate  such a  problem,  the  design  is  folded  over.  This  means

repeating the projected design with all signs reversed. This converts a resolution III

design into a resolution  IV  design (Box et  al.,  1978) and doubles the size of the

experiment.

Table 3.1. Resolution IV Design

Run      Original 2III
4−1           Factors                                                   I

x1 x2 x1 x2 x 4

1 -1 -1 +1 +1
2 +1 -1 -1 +1

3 -1 +1 -1 +1
4 +1 +1 +1 +1

Second  2III
4−1    with signs switched                    

5 +1 +1 -1 -1
6 -1 +1 +1 -1
7 +1 -1 +1 -1
8 -1 -1 -1 -1
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3.1.3 Resolutions III and IV designs

There  is  the  maximum number  of  variables  denoted  by  Kmax  that  can  be

accommodated in a resolution R  design of  N=2m  runs.  Corollaries 3.1, 3.2 and

3.3 stated below are used in the construction of the resolution III and IV designs (Draper

and Lin, 1990).

Corollary 3.1

Let m  be  the  number  of  basic  variables  in  a  design  and  the  number  of

experimental  runs  be  N .  The  maximum number  of  variables  Kmax  that  can  be

accommodated in a Resolution III  design is 2m
−1 . 

Corollary 3.2

Let m  be  the  number  of  basic  variables  in  a  design  and  the  number  of

experimental  runs  be  N .  The  maximum number  of  variables  Kmax  that  can  be

accommodated in a resolution IV  design is 2m−1 .

Corollary 3.3

Let m  be  the  number  of  basic  variables  in  a  design  and  the  number  of

experimental runs be N . A saturated design of resolution R=2 l  can be obtained by

folding over a saturated design of resolution (2 l−1)  plus an I column.

3.1.3.1 Resolution III  Design

A Fractional Factorial Design  in which the main effects are not aliased with each

other, but main effects are aliased with two factor interactions is said to be of resolution

III  and is  used in screening a large number of factors to find the most important

factor(s). With reference to Corollary 3.1, to create Resolution III  design, additional
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factors  are  assigned  to  the  generators.  For  example  in  a  27−4  design,  we  let

D=AB , E=AC , F=BC  and G=ABC . These designs are called saturated designs

and with 2m−p  runs, one can estimate 
2

(¿¿m−p−1)
¿

 main effects assuming all two-

way and higher effects are negligible. In case of fewer factors, we reduce p and m

by equal amounts. That is  26−3 , 25−2  , 24−1 . In each case, one fewer generator is

needed allowing us more flexibility in selecting the confounding. Therefore for m=3

factors, a Resolution III design will be such that  x3=x1 x2  and hence the defining

relation is given by I=x1 x2 x3 .

3.1.3.2 Resolution IV  Design

A Fractional Factorial Design in which no main effects are aliased with two-factor

interactions,  but  two-factor  interactions  are  aliased  with  each  other  is  said  to  be  of

resolution IV  and is  used in  screening a large number of factors  to  find the most

important factor. Using Corollary 3.2,for m=4  factors, a Resolution IV design will

be such that  x4=x1 x2 x3 and hence the defining relation is given by I=x1 x2 x3 x4

denoted as 2IV
4−1  design. 

Further using Corollary 3.3, this may also be done by first creating a resolution

III  design as explained in section 3.1.2. 
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3.1.4 Resolutions III and IVRotatableCCDs

In  this  thesis,  the  CCD is  a  resolution R central  composite  design  with  the

levels of each factor coded to the usual  −1,+1 , augmented by the following points:

(± α ,0,... ,0 ) , (0,± α ,... ,0 )∧(0,0,... , ± α) . (3.8)

Generally,  the design matrix  for a  CCD experiment  involving  m  factors is

derived from a matrix d , containing the following two different parts corresponding to

the two types of experimental runs:

1. Matrix R isobtained from the fractional factorial (resolution R ) experiment.

2. Matrix E corresponds to the axial points, with 2m  rows. 

Thus d  is a vertical concatenation given by:

d=[RE]  .                           (3.9)

The  value  of  α  is  selected  according  to  therotatabilityrestrictions(1.5).  To  fit  the

second-degree  Kroneckermodel(3.4),  the  expanded  design  matrix X  and  the

information matrix  XT X , for a general CCD were used. The design matrix  X  is

the  horizontal  concatenation  of  a  column  of  1 ' s  (intercept)  and  all  products  of

elements of a pair of columns of d (3.9) and takes the form:

X=[1dd (1 )2d (1 )× d (2 )…d (1 )× d (m )d (2 )× d (1 )…d (m−1 )× d (m )…d (m)× d (m−1 )d (m)
2 ]

(3.10)
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3.1.5 Rotatable Second-Degree Moment Matrices

A definition by Pukelsheim(1993) outlining the characteristics of rotatable moment

matrices of the constructed designs is given.

Definition 3.2

Let  M  be  a  symmetric  (1+m+m2 ) (1+m+m2 )   matrix.  Then  M  is  a

rotatable second-degree moment matrix on the experimental domain T √m if and only if

for some:   

μ2∈ [0,1 ]∧μ22∈[ m
m+2

μ2
2;

m
m+2

μ2] ,

Then

M=(
1 0 μ2 ( I⃗ m )

'

0 μ2 I m 0

μ2 I⃗ m 0 μ22 Fm
) (3.11)

Where Fm=I m⊗ I m+ I m ,m+(v ec I m)( I⃗m )
'

The moment matrix in (3.11) is attained by a design τ∈T  if and only if  τ  has all

moments of

2'
2( )

m

ie x d for all i m 



 ∫

2' ' 2
22( ) ( )

m

i je x x e d for all i j m 



  ∫

4'
22( ) 3

m

ie x d for all i m 



 ∫
, while all other moments up to order 4 vanish.  
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3.1.6 The Central Composite Design

The following theorem holds  for second -  degree complete  classes of  designs

(Pukelsheim, 1993).

Theorem 3.1

For  w∈ [0 ;1 ]  , let  τw=(1−α ) τ0+α ~τ√m    be the central composite design

which places mass  α  on the cube-plus-star design   ~τ√m    while putting weight

(1−w )  into 0 (on the center point portion) ,  then the following results hold:

a) (Kiefer completeness) For every design  τ∈Τ ,  there is some  w∈ [0 ;1 ]  such

that  the  central  composite  τw  improves  upon  τ  in  the  Kiefer  ordering

M 2(τw)≫ M 2(τ )  relative to the group Q2  defined in  (3.3). 

b) ( Q2  invariant  ϕ ) Let  ϕ  be an orthogonally invariant information function

on

NND(1+m+m2
) . Then for some w∈[ 2

m+4
;1] , the central composite design

τw  is ϕ−optimal  for θ  in Τ .

For a central composite design, the following relations are true:

μ4=2m− p
+2 α 4 and μ22=2m−p .

And forrotatability:

μ4=3μ22 giving α=2
m−p

4 =
4
√F    where   F=2m− p . (3.12)

Rotatability also includes non-singularity condition:
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μ4

(μ22)
2>

m
m+2  .

(3.13)

The rotatable CCD ξ  was formed by combining a fractional factorial design

(cube portion ξF  replicated nc times) obtained from resolution R (R equals III orIV)

for sample size 2m− p nc ,  a star portion ( ξ s  replicated ns times) for sample size

2 mns  plus a center point portion ( ξ0  replicated n0  times).  Thus

ξ=nc ξF+ns ξ s+n0ξ0 has  sample  size  n=2m−p nc+2m ns+n0  where   nc=1 ,

ns=1  and n0=0 . Therefore

ξ=ξ F+ξ s (3.14)

such that the sample size is n=2m−p
+2m  and p=1 .

3.1.6.1 Resolution III   Rotatable CCD Moment Matrix   

Definition 3.3: 

FromDefinition3.2,  let  X ' X  be  a  symmetric   (1+m+m2 )× (1+m+m2 )

matrix, and consider the Euclidean unit vectors in  Rm  denoted by  e1 ,e2 ,…,em  ,

then for Resolution III  and m=3

(a)      XT X=[
N 0m ,1

T (F+2α 2 )( I⃗m )
T

0m, 1 (F+2α2 ) Im F ( Eijk )
T

(F+2α2 ) I⃗ m F Eijk H m
]  (3.15)

where:

F  is the number of experimental runs in the fractional factorial portion,
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I m is an m× m  identity matrix,

0m, 1 is an m× 1  matrix whose elements are all zeros

Hm=(F+2α 4 )V 1+F V 2 , 

with

V 1=∑
i=1

m

Eii and     define    Eii=(ei e i
')⊗ (e ie i

' ) ,

V 2=∑
i ≠ j=1

m

(Eij+Ei j'+E ji) where Eij=(ei e i
' )⊗ (e j e j

' )   ,   

Ei j '=(ei e j
' )⊗ (ei e j

' ) and E ji=(e ie j
' )⊗ (e j ' )   ,      

Eijk= ∑
i≠ j ≠ k=1

m

(e i⊗e j )ek
'  .   

The moment matrix is then given by:

M=
XT X

N
.   (3.16)

The kronecker products were obtained using R- software.

(b)     If  the  CCD is  constructed  from a full  factorial  design,  the only  nonvanishing

moments are:

μ2(τ )=
nc

n
2m−p
+

ns

n
2 α2 ,       μ22(τ )=

nc

n
2m−p   , μ4 (τ )=

nc

n
2m−p
+

ns

n
2α 4 (3.17) 

where the cube and the star portion are replicated  nc  and  ns  times respectively

(Pukelsheim, 1998). and the condition for rotatability is

μ4=3μ22  (3.18)

3.1.6.2    Resolution R> III  Rotatable CCD Moment Matrix
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Definition 3.4

From Definition3.2,let XT X  be a symmetric (1+m+m2 )× (1+m+m2 )  matrix,

and consider  the  Euclidean unit  vectors  in  Rm  denoted by  e1 , e2 ,…, em thenfor

R> III∧m≥ 4 ,  

XT X=(
N 0m, 1

T (F+2α2 ) ( I⃗ m )
T

0m ,1 (F+2 α 2) I m 0m2 ,m
T

(F+2α 2 ) I⃗ m 0m2 ,m Hm
) (3.19)

Where

F  is the number of experimental runs in the cube portion obtained through resolution

R ,

I m is an m× m  identity matrix,

0m, 1 is an m× 1  null vector while 0m2 , m  is an m2× m  null matrix

Hm=(F+2α 4 )V 1+F V 2  , 

V 1=∑
i=1

m

Eii and V 2=∑
i ≠ j=1

m

(Eij+Ei j'+E ji)+ ∑
i ≠ j ≠k ≠ l=1

m

Eijkl

Define 

Eii=(ei e i
' )⊗ (e ie i

' ) ,       Eij=(ei e i
' )⊗ (e j e j

' ) ,            El=(e ie j
' )⊗ (el ek

' )

E ji=(e ie j
' )⊗ (e j ei

' ) ,      Eijkl=(ei e j
' )⊗ (ek e l

')

 Then the moment matrix is given by:

M=
XT X

N
   .

The kronecker products were obtained using R- software.
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3.1.7 Subsystem of Interest of the Mean Parameters

The parameter system of the Kronecker model contains a lot  of repeated terms

making it  rank deficient hence not of all  the parameters can be estimated efficiently.

There are cases where the experimenter is only interested with a few parameters say s

out of the total  k  components.  Parameter subsystems could be linear functions or

nonlinear functions of the full parameter vector. 

Consider  a  subset  s components  out  of  the  total  k  components,  where

s ≤k  and the linear parameter subsystem of the form  K ' θ ,  where parameter vector

θ∈Rk  for some k × s  matrix K ∈Rk ×(m+1 )   is assumed to have full column rank,

K  is called the coefficient matrix of the parameter subsystem K ' θ . 

Let the Euclidean unit vectors in Rm be denoted by  e1 ,e2 ,…,em  and the sets 

e ii=ei⨂ e i , e ij=e i⨂ e j , fori< j<k , i , j , k={1,2, …, m}.

Then the k × s  coefficient matrix:

m
(¿¿2+m+1)× s

K=(
1 0m,1

T 0m2 ,1
T

0m,1 0m ,m 0m, s−(m+1 )

0
m2 , 1

K 1 K2
)∈R¿

for m≥ 3 (3.20)

such that

0u , v is a u × v  matrix of zeros

K 1=∑
i=1

m

eii ei
' ,         an  (m2× m)  matrix                                          

and
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e
(¿¿ ij+e ji)E r

'

∑
i , j=1

i< j

m

¿

¿
for m=3
¿
e

(¿¿ ij+e ji+ekl+e lk)Er
'

∑
i , j=1

i< j
k <l

m

¿

¿
¿
¿

1
2
¿

K 2=¿

(3.21)

where

K 2 is an m2×(s−(m+1))  matrix.

and r=1,…,(s−(m+1 )) ,  s  number of parameters in the subsystem of interest.

Thus 

{
θ0

θii for 1 ≤i ≤m
1
2
{(θ ij+θ ji) }fori=1,…,m

i< j≤ m
}for m=3 factors

¿
¿

θ0

θii for 1≤ i≤ m
1
4 {(

θij+θ ji+θkl+θlk )}fori , j , k , l=1,…,m

i ≠ j≠ k≠ l
i< j ,
¿

for m=4 factors

{¿

KT
(θ )=¿

(3.22)
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Next is the definition of the information matrix as defined by Pukelsheim (1993)

and cited by Cherutich et.al., (2012). 

Definition 3.5

The information  matrix  for  KT θ  with  k × s  coefficient  matrix  K  of

column  rank  s ,  is  defined  to  be  C k (M )  when  the  mapping

C k : NND (k )→sym(s)   is given by all A∈NND (k )  with minimum taken relative to

the loewner ordering over all left inverses  L  of  K  where  M  is the moment

matrix (3.4). The amount of information which the design ξ  contains on the parameter

subsystem  KT θ  is  captured  by  the  information  matrix  (1.4)  now  defined  as,

m
S ×(¿¿2+m+1)

C k (ξ )=min {LM (ξ )LT };L∈R ¿
    and this is  the precision matrix  of the best  linear

unbiased estimator  for  KT θ   under  design τ  (Pukelsheim,  1993).  The information

matrices  for  KT θ  are  linear  transformations  of  moment  matrices  and  takes  the

following form:

C k(M (ξ))=(K
T K )

−1
KT M (ξ )K (KT K )

−1
∈ NND(s) .

Further defining every left inverse L  of K  as

L=(KT K )
−1

KT   (3.23)

then

C k (M (ξ ) )=LM ( ξ ) LT . (3.24)
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3.2 Weighted Central Composite Designs

The derived basic  2m−p  designs and the corresponding rotatable CCDs ( ξ )

design matrices X   for three and four factors were then used to obtain the respective

moment and information matrices based on the parameter subsystem of interest on the

second-degree Kronecker model. 

The CCD was separated into a factorial (cube) block and an axial (star) point block.

A convex combination: 

ξWCCD(w)=∑
i=1

q

wi ξ i with w=(w 1,w 2 ,…,w q )
T∈Τ q

is called a weighted central composite design with weight vector  ∑
i=1

q

wi=1  . 

From the linearity of the information matrix mapping  CK (definition 3.3), for every

w∈Τq

CK (M (ξ (w ) ) )=∑
i=1

q

w iCK (M (ξ i )) i=1,2 .   (3.25)

The  information  matrices  CK (M (ξ i ) )  are  obtained  by  using  equation  3.24.  The

rotatable WCCD ( α 4
=2m− p

¿ was expressed as:

ξWCCD=w 1ξ F+w2ξs (3.26)

where

a) w i , i=1,2 satisfies  the   conditions  ∑
i=1

2

wi=1   and  w1,w2≥ 0  are  different

masses assigned to each of the two elementary designs  ξF   and ξ s  respectively.
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b) ξF  is the design with support points nF  determined by combining the first order

design obtained from half- fraction factorial design (either Resolution III or IV)  and

ξ s  is the design with 2m  distinct support points (the star portion) and thus the

total support points is n=nF+2 m .

From  moment  matrices  to  Designs,  the  General  Equivalent  Theorem  (GET)

concentrates on moment matrices and consequently the information matrices. However

the statistical interest is in the designs themselves. The aim is at necessary conditions that

aid in identifying the support points and the weights of optimal designs. The GETgiven in

Pulkelsheim (1993) and as proved by Kinyanjui (2007)is adapted to in this studyto derive

D-, A- and E-optimal rotatable Weighted Central Composite Designs (ξWCCD) for the

three and four factors. The relations were used to compute the weights w1  and w2

using both the R and wxMaximasoftwares.

Theorem 3.2:  Equivalence Theorem for D- and A- Optimality

Consider  a  matrix  mean  φ❑p  with  parameter  p  finite,   p∈¿ .  Let

w i∈Τ m  be the weight vector of a weighted central composite design ξ (w)  which is

feasible for   KT θ . Further let M (ξ)∈M (Ξ)  be a competing moment matrix that

is  feasible  for  KT θ ,  with information matrix  C=CK(M (ξ)) .  Then  M (ξ)  is

φ❑p−¿ optimal  for  KT θ  in  M  and  consequently  ξ (w)  is  φ❑p−¿

optimal for KT θ  in Τ    if and only if 

trace Ci C
p−1 {¿ trace C p for i=1,2
¿trace C p otherwise

with p=0, for D−optimality∧p=−1 for A−optimality (3.27)
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which results in                                             

D−optimality , p=0 and trace Ci C
−1
=trace C0

=trace I s  ,  (3.28)

and

A−optimality , p=−1 and trace Ci C
−2
=trace C−1 .( i=1,2 ¿ (3.29)

Theorem 3.3:  Equivalence Theorem for E-Optimality 

Let   M (ξ)∈M (Ξ)  be  a  moment  matrix  that  is  feasible  for  KT θ ,  with

information matrix C=CK(M (ξ)) . Then M (ξ)  is φ❑−∞−¿ optimal for KT θ

in M  if and only if there exists a nonnegative definite s ×s  matrix E  with trace

equal to 1 and a generalized inverse G  of  M  that satisfies the normality inequality

traceAGKCEC KT GT ≤ λmin (C ) for all A∈M  . 

 The CCD ξ (w )  is E-optimal for KT θ  in T if and only if there is a matrix 

E∈ sym(s , H )∩ NND (s) satisfying traceE=1

and

trace Ci E {¿ λmin (C ) for all i∈ δ(α )
¿ λmin (C )otherwise

(3.30)

where λmin (C )  is the smallest eigenvalue of C, the information matrix. If the smallest

eigenvalue for C has multiplicity 1, then the only choice for matrix E  is

E=
zT z

‖z‖
2   (3.31)

where z∈R s  is  the  eigenvector  corresponding  to  the  smallest  eigenvalue  of  the

information matrix C. 
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Theorem 3.4:  Equivalence Theorem for I- Optimality (GoosandSyafitri (2014)) 

Assuming that all runs of the experiment based on the simplex - centroid design

with weights w1 , w2 , …, wq are independent and that the responses have equal variance

(which  is  assumed  to  be  one,  without  loss  of  generality),  the  best  linear  unbiased

estimator of β  is the ordinary least squares estimator. The corresponding information

matrix is:

C=XT⋀ X (3.32)

with X=[f (x1 ) , f (x2 ) ,…, f (xq ) ]
T

 the q × s model matrix (in this case comprising of

regression vectors in the parameter subsystem of interest) corresponding to the s points of

the  second kronecker model central composite  design and  ⋀   is  a diagonal matrix

such that

⋀=[
w1

F
I F 0

0
w2

2m
I 2m]

(3.33)

where I F is an F × F  identity matrix,  F is the number of  experimental runs in the

fractional factorial portion, I2 m  is a 2m×2m  identity matrix, 2m  is the number

of runs in the star portion and m  is the number of factors.

