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It is unethical to administer a cancer-confirming biopsy 
to subjects who screen negative on both the new and the 
standard screening tests because the results already suggest 
a low probability of cancer [2,4]. Therefore the biopsy data are 
missing with negative screening tests. This is what we end up 
with in screen positive designs. In this case disease detection 
probabilities (DP) and false referral probabilities (FP) are the key 
measures of accuracy that can be derived [4]. These estimates 
will be biased because some subjects might have been missed 
by the screening test due to error. A way to mitigate this issue 
is to impute the missing data. Therefore the aim of this study 
is to demonstrate a parsimonious way of estimating relative 
accuracy of the screening tests when the determination of the 
disease status of the subjects who screened negative on the 
new and the standard screening tests was not conducted due to 
ethical concerns. Markov Chain Monte Carlo simulation (MCMC) 
technique was used to address the aforementioned shortcoming 
when subjective approach to estimation was adopted [6,7]. Non-
informative conjugate prior distributions were utilized.

Abbreviations
TPR: True Positive Rate; FPR: False Positive Rate; DP: 

Detection Probabilities; FP: False Referral Probabilities; MCMC: 
Markov Chain Monte Carlo simulation; rTPR: Relative True 
Positive Rate; rFPR: Relative False Positive Rate; MAR: Missing 
At Random

Introduction
Before a new test is approved for public health use its 

accuracy should be compared to that of the existing standard 
tests to determine whether the new test is superior to or at least 
as accurate as the available tests. This is achieved through the use 
of standard metrics used to compare the true positive rate (TPR) 
and the false positive rate (FPR) of two tests. This comparison 
is quantified using the relative performance or the relative 
accuracy of the tests used for detecting the disease [1-5]. Screen 
positive designs administer the gold standard test to subjects 
with positive outcome on at least one of the screening tests. 
These designs are preferred if the diagnostic test is too costly or 
too invasive to be applied to all the study subjects.
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Abstract

Comparison of the accuracy of a new screening test to that of the standard one can 
be implemented by administering both screening tests to a group of asymptomatic 
subjects for which the disease status can be determined using a gold standard (GS) 
test. Nevertheless, the GS test may be too costly or too invasive hence unethical to 
administer to all the study subjects, including those who screen negative on all the 
screening tests. When this is the case, relative accuracy of the two screening tests 
can be estimated when a randomized paired screen positive (RPSP) design is used 
to collect the data. However, this design contains cells with missing data, thus the 
likelihood function is not available. The objective of this study is to demonstrate a 
parsimonious way of estimating relative accuracy of the screening tests when the 
determination of the disease status of the subjects who screened negative on the new 
and the standard screening tests was not conducted due to ethical concerns.

Markov Chain Monte Carlo simulation technique is used to parsimoniously address 
the aforementioned shortcoming of the RPSP design when subjective approach to 
estimation is used. Multiple data imputation using Gibbs sampler is performed. Monte 
Carlo point and interval estimates of the missing data, measures of accuracy and the 
relative rates are computed when the tests are treated to be: 

I. Conditionally independent 

II. Dependent

The accuracy when the tests are dependent is higher than when the tests are 
conditionally independent. This is apparent from the narrower credible bounds and 
smaller standard errors of the true and false positive rates under this setting. Secondly, 
the estimates obtained under the two assumptions are better than when the missing 
data are ignored. Whether these differences were true or just due to chance warrant 
statistical investigation under different assumptions.
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Inferences about the performance of the screening tests are based on the estimates of relative true positive rate (rTPR) and relative 
false positive rate (rFPR). These rates are respectively obtained by taking the ratio of the point estimates of TPR and FPR of the 
new screening test to that of the standard screening test [1-4]. In section 2 we give an outline of the methods that were used. The 
randomized paired screen positive design by [4] is discussed in section 3. In this section we compute the measures of accuracy under 
the assumptions that the tests are 

I. Conditionally independent 

II. Dependent

The other assumptions were: data were observed with the RPSP design, the missing data were assumed to be missing at random 
(MAR), the TPR and the FPR of the standard screening test were assumed to be 0.5 and 0.02 respectively, and the rTPR and rFPR 
were assumed to be 1.5 and 1.25 respectively. In section 4 we provide the results while in section 5 we discuss, conclude and give 
recommendations.

