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ABSTRACT 

Time series modelling is of fundamental importance in forecasting weather that is basically one of 

the most technologically and scientifically challenging problems around the world currently. To 

make an accurate prediction is certainly one of the key challenges that meteorologists are facing 

all over the world. One of the most affected areas is the rainfall patterns, which is being influenced 

by global warming, causing drastic changes in its patterns that are characterized by either very high 

or low precipitation and temperature. These extreme changes have been identified as major global 

challenges of recent times. Meteorological scientist always tries to find means to understand the 

atmosphere of the Earth, and to develop accurate weather prediction models. Several methods have 

been used in weather prediction, which includes, Classical vector Autoregressive (VAR) models 

which perform only polynomial-time computation to compute the probability of the next fixed 

model parameters. While this is attractive, it means they cannot model distributions with a time 

varying data. They also have a problem with the curse of dimensionality. Recently, machine 

learning methods are assumed to be accurate techniques and have been widely used as an 

alternative to classical methods for weather prediction. With all these powerfulness and popularity 

machine learning methods are not perfect. They have several limitations where they require; 

massive datasets, enough time and resources, does not work well with high dimensional data and 

have high error vulnerability among others. Despite the availability of different models that are 

used by the meteorologists and other departments to make predictions, the same devastating 

scenarios of unpredictable weather changes are still being experienced. Therefore, robust models 

reliable for accurate predictions are needed on short- and long-term time scales to reduce potential 

risks and damages that may occur due to unexpected weather changes. These short comings are 

well addressed by the Bayesian Vector Autoregressive (BVAR) models. The purpose of this study 

was to develop a BVAR model for predicting rainfall patterns in Kenya. The specific objectives 

were to; perform diagnostic analysis of the weather variables; develop Bayesian Vector 

Autoregressive predictive model; conduct model performance analysis and apply the model to 

forecast the rainfall patterns in Kenya. The Augmented Dicker Fuller and Granger Causality tests 

were used for diagnostic analysis. The research adopted secondary data for a period of four years 

(2014-2018), which was sourced from Trans-African Hydro-Meteorological Observatory 

(TAHMO) and Kenya Meteorological stations. Bayesian Vector Autoregressive model was 

developed using multiple regression analysis in a system of equations. The model imposes 

structures through information prior beliefs on the parameters which were obtained from VAR 

models, likelihood models between the true parameters and the measured variables and the 

posterior distribution which is the conditional distribution of the parameter given the 

measurements. The model sensitivity was performed using the confusion matrix. The F-test was 

used to compare the variances of the actual and the predicted rainfall values. The data was analyzed 

using R-Statistical Software. The study found that; the data variables were stationary after at least 

the first differencing. Temperature, atmospheric pressure, wind speed and relative humidity were 

statistically significant (p < 0.05) determinants of rainfall in all five zones, while wind gust and 

radiation were significant in two zones, coast and arid areas. The BVAR model developed was 

statistically significant (𝑅2 =  0.9896). The performance of the model was adequate (RMSE= 

86.81%) and its sensitivity was 82.52%, making it appropriate for forecasting. There was no 

significant difference between the variances of the actual and predicted values of rainfall (p = 

0.3893) at the 5% level of significance in zone five. The study made the following conclusion, 

after at least the one differencing the weather variables were found to be stable, the developed 

model coefficients were found to be statistically significant, the model performance was good and 

it forecasting ability was termed as high. In conclusion, the Bayesian Vector Autoregressive model 

developed is suitable for forecasting rainfall patterns in Kenya. The study recommends adoption 

of the BVAR model by relevant authorities to predict rainfall. For further research the study 

recommends for use of more weather variables to make more accurate prediction. The study also 

recommends for development of dynamic weather model, which tests for the impulse response of 

weather variable in respect to change in other endogenous variables.
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CHAPTER ONE 

INTRODUCTION 

This chapter discusses the background of the study, statement of the problem and 

significance of the study. The chapter also give some insight about the motivation, 

objectives, scope and the limitations of the study. 

1.1 Background of the Study 

Bayesian inference has experienced a boost in recent years due to important advances 

in computational statistics and it has grown over the years from its introduction by 

Thomas Bayes and its expansion by Richard Price. It uses the prior probability 

distribution of an uncertain parameter (θ). This prior probability distribution expresses 

the uncertainty about θ before taking into account the data to be used, Statisticat L.L.C 

(2016). The Bayesian vector Autoregressive (BVAR) is constructed from the vector 

Autoregressive (VAR) model by treating its parameters as random variables and 

assigning prior probabilities to them. According to Sims (2007), the key objective 

aspect of Bayesian inference is the set of rules for transforming an initial distribution 

into an updated distribution conditioned on observations. One weakness of VAR 

models is that they require time series to have equal lengths in the estimation processes. 

This requirement induces a loss of potentially valuable information coming from time 

series that are longer than others. This problem has a remedy through a Bayesian 

approach such that information in longer time series is aggregated into a prior, which 

is then used in the estimation of parameters for the VAR processes. The main advantage 

of BVAR models is that it avoids the problem of collinearity and over-parameterization 

that regularly occurs with the use of VAR models since BVAR imposes prior on the 

VAR parameters.  
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Weather refers to the condition of air on the earth at a given place and time. Weather 

forecasting is the application of science and technology in predicting the state of the 

atmosphere for a future time at a given location. It is carried out by collecting 

quantitative data about the current and past state of the weather conditions. Weather 

prediction problem is being experienced when the world is currently generating large 

datasets which are produced and recorded enormously in virtually all fields including; 

weather recording, biomedical, social network, mobile network data, digital archives 

and electronic trading among others. This unanticipated amount of data provides 

unprecedented opportunities for data-driven decision making and knowledge 

discovery. Weather basically produces continuous data, large and multidimensional 

data which is dynamic and has unordered process of recording it. These properties make 

weather forecasting a formidable challenge. Forecasting is the process of estimating the 

unknown situation from historical data.  However, the massive data and high 

dimensionality of big data introduces unique computational and statistical challenges, 

including scalability, storage bottle neck, noise accumulation, spurious correlation, 

incidental endogeneity, and measurement errors. The task of analyzing such large-scale 

data sets poses significant challenges and calls for innovative statistical methods 

specifically designed for faster speed, higher efficiency, and accurate predictions. These 

challenges are eminent and require a new computational and statistical paradigm shift. 

In spite of the explosion of this big data, specific tools are required for modelling, 

mining, visualizing, forecasting to understand these large data sets and make data-

driven decisions. In many situations, it is easy to predict the outcome given the cause. 

However, in science, more often than not, we are faced with the question; when given 

the outcome of an experiment, what are the causes or the probability of the causes 

compared to other outcomes? Bayesian theory provides a framework for plausible 
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reasoning and a concept which is a more powerful and general tool for handling this 

problem. To apply Bayesian, the data is usually partitioned into training and testing 

sets, where the training set is used to develop a model and the testing set is for testing 

the developed model.  This idea of Bayesian theory was championed by Jaynes (2013).  

 
There has been a growing interest in applying immense data to many analytical areas, 

particularly in time series prediction. The primary model in multivariate time series 

analysis is the VAR. It is the mechanism that is used to link multiple time series 

variables together. In VAR models, each variable is a linear function of the past values 

of itself and the past values of all other endogenous variables. It is usually used in 

simultaneous prediction and structural analysis of a number of temporal observed 

variables. It is applied when each variable in the system does not only depend on its 

own lag alone, but also on the lags of other variables. The high- dimensional data sets 

in time series have become common in many areas like in geo-physics, biomedical, 

econometrics, and finance, among others. Most of the variables used are codependent 

and need to be interconnected to give information about a response variable. This cross-

sectional dependency of variables brings a sharp focus to the problem of how to 

uniquely understand the interactions among the components of a large dynamic system 

from the data set. VAR is commonly used for studying high-dimensional 

interrelationships among the components of a multivariate time series in a system of 

equations. This study helps to integrate interdependent variables to develop a 

computational efficient model for VAR prediction using Bayesian model. One of the 

actively researched areas is the weather distribution pattern, about which the 

understanding is still in its early stages of inference. Numerous studies have been 

conducted to further the knowledge; but Bayesian methodology finds its place to aid in 

obtaining scientific inferences about certain facts from available data. This study 
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provides an account of VAR in Bayesian model data analysis applied to weather 

distribution with a particular focus on rainfall distribution patterns in Kenya. The 

GVAR model is obtained by integrating the regional model through link matrices. 

1.2 Statement of the Problem 

Global warming has become a major challenge in the world. It has brought about 

unpredictable weather patterns which have been changing irregularly from the normal 

seasons. These, in most cases have caused extreme weather changes that are identified 

as major global challenges of recent times. In Kenya, unstable rainfall patterns, which 

are associated with global warming, have been experienced to a greater extent. Accurate 

rainfall prediction has become very complicated in recent times due to climate 

variability. Despite the availability of models that are used by the meteorology 

departments to make predictions, the same devastating scenarios of unpredictable 

weather changes are still being experienced. Therefore, robust models reliable for 

accurate predictions are needed on short and long term. Models for precise prediction 

of weather changes in Kenya are identified as the bases of concern that this study sought 

to address.  