Atkinson et al., (2007) explains that a continuous design with information matrix M  is

I- optimal if and only if
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f T (x )C−1 L C−1 f (x)≤tr (C−1 L) (3.34)

for each point x  in the experimental region χ  . The general equivalence theorem

states that for a design to be  I−optimal  , the inequality (3.34) when evaluated at each

of the design points becomes

f T (x )C−1 L C−1 f ( x )=tr (C−1 L) (3.35)

3.2.1 Generalized WCCD

A  generalized  form  ofoptimalrotatableWCCDs  for   m  factors  was  then

obtained using the derived optimalrotatableresolution III and IV designs.

3.3 Optimality Criteria and Efficiency

Optimal designs are usually obtained by optimizing functions of the information

matrix (3.24).  

3.3.1 Classical Optimality Criteria

The purpose of any optimality criterion is  to  measure the largeness of a non-

negative definite  s ×s information matrix. The optimality criteria used in this thesisis

specified  as  those  in  the  family  of  matrix  means ∅p for p=−∞ ,−1,0, 1 .  The  D-

optimality criterion maximizes the determinant of the information matrix or equivalently,

minimizes the determinant of the inverse of the information matrix. A-optimality criterion

seeks to minimize the average variance of the parameter estimates while the E-optimality

criterion seeks to maximize the minimum eigenvalue of the information matrix.

This family is discussed in detail by Pukelsheim (1993) and cited by El-Monsef

et.al.2009) and is defined as follows:
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¿

(det C )

1
s for p=0

( 1s trace C−1)
−1

for p=−1

λmin (C ) for p=−∞
¿

∅p (C )=¿

(3.36)

for D-, A-, and E-optimality respectively.  

For a CCD using a 2m−p  Resolution V fractional factorial design and nc  center 

runs, the determinant can be written as:

|XT X|=(2m− p
+2 α2 )

m
(2α 4 )

m−1
(2m−p )

(m2 )[2m− p+1 (α 2
−m )

2
+2nc α4

+mnc 2m−p ] .

                          (3.37)

This is obtained by partitioning

XT X=[A11 A12

A21 A22]
and then reducing  |X ' X|  by using the identity 

|A11 A12

A21 A22
|=|A11|.|A22−A21 A11

−1 A12| .   (3.38)

In a traditional CCD, A11  is of the form 

( A B1'

B1 (G−D ) I+DJ )
Where

A=N=2m−p
+2m+nc ,                    B=2m−p

+2α 2 ,

G=2m−p ,                                               D=2m−p
+2α 4 .

(3.39)
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3.3.2 I -optimality

I−optimality  seeks designs that minimize the averageprediction variance over

the experimental region χ.  According to Goos and Syafitri, (2014)by definition:

Average variance
 

1
1( ) ( )

( ) ( )
T

T T
f x M f x dx

f x X X f x dx

dx dx







 

∫
∫

∫ ∫
  (3.40)

and can be calculated exactly for simplex shaped experimental regions as 

1
Γ q [tr (X

T X )
−1
[∫ f ( x ) f T

( x )dx ]⏟]
momentmatrix

. The numerator in (3.40) may be expressed as

1 1( ) ( ) ( ) ( )T Tf x M f x dx tr M f x f x dx
 

 
 

  
  

∫ ∫

Define B=¿

Then 

I−optimality=¿
 1tr M B

dx




∫

 (3.41)

Assuming that the experimental region  χ  is the full  m−1 -dimensional simplex

sq−1  , the elements of B can be obtained using the formula:

1

1

2 1 1
1 2....1 2

11

( 1) !
...

1 !( )

m

q

m m

i i

p p p i i
m m

mm
s

ii
ii

p p
B x x x dx dx dx

m pm p

 





  
 
   

 

 
∫



where p  is the power of the factors and m  is the number of factors.And
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1

1

ms

dx dx
m 

 ∫ ∫

Define

L=Γ (m)× B where Γ (m)=(m−1 ) !

(3.42)

Substituting (3.42) in (3.41) gives

I−optimality=tr [M−1 L] (3.43)

3.3.3 Efficiency

Efficiency tests the goodness of a design. Let ξ  and ξ¿   be the full rotatable

CCD and the derived optimal rotatable WCCD respectively. Further let  ϕp  be the

optimality criteria(3.36) used to obtain the corresponding optimal values 
ϕ

V (¿¿ p(ξ¿))
¿

and 
ϕ

V (¿¿ p(ξ ))
¿

for D-, A- and E-optimum designs, then generally the ϕ -efficiency

of design ξ¿  relative to design  ξ  is given by

ϕ
ϕ

V (¿¿ p(ξ ))
V (¿¿ p (ξ ¿))

¿
ef f ϕ p

(ξ¿ )=¿

  (3.44)
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where
ϕ

V (¿¿ p(ξ ¿))
¿

 is the respective optimal value of the derived optimal rotatable

WCCD and  
ϕ

V (¿¿ p(ξ ))
¿

 is the respective optimal value of the  full rotatable CCD

Specifically 

1)

ϕ
ϕ

V (¿¿ p(ξ ¿))
V (¿¿ p(ξ))
¿

Def f ϕ p

(ξ¿ )=¿

where ξ¿  is D−optimal  design. (3.45)

A D-efficiency near one indicates that Design ξ¿  is better than Design ξ  in termsof

the D-optimality criterion (Goos and Bradley, 2012).

2)

ϕ
ϕ

V (¿¿ p(ξ ))
V (¿¿ p (ξ ¿))

¿
A ef f ϕp

( ξ¿ )=¿

where ξ¿  is  A−optimal . (3.46)

3)

ϕ
ϕ

V (¿¿ p(ξ ¿))
V (¿¿ p(ξ))
¿

Eef f ϕp

( ξ¿ )=¿

 where ξ¿  is  E−optimal . (3.47)

Further  using I−optimality  given  in  (3.43),  I−efficiency  of  a  design  ξ  is

defined as
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4) I (ξ )=
tr [M−1 L (ξ¿ ) ]

tr [M−1 L ( ξ ) ]

(3.48)

where ξ¿  is I−optimal (El-Monsef et.al., 2009).

AnI-efficiency which is less than one indicates that Design  ξ¿  is better than Design

ξ  in terms of the average prediction variance (Goos and Bradley, 2012).

Optimal  values  and  weights  for  the  weighted  central  composite  designs  were

numerically obtained using both R and wxMaxima softwares.

3.4 Illustration

The  theoretical  results  were  illustrated  using  experimental  data  obtained  from

Journal of Statistical Education Data Archivethrough an application on optimization of a

four factor CCD to determine effects on whiteness of cotton.

The following is a description of the data:

Source: P.K. Lavric, F. Kovac, P.F. Tavcer, P. Hauser, D. Hinks (2007).

"Enhanced PAA Bleaching of Cotton by Incorporating a Cationic Bleach Activator,"

Coloration Technology,123 (4): 230-236.

Description: 4-Factor Design to determine effects on whiteness of cotton.

Factors: Temperature (40-80C)

Bleach Activator - TBBC (0-3 %owf)

pH    (6.5-8.5)

Peracetic Acid - PAA (5-25ml/l)

Response: Whiteness Index

http://www.amstat.org/publications/jse/jse_data_archive.html
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A  full  quadratic  and  a  reduced  quadratic  model  namely  the  second-order

Kroneckermodelusing  Resolution  IV  design  were  fitted  and  astationarityand  matrix

analysis  was  carried  out  to  obtain  a mathematical  solution  for  the  location  of  the

Stationary Point. The efficiency of the designwas determined and basic diagnostic graphs

and contour surface plots were plotted for this data.  
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.0 Introduction

This chapter deals with the interpretation and explanation of the findings of this

study with regard to the stated research objectives (1.2.2). These results are presented in

four sections. In section 4.1, rotatable designs through resolutions III and IV for three and

fourfactors based on the Central Composite Designsare constructed. Their moments and

the  corresponding  information  matrices  for  the  parameter  subsystem  of  interest  are

derived.  These  results  are  then  used  to  derive  optimal  rotatable  Weighted  Central

Composite Designsbased on the D-, A- , E- and I-optimality criteria for three and four

factors  in  section  4.2.  The  moment,  coefficient  and  information  matrices  for  m -

factors are also obtained. Further generalization of the D- optimal rotatable WCCD is

given. In section 4.3,  WCCDs D-, A-, E- and I- optimal values and their corresponding

efficiencies are determined and a general form of  D- and I-  optimal values is  given.

Section 4.4 deals with data analysis where optimization of whiteness of cotton is done

using four factor CCD. 

4.1 Resolutions III and IV Rotatable CCDs

In this section, methods outlined in section 3.1were used to obtain the results.

4.1.1 Resolutions III Rotatable CCDs

For  m=3 ,  a  full   23−1  factorial  design is  written down, then the  3rd

factor  is  added  by  identifying  its  plus  and  minus  levels  with  the  signs  of
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x3=x1,…, x3−1 . Therefore a Resolution III  design will be such that  x3=x1 x2

and hence the defining relation is given by I=x1 x2 x3 . This results in:

Table 4.1. Resolution III Design

Run Factors
x1 x2 x3=x1 x2

1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

From 3.9 and using Table 4.1, matrix d for m=3  was given by:

d=[
−1 −1 1
1 −1 −1
−1 1 −1
1 1 1
−α 0 0
α 0 0
0 −α 0
0 α 0
0 0 −α
0 0 α

] where  α=1.414

Then using (3.10), the design  matrix is

X=[
1 −1 −1 1 1 1 −1 1 1 −1 −1 −1 1
1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1.414 0 0 2 0 0 0 0 0 0 0 0
1 1.414 0 0 2 0 0 0 0 0 0 0 0
1 0 −1.414 0 0 0 0 0 2 0 0 0 0
1 0 1.414 0 0 0 0 0 2 0 0 0 0
1 0 0 −1.414 0 0 0 0 0 0 0 0 2
1 0 0 1.414 0 0 0 0 0 0 0 0 2

]
(4.1)
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4.1.1.1 Three Factors Rotatable CCD Moment Matrix 

Let XT X  be  a  symmetric   (1+m+m2 )× (1+m+m2 )  for  m=3 then

equation 3.15 results in:

XT X=(
10 03,1

T (4+2α2 ) ( I⃗ 3 )
T

03,1 (4+2α2 ) I3 4 Eijk
T

(4+2α2 ) I⃗3 4 Eijk H 3
) (4.2)

Where

H 3=(F+2α4 )V 1+F V 2 , 

and

Eijk= ∑
i≠ j ≠ k=1

m

(e i⊗e j )ek
' .  (4.3)

The matrix 03,1=[
0
0
0]

F  is the number of experimental runs in the fractional factorial portion and the value

of α  satisfies rotatability condition as stated in (3.12). Thus for m=3 ,

α=1.4142 ,  

I⃗3=[1 0 0 0 1 0 0 0 1 ]
'   and  I3=[

1 0 0
0 1 0
0 0 1]

Thus 

(4+2 α2 ) I⃗ 3=[8 0 0 0 8 0 0 0 8 ]
'    and    (4+2α2 ) I 3=[

8 0 0
0 8 0
0 0 8]

(4.4)
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Define Ei  by considering the pairs of (i , j)  as follows:

E1=e1 e1
'
=[

1 0 0
0 0 0
0 0 0 ] , E2=e2 e2

'
=[

0 0 0
0 1 0
0 0 0]  ,

E3=e3 e3
'
=[

0 0 0
0 0 0
0 0 1]E4=e1e2

'
=[

0 1 0
0 0 0
0 0 0]   , E5=e1 e3

'
=[

0 0 1
0 0 0
0 0 0] ,

E6=e2 e1
'
=(e1 e2

'
)'   ,             E8=e3 e1

'
=(e1 e3

'
) '   ,  E9=e3 e2

'
=(e2 e3

'
) '  ,

E7=e2 e3
'
=[

0 0 0
0 0 1
0 0 0] ,    Eii=Ei⊗Ei     and       Eij=Ei⊗E j .  ,  and Eij  ,

Ei j '    and    E ji    are defined in definition 3.4.

 Thus

V 1=∑
i=1

3

Eii=E11+E22+E33=E1⊗E1+E2⊗E2+E3⊗E3

¿[
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

] (4.5)
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and

V 2=∑
i ≠ j=1

3

(Eij+Ei j'+E ji)

¿E1⊗E2+E1⊗E3+E2⊗E1+E2⊗E3+E3⊗E1+E3⊗E2+E4⊗E4+E5⊗E5+E6⊗E6+E7⊗E7+E8⊗E8+E9⊗E9+E4⊗E6+E6⊗E4+E5⊗E8+E8⊗E5+E7⊗E9+E9⊗E8.

¿[
1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1

] (4.6)

Using results(4.5) and (4.6)in (4.3), the following are obtained

H 3=[
12 0 0 0 4 0 0 0 4
0 4 0 4 0 0 0 0 0
0 0 4 0 0 0 4 0 0
0 4 0 4 0 0 0 0 0
4 0 0 0 8 0 0 0 4
0 0 0 0 0 4 0 4 0
0 0 4 0 0 0 4 0 0
0 0 0 0 0 4 0 4 0
4 0 0 0 4 0 0 0 12

] , (4.7)

and

Eijk=[
0 0 0
0 0 1
0 1 0
0 0 1
0 0 0
1 0 0
0 1 0
1 0 0
0 0 0

]=E123  , for  m=3 (4.8)
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Then  by using (4.4), (4.7) and (4.8) in (4.2),  the moment matrix  corresponding to  a

CCD whose cube portion is constructed through Resolution III   is obtained as;

X ' X
10
=[

1 03,1
' 0.8 ( I⃗ 3)

'

03,1 0.8 I 3 0.4 (E123)
'

0.8 I⃗3 0.4 E123 H3
] (4.9)

In addition to the moments given in (3.17) which are nonvanishing, if a CCD

is constructed through Resolution III, the other nonvanishing moment is  μ111 ( τ )  which

is equal to μ22(τ ) .

Rotatability condition is satisfied since:

μ4=3μ22=3× 0.4=1.2 .

4.1.1.2 Three Factors Rotatable CCD Information Matrix 

The following lemma is proved:

Lemma 4.1

The K -matrix for m=3  factors is given by

K=[
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0.5 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0.5
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.5
0 0 0 1 0 0 0

]
(4.10)



lx

Proof:

From (3.21), for m=3

K1=e11 e1
'
+e22 e2

'
+e33 e3

'

and

e
¿
e
e

(¿¿23+e32)e3
'

(¿¿13+e31)e2
'
+¿

(¿12+e21¿)e1
'
+¿

¿

K2=
1
2
¿

.       (4.11)

Define 

e ij=ei⊗e j  , i , j=1,2,3  where  e1=[
1
0
0]  ,  e2=[

0
1
0 ]     and    e3=[

0
0
1 ]

Substituting these productsin(4.11), the following are obtained

K 1=[
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

]  and K2=[
0 0 0

0.5 0 0
0 0.5 0

0.5 0 0
0 0 0
0 0 0.5
0 0.5 0
0 0 0.5
0 0 0

]  .

Hence substituting this in (3.20),matrix K is obtained.

Then using (4.10) in (3.23) gives::
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L=[
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0

] (4.12)

Substituting (4.9) and (4.12) in(3.24), information matrix for three factors full CCD is 

obtained as:

CK (M ( ξ ) )=[
1 0.813 03,1

T

0.813 1.2 I 3+0.4 ∑
i ≠ j=1

3

ei e j
' 03,3

03,1 03,3 1.6 I 3
] (4.13)

where 03.1  is an 3×1  matrix and 03,3  is an 3×3  matrix of zeros.

4.1.2 Resolutions IV Rotatable CCD

For m=4 , a full  24−1  factorial design is written down, then the 4 th  factor

is added by identifying its plus and minus levels with the signs of x4=x1 ,…,x4−1 .

Therefore  a  Resolution  IV design  will  be  such  that   x4=x1 x2 x3 and  hence  the

defining relation is given by I=x1 x2 x3 x4 . This results in:

Table 4.2. Resolution IV Design

Run  Factors
x1 x2 x3 x4=x1 x2 x3

1 -1 -1 -1 -1
2 +1 -1 -1 +1
3 -1 +1 -1 +1
4 +1 +1 -1 -1
5 -1 -1 +1 +1
6 +1 -1 +1 -1
7 -1 +1 +1 -1
8 +1 +1 +1 +1
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From 3.9 and using Table 4.2,  matrix d  for m=4  is obtained as 

d=[
−1 −1 −1 −1
1 −1 −1 1
−1 1 −1 1
1 1 −1 −1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1
1 1 1 1
−α 0 0 0
α 0 0 0
0 −α 0 0
0 α 0 0
0 0 −α 0
0 0 α 0
0 0 0 −α
0 0 0 α

] ,     
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 Then using (3.10), the design  matrix is

X=[
1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −α 0 0 0 α 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 α 0 0 0 α 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −α 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0
1 0 α 0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0 0 0 0
1 0 0 −α 0 0 0 0 0 0 0 0 0 0 0 α 2 0 0 0 0 0
1 0 0 α 0 0 0 0 0 0 0 0 0 0 0 α 2 0 0 0 0 0
1 0 0 0 −α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α 2

1 0 0 0 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α 2

]
Where α=1.6818 (4.14)

4.1.2.1 Four Factors Rotatable CCD Moment Matrix
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Let  XT X  be a symmetric  (1+m+m2 )× (1+m+m2 )  matrix. For  m=4

equation (3.19)  results in:

XT X=(
N 04,1

T (F+2α 2 )( I⃗ 4 )
T

04,1 (F+2α 2 ) I 4 016,4
T

(F+2α 2 ) I⃗ 4 016,4 H 4
)  (4.15)

where

N=16, F=8 , α=1.6818 ,

04,1 is an 4 × 1  null vector and 04 2 ,4 is an 42× 4  null matrix,

I 4  is an 4× 4  identity matrix such that:

(F+2α 2 ) I 4=[
13.66 0 0 0

0 13.66 0 0
0 0 13.66 0
0 0 0 13.66

]
and

(F+2α 2 ) ( I⃗ 4 )
T
=13.66 ( I⃗ 4 )

T for

I⃗ 4=[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]
T (4.16)

F+2 α 4
=24 such that

H 4=24V 1+8 V 2  (4.17)

Next define Ei  by considering the pairs of (i , j)  as follows

E1=e1 e1
'    , E2=e2 e2

'  ,     E3=e3 e3
' , E4=e4 e4

' ,  E5=e1 e2
'   ,  E6=e1 e3

'   ,

E7=e1 e4
' ,      E8=e2 e1

' ,      E9=e2 e3
'  ,     E10=e2 e4

' ,  E11=e3e1
' ,
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E12=e3 e2
' ,        E13=e3 e4

' ,   E14=e4 e1
' ,  E15=e4 e2

'  , E16=e4 e3
' ,

Eii=Ei⊗Ei , Eij=Ei⊗E j

Thus 

V 1=∑
i=1

4

Eii=E11+E22+E33+E44=E1⊗E1+E2⊗E2+E3⊗E3+E4⊗E4

V 1=[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

] (4.18)

and

V 2=∑
i ≠ j=1

4

(Eij+Ei j'+E ji)+ ∑
i ≠ j ≠k ≠ l=1

4

Eijkl

for Eij=(ei e i
' )⊗ (e j e j

' ) ,    Elj '=(e i e j
' )⊗(e l e j

' ) , E ji=(e ie j
' )⊗ (e j ei

' ) ,

Eijk=(e i e j
' )⊗(e iek

' )  ,      Eijkl=(ei e j
' )⊗ (ek e l

') .