Methods
Due to the missing data the likelihood function for the data was not available. Consequently the subjective as well as the classical 

approaches to estimation were intractable. Thus MCMC technique was adopted. When the new and the standard screening tests were 
assumed to be conditionally independent, the data followed binomial distribution thus the conjugate prior distribution was Beta 
distribution. When the new and the standard screening tests were assumed to dependent the data followed a multinomial distribution 
thus the conjugate prior distribution was Dirichlet distribution [8]. Non-informative prior distributions were used. To get the posterior 
distributions data augmentation technique was utilized to circumvent the complexity resulting due to missing data. The missing data 
were assumed to be MAR. MCMC approach was applied and Monte Carlo point and interval estimates were reported. Multiple data 
imputation using Gibbs sampler was employed. The missing data and the measures of accuracy were imputed using the binomial and 
beta distributions respectively. Assuming we had the observed data resulting from the subjects who screened positive for at least one 
screening test under RPSP design, the simulation proceeded as follows: Initialize by estimating the parameter of interest from the 
posterior distribution of interest then draw a missing value from the posterior distribution of the missing data. Next draw a parameter 
of interest from the posterior distribution of interest again then the missing data from the posterior distribution of the missing data. 
This procedure was iterated 10000 times. One run of 10000 draws was implemented. Analysis of the chain was performed to establish 
the convergence [9,10]. The sample size in our study was 45900 and the prevalence of the disease was assumed to be 1%. 

Design and Estimation
Randomized paired screen positive (RPSP) design

In RPSP design n subjects are randomized to first receive test X1 or test X2. The second screening test and the GS test are administered 
only if the first screening test was positive [4]. Data from such a design are summarized in (Table 1).

The variables *R  and p
jklz , 1,2, , , 0,1p j k l= = , where

1

1

0 0
,

1 1

for a negativeresult on test X for a non diseased subject
j k

for a positiveresult on test X for a diseased subject

− 
 = = 
 
 

, and 
2

2

0
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for a negativeresult on test X
l

for a positive result on test X


= 



denote the observed and the missing data, respectively, while the cells with “ ?• ” denote the unknown marginal totals. The 
superscripts denote the test that the subjects were first randomized to receive. Test X1 is the standard test while test X2 is the new test.

Measures of accuracy when the tests are assumed to be conditionally independent

The total number of subjects with the disease and without the disease in the design is fixed. Further, the row totals are fixed and 
the column totals are random. Thus binomial sampling model was appropriate for each test. Assume that the 1n• •  is equal to the actual 

sample size [11] determined and 0n• •  is equal to ( )1
1nψ

ψ
−

• •  where ψ is the prevalence of the disease in the population. The marginal 

totals of the tests can be approximated based on the assumed TPRs or FPRs of the tests. (Table 2) summarizes the data from the RPSP 
design under the assumption that the tests are conditionally independent. (Table 2) is similar to the unpaired screen positive (USP) 
design [1-4].

Where
1 2 1 2 1 2 22 1 2 1

110 011 010 011111 111 111 110 110 011 011 111 111 011, ,n n n n n n n n n nz z z z= + + + = + + = + + + 1 2 1 2
110 010 010010 110n n z z z= + + + , 1 2 1 2

100101 101 101 100n n n n z= + + + , 2 1 1 2
001 000 000100 001n n z z z= + + + , 1 2 2 1

001001 101 101 001n n n n z= + + + , 1 1 2 2
000 100 000000 100n n z z z= + + + .
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The p
jkln  variables denote the observed data, while the p

jklz  variables denote the missing data from the RPSP design, , , 0,1j k l = . 

Let { }1,0Y ∈  denote the outcome of the screening test where 1 denotes a positive outcome and 0 a negative outcome. Similarly, 

let { }1,0X ∈ denote the chosen screening test such that X=1 if test X1 is chosen and X=0 if test X2 is chosen. This study treated the 
outcome of the screening tests as response and the type of test as the explanatory variable. Hence to describe the data, conditional 
distributions of the response variable Y given the explanatory variable X were computed. This led to computation of measures of 
accuracy of the screening tests. This setting treated the row totals (type of test) as fixed and forming separate binomial samples. 