1.3 Significance of the Study 

Accurate weather forecast models are important in the developing countries, where 

most of the agricultural activities depends on weather. It is a major concern to identify 

any trends of weather parameters that deviate from its periodicity, which would disrupt 

the economic and non-economic activities of the country. This fear has been aggravated 

due to threats by the global warming effect. The effect of extreme weather phenomena 

in our country has led to increased cost of living, infrastructure damages, human and 

animal injuries as well as loss of life. Therefore, a great understanding of weather 
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patterns would help to avert this problem. Rainfall is an essential phenomenon in the 

weather system, which has a direct influence on the agriculture and biological sectors 

and it is virtually influenced by other weather components. The amount of rainfall in a 

given region is affected by several factors which include; temperature, atmospheric 

pressure, wind speed, relative humidity, radiation, and altitude, among others. Different 

prediction methods have been developed by researchers in different countries. 

However, robust models that gives accurate predictions are yet to be achieved. Weather 

variables provides inter dependency where one variable influences the result of other 

variables. Nevertheless, how do we deal with such a problem of variable interaction? 

The interdependence of variable that constitute response variables are generated in 

many areas. VAR method are used to handle the variable inter-linkages which results 

from large data sets. It represents the correlations among a set of variables, which are 

used to analyze certain aspects of the relationship between the variables of interest. 

Understanding the nature and scale of rainfall patterns in Kenya is a key factor to the 

policy makers because it gives them a chance to prepare for better mitigation and 

adaptation measures during adverse weather conditions. There have been several 

forecasting methods that different researchers have been using. However, progress in 

the operational forecasting of the rainfall at the National environmental prediction and 

other Numerical weather prediction (NWP) centers has been slow due to the complexity 

of predicting rainfall and limited computing resources available for the task. For now, 

rainfall is still not a direct model guidance product produced by NWP centers but is 

diagnosed by local forecasters based either on statistical methods such as model output 

statistics. For these purposes, Bayesian statistical analysis of time series of rainfall data 

is a very valuable tool for investigation its variability pattern and predicting short- and 

long-term changes in the rainfall patterns. The study also uses global vector 
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Autoregressive (GVAR) which played a key role. The main idea behind the GVAR 

framework is to incorporate inter-linkages between cross-sectional weather zones in a 

viable way. The integration of regional VAR models is used to formulate GVAR. The 

study was based on developing a model that improved the accuracy of predicting 

rainfall patterns in Kenya. This was done through the introduction of Bayesian 

approaches. Bayesian analysis was a useful technique which was used to detect the 

rainfall patterns and changes using the past data to give the present information about 

what would happen in future.  Thus, a need to develop a better robust prediction model 

was necessary to overcome this global challenge. Most of the traditional methods 

employed were probabilistic models, they had challenges of clearly identifying the part 

of the weather signals that were due to change, making it complex to unravel. 

Consequently, the probabilistic models had weakness, where, they used fixed 

parameters along the forecasting duration. One way to overcome this weakness was 

through the use of Bayesian Models which treated the parameters of the models as 

random variables. This study used BVAR models to solve the problem of predicting 

rainfall patterns from the current weather variables. Accurate forecast of rainfall 

patterns would save lives, support emergency management teams, mitigate the impacts 

of damages and prevent economic losses, hence the significance of this study. 

1.4 Motivation of the Study 

The current knowledge discovery systems are nowadays supposed to handle very large 

data sets store, process and make deductions from them. When working with vast time 

series, multivariate prediction becomes more and more complicated because the use of 

all the variables does not allow to have the most accurate predictions and poses certain 

problems for classical prediction models. One of the main motivations behind this study 

is that, using all the available predictor variables does not necessarily yield to the best 
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forecast accuracy and sometimes renders some statistical prediction models non-

solvable due to the high number of variables compared to the number of observations. 

Therefore, a robust model is required to solve this problem, filter the non-valuable 

parameters and improves the prediction accuracy of many time series of the big data 

sets. Bayesian method, due to its shrinkage ability would try and overcome this set of 

problems. Most of the discussions around climate change have focused on how much 

the earth would warm up over the coming century. However, climate changes are not 

limited just to temperature, but precipitation which is both rain and snow changes, 

would also have a great impact on the global activities. In the recent past Kenyans have 

experienced erratic weather conditions where the rainfall patterns no longer follow the 

normal cycles. This study considered a number of variables, they included; rainfall, 

which was the response variable, and the explanatory variables which were 

temperature, humidity, atmospheric pressure, wind speed, radiation, and wind gust. The 

response variables used in this study were considered to be the ones influencing rainfall 

patterns in Kenya. The effect of adverse weather changes in Kenya have caused huge 

losses in agricultural sector due to failed rainfall and even death of human and animals. 

1.5 Objectives of the Study 

1.5.1 General objectives 

The general objective of this study was to develop a Bayesian vector Autoregressive 

model that would be suitable for predicting rainfall patterns in Kenya.  

1.5.2 Specific Objectives 

The specific objectives were to: 

i. Perform diagnostic analysis of the weather variables. 

ii. Develop Bayesian Vector Autoregressive predictive weather model. 
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iii. Conduct model performance Analysis. 

iv. Apply the model to forecast the Rainfall pattern in Kenya. 

Accurate forecasts save lives, support emergency management and mitigation of 

impacts and prevent economic losses from high-impact weather, and they create 

substantial financial revenue—for example, in energy, agriculture, transport and 

recreational sectors. Their substantial benefits far outweigh the costs of investing in the 

essential scientific research, super-computing facilities and satellite and other obser- 

vational programmes that are needed to produce such forecasts 

Accurate forecasts save lives, support emergency management and mitigation of 

impacts and prevent economic losses from high-impact weather, and they create 

substantial financial revenue—for example, in energy, agriculture, transport and 

recreational sectors. Their substantial benefits far outweigh the costs of investing in the 

essential scientific research, super-computing facilities and satellite and other 

observational programmes that are needed to produce such forecasts 

1.6 Scope of the Study 

Kenya lies within the Inter-Tropical Convergence Zone (ITCZ), a narrow belt of very 

high rainfall that forms near the equator. The ITCZ brings rain southwards through 

Kenya from October to December where it experiences ‘short rains’, passing again 

northwards in March, April and May where there is ‘long rains’. Sharon (2018). The 

timing of these two rainy seasons, how long they last, and their intensity varies from 

year to year. As is the case for the climate across the rest of sub-Saharan Africa, the 

surface temperature of the water in the Indian Ocean, atmospheric pressure, humidity, 

wind speed, among other weather factors greatly influences the rainfall pattern in 

Kenya. This surface temperature varies from year to year, Sharon (2018). The study 
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used secondary data, which was sourced from Trans- African Hydro-Meteorological 

Observatory (TAHMO) and Kenya Meteorological Stations. The data captured over a 

period of four years from 2014 June to June 2018. The data was collected in Kenya 

across five regions namely; Coastal, Arid, Semi - arid, Highlands and Lake regions. 

The data was in the form of daily recordings for at least five evenly distributed weather 

stations in each of their respective regions. The study considered the data for seven 

variables, which included; Rainfall, Temperature, Atmospheric pressure, Wind speed, 

Wind gust, Radiation and Relative humidity.  

1.7 Limitation of the Study 

One of the limitation was use of secondary data, the time the data was collected and 

when data was analyzed and decisions made was a bit delayed.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter highlights what was done by other researchers in specified areas. It 

introduces the theories and models other researchers had based their research on. It 

deals with open issues, Autoregressive, Bayesian vector Autoregressive model, and 

specific areas that were used in the methodology and in data analyses. It also cites the 

lacuna that motivated this study. 