Thisresultsin
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V 2=[
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

] (4.19)

Substituting (4.18) and (4.19) in (4.17), the following is obtained

H 4=[
24 0 0 0 0 8 0 0 0 0 8 0 0 0 0 8
0 8 0 0 8 0 0 0 0 0 0 8 0 0 8 0
0 0 8 0 0 0 0 8 8 0 0 0 0 8 0 0
0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0
0 8 0 0 8 0 0 0 0 0 0 8 0 0 8 0
8 0 0 0 0 8 0 0 0 0 8 0 0 0 0 8
0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0
0 0 8 0 0 0 0 8 8 0 0 0 0 8 0 0
0 0 8 0 0 0 0 8 8 0 0 0 0 8 0 0
0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0
8 0 0 0 0 8 0 0 0 0 8 0 0 0 0 8
0 8 0 0 8 0 0 0 0 0 0 8 0 0 8 0
0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0
0 0 8 0 0 0 0 8 8 0 0 0 0 8 0 0
0 8 0 0 8 0 0 0 0 0 0 8 0 0 8 0
8 0 0 0 0 8 0 0 0 0 8 0 0 0 0 24

] (4.20)

Thus using(4.16) and (4.20) in (4.15), the moment matrix  corresponding to  a CCD with

cube portion constructed through resolution IV   is obtained as;
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M=
XT X
16
=[

1 04,1
T 13.7 ( I⃗ 4 )

T

04,1 13.7 I 4 016,4
T

13.7 I⃗ 4 016,4 H 4
] (4.21)

The  only  nonvanishing  moments  when  the  cube  portion  of  the  CCD  is  constructed

through resolution R ≥ 4  are:

μ2(τ )=
1
n

2m−p
+

1
n

2α2
,    μ22(τ )=

1
n

2m−p
  ,     μ4 (τ )=

1
n

2m−p
+

1
n

2α 4

4.1.2.2 Four Factors Rotatable CCD Information Matrix

The following lemma is proved:

Lemma 4.2

Let the parameter subsystem of interest be KT (θ ) . Then for ¿4  ,
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K=[
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0.25 0 0
0 0 0 0 0 0 0.25 0
0 0 0 0 0 0 0 0.25
0 0 0 0 0 0.25 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0.25
0 0 0 0 0 0 0.25 0
0 0 0 0 0 0 0.25 0
0 0 0 0 0 0 0 0.25
0 0 0 1 0 0 0 0
0 0 0 0 0 0.25 0 0
0 0 0 0 0 0 0 0.25
0 0 0 0 0 0 0.25 0
0 0 0 0 0 0.25 0 0
0 0 0 0 1 0 0 0

] (4.22)

Proof:

From equation (3.21),

K 1=e11 e1
'
+e22 e2

'
+e33 e3

'
+e44 e4

' ,  a (42× 4)  matrix                                           

and

e
¿
e
e
¿
¿

(¿¿13+e31+e24+e42)E2
'
+¿

(¿12+e21+e34+e43¿)E1
'
+¿

¿

K2=
1
4
¿
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+e32¿ E3
' . (4.23)

Define

e ij=ei⊗e j ,  i , j=1,2,3 ;  where   e1=[
1
0
0
0
]  ,   e2=[

0
1
0
0
] ,    e3=[

0
0
1
0
]  and

e4=[
0
0
0
1
]

E1=[
1
0
0] ,    E2=[

0
1
0] ,     E3=[

0
0
1] ,        

Substituting these in (4.23), the following are obtained
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K 1=[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

] and K2=[
0 0 0

0.25 0 0
0 0.25 0
0 0 0.25

0.25 0 0
0 0 0
0 0 0.25
0 0.25 0
0 0.25 0
0 0 0.25
0 0 0

0.25 0 0
0 0 0.25
0 0.25 0

0.25 0 0
0 0 0

]
(4.24)

Using (3.20) and (4.24) gives the matrix K  and hence the lemma.

Next substituting (4.22) in (3.23) results in:

L=[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

] (4.25)

Thus using (4.21) and (4.25) in (3.24), the information matrix for four factors full CCDis

obtained as:

CK (M ( ξ ) )=[
1 0.8514

T 03,1
T

0.8514 1.5 I 4+0.5 ∑
i ≠ j=1

4

ei e j
' 03,4

T

03,1 03,4 8 I 3
] (4.26)
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where  03,1  and  03,4  are  matrices  of  zeros  of  order  3×1  and  3×4

respectively,

4.1.3 Resolution R Rotatable CCD for m  factors

In sections 4.1.1 and 4.1.2, resolutions III  and IV rotatable CCDs for three

and  four  factors  have  been  derived  and  their  corresponding  information  matrices

obtained.  In  this  section  matrices  for  m  factors  namely  momentmatrix M (ξ)

,coefficient matrix K and information matrix CK(M (ξ))  are presented.

4.1.3.1 Generalized Moment Matrix M (ξ)

Generally, for m−¿ factors and cube portion constructed through resolution R,

the second – order kronecker model moment matrix of a rotatableCCD may be expressed

as follows:

Let d  be a vertical concatenation of the form  d=[RE]   given in equation

(3.9), then for m−¿ factors and N  experimental runs, the design matrix X  takes

the form given in equation (3.10). By definition, the moment matrix (3.16) for a second-

order kronecker model is given by:

M (ξ )=
X ' X
N
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¿{
1
N [

N 0m ,1
' (F+2α2 ) ( I⃗ m )

'

0m,1 (F+2α 2 ) I m F (Eijk )
'

(F+2α 2 ) I⃗ m F Eijk Hm
]∈R(1+m+m2)× (1+m+m2 ) for m≥ 3

Resolution III

1
N [

N 0m,1
' (F+2α2 ) ( I⃗ m )

'

0m, 1 (F+2α2 ) I m 0m2 ,m
'

(F+2α 2) I⃗ m 0
m2 , m

Hm
]∈R(1+m+m2)× (1+m+m2) for m≥ 4

Resolution R ≥ IV

(4.27)

where

N  is the total number of experimental runs

α=2
m− p

4  satisfying the condition for second-order rotatable designs, 

m  is the number of factors, F  is the number of runs in the cube portion,  

I m∈Rm×m  is an m× m  identity matrix and I⃗m=I m⊗ I m ,

0m, 1 and 0m2 , m  are matrices of zeros of order m× 1  and m2× m  respectively,

Eijk= ∑
i≠ j ≠ k=1

m

(e i⊗e j )ek
'  , e i ' s  are the Euclidean unit vectors in  Rm  denoted by

e1 , e2 , …, em

Hm  is an m2× m2  matrix whose entries are given by (F+2α 4 )V 1+F V 2
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V 1=∑
i=1

m

Eii with Eii=(ei e i
')⊗ (e ie i

' )

V 2={
∑

i ≠ j=1

m

(Eij+Ei j '+E ji ) for m≥ 3Resolution III

∑
i ≠ j=1

m

(Eij+E i j'+E ji )+ ∑
i ≠ j≠ k ≠l=1

m

E ijkl for m≥ 4 Resolution R ≥ IV

with Eij=(ei e i
' )⊗ (e j e j

' )  ,     Ei j '=(ei e j
' )⊗ (ei e j

' )  , E ji=(e ie j
' )⊗ (e j ei

' ) ,

Eijk=(e i e j
' )⊗(e iek

' ) ,      Eijkl=(ei e j
' )⊗ (ek e l

') .

4.1.3.2  Coefficient Matrix K

For m  factors and a parameter subsystem of interest,the coefficient matrix for

the rotatable CCDis defined as:

m
(¿¿2+m+1)× s

K=(
1 0m,1

T 0m2 ,1
T

0m,1 0m ,m 0m, s−(m+1 )

0
m2 , 1

K 1 K2
)∈R¿

for m≥ 3  (4.28)

where

K 1=∑
i=1

m

eii ei
'  ,   (m2× m)  matrix                                           

and
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e
(¿¿ ij+e ji)el

'

∑
i , j=1

i≠ j

m

¿

¿

K 2=
1
r
¿

 , an m2×(s−(m+1))  matrix

where r  is the number of times each column corresponding to the interaction factors is

repeated in the design matrix X  of the respective CCD and s<m  is the number of

parameters of interest.

4.1.3.3 Generalized Information Matrix

From  definition  (3.23), L=(K ' K )
−1

K '  such  that CK(M (ξ))=LM (ξ)L' .

Usingresults (4.27) and (4.28), the Information matrix is obtained as

CK (M ( ξ ) )=
1
N (

N (F+2α 2) (1m )
' 0c, 1

'

(F+2α2 )1m Gm 0c, m
'

0c, 1 0c ,m 2 (F+α 4 ) I c
) (4.29)

where

1m=(1 , …,1 )' ∈Rm  denotes the vector with all elements equal to 1,

Gm denotes an  m× m  circulant matrix with diagonal and off-diagonal elements a

and b respectively and entries in a and b are given by (F+2α 4 )  and F . Thus 

F+2 α 4
¿ I m+F ∑

i ≠ j=1

m

e i e j
'

Gm=¿

,   where e i ' s  and e j ' s  are the Euclidean unit vectors in

Rm  denoted by  e1 , e2 ,…, em  and  Im∈Rm×m  denotes an identity matrix,
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I c∈R c× c is  an identity matrixwhere  c is  the number of parameters resulting from

averaging the interaction factors,

0c ,1  is a c× 1  vector with all elements zeros,

0c , m  is a c× m  matrix with all elements zeros,

Thus the information matrix CK (M ( ξ ) )  is of order (1+m+c)×(1+m+c) .

4.2 Optimal Rotatable Weighted CCDs  (WCCDs)

The methodology outlined in section 3.2  is  applied to the results  obtained in

section 4.1 to derive Optimal Rotatable WCCDs for three and four factors.

4.2.1 Three Factors Optimal RotatableWCCD

The design matrix X given in (4.1) is separated into two blocks as explained in

section 3.2. The cube portion obtained from resolution III (Table 4.1) formed one block

denoted by ξF  and star portion formed another block denoted by ξ s . The relations

(3.28), (3.29), (3.30) and (3.35) were then used to calculate the values of the weights

assigned to the portions of the optimal rotatable WCCD (3.26).

4.2.1.1 Three Factors Rotatable WCCDInformation Matrix 

Consider  the  design  matrix X  for  m=3  given  in  (4.2)  with

α=
4√22
=1.4142 . The factorial portion is a fractional factorial design of resolution III.

Axial  points  are  added  and  no  center  point.  Thus  the  two  blocks  representing  the

elementary designs are:
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X ξ F
=[

1 −1 −1 1 1 1 −1 1 1 −1 −1 −1 1
1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

] (4.30)

and

X ξ s
=[

1 −α 0 0 α 2 0 0 0 0 0 0 0 0
1 α 0 0 α 2 0 0 0 0 0 0 0 0
1 0 −α 0 0 0 0 0 α 2 0 0 0 0
1 0 α 0 0 0 0 0 α 2 0 0 0 0
1 0 0 −α 0 0 0 0 0 0 0 0 α 2

1 0 0 α 0 0 0 0 0 0 0 0 α 2
] (4.31)

Thus the corresponding moment matrices are 

M ξF
=
(X ξF )

T
(XξF )

4
=[

1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1

]
(4.32)

and
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M ξs
=
(X ξs

)
T
(X ξ s

)
6

=[
1 0 0 0

2
3

0 0 0
2
3

0 0 0
2
3

0
2
3

0 0 0 0 0 0 0 0 0 0 0

0 0
2
3

0 0 0 0 0 0 0 0 0 0

0 0 0
2
3

0 0 0 0 0 0 0 0 0

2
3

0 0 0
4
3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
2
3

0 0 0 0 0 0 0
4
3

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
2
3

0 0 0 0 0 0 0 0 0 0 0
4
3

] (4.33)

Then using (4.12), (4.32) and (4.33) in (3.24) the information matrices are obtained as

C k (M ξF
)=L M ξF

LT
=[

1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 4

]=CF (4.34)

and
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C k (M ξ s
)=L M ξs

LT
=[

1
2
3

2
3

2
3

0 0 0

2
3

4
3

0 0 0 0 0

2
3

0
4
3

0 0 0 0

2
3

0 0
4
3

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]=C s (4.35)

Using the corresponding information matrices (4.34) and (4.35),  the information matrix

for the WCCD is obtained as:

C k (M (ξ ) )=w1CF+w2 C s

¿w1[
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 4

]+w 2[
1

2
3

2
3

2
3

0 0 0

2
3

4
3

0 0 0 0 0

2
3

0
4
3

0 0 0 0

2
3

0 0
4
3

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
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¿[
w1+w2

3w1+2w2

3
3w1+2w2

3
3w1+2w2

3
0 0 0

3w1+2w2

3

3w1+4 w2

3
w1 w1 0 0 0

3w1+2w2

3
w1

3w1+4 w2

3
w1 0 0 0

3w1+2w2

3
w1 w1

3w1+4w2

3
0 0 0

0 0 0 0 4w1 0 0
0 0 0 0 0 4 w1 0
0 0 0 0 0 0 4w 1

]
(4.36)

4.2.1.2 D-Optimal Rotatable WCCD in three Factors

From (4.36),let C k (M (ξ ) )=C , so that C  can be represented by:

C=[ C11 (O3,4 )
T

O3,4 C22
]

where O3,4  is a matrixof order  3 ×4 whose elements are zeros,

C11=[
w1+w2

3 w1+2w2

3

3 w1+2w2

3

3w1+2w2

3
3w1+2w2

3
3w1+4w2

3
w1 w1

3w1+2w2

3
w1

3w1+4w2

3
w1

3w1+2w2

3
w1 w1

3w1+4w2

3

] and

C22=w1[
4 0 0
0 4 0
0 0 4 ]=4w1 I 3 .

(4.37)
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Thus

c−1
=[ A (O3,4 )

T

O3,4 B ] (4.38)

where

A=[
9 w1+4 w2

w1 w 2

−3 w1+2 w2

w1w2

−3w1+2 w2

w 1 w2

−3 w1+2 w2

w1 w2

−3 w1+2 w2

w1 w 2

3 w1+2 w2

2 w1 w 2

3 w1+4 w2

4 w1 w2

3 w1+4 w2

4 w1 w2

−3 w1+2 w2

w1 w 2

3w1+4 w2

4 w1 w2

3 w1+2 w2

2 w1w2

3 w1+4 w2

4 w1 w2

−3 w1+2 w2

w1 w 2

3w1+4 w2

4 w1 w2

3 w1+4 w2

4 w1 w2

3 w1+2w 2

2 w1 w2

] ,

B=[
1

4 w1

0 0

0
1

4 w1

0

0 0
1

4w1

] ,

O3,4  is a 3×4  matrix of zeros.

From (4.34), let C k (M ξ F )=CF so that

CF=[CF 1 (O3,4 )
T

03,4 CF 2
] ,   where  CF 1=[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]    and  CF 2=[
4 0 0
0 4 0
0 0 4 ] (4.39)

Then

CF C−1
=[CF 1C11

−1
(O3,4 )

T

03,4 CF 2C22
−1]

such that
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CF 1 C11
−1
=

1
w1 [
−2 1 1 1
−2 1 1 1
−2 1 1 1
−2 1 1 1

] (4.40)

and

CF 2 C22
−1
=

1
w1

I 4 (4.41)

Therefore CF C−1
=

1
w1 [
−2 1 1 1 0 0 0
−2 1 1 1 0 0 0
−2 1 1 1 0 0 0
−2 1 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

] (4.42)

From (3.28) the right hand side gives:

trace C0
=trace I 7=7 , 

and the left-hand side results to

trace CF C−1
=trace CF1 C11

−1
+trace CF 2C22

−1
=

4
w1

.