Under this setting the relative TPR is given by
Pr 1| 11
Pr 1| 12

X D
X D

 
 
 
 
 
 

= =

= =
 while the relative FPR is given by

Pr 1| 01
Pr 1| 02

X D
X D

 
 
 
 
 
 

= =

= =
.

Under this assumption the missing data under the new and the standard screening tests were 35 and 23 respectively. 

Measures of accuracy when the tests are assumed to be dependent

The second setting treated the screening tests to be dependent of each other. In (Table 3) the marginal totals for the levels of 
each test were random rather than fixed. Hence the joint distributions of the two tests follow a multinomial distribution. The total 
number with the disease and without the disease can be obtained as was done above when the tests were assumed to be conditionally 
independent. (Table 3) is similar to the paired screen positive (PSP) design [1-4].

where

( )1 2

111 111 111n n n= + , ( )1 2
110110 110n n z= + , ( )2 1

011011 011n n z= + , ( )1 2
010 010010n z z= + , ( )1 2

101 101 101n n n= + , ( )1 2
100100 100n n z= + , 

( )2 1
001001 001n n z= + , ( )1 2

000 000000n z z= + .
When the tests were treated to be dependent of each other the relative TPR is defined as 

( ) ( )
( ) ( )

Pr 1, 1| 1 Pr 1, 0| 11 2 1 2
Pr 1, 1| 1 Pr 0, 1| 11 2 1 2

X X D X X D
X X D X X D

= = = + = = =

= = = + = = =
 while the relative FPR was defined

as
( ) ( )
( ) ( )

Pr 1, 1| 0 Pr 1, 0| 01 2 1 2
Pr 1, 1| 0 Pr 0, 1| 01 2 1 2

X X D X X D
X X D X X D

= = = + = = =

= = = + = = =
.

Using the data from (Table 3), the two ratios are similar to the ratios from the PSP design. The eight cell counts were the sample 
values from a multinomial distribution having eight categories. Thus the likelihood function [12] is of the form:
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( )1 2 7, ,..., 'π π π π= ,
8
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i
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1 111 111n n n= + , 2 1
1102 110n n z= + , 2 1

0113 011n n z= + , 1 2

4 101 101n n n= + , 1 2
1005 100n n z= + , 2 1

0016 001n n z= +

, 1 2
0107 010n n z= + , 1 2

0008 000n n z= + .

( )1 21 Pr 1, 1| D 1X Xπ = = = = , ( )1 22 Pr 1, 0 | D 1X Xπ = = = = , ( )1 23 Pr 0, 1| D 1X Xπ = = = = , ( )1 24 Pr 0, 1| D 0X Xπ = = = =

, ( )1 25 Pr 1, 0 | D 0X Xπ = = = = , ( )1 26 Pr 0, 1| D 0X Xπ = = = = , ( )1 27 Pr 0, 0 | D 1X Xπ = = = = , ( )1 28 Pr 0, 0 | D 0X Xπ = = = = .

The 'in s  are not complete. That is, they include missing data. Thus to avoid ambiguity in the model let 1 2n n zi jkl jkl= + , for i = 

2, 3, 5 and 6 , , , 0,1j k l =  be written in the form: i i in n z= +  for

i = 2, 3, 5 and 6 and 7 7n z=  and 8 8n z=  where the iin  denote the observed data while the iz denote the missing data. Under 

this assumption the missing data due to the new screening test were assumed to be z2=69, z3=34, and z7=41 while due to the standard 
screening test they were assumed to be z5=227, z6=182, and z8 was the difference between the observed and the sum of the imputed 
missing data i.e z2+z3+z5+z6+z7.

Results
The Geweke convergence diagnostic [9] and the correlograms for the first order autoregressive (AR(1)) processes [10] confirmed 
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that the parameter posterior means and the missing data posterior means converged to stationarity after 4000 iterations. Estimation 
of the point estimates of the TPR and FPR of the tests and the missing data together with their corresponding credible bounds and 
variances was then conducted. 