2.1 Weather Background Information 

Kenya has experienced equally prolonged droughts and intense flooding every year, 

Mary et al. (2018). Due to the increase in such extreme weather occurrences, the 

glaciers around Mount Kenya are disappearing, leading to the drying up of rivers and 

streams. These weather changes have led to harvest losses and food shortages, 

landslides due to floods, soil degradation, and loss of biodiversity, Otiende and Brian 

(2009). The diminishing water sources and erratic rainfall have also reduced the 

availability of water. Climate variability and seasonal changes have adversely affected 

economic and noneconomic sectors. This situation is expected to deteriorate in the near 

future. Presently, the weather forecast is solved through the help of Atmospheric 

Circulation Models (ACM). These are integrated by different weather services on a 

daily basis, normally on coarse-grained resolution grids which covers a wide 

geographical coverage. The ACMs describes several meteorological variables such as 

humidity, temperature, wind component, geo-potential, among others. However, 

meteorological phenomena like rainfall and temperature, normally vary more on local 

scales. Linacre and Geerts (2017), stated that Numerical Weather Prediction (NWP) is 

a simplified set of equations called the primitive equation, used to calculate the changes 
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of conditions. According to Lutgens and TarBuck (2019), the word “numerical” is 

misleading, all types of weather forecasting are based on some quantitative data and 

therefore could fit under this area. NWP is based on the fact that the gases of the 

atmosphere obey a number of known physical principles. Ideally, these physical laws 

could not be used to predict the future state of the atmosphere, given the current 

conditions. The large number of variables that is included when considering the 

dynamic atmosphere makes this task extremely difficult. Manipulating the large data 

sets and performing the complex calculations necessary to predict weather and make a 

resolution good enough to make the result useful requires the use of some of the most 

powerful tools. These tools need to be supported by enhancements in computing 

capabilities, steady advances in weather, and climate prediction which will occur at 

major operational centers across the world, Bauer et al. (2015). Complementing these 

advances in weather and climate prediction, there have been important milestones in 

advancing the science and operational infrastructure for prediction using big data 

source, David Donoho (2020). The first generations of dynamical seasonal forecast 

systems are implemented at operational centers in the mid-1990s, Ji et al., (2018); 

Routine weather and climate forecasts at the global and regional levels now provide 

information critical for the economic welfare of society and for mitigating losses of life 

and property. According to the State of the Climate in 2020, Blunden et al., (2018), 

since 1901, the mean annual global that is land and ocean, surface air temperature has 

warmed by 0.7–0.9° Celsius per century, and the rate of warming has nearly doubled 

since 1975 to 1.5–1.8° Celsius per century. A steady rise in temperature has triggered 

important changes in the frequency and intensity of extreme weather and climate events 

such as heat and cold waves, droughts, floods, hurricanes, and other effects over various 

parts of the globe according to Intergovernmental Panel on Climate Change, (IPCC), 
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(2019). These unprecedented long-term climatic changes have influenced sub-seasonal 

and seasonal-to-interannual variability and have a profound impact on the natural 

environment as well as on the life, health and well-being of human society, animals and 

the entire biodiversity, Coumou and Rahmstorf, (2012).  

2.2 Time Series models 

Time series are sequential data that are mostly applied to model dynamic systems and 

processes, Stock & Watson (2020). In various real live fields, the capability to make 

accurate predictions is essential because they provide possible future information about 

the system under study. One of the main challenges in time series prediction is 

improving the forecasting model to attain accurate future values. According to 

Brockwell and Davis (2010), the first prediction models were univariate, which 

predicted a single time series based on its own lagged information which was historical. 

They stated that a univariate time series consists of a set of observations on a single 

variable, which makes a prediction based on the past observations. Later, multivariate 

models were introduced, which considered multidimensional time series and predicted 

each variable using its previous values and the previous values of the other predictive 

variables, Youssef, Hmamouche et al. (2020).  This is considered as a way of improving 

accuracy in developing the new prediction models by varying the structure of the 

existing models on how to apply and analyze the past data. In the basis of time series 

prediction with many variables, a common goal is to detect the most independent and 

relevant predictors with regard to a given target time series. In the literature, several 

approaches were proposed to handle this problem. Despite the advantages of existing 

methods in the literature, there are still some problems when dealing with large time 

series models, where the distribution of the large data storage and processing is also a 

big challenge, Stock and Watson (2017). When testing, if a variable could be used to 
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forecast another variable, it is plausible to use an Autoregressive model by taking the 

past value of a time series and construct it as a regression model, Stock & Watson 

(2015). Weather changes refers to the effect of atmospheric alteration with time, which 

would create analytical models and an important field for climate change studies. A 

possible view of weather changes is a time-dependent random variable that is composed 

of trend, extremes and variability, Mudelsee (2019). The major task of the analysis is 

to use the data for estimating the parameters describing the trend, seasonal variability, 

and other components. Trend estimation quantifying weather changes, is of high 

priority and of essence in the world. It gives room for the use of a simple parametric 

trend models to be employed. Smoothing is also used in nonparametric regression; its 

idea is to cancel out high frequency variability. For time series data to be analyzed, it 

must be stationary or stable. Stationarity is achieved when a time series variable is 

independent of time, the variance and the autocovariance are not infinite, Verbeek 

(2018).  

2.2.1 Augmented Dickey-Fuller test  

The test for stationarity of the variables in the model is done using the Augmented 

Dickey-Fuller-test (ADF-test). Moffatt (2020) said that Dickey-Fuller-test was named 

after American statisticians’ David Dickey and Wayne Fuller, who developed the test. 

The test is used to determine whether a unit root is present in an Autoregressive model 

or not. When time series variables are independent of time, the autocovariance and 

variances are not infinite, then the time series variables are said to be stationary, 

Verbeek (2018). Furthermore, Stock & Watson (2015) state that when the probability 

distribution has no fluctuation over time, the time series variables are stationary and 

therefore it follows a random walk. Asteriou & Hall (2017), mentioned stationarity as 

an important criterion when using a VAR-model. If the time series is not stationary, the 
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results from the test would not be reliable. According to Stock & Watson (2015), 

differentiation is a good working technique to overcome the problem of non-

stationarity. The ADF test is based on hypothesis testing where the null hypothesis 

states that the time-series variable is nonstationary.  In such circumstance, the variables 

are differenced a number of times until the ADF test shows a 5% level of significant. 

2.2.2 Granger Causality test 

When VAR-tests are conducted, Granger causality tests are required to check if there 

is a significant association between variables. Lütkepohl (2005) states that there is 

Granger causality if information from one endogenous time series gives a more accurate 

prediction of another endogenous time series, even though all other possible 

information is taken into account. Subsequently, Lütkepohl (2005) meant that the idea 

behind the Granger causality test is that the effect is generated by the cause and not the 

reverse. However, it is important to note that the test also identifies the direction of the 

association between variables and not only causality. 

2.3 Model Estimation 

Time series models are used to forecast events based on verified past data. Not all 

models will yield the same results for the same data set, so it is critical to determine 

which model works best based on the individual time series. Once we have chosen the 

best model, we fit it on the entire training set and evaluate its performance on a separate 

testing set subsequent in time. Before the best model is attained, there are a number of 

things that need to be determined, this includes lag order, the model type and the 

performance measure of the model. 
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2.3.1 Lag order selection  

The dependence of a variable 𝑦 on another variable  𝑥 is hardly instantaneous, they 

respond to each other with a lapse of time called lag. When using a VAR-model, it is 

important to use the correct number of lags, simply because too many lags inflate the 

standard errors of coefficient estimates and this implies an increase in the forecast 

error. While omitting lags that should be included in the model may result in an 

estimation bias. The lag order selection model is used to investigate which number of 

lags are optimal for the study, Stock & Watson (2015). The importance of lag length 

determination is demonstrated by Braun and Mittnik (2013) who show that estimates 

of a VAR whose lag length differs from the true lag length are inconsistent as are the 

impulse response functions and variance decompositions derived from the estimated 

VAR. Lütkepohl (2017), indicated that overfitting  that is selecting a higher order lag 

length than the true lag length, causes an increase in the mean-square forecast error of 

the VAR and that underfitting lag length often generates autocorrelated errors. Hafer 

and Sheehan (2020) found out that the accuracy of forecasts from VAR models varied 

substantially for alternative lag lengths. The number of lag length is frequently selected 

using an explicit statistical criterion such as AIC, SIC, BIC, or HQ, where the criterion 

with the least number is termed to produce the best model which makes a reliable 

estimation of the optimal amount of lag in the model, Stock & Watson, (2015).  

According to Liew et al. (2014), AIC is a good criterion to use when having a sample 

size of more than 60 observations. Consequently, this study compared the lags from the 

four criteria and used AIC to measure the optimal number of lags, since it had the least.  

2.3.2 Vector Autoregressive  

Vector Autoregressive are stochastic processes which are linear multivariate time series 

models and are a generalization of univariate Autoregressive (AR) models. They are 
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based on the notion of interdependencies between lagged values of all variables in a 

given model. They are able to capture the joint dynamic interdependencies among 

multiple time series. According to Hannan and Deistler (2012), the VAR are commonly 

resorted to as tools for investigating dynamic effects of shocks. They perform very well 

in forecasting exercise, where in the canonical tools for the identification of linear 

dynamic systems are Vector-valued Autoregressive Moving Average (VARMA) and 

state-space representations. LÜtkepohl (2015), advocated for the use of higher-order 

VAR over more general VARMA models due to numerous identification issues of the 

latter model class.  Andrews (2016), gave a strong theoretical justification of such a 

modeling strategy which came from the famous Wald decomposition theorem. Which 

ensured that a large class of stationary processes could be represented as potentially 

infinite order VAR processes.  A major function and common application of VAR 

models are predictions, Koop & Korobilis (2013). VAR-based forecasts have proven to 

be superior to many other methods, Bańbura et al. (2010). The GVAR models were 

proposed by Pesaran et al. (2014), and further developed by D’ees, et al. (2017), for 

analyzing the transmission of domestic and international shocks to business cycle 

fluctuations. In essence, the idea of the GVAR modeling approach is that each region 

could be modeled individually and estimated as a VAR of the dynamics zone variables 

which are then linked to each other through link matrix. However, unlike standard VAR 

models, each regional models are linked to the others by including zonal-specific 

variables. Hjort and Claeskens (2013), used the frequentist model averaging approach 

in forecasting combination. They used the frequentist model approach in model 

averaging to address the issue of model uncertainty. Their work was an extension of the 

traditional approach to model uncertainty which focused on model selection rather than 

model averaging. Pesaran and Smith. (2018), stated that the conditional specific models 
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in the GVAR models were structurally stable but the unconditional model used to 

generate forecasts could be subject to structural breaks. For this reason, they considered 

a situation whereby some or all models under consideration were subjected to structural 

breaks and different choices of estimation samples were acceptable. With that in mind, 

they also talked about, averaging each model over different sampling windows allowing 

for both model and estimation window uncertainty. In many situations, analyzing a time 

series in isolation is realistic; while in other cases univariate analysis are limited, as 

demonstrated by Campbell & Diebold (2018). They linked financial interest variables, 

including stock returns and default premium in a multivariate system that allowed 

shocks in one variable to be propagated to the others.  

