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ABSTRACT 

The instantaneous neutron’s density in a reactor core is influenced by several 

factors. Some of them include the reactor material’s characteristics and the reactor 

configuration geometry properties. The role of the former has been well explored 

and understood while the latter continues to arouse interest in research and 

applications despite being poorly understood for some configuration types. In 

particular, spheroid configuration exhibits relatively higher robustness compared 

to other. However, the behavior of time dependent neutron flux at varying axis 

ratios and how the latter affects neutron leakage rates has not been well explored 

for this type of configuration. Therefore, this study is aimed at establishing how 

the axis ratio determines the behavior of neutron flux and neutron leakage rates. 

Specifically; modeling and determining the behavior of time dependent neutron 

diffusion flux in a spheroid reactor core at varying axis ratios, formulating the 

relationship between the axis ratio and neutron leakage rates and elaborating the 

behavior of neutron leakage rates for both spheroids at axis ratios equal, smaller 

and larger than unity.  In order to carry out this, Fick’s law of diffusion was 

modified into a Jacobi elliptic theta function to describe the desired time 

dependent neutron diffusion problem in spheroid coordinates system. The quasi-

radial component was adapted to represent the axis ratio and thereafter appropriate 

boundary conditions were imposed. Secondly, a relationship between neutron 

leakage rate and the axis ratio of spheroids was formulated using geometric 

buckling and neutrons thermal life time equations, and the results were evaluated 

for axis ratios equal, smaller and larger than unity with software used to solve all 

the formulated equations. It was found that neutrons diffuse outwards from the 

core towards the boundaries of the spheroid exhibiting the characteristics of Jacobi 

elliptic theta curves of the third kind. Various configurations of diffusion 

configurations were obtained that included ternary surfaces, continuous and 

discontinuous surfaces of various characteristics as the value of ‘n’ was varied. In 

addition, neutrons diffusion behavior along the quasi-angular component and the 

time component was found to be largely similar. In the investigation of neutron 

leakage rate versus the axis ratio, both configurations (with the same volume and 

same neutron leakage constant (k)) exhibited similar profile, although the neutron 

leakage rate for prolate was lower compared to that of oblate at axis ratios smaller 

than unity. In contrast, at axis ratios larger than unity, it was found that the 

neutrons leakage rate for prolate became greater than that of an oblate of the same 

volume. The results further showed that, at axis ratio larger than unity, the neutron 

leakage rate was mildly affected by the axis ratio of the spheroid. Finally, the 

values for neutron leakage rates for both prolate and oblate spheroids converged 

when the axis ratio was unity, for instance, the neutron leakage rates for both types 

of spheroids was 2.5 neutrons/square unit for neutron leakage constant of k = 200.  

The findings of this study could be utilized in the design of superior reactors with 

enhanced safety that can mitigate against nuclear accidents by varying core axis 

ratios in order to alter reactor criticality conditions. Further research needs to be 

conducted on multigroup neutron diffusion for a similar problem and determining 

the flux behavior for each type of spheroid separately 
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ACRONYMS 

ARDC  Axis Ratio Dependent Component  

TDC Time Dependent Component 

PWR -Pressurized water reactor 

BWR -Boiling water reactor 

CANDU -Canadian Deuterium Uranium Reactor 

AGR -Advanced Gas Reactor 

VVER -Vodo-Vodyanoi Energetichesky Reactor 

IAEA -International Atomic Energy Agency 

KNEB -Kenya Nuclear Electricity Board 

GCFR -Gas Cooled Fast Reactor 

 LCFR -Liquid Cooled Fast Reactor 

MSR -Molten Salt Reactor 

SCWR -Supercritical Water-Cooled Reactor 

VHTR -Very High Temperature Reactor 

ICF -Inertial Confinement Fusion  

MCF -Magnetic Confinement Fusion 

DOE -Department of Energy 

PRA -Probability Risks assessments 

MSCR -Molten Salt Cooled Reactor 

LMFBR -Liquid Metal Fast Breeder Reactor 
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DEFINITION OF SYMBOLS 

Neutron thermal lifetime   𝑙𝑡,  

Neutron thermal lifetime when there is no leakage 𝑙0,  

Neutron leakage rate 𝐿,  

Spheroid Semi-minor axis 𝑀2,  

Spheroid Semi-major axis 𝑀1  

Neutron and neutron thermal life time constant  𝑘 

Geometric buckling  (𝐵𝑔) 

Materials buckling  (𝐵𝑚) 

Azimuthal component of the wave function in spherical geometry  𝑍(𝑧) - 

Radial component of the wave function in cylindrical geometry 𝑅(𝑟) 

Bessel’s function of the first kind   𝐽0(𝐵𝑟)
                          

 

Bessel’s function of the second kind 𝑌0(𝐵𝑟) 

Angular Variable of spheroidal coordinate system 𝜂 

Radial Variable of spheroidal coordinate system 𝜉 

Azimuthal Variable of spheroidal coordinate system ᵠ 

Focal distance 𝑐 

Jacobi elliptic theta function of the third kind 𝜈3 

Azimuthal wave number 𝑚 

Core reactivity  𝜌 

Diffusion coefficient D 

Neutron velocity v 

Neutron thermal lifetime constant k 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background  

A nuclear reactor generates nuclear energy through nuclear fission or fusion in a 

controlled system Ragheb (2015b). The current study focuses on fission based 

reactors. It is understood that nuclear reactors have naturally existed for billions 

of years (Petrov et al., 2006). However, the Second World War occasioned the 

need for powerful warfare weaponry, which gave rise to the development of 

nuclear bombs. The idea of utilization of nuclear reactors for civilian applications 

was conceived after 1945 (Röhrlich, 2013), and since then, significant progress 

has been made in nuclear reactor technology particularly for electricity production 

(Ripani, 2015). Nuclear electricity currently accounts for 11 % of global energy 

production and is projected to rise to 15% once all  nuclear reactors have been 

commissioned (Findlay, 2010a). Nuclear energy possesses risks and challenges 

but remains an important source of energy today and in the future, if the current 

statistics were to remain the same (Findlay, 2010b). Developing nations are also 

including nuclear energy in their national energy mix because of these 

aforementioned reasons (Amano, 2011). Fusion-based reactors technology is yet 

to be commercialized because it’s still in experimental stages (Jeffrey, 2007; 

Ongena, 2016). 

Historically, reactors have evolved through four generations, this evolution has 

been informed by several factors that include:  the need to enhance their resistance 

to proliferation, the need to develop economical designs, the need for ease of waste 

disposal, the need for increased sustainability, the need for reactors with smaller 

grids requirements, improvement of thermal efficiencies, modularization, 
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elongated lifespan, widening public acceptance (Goldberg & Rosner, 2011; 

Zelevinsky & Volya, 2017). Lately, events at Fukushima and Daichi involving 

reactor meltdown shifted attention to the enhancement of safety features to 

mitigate the impact of abnormal events without active controls (Zelevinsky & 

Volya, 2017). The events inspired the search for enhanced safety protocol in 

nuclear reactors. 

Fission based reactors rely on the diffusion of neutrons to split heavy nuclei like 

that of Uranium, which in turn releases energy through chain reaction (Masterson, 

2017; Murray & Holbert, 2014). Fick’s law of diffusion plays a central role in 

understanding this process (Srivastava, 2020). Analytical and numerical methods 

based on Legendre polynomials and Bessel’s functions have been adopted to study 

neutron diffusion problems in various geometry and one commonality is the 

process of neutron flux attenuation as the wave propagates away from the source. 

This common finding was made elaborately for different types of reactor 

geometry; cylindrical geometry, spherical geometry, cubical geometry and for a 

point source. In all these studies, the neutron flux and its associated geometric 

buckling for the configuration were evaluated; the geometric buckling was 

understood as the first eigenvalue of the neutron diffusion problem (Carayannis et 

al., 2020; Ragheb, 2015a). Sjoestrand (1958), gave the earliest method for the 

computation of flux and the relationship between the axis ratio and the geometric 

buckling of a reactor and remains relevant to date. However, the determination of 

the relationship between the axis ratio of the spheroid and the flux was not 

determined explicitly.  
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Multigroup neutron diffusion problems have also been considered. Studies have 

shown that fast neutrons have lower flux because the population of such neutrons 

inside the nuclear reactor is relatively lower compared to thermal neutrons, 

(Sjöstrand et al., 1959). 

Neutron flux and neutron leakage rates in cylindrical and spherical geometry, 

unlike spheroid geometry, have been studied fairly well. This is partly attributed 

to the wide applications of such geometry in nuclear reactor designs (Linde, 1960), 

with the main advantage being the ease in fitting nuclear fuels to the core 

compared to spheroid geometry and their relative robustness (Bektas, 2017; Kim 

& Kim, 2013) 

The relationship between flux and the semi focal distance of the spheroid has been 

explored by Zeppenfeld (2009), and the results showed that a slight deformation 

of the sphere does not affect the fundamental mode properties significantly at least 

to the first order. Secondly, it was found out that a disk and a sphere are two 

limiting cases for the spheroids that exhibited smooth transitions between two 

limits. Thirdly, full contours were found to be nearly circular near the source but 

slowly develop into elliptical shapes moving towards the boundaries.  

The diffusion in spheroids has been done for other physical phenomena and 

adopted in this study for comparison. The works of Alassar (1999) discuss 

numerous applications of wave equations in spherical coordinate systems and were 

used to explain eigen -functions and eigen - frequencies of spherical mirror 

resonators. Paraxial approximations have been found useful in this study for 

reducing quasi radial and quasi angular functions.  
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The time-dependent heat diffusion equation that uses the method of Jacobi elliptic 

theta function was adopted to explore heat leakage in spheroids; where it was 

concluded that a slight deformation of the sphere does not affect the fundamental 

modes at least to the first order (Alassar et al., 2014; Lima et al., 2004). The 

Galerkin method (Carmo & Lima, 2008; Vega Carrillo, 2014)was proposed to be 

useful in solving diffusion problems in ellipsoidal geometry and found that 

Spheroids exhibit the tip effect whereby an area with a high moisture gradient is 

more significant since the aspect ratio was found to directly influence drying 

process; this study provided a macroscopic equivalent of the problem under study.  

Whereas it is important to note that reactor reactivity is affected by temperature 

and other conditions, the role of reactor design remains a fundamental factor in 

the criticality formula (Qvist & Greenspan, 2012). Alassar et al. (2014), also 

provides a study on the behavior of neutron decay constant versus focal semi 

distance. This problem was solved using analytical and Monte Carlo methods, 

which showed that at small focal semi distance, neutron decay was relatively 

higher, however, as focal semi distance increases; neutron decay was observed to 

decrease exponentially. In a study on heat leakage rates, (Lima et al., 2004) 

showed that when volume was kept constant and at large axis ratios, there was 

little dependence on the heat transfer rate on the axis ratio.  

From the foregoing discussion, it is evident that the role of axis ratio in the design 

and optimization of nuclear reactor has not been comprehensively studied, ye t a 

proper understanding of the role of axis ratio in the determination of flux, leakage 

and reactor reactivity has a profound consequence on the improvement of reactor 

designs. For instance, an in-depth understanding of the effects of variation of axis 
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ratio with; neutron flux, neutron leakage and reactor core reactivity will have two 

main likely applications; first, in reactors that have been designed as Spheroid 

geometry and secondly in reactors that are non-spheroidal geometry but are slowly 

deforming with time. In both cases, the understanding will enhance design of 

reactors with improved efficiency and in mitigation of extreme events.  

1.2 Statement of the Problem 

The solution of diffusion problems for neutrons in spheroids has had several 

limitations that include; complexity of the resulting eigenvalues and 

eigenfunctions, emerging orthogonality problems and inseparable boundary 

conditions. Therefore, studies have mainly been focused on spherical and 

cylindrical geometry. Scientists and engineers have relied more on computer 

software to simulate neutron diffusion problems in spheroid geometry. There is a 

need to develop new mathematical models that simulate such problems in light of 

the current knowledge.  

The model provided in this study adopts Jacobi's elliptic theta functions to solve 

these problems and the results are validated using the analytic method. The 

solutions are then applied to study neutron diffusion in the spheroid coordinate 

system. The understanding of neutron diffusion for such curved surfaces has not 

only proved complicated in dealing with neutron diffusion problem particularly 

where time-dependent neutron diffusion in 3-Dimensions is being considered. 

Secondly, unlike previous methods that had little or no consideration of the axis 

ratio, the new method provides an explicit relationship between the time-

dependent flux and the axis ratio of the spheroid. Furthermore, the behavior of 

neutrons leakage outside a spheroid has been provided.  
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Unlike previous methods for determining leakage of neutrons in spheroids that 

have been provided in literature, the current provides a unique method that 

introduces a new term called neutron thermal lifetime constant  which enables 

computation of leakage rates at various values of thermal lifetime constant and 

axis ratio of the spheroid, which enhances the computation of leakage rates at 

various axis ratios. The introduction of neutron thermal lifetime constant and axis 

ratio in the formula is a fairly new concept and has been incorporated in the 

relationship. In a similar manner, a new relationship between reactor core 

reactivity and the axis ratio was also developed. 

Poor understanding of the diffusion problems in spheroid nuclear reactors could 

lead to nuclear accidents. In practice, even reactors that were initially spherical or 

cylindrical could get deformed as discussed thus consequently, the undetected 

deformation could result in the continued use of incorrect safety protocol and may 

lead to occurrences of accidents.  

1.3 Justifications  

 The rapidly growing demand for clean and sustainable energy to satisfy 

current and future global energy needs. 

 The growing need to develop nuclear reactors that have enhanced safety 

protocol. 

 The need to develop solutions for better understanding diffusion of 

neutrons in the curved spheroid reactor core configurations.  
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1.4 Objectives 

1.4.1 Main Objective 

Study the behavior of neutron flux, neutron leakage rates, and core reactivity under 

varying axis ratios in spheroid coordinate system using the method of Jacobi 

elliptic theta functions. 

1.4.2 Specific objectives of Study 

i. To formulate an appropriate time-dependent neutron equation with flux 

variation dependent on the axis ratio of the spheroid.  

ii. To analyze time-dependent of and axis ratio of the spheroid core. 

iii. To examine the effects of neutron leakage rates on the axis ratio of a 

spheroid. 

iv. To investigate the effects of core reactivity and axis ratio on the 

spheroid.  

 

1.5 Scope of the Study 

 Neutron diffusion is being considered for spheroids without reflector walls 

 Only thermal neutrons are being considered 

 The neutron flux has been carried without distinguishing between the flux’s 

behaviors for each type of spheroid separately 

1.6 Significance of the Study  

The results obtained from this work may assist in the improvement of reactor 

designs, where a comprehensive understanding of the flux behavior, leakage rate 

patterns, and core reactivity under varying axis ratio may lead to:  



Page 8 of 148 

 

 

i) Optimal reactor designs that can have reduced core sizes which consequently 

have a less fuel-moderator assembly. This implies that such reactors are 

economical and reduces waste disposal challenges.  

ii) Spheroids are generally robust compared to other forms of geometry, and in 

case of mechanical deformation due to heating, radiations and mechanical 

forces (including earthquakes), computer simulations can be developed that 

can assist in proper planning of reactor shutdown during such times 

iii) Even reactors that are originally spherical and cylindrical, the effects stated in 

1.4(ii) above are found to cause them to deform into spheroids. Thus, planning 

of mitigation measures in times of adverse events can be put in place.  

iv) Therefore, this study is in line with Generation IV technological goals that laid 

down the requirements for safe, economical and reliable reactors. 

1.7 Thesis Layout  

This thesis is divided into six chapters as follows; - Chapter one gives the 

introduction to the subject matter. Chapter two provides a discussion of the subject 

in the context of related recent relevant studies that are available in literature. 

Chapter three gives the methodology that was adopted in the study while Chapter 

four provides a results and a detailed discussion of the results. Chapter five and 

six provides the conclusions and recommendations respectively 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

In this section, we trace the development of various reactor geometries, 

considerations that have informed nuclear reactor design in the past and the 

present, the methods and approaches that have been used to study diffusion theory 

and their gaps, an overview of the concepts used to study leakage and reactivity in 

spheroid geometry and that of other physical phenomena are presented. A review 

of the diffusion of neutrons in other geometries and other physical phenomena is 

provided for comparison with this study. A literature review of key terms and 

concepts central to the current study have been provided. 

The role of the moderator in a reactor core (Figure 2.1) slows down fast neutrons 

into thermal neutrons to be able to initiate chain reaction (Van Dam et al., 2005). 

There are many types of reactor core geometry where the main ones include 

spherical, cylindrical and cubical. Spheroid geometry has not been well applied 

due to the complications associated with such curvatures. We have provided a 

review of diffusion in a sphere which is a special case of a spheroid. Cylindrical 

geometry has some inherent properties of curved geometry such as emergence of 

eigenvalues and that justifies their inclusion in this study. 
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Figure 2.1: Schematic diagram of Pressurized Water Reactor Showing the 

Spheroid Nature of Such Design (https://world-nuclear.org) 

 

The control rods are used to regulate chain reaction by lowering or withdrawing 

them from the core. They are made from materials with high neutron absorption 

cross-section such as Boron. Such materials are also known as neutron poison 

(Hannaske et al., 2013; Plompen et al., 2020).  Figure 2.2 illustrates a reactor core 

fitted with fuel pellets and control rods.  

 

 

 

 

 

 

Figure 2.2: Showing a Cylindrical reactor core fitted with nuclear fuel  

In cylindrical geometry, such a core is fitted by interfering with the smooth walls 

of the inner reactor walls. It was established that performing such fittings in 

https://world-nuclear.org/
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spheroidal geometry was bound to present more difficulties due to the associated 

curvature complexities. 