Thus 

4
w1

=7⇒w1=
4
7

and w2=1−w1=
3
7

. (4.43)

Next, (4.35) and (4.38) are used in (3.27) for i=s  to obtain 

C sC
−1
=

1
w2 [

3 −1 −1 −1 0 0 0
2 0 −1 −1 0 0 0
2 1 0 −1 0 0 0
2 −1 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

] (4.44)
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Thus, trace C sC
−1
=

3
w2

For D−optimality , the relation trace Ci C
−1
=trace C0

=trace I s=7  results to:

3
w2

=7⇒w2=
3
7

and w1=1−w 2=
4
7

Hence the D−¿  optimal Rotatable WCCD for three factors is

ξWCCD=
4
7

ξF+
3
7

ξ s=0.57 ξF+0.43ξ s (4.45)

4.2.1.3 A-Optimal Rotatable WCCD

Letting (C k (M (ξ ) ) )
−1
=C−1

=[ A (O3,4 )
T

O3,4 B ]  in (4.37) we have

C−2
=(C−1 )

2
=[ A2

(O3,4 )
T

O3,4 B2 ]

¿[
108 w1

2
+108 ab+28w2

2

w1
2 w2

2

−36 w1
2
+45 ab+14 w2

2

w1
2 w2

2

−36 w1
2
+45ab+14 w2

2

w1
2 w2

2

−36 w1
2
+45ab+14w2

2

w1
2w2

2 0 0 0

−36w 1
2
+45ab+14 w2

2

w1
2 w2

2

99 w1
2
+144 ab+56 w2

2

8w1
2 w2

2

189 w1
2
+288 ab+112 w2

2

16 w1
2 w2

2

189 w 1
2
+288 ab+112w2

2

16 w1
2w2

2 0 0 0

−36w 1
2
+45ab+14 w2

2

w1
2 w2

2

189 w1
2
+288 ab+112w2

2

16w1
2 w2

2

99w 1
2
+144 ab+56w2

2

8 w1
2 w2

2

189 w 1
2
+288 ab+112w2

2

16 w1
2w2

2 0 0 0

−36w 1
2
+45ab+14 w2

2

w1
2 w2

2

189 w1
2
+288 ab+112w2

2

16w1
2 w2

2

189 w1
2
+288 ab+112 w2

2

16 w1
2 w2

2

99w1
2
+144 ab+56w2

2

8 w1
2w2

2 0 0 0

0 0 0 0
1

16 w1
2 0 0

0 0 0 0 0
1

16w1
2 0

0 0 0 0 0 0
1

16w1
2

]
(4.46)
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Thus using (4.33) in the left hand side of (3.29)for i=F , the following is obtained as 

CF C−2
=Ck (MξF

)C
−2
=[
−27w1+14w2

w1
2 w2

9w1+7 w2

w1
2 w2

9w1+7w2

w1
2 w2

9w1+7 w2

w1
2 w2

0 0 0

−27w1+14w2

w1
2 w2

2

9w1+7 w2

w1
2 w2

9w1+7w2

w1
2 w2

9w1+7 w2

w1
2 w2

0 0 0

−27w1+14w2

w1
2 w2

2

9w1+7 w2

w1
2 w2

9w1+7w2

w1
2 w2

9w1+7 w2

w1
2 w2

0 0 0

−27w1+14w2

w1
2 w2

2

9w1+7 w2

w1
2 w2

9w1+7w2

w1
2 w2

9w1+7 w2

w1
2 w2

0 0 0

0 0 0 0
1

4w1
2

0 0

0 0 0 0 0
1

4w1
2 0

0 0 0 0 0 0
1

4 w1
2

]
(4.47)

Therefore 

trace CF C−2
=
−27w1+14 w2

w1
2 w2

+(
9w1+7 w2

w1
2 w2

)× 3+
1

4 w1
2 ×3=

7w2 × 4+3w2

4w 1
2 w2

=
31

4w1
2

(4.48)

Next using(4.37), the righthand side of (3.29) gives:

trace C−1
=

9w1+4 w2

w1 w2

+(
3w1+2 w2

2w1 w2
)× 3+

1
4w1

×3=
54 w1+31w2

4 w1 w2

(4.49)

Therefore equating (4.48) to (4.49) the following equation is obtained:

54w1
2
+31w1 w2−31w2=0 (4.50)

Using w1+w2=1⇒w2=1−w1 in (4.71) gives 23w1
2
+62 w1−31=0
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which then gives

w1=−3.13∨0.43 . But  w1≥ 0 , hence

w1=0.43⇒w 2=1−0.43=0.57 (4.51)

Similarly, using (4.35) in (3.29) for i=s , the following is obtained

C sC
−2
=[

36w 1+18w2

w1 w2
2

−12w1+9w2

w1 w2
2

−12w1+9w2

w1w 2
2

−12w1+9w2

4w1 w2
2 0 0 0

24 w1+12w2

w1 w2
2

−15w1+12w2

2w1 w2
2

−33 w1+24w2

4 w1 w2
2

−33w1+24 w2

4w1 w2
2 0 0 0

24 w1+12w2

w1 w2
2

−33w1+24w2

4 w1 w2
2

−15w1+12w2

2w1w2
2

−33w1+24 w2

4w1 w2
2 0 0 0

24 w1+12w2

w1 w2
2

−33w1+24w2

4 w1 w2
2

−33 w1+24w2

4 w1 w2
2

−15 w1+12w2

2w1 w2
2 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
(4.52)

Thus  

trace C sC
−2
=

27w1

2w1 w2
2=

27
2w2

2

(4.53)

Then using (4.49) and (4.53) yields

31w2
2
+54 w1 w2−54 w1=0 (4.54)

Substituting w1+w2=1⇒w1=1−w2  in (4.54) results in 

−23w2
2
+108 w2−54w2=0

which then gives 

w2=4.126719352∨0.568932823 but  0 ≤ w2 ≤1 . 
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Therefore

w2=0.57⇒w 1=1−0.57=0.43 (4.55)

Hence the A−¿  optimal rotatable WCCD for three factors is

ξWCCD=0.43 ξF+0.57 ξs (4.56)

4.2.1.4 E-OptimalRotatableWCCD

From  (3.31), E=
z1 z1

T

‖z1‖
2 and  z  is  the  iegenvector  corresponding  to  the

smallest eigenvalue.Let the elements of the information matrix (4.36) be represented as

follows

w1+w2=e ,
3 w1+2w2

3
=b ,

3 w1+4 w2

3
=a , w1=c

(4.57)

Then define a variable d , the eigenvalues for the information matrix such that:

|C k (M (ξ ) )−d I 7|=0

(4.58)

Then

|C k (M (ξ ) )−d I 7|=|[
e b b b 0 0 0
b a c c 0 0 0
b c a c 0 0 0
b c c a 0 0 0
0 0 0 0 4 c 0 0
0 0 0 0 0 4 c 0
0 0 0 0 0 0 4 c

]−[
d 0 0 0 0 0 0
0 d 0 0 0 0 0
0 0 d 0 0 0 0
0 0 0 d 0 0 0
0 0 0 0 d 0 0
0 0 0 0 0 d 0
0 0 0 0 0 0 d

]|=0
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⇒|[
e−d b b b 0 0 0

b a−d c c 0 0 0
b c a−d c 0 0 0
b c c a−d 0 0 0
0 0 0 0 4c−d 0 0
0 0 0 0 0 4 c−d 0
0 0 0 0 0 0 4 c−d

]|=0

Equating the determinant to zero and solving for d gives:

d=a−c  or d=4c ,  or

d=
−√e2

+ (−4c−2a ) e+4c2
+4 ac+12b2

+a2
−e−2c−a

2
     or

d=√e2
+(−4c−2a )e+4c2

+4ac+12b2
+a2
+e+2c+a

2

(4.59)

Thus substituting (4.57) in (4.59) the eigenvalues are

d1=
−(√49w2

2
+156 w1 w 2+144 w1

2 )−7w 2−12w1

6
,

d2=
(√49 w2

2
+156 w1 w2+144 w1

2 )+7 w2+12w1

6
,    

d3=d4=
4 w2

3
,    d5=d6=d7=4w 1 , (4.60)

while the corresponding eigenvectors are:
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z1=[
1

−(√49w 2
2
+156 w1 w2+144 w1

2 )−w2−6 w1

12w2+18w1

−(√49w 2
2
+156 w1 w2+144 w1

2 )−w2−6 w1

12w2+18w1

−(√49w 2
2
+156 w1 w2+144 w1

2 )−w2−6 w1

12w2+18w1

0
0
0

]  .

z2=[
1

(√49 w2
2
+156 w1 w2+144 w1

2 )+w2+6w1

12w2+18w1

(√49 w2
2
+156 w1 w2+144 w1

2 )+w2+6w1

12w2+18w1

(√49 w2
2
+156 w1 w2+144 w1

2 )+w2+6w1

12w2+18w1

0
0
0

] , 
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z3=[
0
1
0
−1
0
0
0
] ,    z4=[

0
0
1
−1
0
0
0
] ,           z5=[

0
0
0
0
1
0
0
]  ,       z6=[

0
0
0
0
0
1
0
] , z7=[

0
0
0
0
0
0
1
] .

(4.61)

From theorem 3.3, if the smallest eigenvalue for C has multiplicity 1, then the

only  choice  for  matrix  E   will  be  obtained  from  either  d1 or d2 .  Clearly

d1<d2  and  therefore   d1  is  the  smallest  eigenvalue  while  the  corresponding

eigenvector is z1 . Hence  

dmin(C)=
−(√49w2

2
+156 w1w2+144 w1

2 )−7 w2−12w1

6
.

(4.62)

Therefore the matrix

E=
z1 z1

T

‖z1‖
2 (4.63)

Taking r=
−(√49 w2

2
+156 w1 w2+144 w1

2)+w2+6w1

12w2+18 w1

, then

z1=[
1
r
r
r
0
0
0
] and thus   z1 z1

T
=[

1 r r r 0 0 0
r r2 r2 r2 0 0 0
r r2 r2 r2 0 0 0
r r2 r2 r2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

] (4.64)
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Next

‖z1‖
2
=(√1+3 r2

+0)
2
=1+3 r2 (4.65)

Therefore (4.63) becomes

E=[
1 r r r 0 0 0
r r 2 r2 r2 0 0 0
r r 2 r2 r2 0 0 0
r r 2 r2 r2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]× 1
1+3 r2 (4.66)

Using (4.34) and (4.66) for i=F  gives

CF E=[
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 4

]×[
1 r r r 0 0 0
r r2 r2 r 2 0 0 0
r r2 r2 r 2 0 0 0
r r2 r2 r 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]× 1
1+3 r2

¿[
1+3 r
1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2 0 0 0

1+3 r
1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2 0 0 0

1+3 r

1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2
0 0 0

1+3 r
1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2

r+3 r2

1+3 r2 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
(4.67)

Thus 
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trace CF E=
1+3 r
1+3 r2+3×

r+3 r2

1+3 r2 (4.68)

Using (4.62) and (4.68) in(3.30) yields 

⇒
(1+3r )2

1+3r 2 =
−(√49w2

2
+156 w1w2+144 w1

2)+7w2+12w 1

6
(4.69)

Taking b=1−a and a=w1 , and substituting r   in (4.68) gives

w1=
16
37

⟹w2=
21
37

(4.70)

Similarly, using (4.35)and (4.66), the following is obtained

C s E=[
1+2 r r+2r2 r+2r2 r+2r 2 0 0 0
2+4 r

3
2 r+4 r2

3
2 r+4 r2

3
2 r+4 r2

3
0 0 0

2+4 r
3

2 r+4 r2

3
2 r+4 r2

3
2 r+4 r2

3
0 0 0

2+4 r
3

2 r+4 r2

3
2 r+4 r2

3
2 r+4 r2

3
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]× 1

1+3r2

(4.71)

Thus 

trace C s E=λmin (C )=¿

1+2 r
1+3 r2 +3 ×

2r+4r2

3+9 r2 =
−(√49 w2

2
+156 w1 w2+144 w1

2)+7w2+12 w1

6
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⇒
(1+2r )2

1+3 r2 =
−(√49w2

2
+156 w1 w2+144 w1

2 )+7w2+12w1

6
(4.72)

Taking a=1−b , and  b=w2  and substituting r   in (4.72) gives

w2=
21
37

⟹w1=
16
37

Hence for i=F , s , the E−¿  optimal rotatable WCCD for three factors  is

ξWCCD=
16
37

ξ F+
21
37

ξ s=0.43 ξF+0.57 ξs (4.73)

4.2.1.5 I-Optimal Rotatable WCCD 
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I-optimal rotatable WCCD for three factors based on the parameter subsystem of

interest is derived in this section. From (3.22), the parameter subsystem of interest dealt

with in this thesis for m=3  is the vector K '
(θ )=[

θ0

θ11

θ22

θ33

θ12+θ21

2
θ13+θ31

2
θ23+θ32

2

] (4.74)

The corresponding regression vector of factors in the parameter subsystem of interest is 

f ( x )=[1 x1
2 x2

2 x3
2 x1 x2 x1 x3 x2 x3 ]

T
(4.75)

This gives rise to the matrix X  with the following entries;

X=[1 f (x1) f (x2) f (x3) f (x4) f (x5) f (x6) ]
T

Thus 
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X=[
1 1 1 1 1 −1 −1
1 1 1 1 −1 −1 1
1 1 1 1 −1 1 −1
1 1 1 1 1 1 1
1 2 0 0 0 0 0
1 2 0 0 0 0 0
1 0 2 0 0 0 0
1 0 2 0 0 0 0
1 0 0 2 0 0 0
1 0 0 2 0 0 0

] (4.76)

Let the design ξWCCD  in (3.26) be represented by ξ IWCCD  such that

ξ IWCCD=w 1ξF+w 2ξs   , w1+w2=1 and w1,w2≥ 0 (4.77)

Then each of the design points in the cube portion is assigned a mass of  
1
4

w1  while

each of the design points in the star portion is assigned a mass of  
1
6

w2 .

Then(3.33) becomes       

⋀=[
w1

4
I 4 0

0
w2

6
I 6] (4.78)

Letting w2=1−w1  then
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C=XT⋀ X=[
1

w1+2
3

w1+2
3

w1+2
3

0 0 0

w1+2

3

−w1−4

3
w1 w1 0 0 0

w1+2
3

w1

−w1−4
3

w1 0 0 0

w1+2
3

w1 w1

−w1−4
3

0 0 0

0 0 0 0 w1 0 0
0 0 0 0 0 w1 0
0 0 0 0 0 0 w 1

]
(4.79)

And

C−1
=[
−5w1+4

w1
2
−w1

w1+2

w1
2
−w1

w 1+2

w1
2
−w1

w1+2

w1
2
−w1

0 0 0

w 1+2

w1
2
−w1

−w1+2

2 w1
2
−2w1

w1−4

4 w1
2
−4 w1

w1−4

4 w1
2
−4 w1

0 0 0

w 1+2

w1
2−w1

w1−4

4 w1
2−4w 1

−w1+2

2w1
2−2w1

w1−4

4 w1
2−4 w1

0 0 0

w 1+2

w1
2
−w1

w1−4

4 w1
2
−4w 1

w1−4

4 w1
2
−4 w1

−w1+2

2 w1
2
−2w1

0 0 0

0 0 0 0
1
w 1

0 0

0 0 0 0 0
1
w 1

0

0 0 0 0 0 0
1
w1

]
(4.80)

From (4.76), point x1  in the cube portion is used such that 

f (x1 )= [1 1 1 1 1 −1 −1 ]
T

Then the left-hand side of the relation (3.35) 
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f T
(x1 )C

−1 L3 C−1 f (x1 )=
211

90 w1
2 (4.81)

Further the right hand side results in

tr (C−1 L3)=
−81 w1+46

20w1
2
−20w1

(4.82)

Equating (4.81) to (4.82) gives

211

90 w1
2=
−81 w1+46

20 w1
2
−20 w1

And this results in  w1=0.379∨−1.526 (4.83)

But w1>0 , therefore:

w1=0.38 and hence  w2=1−0.38=0.62 (4.84)

Similarly, from (4.76), if point x9 in thestar portion design is used, such that

f (x9 )=[1 0 0 2 0 0 0 ]
T ,  

samevalues of weights are obtained.

Thus design points in the factorial  portion are assigned a mass equal to  0.38  and

design points in the star portion are assigned a mass equal to   0.62 . Therefore the

I−optimal  rotatable WCCD ( ξ IWCCD ) for three factors is expressed as:

ξ IWCCD=0.38 ξF+0.62ξ s (4.85)

4.2.2 Four Factors Optimal Rotatable WCCD

The design matrix X given in (4.14) is separated into two blocks as explained in

section 3.2. The cube portion obtained from resolutionIV(Table 4.2) formed one block

denoted by ξF  and star portion formed another block denoted by ξ s  . The relations
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(3.28),  (3.29),  (3.30)  and  (3.35)  were  then  used  to  calculate  the  values  of  the

weightsassigned to the portions of the optimal rotatableWCCD (3.26).    

4.2.2.1 Four Factors Rotatable WCCD Information Matrix 

Consider  the  design  matrix  X  for  m=4  given  in  (4.14)  with

α=
4√23
=1.6818

The factorial portion is a fractional factorial design of resolution IV. Axial points are

added and no center  point.   Thus for  the  elementary  designs,  the  two blocks  are  as

follows:

X ξF
=[

1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 1 −1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]
(4.86)

X ξ s
=[

1 −α 0 0 0 α 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 α 0 0 0 α 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −α 0 0 0 0 0 0 0 α 2 0 0 0 0 0 0 0 0 0 0
1 0 α 0 0 0 0 0 0 0 α 2 0 0 0 0 0 0 0 0 0 0
1 0 0 −α 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0
1 0 0 α 0 0 0 0 0 0 0 0 0 0 0 α2 0 0 0 0 0
1 0 0 0 −α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2

1 0 0 0 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2

]
(4.87)
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Thus the corresponding moment matrices are:

X

(X ξF
)
T (¿¿ξF)

8
=[

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

]
M ξF
=¿

(4.88)

And

X

(X ξs )
T (¿¿ξ s)

8
=¿

M ξ s
=¿



xcviii

[
1 0 0 0 0 0.7071 0 0 0 0 0.7071 0 0 0 0 0.7071 0 0 0 0 0.7071
0 0.7071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.7071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.7071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.7071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.7071 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.7071 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.7071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0

0.7071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

]
(4.89)

Then using (4.25), (4.88), (4.89) in (3.24), the corresponding matrices are obtained as

C k (M ξF )=[
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 16 0 0
0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 16

] (4.90)

and
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C k (M ξ s)=[
1 0.7071 0.7071 0.7071 0.7071 0 0 0

0.7071 2 0 0 0 0 0 0
0.7071 0 2 0 0 0 0 0
0.7071 0 0 2 0 0 0 0
0.7071 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

] (4.91)

For w∈[0 ;1] ,  let  ξWCCD=w1ξ F+w2ξs   where  w1+w2=1∧w1 ,w2 ≥ 0  are

different  masses  assigned  to  each  of  the  two  designs   ξF  and  ξ s .Using  the

corresponding  information  matrices  (4.90)  and (4.91),  the  information  matrix  for  the

WCCD is obtained as

C k (M (ξ ) )=w 1Ck (M ξF)+w2 C k (M ξ s)=¿

[
w1+w2 w1+0.7071 w2 w1+0.7071 w2 w1+0.7071 w 2 w1+0.7071 w2 0 0 0

w1+0.7071 w2 w1+2w2 w1 w1 w1 0 0 0
w1+0.7071 w2 w1 w1+2w2 w1 w1 0 0 0
w1+0.7071 w2 w1 w1 w1+2 w2 w1 0 0 0
w1+0.7071 w2 w1 w1 w1 w1+2w2 0 0 0

0 0 0 0 0 16w1 0 0
0 0 0 0 0 0 16 w1 0
0 0 0 0 0 0 0 16 w1

]
(4.92)

4.2.2.2 D- Optimal Rotatable WCCD in Four Factors

From (4.36), let C k (M (ξ ) )=C 4 , so that  C4  can be represented by:

C=[ C11 (O3,5 )
T

O3,5 C22
]

where O3,5  is a 3 ×5 matrix whose elements are zeros, 



c

C11=[
w1+w2 w1+0.7071 w2 w1+0.7071w2 w1+0.7071 w2 w1+0.7071 w 2

w1+0.7071 w2 w1+2w2 w1 w1 w1

w1+0.7071 w2 w1 w1+2 w2 w1 w1

w1+0.7071 w2 w1 w1 w1+2w2 w1

w1+0.7071 w2 w1 w1 w1 w1+2w 2

]
(4.93)

And

C22=w1[
16 0 0
0 16 0
0 0 16]=16w1 I 3 (4.94)

Thus 

C

(¿¿4 )−1
=[

e a a a a 0 0 0
a c d d d 0 0 0
a d c d d 0 0 0
a d d c d 0 0 0
a d d d c 0 0 0

0 0 0 0 0
1

16 w1

0 0

0 0 0 0 0 0
1

16 w1

0

0 0 0 0 0 0 0
1

16 w1

]
¿

(4.95)

with

e=
5× 107 w2+108 w1

959 w2
2
+8.58 ×106 w1 w2

a=
−1.77 × 108 w2+2.5×107 w1

959 w2
2
+8.58×106 w1 w2
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c=
(5 ×108w2+7.57 ×107 w1 )

7672 w2
2
+6.86 ×107 w1w2

d=
5 ×107 w2+4.14 ×107 w1

7672 w2
2
+6.86 ×107 w1 w2

From (4.90), let C k (M ξF )=CF  so that

C
(¿¿4 )−1

=¿

CF ¿

[
e+4 a a+c+3d a+c+3d a+c+3d a+c+3d 0 0 0
e+4 a a+c+3d a+c+3d a+c+3d a+c+3d 0 0 0
e+4 a a+c+3d a+c+3d a+c+3d a+c+3d 0 0 0
e+4 a a+c+3d a+c+3d a+c+3d a+c+3d 0 0 0
e+4 a a+c+3d a+c+3d a+c+3d a+c+3d 0 0 0