2.3.3 Bayesian Vector Autoregressive Model 

One of the major problems in VAR is the number of coefficients to be estimated, they 

increase quadratically with the number of included variables and linearly in the lag 

order. Such a dense parameterization often leads to inaccuracies with regards to out of 

sample forecasting and structural inferences, especially for higher-dimensional models. 

This phenomenon is commonly referred to as the curse of dimensionality. The cause 

behind reducing the number of predictors in a multivariate prediction model is generally 

based on two reasons; for some linear models, if the number of variables is large, the 

estimation of the parameters may not be achievable. Secondly, applying a prediction 

model with all available variables is not necessarily the best choice in terms of 

prediction accuracy, because of the existence of redundant information within the set 

of variables, Stock and Watson (2017). The Bayesian approach to estimating VAR 

models tackles this limitation by imposing additional structure on the model. 

Informative conjugate priors have been shown to be effective in mitigating the curse of 

dimensionality and allows for large models to be estimated, Bańbura et al. (2010). They 
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push the model parameters towards a parsimonious benchmark, reducing estimated 

error and improving out of sample prediction accuracy Koop and Korobilis (2013). 

Bayesian inference treats the VAR parameters as random variables, and it provides a 

framework to estimate “posterior” probability distribution of the location of the model 

parameters. This is done by combining information provided by a sample of observed 

data and prior information derived from a variety of source according to Silvia and 

Giovanni (2018). By providing such a framework, the Bayesian approach allows to 

incorporate prior information about the model parameters into post sample probability 

statements. The ‘prior’ distributions about the location of the model parameters 

summarizes pre sample information available from a variety of datasets sources, 

theoretical models, and or introspection. In the absence of pre sample information, 

Bayesian VAR inference can be thought of as adopting ‘non informative’ or ‘diffuse’ 

or ‘flat’ priors, that express complete ignorance about the model parameters, in the light 

of the sample evidence summarized by the likelihood function. Often, in such a case, 

Bayesian probability statements about the unknown parameters conditional on the data 

are very similar to classical confidence statements about the probability of random 

intervals around the true parameters value. For example, for a VAR with Gaussian 

errors and a flat prior on the model coefficients, the posterior distribution is centered at 

the maximum likelihood estimator (MLE), with variance given by the variance-

covariance matrix of the residuals. In scientific data analysis, priors on the model 

coefficients do not incorporate the investigator’s ‘subjective’ beliefs, instead, they 

summarize stylized representations of the data generating process. Conditional on a 

model, these widely held standardized priors aim at making the likelihood-based 

description of the data useful to investigators with potentially diverse prior beliefs, Sims 

(2010). The most commonly adopted priors for VARs are the so called ‘Minnesota’ 
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priors, Litterman, (2019). They express the belief that an independent random walk 

model for each variable in the system is a reasonable ‘centre’ for the beliefs about their 

time series behaviour. BVAR borrows heavily from vector Autoregressive model 

(VAR). The only difference is that VARs usually assumes linearity and parametric 

nature of any time series data. The VAR method have a tendency of overfitting and 

over-parameterization. But the Bayesian model are different from the classical 

estimation method, the basic idea of the Bayesian estimation method is to treat the 

parameters of the model to be estimated as random variables which follow a certain 

distribution. It is also required to give a prior distribution of the parameters to be 

estimated based on experience and combine it with the sample information. Bayes’ 

theorem is used to calculate the posterior distribution of the parameters to be estimated, 

thereby obtaining the estimated values of the estimable parameter. Bayesian methods 

are currently experiencing an increased popularity in the sciences as a means of 

probabilistic inference, Malakoff, D. (2019).  Among their advantages are the ability to 

include prior information, the ease of incorporation into a formal decision analytic 

context, the explicit handling of uncertainty, and the straight forward ability to 

assimilate new information. The Bayesian approaches has shown to be particularly 

useful for ecological models with poor parameter identifiability, Reichert and Omlin, 

(2017). The most general time series model is Box – Jenkins model which assumes that 

the time series is stationary. There are three stages in developing Box – Jenkins time 

series model; these are model identification, model estimation, and model validation. 

The problem with Box – Jenkins model is that for effective fitting of the model it 

requires at least a moderately long time series. Yang D, et al. (2015), recommended at 

least fifty observations, while many others recommended at least hundred observations. 

This problem was sorted out by the use of Bayesian inference. Bayesian vector 
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autoregressions are usually used for forecasting and structural analysis. Until recently, 

although most empirical work had considered only small systems with a few variables 

due to parameter propagation concern and computational restrictions, Chan and Joshua 

C. (2019). The parameters within Bayesian models are stochastic and are assigned 

appropriate probability distributions, Bernadinelli et al. (2016). Parameters are treated 

as random variables and probabilities are assigned to these parameters. Bayesian 

analysis has three components, namely, the prior distribution, likelihood and the 

posterior distribution. It improves on classical estimation in terms of the precision of 

estimators. The posterior distribution describes the behavior of the parameters after the 

data is observed and prior assumptions are made. There is a wide variety of extensions 

of VAR that takes into account important features of the data, Cogley and Sargent, 

(2018); Primiceri, (2015). Some recent papers have considered similar extensions for 

large BVARs. For example, Koop and Korobilis (2013), proposed an approximate 

method for forecasting using large time-varying parameter BVARs. Chan, J. and 

Eisenstat, E. (2019). estimated a Bayesian VARMA containing 12 variables. Carriero 

at el. (2016), suggested that BVAR with informative priors have often proved to be 

superior tools compared to standard frequentist. Giovanni Ricco (2018), VARs are 

highly parametrized Autoregressive models, whose number of parameters grows with 

the square of the number of variables times the number of lags included. These 

extensions are all found to be out performed by BVARs with homoscedastic and 

independent innovations. VARs tend to have a lot of parameters, and Bayesian methods 

that formally incorporate prior information to provide shrinkage are often found to 

greatly improve the forecast performance, Doan at el. (2014). Until recently, most 

empirical work has considered only small systems that rarely included more than five 

dependent variables. This has changed since the seminal work of Bańbura et al. (2010), 
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who found that large BVARs with more than 10 dependent variables forecast better 

than small VAR. This have generated a rapidly expanding literature on using large 

BVARs for forecasting; recent papers include Kapetanios et al. (2019), Large BVARs 

thus provide an alternative to factor models that are traditionally used to handle large 

data sets, Forni at el., (2018). According to Rue et al. (2015) the Bayesian Model 

Averaging approach was not considered an important aspect in economic and other 

application areas until the late 2000s. The reason BMA approach is gaining popularity 

is because of the presence of more powerful computers and dramatic increases in 

numerical methods such as Monte Carlo Markov-Chain model composition (MCMC) 

which enables researchers to overcome the troubles encountered while implementing 

BMA. The work of Hoeting et al. (2019), gave a tutorial on Bayesian Model Averaging. 

In their work, they presented several difficulties encountered while implementing 

Bayesian Model Averaging and discussed several solutions to these implementation 

difficulties. Raftery et al. (2017), offered two alternative approaches to Bayesian Model 

Averaging for linear regression models and described the “Occam’s window” which 

indicated a small set of models over which a model average could be computed. 

Secondly, they also described a Markov chain Monte-Carlo approach that directly 

approximated the exact solution. The result of these two approaches in the presence of 

model uncertainty are that they both provide better predictive performance than any 

single model, that is reasonably having been selected. Their work only concentrated on 

two procedures that accounted for model uncertainty in variable selection for linear 

regression models but did not address the uncertainty involved in the identification of 

outliers and in the choice of transformations in regression. To broaden the flexibility of 

the procedures addressed in Raftery et al. (2017), Hoeting et al. (2019), have extended 

Bayesian Model Averaging to include transformation, selection, and outlier 
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identification. The main advantage of incorporating BVAR is because Bayesian 

statistics, within a solid decision theoretical framework, incorporates a natural and 

principled way of combining prior information with data. Wasserman, (2014), this 

means that in our data analysis, we can incorporate past information about a parameter 

and form a prior distribution for current and future analysis and prediction. This usually 

follows from Bayes’ theorem. In fact, Robert (2020) stated that “The important feature 

of a Bayesian approach is, thus, that Bayes estimators are derived by an eminently 

logical process: starting from the requested properties, summarized in the loss function 

and the prior distribution, the Bayesian approach derives the best solution satisfying 

these properties”. 