The diffusion of neutrons through a reactor core results in their moderation as they 

undergo collisions with the fuel-moderator assembly leading to the production of 

thermal neutrons. The later have energy range within the fission cross-section of 

most nuclear fuel such as Uranium, Thorium, and Plutonium (See Table 2.1). This 

means that they possess a higher probability to cause fission and avoid absorption 

with the fuel-moderator assembly. Therefore, thermalization is essential to ensure 

that reactor criticality is attained for sustainability.  

Table 2.1: Showing Cross sections for different nuclear fuels Neutron 

parameters for ANL-800 

 

   Nuclide  Neutrons per 

fission event 

Fission 

cross 

section  

Capture 

cross 

section 

Transport 

cross 

section 

1.  Plutonium(239) 2.98 1.85 0.260 6.8 

2.  Uranium(235) 2.6 1.40 0.250 6.8 

3.  Uranium(238) 2.6 0.095 0.16 6.9 

4.  Fe - - 0.006 2.7 

5.  Na - - 0.0008 3.3 

6.  Al - - 0.002 3.1 

(Agency, 2015) 

Uranium is a nuclear fuel that is commonly used in nuclear reactors (Caldicott, 

2013; Murty & Charit, 2013). Plutonium exhibits the highest neutron per fission 

event than Uranium thus making it a better nuclear fuel. However, its applications 

are limited due to its less relative abundance and higher rates of proliferation. 

Nuclear cross-sections play a significant role in the thermalization of neutrons. 

Materials with comparative nuclear cross sections as the neutrons tend to absorb 
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them at a higher threshold. Consequently, such materials are not good for the Fuel - 

moderator assembly. The population of neutrons inside a nuclear core at any given 

time can be said to be decreasing, remaining constant or increasing (Ayyoubzadeh 

et al., 2012).  

A term referred to as the reactor criticality defined in equation 2.01 and 2.02 is 

used to measure the changes in the core instantaneous neutron population. The 

neutron multiplication factor, which is the ratio of the number of neutrons 

produced in one generation to that produced in the previous generation, is used to 

define reactor criticality. It depends on a four variables term also known as the 

four-factor formula stated in equation 2.01; 

𝒌 = 𝜺𝜼𝒇𝑷                                                                                                                2.01 

Where;- 𝜀 - Neutron fast fission factor, 𝜂 − Average neutron per fission , 𝑓 - 

Neutron Thermal factor ,𝑃-Neutron escape probability. These terms have been 

well further expounded in section 3.1.5 of this Thesis. 

In a practical reactor set up, leakage of neutrons is bound to occur. Therefore, 

instead of using the infinite multiplication factor, a related term called the effective 

multiplication factor (𝑘𝑒𝑓𝑓  ) is adopted. This term considers the thermal non-

leakage probability, fast non-leakage probability and the infinite multiplication 

factor. It is a six-factor formula that is related to the four factor formula as shown 

in equation 2.02. 

𝑘𝑒𝑓𝑓 = 𝑘∞𝜀𝜂𝑓𝑃              2.02 
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Figure 2.3: Showing Reactor Criticality Conditions (M1-Supercritical state, 

M2-Critical state, M3-Subcritical state) 

 

Based on the effective multiplication factor, 𝑘𝑒𝑓𝑓,  three reactor criticality 

conditions are observed for an infinite reactor core (See Figure 2.3).  M1, refers 

to a condition in a nuclear reactor core when the population of neutrons keeps 

increasing as time progresses. It is also called a supercritical system and causes 

the system to be self-sustaining. Secondly, the condition, M2, also called a critical 

state causes the system to be self-sustaining and indicates a condition when the 

population of neutrons remains the same even as time progresses in a reactor core. 

Lastly, M3, is known as a subcritical state and causes the system not to be self-

sustaining and refers to the reactor core when the population of neutrons is 

decreasing as time progresses. 

The applications of curved geometry in nuclear reactor cores and their cooling 

systems have been considered in the past and have been gaining popularity with 

Pressurized water reactor, Gas Cooled reactors, and Water-cooled reactors among 

others. This is because curved geometry possesses salient robust characteristics 

that are outstanding over the other geometry. 

The design of the tower for the cooling the reactor is spheroid configuration with 

a wide at the top and the base (See Figure 2.4). The wider top enables hot air from 
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inside of the reactor core to mix freely with the atmospheric air for efficient 

cooling. Straight beams are used to build the tower making it resistant to external 

forces compared other geometry besides offering adequate space. This robustness 

in the reactor geometry is key component that continues to be explored particularly 

in reactor cores designs save for the practical complexities it portents. 

 

Figure 2.4: Cooling towers of nuclear reactors that are Hyperbolic 

Paraboloids 

(Bektas, 2017). 

 

2.1 Behaviour of Neutron Flux in Non-Spheroidal Geometry 

A sphere and a disc are considered to form special case of spheroid geometry, 

Rajai et al (Lima et al., 2004). It follows therefore that certain aspects of spherical 

geometry could be extended to spherical geometry and vice versa. So whereas this 

study is premised on spheroid geometry, the neutron flux and associated geometric 

buckling for members of non-spheroidal geometry that include spherical, 

cylindrical, and cubical, among others have been included for comparison. A 

summary table of flux and geometric buckling for the various types of reactor 

geometry is presented in Table 2.2. 
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Table 2.2: Summary of the geometric buckling and flux for various nuclear 

reactor geometry 

    Geometry 

type 

Geometric Buckling Neutron Flux 

i Spherical 
𝐵2 = [

𝜋

𝑅𝑒𝑥𝑡
]

2

 
𝜑(𝑟) = 𝐴

𝑠𝑖𝑛 [
𝜋

𝑅𝑒𝑥𝑡
]

𝑟
 

ii Finite 

Cylinder 

𝐵2 = {
2.145

𝑅𝑒𝑥𝑡
}

2

+ {
𝜋

𝐻𝑒𝑥𝑡
}

2

 𝜑(𝑟) = 𝐴𝐽0 {
2.405𝑟

𝑅𝑒𝑥𝑡
} 𝑐𝑜𝑠 {

𝜋𝑧

𝐻𝑒𝑥𝑡
} 

iii Cubical 
𝐵2 = 𝜋 [

1

𝑎2 +
1

𝑏2 +
1

𝑐2]
2

 

Where and c are the sides 

of a parallelepiped. 

𝜑(𝑥, 𝑦, 𝑧) = 𝐴 𝑐𝑜𝑠 {
𝜋𝑥

𝑎
} + 𝑐𝑜𝑠 {

𝜋𝑦

𝑏
}

+ 𝑐𝑜𝑠 {
𝜋𝑦

𝑐
} 

iv Point source  
𝜑(𝑟) =

𝑆0

4𝜋𝑟𝐷
𝑒−𝑟

𝐿⁄  

The equations in the table 2.2 can be understood better by looking at the graphs 

depicting the behavior of the neutron diffusion presented in Figure 2.5(i) (ii) for 

cylindrical geometry. It is common evident that the amplitude of the neutron flux 

propagation is higher at the beginning of the wave and slowly attenuates as the 

wave progresses towards the end of the dimensions of the respective geometry far 

from the source, a commonality with all the physical waves.  

In a finite cylinder, the flux is described as a Bessel function of the first kind(Y) 

as demonstrated by the Figure 2.3(i) while for an infinite cylinder; the neutron 

diffusion is a Bessel function of the second kind (J) figure 2.3(ii)  
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Figure 2.5: Neutron diffusion for (i) Finite cylinder and (ii) Infinite Cylinder 

(Ragheb, 2006) 

In spherical geometry, Figure 2.6(i), it is observed that flux drops from maximum 

and falls to a minimum in a behavior that is proportional to the reciprocal radius 

of the sphere. The amplitude of the flux was considered to attenuate faster for 

smaller radii than for larger radii. The second observation was that while the exact 

neutron flux theory predicts neutron flux vanishing at the walls of the reactor, 

diffusion theory predicts that flux vanishes at an extrapolated distance as shown 

in Figure 2.6(ii). This observation is not practically the case since the exact flux 

differs by flux dropping to a minimum then remaining at a plateau stage as it 

propagates towards the extrapolated distance. Thirdly, the difference in flux 

between fast and thermal neutrons was discussed and presented in Figure 2.6 (iii), 

where it was realized that fast neutrons flux remains unaffected by a boundary or 

a reflector, and is attributed to the fact that in practice fast neutrons do not get 

absorbed by nuclear cross-sections of materials. The neutron flux for a point 

source is seen to behave like an exponential decay, see Figure 2.6(i). A point 

source can then be considered as a sphere with an extremely small radius.  
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Figure 2. 6: Neutron flux for (i) a point source (ii), spherical reactor flux for 

thermal neutrons, (iii) and fast neutrons 

(Sjoestrand, 1958). 

In a study Apostol et al., 2010 discretization was achieved using the numerical 

technique on the Finite Differences Method where it was established that the 

smoothness of neutron distribution curves in 3-D figures was reliant on the number 

of mesh points present. More mesh points were observed to increase the 

smoothness of the curves. 

 

Figure 2. 7: Three dimensional surfaces in cylindrical geometry 

(Zeppenfeld, 2009) 
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2.2 Behavior of Neutron Flux in Spheroid 

It is worth noting that the field of curved geometries has attracted numerous 

studies in the past and has continued to arouse interest in recent times, 

(Zeppenfeld, 2009). However, many of these studies have focused mostly on non-

spheroidal geometry due to the constraints that have been discussed hitherto.  

To address some of these challenges, several proposals have been advanced. To 

begin with, the problem of inseparable boundary conditions was solved using the 

extrapolation distance method (Walters et al., 2018). Secondly, eigenvalue 

problems were solved using Real-time Analysis for particle transport Insitu 

(RAPID) solutions (Williams, 1986). In this methods, more accurate fission matrix 

values near radial and axial reflectors are obtained using the method. 

A study on Neutron flux in spheroidal, spherical and toroidal geometry in non-

absorbing media Blokhin et al. (2015) showed that spheroidal geometry has 

equivalent spherical approximation that gives accurate values of rates of 

absorption.  

The spatial distribution of neutrons in a reactor core computed using both 

analytical and Monte Carlo method (Lima et al., 2004; Zeppenfeld, 2009), showed 

that disks and spheres are special cases of spheres. Furthermore, it was established 

that a slight deformation from a sphere has a mild effect on the fundamental mode 

properties of a sphere at least to the first order. In addition, full contours are 

formed and found to be nearly circular near the source but slowly develop into 

elliptical shapes moving towards boundaries. 

The behaviour of neutron flux diffusion against its energy is an important subject 

particularly in this study.  One research, Blokhin et al., 2015, modelled how flux 
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versus the neutron energy for Molten Salt Reactor (MNSR) using Low enriched 

Uranium Oxide (LEU-U02), (See Figure 2.8). 

 

Figure 2.8: Behavior of neutron flux as a function of Neutron energy in an 

MNSR for LEU-UO2 

(Falloon et al., 2003) 

The results showed that the flux inside the reactor core was always higher than 

that outside the reactor for any energy value. Secondly, the presence of oscillations 

from the rather smooth curve was observed between (0 - 1 eV). This was attributed 

to the cross-sections of the materials in the fuel moderator assembly, and at such 

energies, absorption of neutrons was more pronounced.  

In the study of diffusion of physical phenomena other than neutrons in spheroids. 

A number of studies have presented observations that are significant to this study. 

For example, the works of Li et al. (2004) discusses numerous applications of 

wave equations in spherical coordinate systems, where they have been used to 

obtain an exact treatment of scattering by a conducting disc or diffraction through 

a disc in infinite media. It was applied in a short wavelength range to the equation 

in the oblate spheroid system leading to Gauss Laguerre solutions to the paraxial 

approximation in optics. The paraxial approximation has been used to explain 

phenomena such as propagation of beams through the lens system, wavefront in 
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curvature and phase shifts in the focus of beams as well as eigen-functions and 

eigen-frequencies of spherical mirror resonators. 

The time-dependent heat diffusion equation problem has been considered Shqair 

et al. (2019), adopts Jacobi elliptic theta function to understand the problem of 

leakage heat from spheroids.  

The drying of grains in spheroids (Lima et al., 2004), provided a macroscopic 

comparison to the problem adopted in this study. The problem was investigated 

using the Galerkin method which proved useful in solving drying and cooling of 

solids in spherical and ellipsoidal geometry. The results established that Spheroids 

exhibit the tip effect whereby an area with a high moisture gradient is more 

significant since the aspect ratio was found to directly influence the drying 

process. The dimensionless moisture content at any location inside the spheroid 

was found to decrease with increasing Fourier number. 

 Figure 2. 9: The dimensionless moisture content as a function of (i) aspect 

ratio (ii) radius (Carmo & Lima, 2008) 

 

2.3 Neutron Leakage and Reactor core reactivity in Spheroids  

A related problem was presented by Ayyoubzadeh et al. (2012), that involved the 

variation of effective multiplication factor and Neutron decay constant 

investigated against focal semi distance. The problem was solved using analytical 
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and Monte Carlo methods. It was established that neutron effective multiplication 

factor decreased exponentially with increasing focal semi distance. However, a 

slight difference between the two methods was observed whereby; the effective 

multiplication factor was always slightly higher for Monte Carlo method than 

analytical method, Figure 2.10 (i). On the other hand, the neutron decay was 

observed to increase exponentially with increasing focal semi distance for both 

Analytical and Monte Carlo methods, Fig 2.10(ii). 

Figure 2. 10: Neutron’s decay plotted against the semi focal distance (b) 

Neutron decay plotted against the semi focal distance 

(Alassar et al., 2014). 

In the study by Alassar et al. (2014), a differentiation between heat leakage in 

Prolate and Oblate spheroid was made. The study showed that prolates leak heat 

energy faster than oblate spheroids with the same axis ratio, Fig 2.11(i), and when 

the volume is kept constant and small axis ratios adopted, oblate spheroids were 

observed to transfer heat faster than prolate Fig 2.11(ii). 
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Figure 2.11:  Heat leakage rates as a function of dimensionless time in (i) 

prolate (ii) Oblate (Vega Carrillo, 2014) 

 

The leakage of neutron spectra from a Lead -Lithium spherical shell with a 

californium-deuterium source placed at the center was performed experimentally 

(Blokhin et al., 2015). The aim of the study was to measure the spectrum of leakage 

of neutrons from a 14 cm thick Lithium lead (Li17Pb83) spherical assembly with a 

252 - Cf neutron source at its center and to verify the evaluated neutron data based 

on these measurements and earlier measurements with a 14 MeV source of 

neutrons. There was a slight variation between the experimental and theoretical 

results. Similar experimental designs were proposed for the current study to 

understand how the theoretical results could fit into the experimental results.  

 

 The results were as presented in Figure 2.12. 

 
Figure 2.12: The variation of Neutron flux with the energy of the incident 

neutron 

(Amano, 2011) 
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Solutions of two and four energy groups was studied in Welch et al. (2017), the 

method provided accurate results than analytical methods. Welch et al. (2017), 

also provided a study of the multigroup neuron problems in a heterogeneous 

reactor using Isogeomatic analysis (IGA) using NURBS (Non-Uniform Rational 

B-splines), It was shown that the rate of convergence of the higher order finite 

element schemes saturated for order greater than two. Woods and Palmer (2017) 

performed the discretization of transport equation using higher order finite 

element methods and established that complicated surfaces of the source and 

stream terms dominated the diffusion. 

Jacobi elliptic theta functions have been dealt with extensively (Prasolov & 

Solov_ev, 1997). They have been applied in the study of Cosmology using the 

Friedmann-Robertson-Lemaitre -Walker Cosmological model of the Universe 

(Ho, 2020) and heat diffusion. They are useful in understanding the behaviour of 

matter in curved geometry thus informing their choice in this thesis. 

 

Figure 2. 13: Shows Jacobi elliptic theta functions 

 (Wolfram. matworld) 
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It is evident from the foregoing discussions that the subject of variation of neutron 

flux, leakage rates and reactivity against spheroids axis ratio is yet to be addressed, 

yet such knowledge is critical in the design of robust, efficient and safe reactors.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this section concepts that were useful in the understanding of diffusion equation, 

neutron leakage rates and reactor core reactivity are presented. Thereafter, the 

concepts were applied in the development of the required formulae necessary for 

understanding the subject matter.  

3.1.1 Spheroids 

A spheroid is a quadric figure obtained by revolving an ellipse about the minor 

and major axis (Patra et al., 2018). A prolate is obtained by revolving the ellipse 

about the major axis while an oblate is obtained by revolving an ellipse about the 

minor axis. The semi major axis was indicated as (2a) while the semi minor axis 

was indicated as (2b)  as illustrated in figure 3.1. 

 

Figure 3.1: Figure Showing (a) Oblate and (b) Prolate spheroids 
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The coordinates of a spheroid are denoted using the symbols and .The 

relations shown in equation 3.00(a) – 3.02 (d) can be used to transform Cartesian 

coordinate system to spheroid coordinate system  

                                                                          3.00(a)
 

                                                                         3.01(b)
 

                                                                                                  3.02(c)
 

Where ,                                                        3.02(d) 

(Where, η, Angular variable of the spheroid coordinate, x,  radial variable of 

the spheroid coordinate and  ∅, azimuthal coordinate of the spheroid coordinate 

system) 

Axis Ratio of Spheroids 

If the major axis of a spheroid is, 2𝑎  and that of minor axis to be,  2𝑏. Then the 

ratio between the semi-minor axes to the semi major axis defined as the axis ratio 

of the spheroid is given by; 

2𝑏

2𝑎
=

𝑏

𝑎
                                                                                                                3.03 

The surface of the spheroid, 𝜉0  is associated with term, 𝜉  through the relation, 

𝜉 = 𝜉0                                                                                                               
3.04 

Such that, 

𝜉0 = 𝑇𝑎𝑛ℎ−1(𝑏
𝑎⁄ )                                                                                           3.05 

 , 

 cos)1()1(
2

22  dx

 sin)1()1(
2

22  dy


2

dz 

),(],1,0[   )2,0(  
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The oblate spheroid becomes flat circular disk as 𝜉0 → 0 and becomes spherical 

when 𝜉0 → ∞
 

3.1.2 Fick’s Law of Diffusion  

Fick’s law postulates that the flux diffuses from regions of high concentration to 

regions of low concentration, with a magnitude that is proportional to the 

concentration gradient (Lamarsh & Baratta, 2001). Fick’s law makes several 

assumptions that include; that there is no fission source in the system, the media 

for diffusion is uniform medium, Neutron density does is time independent  among 

others. 