(Figures 1 & 2) show the distributions of the TPRs, FPRs and the missing data under the assumption that the tests were conditionally 
independent while (Figure 3) shows the distributions of the relative TPR and relative FPR. The point estimates and the 95% credible 
bounds for the TPRs, FPRs, the missing data and the rTPR and rFPR were computed. The point and credible bounds estimates under 
conditional independence of the tests were as shown in (Table 4).

(Figure 4) shows the distribution of the missing data when the tests were assumed to be dependent. In (Table 4) we have denoted 

6zzand,5zz,3zz,2zz 1
001

2
100

1
011

1
110 ==== for convenience. In (Figure 4) z8 represents the data when the outcome of both 

screening tests is negative and the diagnostic test confirms that the subjects have the disease while z8 represents the data when the 
outcome of both screening tests is negative and the diagnostic test confirms that the subjects do not have the disease.

The relative TPR and relative FPR of the two screening tests were computed and their posterior distributions were as shown in 
(Figure 5). 

The point estimates and the 95% credible bounds of the parameters of the Dirichlet posterior distribution, the measures of 

Table 1: Data from a Randomized Paired Screen Positive Design.

Disease Status
D = 1 D = 0

Test 2 Test 2
X2 = 1 X2 = 0 Total X2 = 1 X2 = 0 Total

Randomized to receive test 1 first

Test 1

X1 = 1 1

111n 1

110n 1

11.n 1

101n 1

100n 1

100n
X1 = 0

1n• •
1
010z 1

01z •
1
001z 1

000z 1
00z •

Total ?• ?• ?• ?• ?• ?•
Randomized to receive test 2 first

Test 1

X1 = 1 2

111n 2
110z ?• 2

101n 2
100z ?•

X1 = 0 2

011n 2
010z ?• 2

001n 2
000z ?•

Total 2

.11n 2
10z•

?• 2

.01n 2
10z•

?•

Table 2: Summarized data from RPSP design when the tests were assumed to be conditionally independent.

D=1 D=0
Test Outcome, Y Test Outcome, Y

Positive Negative Total Positive Negative Total

Test

Test X1
111n

110n 11.n 101n 100n 10.n
Test X2

011n 0n• • 01n • 001n 000n 00n •

Total ? ?
1n• •

? ?
0n• •

Diseased, D=1 Non-Diseased, D=0
Test X2 Test X2

Positive Negative Total Positive Negative Total

Test X1

Positive 1

111n 1

110n
? 1

11.n 1

101n ?

Negative
?•

1

100n ?
1n• •

1
010z

?

Total ? ? ? ? ? ?

Table 3: Summarized data from the RPSP design when the tests were assumed to be dependent.
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Figure 1: Posterior distributions of the TPRs and the missing data under conditional independence of the tests.
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Figure 2: Posterior distributions of the FPRs and the missing data under conditional independence of the tests.
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Figure 3: Posterior distributions of the relative TPR and relative FPR of the tests under conditional independence of the tests.

accuracy and the missing data were also computed and the results were as shown in (Table 5). The relative TPR was computed as 
((pi1+pi2)/(pi1+pi3)) while the relative FPR was computed as ((pi4+pi5)/(pi4+pi6)) which are the probabilities of the appropriate 
cells in (Table 3).
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Table 4: Estimates of the measures of accuracy for the two screening test under the assumption of conditional independence.

95% Credible bounds
Estimator Estimate variance Lower Limit Upper Limit

1XTPR 0.73 0.0009 0.67 0.79

2XTPR 0.53 0.0012 0.47 0.6

1XFPR 0.025 1.29E-06 0.023 0.027

2XFPR 0.02 1.01E-06 0.018 0.022

Z2 35 31.01 25 46
Z3 23 20.56 15 32
Z5 114 119.74 93 136
Z6 91 93.378 73 111

1 2:r X XTPR 1.38 0.0109 1.19 1.59

1 2:r X XFPR 1.25 0.0075 1.09 1.43
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Figure 4: Distributions of the missing data.
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Figure 5: Distributions of the relative TPR and relative FPR of the tests under dependence of the test.