2.3.4 Priors for Model Selection  

Proper informing prior beliefs is critical and hence the subject of much research. 

Typical in VAR models the first step is to pre-select the relevant variables to be 

included in the system and with how many lags. This procedure may be thought of as 

having assertive priors about which variables have non-zero coefficients in the system. 

The challenge is in selecting among an expansive set of potential models. Indeed, for a 

VAR with 𝑛 endogenous variables, 𝑞 additional potentially exogenous variables 

including a constant, and 𝑝 lags, there are 2(q + pn)n + n(n−1)/2 possible models. 

Jaroci’nski and Ma´ckowiak (2017) proposed that, to select the variables to be included 

in the system by systematically assessing the posterior probability of ‘Granger causal 

priority’ in a BVAR with conjugate priors. Granger causal priority answers questions 

of the form “is variable “𝑦” relevant for variable “𝑥”, after controlling other variables 

in the system?” The study provided a closed form expression for the posterior 

probability of Granger causal priority, and suggested that variables associated with high 

Granger causal priority probabilities can be omitted from a VAR with the variables of 
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interest. Alternatively, one can adopt priors that support model selection and enforce 

sparsity. A variety of techniques, including double exponential or Laplace prior, spike-

and-slab prior, etc., have been adopted to handle this issue. Some recent theoretical and 

empirical contributions on this topic are in Bhattacharya et al. (2015), Griffin and 

Brown (2017), and in Huber and Feldkircher (2017). In multivariate setting, flat priors, 

which attempt not to impose a certain belief, yield inadmissible estimators and poor 

inferences Bańbura et.al. (2010). Other uninformative or informative priors are 

necessary. Early contributions Litterman (1980) set priors and their hyperparameters in 

a way that maximizes out of sample forecasting performance over a pre sample. Del 

Negro and Schorfheide (2007) choose values that maximize the marginal likelihood. 

Bańbura et al. (2010) used the in-sample fit as decision criterion and control for 

overfitting. The contribution of Giannone et al. (2015) focuses on conjugate prior 

distributions, specifically of the Normal-inverse-Wishart (NIW) family. Conjugacy 

implies that the Maximum Likelihood is available in closed form, enabling efficient 

computation. The NIW family includes many of the most commonly used priors, Koop 

and Korobilis (2010); Karlsson (2013), with some notable exceptions. These include, 

amongst others, the steady-state prior Villani (2009), the Normal-Gamma prior, Griffin 

and Brown (2010); Huber and Feldkircher (2019), and the Dirichlet-Laplace prior, 

Bhattacharya et al. (2015). Many recent contributions focus on accounting for 

heteroskedastic error structures, Clark (2011); Kastner and Frühwirth-Schnatter (2014); 

Carriero et al. (2016). This may improve model performance, but is not possible within 

the conjugate set up and would complicate inference. There are differing opinions and 

philosophies on the best practices for choosing priors, Wolf et al. (2017), Banner 

et al. (2020). In ecology, a common practice is to assign so-called non-informative 

priors that effectively assign equal probability to all possible values using either 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3739#ecs23739-bib-0034
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3739#ecs23739-bib-0001
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uniform or diffuse normal priors with large variances, Lemoine (2019). These priors 

allow Bayesian inference to proceed that is produce a posterior distribution, but with 

presumably limited influence of the priors, Lemoine (2019). An attractive feature of the 

Bayesian approaches is that the models are generative. This means that we can simulate 

potential data from the model so long as the parameters are assigned a proper 

probability distribution, Gelman et al. (2013). This feature is routinely used to check 

models and prior influence after fitting the data using the posterior predictive 

distribution, Lemoine (2019), Gelman et al. (2020), but also is used before seeing the 

data using the prior predictive distribution, Gabry et al. (2019) 

2.3.5 Informative and noninformative priors 

Informative prior probability distributions incorporate information about the VAR 

parameters that is available before some sample is observed. Such prior information 

can be contained in samples of past data from the same or a related system, or can be 

formed from introspection, casual observation, and theoretical models. The first case is 

sometimes referred to as a ‘data-based’ prior, while the second as a ‘non data based’ 

prior. An important case arises when the prior probability distribution yields a posterior 

distribution for the parameters in the same family as the prior probability distribution 

function. In this case the prior is called a natural conjugate prior for the likelihood 

function, Nicenboim et al. (2021). In general, it has been shown that exponential 

distributions are the only class of distributions that admit a natural conjugate prior, due 

to these, having a fixed number of sufficient statistics that does not increase as the 

sample size increases according to, Gelman et al. (2020). Because the data is 

incorporated into the posterior distribution only through the sufficient statistics, 

formulas for updating the prior into the posterior are in these cases conveniently simple. 

Prior distributions can be expressed in terms of coefficients, known as hyperparameters, 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3739#ecs23739-bib-0021
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3739#ecs23739-bib-0021
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whose functions are sufficient statistics for the model parameters. It is often useful to 

think of the hyperparameters of a conjugate prior distribution as corresponding to 

having observed a certain number of pseudo-observations with properties specified by 

the priors on the parameters. In general, for nearly all conjugate prior distributions, the 

hyperparameters can be interpreted in terms of ‘dummy’ or pseudo-observations. The 

basic idea is to add to the observed sample extra ‘data’ that express prior beliefs about 

the hyperparameters. The prior then takes the form of the likelihood function of these 

dummy observations. Hyperparameters can be either fixed using prior information, or 

associated to hyperprior distributions that express beliefs about their values. A Bayesian 

model with more than one level of priors is called a hierarchical Bayes model. 

2.3.6 Time Varying Parameters  

Models that allow parameters to change over time are becoming increasingly popular 

in empirical research, in recognition of the fact that they can capture structural changes 

in those time series according to Belmonte, et al. (2014). In fact, it seems to be a 

common belief that the properties of many if not most time series have changed over 

time, and can change across phases of the time cycle. Model parameters either change 

frequently and gradually over time according to a multivariate Autoregressive process 

as in time-varying parameters VARs or they change abruptly and irregularly as in 

Markov-switching or structural-break models. Time-varying parameters in vector 

Autoregressive (TVP-VAR) differ from fixed-coefficient VARs in that they allow the 

parameters of the model to vary over time, according to some specified rules.  TVP-

VARs often include also stochastic volatility, which allows for time variation in the 

variance of the stochastic disturbances. Doan et al. (2014) were the first to show how 

estimation of a TVP-VAR with Litterman priors could be conducted by casting the 

VAR in state space form and using Kalman filtering techniques. This same specification 
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is in Sims (2010). Bayesian time varying parameter VARs have become popular in 

empirical situations like in macroeconomics following the work of Primiceri (2015) 

who provided the foundations for Bayesian inference in these models, and used then 

innovations in MCMC algorithms to improve on their computational feasibility. 

2.3.7 Breusch Pagan and Breusch Godfrey Test 

The Breusch Pagan test is a diagnostics test of a regression model, where the goal is to 

understand if there is presence of heteroscedasticity. Heteroscedasticity is defined as a 

non-constant variance over a period of time. The test assumes that the model has 

homoscedastic, so if we fail to reject 𝐻0, the test provides evidence supporting this 

hypothesis. If we end up rejecting the null hypothesis, we obtain evidence suggesting 

that there are heteroskedasticity in the regression model, Wooldridge (2015). The 

Breusch-Godfrey test to detect presence of higher order serial correlation in 

Autoregressive model. Autocorrelation is present in the data series if the error terms in 

the regression are serially correlated across time. The test assumes that there is no serial 

correlation, and the result of the test has similar properties as the Breusch-Pagan Test, 

Wooldridge (2015). White (1980), proposed a method for correcting the standard errors 

of the coefficients in the regression model, to produce heteroskedasticity consistent 

standard errors. This Theory states that a regression model suffering from 

heteroskedasticity may produce incorrect significance level for the different variables, 

through a misleading estimate of the included variables’ standard errors. These standard 

errors have a tendency to be under predicted, resulting in increased chance of getting 

significant values, when this is not the case. Thus, the White correction produces robust 

standard errors, enabling hypothesis testing, Wooldridge, (2015). 
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2.4 Model Forecasting 

Bayesian Vector Autoregressive (BVAR) is used to conduct both classical 

unconditional as well as conditional forecasts. Forecast for horizon h ≥  0 of an 

empirical VAR(p) process are generated recursively according to Box and Jenkins 

(2008). Unconditional forecasts challenging those obtained from factor models in 

accuracy Giannone et al. (2015) and are used for a variety of analyses. Conditional 

forecasts allow for elaborate scenario analyses, where the future path of one or more 

variables is assumed to be known. They are a handy tool for analyzing possible 

realizations of policy-relevant variables. BVAR features a framework for identification 

schemes, with two of the most popular schemes currently available; namely short-term 

zero restriction and sign restriction. The former is also known as recursive identification 

and is achieved via Cholesky decomposition of the variance covariance vector (VCOV) 

matrix by Kilian and Lutkepohl (2017). Another method is the use of Impulse Response 

Functions (IRF) which are central tool for structural analysis. They provided insights 

into the behavior of weather systems and are another cornerstone of inference in VAR 

models. IRFs served as a representation of shocks hitting the system and are used to 

analyze the reactions of individual variables. The exact propagation of these shocks is 

of great interest, but a meaningful interpretation relies on proper identification. 