Fick’s law has several limitations that include; - First, the law is valid near the 

edges of medium the term in the exponential makes a significant impact to the 

integral points near the free paths.  The assumption that contribution to the flux 

occurs only due to scattering is not sufficient since sources can also be present. 

The flux that was assumed to be varying slowly in an anisotropic media is limited 

by the fact that it rapidly changes in a strongly absorbing media. Other 

assumptions that were made include the fact that flux is independent of time and 

that a uniform media was being used. 

The use of this law in reactor theory leads to the diffusion approximation. This is 

because most of the assumptions don’t hold in a practical reactor.  

3.1.3 Neutron Diffusion Equation 

In order to understand the diffusion equation, the Figure 3.2 was considered and 

proceed to obtain the that is used to obtain the flux and the geometric buckling of 

the reactor, 
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Figure 3.2: Typical Neutron diffusion flux inside a nuclear reactor core 

 

To start with an isolation of an infinitesimal small cube of volume element , 𝑑𝑣, is 

made and given by: 

𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧         3.06 

In each of the surfaces of the cube, a net neutron current,𝑗 exists. It is assumed 

that only one surface perpendicular to the z-axis and that neutrons don’t 

disappear (Beta decay). The difference between the neutrons current densities is 

discussed at length in (Murray & Holbert, 2014) and given as eqn 3.07: 

𝑗𝑧+𝑑𝑧 − 𝑗𝑧 = (
𝑑𝑗

𝑑𝑧
)𝑧𝑑𝑧        3.07 

Based on Fick’s’ law of diffusion, the neutron current density is given by; 

𝑗 = −𝐷𝛻𝜑          3.08 

Where 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑧 = 𝐷  is the neutron diffusion coefficient for an isotropic 

system (Therefore, D is constant), and 𝜑 is the neutron flux. 

Combining the eqns (3.06), (3.07) and (3.08) we obtain, 
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𝑗 = − 𝑑
𝑑𝑧⁄ (𝐷

𝑑𝜑

𝑑𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧                 3.09 

The total leakage rate per unit volume,𝐿𝑣, is given by; 

𝐿𝑣 = −𝐷 [(
𝑑2𝜑

𝑑𝑥2) + (
𝑑2𝜑

𝑑𝑦2) + (
𝑑2𝜑

𝑑𝑧2 )]                3.10 

Therefore, 

−𝐷 [(
𝑑2𝜑

𝑑𝑥2) + (
𝑑2𝜑

𝑑𝑦2) + (
𝑑2𝜑

𝑑𝑧2)] = −𝐷𝛻2𝜑               3.11 

We now move to consider a nuclear reactor core. From the previous discussions 

[1, 4 and 6], it was noted that neutrons supply to the reactor, (𝑋), is at a rate given 

by the sum of neutrons leakage rate (𝐿𝑣) and neutron absorption rate (𝐴𝑅). At a 

steady state condition, the neutrons change rate, 𝑁𝑐 , the equation of neutron 

balance will be given by 

𝑋 = 𝐿𝑣 + 𝐴𝑅                3.12 

The equation for neutron absorption rate is given by, 

𝐴𝑅 = ∑𝑎𝜑                 3.13 

Therefore, neutron diffusion equation will be given by, 

𝐷𝛻2𝜑 − ∑𝑎𝜑 + 𝑋 = 0              3.14 

We can write the neutron supply rate to the reactor as, 

𝑋 = 𝑣∑𝑓𝜑                  
3.15 

𝛴𝑓 is the fission cross section while ᵥis the neutron fission fraction. Eq (3.15) 

becomes; 

𝛻2𝜑 + 𝐵𝑔
2𝜑 = 0𝐷𝛻2𝜑 − ∑𝑎𝜑 + 𝑣∑𝑓𝜑 = 0            

3.16 
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Therefore, eq (3.16) finally reduces to, 

𝛻2𝜑 +
(𝑣∑𝑓−𝛴𝑎)𝜑

𝐷
= 0            

3.17 

3.1.4 Materials and Geometric Buckling  

Geometric buckling is a relationship between the properties of the fissile material 

in a reactor core and the dimensions and configuration of the core (Ragheb, 2006). 

The geometric buckling factor term, is given by, 

𝐵𝑔
2 =

(𝑣∑𝑓−∑𝑎)

𝐷
                 

3.18 

and eq (3.18) can be written as, 

𝛻2𝜑 + 𝐵𝑔
2𝜑 = 0                                       

3.19 

Equation (3.19) is the desired neutron diffusion equation at steady state conditions.  

For a critical reactor, the materials Bm and geometric buckling found to be equal 

i.e; 

𝐵𝑔 = 𝐵𝑚                            3.20 

Geometrical buckling is the lowest eigen-value of the equation 3.19. 

3.1.5 Neutrons in a Nuclear Reactor   

It is well understood that neutrons are a form of subatomic particles with no 

electrical charge to provide the attractive nuclear force sufficient to offset the 

electrostatic repulsive forces and hold atoms together. All atoms found in nature, 

except the basic hydrogen atom, have one or more neutrons in their nuclei in a 

nuclear reactor. There are two categories of neutrons. First there are prompt 

neutrons which are those accompanying the two nuclear fragments, e.g. the 2n 

neutrons in the reaction; 
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 235 U+    𝑛0
1                    93Rb +  141Cs  +  2n 

In the case of 233U, there are on the average 2.42 prompt neutrons for every 

successful bombardment with a neutron. Secondly, there are delayed neutrons 

which are associated with the beta decay of the fission products. In some cases, 

the available energy in the beta decay is high enough for leaving the residual 

nucleus in such a highly-excited state that neutron emission instead of gamma 

emission occurs (beta delayed neutron emission). Delayed neutrons have delays of 

order of seconds and are essential for the control of nuclear reactors (Al Zain et 

al., 2018) 

3.1.5.1 Neutron flux 

This refers to the product of neutrons density and neutrons velocity (Van Dam et 

al., 2005). For neutrons traveling in a certain direction only, the term neutron 

current may be applied; the total neutron flux is mathematically defined by 

𝜑(𝐸) = ∫ 𝜑(𝐸𝑖
∞

0
)dE𝑖              3.21 

Where the term is the flux of neutrons with energies between 𝐸𝑖 and 𝐸𝑖 + 𝑑𝐸𝑖. The 

S.I unit for neutron flux is nm-2s-1. 

3.1.5.2 Neutron interaction with matter 

Whenever neutrons interact with materials atoms, different scenarios may arise 

(Plompen et al., 2020) which include; Elastic scattering whereby the kinetic 

energy and momentum of the neutrons is conserved. The second scenario is 

inelastic scattering whereby the kinetic energy of the neutron nuclide is conserved 

while momentum is not. Thirdly transmutation may occur whereby formation of a 

new nuclide occurs. Such nuclides are isotopes of the original nuclides. Examples 
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of reactions of transmutation include; Alpha decay (n, α), proton decay (n, p), Beta 

decay (n, β+) and nuclear fission (n, f) .Different materials exhibit neotrun cross 

sections as shown in Figure 3.3. 

 

Figure 3.3: Showing Neutron cross sections at various energies for Uranium 

235 

(Source: JAEA Nuclear Data Center) 

3.1.5.3. Thermal lifetime of Neutrons 

It refers to the time neutrons exist in a critical reactor as thermals. It can be 

expressed as, 

𝑙𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑅𝑎𝑡𝑒𝑜𝑓 𝑠𝑢𝑝 𝑝𝑙𝑦 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑠
                   3.22 

3.1.5.4 Average Neutrons per fission 

The average number of neutrons produced per neutron absorbed in a nuclear fuel 

is denoted by 𝜂𝑛. For a single fissile isotope, the value is given by, 

𝜂𝑛 =
𝑣𝜎𝑓

𝜎𝑎
                                                                                 3.23 

Where, 𝜎𝑓-Fission Cross section, 𝜎𝑎-Absorption cross section, 𝑣-Total neutrons 

produced per fission.  
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3.1.5.5 Neutron multiplication factor (k) 

This is the ratio of the number of neutrons produced in one generation produced 

in the preceding generation i.e. 

𝑘𝑒𝑓𝑓 =
No.of neutrons produced in one generation

No.of  neutrons produced in preceeding generation
                                            3.24 

The ratio of k denotes the criticality of the reactor. 

𝑘𝑒𝑓𝑓 < 1, Subcritical; 𝑘𝑒𝑓𝑓 = 1, Critical and 𝑘𝑒𝑓𝑓 > 1, Supercritical  

3.1.5.6 Neutron Thermal Utilization Factor (f) 

This is the ratio between total fission neutrons from thermal together with fission 

and fission neutrons from thermal neutrons only i.e. 

𝑓 =
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑁𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑏𝑦 𝑓𝑢𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

𝑓 =
∑𝐹𝑢𝑒𝑙

𝑎

∑𝑇𝑜𝑡𝑎𝑙
𝑎

                                                                                               3.25 

3.1.5.7 Resonance Escape Probability (P) 

It is the ratio of number of neutrons slowing to thermal and the total number of 

fast neutrons available for slowing i.e. 

𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑠𝑙𝑜𝑤𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑠𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟  𝑠𝑙𝑜𝑤𝑖𝑛𝑔
 

𝑃 =
𝑁𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝑁𝐹𝑎𝑠𝑡
                                                                       3.26 
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3.1.5.8 Neutrons Fast Fission factor (ε) 

It is the ratio between thermal neutrons absorbed by the fuel and the total thermal 

neutrons absorbed i.e 

𝜀 =
𝑇𝑜𝑡𝑎𝑙 𝑓𝑖𝑠𝑠𝑖𝑜𝑛 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑓𝑎𝑠𝑡 𝑓𝑖𝑠𝑠𝑖𝑜𝑛

𝐹𝑖𝑠𝑠𝑖𝑜𝑛 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑓𝑖𝑠𝑠𝑖𝑜𝑛
                                          3.27 

Table 3.1: Categories of Neutron based on their energies 

 Neutron Category  Energies  

1 Fast Neutrons  >20 Mev 

2 Slow Neutrons  1-10eV 

3 Thermal Neutrons  0.025eV 

4 Cold Neutrons  0.000-0.02eV 

Neutrons have been categorized into various classes defined by their energies as 

shown in table 3.1. Apart from this, there exist other categories of neutrons such 

as cadmium, resonance, intermediate and ultrafast neutrons. Thermal neutrons are 

responsible for causing chain reaction since they energies are in the range of 

fission cross section of nuclear fuels such as uranium. 

3.1.6 Chain reaction 

When a heavy nucleus is bombarded with a neutron, it yields several daughter 

nuclei in a reaction that is accompanied by energy release and radiation emission. 

This process is referred to as Chain reaction. Consider Figure 3.4 depicting the 

splitting of a Uranium nucleus into smaller daughter nuclei. 

 
Figure 3. 4: Fission Uranium (U-235) nuclei with a neutron resulting in the 

formation of two lighter daughter nuclei and neutrons 

(Cohen et al., 2018). 
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The actual process of splitting a heavy nucleus involves an incident neutron 

bombarding the nucleus resulting in the production of fission products, neutrons, 

energy and radiations. The process can be self-sustaining through chain reaction. 

3.2 Formulation of the Diffusion Equation for Spheroid Geometry Problem  

The time dependent neutron diffusion, famously known as the Fick’s law of 

diffusion is given by the following equation; 

(
1

𝑣
𝛿

𝛿𝑡⁄ − (𝑣 ∑ − ∑ ) − 𝐷𝛻2
𝑎𝑓 )𝜓(𝜉, 𝜂, 𝜑, 𝑡) = 𝑆(𝜉, 𝜂, 𝜑, 𝑡)

                                       
3.28 

Where the wave and the source terms in spheroid geometry are denoted by 3.28(a) 

and 3.28(b) respectively; 

𝜓(𝜉, 𝜂, 𝜑, 𝑡)                                                                                                         3.29 

𝑆(𝜉, 𝜂, 𝜑, 𝑡)                                                                                                          3.30  

The source term 3.29 and 3.30 is further defined as; 

𝑆(𝜉, 𝜂, 𝜑, 𝑡) =
1

2𝜋
𝑆𝑅(𝜉, 𝜂)𝛿(𝑡)

                                                                               
3.31 

While the diffusion equation is defined by 

𝜓(𝜉, 𝜂, 𝜑, 𝑡) = 𝜓1(𝜉, 𝜂, 𝜑)𝜓2(𝑡)                                                                           3.32 

Further, we can rewrite the second term of 3.32 as; 

𝜓1(𝜉, 𝜂, 𝜑) = 𝜓1𝜉(𝜉)𝜓1𝜂(𝜂)𝜓1𝜑(𝜑)
                                                                     

3.33 

If we further assume that there are no external sources of neutrons, then, from 

3.30(b) 

𝑆(𝜉, 𝜂, 𝜑, 𝑡) = 0                                                                                                  3.34 
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So, that equation 3.28 reduces to;  

(
1

𝑣
𝛿

𝛿𝑡⁄ − (𝑣 ∑ − ∑ ) − 𝐷𝛻2
𝑎𝑓 )𝜓(𝜉, 𝜂, 𝜑, 𝑡) = 0

                                                     
3.35 

Which upon rearranging we obtain; 

1

𝑣
𝛿

𝛿𝑡⁄ 𝜓(𝜉, 𝜂, 𝜑, 𝑡) = (𝑣 ∑ − ∑ )𝜓(𝜉, 𝜂, 𝜑, 𝑡) + 𝐷𝛻2
𝑎𝑓 )𝜓(𝜉, 𝜂, 𝜑, 𝑡)

                          
3.36 

By separating equation 3.36 using the method of separation of variables, we get 

four main solutions 

3.2.1 Solution for Time (t) 

Using equation 3.32 and 3.35 we derive the following equation  

1

𝑣𝐷𝜓𝑡

𝜕
𝜕𝑡⁄ 𝜓𝑡(𝑡) + 𝜆𝑚𝜀 = 0

                                                                                    

3.37 

The solution for t is therefore given by; 

𝜓𝑡(𝑡) = 𝑒−(𝜆𝑚𝜀𝑣𝐷)𝑡
                                                                                                

3.38 

Where: 𝜆𝑚𝜀- Is the time separation constant  

3.2.2 Solution for the Quasi Radial Function (QRF),𝝍𝟏𝝃(𝝃) 

In order to solve for the remaining variables, we rewrite the second term in 

equation 3.32 without the time variable as follows; 

𝜓1(𝜉, 𝜂, 𝜑) = 𝜓1𝜉(𝜉)𝜓1𝜂(𝜂)𝜓1𝜑(𝜑)
                                                                   

3.39 

Using 3.11, equation 3.08 can now be rewritten  

as; 

𝜕
𝜕𝜉⁄ (1 + 𝜉) 𝜕

𝜕𝜉⁄ + 𝜕
𝜕𝜂⁄ − (

1

1+𝜉2 −
1

1−𝜂2) 𝜕2

𝜕𝜑2⁄ + 𝜎2(𝜂2 + 𝜉2)𝜓1(𝜉, 𝜂, 𝜑) = 0       3.40 

We now proceed and solve for the three spatial functions in equation 3.39 using 

3.35. 
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We get three pairs of equations as follows; 

(𝜕
𝜕𝜉⁄ (1 + 𝜉) 𝜕

𝜕𝜉⁄ +
𝑚2

1+𝜉2 + 𝜎2𝜉2 − 𝜆𝑚𝛼
2 )𝜓1𝜉(𝜉) = 0

                                         

3.41 

(𝜕
𝜕𝜂⁄ (1 − 𝜂2) 𝜕

𝜕𝜂⁄ +
𝑚2

1−𝜂2 + 𝜎2𝜂2 + 𝜆𝑚𝛼
2 )𝜓1𝜂(𝜂) = 0

                                        

3.42 

𝜕𝜓1𝜑

𝜕𝜑2 + 𝑖𝑚𝜓1𝜑(𝜑) = 0
                                                                                         

3.43 

We start with the quasi radial function using the method adopted in (Alassar, 1999) 

by solving 3.43. The result is given by; 

𝜓1𝜉(𝜉) = 𝑒𝑖𝜎𝜉 (1−𝑖𝜉)𝛼+𝑚
2⁄

(1+𝑖𝜉)𝛼+𝑚
2⁄ +1

𝑅𝑚𝛼
(𝑝)

(𝜉)

                                                                     

3.44a 

Since practically neutrons flux is a decreasing with increasing values of ξ, we let 

The second term of 3.44 takes different values depending on the value of ‘p’ as 

indicated below; 

𝑅𝑚𝛼
(0)

(𝜉) = 0
                                                                                                      

3.45(a) 

𝑅𝑚𝛼
(1)

(𝜉) =
(𝛼+1)(𝛼+𝑚+1)

2(1+𝑖𝜉)
−

𝛼(𝛼+𝑚)

2(1−𝑖𝜉)
                                                                       3.46(b) 

      The values of ‘p’ = 2 through ‘p’ = 4 are defined in Zeppenfeld M(2009) 

3.2.3 Solution for Quasi Angular Function (QAF) using Rodriguez formula 

Using the method discussed in Shqair et al. (2019), we proceed to solve for 3.44 

and obtain; 

𝜓1𝜂 = (1 − 𝜂2)
𝑚

2 𝑒−𝜎(1−𝜂)𝐴𝑚𝛼(𝜂)
                                                                          

3.47 

The equation of 𝐴𝑚𝛼can be written as; 

𝐴𝑚𝜂(𝜂) = 𝐿𝛼
(𝑚)

(2𝜎(1 − 𝜂)) + 𝜗(
1

𝜎
)
                                                                       

3.48 
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We also make an assumption that; 

𝜗(
1

𝜎
) ≈ 1 − 𝜂2                                                                                                      3.49 

We then solve the first term of 3.48 using Rodrigues  

Such that  

𝐿𝛼
(𝑚)

= ∑ (−1)𝑚𝑛
𝑚=0

(𝛼+𝑚)

(𝑛−𝑚)!(𝛼+𝑚)!𝑚!
(2𝜎(1 − 𝜂))𝑚                                                    3.50 

The quasi-angular solution now becomes 

𝜓1𝜂(𝜂) = (1 − 𝜂2)
𝑚

2⁄ 𝑒−𝜎(1−𝜂) ∑ (−1)𝑚𝑛
𝑚=0

(𝛼+𝑘)!