0 0 0 0 0
1
w1

0 0

0 0 0 0 0 0
1
w1

0

0 0 0 0 0 0 0
1

w1

] (4.96)

With 

e+4 a=
−2.07×107

959w2+8.58 × 106 w1

and

a+c+3d=
7.32×106

959 w2+8.58×106 w 1

(4.97)

Thus

C

(¿¿4 )−1
=e+4 a+4 (a+c+3d )+

3
w1

trace CF ¿
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¿−
2.07 ×107

959 w2+8.58 ×106 w1

+4×
7.32 ×106

959 w2+8.58 ×106 w 1

+
3
w1

(4.98)

And

trace C4
0
=trace I 8=8 .    (4.99)

Therefore using (4.98) and (4.99) in the relation (3.28) gives

−2.07× 107

959 w2+8.58 ×106 w1

+4×
7.32× 106

959 w2+8.58 ×106 w1

+
3
w1

=8

⟹8.58× 106 w1+2877 w2+2.57 ×107 w1=8 w1(959 w2+8.58 ×106 w1) (4.100)

Substituting w2=1−w1 , in (4.100) gives

8.58 ×106 w1+2877−2877 w1+2.57 ×107 w1=7672w1−7672 w1
2
+6.86 ×107 w1

2

⟹6.86× 107 w1
2
−3.43× 107 w1−2877=0

⟹w1=−8.38× 10−5
∨0.5

But 0 ≤ w1 ≤1 , therefore

w1=0.5⟹w2=0.5            (4.101)

Next from (4.91), let C k (M ξ s)=C s  so that

C s=¿
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[
e+2.8284 a a+0.7071 (c+3d ) a+0.7071 ( c+3d ) a+0.7071 (c+3 d ) a+0.7071 (c+3d ) 0 0 0
0.7071e+2a 0.7071 a+2 c 0.7071 a+2d 0.7071 a+2d 0.7071 a+2 d 0 0 0
0.7071e+2a 0.7071a+2 d 0.7071a+2c 0.7071 a+2d 0.7071 a+2 d 0 0 0
0.7071e+2a 0.7071a+2 d 0.7071 a+2d 0.7071 a+2c 0.7071 a+2 d 0 0 0
0.7071e+2a 0.7071a+2 d 0.7071 a+2d 0.7071 a+2d 0.7071 a+2 c 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]
(4.102)

where

e+2.8284 a=
959 w2+2.93 ×107 w1

959 w2
2
+8.58 ×106 w1w2

,

a+0.7071 (c+3d )=
−7.32× 107 w1

959 w2
2
+8.58 × 106 w1 w2

,

0.7071e+2 a=
2.07 ×107 w1

959 w2
2
+8.58× 106 w1 w2

,

0.7071 a+2d=
−7.32× 106 w1

959 w2
2
+8.58 ×106 w1 w2

,

0.7071 a+2c=
959 w2+1.26 ×106 w1

959 w2
2
+8.58 ×106 w1 w2

.

Thus 

C

(¿¿4 )−1
=

959 w2+2.93 ×107 w1

959 w2
2
+8.58 ×106 w1 w2

+4×
959 w2+1.26 ×106 w1

959 w2
2
+8.58 ×106 w1 w2

trace C s ¿

(4.103)

and
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trace C0
=trace I 8=8 . (4.104)

Therefore using (4.103) and (4.104) in relation (3.28) yields

959 w2+2.93 ×107 w1

959 w2
2
+8.58 ×106 w1 w2

+4×
959 w2+1.26× 106 w1

959 w2
2
+8.58× 106 w1 w2

=8 .

(4.105)

But w1=1−w2 . thus (4.105) reduces to

3.43× 107 w2−3.43× 107

8.58× 106 w2
2
−8.58× 106 w2

=8

⟹6.86× 107 w2
2
−1.03× 108 w2+3.43×107

=0 . (4.106)

Solving the quadratic equation (4.106) gives

w2=
−5 √4.71×1013

−1.03× 108

1.37 ×108 =1.00 or

w2=
−5 √4.71×1013

+1.03 ×108

1.37×108 =0.50 .

But w2  must be such that 0 ≤ w2 ≤1 , then clearly:

w2=0.50⟹w1=1−0.50=0.50 .

Hence the D−optimal rotatable WCCD is

ξWCCD=0.5ξF+0.5ξ s . (4.107)

4.2.2.3 A-Optimal Rotatable WCCD in Four Factors

From (4.45), let  (C k (M (ξ ) ) )
−2

 be represented by
C

(¿¿4 )−2

¿

 so that

Therefore 
C

(¿¿4 )−2
=¿

¿
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[
e2
+4a2 a (e+c+3d) a (e+c+3d) a(e+c+3d) a(e+c+3d) 0 0 0

a(e+c+3d) a2
+c2
+3d2 a2

+2cd+2d2 a2
+2cd+2d2 a2

+2cd+2d2 0 0 0

a(e+c+3d) a2
+2cd+2d2 a2

+c2
+3d2 a2

+2cd+2d2 a2
+2cd+2d2 0 0 0

a(e+c+3d) a2
+2cd+2d2 a2

+2cd+2d2 a2
+c2
+3 d2 a2

+2cd+2d2 0 0 0

a(e+c+3d) a2
+2cd+2d2 a2

+2cd+2d2 a2
+2cd+2d2 a2

+c2
+3d2 0 0 0

0 0 0 0 0
1

256 w1
2 0 0

0 0 0 0 0 0
1

256 w1
2 0

0 0 0 0 0 0 0
1

256 w1
2

]
(4.108)

where 

e2
+4a2

=
3.75×1014 b2

+1.35×1016 ab+1.25 ×1016a2

9.2× 105b4
+1.65 ×1010 ab3

+7.36 ×1013a2 b2

a (e+c+3d )=
−1.33× 1015b2

+4.08 ×1015 ab+3.13 ×1015 a2

9.2×105 b4
+1.65× 1010 ab3

+7.36 ×1013 a2b2

a2
+c2
+3d2

=
7.5×1015 b2

+1.91× 1016 ab+1.27 ×1016 a2

1.47×107 b2
+2.63 ×1011 a b3

+1.18× 1015a2b2

a2
+2cd+2d2

=
7.5×1015 b2

+1.91× 1016ab+1.24 ×1016 a2

1.47× 107 b2
+2.63 ×1011 ab3

+1.18 × 1015a2b2 ,

(4.109)

Thus  for i=F ,using (4.90) and (4.108), the lefthand side of the relation (3.29) results

in
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C

(¿¿4 )−2
=[

p q q q q 0 0 0
p q q q q 0 0 0
p q q q q 0 0 0
p q q q q 0 0 0
p q q q q 0 0 0

0 0 0 0 0
1

16 w1
2 0 0

0 0 0 0 0 0
1

16 w1
2 0

0 0 0 0 0 0 0
1

16 w1
2

]
CF ¿

(4.110)

where

p=
1.55 ×1015w2+2.80 × 1015w1

9.2 ×105 w2
3
+1.65 ×1010w1w2

2
+7.36× 1015 w1

2 w2

(4.111)

q=
5.5×1014 w2+7.01 ×1016 w1

9.2× 105 w2
3
+1.65 ×1010 w1 w2

2
+7.36 ×1015w 1

2w 2

.

(4.112)

Thus

C

(¿¿4 )−2
=p+4q+

3
16w1

2

trace CF ¿

. (4.113)

From equation (4.95),

trace c−1
=

5× 107 w2+106 w1

959 w2
2
+8.58 × 106 w1 w2

+4×( (
5×107 w2+7.57 ×107 w1 )

7672 w2
2
+6.86 ×107 w1 w2

)+ 3
16 w1

.

(4.114)

Using (4.113) and (4.114) in (3.29)gives
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w1=−2.93∨0.43 (4.115)

But  w1>0 , therefore w1=0.43⟹w2=1−w1=0.57 (4.116)

Similarly using(4.91.) and (4.108)for i=s the following is obtained

C

(¿¿4 )−2
=[

v u u u u 0 0 0
g x x x x 0 0 0
g x x x x 0 0 0
g x x x x 0 0 0
g x x x x 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]
cs ¿

(4.117)

v=
4.8 × 1010w2

2
+2.0× 1015 w1 w2+3.66 ×1015 w1

2

9.2 ×105w2
4
+1.65 ×1010 w1 w2

3
+7.36 × 1013 w1

2 w2
2 .

(4.118)

u=
−1.7×1010 w2

2
+7×1014 w1w2+9.15×1016 w1

2

9.2×105 w2
4
+1.65 ×1010 w1 w2

3
+7.36 ×1013w 1

2 w2
2 .

g=
4.8×1011 w2

2
−4×1015w1w2−5×1015 w1

2

7.36 ×106 w2
4
+1.32 ×1011 w1w2

3
+5.89× 1014 w1

2 w2
2 .

x=
4.79 ×1010 w2

2
−3.96× 1016 w1 w2−5.25× 1015w 1

2

7.36× 106 w2
4
+1.32× 1011 w1 w2

3
+5.89 ×1014 w1

2 w2
2 .

(4.119)

Thus 

C
(¿¿4 )−2

=v+4 x
trace C s ¿
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¿
4.8 × 1010w2

2
+2.0× 1015 w1 w2+3.66 ×1015 w1

2

9.2×105 w2
4
+1.65 ×1010 w1w2

3
+7.36× 1013 w1

2 w2
2+4×

4.79× 1010 w2
2
−3.96 ×1016w1 w2−5.25 ×1015 w1

2

7.36 ×106 w2
4
+1.32 ×1011 w1 w2

3
+5.89 ×1014 w1

2 w2
2

.

(4.120)

Using(4.120) and (4.114) in (3.29) and substituting  w1=1−w 2 gives

w2=0.57∨3.93 .

But  w2>0 , therefore w2=0.57⟹w1=1−w2=0.43 . (4.121)

Hence  the  values  obtained  in  (4.116)  and  (4.121)  leads  to  the  conclusion  that  for

i=F , s , the A−optimal  rotatable WCCD is

ξWCCD=0.427 ξ F+0.573ξ s (4.122)

4.2.2.4 E-Optimal Rotatable WCCD in Four Factors

From  (3.31),  E=
z1 z1

T

‖z1‖
2 and  z  is  the  iegenvector  corresponding  to  the

smallest eigenvalue.

Let d be the eigenvalue for the information matrix (4.92). Then  

|C k (M (ξ ) )−d I 8|=0 .

(4.123)

Solving (4.123) gives

d1=
−(√5.62 ×107 w2

2
+1.79 ×108w1 w2+1.56 ×108 w1

2 )−7500 w 2−12500w1

5000
.

d2=
(√5.62× 107 w2

2
+1.79×108 w1 w2+1.56× 108 w1

2 )+7500 w2+12500 w1

5000
.

d3=d4=d5=2w2 ,   d6=d7=d8=16 w1 , (4.124)
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From theorem 3.3,  if  the smallest  eigenvalue for  C has  multiplicity  1,  then  the only

choice for matrix  E is  obtained from either  d1 or  d2 .  Clearly  d1<d2  and

therefore  d1  is the smallest eigenvalue. Therefore:

λmin(C)=d1=
−(√5.62× 107 w2

2
+1.79×108 w1w2+1.56× 108 w1

2 )−7500 w2−12500 w1

5000
.

(4.125)

The eigenvectors are:

z1∧z2  do not exist, 

z3=[
0
1
0
0
−1
0
0
0
] ,     z4=[

0
0
1
0
−1
0
0
0
] ,     z5=[

0
0
0
1
−1
0
0
0
]  ,     z6=[

0
0
0
0
0
1
0
0
] ,     z7=[

0
0
0
0
0
0
1
0
] ,  z8=[

0
0
0
0
0
0
0
1
] .

But  eigenvector  z1  corresponding to the minimum eigenvalue λ1  does not exist.

This therefore means that an E−optimal design for a CCD of m=4  factors where

the fractional factorial portion is constructed through resolution IV does not exist. 

Holger and Yuri (2014) suggested that designs with certain symmetry properties

play a particular role for the construction of E-optimal designs.  They called a design

symmetric  if  for  any  (q1 , …, qm )∈ {0,1,2 }
m

with  ‖q‖1=|q1|+…+|qm|≤ 2 .  The

moments

1
1 ,..., ( )mq q

mx x dx


∫
are invariant with respect to all permutations of  

q1 ,…, qm

and vanish if there is at least one oddindex among q1 , …qm .

http://arxiv.org/find/stat/1/au:+Grigoriev_Y/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Dette_H/0/1/0/all/0/1
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4.2.2.5   I - Optimal Rotatable WCCD in Four Factors

I−optimal  WCCD  for  four  factors  based  on  the  parameter  subsystem  of

interest is derived in this section. From (3.22), the parameter subsystem of interest for

m=4 is the vector:

KT (θ )=¿[
θ0

θ11

θ22

θ33

θ44

θ12+θ21+θ34+θ43

4
θ13+θ31+θ24+θ42

4
θ14+θ41+θ23+θ32

4

] .

The corresponding regression vector of factors in the parameter subsystem of interest is:

f ( x )=[1 x1
2 x2

2 x3
2 x 4

2 x1 x2+x3 x4 x1 x3+x2 x 4 x1 x4+x2 x3 ]
T

. (4.126)     

This gives rise to the matrix X  with the following entries;

X=[1 f (x1) f (x2) f (x3) f (x4) f (x5) f (x6) f (x7)]
T . (4.127)

Thus 
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X=[
1 1 1 1 1 2 2 2
1 1 1 1 1 −2 −2 2
1 1 1 1 1 −2 2 −2
1 1 1 1 1 2 −2 −2
1 1 1 1 1 2 −2 −2
1 1 1 1 1 −2 2 −2
1 1 1 1 1 −2 −2 2
1 1 1 1 1 2 2 2
1 2.83 0 0 0 0 0 0
1 2.83 0 0 0 0 0 0
1 0 2.83 0 0 0 0 0
1 0 2.83 0 0 0 0 0
1 0 0 2.83 0 0 0 0
1 0 0 2.83 0 0 0 0
1 0 0 0 2.83 0 0 0
1 0 0 0 2.83 0 0 0

] (4.128)

Let the design ξWCCD  in (3.26) be represented by ξ IWCCD  such that

ξ IWCCD=w 1ξF+w 2ξs   , w1+w2=1 and w1,w2≥ 0 (4.129)
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Then assuming that support points in the same portion are assigned equal weight, then

each of the design points in the cube portion is assigned a mass of
1
8

w1  while each of

the design points in the star portion is assigned a mass of
1
8

w2 .

Then from (4.48)

⋀=[
w1

8
I 8 0

0
w2

8
I 8] , (4.130)

Letting w2=1−w1  then

C4=X T⋀ X

¿[
1

117 w1+283
400

117 w1+283
400

117 w1+283
400

117w1+283
400

0 0 0

117 w1+283

400

8089−4054 w1

4045
w1 w1 w1 0 0 0

117 w1+283
400

w1

8089−4054 w1

4045
w1 w1 0 0 0

117 w1+283
400

w1 w1

8089−4054 w1

4045
w1 0 0 0

117 w1+283
400

w1 w1 w1

8089−4054w 1

4045
0 0 0

0 0 0 0 0 4 w1 0 0
0 0 0 0 0 0 4w1 0
0 0 0 0 0 0 0 4 w1

]
(4.131)

From (4.128), point x1  in the cube portion is used such that 

f (x1 )= [1 1 1 1 1 2 2 2 ]
T . (4.132)
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The left-hand side of the relation (3.35) results in

f T
(x1 ) (C4 )

−1 L3 (C4 )
−1 f (x1 )=

2.55 ×1017 w1
2
+3.61 ×109 w 1+13

6.87 ×1016 w1
4
−1.24 × 1010w1

3
+560 w1

2 .

(4.133)

Further the right hand side results in

tr ( (C4 )
−1 L4)=

−5.2× 1013 w1
2
+4.35 ×1013w 1−8099

1.005 ×1013 w 1
3
−1.005× 1013 w1

2
+9.07 ×105w1

.

(4.134)

Equating (4.133) to (4.134) and solving the equation results in

w1=−1.93∨0.37 (4.135)

But w1>0 , therefore:

w1=0.3725⟹w2=1−0.3725=0.6275 . (4.136)

On evaluating at other points in the factorial portion of the design, the following weights

are obtained: 

f (x1 )∧f (x7 ) gives w1=0.3725 ,

f (x2 ) , f (x3 ) , f (x4 ) , f (x5 )∧f (x6 ) gives w1=0.4122 . (4.137)

Similarly on working out the relation (3.35) using a point in the star portion design say

f (x13 )=[1 0 2.83 0 0 0 0 0 ]
T   ,

then

w2=0.5976⟹w1=1−0.5976=0.4024 . (4.138)

But assuming that for optimalityuniform weight is assigned to each design point in the

factorial portion, thentakingaverage of the different weights gives:

w1=0.4023 .
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Hence, the I−optimal rotatableWCCD ( ξ IWCCD ) for four factors is expressed as:

ξ IWCCD=0.4024 ξF+0.5976 ξ s . (4.139)

4.2.3 m - FactorsD-Optimal Rotatable WCCD

In this chapter D-, A-, E and I-optimal rotatable WCCDs for m=3∧4 factors

constructed  through  resolutions  III  and  IV have  been  derived.   Results  obtained  in

sections  (4.2.1.2)  and  (4.2.2.2)  are  usedto  obtain  a  generalized  form  of  D-optimal

rotatable WCCD for  m  factors constructed through resolution R.

Let s  be the number of parameters in the subsystem of interest vector K ' (θ )

. Further let a rotatable CCD of m  factors comprise of elementary designs  ξF  and

ξ s  i.e. the fractional factorial portion constructed through resolution R  and the star

portion respectively. Then D−optimal Rotatable Weighted Central Composite Design(

ξWCCD )is given by:

ξWCCD=
s−m

s
ξF+

m
s

ξ s (4.140)

where w1=
s−m

s
   and w2=

m
s

are  the  weights  assigned  to  each  of  the  design

portions, factorial and starportions respectively.

4.3 Optimal Values and Efficiency

The D-, A-, E- and I-optimality criteria and efficiency explained in section 3.3 are

used in this section. 

4.3.1 Three Factors Central Composite Design

4.3.1.1   D-,  A-  and E-optimal Values
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Optimal  values  for  resolution  III  rotatable  CCDbased  on  the   D-,  A and  E-

optimality criteria are computed in this section together with the optimal values for the

derived optimal rotatable WCCD.

From equation (3.36) and using the information matrix 

a) The  D−optimal  value is

∅

V (¿¿0) (CK (M (ξ )) )=(0.2097159 )
1
7=0.8 .

¿

(4.141)

b) The  A−optimal  value is

∅
¿

V ¿
¿

. (4.142)

c) The  E−optimal value is

∅
¿

V ¿
¿

. (4.143) 

Next,  the optimal  values for the optimal rotatable WCCDderived in section 4.2.1 are

obtained as follows:

a) From (3.36), the D−optimal  criterion for the optimal rotatable WCCD is given by

∅0 (C )= (det C )
1
7 .