Additionally, identification via sign restrictions comes at the cost of increased 

uncertainty and a loss of precision for the resulting IRF. Another related tool for 

structural analysis is Forecast Error Variance Decomposition (FEVD) as stated by 

Yuriy & Byoungchan (2020). These methods call for the identification of the structural 

shocks by imposing a sufficient number of identification restrictions on a reduced-form 

linear vector Autoregressive (VAR) model. However, in many cases it is difficult to 

come up with adequate credible identification restrictions and thus the use of BVAR. 
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2.5 Critique of the Literature Review  

Despite the advantages of prevailing methods in the literature, there are still some 

problems when dealing with large time series, where the distribution of the data storage 

and processing is also a challenge. A way of improving the forecast accuracy consists 

in developing new prediction models by changing the structure of existing models and 

how they analyze the history of data in order to make predictions. Another way seeks 

to focus on the other factors that influence the predictions, by considering this problem 

as a process where the application of the prediction models is just a step. As such, the 

forecast accuracy can be improved by many ways, for instance, through determining 

the most optimized structures of the prediction models with respect to the underlying 

set of predictors. Again, by improving the quality of the input data and lastly by 

adopting model matching techniques. The problem we are addressing in this study is 

the prediction of multivariate time series that contain many predictors, that is predictive 

variables. The main question we are dealing with is how to interrelate interdependent 

variables and develop an accurate model for forecasting and that can select the subset 

from the predictors set that allows to obtain the best forecasts for a given target variable. 

Climate models can only predict a range of possible future scenarios of an individual 

weather variable. However, Kenya’s climate keeps on changing, the most affected is 

the rainfall pattern which this study addressed. Dezfuli et al. (2015), while the model 

that have been used by climate scientists generally tried to agree on how different parts 

of the Earth were changing in temperature, there is much less agreement about where 

and how precipitation would change. The effects of high temperature bring about fast 

rate of evaporation, high humidity, and dry surface in the long run, which potentially 

contribute to the intensity and prolonged duration of drought. However, this increased 

moisture would not fall evenly across the planet. Some areas would receive increased 
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rainfall, while other areas are expected to receive less due to shifting weather patterns 

and other factors. Traditionally, statistical inferences were typically based only on 

available poorly recorded data sets, and little systematic structure existed to facilitate 

the combination of results that formed previous studies. To our best knowledge, 

virtually no direct solution has been offered in the academic literature for the problem 

of estimation of VAR models lacking equal sized time series. However, in general, 

modeling of scarce data has benefitted a lot from a rigorous interest of researchers. For 

a detailed reflective, readers are referred to Kapetanios, et al. (2019), Stock and Watson 

(2017). Based on these contributions, Bayesian approach to overcome data issues such 

as noise, errors, and uncertainty has been widely recognized. One obvious reason is that 

Bayesian methods allow for subjective probabilistic judgments to be included in 

deriving inferences from data. This stands in unambiguous contrast to the traditional 

frequentist school of statistical inference which relies on conclusions largely drawn 

from pure data observations. Quiet often there are a number of events or scenarios 

where current situational is usually determined by previous events or previous data. As 

such, prior information is usually carried in the current data and or future information 

data. This implies that, most Bayesian Vector Autoregressive Model (BVAR) are 

included essentially to capture prior distributions and also improve out-of-sample 

performance. Vector autoregression (VAR) models are broadly used to model time 

series. The main difficulty experienced with these models is the issue of handling a 

large number of parameters which results to overfitting problems, as stated in most 

literature. They also require that the time series to have equal lengths in the estimation 

process, which would induce a loss of potentially valuable information coming from 

time series that are longer than others. Traditional VARs are a fairly restrictive number 

of variables versus the number of observations in available samples. With increasing 
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number of variables and lags, the number of coefficients estimated in VARs quickly 

increased. This brings another problem of overfitting the data. However, restricting just 

to a few variables means that the researchers can neglect the information embodied in 

many other time series that are available because many thousands candidate series are 

being developed. Most of them bring a limited additional gain in terms of forecasting 

performance. Several methods are developed to "shrink" the model which allows 

estimation, but still it has been a big challenge to handle a larger amount of time series. 

To overcome this difficulty, a Bayesian VAR approach is employed. For unequal time 

series, the remedy is through Bayesian approach; the information in longer time series 

is aggregated into prior, which is then used in the estimation of parameters for the VAR 

process. The BVAR model is a vector autoregression model using the Bayes Theorem 

based on prior and posterior distribution, therefore, it is simply a VAR model with 

priors introduced to control coefficients of the variables. As opposed to the point 

estimators, means and variances used by classical statistics, Bayesian statistics is 

concerned with generating the posterior distribution of the unknown parameters, given 

both the data and some prior density for these parameters. As such, Bayesian statistics 

provides a much more complete picture of the uncertainty in the estimation of the 

unknown parameters. The central idea of the Bayesian method is the use of study data 

to update the state of knowledge about the quantity of interest that has been studied. 

This idea in the Bayesian approach is a very intuitive one, namely, that of updating 

knowledge. The state of knowledge about the quantities of interest before or prior to a 

study is updated by the current study data, which yielded the state of knowledge after 

or posterior to the study. The transformation from prior to posterior is achieved by 

Bayes Theorem, an explicit mathematical expression for the updating process. Since 

from the review of the previous literatures, there is still a need for robust models to 
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handle the challenges in VARs and other classical models for weather prediction. Thus, 

these motivated the need to explore the idea of the prior-to-posterior transformation by 

considering the weather data set in Kenya and using BVAR model, hence the study.  
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter highlights the various methods that were used to achieve the stated 

objectives in chapter one. The objectives were formulated and their methods of 

achieving them were developed. The chapter also states some assumptions and theories 

that were considered when developing the methodologies. In this section, the researcher 

briefly discussed: sources of data, diagnostic analysis, vector Autoregressive, and 

Bayesian model. Bayesian Vector Autoregressive (BVAR) constitutes a special type of 

multivariate time series regression model in a system of equations for estimation and 

predictability of the data. The data set consisted of daily observations for a period of 

four years, where the variable of interest was the rainfall. 

3.1 Data Preprocessing  

The data was stored in the form of excel format, which was captured on a daily basis 

for a period of four years, starting from June 2014 to June 2018. The data was arranged 

in column format for each variable and averaged on daily basis. The data was cleaned 

and the missing values were filled by cluster means. The data was converted into 

command delimited .csv files so that to import it into R-statistical software. 

Normalization was done through linear scaling technique to remove scaling. It was 

essential because all variables used different units of measurements, and also a variable 

may have a large impact on the prediction value, only because of its numerical size. 

The technique of linear scaling, which is also referred to as min-max normalization 

estimations was defined as: 

 𝑥𝑁 = 
𝑥 − Min(𝑥)

Max(𝑥) − Min(𝑥)
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Normalization transformed the data into a common range of between 0 and 1. Thus, 

removing the scaling effects from all variables.  

3.2 Diagnostic Test of the Weather Variables  

This part deals with some preparatory work to ensure that the data are ready for further 

analysis. This was done through several tests, which are introduced below. Before 

analyzing any time series data, the data should attain some level of stability. Stationarity 

was checked using Augmented Dickey fuller (ADF) test. Most of the multivariate time 

series move simultaneously and they have interdependent with one another which need 

to be tested. The variables were tested for their causal effect relationship by use of 

Granger Causality test. 

3.2.1 Stationarity Tests 

Stationarity means that the variables included in the analysis have means, variances, 

and covariance that are constant over time. This implies that each of these variables are 

equal and independent of what period they represent. For any, time series analysis to 

be conducted and the data be used to develop a model, the stationarity test is important. 

If this condition is violated and nonstationary data are used, then the outcome would 

result in an unpredictable model outcome. The results obtained when using 

nonstationary data is likely to be unreliable and the outcome may indicate that there is 

a relationship between variables whereas it does not exist. Many time series data in 

reality are not stationary and they require to be stationary to be analyzed. Non-

stationarity can be detected by visual examining of the time series graph or, by looking 

at the series correlogram, or by conducting a unit root statistical test. To remove non-

stationarity, a time series is transformed by differencing once or several times, until it 



34 
 

 

becomes stationary. In this study, the unit roots statistical test was employed under 

Augmented Dickey- Fuller (ADF) test 

3.2.2 Augmented Dickey-Fuller test 

The model variables were tested for stationarity by use of ADF test. The ADF is an 

extension of Dickey-Fuller test which basically assumes that the time series in question 

is an Autoregressive AR(1) process. 