(𝑛−𝑚)!(𝛼+𝑚)!𝑚!
(2𝜎(1 − 𝜂))𝑚 + (1 − 𝜂2)   

 ................................................................................. ……………………………  3.51 

3.2.4 Solution for, 𝝍𝟏𝝋(𝝋) 

The solution for 𝜓1𝜑(𝜑) can be obtain by solving 3.43. The following differential 

equation is found 

𝜕2

𝜕𝜑2 𝜓𝜑(𝜑) + 𝑖𝑚𝜓𝜑(𝜑) = 0
                                                                                   

3.52 

Using a method similar to the one discussed in Shqair et al. (2019) we obtain, 

𝜓𝜑(𝜑) = 𝑒−𝑖𝑚𝜑                                                                                                     3.53 

3.2.5 Resulting diffusion equation  

The resulting diffusion equation for the diffusion equation is, 

𝜓(𝜉, 𝜂, 𝜑, 𝑡) = ∑ ∑ 𝑒−(𝜎+𝜆𝑚𝑣𝐷𝑡−𝜂𝜎)+𝑖(𝑚𝜑−𝜎𝜉){(
(1−𝑖𝜉)𝜍+𝑚

2⁄

(1+𝑖𝜉)𝜍+𝑚
2⁄ +1

(1 −∞
𝜍=0

∞
𝑚=0

𝜂2)
𝑚

2⁄ 𝐴𝑚𝛼(𝜂)𝑅𝑚𝛼
(𝑝)

(𝜉)}                                                                                   3.54 

We now make the following relationships to equation 3.54 

 𝑔1 = (𝜂𝜎 − 𝜎 − 𝜆𝑚𝑣𝐷𝑡)  and 𝑔2 = (𝑚𝜑 − 𝜎𝜉)  

 𝐺1(𝜂) = ∑ ((1 − 𝜂2)
𝑚

2⁄ 𝐴𝑚𝛼(𝜂)∞
𝑚=0 ) 
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We then make substitutions for the equations in 3.54 such that;  

𝜓(𝑔1,𝑔2) = 𝐺1(𝜂)𝐺2(𝜉)𝑒𝑔1+𝑔2𝑖
                                                                              3.55 

Finally, 

𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒𝑔1+𝑔2𝑖
                                                                                   3.56 

Equation 3.56 is the desired equation for neutron diffusion problem under 

investigation.  

We recall the relation in equation (3.05); 

𝜉0 = 𝑇𝑎𝑛ℎ−1(𝑏
𝑎⁄ )

 

Where the ratio 
(𝑏

𝑎⁄ )
  is the axis ratio of the spheroid, 

Therefore, it can be seen that for small values of,𝜑, the axis ratio of the spheroid 

is proportional to the value of 𝑔2 i. e 

𝑔2 ∝ 𝑏
𝑎⁄ .                                                                                                              3.57 

The coefficient of the term 𝐺(𝜂, 𝜉) for values of −1 ≤ 𝜂, 𝜉 ≤ 1 can be generalized 

to take the values 

𝐺(𝜂, 𝜉) = 𝑎 + 𝑏𝑖.                                                                                                  3.58 

𝑎, 𝑏 are random integer values. 

3.2.6 Relationships with Jacobi elliptic Theta functions 

We consider the equation (3.56), 

𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒𝑔1(𝜏)+𝑔2(𝜉)𝑖
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We start by converting 
𝑔1 into a function of time and

𝑔2 quasi angular component 

i.e  

𝜓(𝑔1(𝜏), 𝑔2(𝜉)) = 𝐺(𝑔1,𝑔2)𝑒𝑔1(𝜏)+𝑔2(𝜉)𝑖

                                            3.59 

 We then make the assumption that, 

𝑔1 ≈ −𝜆𝑚𝑣𝐷𝑡   

Also, we make 𝑔1 periodic function of time so that;-  

2𝜋𝑖𝑛 = −𝜆𝑚𝑣𝐷   

𝑔1 ≈ −2𝜋𝑖𝑛𝑡   

 We further introduce a timeless component(τ) related to time as follows; - 

𝑡 ≈ 𝑛𝜏  and as such, 𝑔1 becomes, 

𝑔1 ≈ −2𝜋𝑖𝑛2𝜏   

 For g2, we proceed as follows;- 

 𝑔2 = (𝑚𝜑 − 𝜎𝜉)  

 If we introduce the condition that, τ≫≫σ   and ξ≫≫φ   , then it follows 

that;-  

𝑔2 ≈ −𝜎𝜉  

Again, we know that 𝑔2 takes numerous eigen values in the spheroid coordinate 

systems. Thus, we let σ take some arbitrary even values of ‘n’, we introduce the 

relations 

𝜎 ≈ −2𝑛. Hence, 𝑔2 ≈ −2𝑛𝜉  
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Substituting for 3.60 and 3.61 in equation 3.59 we obtain the following 

relationship, 

𝜓(𝜏, 𝜉) = 𝐺(𝑔1,𝑔2) ∑ 𝑒−𝑖𝜋𝑛2𝜏𝑒−2𝑖𝑛𝜉∞
−∞                                    3.62 

We then make an assumption that; 

𝐴𝑖 = 𝐺(𝑔1, 𝑔2)
                                                      3.63 

Then equation 3.62 becomes, 

𝜓(𝜏, 𝜉) = 𝐴𝑖 ∑ 𝑒−𝑖𝜋𝑛2𝜏𝑒−2𝑖𝑛𝜉∞
−∞                          3.64 

Equation 3.64 is indeed a Jacobi elliptic theta function of the third kind and can 

be written as; 

𝜓(𝜏, 𝜉) = 𝐴𝑖 ∑ 𝑒−𝑖𝜋𝑛2𝜏𝑒−2𝑖𝑛𝜉∞
−∞                         3.65 

Further we introduce the following relationship 

𝜏𝑞 = 𝑒−𝑖𝜋𝜏

                        3.66 

Using the substitution of equation 3.66, the desired Jacobi elliptic theta function 

was found to be; 

𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0                          3.67 

In the study of heat conduction in spheroids by Alassar et al. (2014), similar 

findings were established. 
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3.2.7 Axis Ratio-Neutron leakage for prolate spheroid 

The separation of variables technique was applied in Yip et al. (2002) to yield a 

relation between axis ratio and geometric buckling (𝐵𝑔) for prolate (eqn 3.68) and 

oblate spheroid (eqn 3.69) respectively; 

𝐵𝑔
2𝑀2

2 =
𝜋2

3
{

2𝑐2+1

𝑐2 }                  
3.68 

𝐵𝑔
2𝑀2

2 =
𝜋2

3
{

𝑐2+2

𝑐2 }                  
3.69 

The geometric buckling for prolate and oblate spheroids is presented in 3.70 and 

3.71 respectively. 

𝐵𝑔
2 =

𝜋2

3
{

2𝑐2+1

𝑐2𝑀2
2  }                 

3.70 

For Oblate, the geometric buckling is given by, 

𝐵𝑔
2 =

𝜋2

3
{

𝑐2+2

𝑐2𝑀2
2}                 

3.71 

For a prolate spheroid, the neutron thermal life time is defined as ;- 

𝑙𝑡 =
𝑙0

(1+𝐵𝑔
2𝐿2)

                                                                                                       3.72 

Or 

𝑙𝑡(1 + 𝐵𝑔
2𝐿2) = 𝑙0                                                                                              3.73 

 

Making 𝐵𝑔 the subject of the formula, we obtain, 

𝐵𝑔
2 =

𝑙0−𝑙𝑡

𝐿2𝑙𝑡
                                                                                                          3.74 

Further, we let 

𝑇 =
𝑙0−𝑙𝑡

𝑙𝑡
                                                                                                            3.75 
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Substituting eq (3.75) in eq (3.74) we obtain, 

𝐵𝑔
2 =

𝑇

𝐿2                                                                                                             3.76 

From (Plans & Ground), the derivation of geometrical buckling for a prolate 

spheroid is defined according to equation; 

𝑐 = [
𝜋2

3𝐵𝑔
2𝑀2

2−2𝜋2
]

1
2⁄

                                                                                           3.77 

 Inserting equation eq (3.76) into equation (3.77), we obtain; 

𝑐 = [
𝜋2

3
𝑇

𝐿2𝑀2
2−2𝜋2

]

1
2⁄

                                                                                            3.78
 

We also introduce the neutron thermal life time constant, k, given by,  

𝑘 = 3𝑀2
2𝑇                                                                                                        3.79 

The thermal lifetime constant is not related to criticality of a reactor.  

Therefore, eq (3.78) becomes, 

𝑐 = [
9.86𝐿2

𝑘−19.72𝐿2
]

1
2⁄

                                                                                                 3.80
 

The Neutron leakage rate versus the axis ratio of the prolate spheroid is given as, 

𝐿 = [
𝑘𝑐2

9.86+19.72𝑐2
]

1
2⁄

                                                                                            3.81 

3.2.8 Axis Ratio-Neutron leakage rates for Oblate spheroid 

The geometric buckling for oblate spheroid is defined according to (3.69); 

recalling equation (3.76), for geometric buckling  

𝐵𝑔
2 =

𝑇

𝐿2
 

The eq (3.69) can be rearranged as; 

𝐵𝑔
2𝑀2

2𝑐2 =
𝜋2

3
{𝑐2 + 2}                                                                                     3.82 

Finally, the relation in eqn (3.83) was obtained, 
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𝑐 = [
19.72𝐿2

𝑘−9.86𝐿2
]

1
2⁄

                  3.83 

The neutron leakage rate versus axis ratio of the oblate spheroid is given as; 

𝐿 = [
𝑘𝑐2

19.72+9.86𝑐2
]

1
2⁄

                  3.84 

Where; Neutron thermal lifetime = 𝑙𝑡, Neutron thermal lifetime when there is no 

leakage = 𝑙0, Neutron leakage rate = 𝐿, Semi-minor axis = 𝑀2, Semi-major axis 

= 𝑀1and Neutron and neutron thermal life time constant =  𝑘. 

3.2.9 Reactivity of a reactor 

The relationship between reactivity constant and the axis ratio of a spheroid 

reactor is being developed.  Recalling equations 3.80 and 3.81 below showing the 

leakage relationships for Prolate and Oblate,  

 

 

The relationship between the effective multiplication factor and leakage rates of a 

spheroids was discussed in  (Sjoestrand, 1958) and presented as equation 

𝐾𝑒𝑓𝑓 =
𝑣

𝛴𝑓
𝛴𝑎

⁄

1+𝐿2𝐵2                   3.85 

  

2
1

2

2

72.1986.9


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Furthermore, the core reactivity (Walters et al., 2018) of a nuclear reactor was 

shown to be;  

𝜌 =
𝐾𝑒𝑓𝑓−1

𝐾𝑒𝑓𝑓
                   3.86 

If we let 𝛺 =
𝑣𝛴𝑎

𝛴𝑓
 

If we combine (3.80), (3.85) and (3.86), we obtain for Oblate spheroid, 

𝜌 = 1 −
19.72+(9.86+𝑘𝐵2)𝑐2

(19.72+9.86𝑐2)𝛺
                 3.87 

And combining (3.84), (3.85) and (3.86) we obtain for prolate spheroid, 

𝜌 = 1 −
9.86+(19.72+k𝐵2)𝑐2

(9.86+19.72𝑐2)𝛺
                 3.88 

Again, if we let, β2 = 𝑘𝐵2.                 3.89 

We obtain equation (3.60) and (3.61) for reactivity coefficients for oblate and 

prolate spheroids 

𝜌 = 1 −
19.72+(9.86+β2)𝑐2

(19.72+9.86𝑐2)𝛺
                          3.90 

and  

𝜌 = 1 −
9.86+(19.72+β2)𝑐2

(9.86+19.72𝑐2)𝛺
                 3.91 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this section results obtained from the study are presented and discussed. The 

main results presented include; the behavior of time dependent neutron diffusion 

flux in a spheroid reactor core investigate using Jacobi elliptic theta functions in 

combination with analytical method; the relationship between the axis ratio and 

neutron leakage rates at axis ratios equal, smaller and larger than unity and finally 

the behavior of the of reactors core reactivity at various the axis ratios of the 

spheroid.  

In the resolution of the results using Analytic method, the values for the 

coefficients in 𝐺(𝜂, 𝜉) = 𝑎 + 𝑏𝑖 were set within the range of 0 to 100; the real part 

of the coefficient was represented by ‘a’ while the complex part was represented 

by ‘b’, and their interval varied. Secondly, the exponential part of the derived 

equation 𝜓(𝑔1(𝜏), 𝑔2(𝜉)) = 𝐺(𝑔1,𝑔2)𝑒𝑔1(𝜏)+𝑔2(𝜉)𝑖 was shown to possess two main 

variables. The first variable, (g1) was mainly dependent on time (t) and referred to 

as Time Dependent Component (TDC) while the second variable,  (g2)  was the 

Axis Ratio Dependent Component (ARDC) and was dominated by quasi angular 

component; (ξ) which was related to the axis ratio of the spheroid. The   range of 

the two variables, were set arbitrarily between lower Boundary (-1) and upper 

Boundary (100) using an interval varied between 0.01 ≤  i  ≤ 1.  

In the second part the diffusion problem was modified into a Jacobi elliptic theta 

function , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0 . This equation had two parts; the (TDC) 

defined as (𝜏𝑞 ) and the quasi-angular dependent component (𝜉) related to the 

(ARDC). The results obtained after imposing appropriate boundary conditions pre-
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specified for each case. The coefficients; 𝐴𝑖 , were varied from 0 to 100 units while 

the limits of TDC and ARDC were varied between, Lower Boundary (L) at 0 and 

the upper boundary (U) at 100. Similarly, the value of ‘n’ was 1 also increased 

from 0 to 100.  

Similarly, the sets for limit in the results were defined as L (TDC 1, ARDC 1) and 

U (TDC 2, ARDC 2). ‘a’ and ‘b’ were used to compute the amplitude as defined 

by equation 𝐺(𝜂, 𝜉) = 𝑎 + 𝑏𝑖. 

As for the neutron leakage rate, the function; 𝐿 = [
𝑘𝑐2

9.86+19.72𝑐2
]

1

2
 was adopted for 

prolate and 𝐿 = [
𝑘𝑐2

19.72+9.86𝑐2
]

1

2
 adopted for oblate with the value of ‘c’ varied. In 

the determination of reactivity, the equation, 𝜌 = 1 −
9.86+(19.72+𝛽2)c2

(9.86+19.72𝑐2)𝛺
 was adopted 

for a oblate and𝜌 = 1 −
9.86+(19.72+𝛽2)𝑐2

(9.86+19.72𝑐2)𝛺
, for prolate spheroids with the value of Ω 

=5 and β (0.1, 0.5, 1, 2.5, 5) adopted in a selected range of ARDC values and 

intervals.  

Lastly, Python software was used to generate and analyze the data. This software 

was selected because of its versatility and ease of computations. 

4.2 Analysis of Neutron flux using Jacobi Elliptic Theta Functions 

In this section, analysis of the resulting diffusion equation was carried out. This 

was accomplished by changing the value of ‘n’ to 0 ≤  n ≤ 1 In addition; the other 

terms of equation were also varied through a set of conditions that were defined 

for every graph. They were subjected to values of ‘n’=0.01, 0.1 and 0.5 which 

                                                 
1 TDC -Time Dependent Component, ARDC-Axis Ratio Dependent Component 
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were considered significant because they were observed to fairly represented the 

main set of results. 

4.2.1 Diffusion surfaces for values of ‘n’ less than unity i.e. (‘n’<1) 

When the value of ‘n’ in equation 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0 was set at 0.001, 

while the other conditions were set such that, the lower boundary, L (0,0), the 

upper boundary as, U (1,1), while the TDC and ARDC values both set at 0.01, a 

graph shown in Fig 4.01 was obtained.  

Table 4. 1: Boundary conditions set 1 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 0.001 

ARDC 0 100 1 

 

 

Figure 4. 1: Neutron Flux in Spheroid in a Typical Cubical Surface 

(Plotted Using Conditions in Table 4.1) 

Regarding the results obtained in the Figure 4.1, it can be deduced as a 

characteristic cubical ternary surface. Neutrons diffusion was nearly 

perpendicular; from vertical plane minimum flux (0) to maximum (1) almost 

instantaneously and then diffused through a horizontal plane as ARDC increased 

from 1 to 120 units. The flux indicated a cubical surface whereby at the core of 
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the spheroid; neutrons reached and remained constant at maximum flux even when 

ARDC and TDC were varied. 