Substituting the values of w1  and w2  (4.43) in (4.36), then

C k (M (ξ ) )=
4
7

C k (M ξF )+
3
7

C k (M ξ s) . (4.144)

Thus 

det (Ck (M (ξ ) ) )=|C k (M (ξ ) )|=
1024 w1

4 w2
3

27
.
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Substituting the values of   w1 and w2 , this simplifies to 

|C k (M (ξ ) )|=¿ 0.318312462

Therefore D-optimal value is:

V (∅0 )= (de t C )
1
7
=0.849139593 (4.145)

b) From (3.36), the A−optimal  criterion for the optimal rotatable WCCD is given by

∅−1 (C )=( 17 trace C−1)
−1

Substituting the values of w1  and w2 (4.55) in (4.49)

trace C−1
=

54 w1+31 w2

4 w1 w2

=41.71

Thus the   A−optimal  value is

V (∅−1 )=( 41.71
7 )

−1

=0.168 (4.146)

c) From (3.36), the minimum eigenvalue criterion is

∅−∞ (C )=λmin (C )

Thus substituting  the values of  w1  and  w2  (4.69) in  (4.61),  the E −optimal

value is

∅

V (¿¿−∞ )=

−(√49( 21
37 )

2

+156( 16
37 )(

21
37 )+144 (16

37 )
2

)−7( 21
37 )−12(16

37 )
6

¿

¿
1
37
=0.027

(4.147)

4.3.1.2 I-optimal Value
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Optimal  value  for  resolution  III  rotatable   CCD  based  on  the   I-optimality

criterion is computed in this section as well as the optimal value for the derived optimal

rotatable WCCD.  

a) For m=3

f ( x )=[1 x1
2 x2

2 x3
2 x1 x2 x1 x3 x2 x3 ]

'

Thus 

CK (M ( ξ ) )=f ( x ) f ' ( x )

gives

CK (M ( ξ ) )=[
1 x1

2 x2
2 x3

2 x1 x2 x1 x3 x2 x3

x1
2 x1

4 x1
2 x2

2 x1
2 x3

2 x1
3 x2 x1

3 x3 x1
2 x2 x3

x2
2 x1

2 x2
2 x2

4 x2
2 x3

2 x1 x2
3 x1 x2

2 x3 x2
3 x3

x3
2 x1

2 x3
2 x2

2 x3
2 x3

4 x1 x2 x3
2 x1 x3

2 x2 x3
3

x1 x2 x1
3 x2 x1 x2

3 x1 x2 x3
2 x1

2 x2
2 x1

2 x2 x3 x1 x2
2 x3

x1 x3 x1
3 x3 x1 x2

2 x3 x1 x3
2 x1

2 x2 x3 x1
2 x3

2 x1 x2 x3
2

x2 x3 x1
2 x2 x3 x2

3 x3 x2 x3
3 x1 x2

2 x3 x1 x2 x3
2 x2

2 x3
2

] (4.148)          

From (3.42) 

3 3L B 

where

1 2 3

3 1

3 3

1 1
1 2 31 2 2 4

11

( 1) !

3 1 !(3 )

i i

p p p i i

m
s

ii
ii

p p
B x x x dx dx dx

pp

 





  
 
   

 

 
∫


 ,                      (4.149)

p is the power of the factors

and
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1

3
dx


∫

Thus 

L3=[
1 v v v g g g
v w h h n n a
v h w h n a n
v h h w a n n
g n n a h a a
g n a n a h a
g a n n a a h

] (4.150)

with

v=∫ xi
2 dx ,i=1,2,3, h=∫ x1

2 x2
2 dx ,w=∫ x i

4 dx ,  a=∫ xi
2 x j xk dx , 

g=∫ x i x j dx n=∫ x i
3 x j dx in each case i≠ j ≠ k (4.151)

From (4.13), 

(CK (M (ξ ) ) )
−1
=[

25 −10 −10 −10 0 0 0

−10 5
15
4

15
4

0 0 0

−10
15
4

5
15
4

0 0 0

−10
15
4

15
4

5 0 0 0

0 0 0 0
5
8

0 0

0 0 0 0 0
5
8

0

0 0 0 0 0 0
5
8

] (4.152)

Thus 
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(CK (M (ξ ) ) )
−1

L3=[
r b b b c c c
b d e e f f t
b e d e f t f
b e e d t f f

5g
8

5n
8

5n
8

5a
8

5h
8

5a
8

5a
8

5g
8

5n
8

5a
8

5n
8

5a
8

5h
8

5a
8

5g
8

5a
8

5n
8

5n
8

5a
8

5a
8

5h
8

]            (4.153)

Where

r=25−30v ,    b=−10w+25 v−20h ,      c=−20n+25 g−10a

d=
10w−20v+15h

2
,         e=

15w−40v+35h
4

,       t=
15n−20 g+10a

2
,

f=
35 a−40g+15a

4

From (3.43)  I−optimal  value is equal to:

tr [(C K (M (ξ ) ) )
−1

L3]=r+3d+3×
5h
8

¿
200−480 v+120 w+195 h

8

(4.154)

where v ,  w  and  h  are as defined in (4.154).   

Then using (4.151) and (4.154)

tr [(C K (M (ξ ) ) )
−1

L3]

¿
200
8
−

480
8 ∫

x1
2dx+

120
8 ∫

x1
4 dx+

195
8 ∫

x1
2 x2

2dx (4.155)

Using (4.149) 
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∫ x1
2 dx=

∏
i=1

3

p i!

(3−1+∑
i=1

3

p i)!

=2 !×
2 !

(3−1+2)!
=

1
6

Similarly 

m ∫ x1 x2 dx=
1
12

,            m ∫ t1
4 dx=

1
15

,                 m ∫ x1
2 x2

2 dx=
1
90

m ∫ x1
3 x2 dx=

1
60

,  m ∫ x1
2 x2 x3 dx=

1
180

Thus 

L3=[
1

1
6

1
6

1
6

1
12

1
12

1
12

1
6

1
15

1
90

1
90

1
60

1
60

1
18

1
6

1
90

1
15

1
90

1
60

1
18

1
60

1
6

1
90

1
90

1
15

1
18

1
60

1
60

1
12

1
60

1
60

1
18

1
90

1
18

1
18

1
12

1
60

1
18

1
60

1
18

1
90

1
18

1
12

1
18

1
60

1
60

1
18

1
18

1
90

]
(4.156)

and

I−optimal value=16.2708 (4.157)

b) Now on substituting the values of the weights in (4.79), the information matrix for a

design that is I−optimal  becomes:
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C=[
1 0.79 0.79 0.79 0 0 0

0.79 1.21 0.38 0.38 0 0 0
0.79 0.38 1.21 0.38 0 0 0
0.79 0.38 0.38 1.21 0 0 0

0 0 0 0 0.38 0 0
0 0 0 0 0 0.38 0
0 0 0 0 0 0 0.38

]
(4.158)

Then from (3.43) the corresponding I−optimal  value is 

tr (C−1 L3)=16.2942 (4.159)

4.3.2 Four Factors Central Composite Design

4.3.2.1    D-,  A-  and E-optimal Values

Optimal  values  for  resolution  IV rotatable   CCD and for  the  derived optimal

rotatable WCCD based on the  D-,   A and E-optimality criteria are computed in this

section.  

From equation (3.36)  and using  matrix (4.26)

a) The  D−optimal  value is:

∅

V (¿¿0) (CK (M (ξ )) )=(56 .32 )
1
8=1 .655

¿

(4.160)

b) The  A−optimal  value is:

∅
¿

V ¿
¿

(4.161)

c) The  E−optimal  value is:

∅
¿

V ¿
¿

(4.162)
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Next, the optimal values for the optimal rotatable WCCD derived in section 4.2.2 are

computed.

a) From (3.36), the optimal criterion for the D−optimal  rotatable WCCD is given by

∅0 (C )= (det C )
1
8

Substituting the values of w1  and w2  in (4.92)

C k (M (ξ ) )=0.50 C k (M ξ F )+0.50C k (M ξ s) (4.163)

The determinant is  

det (Ck (M (ξ ) ) )=|Ck (M (ξ ) )|=
4.91× 105 w1

3 w 2
5
+4.39 ×109 w1

4 w2
4

390625

And substituting the values of  w1  and w2  this simplifies to

|C k (M (ξ ) )|=43.93451

Therefore D-optimal value is

V (∅0 )= (de t C )
1
8
=43.93451

1
8=1.605 (4.164)

b) From (3.36), the A−optimal  criterion for the optimal rotatable WCCD is given by

∅−1 (C )=( 18 trace C−1)
−1

Substituting the values of w1  and w2  in (4.114)gives

trace c−1
=

5× 107 w2+108 w1

959 w2
2
+8.58 × 106 w1 w2

+4×( (
5×107 w2+7.57 ×107 w1 )

7672 w2
2
+6.86 ×107 w1 w2

)+ 3
16 w1

¿48.95

(4.165)

Thus the A−optimal  value is

V (∅−1 )=( 18 trace C−1)
−1

=0.163 (4.166)
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4.3.2.2 I-optimal Value

Optimal  value  for  resolution  IV rotatable   CCD  and  for  the  derived  optimal

rotatable WCCD based on the  I-optimality criterion is  computed in this section.

a) For m=4

f ( x )=[1 x1
2 x2

2 x3
2 x 4

2 x1 x2+x3 x4 x1 x3+x2 x 4 x1 x4+x2 x3 ]
'

Let x1=a , x2=b , x3=c , x4=d

Therefore 
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1
a2

b2

c2

d2

cd+ab
bd+ac
ad+bc

a2

a4

a2b2

a2 c2

a2 d2

a2
(cd+ab)

a2
(bd+ac)

a2
(ad+bc)

b2

a2b2

b4

b2 c2

b2 d2

b2
(cd+ab)

b2
(bd+ac)

b2
(ad+bc)

c2

a2 c2

b2 c2

c4

c2 d2

¿

c2
(cd+ab) c2

(bd+ac ) c2
(ad+bc ) d2 a2d2 b2 d2 c2 d2 d4

d2
(cd+ab) d2

(bd+ac) d2
(ad+bc) cd+ab cd+ab ¿ b2

(cd+ab) ¿

c2
(cd+ab) ¿ d2

(cd+ab) ¿ ( cd+ab )2 ¿ y ¿

y ¿ bd+ac ¿ a2
(bd+ac ) ¿ b2

(bd+ac) ¿
c2
(bd+ac) ¿ d2

(bd+ac) a2
¿ ¿ ¿ ¿ ¿

¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿
CK (M ( ξ ) )=¿

(4.167)

Where y=(bd+ac )(cd+ab)
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From (3.42) 4 4L B  with

1 2 3 4

4 1

4 4

1 1
1 2 3 41 2 2 4 4

11

( 1) !

4 1 !(4 )

i i

p p p p i i

m
s

ii
ii

p p
B x x x x dx dx dx dx

pp

 





  
 
   

 

 
∫


(4.168)

where p is the power of the factors and

1

4
dx


∫

Thus 

L4=[
1 p p p p q q q
p r g g g t t t
p g r g g t t t
p g g r g t t t
p g g g r t t t
q t t t t u t t
q t t t t t u t
q t t t t t t u

] (4.169)

where

p=∫ x i
2 dx , i=1, 2,3,4 ,                     g=∫ x1

2 x2
2 dx ,i≠ j

u=∫ (x i x j+xk x l )
2 dx ,                        r=∫ x i

4 dx

q=∫(x i x j+ xk x l)dx   (Sum of two-factor interactions)

t=∫ x i
2
(x i x j+xk x l)dx   ,               u=∫ (x i x j+xk x l )

2
dx (4.170)

And in each case i≠ j ≠ k ≠l

And from (4.26)



cxxvi

(CK (M (ξ ) ) )
−1
=[

300
11

−85
11

−85
11

−85
11

−85
11

0 0 0

−85
11

133
44

89
44

89
44

89
44

0 0 0

−85
11

89
44

133
44

89
44

89
44

0 0 0

−85
11

89
44

89
44

133
44

89
44

0 0 0

−85
11

89
44

89
44

89
44

133
44

0 0 0

0 0 0 0 0
1
8

0 0

0 0 0 0 0 0
1
8

0

0 0 0 0 0 0 0
1
8

] (4.171)

Therefore

(CK (M (ξ ) ) )
−1

L4=[
a b b b b b b b
c d e e e f f f
c e d e e f f f
c e e d g f f f
c e e e d t t t
q
8

t
8

t
6

t
8

t
8

u
8

t
8

t
8

q
8

t
8

t
8

t
8

t
8

t
8

u
8

t
8

q
8

t
8

t
8

t
8

t
8

t
8

t
8

u
8

] (4.172)

where

a=
−340 p−300

11
,    b=

−85r−300 p+255 g
11

,      c=
100 p−85

11

d=
133 r−340 p+267 g

44
,    e=

89 r−340 p+311 g
44

,    f=
100 t−85q

11

From (3.31)  I−optimal  value is equal to:
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tr [(C K (M (ξ ) ) )
−1

L4]=
300−680 p+133 r+267 g

11
+

3u
8

(4.173)

where p , r ,  g  and u  are as defined in (4.170).    

Thus using (4.170) and (4.173)

tr [(C K (M (ξ ) ) )
−1

L4]

¿
300
11
−

680
11 ∫

x1
2 dx+

133
11 ∫

x1
4 dx+

267
11 ∫

x1
2 x2

2 dx+
3
8∫ (

x i x j+xk x l )
2dx

for i≠ j ≠ k ≠l (4.174)

Using (4.160)

m
∫ x1

2 dx=
∏
i=1

4

pi!

(4−1+∑
i=1

4

pi)!

3 !×
2 !

(4−1+2) !
=

1
10

Similarly 

m ∫ x1 x2 dx=
1
20

,   m ∫ x1
4 dx=

1
35

 , m ∫ x1
2 x2

2 dx=
1

210

m ∫ x1
3 x2 dx=

1
140

 , m ∫ x1
2 x2 x3 dx=

1
420

 , m ∫ x1 x2 x3 x4 dx=
1

840

(4.175)

Thus substituting these values in (4.169) and (4.174) gives
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L4=[
1

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
35

1
210

1
210

1
210

1
105

1
105

1
105

1
10

1
210

1
35

1
210

1
210

1
105

1
105

1
105

1
10

1
210

1
210

1
35

1
210

1
105

1
105

1
105

1
10

1
210

1
210

1
210

1
35

1
105

1
105

1
105

1
10

1
105

1
105

1
105

1
105

1
84

1
105

1
105

1
10

1
105

1
105

1
105

1
105

1
105

1
84

1
105

1
10

1
105

1
105

1
105

1
105

1
105

1
105

1
84

]
(4.176) 

And 

I−optimality=
300
11
−

680
11

×
1

10
+

133
11

×
1
35
+

267
11

×
1

210
+

3
8

×
1

84

¿21.556 (4.177)

b) Now on substituting the values of the weights in (4.131), the information matrix for a

design that is I−optimal  becomes:

C=XT⋀ X=[
1 0.825 0.825 0.825 0.825 0 0 0

0.825 1.596 0.402 0.402 0.402 0 0 0
0.825 0.402 1.596 0.402 0.402 0 0 0
0.825 0.402 0.402 1.596 0.402 0 0 0
0.825 0.402 0.402 w 1 1.596 0 0 0

0 0 0 0 0 1.609 0 0
0 0 0 0 0 0 1.609 0
0 0 0 0 0 0 0 1.609

]  (4.178)

Consequently,  the  optimal  value  for  the  I−optimal  weighted  rotatable  central

composite design is:
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tr (C−1 L4 )=26.78401 (4.179)

4.3.3 m - Factors Design Optimal Values

In  this  section,  results  obtained  in  sections  (4.2.1.1)  and  (4.2.2.1)are  used  to

obtain  a  generalized  form  of  D-  and  I-  optimal  values  for   m  factors  WCCD

constructed through resolution R.

4.3.3.1 m - Factors D-Optimal Value

From (3.26) the D-optimal value is given by  ∅0 (C )= (det C )
1
s    here s is the

number of parameters in the subsystem of interest.The determinant of the information

matrix  is  obtained by use  of  the formula for  computing determinant  of  a  partitioned

symmetric matrix.

By definition, if A=[
A11 A12

A12
T A22

] , then the determinant of A  is given by:

|A|=|A22||A11−A12 A22
−1 A12

T |=|A11||A22−A12
T A11

−1 A12| . 

Partition the general information matrix (4.41) such that

C k (M (ξ ) )=[U ∅T

∅ V ] (4.180)

where U=[
1

1
N
(F+2α 2) (1m )

T

1
N
(F+2α 2)1m

1
N

Gm ]   and  V=
2
N
(F+α 4 ) I c .

Then the determinant of (4.180) equal to

|C k (M (ξ ) )|=|V||U−∅T V ∅T|=|V||U| (4.181)

Now V  is a  c× c  diagonal matrix (c is the number of parameters resulting from

averaging the interaction factors) 
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Hence |V|=( 2
N
(F+α 4 ))

c

(4.182)

Next |U|=|U11||U 22−U 12
T U 11

−1U12|

¿| 1N Gm−
1
N
(F+2α2 )1m ×

1
N
(F+2α 2 ) (1m )

T|
1
¿
¿

1
N

Gm−
1
N2

(F+2α2 )
2
¿

¿¿

(4.183)

Substituting Gm from(4.29)

F+2α 4
¿ I m+F ∑

i ≠ j=1

m

e i e j
T

1
¿
¿

¿−
1

N2
(F+2α2 )

2
¿

1
N
¿

|U|=¿

(4.184)

Thus (4.181) leads to

F+2α 4
¿ I m+F ∑

i ≠ j=1

m

e i e j
T

1
¿
¿

¿−
1

N2
(F+2α2 )

2
¿

1
N
¿

( 2
N
(F+α4 ))

c

×¿
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NF+2 α 4
¿ I m+NF ∑

i ≠ j=1

m

ei e j
T
−(F+2α 2)

2
J m

1
N2

{¿|

¿( 2
N
(F+α 4 ))

c

× ¿

(4.185)

where  I m  is  an  m× m  identity  matrix, J m is  an  m× m  matrix  of ones and

e i ' s  are the Euclidean unit vectors in Rm  denoted by  e1 ,e2 ,…,em .

 Consequently, D-optimal value is obtained using formula (3.36) as:

F+2α 4
¿ I m+NF ∑

i ≠ j=1

m

e ie j
T
−(F+2α 2 )

2
Jm

( 2
N
(F+α 4 ))

c

×| 1

N2
{N ¿|]

¿
¿¿

V (∅0 )¿

(4.186)

4.3.3.2 m - Factors I-Optimal Rotatable WCCD

In this section a general form of the  I−optimal  value for  m−factors  is

given. In sections(4.3.1.2) and (4.3.2.2),  I−optimal  values for the Rotatable CCD for

three and fourfactors respectively are derived. Each of the values is a linear function of

order four moments.  Therefore generally for m  factors

I−optimality=tr [ (CK (M (ξ )) )
−1

Lm ] (4.187)

where CK (M ( ξ ) )  equal to the information matrix (4.29).

Lm=Γ (m)× B , 
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 is the power of the factors and

m  is the number of factors.