AR(1) is of the form       𝑥𝑡 = α +  β𝑥𝑡−1  +  𝑢𝑡     

That is, the time series is a function of itself lag one period past. 

H0: β = 1  not stationary 

H1: β <  1  stationary 

To make the series stationary we subtract 𝑥𝑡−1 on both sides to have 

𝑥𝑡 − 𝑥𝑡−1 = α + β𝑥𝑡−1 − 𝑥𝑡−1  +  𝑢𝑡     

Δ𝑥𝑡 =  α +  ρ𝑥𝑡−1 + 𝑢𝑡    where ρ =  β − 1 

Δ delta notation for differencing, 

The hypothesis changes to  

H0: ρ = 0  

H1: ρ <  0  

Note that Δ𝑥𝑡 is converted to be stationary. This is tested by comparing the Dickey-

fuller critical value against the t-statistic. 
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𝑡ρ̂ =
ρ̂

𝑠𝑒(ρ̂)
    we compare the t-value with DF- value which is obtained 

from DF distribution 

𝑡ρ̂ < 𝐷𝐹critical̂  we reject H0 (we reject that it has a unit root) 

𝑡ρ̂ > 𝐷𝐹critical̂  we do not reject H0 

If the absolute value of the t-statistic is larger than the critical value, we can say that 

the time series is stationary. The Augmented Dickey-Fuller test allows for higher-

order Autoregressive processes by including Δ𝑥t−p 
 in the model. 

  𝑥𝑡 =   ∑ 
𝑖
𝑥𝑡−𝑖

𝑝
𝑖=1    𝑢𝑡    

𝑥𝑡 =  ρ𝑥𝑡−1  ∑ 
𝑖
 𝑥𝑡−𝑖

𝑝
𝑖=1    𝑢𝑡     

Taking p = 1 then VAR(1) process is stable if all eigen values of i have a modulus 

less than one, this stability condition is equivalent t 

𝑑𝑒𝑡(IK − 
𝑖
𝑧𝑖) ≠ 0 for |z|  ≤  1   

 this can be generalized as  

  𝑑𝑒𝑡(IK − 
𝑖
𝑧𝑖) =  det (IK − 

1
𝑧1 − 

2
𝑧2  ···  − 

𝑝
𝑧𝑝) = 0 

It gives the definition of the characteristic polynomial of a matrix. The polynomial is 

called the reverse characteristic polynomial of the VAR (p) process. The 

characteristic roots are the values of z that are obtained after solving this equation. 

There are p’s of them, although some of them may be equal. 𝑥𝑡 is stationary if all of 

the roots “lie outside the unit circle”. Since stability implies stationarity, the process 

is stationary when proved to be stable. The test follows AR (1) process 
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𝑥𝑡 = ρ𝑥𝑡−1  +  𝑢𝑡 ,   

 where, 𝑢𝑡 is identically independently distributed series of random variables.  𝑥𝑡 is 

non-stationary under the null hypothesis, and is stationary under the alternative 

hypothesis. The standard t-statistics would not follow t-distribution because of the 

non-stationarity of 𝑥𝑡 under the null hypothesis. To test the null hypothesis, the test 

statistics equation below was used              

       ADF =
ρ− 1 

𝑆.𝑒 (ρ)
 

The ADF test of this equation follows the assumption that the error terms are 

independent and identically distributed, without a drift in the model. The procedure 

for the ADF test is similar to the Dickey–Fuller test procedure, the only difference is 

the model where it is applied. The models where ADF was applied is as shown below. 

𝑋𝑡 = t 
1
𝑥𝑡−1  1𝑥𝑡−1. . . p1 𝑥𝑡−1  ε𝑡  

where,  denotes a constant,  is the coefficient on a time trend, and 𝑝 represents the 

lag order of the Autoregressive process. Putting the constraints   0 and   0, this 

resembles a model with a random walk, and using the constraint   0 resembles a 

model of random walk with a drift. The ADF test is performed under the hypothesis 

H0: ϕ =  1  against   H1: ϕ <  1  

The test statistic is computed as: 

  ADF =
ϕ̂ 

𝑆𝐸(ϕ̂)
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If the 𝐴𝐷𝐹 () test statistic is less than the critical value, then the null hypothesis of 

  0 is rejected and no unit root is present. When the null hypothesis is not rejected, 

it means that the time series is not stationary and requires at least differencing once 

or until when the augmented dickey fuller (ADF) test shows a 5% level significant 

result. 

3.2.3 Granger Causality  

The basis behind vector autoregression is that each of the time series in the system 

influences each other. The future prediction for the univariate time series is done 

by means of its past values. In multiple time series, some of the time series may 

be influencing each other in their prediction, such situation is referred to as granger 

causality. Granger causality test is done to a certain, if there is a significant 

association between different time series model variables. The idea behind the 

granger causality test is the flow of the information and the effects from one time 

series to the other time series. A time series  𝑥(𝑡) granger causes  𝑦(𝑡) if the past 

values of 𝑥(𝑡)  help to improve the prediction of the future values of 𝑦(𝑡). That is 

𝑦(𝑡) is a function of its lagged values and the lagged values of 𝑥(𝑡). This implies 

that  𝑦𝑡 = f(𝑦𝑡−𝑃, 𝑥t−p)   

The following conditions were to be satisfied for the granger causality to be 

applied;  

1. Cause happens prior to effect 

y𝑡 = f(𝑦𝑡−𝑝, 𝑥𝑡−𝑝) where y𝑡 is the effect and 𝑥𝑡−1  is the cause and not 𝑥𝑡 in 

the same period. 

2. Cause has unique information about the future values of its effects  
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y𝑡 = 𝑎1 y𝑡−1 + 𝑎1𝑥𝑡−1 + 
𝑡
   

therefore 𝑥𝑡−1  has an extra effect other than that of y𝑡−1 

This relationship needs to be tested before building the model using granger’s 

causality test. What does granger’s causality really test? granger’s causality 

testes the null hypothesis that the coefficient of past values in the regression 

equation are zero.  In simple terms, the past values of the time series 𝑥(𝑡) do not 

cause the other series 𝑦(𝑡).  

y𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1     is the first model 

𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1   + 𝑎2𝑥𝑡−1   + 
𝑡
    the second model 

H0: 𝑎2 =  0   against   H1: 𝑎2  ≠  0   

If 𝑎2 is significant then 𝑥𝑡−1 adds extra value to the first model. That means, in 

the presence of 𝑦𝑡−1 then 𝑥𝑡−1 granger causes 𝑦𝑡.  The t-test is used to test for the 

significant of the individual coefficients and the f-test to test them jointly. 

Consequently, if the p-value obtained from the test is smaller than the 

significance level of 0.05, then the null hypothesis is rejected and we conclude 

that 𝑥(𝑡) granger causes 𝑦(𝑡). The test for correlation in most cases does not 

necessarily imply causality, which makes it difficult to determine whether one 

variable causes the other. Generally, this difficult in correlation is solved by the use 

of granger causality where the present or future event is believed to have been caused 

by the past event. This is impetuous of the granger causality test on time series data 

which gives evidence that one variable causes the other.  

The test is constructed on the following OLS regression model 
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𝑦𝑖 = 𝑎0 + ∑ 𝛼𝑗

𝑚

𝑗=1
𝑦𝑖−𝑗 + ∑ 𝛽𝑗𝑥𝑖−𝑗 +

𝑚

𝑗=1
𝜀𝑖  

Here, the 𝛼𝑗 and 𝛽𝑗 are the regression coefficient and 𝜀𝑖  is the error term.  

The test is based on the null hypothesis: 

     𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑀 = 0  against 𝐻1: At least one 𝛽𝑖 is not zero  

If the p–value for the test is less than the designed value of alpha, then reject the null 

hypothesis and conclude that granger causality exists. It is assumed that the data is 

stationary before using the granger causality test. 

3.3 Developing Specific Model 

The model was developed for each specific zone and for the global vector.  The zones 

included; 

 zone one – Coast region, zone two – Arid region, zone three – Semi Arid, zone four 

– Highland 

zone five – Lake region 

Each model had seven endogenous variables where six of them were independent and 

one was a predictor variable. They include 

 𝑥0– Rainfall (Predictor)  

 𝑥1–Atmospheric pressure 

          𝑥2– Radiation 

 𝑥3– Relative humidity 

          𝑥4– Temperature 

            𝑥5–Wind gust 
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           𝑥6–Wind speed 

VAR model was used to determine the relationship between different endogenous 

variables. The model was a multi-equation system where all the variables were 

treated as dependent variables. Whereby there was one equation for each variable as 

dependent variable. The equation included the lagged values of all the weather 

variables in the system. Primarily, 𝑥0 − Rainfall was set as dependent in the model 

and each of the other variables were tested separately after which Bayesian vector 

Autoregressive was applied. 

3.3.1 Vector Autoregressive Model Specification 

Vector Autoregressive (VAR) is a linear multivariate time-series model, able to capture 

the joint dynamics of multiple time series. They constitute a type of multivariate time 

series which is applied to examine the active interrelationship between stationary time 

series variables. VAR model is an extension of univariate to multivariate time series 

data. It is a multisystem of equations where all variables are treated as endogenous. 