When plotted along the flux versus ARDC plane, with conditions set such that the 

lower boundary, L (0, 0), the upper boundary, U (1, 1), with the TDC and ARDC 

both set at 0.01, and the amplitude at A = 1 and equation 3.68 adopted. 

 

Figure 4. 2: Neutron Flux In 2-Dimensional Spheroid Geometry Using Jacobi 

Elliptic Theta Function 

(Plotted using Conditions in Table 4.1). 

 It was observed that neutrons flux jumped from minimum (0) to maximum (1) in 

an infinitesimal change in ARDC (0-1) but remained fairly constant between 

ARDC (1-100). This depicted a pulsed behavior of neutrons occurring under the 

imposed conditions. It was also established that flux intensity was greater at the 

plateau stage of diffusion i.e. between ARDC (1-100) compared to the stage AB 

as shown in Figure 4.2. 
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In order to investigate the effects of the amplitude on flux, the value of ‘n’ in 

equation was set at 0.1, while the remaining conditions were altered such that at 

lower boundary, L (0,0) and the upper boundary as, U (1,1), and the TDC and 

ARDC both set at 0.01. In addition, the amplitude values where considered at 𝐴𝑖 

=1 and  𝐴𝑖 = 5.  

The results showed that as the amplitude of the wave increased, the maximum flux 

also increased proportionately. This was exemplified by the amplitude of 4.3 (i) 

that jumped to unity while the amplitude for Fig 4.3 (ii) had jumped to 5 units 

within a similar ARDC interval. Secondly, the angles between fluxes surfaces and 

the TDC/ARDC planes were observed to have slightly increased. This was a 

deviation from an almost perpendicular characteristic that was exhibited initially 

in figure 4.2.  This particular result highlighted the fact that neutrons reached its 

maximum flux at relatively smaller values of 0 < ARDC < 0.1 and remained 

constant even as TDC and ARDC varied at relatively higher values. 

Table 4. 2: Boundary Conditions Set 2 

 Lower 

Boundary  

Upper 

Boundary 

Interval ‘n’ 

TDC 0 1 0.1 0.1 

ARDC 0 1 0.1 

Amplitude 1(Fig i), 5(Fig 

ii) 
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Figure 4. 3: Neutron Flux in Spheroid Using Jacobi Elliptic Theta Function 

Under 

 

Upon re-configuring the imposed conditions such that, the lower boundary, L (0,0) 

and the upper boundary was set as, U (1,1) and both the TDC and ARDC set at 

0.01 and  𝐴𝑖 =100. Thereafter, the equation 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0  was 

plotted in 2 - dimensions leading to the generation of Figure 4.4. 

 

Figure 4. 4: A 2-dimensional neutron flux in spheroid using Jacobi elliptic 

theta function under 

 

It became evident that an increased amplitude of the wave function resulted in a 

corresponding increase in angle ABC (Figure 4.4). The amplitude of plane ABC 
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in Figure 4.4 was found to be unity and that of Figure 4.01 was found to be 100. 

The increased amplitude was inferred to have increased the gradient of ABC of 

the graph 4.4. 

In the second investigation, the value of ‘n’ was set at ‘n’= 0.01. Thereafter, 

conditions imposed on the equation, 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0 ,such that the 

lower boundary was L (0, 0), the upper boundary set as U (1,100), and the TDC 

interval as 0.01 and an interval of ARDC set at unity. The results are presented in 

Figure 4.03a.  

Table 4. 3: Boundary Conditions set 3 

Table 4.03: 

Conditions set 3. 

Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 0.01 

ARDC 0 100 1 

 

Figure 4. 5: Neutron Flux in Spheroid Using Jacobi Elliptic Theta Function 

(Plotted using conditions in Table 4.3) 

In this scenario, neutron flux increased from the initial flux (0) to maximum flux 

between TDC (0-80) and decreased from initial flux (0) to (-0.5) between TDC 
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(81-100). Secondly, diffusion of neutrons along the plane surface between ARDC 

and TDC characterized flux variation as a characteristic cylindrical surface. 

Therefore, from Figure 4.03a, it is shown that neutrons exhibited two surfaces of 

diffusion; first they diffused along the planes between TDC-Flux.  

In two dimensions, conditions were imposed on equation , 𝜓(𝜉, 𝜏𝑞) =

𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉,∞
𝑛=0  such that the lower boundary was L (0, 0), the upper boundary 

set as U (1,100), and the TDC interval set as 0.01 while the interval of ARDC was 

set at 1. In addition, the value of ‘n’ was maintained at ‘n’= 0.01. The result was 

as shown in Figure 4.6 where it was evident that flux became nearly uniform as 

ARDC increased between 1-100 with greater intensity of flux observed at 

maximum flux (1). Secondly, flux from the source, between ARDC (0-1), was 

largely non-uniform but spread to different flux values ranging between (0.3 > Φ 

<1). The flux was also observed to be asymmetrical along the flux line zero.  

 

Figure 4. 6: A 2-Dimensional Neutron Flux in Spheroid Using Jacobi Elliptic 

Theta Function 

(Plotted using Conditions in Table 4.03) 
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Another major finding in this section was the emergence of continuous 3-

dimensional waves when the equation; 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2∞

𝑛=0 𝑒−2𝑖𝑛𝜉 was plotted 

under conditions such that the lower boundary, L (0, 0) and the upper boundary U 

(1,100) the TDC and ARDC components set at 0.01 and 1 respectively. 

Furthermore, the value of ‘n’ was set at ‘n’= 0.01, the Fig 4.7 was obtained.  

Table 4. 4: Boundary Conditions set 4 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 0.1 

ARDC 0 100 1 

 

Figure 4. 7: A 3-Dimensional Continuous Cylindrical Surface at ‘N’=0.1 Using 

Jacobi Elliptic Theta Function 

(Plotted using conditions 4 in Table 4.04) 

The results shown in Figure 4.7 explicitly portrayed a smooth continuous 3-

dimensional wave with a period of 20, amplitude of 1 and a frequency of 3.5/20. 

When ARDC was increased from 0 to 120, the flux behavior of the wave also 

increased from an initial ARDC=0 to a maximum which was determined by the 

TDC. A case in point is that, at TDC =0, 40, 60 and 100 the flux reached its peak 

and conversely, the flux reached its minima when the TDC=20, 40, 60 and 100. 
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This type of diffusion surface was established to be a cylindrical topological 

surface (Ayyoubzadeh et al., 2012). This observation suggests that inside the 

spheroid, there existed flux configuration that conformed to a cylindrical surface 

(Walters et al., 2018).   

When the value of ‘n’ was adjusted to ‘n’=0.5, a new flux behavior was established 

as the equation 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉 ,∞
𝑛=0  was adopted with lower boundary, L 

(0, 0), the upper boundary U (1,100) while the TDC and ARDC components set at 

0.01 and 1, respectively and the results presented in Figure 4.8 was obtained. 

Table 4. 5: Boundary conditions set 5 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 0.5 

ARDC 0 100 1 

 

Figure 4.8: A 3-Dimensional Continuous Wave At ‘N’=0.5 Using Jacobi 

Elliptic Theta Function 

(Plotted using conditions in Table 4.05) 

The Figure 4.8 espoused multiple waves generated as time progressed; several 

wavelets emerged as flux rose from 0 to 1 and as ARDC increased from 0 to 120 
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units. The figure displayed the shape of a spheroid when viewed along the 

ARDC/flux plane. Furthermore, it was inferred that the figure was indeed a 

continuous periodic 3-dimensional wave akin in some aspects to Figure 4.7. 

However; it was observed that while the Figure 4.7 projected fairly equal 

amplitude for nearly all the TDC values while Figure 4.08 had varying amplitudes 

for various TDC values. 

In order to explore the various features of neutron flux in Fig 4.05a, it was plotted 

in two dimensions by adopting the equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉,∞
𝑛=0 under 

boundary conditions such that the lower boundary was L (0, 0), the upper boundary 

U (1,100), the TDC and ARDC components set at 0.01 and 1 and the value of ‘n’ 

was adjusted such that ‘n’= 0.5. 

As per these boundary conditions the results were as presented in Figure 4.05b. It 

was elucidated that neutrons originated from the source and diffused outwards 

while taking the shape of the spheroid; a case of an oblate spheroid as can be seen 

in figure 4.9 (ii), demonstrated that flux behaved inside the spheroid nuclear 

reactor core from their source at point ‘E1’ as they diffused to the other end ‘E2’ 

of the spheroid perfectly fitted the shape of the core. The second observation made 

was that the neutron flux lines progressed as wave packets.  
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Figure 4. 9: 2-Dimesional Continuous Wave At ‘N’=0.5 Using Jacobi Elliptic 

Theta Function 

 

4.2.2. Diffusion surfaces for Values of ‘n’ equal to 1, i.e. (‘n’=1) 

The equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉,∞
𝑛=0 was plotted in 3-dimensions with 

conditions imposed such that the lower boundary was, L (0, 0) and the upper 

boundary, U (1, 1). The TDC had an interval of 0.1 while ARDC had a similar 

time interval of 0.1. The result was the formation of Fig 4.7. 

Table 4. 6: Boundary conditions set 6 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.1 1 

ARDC 0 1 0.1 

 



Page 58 of 148 

 

 

 

Figure 4. 10: Hyperboloid Paraboloid Surface Showing Neutron Flux in 

Spheroid Using Jacobi Elliptic Theta Function 

(Plotted using conditions in Table 4.6) 

The Fig 4.10 showed that neutrons flux increased from zero (minimum) reaching 

unity (maximum flux) as ARDC increased from 0 to 15. It was also observed that 

between 0 and 15 seconds, the flux initially increased then decreased 

exponentially. The Fig 4.10 was established to be a hyperboloid parabolic surface; 

a figure associated with Oblate Spheroids and thus confirmed that the diffusion 

occurred in an oblate type of spheroid, in agreement with previous studies 

(Alassar, 1999). 

The Fig 4.11 was obtained when equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0 was 

adopted and conditions imposed such that the lower boundary was, L (0,0) and the 

upper boundary as, U (1,1), but the value of TDC and ARDC both adjusted to 0.01, 

respectively, while the value of ‘n’ maintained at unity.  
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Table 4. 7: Boundary conditions set 7 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 1 

ARDC 0 1 0.01 

Amplitude 1 

 

 

Figure 4. 11: Hyperboloid Parabolic Surface Showing Neutron Flux in 

Spheroid Using Jacobi Elliptic Theta Function 

(Plotted using conditions in Table 4.7). 

A hyperboloid paraboloid surface was obtained, as shown in Figure 4.11 but with 

a much smoother surface. This indicated that when smaller ARDC and TDC 

intervals were adopted the result was the smoothening of the diffusion surface . 

This observation is consistent with the study (King, 1924) that indicated the 

smoothening of the waveform as the number of mesh points in the plotted diffusion 

surface was increased. 

In 2-dimensions, Fig 4.10 and Figure 4.11, respectively, were replotted and 

presented as shown in the Fig 4.12 b (i) and (ii) where radiative neutron flux lines 

were observed as ARDC increased. Interestingly, in Fig 4.12 b (ii) the flux lines 

regrouped into families exhibiting greater intensity than those in Fig 4.12 a (i) 

attributed to closer sources of neutrons described earlier. The result meant that for 

neutron sources that are brought closer together there’s a tendency to produce 

smoother diffusion surfaces than when the sources are farther apart. In addition, 

flux behavior was shown as symmetrical along the F0-F1 shown in Figure 4.12 b 
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(i) - 4.12 b (ii) meaning that flux emanating from the pointed areas of the spheroid 

core diffused equally in all directions. Thus, despite giving new insight on the 

subject matter, these results also validated earlier findings in the study (King, 

1924).  

Figure 4. 12: A 2-Dimensional Neutron Flux in Spheroid Using Jacobi 

Elliptic Theta Function  

(Plotted using conditions in Table 4.09) 

 

When the interval for TDC was increased to 0.1 and that of ARDC maintained at 

unity under the wave function defined by equation 3.68 but the value of ‘n’ 

maintained at unity. The lower boundary set at L (0,0) and the upper boundary set 

at, U (1,10) as shown in Table 4.8 the Fig 4.13 was obtained. 

Table 4. 8: Boundary Conditions Set 8 

 Lower Boundary  Upper 

Boundary 

Interval ‘n’ 

TDC 0 1 0.1 1 

ARDC 0 10 1 
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Figure 4. 13: A 3-dimensional continuous wave at ‘n’=1 using Jacobi elliptic 

theta function 

(Plotted using conditions in Table 4.8) 

The results from Figure 4.13(i) showed a characteristic topological surface with 

tapering amplitudes along Flux/ARDC planes. Similar problems were analyzed 

using the method of Non uniform rational B-spline (NURBS) discussed in 

[(Shqair, 2019)NURBS is a mathematical method of representing curves and 

surfaces using computer simulations. NURBS are a form of mathematical 

simulations of figures in 2-D and 3-D. It provides an easy method for manipulating 

control vertices, curvatures and smoothness of contours. A B - Spline on the other 

hand uses four local functions that lie outside the curve to guide the shaping of the 

surfaces. This method was well illustrated in Figure 4.13 (ii).  

With regard to this information, the control vertices (CV) for instance for the 

Figure 4.07a (i) are located at ARDC =15 when Flux = 1. The diffusion problem 

is therefore conforming to that of tapering isosceles triangular prisms.  
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Figure 4. 14: Rear (i) and Front (ii) Flux-TDC plane view of the 3-dimensional 

continuous wave at ‘n’=1 

(Plotted using Conditions in Table 4.8) 

It was observed that there were more perturbations appearing at smaller values of 

TDC than at larger values of TDC as attested by Figure 4.14 (i). This is shown in 

Figure 4.07b (i) whereby flux for T1 = 5 and T2 = 17, thus flux was progressively 

undergoing damping as TDC progressed. It is also evident that flux increased in 

amplitude with increase in ARDC between 0-15 alluding to more perturbations at 

higher values of ARDC. 

A slightly different scenario from Figure 4.14(i) and 4.14(ii) emerged when the 

equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉,∞
𝑛=0 was adopted under conditions such that the 

lower boundary was L (0, 0) and the upper boundary U (1,100) the TDC and ARDC 

components were set at 0.01 and 1 respectively. The conditions in Table 4.9 have 

been used to obtain the results obtained in Figure 4.15. 

Table 4. 9: Boundary conditions set 9 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 1 

ARDC 0 100 1 
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Figure 4. 15: A 3-Dimensional continuous wave at ‘n’=1 using Jacobi elliptic 

theta function 

(Plotted using conditions in Table 4.9) 

Although the Figure 4.15 exhibited some similarities with Figure 4.14 i.e. 

periodicity and continuity, a major difference was that whereas Figure 4.14 was 

relatively smoother than Figure 4.15 at higher values of ARDC compared to 

smaller values. Specifically, the unevenness of the wave function was observed 

between ARDC (60 - 120). This was an indication of increased perturbation 

occurring at the set conditions. 

The waves further projected the property of damped oscillations at smaller ARDC 

values than at larger values. It was summed that while Figure 4.14, exhibited a 

behavior of a cylindrical surface, Figure 4.15 presented major similarities to a 

rough, right conical diffusion properties.  

Using conditions presented in Table 4.10, equation , 𝜓(𝜉, 𝜏𝑞) =

𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉,∞
𝑛=0 was adopted and the lower boundary set at L (0, 0) and the upper 

boundary U (1,10), TDC and ARDC intervals set at 0.01 and unity respectively 

while the value of ‘n’=1, the Figure 4.16 was obtained. 
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Table 4. 10: Boundary conditions set 10 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 1 

ARDC 0 100 1 

 

Figure 4.16: A 3-dimensional continuous wave at ‘n’=0.1 using Jacobi elliptic 

theta function 

(Plotted using conditions in Table 4.10) 

It was observed that at TDC = 0, the flux amplitude of the wave increased 

gradually from zero to maximum (1), a behavior that was replicated periodically 

at TDC = 400, 800 and 1200. Secondly, it was noted that as TDC elapsed between 

0 to 1200 units flux remained unique to the value of TDC at that point. It was 

concluded that the figure was affected by changes in both ARDC and TDC 

according to the equation of diffusion. The results presented in Figure 4.16 

provided a typical illustration of a continuous periodic 3-dimensional wave with 

smooth surfaces. Unlike Figure 4.11 where the interval was set at a similar value 

for both ARDC and TDC, in Fig 4.16, the intervals were varied such that interval 

(TDC = 0.01) and interval (ARDC = 0.1) were dissimilar. Thus, this difference in 
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the interval set for the wave function was deduced to have largely contributed to 

the apparent change in the flux behavior in the latter. This figure can be described 

as a continuous periodic right conical diffusion surface.  

We now conclude this sub-section by asserting that the diffusion surfaces obtained 

when ‘n’=1 were mostly continuous periodic surfaces with tapering ends. 

Secondly, smaller intervals between ARDC and TDC were found to enhance the 

smoothness of the diffusion surface. In addition, the diffusion surfaces are mostly 

parabolic hyperboloids and asymmetrical continuous 3-dimensional surfaces with 

tapering ends. The later phenomenon was attributed to the attenuation of the waves 

as they propagate through the spheroid core. 

4.2.3 Diffusion surfaces for values of ‘n’ greater than unity i.e. (1 ≥ n ≤ 100) 

In this section, the values of ‘n’ were varied between 1 ≥ n ≤ 100 specifically 

selected at ‘n’ = 2, 5, 10 and 100. This range of values selected arbitrarily since 

they gave the possible range of values expected from the perturbations. 

To start with, the value of ‘n’ was set at ‘n’ = 2 and conditions imposed such that 

the lower boundary, L (0,0) and the upper boundary U (1,100), the TDC and ARDC 

components set at 0.01 and 1 respectively. The Fig 4.17 was obtained. 