Computing (4.187) results to

I−optimality

¿ β0−
β1

3m−1
μ2+

β2

3m−1
μ4+

β3

3m−1
μ22+ β4∫ ( xi x j+xk xl )

2
dx

where β i  is a multiple of   m and  i=1,2, …, m . 

(4.188)

4.3.4 Numerical Results and Efficiency

In this section,theoretical results obtained insection 4.1, 4.2 and 4.3 are presented

in table form.  Tables 4.3, 4.4, 4.5 and 4.6presents the respective optimal values for the

uniform weighted CCD and the optimal rotatable WCCD for three, four and five factors.

Their corresponding relative efficiencies are computed using the ratios given in (3.45),

(3.46), (3.47) and (3.48).  The amount of mass assigned to each of the two portions (cube

and star portions) of the optimal rotatable WCCDs are also given.

Table 4.3. D-optimal Rotatable Designs

m-
Factors

Resolution
R

Uniform
weighted
CCD

WCCD Efficiency Weights
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3 III 0.8 0.84 0.9524
w1=

4
7

w2=
3
7

4 IV 1.66 1.60 1.0376
w1=

1
2

w2=
1
2

5 V 1.53 1.54 0.99
w1=

11
16

w2=
5
16

D-optimal WCCD for resolution III  exists and the relative efficiency is 0.95.

The amount of mass assigned to the cube portion in the resolution III  design is greater

than in the star portion as it is the case for resolution  V  design.  Resolution  IV

WCCD also exists and the relative efficiency is slightly more than one. On the other

hand, equal weight is assigned to both the cube and star portions. 

Table 4.4. A-optimal Rotatable Designs

m-
Factor
s

Resolutio
n   R

Uniform
weighted
CCD

WCC
D

Efficiency Weights

3 III 0.1672 0.1678 1.004 w1=0.4311 w2=0.5689

4 IV 0.2013 0.1634 0.8119 w1=0.4270 w2=0.5730

5 V 1.53 1.54 1.0114 w1=0.4644 w2=0.5356

A-optimal WCCD for resolution III exists and the relative efficiency is greater

than one.  The same observation is made for resolution V  design.  Resolution IV

WCCD also  exists  but  it’s  relative  efficiency  is  less  than  one.  The  amount  of  mass

assigned to the cube portion in the three designs is less than in the star portion. 

Table 4.5. E-optimal Rotatable Designs

m-
Factor
s

Resolutio
n   R

Uniform
weighted
CCD

WCCD Efficiency Weights
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3 III 0.0269 0.0270 0.996
w1=

16
37

w2=
21
37

4 IV 0.0277 −¿ −¿ −¿ −¿

5 V 0.0089 0.01 0.89
w1=

46
101

w2=
55

101

E-optimal WCCD for resolution  III exists and the relative efficiency is near

one.  But  for resolution V  design the efficiency 0.89. The amount of mass assigned to

the cube portion is  less than the star  portion in  the two designs.From the theoretical

results in section 4.2.2.4, an E-optimal resolution IV WCCD does not exist.

Table 4.6. I-optimal Rotatable Designs

m-
Factors

Resolutio
n   R

Uniform
weighted
CCD

WCC
D

Efficiency Weights

3 III 16.2708 16.294 1.001 w1=0.38 w2=0.62

4 IV 21.556 26.784 1.2425 w1=0.3725 w2=0.6275

I-optimal  WCCD for  both  designs  exist  and the  relative  efficiency is  one  for

Resolution III design but greater than 1 for resolution IV design.  Further a greater weight

is assigned to the star portion than the cube portion in both designs.

4.4 Data Analysis

Rotatable CCDs have been constructed through resolutions III and IV. Further,

optimal rotatable WCCDs for three and four factors have been investigated under the

D−, A−, E−¿  and I−optimality  criteria  and  the  corresponding  optimal  values

computed.Thissectionpresentsan  application  on  optimization  of  a  four  factor  CCD to
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determine effects on whiteness of cotton using the data described in section 3.4.A full

quadratic model and a reduced quadratic model namely the second – order Kronecker

model each with a constant termwere fitted. A mathematical solution for the location of

the Stationary Point was obtained by carrying out astationarityand matrix analysis for the

two models and design efficiency was determined. Contour and response surface plots

were also plotted.

4.4.1 Optimization of Effects on Whiteness of Cotton using full CCD

The results in this section are based on the second-order Kronecker model given

in (3.4)expressed as:

Y x=f ( x )
'
θ+ε=θ0+∑

i=1

m

θ i xi+∑
i=1

m

θii x i
2
+∑

i , j=1

m

(θij+θ ji )x i x j+εi (4.189)

The model errors  εi   are assumed to have constant variance,  are uncorrelated and

homoscedastic and are also independent normal.

The initial design has (1+m+m2 )  parameters while the information matrix for

the subsystem parameters of interest is of order (1+m+c) where m  is the number of

factors  and  c  is  the  number  of  factors  resulting  from  averaging  the  repeated

interaction factors.

Most often in response surface methodology, the natural variables ζ 1 , ζ 2 , …,ζ m

are transformed to coded variables x1 , x2, …, xm  which are dimensionless with mean

zero and equal variance. The variables Temperature (TEMP), Bleach Activator (BC), pH

and  Peracetic  Acid  (PAA)  are  natural  variables  expressed  in  the  natural  units  of
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measurement. Codedvariables in the (−1,1 )  interval were used. The natural variables

are transformed  to the coded variables T, B, H and P respectively using the formulae: 

T=
TEMP−60

10
,     B=

BC−1.5
0.75

,         H=
pH−7.5

0.5
, P=

PAA−15
5

(4.190)

The coded variables and the corresponding natural variablesare given as.

Coded Levels

Factors −α −1          0           1α
T 40 50 60 70 80
B            00.75 1.5 2.25 3
H 6.5 7 7.5 8 8.5
P 5 10 15 20 25 (4.191)

Table 4.7 presents the data set including the natural and coded variables as well as the

response variable.

Table 4.7. Data Set for Full CCD

Runs

Natural Variables Coded Variables Response Variable

TEMP BC pH PAA T B H P Index

1 50 0.75 7.0 10 -1 -1 -1 -1 68.0
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2 70 0.75 7.0 10 1 -1 -1 -1 81.7

3 50 2.25 7.0 10 -1 1 -1 -1 68.9

4 70 2.25 7.0 10 1 1 -1 -1 83.5

5 50 0.75 8.0 10 -1 -1 1 -1 73.8

6 70 0.75 8.0 10 1 -1 1 -1 82.2

7 50 2.25 8.0 10 -1 1 1 -1 76.4

8 70 2.25 8.0 10 1 1 1 -1 84.2

9 50 0.75 7.0 20 -1 -1 -1 1 76.0

10 70 0.75 7.0 20 1 -1 -1 1 86.2

11 50 2.25 7.0 20 -1 1 -1 1 77.1

12 70 2.25 7.0 20 1 1 -1 1 86.6

13 50 0.75 8.0 20 -1 -1 1 1 78.8

14 70 0.75 8.0 20 1 -1 1 1 87.3

15 50 2.25 8.0 20 -1 1 1 1 78.8

16 70 2.25 8.0 20 1 1 1 1 87.3

17 40 1.50 7.5 15 -2 0 0 0 68.2

18 80 1.50 7.5 15 2 0 0 0 87.1

19 60 0.00 7.5 15 0 -2 0 0 79.0

20 60 3.00 7.5 15 0 2 0 0 81.7

21 60 1.50 6.5 15 0 0 -2 0 77.6

22 60 1.50 8.5 15 0 0 2 0 81.8

23 60 1.50 7.5 5 0 0 0 -2 71.9

24 60 1.50 7.5 25 0 0 0 2 83.2

25 60 1.50 7.5 15 0 0 0 0 81.1

26 60 1.50 7.5 15 0 0 0 0 81.5

27 60 1.50 7.5 15 0 0 0 0 81.8

28 60 1.50 7.5 15 0 0 0 0 81.3

29 60 1.50 7.5 15 0 0 0 0 81.7

30 60 1.50 7.5 15 0 0 0 0 81.7

Next, a scatter plot matrix for the above data is presented.
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Figure 4.1. Scatter Plot Matrix

The squares in the fifth row presents the respective scatter plots of the whiteness

Index against each of the explanatory variables TEMP, BC, Ph and PAA respectively.

From the scatter matrix,as the temperature increases, the whiteness index increases thus

showing a highpositivecorrelation between the response variable (whiteness index) and

temperature.  There  is  no  linear  correlation  between  the  response  variable  and  either

bleach  activator  or  pH  (BC  and  Ph).  But  there  is  a  very  weak  linear  correlation

betweenthe whiteness index and peraceticacid.The correlation generally is curved.

The response surface can also be visualized graphically using the graphs known

as response surface plots that are helpful to see the shape of the response surface.  An
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example of the plots arethe contour plots on which the shape of the response surface may

be observed as hills, valleys or ridge lines. But for more than two independent variables,

it is a bit difficult to interpret and thus a response surface model is essential to analyze the

response surface function.

Thecontour  plots  and  response  surfaces  are  drawn  for  each  two  explanatory

variables  and  the  response  variable  while  holding  the  other

twoexplanatoryvariablesconstant.  Observation  of  the  plots  and  surfaces  indicates  that

anoptimum point exists. The darker regions identify higher response values. 
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Figure 4.2. Temperature and pH

The contours shows a rising ridge pattern  and that the response surface is at a maximum

value of about 86 at the interaction of a pH of 7.75  and a temperature of  71℃ . 
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Figure 4.3. Temperature and Bleach A.

The contour plotshows an almost stationary ridge pattern indicating that the interaction

between temperature and bleach activator had little or no effect on the whiteness index.
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Figure 4.4. Temperature and P. Acid

The contour lines show a rising ridge pattern and the response surface plot indicates that

a maximum point exists at the interaction of temperature and peracetic acid.

.



cxliii

Figure 4.5. Bleach Activator and pH

From the response surface plot, it can be observed that the interaction of bleach activator 

and  pH had effect on the whiteness index. The contour plot represents a rising ridge.
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Figure 4.6.Bleach A. and Peracetic Acid

 The response surface plot shows there is a maximum point at the interaction of bleach

actvator and peracetic acid thus the two had some effect on the whiteness index.



cxlv

A full parameter second –order model for the above data set is fitted using R-

software. 

The following is the R print out of the analysis:

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  81.5167     0.4005 203.533  < 2e-16 ***
T             4.9667     0.2003  24.802 1.37e-13 ***
B             0.5833     0.2003   2.913 0.010709 *  
H             1.2083     0.2003   6.034 2.29e-05 ***
P             2.5750     0.2003  12.859 1.67e-09 ***
I(T * T)     -0.8000     0.1873  -4.271 0.000670 ***
I(B * B)     -0.1250     0.1873  -0.667 0.514713    
I(H * H)     -0.2875     0.1873  -1.535 0.145654    
I(P * P)     -0.8250     0.1873  -4.404 0.000513 ***
T:B          -0.0375     0.2453  -0.153 0.880516    
T:H          -0.9375     0.2453  -3.822 0.001665 ** 
T:P          -0.5000     0.2453  -2.039 0.059515 .  
B:H           0.0375     0.2453   0.153 0.880516    
B:P          -0.3500     0.2453  -1.427 0.174049    
H:P          -0.5000     0.2453  -2.039 0.059515 .  
---
Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.981 on 15 degrees of freedom
Multiple R-squared:  0.9833,    Adjusted R-squared:  0.9677 
F-statistic: 63.12 on 14 and 15 DF, p-value: 9.743e-11

Analysis of Variance Table

Response: WD
Df Sum Sq Mean Sq  F value    Pr(>F)    
T          1 592.03  592.03 615.1281 1.368e-13 ***
B          1   8.17    8.17   8.4853 0.0107094 *  
H1  35.04   35.04  36.4090 2.288e-05 ***
P          1 159.13  159.13 165.3446 1.672e-09 ***
I(T * T)   1  12.64   12.64  13.1337 0.0024993 ** 
I(B * B)   1   0.01    0.01   0.0058 0.9400720    
I(H * H)   1   0.81    0.81   0.8372 0.3746608    
I(P * P)   1  18.67   18.67  19.3970 0.0005126 ***
T:B        1   0.02    0.02   0.0234 0.8805161    
T:H        1  14.06   14.06  14.6112 0.0016650 ** 
T:P        1   4.00    4.00   4.1561 0.0595148 .  
B:H        1   0.02    0.02   0.0234 0.8805161    
B:P        1   1.96    1.96   2.0365 0.1740492    
H:P        1   4.00    4.00   4.1561 0.0595148 .  
Residuals 15  14.44    0.96  
Residual standard error: 0.9810425
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The fitted model is: 

Whitenessindex=¿
¿̂

ŷ=81.52+5 T+0.58 B+1.2 H+2.58 P−0.8 T 2
−0.125B2

−0.2875 H2
−0.825 P2

−0.0375 TB−0.9375TH−0.5 TP+0.0375 BH−0.35 BP−O .5 HP ¿
(4.192)

The  R  outputcomprises  of  the  computed  coefficient  estimates  for  the  linear,

quadratic and interaction terms in the second- order model. From the analysis,thet-tests

reveal that the main effects T ,B ,H and P , the square terms T2   and P2 and

the  interaction term TH are significant at  α=0.05  while the other factors are not.

The small p−¿  valuesalso suggests there is curvature in the response surface.  

Refitting the model with the significant factors only yields the following results:

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  81.1042     0.3192 254.051  < 2e-16 ***
T             4.9667     0.2257  22.002< 2e-16 ***
B             0.5833     0.2257   2.584  0.01693 *  
H             1.2083     0.2257   5.353 2.25e-05 ***
P             2.5750     0.2257  11.407 1.05e-10 ***
I(T * T)     -0.7484     0.2074  -3.609  0.00156 ** 
I(P * P)     -0.7734     0.2074  -3.730  0.00116 ** 
T:H          -0.9375     0.2765  -3.391  0.00263 ** 
---
Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.106 on 22 degrees of freedom
Multiple R-squared:  0.9689,    Adjusted R-squared:  0.959 
F-statistic:  97.9 on 7 and 22 DF,  p-value: 4.271e-15

Analysis of Variance Table
Response: WD
Df Sum Sq Mean Sq  F value    Pr(>F)    
T          1 592.03  592.03 484.0767 < 2.2e-16 ***
B          1   8.17    8.17   6.6776  0.016931 *  
H1  35.04   35.04  28.6522 2.252e-05 ***
P          1 159.13  159.13 130.1184 1.046e-10 ***
I(T * T)   1  12.64   12.64  10.3356  0.003989 ** 
I(P * P)   1  17.02   17.02  13.9130  0.001162 ** 
T:P        1  14.06   14.06  11.4983  0.002628 ** 
Residuals 22  26.91    1.22 
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Clearly  it  can  be  concluded  that  the  overall  regression  fit,  with  a  p-value  of

4.271 ×10−15  is  highly significant.  The refitted model has the value RAdj
2
=0.959

which  isless  thanthe  value  RAdj
2
=0.9677 of  the  first  model.Denoting  the  response

variable  with  a  subscript  reducedmodel  (rm),  the  final  fitted  model  for  the  response

variable at α=0.05 significance level becomes:

Whitenessinde xredueced model=¿

¿̂

ŷrm=81.10+4.97 T+0.58 B+1.21 H+2.58 P−0.75 T2
−0.77P2

−0.94 TH (4.193)

To check the validity of the fitted model a residual analysiswas conducted and this is

illustrated in figures 4.7 and 4.8.

Figure 4.7. Normal Q-Q Plot

This reveals that the residuals are approximately normally distributed.



cxlviii

Figure 4.8. Residual vs Fitted Values

.  The randomness of the plotted points indicates a good fit.  The residuals are

distributed  randomly  on  the  plot  and  this  suggests  that  the  variance  of  the  original

observation is constant for all values of Y.Fromfigures 4.7and 4.8, it can be concluded

that the model is adequate to describe the whiteness index determined by the response

surface. Later in this chapter, the study seeks to improve this design by using a resolution

IV design and then make a comparison.

4.4.1.1 Location of the Stationary Point

The above analysis shows that the response surface is explained by the second

order model.This suggests that an optimum point exists and should be located by finding

the levels of the factors that optimize the predicted response.

The stationary point is the combination of design variables where the surface is at

either a maximum or a minimum in all directions. A saddle point exists if the stationary

point is a maximum in some direction or a minimum in another direction. A ridge system
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will be observed when the surface is curved in one direction but is fairly constant in

another direction (Oehlert 2000). 

A stationarityand matrix analysisis carried out to  obtain a mathematical solution

for the location of the stationary point.This point will be the set of  T ,B , H and P

for which the partial derivatives: 

d ŷ
dT
=

d ŷ
dB
=

d ŷ
dP
=

d ŷ
dA
=0

Writing the second-ordermodelin matrix notation, we have 

ŷ= β̂0+x ' b+x ' Bx (4.194)

where

x=[
T
B
H
P
]b=[

β̂1

β̂2

β̂3

β̂4

] and B=[
β̂11

β̂12

2

β̂13

2

β̂14

2
β̂12

2
β̂22

β̂23

2

β̂24

2
β̂12

2

β̂23

2
β̂33

β̂34

2
β̂12

2

β̂24

2

β̂24

2
β̂44

] (4.195)

b is a 4× 1  vector of the first-order regression coefficients and B  is a 4× 4

symmetric matrix whose main diagonal elements are the pure quadratic coefficients β̂ ii

and the off-diagonal elements are one-half the mixed quadratic coefficients  β̂ ij , i≠ j

(Montgomery 2005). The derivative of the response with respect to the elements of the

vector  x  is equated to zero and the stationary point is the solution of this equation.

This is outlined below.

dy
d x
=b+2 Bx=0⇒ xs=

−1
2

B−1 b (4.196)
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This then yields the predicted response at the stationary point as

ŷ= β̂0+
1
2

xs
' b (4.197)

Nextthelocation of the stationary point for whiteness index of cotton is now determined.

Substituting the  estimates  of  the  coefficients  in  the matrices  (4.195)  the following is

obtained:

B=[
−0.8 −0.1875 −0.46875 −0.25
−0.1875 −0.125 0.1875 −0.175
−0.46875 0.1875 −0.2875 −0.25
−0.25 −0.175 −0.25 −0.825

]

b=[
5

0.58
1.2
2.58
]

B−1
=[
−0.5509 −1.7265 −0.9387 −0.81765
−1.7265 −0.0153 3.1868 −0.4393
−0.9387 3.1868 0.6395 −0.5853
−0.81765 −0.4393 −0.5853 −1.1893

] (4.198)

From (4.196), the stationary pointis

xs=[
1.3863
2.975
1.7939
−0.0311

] (4.199)

The  stationary  point  is  then  obtained  in  terms  of  the  natural  variables  Temperature,

Bleach Activator, pH and Peracetic Acid using the equations in (4.190) and this resulted

in:
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TEMP=73.86⁰C

BC=3.73 %owf

pH=25.44

PAA=14.84 ml / l (4.200)

Thus  the  factors  should  be  set  at  Temperature  73.86⁰C   ,  Bleach  Activator

3.73 %owf   , pH 25.44 and Peracetic Acid  14.84 ml /l to attain optimum effect

onwhiteness of cotton. Using (4.197) the estimated optimum value of the whiteness index

ŷ denoted by 
ϕ

V (¿¿ p(ξ ))
¿

is 

ϕ
V (¿¿ p(ξ ))=86.476

optimum whiteness index=¿
(4.201)

4.4.2 Illustration using Resolution IV CCD

From the above analysis, there is evidence that only two interactions are likely to

exist.  Thus  a  resolution  IV design  in  the  fractional  factorial  portion  is  appropriate.