Discussions, Conclusion and Recommendations
When the tests were conditionally independent the TPR of the new screening test was estimated to be 0.73 while that of the 

standard test was estimated to be 0.53. Thus the relative TPR of the new screening test to that of the standard test was 1.38(95% 
credible bounds: 1.19, 1.59). When the missing data was ignored the disease detection probability (DP) of the new screening test 
was 0.58 while the DP of the standard screening test was 0.44. This gives a relative TPR of 1.34(95% credible bounds: 1.12, 1.62). 
The relative TPR obtained when the missing data was ignored was different from that obtained when the missing data was ignored 
indicating downward bias.

The FPR of the standard screening test was estimated to be 0.02 while that of new screening test was estimated to be 0.025. 
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Thus the relative FPR of the new screening test to that of the standard screening test was 1.25(95% credible bounds: 1.09, 1.43). 
The false referral probability (FP) of the new screening test when the missing data was ignored was 0.016 while that of the standard 
screening test was 0.02 giving a relative FPR of 1.25(95% credible bounds: 1.09, 1.43). There seems to be small effect on the relative 
FPR when the missing data was ignored since the estimate accounting for missing data is similar to that ignoring the missing data. 
When the tests were treated to be dependent of each other the relative TPR and the relative FPR of the new to the standard screening 
tests were 1.50(95% credible bounds: 1.35, 1.67) and 1.25[95% credible bounds: 1.15, 1.36] respectively. The relative TPR and the 
relative FPR when the missing data were ignored were 1.37(95% credible bounds: 1.27, 1.47) and 1.25(95% credible bounds: 1.14, 
1.36) respectively. Apparently when the missing data were ignored, the relative TPR was downward biased while the relative FPR 
was not biased. Estimation ignoring the missing data leads to the estimation of the DP and FP because the number of subjects who 
(would have) screened negative due to one screening test and positive due to the other is not taken into account to estimate the TPRs. 
This means that the estimates obtained are biased. Since the assumption was that the TPR of the new screening test is 0.75 and that 
of the standard screening test is 0.5 the relative TPR is 1.50 which is higher than that obtained when the tests were considered to 
be conditionally independent from each other. This value is, however, similar to that obtained when the tests were considered to 
be dependent of each other which were precisely found to be 1.496. Similarly, the FPR of the standard screening test was assumed 
to be 0.02 and that of new screening test was estimated to be 0.025. Thus the relative FPR of the new screening test to the standard 
screening test was 1.25. We find that the relative FPRs in all the settings (the assumed values, under conditional independence and 
under dependence of the tests) are similar.

In this study the missing data have been simulated. This means that the TPRs and the FPRs are estimable under the assumptions 
stated. Therefore, we can no longer estimate the DP and the FP as demonstrated in this study. This is an achievement from this study. 
As to whether the observed differences in the estimates of relative TPR are true or just due to chance a statistical assessment needs 
to be conducted. It is recommended that if the tests are known a priori to be dependent or conditionally independent of each other 
it is good practice to estimate the measures of accuracy in that setting. This is because there is clear evidence from the study that 
the estimates are affected by the association of the tests. The relative TPR and the relative FPR resulting after the missing data were 
included in (Tables 2 & 3) can be interpreted as the ratio of two posterior averages. Although these are the “best” posterior estimates 
of the measures of accuracy, the ratio of these posterior estimators are not necessarily the best posterior estimates. Thus, Bayesian 
alternatives of obtaining the relative accuracy are warranted. 
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95% Credible Bounds
Estimator Point Estimate Variance Lower bound Upper Bound

Pi1
0.00379 8.32e-08 0.00325 0.00436

Pi2
0.00377 8.46e-08 0.00322 0.00435

Pi3
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Pi4
0.00052 1.18e-08 0.00034 0.00076
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Pi7
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Pi8
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Z2
69 70.47 53 86

Z3
14 33.47 7 22

Z5
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Z6
182 183.21 156 209

Z7
42 40.64 31 56

Z8
43435 40.64 43421 43446

1 2:x xrTPR 1.50 0.0065 1.35 1.67

1 2:x xrFPR 1.25 0.0029 1.15 1.36

Table 5: Estimates of measures of accuracy and the missing data for the two screening tests.
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