Table 4. 11: Boundary conditions set 11 

 Lower 

Boundary  

Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 2 

ARDC 0 100 1 
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Figure 4.17: A 3-Dimensional Discontinuous Periodic wave at ‘n’ = 2 using 

Jacobi elliptic theta 

(Plotted using conditions in Table 4.11) 

The results were characterized by the waveform exhibiting rapid oscillations at 

values of ARDC > 60 compared to values of ARDC < 60 and appeared rapidly 

fractal as the values of ARDC approached 120 (Figure 4.17). Another observation 

made along the TDC was that the waveform was largely periodic. Thus, the graph 

exhibited the behavior of dynamic evolution of linearly dispersive waves on 

periodic domains. It evolved into an asymptotic sub linear dispersion relation with 

dispersive fractalization.  

Secondly, the value of ‘n’ was increased further to ‘n’ = 5 and conditions applied 

on equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉 ,∞
𝑛=0 such that the lower boundary was set 

was L (0,0) and the upper boundary set as U (1,1), the TDC and ARDC components 

set at 0.01, Fig 4.18 was obtained.  

Table 4. 12: Boundary conditions set 12 

 Lower Boundary  Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 5 

ARDC 0 1 0.01 
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Figure 4. 18: A Hyperboloid paraboloid graph showing neutron flux in 

spheroid using 

JETF (Plotted using conditions in Table 4.12) 

The results from Figure 4.18 characterized a ternary surface whereby neutrons flux 

developed two maxima and two minima at higher values of ARDC > 80. The 

maxima occurred at TDC = 0 and TDC = 60, while the local minima occurred at 

TDC = 20 and TDC = 120.The results therefore pointed to wave damping at large 

axis ratios (ARDC > 80) where  rapid oscillations of the wave function resulted in 

the formation two saddles compared to smaller axis ratios (ARDC < 40) where 

flux was observed to be constant. Based on these findings, it was concluded that 

the diffusion surface shown was thus a hyperboloid paraboloid diffusion surface.  

A 2-dimensional neutron diffusion flux was also plotted using ‘n’=5 and 

conditions imposed on equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉,∞
𝑛=0 such that the lower 

boundary was set as L (0,0) and the upper boundary set as U (1,1), the TDC and 

ARDC components set at 0.01. Figure 4.19 was formed. 
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Figure 4. 19: A 2-dimensional graph showing neutron flux in spheroid using 

Jacobi elliptic 

(Plotted using Conditions in Table 4.12) 

The results exhibited neutron flux emerging in a linear pattern between ARDC (0 

- 0.8), thereafter, i.e. between ARDC (0.8 > 1), it developed into a family of 

symmetrical curves along the flux line (Zero) as shown in Figure 4.19. These 

curves provided an indication that the wave underwent rapid oscillations at higher 

ARDC values and damped to zero for smaller ARDC values (0 - 0.8). 

Table 4. 13: Boundary conditions set 13 

 Lower Boundary  Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 5 

ARDC 0 100 1 
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Figure 4. 20: A 3-Dimensional Discontinuous Periodic wave at ‘n’=5 using 

Jacobi elliptic theta function 

(Plotted using conditions in Table 4.13) 

The fractalization of the waveforms in the Figure 4.20 at higher values of ARDC 

was found to be similar to that in Figure 4.17 and 4.18 but appeared more 

pronounced in the latter. This meant that there was the existence of more rapid 

oscillations than in Figure 4.17/18. In contrast, one similarity exhibited was on the 

fact that the waveform remained periodic for both graphs a TDC increased. The 

increased fractalization of the waveform was attributed to the change in the value 

of ‘n’ that was increased from 2 to 5. This could have signified that higher order 

Jacobi elliptic theta functions produced more wave fractalization of waves than 

smaller order functions. 

The value of ‘n’ was set at 10 and 100 under the conditions such that the lower 

boundary was set was L (0,0) and the upper boundary set was U (1,100), the TDC 

interval was 0.01 and ARDC interval set at unity Fig 4.21 was obtained.  

  



Page 70 of 148 

 

 

Table 4. 14: Boundary conditions set 14 

 Lower 

Boundary  

Upper 

Boundary 

Interval ‘n’ 

TDC 0 1 0.01 10 for Figure (i) 

100 for Figure(ii) ARDC 0 100 1 

 

   

Figure 4. 21: 3-dimensional discontinuous Periodic wave at (a) ‘n’=10 and (b) 

100 using Jacobi elliptic theta function 

(Plotted using conditions in Table 4.14). 

The results depicted that flux showed insignificant growth as ARDC increased to 

values slightly less than 100. However, as ARDC approached 100, flux was shown 

to grow from minimum to maximum periodically with increase in TDC. 

Additionally, the spikes in the waveform were observed as less pointed compared 

to previous observation made in Fig 4.20. It was noted that as the values of ‘n’ 

increased so that 10 < ‘n’ < 100, no significant change in the behavior of the 

waveform occurred as attested in Figure 4.21(ii).  However, a slight variation 

between the two figures was evident as demonstrated by Figure 4.21(ii) which had 



Page 71 of 148 

 

 

comparatively more uniform pointed waveforms than Figure 4.21(i). This was 

summed up to mean that higher ‘n’ values yielded more uniform discontinuous 

waveforms than smaller n values.  

In a quest to gain more insight on the results, figure 4.19 - 4.21 were generated in 

2-dimensions; this was accomplished as a plot between Flux and the ARDC and 

presented in Figure 4.13b, 

 

Figure 4. 22: 2-Dimensional Neutrons Flux Inside A Spheroid Reactor Core 

Using Jacobi Elliptic Theta Functions (‘N’=2, 3 And 5) 

(Plotted using conditions in table 4.13). 

 

Generally, when the value of ‘n’ was increased, neutron flux appeared to disperse 

more rapidly at larger ARDC values than at smaller values. This fact was 

exemplified when ‘n’ was set at ‘n’=2, 3 and 5, the graphs showed neutrons initial 

flux growth took place at approximately ARDC = 30, 80 and 98 for Figure 4.22 

(i), Figure (ii) and Figure (iii) respectively. Another key observation made from 

the graphs was regarding the pattern of flux in which case the results at ‘n’=2 

showed the flux growth assuming flux families’ lines as illustrated in Figure 4.22 

(ii). 
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A slightly different deviation from this results was made when the lower boundary 

was maintained at L (0, 0) and the upper boundary adjusted to U (1,10), the TDC 

and ARDC components were both set at 0.01 and value of ‘n’=10, furthermore, 

the wave function was maintained as equation , 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉 ,∞
𝑛=0  after 

plotting, the graph 4.23 was obtained.  

Table 4.15: Boundary conditions set 15 

. Lower Boundary  Upper Boundary Interval ‘n’ 

TDC 0 1 0.01 10 

ARDC 0 10 0.01 

 

 

Figure 4.23: A 3-Dimensional Discontinuous Periodic wave at ‘n’=10 using 

Jacobi elliptic theta function 

(Plotted using conditions in Table 4.15) 

The results showed that although there was no significant growth in flux exhibited 

as ARDC increased from zero towards 120, the flux wavelength for each wavelet 

appeared to have reduced significantly compared to those in Figures 4.18 - 4.22. 

Secondly, the wave peaks became sharper and more uniform than those of Figure 

4.20 - and 4.21(i) and (ii), a behavior that was attributed to the interval set 

uniformly at 0.01 for both ARDC and TDC in the Figure 4.11 unlike other where 

different values of the intervals, (TDC = 0.01 and ARDC = 1) were adopted. 
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All the Figures 4.22 - 4.24 were all found to share a commonality of being 

discontinuous 3-dimensional periodic waves. However, a slight variation in size 

of the wavelength and the pattern and sharpness of the peaks was also evident as 

the BCs and the value of ‘n’ were varied.  

Generally, rapid oscillations were observed for higher ARDC values (ARDC ≥ 90) 

than for smaller ARDC values in which case the oscillations were found to be 

highly damped. The behavior was also established to be periodic along TDC.  

Another emergent behavior from the results in this study was the formation of 

waveforms each with four distinct regions. This results were produced when the 

boundary conditions were such that the lower boundary was maintained at L (0, 

0), the upper boundary adjusted to U (1,10), the TDC and ARDC intervals both 

set at 0.01 while the value of ‘n’=10, the wave function was maintained as equation 

, 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉   ∞
𝑛=0 and plotted in 2-dimensions to produce the Figure 

4.24. 

. 
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Figure 4. 24: 2-dimensional Periodic wave at ‘n’=10 using Jacobi elliptic theta 

function 

(Plotted using conditions in Table 4.17) 

It was established that flux was periodic as ARDC increased between ARDC (0-

10). The uniformity of the waveforms was also clearly manifest since all the 

wavelets were characterized by uniform periodicity (Figure 4.24). Secondly, each 

wavelet was observed to possess four distinct regions as shown by the amplitudes 

labeled as; A1, A2, A3 and A4 respectively. In addition, all the waveform 

amplitudes were superimposed such that A1 < A2 < A3 < A4. This observation 

was not new since similar findings are corroborated in (Alassar, 1999) where the 

full contours were found to be nearly circular near the source but slowly developed 

into elliptical shapes as neutrons moved outwards towards the boundaries of the 

reactor core. From the fact that similar findings as in other studies were observed 

reinforces both the methods and results adopted in this study. 
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4.2.4 Summary of Key findings from Jacobi elliptic theta functions 

In summary, it was observed that for values of ‘n’ less than unity, the diffusion 

surfaces generated were largely influenced by the other conditions of the 

equation, 𝜓(𝜉, 𝜏𝑞) = 𝐴𝑖 ∑ 𝜏𝑞
𝑛2

𝑒−2𝑖𝑛𝜉∞
𝑛=0 . These conditions were mostly related to 

the values of ARDC and TDC. The interval between the values was shown to 

influence the smoothness of the surface while the amplitude was shown not to 

affect the surface type generated but only influenced the rate at which the flux 

reached its saturation. For instance, at ‘n’= 0.1, the results produced both ternary 

surface and continuous periodic functions. At ‘n’=0.5, periodic functions with 

sharp peak was witnessed. As ‘n’ was further reduced to 0.01, complex surfaces 

were generated that was characterized by multiple surfaces on different planes.  

The diffusion surfaces obtained when ‘n’=1 were mostly continuous periodic 

surfaces with tapering ends. Secondly, smaller intervals between ARDC and TDC 

were found to enhance the smoothness of the diffusion surface. In addition, the 

diffusion surfaces are mostly parabolic hyperboloids and asymmetrical continuous 

3-dimensional surfaces with tapering ends. The later phenomenon was attributed 

to the attenuation of the waves as they propagate through the spheroid core.  

As the value of ‘n’ became greater than unity, it was shown that the waves 

transformed from ternary surfaces to continuous and discontinuous 3-dimensional 

surfaces. It was further observed that as the value of ‘n’ increased progressively, 

the peak of the waves of the surfaces became smoother and uniform. This pointed 

to the saturation of the flux as explained by (Woods & Palmer, 2017) 
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4.3 Analysis of neutron flux using Analytic Method.  

In this section, analysis of diffusion equation was carried out using analytic 

method. This was accomplished in two ways; by varying the conditions of equation 

3.27 and secondly by modifying the terms of the same equation. The aim was to 

understand how the flux behaved when these changes were made. 

4.3.1 Dominant Time-Dependent Component. 

To start with, the equation derived in the function,𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒(𝑔1), was 

plotted in 3- dimensions with conditions imposed such that the TDC and the ARDC 

had their lower boundary as L (0,0) and the upper boundary as U (100,0), the TDC 

had an interval of 0.1 while ARDC had a zero time component. The amplitude 

limits were set at L (0, 0) and U (100,100), a common interval of unity and the 

amplitude term as,𝐺(𝜂, 𝜉) = −𝑎 + 𝑏𝑖, were adopted to plot the graph shown below. 

Table 4.16: Boundary conditions set 16 

 Lower Boundary  Upper Boundary Interval 

TDC (
1g ) 0 1 0.01 

ARDC(g2) 0 0 Not defined 

a 0 100 1 

b 0 100 1 

 

 

Figure 4. 25: Door-Hinge ternary surface generated using Analytic method 

(Plotted using Table 4.16) 
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The formation of ternary surfaces with two ‘wings’ was also part of the spectrum 

of results established in this thesis. It was displayed in Figure 4.25 which showed 

flux assuming a maximum (-0.5) between ARDC (0 - 150), then remained constant 

as TDC was altered from Zero to slightly below 1000. However, as TDC 

approached 1000, the flux dropped from maximum, (-0.5) to minimum (-3) in a 

triangular planar surface.  

In addition, attention was shifted to understand the nature of ternary surfaces that 

were produced as TDC and ARDC lower boundaries L (0, 0) and the upper 

boundary U (10, 0), with a TDC interval of 0.1 adopted. The amplitude term was, 

𝐺(𝜂, 𝜉) = 𝑎 + 𝑏𝑖 and the amplitude limits were set at L (0, 0) and U (10, 10) and 

both limits set with an interval of unity. The function; 𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒(−𝑔1). 

Table 4. 17: Boundary conditions set 17 

 Lower Boundary  Upper Boundary Interval 

TDC (
1g ) 0 10 0.1 

ARDC (
2g ) 0 0 Not defined 

a 0 10 1 

b 0 10 1 

 

 

Figure 4.26: Hyperbolic paraboloid surface generated using Analytic method 

(Plotted using conditions in Table 4.17) 
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The hyperbolic paraboloid in figure 4.26 depicted neutrons flux with two main 

surface orientations, the first orientation occurred between TDC (50-60) whereby 

the flux remains constant at zero even as ARDC increased. The second orientation 

occurred between TDC (0-50) when the diffusion followed a curved behavior with 

flux gradually increasing from 0 to 8 units as ARDC increased from 0 to 15 units.  

In order to further understand the properties of figure 4.26, a 2-dimensional plot 

shown in graph 4.27 was plotted using conditions in Table 4.17. 

 

Figure 4. 27: A 2-dimensional plot generated using Analytic method 

(Plotted using Conditions 4.17). 

 

Deducing from Figure 4.27, it can be asserted that neutrons diffused along the 

Flux-ARDC plane while decreasing exponentially from maximum and converged 

for ARDC values between 6 - 7. In addition, it was apparent that the initial flux 

had vanished to zero within similar range of ARDC. The results therefore 
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suggested that flux underwent damping between ARDC (5-10) with neutrons with 

higher initial flux amplitude underwent rapid damping than those with smaller 

initial flux amplitude. 

4.3.2 Flux for Diffusion equation with Dominant Axis Ratio Dependent 

Component 

The Figure 4.18a was generated with conditions imposed such that the TDC and 

the ARDC had their lower boundary set at L (0, 0) and the upper boundary U 

(0,100), the TDC and ARDC both with an interval of 0.1.  The amplitude terms, 

𝐺(𝜂, 𝜉) = −𝑎 + 𝑏𝑖 and amplitude limits set at L (0, 0) and U (100,100), both with 

an interval of unity. The function; 𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒𝑔2𝑖 was adopted. 

Table 4.18a: Boundary conditions set 18. 

 Lower Boundary  Upper Boundary Interval 

TDC (
1g ) 0 1 0.01 

ARDC (
2g ) 0 0 Not defined 

a 0 100 1 

b 0 100 1 

 

 

Figure 4. 28: Continuous periodic 3-dimensional graph generated using 

Analytic method 

(Plotted using conditions in Table 4.18) 
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Part of the configuration of neutron flux under the stated conditions was the 

formation continuous periodic 3 - dimensional flux with increasing amplitudes as 

ARDC varied from zero towards 150. For instance, at TDC = 0, the flux amplitude 

of the wave was shown to increase gradually from zero to maximum (150); a 

behavior that was replicated periodically along the TDC axis between zero and 

1500 units. 

Using similar conditions in Table 4.18, a 2-dimensions figure 4.29 was developed. 

The results from showed that the neutrons diffusion behavior near the core was 

similar to an oblate spheroid shown as A4 in Figure 4.29 (ii). Similarly, it is 

understood that as neutrons diffuse outwards, they exhibited a behavior similar to 

a spherical surface (A3) and finally, prolate behavior (A2) in the Figure.  

 

Figure 4. 29: 2-Dimensional graph generated using analytic method 

(Plotted using conditions in Table 4.18) 
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These results elude to the fact that as time progressed, more neutrons are likely to 

be found near the surface of the spheroid and thus increase the probability of 

leakage outside the reactor similar to heat diffusion in spheroids (Alassar et al., 

2014).The heat diffusion and the neutron diffusion problem have one major 

striking difference where unlike heat diffusion problem mentioned Figure 4.29 in 

(Alassar et al., 2014), the flux for each type of spheroid are not determined 

separately i.e. the distinction between the neutron flux for a prolate and oblate was 

not made.  

In the study by Woods and Palmer (2017), a manufactured solution was adopted 

with discretization terms. The study revealed the formation of complex figures 

arising from different streaming and source terms, from the different Ω values as 

shown in the Figure 4.30. 

 

Figure 4. 30: Analytic solution for the transport equation using a 

manufactured solution 

(Hannaske et al., 2013). 

The results in this study particularly, those in Figure 4.15 and Figure 4.16 have 

been found to be in conformity to the results shown in Figure 4.30(c) (i-iii). The 

center of the diffusion problems represented by the red color indicated a high level 

of hotness compared to the edges of the spheroid. These hotter areas in Figure 4.30 
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may represent highly perturbed regions of the neutron flux mention in Figure 4.25- 

4.28 that were considered as hyperbolic paraboloids diffusion configuration. 

Based on a study carried out to determine the relationship between flux and the 

semi focal distance of a spheroid (Lima et al., 2004) with results as shown in figure 

4.18d, It was concluded that a slight deformation from the sphere does not affect 

the fundamental mode properties significantly but at least to the first order. 