Theoretical results of this design have been derived in the previous chapters of this thesis.

Therefore using the generator formed by the highest interaction D=ABC , the second-

order  model  is  fitted  using  the  data  values  corresponding  to   half  –  fraction  of  the

factorial portion. The data points corresponding to this design were obtained by putting

the  data  in  Table  4.7into  two  blocks  with  one  block  obtained  from  the  generator

D=ABC  and the second block from the generator D=−ABC  .  

For the purpose of analysis, the following assumptions were used:
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1. The  observed  response  variables  are  normally  distributed  with  standard  deviation

5.46.

2. The  observed  response  variables  for  the  second  design  whose  cube  portion  is

constructed through resolution IV differs from the original observed ( y i)  with an

error εi  which is normally distributed with mean zero and standard deviation3.99.

Thus  the  error  term  εi N (0,3.992
) is  generated.  Therefore  the  new  response

variable denoted by new y i  is given by:

new y i= y i+εi

The new design points in terms of coded variables, the generated error term and the new

response variable are given.
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Table 4.8. Data Set for Half CCD

T B H P y e newy

-1 -1 -1 -1 68  -1.167 66.83

1 1 -1 -1 83.5  5.94 89.44

1 -1 1 -1 82.2  -0.747 81.45

-1 1 1 -1 76.4  1.427 77.83

1 -1 -1 1 86.2
 
0.0237 86.22

-1 1 -1 1 77.1 7.08 84.18

-1 -1 1 1 78.8   3.391 82.19

1 1 1 1 87.3 -1.949 85.35

-1.6818 0 0 0 68.2 -2.841 65.36

1.6818 0 0 0 87.1  -4.388 82.71

0 -1.6818 0 0 79
 
8.8761 87.88

0 1.6818 0 0 81.7 -0.206 81.49

0 0 -1.6818 0 77.6  5.836 83.44

0 0 1.6818 0 81.8   1.618 83.42

0 0 0 -1.6818 71.9 -7.132 64.77

0 0 0 1.6818 83.2  0.432 83.64

0 0 0 0 81.1 -5.984 75.12

0 0 0 0 81.8 0.141 81.94

0 0 0 0 81.3 -1.746 79.55

The  following  figure  presents  a  scatter  plot  showing  the  effects  of  the  explanatory

variables on the response variable using this data set.  



cliv

temp effect plot

temp

w
hi
d

70
75
80
85
90

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5

bla effect plot

bla

w
h
id

75

80

85

90

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5

ph effect plot

ph

w
hi
d

70

75

80

85

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5

pac effect plot

pac

w
hi
d

70

75

80

85

-1.5 -1.0 -0.5  0.0  0.5  1.0  1.5

temp*bla effect plot

temp

w
hi
d

 60 65 70 75 80 85 90 95

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

bla bla
 60 65 70 75 80 85 90 95

bla

temp*ph effect plot

temp

w
h
id

 65 70 75 80 85 90 95

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

ph ph
 65 70 75 80 85 90 95

ph

temp*pac effect plot

temp

w
hi
d

 65 70 75 80 85 90 95

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

pac pac
 65 70 75 80 85 90 95

pac

bla*ph effect plot

bla

w
hi
d

 70 75 80 85 90 95

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

ph ph
 70 75 80 85 90 95

ph

bla*pac effect plot

bla

w
hi
d

 70 75 80 85 90 95

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

pac pac
 70 75 80 85 90 95

pac

ph*pac effect plot

ph

w
h
id

7075808590

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

pac pac
7075808590

pac

Figure 4.9. Effects Plots and Residuals

An observation of the curves reveals that while Temperature, pH and Peracetic

Acid show a higher effect  on the whiteness Index owing to the shape of the curves,

Bleach Activator has a lower effect. 

4.4.2.1 Effect on Whiteness of Cotton using Resolution IV CCD
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In  this  section  the  objective  was  to  determine  the  effect  of  the  four  factors  on

whiteness of cotton using half the number of experimental runs that were used in section

4.4.1. Asecond-order Kronecker model was fitted and an analysis done to find out the

significant factors and the results were compared with the graphical observations.

Letting the variables b1, b2, b3 and b4 represent Temperature, Bleach Activator, pH

andParacetic Acid respectively, the following is the R output for the fitted model:

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  78.0682     2.1256  36.727 2.88e-09 ***
I(b1 * b1)   -1.0627     1.0860  -0.979  0.36040    
I(b2 * b2)    2.7025     1.0860   2.488  0.04169 *  
I(b3 * b3)    2.2577     1.0860   2.079  0.07621 .  
I(b4 * b4)   -1.0045     1.0860  -0.925  0.38575    
b1            3.6086     1.0695   3.374  0.01186 *  
b2           -0.7753     1.0695  -0.725  0.49203    
b3            1.6375     1.0695   1.531  0.16962
b4            4.6249     1.0695   4.324  0.00346 ** 
b1:b2        -2.6287     1.3974  -1.881  0.10200    
b1:b3        -2.2331     1.3974  -1.598  0.15407    
b1:b4        -0.7336     1.3974  -0.525  0.61582    
---
Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.952 on 7 degrees of freedom
Multiple R-squared:  0.8838,    Adjusted R-squared:  0.7012 
F-statistic:  4.84 on 11 and 7 DF, p-value: 0.02323

Denoting the response variable with a subscript RIV(Resolution IV) the fitted model is of

the form:

N̂ew WhitenessindexRIV=¿

ŷRIV=78.068+3.61 T−0.78 B+1.64 P+4.62 A−1.06 T 2
+2.70 B2

−2.26 P2
−1.0 A2

−2.63 TB−2.23 TP−0.73 TA
(4.202)

An observation of the coefficient estimates and the  t-tests,shows that Peracetic

Acid had the greatest  effect  on whiteness of cotton followed by temperature and the

pH.The bleach Activator had nearly no effect on whiteness index and this is also evident

from the contour plots figures 4.10, 4.11, 4.12, 4.13 and 4.14.
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Figure 4.10. Temp and pH

The contours show a rising ridge indicating that temperature and Ph had effect on the

whiteness index.
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Figure 4.11. Temp and Bleach A.

The response surfaceplothas almost the same shape as the one between temperature and

pH.  This indicates that the interaction of temperature andpH as well as temperature and

bleach activator had effect on the whiteness index. 
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Fgure 4.12. Temp and P. Acid

The response surface plot shows that the interaction of temperature and peracetic acid

had effect on the whiteness index. The contour lines as well indicates a maximum point

exists.
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Figure 4.13.B.Activator and pH

The response  surface  plot  and the  contour  lines  shows that  the  interaction  of  bleach

activator and pH had minimal effect on the whiteness index.
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Figure 4.14. B. Activator. and P. Acid

The  interaction  of  bleach  activator  and  peracetic  acid  shows  minimal  effect  on  the

whiteness index as evident from the contour plot and the response surface plot.

The  analysis  shows  that  two  main  effects  Temperature  and  Peracetic  Acid

contribute  significantly  to  the  model  at  α=0.05  level.  This  is  similar  to  the

observation  oftheEffects  Plots  (Figure  4.9).  Further,  this  agrees  with  earlier  findings

where  the  main  effectswere  found  to  be  significant.Comparing  this  model  with  the

reduced model  for  the  full  CCD,  it  can  be  observed  that  this  model  has  a  value  of
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RAdj
2
=0.7012 . This is less than  RAdj

2
=0.959  for the full CCD. This indicates that

reducing the number of experimental runs has resulted to a reduction in the value of

RAdj
2 .

According toWuand Hamada (2000), in order for an interaction to be significant,

at  least  one of its parent factors should be significant. This fundamental principle for

factorial effects is called the effect heredity principle. Now since the two parent factors T

and A are significant, then we may also conclude that the corresponding interaction is

also significance as well as the corresponding quadratic terms:

N̂ew Whitenessindex=80.8+3.2T+2.6 A−0.59T2
−0.87 A2

−1.73 TA (4.203)

4.4.2.2 Location of the Stationary Point

A stationarity and matrix analysis is carried out to obtain a mathematical solution for

the location of the Stationary Point and calculations were done using R. Substituting the

estimates of the coefficients in the matrices (4.195), the following results are obtained:

B=[
−1.0627 −1.3144 −1.1167 −0.3668
−1.3144 2.7025 0 0
−1.1167 0 2.2577 0
−0.3668 0 0 −1.0045

]

b=[
3.6086
−0.7753
1.6375
4.6249

]

B−1
=[
−04716 −0.2294 −0.2333 0.1722
−0.2294 0.2585 −0.1134 0.0837
−0.2333 −0.1134 0.3276 0.0852
0.1722 0.0837 0.0852 −1.0584

] (4.204)
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The stationary point is then determined using the equation (4.196) and this result to:

xs=[
0.5548
0.4133
−0.0882
2.0995

] (4.205)

Next using (4.190), the stationary point in terms of the natural variables: Temperature,

Bleach Activator, pH and ParaceticAcid is obtained:

TEMP=65.55⁰C

BC=1.81 %owf

pH=7.46

PAA=25.5 ml /l (4.206)

Thus  the  factors  should  be  set  at  65.55⁰C   Temperature,  1.81%owf Bleach

Activator,  7.46 pH  and  25.5 ml/ l Peracetic  Acid  to  attain  optimum  effect

onwhiteness of cotton. 

Using  (4.197)  the  estimated  optimum  value  of  the  whiteness  index  denoted  by

ϕ
V (¿¿ p(ξ ¿))

¿

is obtained as:

ϕ
V (¿¿ p(ξ¿))=83.69125

optimum whiteness index=¿
(4.207)

A comparison of the performance of the two designs in determining the effect of

the four factors on the whiteness index of cotton was done by computing their efficiency

using the formula given in (3.44):
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ϕ
ϕ

V (¿¿ p(ξ ))
V (¿¿ p (ξ ¿))

¿
ef f ϕ p

(ξ¿ )=¿

where the design ξ   is the full CCD while ξ¿ is the CCD obtained

through resolution IV. 

Thus using (4.201) and (4.207),

ef f ϕp
(ξ¿)=

83.69125
86.47637

=0.9678 (4.208)

The conclusion is that the second design performs better than the first design and it is

3.22% more efficient (anefficiencyof 96.78%).
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CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.0 Introduction

In this chapter, a summary of the findings of this research is given, conclusions

are drawn and recommendations for further research emanating from this work are

outlined. 

5.1 Summary

Response  surface  designs  are  important  for  the  study  of  response  surface

methodology and an example of such designs is the Central Composite Design. In this

thesis,  two-level  fractional  factorial  designs  were  investigated.RotatableCentral

Composite  Designsin  the  second-order  Kronecker  model  were  constructed  through

resolutions  III  and  IV for  three  and  four  factors.  Based  onthe  parameter  subsystem

K ' (θ ) of  interest,  moment  matrices  and  corresponding  information  matrices  were

obtained. The moment matrices were found to satisfyrotatability conditions. Also, it was

observed that the number of parameters resulting from averaging the interaction factors

due to repetition of columns in the  X  design matrix  play a role in determining the

order of the information matrix.

Optimal rotatable WCCD for three and four factors were derived and optimality

was  accomplished  through  application  of  D-,  A-  ,  E-  andI-optimality  criteria  which
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follows from the General Equivalence Theorem  (Pukelsheim, 1993, Goosand Bradley,

2012).

 D-, A- and I-optimal rotatable WCCD were found to exist for both resolution III

and IV designs. An E- optimal rotatable WCCD exists for resolution III design but not for

a resolution IV design. More weight is assigned to the cube portion in the resolution III

and V D-optimal designs while resolution IV design assignsequal weight to both portions.

On the  other  hand more  weight  is  assigned to  the  star  portion  in  the  A-,  E-  and I-

optimalresolution III and IV designs.

A general form of D- optimal rotatable WCCD and corresponding optimal value

was derived as  well  as  a  general  form of  the I-  optimal  value.  Optimal  values  were

computed  and  efficiency  of  the  constructed  designs  was  computed  relative  to  the

corresponding uniformly weighted central composite designs. Resolution IV has a very

high  efficiency  in  terms  of  the  I-optimality  criterion.Resolution  III  D-,  A-,  E-and  I-

optimal rotatable Weighted Central Composite Designs (WCCDs) were found to exist.

The D-, A- and E-efficiency for the Resolution III and IV designs are near one indicating

that the optimal rotatable WCCDs perform better than the uniform weighted CCD in

terms ofD-, A- and E-optimality criterion.

D- and A-optimalrotatableWCCDs exist for four factors. The D-efficiency is near

one indicating that the WCCD is better  in terms of the D-optimality criterion.  But in

terms of the A-optimality criterion, the efficiency is  0.81  and thus the full CCD is

better than the WCCD.But an E- optimal rotatable WCCD for resolution  IV does not

exist.



clxvi

I-optimal  rotatableWCCDs  exist  for  both  resolution  III and IV .  The

efficiency for resolution  III  is near one and thus the WCCD is better than the full

CCD.  The efficiency for resolution IV  design is slightly more than one and thus in

terms of I-optimality criterion,  the optimal full CCD seems to perform better.Optimal

values and weights for the weighted central composite designs were numerically obtained

using both R and wxMaximasoftwares.

A resolution IV design was further investigated using data on whiteness of cotton.

Scatter plot matrices and contour plots  and the corresponding response surfaces were

plotted for the secondary data. A second-order Kroneker model was fitted using the full

CCD and a resolution IV design and a comparison was done.  A stationarity and matrix

analysis  was  carried  out  to  obtain  a  mathematical  solution  for  the  location  of  the

Stationary Point in both cases and the efficiency of the resolution IV design determined.

5.2 Conclusion

The generalobjective of this research thesis was to construct optimal second-order

rotatable designs through resolutions with application to effects on whiteness of cotton

using four factors Central Composite Design.  The findings of this thesis are consistent

with previous researches such asYin-Jie (2007)whoconstructed minimal-point designs for

second-order response surface using a two-stage method to find the composite designs.

The  minimal-point  designs  were  equal-weight  designs  and  comparison  was  made

between  central composite designs, other small composite designs and minimal-point

designs by relative efficiencies.  Generally,  the proposed composite designs performed

well.Further,Lucas (1974) proposed that when m≤ 5 , the D-efficiency of the optimal

CCD is at least 0.9 . This agrees with the results of this thesis. 



clxvii

Further, other than the resolution IV D-optimal rotatable WCCD that was found to

assignamass of equal value to design points in both the cube and star portions, all the

other designs assign different weights to the two portions of the CCD.But a resolution IV

E-optimal rotatable WCCD does not exist. Observing the optimal values and efficiencies

of these designs,the conclusion is that the resolution R WCCDs in general perform better

than the uniform weighted CCD. 

Thetheoretical results agree with the data analysis results. It was observed that the

model that was fitted using Resolution IV design performed better than the one fitted

using the full CCD.Peracetic acid is the most effective bleaching agent of cotton in the

pH range of 6 to 7. The preferable bleaching temperature range is between 50℃ and

80℃ . The degree of brightness increases proportionately with the concentration of

bleaching agent. A comparison of the optimum conditions for the whiteness of cotton

showed that fitting the second model results in factor levels that satisfy the preferred

conditions  namely  low  temperatures  and  a  high  concentration  of  the  peracetic  acid.

Further when bleaching is carried out at low temperature this means energy conservation

with economic and environmental benefits.The second design performed better than the

first design considering that it had an efficiency of  96.78%.

A comparison of the diagnostic graphs in the appendix  (Figure A.1 and Figure

B.1) shows that fitting the model  using the resolution IV design does not  distort  the

regression.  An observation of the two plots showing Cook’s distance shows that the red

smoothed line is close to the horizontal gray dashed line and that no points have a large

Cook’s distance.
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5.3 Further Research

Suggestions for further research that has emanated from the findings of this study

are outlined in this section.

1. This thesis was restricted to CCD with no center points. It would be interesting to

observe what happens if a similar study is carried out with center points added to

both the cube and the star portions.

2.  It is recommended that further research can be done on the practicability of the

optimal  rotatable  Weighted  Central  Composite  Designsand  an  investigation  be

carried  out  on  the  generalized  form  of  A-  and  E-optimal  rotatable  WCCD

constructed through resolution R.  

3. An area for future research would be tofind out the optimum conditions and the

corresponding optimum value of the whiteness index of cotton when Peracetic Acid

is used in the presence of different bleach activators at different temperatures using

the Resolution IV  design based on the CCD. 
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APPENDICES

AppendixA: Graphs for full CCD

https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Michael+Hamada&search-alias=books&field-author=Michael+Hamada&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=C.+F.+Jeff+Wu&search-alias=books&field-author=C.+F.+Jeff+Wu&sort=relevancerank
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Figure A.1. Basic Diagnostic Graphs for the full CCD

Appendix B: Graphs forHalf CCD
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Figure B.1. Basic Diagnostic Graphs for Half CCD

Appendix C: R-codes 
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# for m=3

#input K matrix and L

w1=c(1,0,0)

w2=c(0,1,0)

w3=c(0,0,1)

#compute information matrix

Ck=L3%*%M3%*%t(L3)

Ck

#use data set for coded cotton data full 
ccdcottonfull=read.csv("C:\\Users\\mwangi\\Desktop\\cottonfull.csv",sep=",",
header=TRUE)cottonfull

attach(cottonfull)

#fit the first model

fit23=lm(index~temp+bla+ph+pac+I(temp*temp)+I(bla*bla)+I(ph*ph)
+I(pac*pac)+I(temp*bla)+I(temp*ph)+I(temp*pac)+I(bla*ph)+I(bla*pac)
+I(ph*pac),data=cottonfull)

fit23

summary(fit23)

#plot the graphs

qqplot(fit23)

plot(aov(fit23))

plot(resid(fit23) ~ fitted(fit23))

abline(0,0)

#fit data for half ccd

cottonhalf=read.csv("C:\\Users\\mwangi\\Desktop\\cottonhalf.csv",sep=",",he
ader=TRUE)

cottonhalf

attach(cottonhalf)

fit26=lm(index~I(Temp*Temp)+I(blat*blat)+I(Ph*Ph)+I(paca*paca)
+Temp*blat+Temp*Ph+Temp*paca,data=cottonhalf)
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fit26

#plot the graphs

qqnorm(residuals(fit26))

plot(Temp,index)

plot(blat,index)

plot(Ph,index)

plot(paca,index)

boxplot(index ~ temp)

boxplot(index~blat)

plot(cottonhalf) #plot pairs of scatter for whole data

#plot contour plots for half data temp and ph and response variable whid

library(rsm)

par(mfrow=c(1,3))

image(fit26, Temp ~ Ph)

contour(fit26, Temp ~ Ph)

persp(fit26, Temp ~ Ph, zlab = "index")

#plot contour plots for the data temp and bla and response variable whid

library(rsm)

par(mfrow=c(1,3))

image(fit26, Temp ~ blat)

contour(fit26, Temp ~ blat)

persp(fit26, Temp ~ blat, zlab = "index")
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