Secondly it was found that a disk and a sphere were two limiting cases for 

spheroids that exhibited smooth transitions between two limits. Thirdly, full 

contours were found to be nearly circular near the source but slowly developed 

into elliptical shapes moving towards boundaries.  

 
Figure 4. 31: Plot of flux against focal distance (a) monte carlo (b) analytical 

method 

The results from Figure 4.31 further confirmed the fact that neutron flux at the 

core of a spheroid was spherical but became elliptical as the flux moves outwards 

that were deduced earlier in Figure 4.29 and Figure 4.30.  
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4.3.3 Flux for diffusion equation with both TDC and ARDC Dominant 

Component 

It 𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒−(𝑔1+𝑔2𝑖) was adopted while the boundary conditions were 

altered such that both the boundaries for TDC as well as ARDC were set as L (0, 

0) and U (100,100) respectively while their intervals were set at 0.1. The amplitude 

term remained as, 𝐺(𝜂, 𝜉) = −𝑎 + 𝑏𝑖 whle the amplitude boundary conditions were 

similarly set at L (0, 0) and U (100,100) with an interval of unity for both 

boundaries. Consequently the Figure 4.32 was obtained. 

Table 4.18b: Boundary conditions set 19 

 Lower 

Boundary  

Upper Boundary Interval 

TDC (
1g ) 0 100 0.1 

ARDC (
2g ) 0 100 0.1 

a,b 0 100 1 

 

Figure 4. 32: A Door-Hinge ternary surface generated using Analytic method 

(Plotted using conditions Table 4.19). 

It was deduced that the formation of a ternary surface occurred with two ‘wings’ 

similar to that in Fig 4.32 occurred. Initially, flux assumed a maximum (0) between 

ARDC (0-150) and thereafter dropped slightly below (0) then remained constant 

as TDC varied between 0 to slightly below 1500. Contrastingly, as TDC 
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approached Zero, a change in behavior was exhibited when flux dropped from 

maximum (0) to minimum (-100) in a characteristic curved triangular ternary 

surface. Additionally, a curved cylindrical surface was observed between the two 

ternary surfaces.  

When similar boundary conditions were maintained as shown in Table 4.19 while 

the function 𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒−(𝑔1+𝑔2𝑖)  was adopted from 𝜓(𝑔1,𝑔2) =

𝐺(𝑔1,𝑔2)𝑒(𝑔1−𝑔2𝑖) that was adopted earlier and similarly the amplitude function 

was maintained as (𝜂, 𝜉) = −𝑎 + 𝑏𝑖. 

 

Figure 4.33: ‘Dovetail-like’ ternary surface generated using Analytic method 

(Plotted using conditions in Table 4.19) 

Based on the figure 4.32 and Figure 4.33, it was inferred from the result that there 

was rotation by 180 degrees in the clockwise direction. Another observation drawn 

from the study was regarding the formation of elliptic paraboloid surfaces. This 

was realized when conditions were imposed on equation 3.68 such that the TDC 

and ARDC boundary values were; lower boundary L (0, 0) and the upper boundary 

U (10, 10) the TDC and ARDC both with an interval of 0.1. The amplitude terms 

were set at, L (0,0) and, U (10,10) and both with an interval of unity. The function; 
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𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒(𝑔1−𝑔2𝑖)
 
was adopted and an amplitude term modified as, 

𝐺(𝜂, 𝜉) = −𝑎 − 𝑏𝑖 the Fig 4.34 below was obtained; 

Table 4. 19: Boundary conditions set 20 

 Lower 

Boundary  

Upper Boundary Interval 

TDC (~
1g ) 0 10 0.1 

ARDC (~
2g ) 0 10 0.1 

a 0 10 1 

b 0 10 1 

 

 

Figure 4. 34: An elliptic paraboloid surface generated using Analytic method 

(plotted using conditions 4.20) 

The findings evidenced the formation of a ternary surface with two distinct planes; 

the first planes were largely rectangular surface that resembled a cone-like quadric 

surface. The rectangular surface showed that flux remained fairly constant as both 

ARDC and TDC were increased. However, as TDC approached 100, a cone like 

quadric surface emerged. Therefore, the diffusion demonstrated how neutron flux 

increased from minimum (0) and rose to maximum (10) following the two forms 

of surfaces. This feature was found to resemble an elliptic paraboloid surface (Li 
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et al., 2004)for ARDC (100-150) while ARDC (0-100) exhibited a hyperboloid 

paraboloid surface (Ivers, 2004) 

When the wave function was varied to 𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒(𝑔1+𝑔2𝑖) and the 

amplitude function𝐺(𝜂, 𝜉) = −𝑎 + 𝑏𝑖, the TDC and ARDC both with an interval 

of 1 an interval of 0.1 respectively while the other remaining variables held 

constant, Figure 4.35 was obtained.  

 

Figure 4.35: An elliptic paraboloid surface generated using Analytic method 

(Plotted using conditions in Table 4.20). 

The two Figures 4.34 and Figure 4.35 were compared and found to be largely 

similar. In addition, it was also established that neutron flux was mildly affected 

by a change in signs adopted both in the equation and in the amplitude Coefficient 

terms. This meant that there was insignificant contribution made by changing of 

signs of TDC and ARDC and also in their respective coefficient terms. This was 

justified by the graphs that remained identical before and after the changes had 

been introduced. 
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In comparison, figures 4.36 (i), (ii) and (iii) possesses similar findings as those in 

figure 4.33, 4.34 and 4.35. 

 

Figure 4. 36: A 2-dimensional figure generated using Analytic method 

(Plotted using conditions in Table 4.19 and Table 4.20) 

The results generally depicted the formation of a 2-dimensional plots showing 

neutron flux with two distinct points. In essence, the flux at higher ARDC had two 

points of inflections. The first inflection appeared smaller than the second 

inflection for all the graphs. Fig 4.36 (ii) appeared to be inversion of graph Fig 

4.36 (i) arising as a result of the change of exponent sign of the wave function. In 

the study by Cai and Kittelmann (2020) predicted this kind of behavior whereby 

flux contours were near spherical near the source but develop into spheroid 

geometry with increasing semi focal distance. Thus, the study confirmed that the 
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diffusion of neutrons along the focal semi distance (Cai & Kittelmann, 2020) and 

along axis ratio was related. 

Furthermore, when the initial conditions were varied so that TDC and ARDC 

lower boundary set as L (0, 0) the upper boundary at U (10, 10), the TDC and 

ARDC were both set with an interval of 0.1. An amplitude term 𝐺(𝜂, 𝜉) = −𝑎 + 𝑏𝑖   

was adopted with amplitude limits set at L (0, 0) and U (10, 10) and both with an 

interval of unity. The function;𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒𝑔1+𝑔2𝑖was adopted resulting 

in the formation of the Figure 4.37. 

Table 4. 20: Boundary conditions set 21 

 Lower 

Boundary  

Upper Boundary Interval 

TDC (~
1g ) 0 10 0.1 

ARDC (~
2g ) 0 10 0.1 

a 0 10 1 

b 0 10 1 

 

 

Figure 4. 37: A hyperbolic paraboloid surface generated using Analytic 

method 

(Plotted using conditions in Table 4.21). 
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The ternary surface showed neutrons flux in a twisted rectangular topological 

surface. As ARDC progressed from 0 towards 15, the flux decreased from 

maximum (10) to minimum (-10). At ARDC = 10, it was found that the flux had 

covered the widest spatial surface. This graph illustrated indeed another form of a 

hyperbolic parabolic surface 

In addition, the study focused on ternary surfaces that was produced when TDC 

and the ARDC lower boundaries were set L, (-1, -1), the upper boundary U (1, 1), 

with a common interval of 0.01 adopted. The amplitude terms,𝐺(𝜂, 𝜉) = −𝑎 + 𝑏𝑖 

were set at L (0, 0) and U (100,100) and both with an interval of unity. The 

function 𝜓(𝑔1,𝑔2) = 𝐺(𝑔1,𝑔2)𝑒−𝑔1+𝑔2𝑖 was applied resulting in the formation of 

Fig 4.38. 

Table 4.21: Boundary conditions set 22 

 Lower Boundary  Upper Boundary Interval 

TDC (~
1g ) -1 1 0.01 

ARDC (~
2g ) -1 1 0.01 

a 0 100 1 

b 0 100 1 
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Figure 4. 38: A Parabolic cylindrical surface generated using Analytic method 

(Plotted using conditions in Table 4.21). 

A characteristic ternary surface with a triangular surface curvature was obtained 

as shown in Figure 4.38 upon applying conditions table 4.22 on the diffusion 

equation. It characterized flux spreading from a point source to cover a wider 

spatial area as TDC increased from 0 to 250. Secondly, it was evident that as 

ARDC progressed from 0 towards 150, the flux similarly covered a triangular 

surface that was symmetric at about ARDC=100. It was observed that the diffusion 

behavior under these conditions was indeed a parabolic surface diffusion 

configuration. 

Similar studies to Figure 4.37- 4.38 were found in the study highlighted in (Welch 

et al., 2017). This study indeed confirmed the formation of ternary surfaces as 

shown in Fig 4.22b. The study was an investigation of multi-group neutron 

diffusion flux n spheroids using a manufactured solution. 

Figure 4. 39: Analytic graphs using various neutron sources using 

manufactured solution  

(Shqair, 2019) 
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4.3.4 Summary of findings using Analytic method. 

Using analytical method, it was shown that for real component and zero complex 

components, the diffusion exhibited mostly ternary surfaces. As the real 

component went to zero and the imaginary component became dominant, the 

surfaces became discontinuous periodic surfaces similar to those observed using 

Jacobi elliptic theta functions. Lastly, as both imaginary and real component 

became dominant, the diffusion surfaces were largely ternary surfaces such as 

elliptic paraboloids, hyperbolic paraboloids and cylindrical paraboloids. The 

findings were also corroborated by similar studies such as the one mentioned in 

(Woods & Palmer, 2017)  

4.4 Comparison Between Analytic and Jacobi Elliptic Theta Behaviors 

The two methods of Jacobi elliptic theta function and analytic method were 

adopted in this study with the former as the main technique. Intriguingly it 

emerged that the two methods presented similar findings in ternary surfaces that 

characterize neutron diffusion problem.  

The existence of hyperbolic paraboloid surfaces, continuous periodic surfaces, and 

elliptic parabolic surfaces reinforced a major similarity between the surfaces. 

Figure 4.40 shows a one to comparison in the behavior of diffusion distinguished 

between the two methods. 
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Figure 4.40: A comparative graph showing the graphs obtained using 

Analytical and Jacobi elliptic theta function 

 

One major difference was that more configurations were obtained using Jacobi 

elliptic theta function than analytic method under similar conditions. Jacobi 

elliptic theta method gave a wider number of these configurations enabled neutron 

diffusion problems in spheroids to be visualized better. 

Furthermore, the variation of ‘n’ in the Jacobi elliptic theta method provided a 

simplified method of dealing with eigen-value problems that were encountered in 

similar problems in the past. Jacobi elliptic theta method thus provided a more 

realistic analysis for understanding the behavior of neutron diffusion in spheroids 

than analytic methods. 

4.5 Behavior of Neutron Leakage in Spheroids 

The behavior of neutron leakage rate was considered by plotting the function; 𝐿 =

[
𝑘𝑐2

9.86+19.72𝑐2
]

1

2
 for prolate and 𝐿 = [

𝑘𝑐2

19.72+9.86𝑐2
]

1

2
 for oblate in the range of ARC (0, 
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10) at an interval of 0.01. The values of k were set at k (0, 10, 100, 500, 1000). 

The results for neutron leakage rate in the oblate spheroid was shown in Fig 4.41 

(i), that of the prolate spheroid was shown in Fig 4.42 (ii) and lastly, that of 

combined i.e prolate and oblate was presented in Fig 4.41.  

 

Figure 4. 41: Neutron Leakage rates versus Axis ratio, Oblate (i) and Prolate 

(ii) 

From the results, it was evident that the neutron leakage rate was mildly affected 

by the changes in the axis ratio for both spheroids at large axis ratios, however, 

oblate spheroids tended to exhibit relatively higher neutron leakage rate at smaller 

axis ratios compared to prolate spheroids of the same volume. The probable 

explanation was that at smaller axis ratios, an oblate spheroid had a larger surface 

area compared to a prolate of a similar volume.  
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Figure 4. 42: Neutron Leakage rates versus Axis ratio for oblate and prolate 

spheroid 

 

Generally, each of the graphs could be divided into two sections; the first section 

for axis ratio between 0 and 1(Refer to Figure 4.42). In this section, the neutron 

leakage rate for the oblate Spheroid appeared higher than that of prolate spheroid 

of the same volume at any given value of 𝑘.This observation was explained as 

follows; at small axis ratios, the surface area of an oblate spheroid was much larger 

than the surface area of a prolate spheroid with the same volume (Hannaske et al., 

2013).  

Secondly, it was observed that when the axis ratio was unity, the neutron leakage 

rate for the oblate spheroid and prolate spheroid converges since all values of this 

point represent the special case of sphere. In addition, it was found that at large 

axis ratio; there was little dependence of the neutron leakage rate on the axis ratio 

of the spheroid. This was possibly because at such axis ratios, the probability of 

neutrons with large energy values reaching the surface of the reactor core may 
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have been significantly reduced, consequently, the probability of neutron leakage 

was also reduced.  

Thirdly as the axis ratio became greater than unity, the neutron leakage rate for 

prolate spheroid overtook that of oblate spheroid because the surface area of the 

Prolate spheroid became larger than that of Oblate spheroids of the same volume.  

Lastly, it was found that at large value of (k) e.g. k > 1000, the neutron leakage 

rate for both prolate and oblate spheroids almost superimposed. This was because 

for large neutron leakage constant, k, the other terms in equations (3.10) and (3.13) 

tended to converge for both Oblate and Prolate spheroids respectively.   

A possible application of this concept would be in the design of reactors whose 

reaction rates   could be altered by simply by varying the axis ratios of the core. 

Such reactors would be able to mitigate the effects of adverse events like 

earthquakes. Finally, it was observed that the findings in this work were in 

agreement with the findings made in the study of heat diffusion in spheroids 

(Plompen et al., 2020) 

4.6 Reactor Core Criticality Behavior under varying axis Ratio 

The relationship between axis ratio and reactor core reactivity was formulated in 

equation , 𝜌 = 1 −
19.72+(9.86+𝛽2)𝑐2

(19.72+9.86𝑐2)𝛺
, for oblate spheroid and equation , 𝜌 = 1 −

9.86+(19.72+𝛽2)𝑐2

(9.86+19.72𝑐2)𝛺
, for prolate spheroids. In these two equations, two terms were 

introduced Ω (average neutron per fission) and β was defined by equation β =

𝑘𝐵2. The relationships were used to explain the behavior of reactivity versus axis 

ratio.  
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To start with, the equation; ρ = 1 −
19.72+(9.86+𝛽2)𝑐2

(19.72+9.86𝑐2)𝛺
 , with the value of Ω = 5 and 

β (0.1,0.5,1,2.5,5) was adopted in the range of ARDC (0,5) with an interval of 

0.01, the Fig 4.43 was generated 

 
Figure 4.43: Reactor core criticality versus axis ratio for oblate spheroid 

 

It was observed that as ARDC increased from 0 to 5, the core reactivity decreased 

exponentially from -4 to lower values dependent on the value of β (Figure 4.43). 

For instance, for β (0.5), ARDC was - 6.347 at axis ratio equal to 4.99. It was 

further established that smaller β values caused the reactor reactivity to decay 

faster than larger β values. Furthermore, it was evident that smaller β values almost 

produced linear graphs signifying that the reactor core reactivity was least affected 

by such β values. 

For a prolate spheroid, the equation; 𝜌 = 1 −
9.86+(19.72+𝛽2)𝑐2

(9.86+19.72𝑐2)𝛺
, with the value of Ω 

=5 and β (0.1, 0.5,1,2.5,5) were adopted in the range of ARDC (0,5) with an 

interval of 0.01, the Fig 4.44 was obtained. 
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Figure 4. 44: Reactor core criticality versus Axis ratio for prolate spheroid 

 

Resonating results for Figure 4.43 and Figure 4.44 were observed. In particular, 

as ARDC increased from 0 to 5, it was noted that the reactor core reactivity 

decreased exponentially from - 4 to lower values depending on the values of β. In 

particular, smaller β values were linked to hasten reactor reactivity than larger β 

values. In addition, smaller β values almost produced linear graphs implying that 

the reactivity was least affected at such values 

Comparing the results presented by Figure 4.26 with that of Figure 4.25, it was 

established that the reactor criticality decayed to comparatively smaller values for 

similar ARDC values. It was also shown that higher ARDC values affected reactor 

core reactivity more than smaller values. 

Secondly, when the equation, ρ = 1 −
19.72+(9.86+𝛽2)𝑐2

(19.72+9.86𝑐2)𝛺
 , and  𝜌 = 1 −

9.86+(19.72+𝛽2)𝑐2

(9.86+19.72𝑐2)𝛺
 , were combined while the value of Ω =5 and β (0.1,0.5,1,2.5,5) 

were adopted in the range of ARDC (0,5) with an interval of 0.01, the Figure 4.45 

was developed. 
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Figure 4. 45: Reactor core criticality versus Axis ratio for prolate and oblate 

spheroid at 𝝮=5 

 

The outlying differences between the reactor core criticality for an oblate and 

prolate spheroid clearly displayed (Figure 4.45). First it was shown that for ARDC 

values less than unity, prolates portrayed lower reactor core criticality values 

compared to oblates of the same volume. Secondly it was emerged that at 

ARDC=1, the reactor core reactivity for both prolate and oblate spheroid 

coincided. Lastly, as the ARDC values became greater than unity, the reactor core 

reactivity for prolate became greater than that of oblate spheroid of the same 

volume. 

Thirdly, when the equation; 𝜌 = 1 −
9.86+(19.72+𝛽2)𝑐2

(9.86+19.72𝑐2)𝛺
 , and 𝜌 = 1 −

19.72+(9.86+𝛽2)𝑐2

(19.72+9.86𝑐2)𝛺
  

were adopted while the value of β maintained at β =5 and Ω values (Ω = 

0,0.5,1,2,5) adopted in the range of ARDC (0,5) with an interval of 0.01, the Figure 

4.46 was arrived at. 
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Figure 4. 46: A Combined Graph showing the reactor core criticality versus 

Axis ratio for prolate and oblate spheroid at β = 5 

 

Although similar findings were found in Figure 4.46 compared to Figure 4.45, a 

divergent observation was observed. Whenever the value of β was kept constant 

but that of, 𝝮 varied, there was dispersion of curves from the origin into distinct 

values determined by the initial reactor core reactivity. 

Lastly, when the equation; 𝜌 = 1 −
9.86+(19.72+𝛽2)𝑐2

(9.86+19.72𝑐2)𝛺
 , and = 1 −

19.72+(9.86+𝛽2)𝑐2

(19.72+9.86𝑐2)𝛺
 , 

were applied with the value of β = 10 and Ω (0,0.5,1,2,5) adopted in the range of 

ARDC (0,5) with an interval of 0.01, the Figure 4.47 was generated. 
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Figure 4. 47: A Combined graph showing the reactor core criticality versus 

Axis ratio for prolate and oblate spheroid at β=10 

 

From the Figure 4.47, similar findings were found compared to Figure 4.46 and 

4.45, however, it was established that when the value of β was kept constant but 

that of 𝝮 varied as stated, there was not only the dispersion of curves into separate 

initial values of reactor core reactivity but also an observed increase in the gradient 

between ARDC (0-5). 

4.7 Summary of Key Findings 

In summary, it was observed that for values of ‘n’ less than unity, the diffusion 

surface generated was largely influenced by the other conditions of the equation 

3.68. These conditions were mostly related to the values of ARDC and TDC. The 

interval between the values was shown to influence the smoothness of the surface 

while the amplitude was shown not to affect the surface type generated but only 

influenced the rate at which the flux reached its maximum. For instance, at ‘n’=  

0.1, the results produced both ternary surface and continuous periodic functions. 

At ‘n’= 0.5, periodic functions with sharp peak was witnessed. As ‘n’ was further 
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reduced to 0.01, complex surfaces were generated that was characterized by 

multiple surfaces on different planes. 

The nature of diffusion surfaces obtained when ‘n’=1 were mostly continuous 

periodic surface with tapering ends. Smaller intervals between ARDC and TDC 

were found to enhance the smoothness of the diffusion surface. The diffusion 

surfaces were mostly parabolic hyperboloids and asymmetrical continuous 3-

dimensional surfaces with tapering ends. The later was attributed to the attenuation 

of the waves as they propagate through the spheroid core. 

As the value of ‘n’ became greater than unity, it was shown that the waves changed 

from ternary surfaces to continuous and discontinues 3-dimensional surfaces. It 

was further observed that as the value of ‘n’ was increased progressively, the peak 

of the waves of the surfaces became smoother and uniform. This pointed to the 

saturation of the flux as explained by (Woods & Palmer, 2017) 

Using analytical method, it was shown that for real component and zero complex 

components, the diffusion surfaces were mostly ternary surfaces. As the real 

component became zero and the imaginary component became dominant, the 

surfaces became discontinuous periodic surfaces similar to those observed using 

Jacobi elliptic theta functions. Lastly, as both imaginary and real component 

became dominant, the diffusion surfaces were largely ternary surfaces such as 

elliptic paraboloids, hyperbolic paraboloids and cylindrical paraboloids.  

Concerning neutron leakage rates, it was evident that the axis ratio for both 

spheroids at large axis ratios than at smaller axis ratio. The neutron leakage rate 

for the oblate Spheroid has been found was always higher than that of prolate 

spheroid at any given value of 𝛼. Subsequently, as the axis ratio became greater 
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than unity, the neutron leakage rate for prolate spheroid overtakes that of oblate 

spheroid because the surface area of the prolate spheroid became larger than that 

of oblate spheroids of the same volume. At axis ratio of unity, the neutron leakage 

rate for the oblate spheroid and prolate spheroid converges since all values of this 

point represent the special case of sphere. Furthermore, large axis ratio, there was 

little dependence of the neutron leakage rate on the axis ratio of the spheroid. 

Lastly, it was found that at large value of (k) e.g. k > 1000, the neutron leakage 

rate for both Prolate and Oblate spheroids almost superimpose. This was because 

for large neutron leakage constant, k, the other terms in equations (3.10) and (3.13) 

tend to converge for both Oblate and Prolate spheroids respectively.   

 The relationship between reactor criticality and the axis ratio was investigated. It 

was established that smaller ß values caused the reactor reactivity to decay faster 

than larger ß values. It was evident that smaller ß values almost produced linear 

graphs signifying that the reactor core reactivity was least affected by such ß 

values. 

It was shown that for ARDC values less than unity, prolate exhibited lower reactor 

core criticality values compared to oblates. Secondly it was shown that at 

ARDC=1, the reactor core reactivity for both prolate and oblate spheroid 

coincided. Thirdly, as the ARDC values became greater than unity, the reactor 

core reactivity for Prolate became greater than that of oblate spheroid of the same 

volume. Although similar findings were found compared to Figure 4.42, it was 

established that when the value of ß was kept constant but that of, 𝝮 varied as 

stated, there was separation of curves into separate  initial values of reactor core 

reactivity.  
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CHAPTER FIVE 

CONCLUSIONS 

5.1 Introduction 

Fick’s neutron diffusion equation has been transformed analytically into a  new 

neutron diffusion formula. Thereafter, it was modified into a new Jacobi elliptic 

function, subjected to appropriate Boundary Conditions and the results generated 

and analyzed using Python software. The results were later compared with similar 

models in other studies. The current study confirms previous findings and 

contributes to our understanding of the role of axis ratio in influencing the flux, 

leakage rates and reactor core reactivity.   

It was found that the magnitude of the wave amplitude, value of ‘n’ and quantities 

of the variables ARDC and TDC were critical in influencing the type of diffusion 

surface obtained. Generally, some of the diffusion surfaces obtained include; 

hyperboloid paraboloid, cylindrical and parabolic surfaces. There was also the 

formation of waves that included; continuous periodic 3 - dimensional waves 

among others. Some earlier findings were confirmed by the study that include; 

saturation of waves at higher order polynomials, for instance, as the value of ‘n’ 

was increased to higher values such as, ‘n’ > 5. When smaller intervals between 

TDC and ARDC were adopted, it was found that surfaces were relatively smoother 

than when larger intervals were adopted. waves were found to undergo rapid 

oscillation at higher ARDC values and damping for smaller ARDC values;  

spherical to spheroid behaviour of flux contours with increasing axis ratios, flux 

contours were formed that are near-spherical near the source but develop into 

spheroid geometry at increasing axis ratio. Although, the results obtained using 

both the analytic and Jacobi elliptic theta methods were largely in agreement, it 
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was established that the later provided a quicker and a more simplified method of 

visualising the neutron flux in spheroids compared to the former.  

The study was also aimed at understanding the effects of variation of axis ratio on 

neutron leakage rate. This was executed for axis ratios less than unity, equal to 

unity and greater than unity. First, for axis ratios less than unity, the neutron 

leakage rate for an oblate spheroid was established to be relatively higher than that 

of prolate of equal volume. In addition, it was found that the neutron leakage rate 

is mildly affected at relatively large axis ratios than at smaller axis ratio for both 

prolate and oblate spheroids. Secondly, for larger values of axis ratio, the converse 

is true, this is because at large axis ratios, the surface area of the prolate became 

larger than that of oblate of the same volume. Thirdly, at axis ratio equal to unity, 

the neutron leakage rate for the oblate and prolate converges since all values of 

this point represent the special case of a sphere. In addition, at large values of 

neutron leakage constant term, k, for instance, k >1000, the neutron leakage rate 

for both Prolate and oblate spheroids almost superimpose. This shows that large 

neutron leakage constant terms tend to dominate the formulated leakage equation.  

Furthermore the study has added to the body of knowledge about the understanding 

of reactor core reactivity. In particular, three main variables i.e. ß, 𝝮 and axis ratio 

were found to affect the reactor core reactivity. First, it was noted that smaller ß 

values induced decay faster than larger ß values and was mildly affected by 

relatively smaller ß values. Secondly, it was established that when the value of ß 

was kept constant but that of, 𝝮 varied, there was the segregation of curves into 

various reactor core reactivity values at the origin. Thirdly, it was found that for 

axis ratios less than unity, Prolate exhibited lower reactor core reactivity values 
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compared to oblates of the same volume. At axis ratio equal to unity, the reactor 

core reactivity for both Prolate and oblate spheroid were observed to nearly 

superpose. Also, as the axis ratio became greater than unity, the reactor core 

reactivity for Prolate became greater than that of the oblate spheroid of the same 

volume.  

The findings in this study will useful in the enhancement of reactor cores designs 

that for the attainment of robust, safe and economical designs. Furthermore, it will 

widen the existing understanding on the behaviour of reactor cores occurring due 

to deformation by extreme events that are bound to alter the axis ratio of the 

spheroid.   

5.2 Recommendations 

The model has been used to study diffusion of thermal neutrons. Similar work may 

be extended to study multi-group diffusion problem. Secondly there is need to 

differentiate the flux behaviour for each type of spheroid (oblate and prolate) 

separately using a similar model. Furthermore, Flux, Leakage rates and Reactivity 

for similar models with reflective walls need to be carried out. 
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ANNEX I: ALGORITHMS 

Annex 1: Jacobi Elliptic Theta Functions- Method 

Throughout Annex 1, during the coding process, substitutions were made as follows;- 

qt  ; f = ξ; n=n; ),( qR   

1. Generation of Figure 4.5 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n = 0.01; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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2. Generation of Figure 4.7 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n=0.1; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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3. Generation of Figure 4.8 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n=0.5; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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4. Generation of Figure 4.15 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n=1; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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5. Generation of Figure 4.17 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n=2; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 

surf(real(R),imag(R)); 
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6. Generation of Figure 4.18 

>> t=[0:0.01:1]; 

f=[0:0.01:1]; 

n=5; 

R =  ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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7. Generation of Figure 4.20 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n=5; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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8. Generation of Figure 4.21 

>> t=[0:0.01:1]; 

f=[0:1:100]; 

n=10; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))) 
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9. Generation of Figure 4.23 

>> t= [0:0.01:1]; 

f= [0:1:100]; 

n=100; 

R = ((t.^(n.^2))'*(exp(-f*2*i*n))); 
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ANNEX 2: ANALYTICAL METHOD 

1. Generation of Figure 4.25 

a = [0:1:100]; 

 b = [0:1:100]; 

g1 = [0:0.1:100]; 

G = (i*a-b); 

Y= G’*exp(g1);  
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2. Generation of Figure 4.28 

a = [0:1:100]; 

 b = [0:1:100]; 

g2 = [0:0.1:100]; 

G = (i*a-b); 

Y= G’*exp(i*g2);  
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3. Generation of Figure 4.29 

a = [0:1:100]; 

 b = [0:1:100]; 

g2 = [0:0.1:100]; 

G = (i*a-b); 

Y= G’*exp(i*g2);  
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4. Generation of Figure 4.34 

 a = [0:1:10]; 

 b = [0:1:10]; 

g1 = [0:0.1:10]; 

g2 = [0:0.1:10]; 

G = (i*a-b); 

Y= G’*exp (g1+i*g2);  
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5. Generation of Figure 4.36(iii) 

 a = [0:1:100]; 

 b = [0:1:100]; 

g1 = [0:0.1:100]; 

g2 = [0:0.1:100]; 

G = (i*a-b); 

Y= G’*exp (g1-i*g2);  
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6. Generation of Figure 4.38 

>> a=[0:1:100]; 

>> b=[0:1:100]; 

>> g1=[-1:0.01:1]; 

>> g2=[-1:0.01:1]; 

>> G=(i*a-b)'; 

>> Y=G*exp(i*g2-g1);  
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7. Generation of additional figure 1 

a = [0:1:100]; 

 b = [0:1:100]; 

g1 = [0:0.1:100]; 

G = (i*a-b); 

Y= G’*exp(g1);  
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8. Generation of additional Figure 2 

a = [0:1:10]; 

 b = [0:1:10]; 

g1 = [0:0.1:10]; 

g2 = [0:0.1:10]; 

G = (i*a-b); 

Y= G’*exp (g1+i*g2);  
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ANNEX 3: LEAKAGE RATES VERSUS AXIS RATIOs 

1. Generation of Figure 4.41(ii) 

Leakage rates (Prolate Spheroid)  

k0=1; 

k1=10; 

k2=100; 

k3=500; 

k4=1000; 

c=[0:0.01:10]; 

L0=((k0*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L1=((k1*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L2=((k2*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L3=((k3*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L4=((k4*c.^2)./(9.86+19.72*c.^2)).^0.5; 

Plot(c,L0,c,L1,c,L2,c,L3,c,L4) 
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2. Generation of Figure 4.41(i) 

Leakage rates(Oblate Spheroid)  

k5=1; 

k6=10; 

k7=100; 

k8=500; 

k9=1000; 

c=[0:0.01:10]; 

L5=((k5*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L6=((k6*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L7=((k7*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L8=((k8*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L9=((k9*c.^2)./(19.72+9.86*c.^2)).^0.5; 

Plot(c,L5,c,L6,c,L7,c,L8,c,L9) 
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3. Generation of Figure 4.42 

Combination of prolate and Oblate 

k0=1;k1=10;k2=100;k3=500;k4=1000;c=[0:0.01:10]; 

L0=((k0*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L1=((k1*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L2=((k2*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L3=((k3*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L4=((k4*c.^2)./(9.86+19.72*c.^2)).^0.5; 

L5=((k0*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L6=((k1*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L7=((k2*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L8=((k3*c.^2)./(19.72+9.86*c.^2)).^0.5; 

L9=((k4*c.^2)./(19.72+9.86*c.^2)).^0.5; 

plot(c,L0,c,L1,c,L2,c,L3,c,L4,c,L5,c,L6,c,L7,c,L8,c,L9); 
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ANNEX 4: REACTIVITY VS AXIS RATIO 

In Annex 4, during coding, substitutions were made as follows;- O ; B ; e  

1. Generation of Figure 4.43  

Prolate 

>> O=5;>> B1=0.1;>> B2=0.5;>> B3=1;>> B4=2.5;>> B5=5;>> c=[0:0.01:5]; 

>> e1=[1-((9.86+(19.72+B1)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e2=[1-((9.86+(19.72+B2)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e3=[1-((9.86+(19.72+B3)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e4=[1-((9.86+(19.72+B4)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e5=[1-((9.86+(19.72+B5)*c.^2)./(9.86+19.72*c.^2)*O)]; 

plot(c,e1,c,e2,c,e3,c,e4,c,e5) 
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2. Generation of Figure 4.45 

Combined 

>> O=5;>> B1=0;>> B2=0.5;>> B3=1;>> B4=2;>> B5=5;>> c=[0:0.01:5]; 

>> e1=[1-((9.86+(19.72+B1)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e2=[1-((9.86+(19.72+B2)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e3=[1-((9.86+(19.72+B3)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e4=[1-((9.86+(19.72+B4)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e5=[1-((9.86+(19.72+B5)*c.^2)./(9.86+19.72*c.^2)*O)]; 

>> e6=[1-((19.72+(9.86+B1)*c.^2)./(19.72+9.86*c.^2)*O)]; 

>> e7=[1-((19.72+(9.86+B2)*c.^2)./(19.72+9.86*c.^2)*O)]; 

>> e8=[1-((19.72+(9.86+B3)*c.^2)./(19.72+9.86*c.^2)*O)]; 

>> e9=[1-((19.72+(9.86+B4)*c.^2)./(19.72+9.86*c.^2)*O)]; 

>> e10=[1-((19.72+(9.86+B5)*c.^2)./(19.72+9.86*c.^2)*O)]; 

plot(c,e1,c,e2,c,e3,c,e4,c,e5,c,e6,c,e7,c,e8,c,e9,c,e10)
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3. Generation of Figure 4.46 

Combined(B5) 

>> B=5;>> O1=0;>> O2=0.5;>> O3=1;>> O4=2;>> O5=5;>> c=[0:0.01:5]; 

>> e1=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O1)]; 

>> e2=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O2)]; 

>> e3=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O3)]; 

>> e4=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O4)]; 

>> e5=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O5)]; 

>> e6=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O1)]; 

>> e7=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O2)]; 

>> e8=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O3)]; 

>> e9=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O4)]; 

>> e10=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O5)]; 

plot(c,e1,c,e2,c,e3,c,e4,c,e5,c,e6,c,e7,c,e8,c,e9,c,e10);
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4. Generation of Figure 4.47 

>> B=10;>> O1=0;>> O2=0.5;>> O3=1;>> O4=2;>> O5=5;>> c=[0:0.01:5]; 

>> e1=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O1)]; 

>> e2=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O2)]; 

>> e3=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O3)]; 

>> e4=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O4)]; 

>> e5=[1-((9.86+(19.72+B)*c.^2)./(9.86+19.72*c.^2)*O5)]; 

>> e6=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O1)]; 

>> e7=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O2)]; 

>> e8=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O3)]; 

>> e9=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O4)]; 

>> e10=[1-((19.72+(9.86+B)*c.^2)./(19.72+9.86*c.^2)*O5)]; 

plot(c,e1,c,e2,c,e3,c,e4,c,e5,c,e6,c,e7,c,e8,c,e9,c,e10); 

 