Model selection is an important integral part of the statistical analysis of VAR. Model 

selection is made up of two parts; determination of the lag orders, also known as the lag 

length, and the determination of the structure of the VAR coefficient matrices. The 

study considered a column vector of k-different variables 𝑥𝑡 = [𝑥1𝑡, 𝑥2𝑡, … , 𝑥𝑘𝑡]
′ and 

modeled them, in terms of past values of the vector. The results were a vector 

Autoregressive of order p or a 𝑉𝐴𝑅 (𝑝) process which was of the form. 

𝑥𝑡 = 𝛼 + 𝐵1𝑥𝑡−1 + ⋯+ 𝐵𝑝𝑥𝑡−𝑝 + 𝑒𝑡 

Where: 

 𝑥𝑡 is a  k × 1 vector of dependent variables 
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 𝑥𝑡−𝑖  is a k × N matrix which is the number of observations times (×)  the number 

of endogenous variables in the stochastic process    

     𝛼 is a k × 1 vector of intercept parameters,  

 B1 through Bp is a k × k matrices of coefficients, 

et is a k × 1 vector of white noise process,  

and 𝑃 is the lag order. 

The study considered the following assumptions 

i) 𝐸(𝑒𝑡) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 

ii) 𝐸(𝑒𝑡 𝑒𝑠) = {
∑   𝑓𝑜𝑟  𝑠 = 𝑡𝑒

0 𝑓𝑜𝑟 𝑠 ≠ 𝑡
 

The covariance matrix ∑   𝑒 was assumed to be a finite positive definite matrix. The 

lag operators (∆) were used to develop coefficient matrix. The 𝑉𝐴𝑅 (𝑝) process was 

written in lag operator notation form, which was defined as ∆𝑥𝑡 = 𝑥𝑡−1. This means 

that it lags (shifts back) by one period. Using this operator, the equation above was 

written as 

𝑥𝑡 = 𝛼 + (𝐵1∆ + 𝐵2∆
2 + ⋯+ 𝐵𝑝∆𝑝)𝑥𝑡 + 𝑒𝑡 

Or 

𝐵(∆)𝑥𝑡 = 𝛼 + 𝑒𝑡 

 

Where 𝐵(∆) = 𝐼𝐾 − 𝐵1∆ − 𝐵2∆
2 − ⋯− 𝐵𝑝∆𝑝 
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 This study considered the model of the form  

𝑦𝑡 = 𝛼 + 𝐵1𝑦𝑡−1 + ……….   + 𝐵𝑝𝑦𝑡−𝑝 +  𝑎1𝑥1𝑡−1 + ⋯+ 𝑎𝑝𝑥1𝑡−𝑝  +

 …………… . . 𝑘𝑝𝑥6𝑡−1 + … . ……+  𝑘𝑝𝑥1𝑡−𝑝+ 𝑒𝑡        

In this study the matrix formation equation was of the form.  

[
 
 
 
 
 
𝑥0𝑡

𝑥1𝑡
𝑥2𝑡

𝑥3𝑡
𝑥4𝑡
𝑥5𝑡

𝑥6𝑡]
 
 
 
 
 

=

[
 
 
 
 
 
𝛼0𝑡

𝛼1𝑡
𝛼2𝑡

𝛼3𝑡
𝛼4𝑡
𝛼5𝑡

𝛼6𝑡]
 
 
 
 
 

 +

[
 
 
 
 
 
 
𝐵00

𝐵10

𝐵20

𝐵30

𝐵40

𝐵50

𝐵60

  

𝐵01

𝐵11

𝐵21

𝐵31

𝐵41

𝐵51

𝐵61

  

𝐵02

𝐵12

𝐵22

𝐵32

𝐵42

𝐵52

𝐵62

  

𝐵03

𝐵13

𝐵23

𝐵33

𝐵43

𝐵53

𝐵63

  

𝐵04

𝐵14

𝐵24

𝐵34

𝐵44

𝐵54

𝐵64

  

𝐵05

𝐵15

𝐵25

𝐵35

𝐵45

𝐵55

𝐵65

  

𝐵06

𝐵16

𝐵26

𝐵36

𝐵46

𝐵56

𝐵66]
 
 
 
 
 
 

[
 
 
 
 
 
𝑥0𝑡−1

𝑥1𝑡−1
𝑥2𝑡−1

𝑥3𝑡−1
𝑥4𝑡−1
𝑥5𝑡−1

𝑥6𝑡−1]
 
 
 
 
 

+

[
 
 
 
 
 
𝑒0𝑡

𝑒1𝑡
𝑒2𝑡

𝑒3𝑡
𝑒4𝑡
𝑒5𝑡

𝑒6𝑡]
 
 
 
 
 

           

The generalized form is as equation below 

  𝑥𝑖𝑡 = 𝛼𝑖𝑡 + 𝐵𝑖𝑗𝑥𝑖𝑡−1 + 𝑒𝑖𝑡 

Where “𝑥𝑖𝑡” represented the endogenous variables which are independent of a time 

period “𝑡” for a specific zone “𝑖”, 𝛼𝑖𝑡 is the constant term of the models,  𝑒𝑖𝑡 represented 

the white noise error terms and 𝐵𝑖𝑗 are the vector matrix of the coefficient variables.  

where 𝑖, 𝑗 =  0,1 ……… .6. 

There is one equation for each variable as the dependent variable. In the reduced form, 

the right-hand side of each equation included the lagged values of all dependent 

variables in the system, with no contemporaneous variables. In the application of VAR 

model, the study employed the following assumptions; 

i) All variables were endogenous 

ii) Time series were stationary which were contained stochastic processes 

iii) The lag order was determined was sufficient for the suitable model. 
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3.3.2 Vector Autoregressive Order 

If  𝑥𝑡 = 𝛼 + 𝐵1𝑥𝑡−1 + 𝐵2𝑥𝑡−2 + ⋯+ 𝐵𝑝𝑥𝑡−𝑝 + 𝑒𝑡 is a 𝑉𝐴𝑅(𝑝) process, it is useful to 

fit the model to the available multiple time series with 𝑝 + 1 coefficient.  If 

𝑥𝑡 𝑖𝑠 𝑎 𝑉𝐴𝑅(𝑝) process, in this sense it is also a 𝑉𝐴𝑅(𝑝 + 1) process, therefore, we call 

𝑥𝑡  a 𝑉𝐴𝑅(𝑝) process if 𝐵𝑝 ≠  0 for 1 ≤  𝑝 and 𝐵𝑝 = 0 for 𝐼 >  𝑝, so that 𝑝 is the 

smallest possible order. The most popular method to choose the lag order is to use 

information criteria. An information criterion is designed to consistently find the model 

that fits better the data from a group of models. As for how many lag orders to be 

included, this is determined by Akaike Information Criteria (AIC), which is generally 

given as  

𝐴𝐼𝐶 = 2𝑘 − 2ln(𝑙 )̂    

Where k is the number of the parameters in the model and  𝑙 is the maximum value 

of the likelihood function for the model. AIC is generally used to estimate the 

information loss and the best model is the one that loses the lowest information.  

The BIC is calculated by 

BIC = log(n) ∗ k −  2 ∗  L    

where n is the number of observations of the model variables, 𝑘 is the number of 

covariates used in the model, and 𝐿 is the average of the log likelihood chain returned 

by the function. The main advantage of BIC is its consistent as 𝑛 →  ∞. Alternatively, 

this is where lags are dropped until the last lag is statistically significant. 
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3.3.3 Estimation of a Vector Autoregressive (p) model 

In the equation of 𝑉𝐴𝑅 (𝑝), where 𝑒𝑡 ∼ 𝐼𝐼𝐷 (0, Ω), if 𝑥𝑖𝑡 denotes the 𝑖𝑡ℎ element of 𝑥𝑡 

and 𝐵𝑗,𝑘𝑖 denoted the 𝑘𝑖
𝑡ℎ element of 𝐵𝑗, in the 𝑖𝑡ℎ row of the equation which is written 

as  

𝑥𝑖𝑡 = 𝑚𝑖 + ∑ ∑𝐵𝑘𝑖,𝑗𝑥𝑘,𝑡−𝑗

𝑝

𝑗=1

𝑚

𝑘=1

+ 𝑒𝑖𝑡 

This is just a linear regression in which 𝑥𝑖𝑡 depended on a constant term and 𝑙𝑎𝑔 1 

through 𝑝 of all m variables in the system. Because the same variable appears on the 

right-hand side of the above equation for all 𝑖, the Ordinary Least Square Estimator for 

each equation is identical to Generalized Likelihood Squares Estimators.  

3.3.4  The Global Vector Autoregressive Model  

The GVAR model is a multi-zonal framework which allows the investigation of 

interlinkages among the zones in the country, which are modeled by the corresponding 

VAR models. The basic building blocks of the global model are the local zonal models. 

In a GVAR the model comprises two layers via which enables the specification to 

capture cross-zone links. The first layer separates multivariate time series models, one 

per climatical zone. In the second layer, the zone models are stacked to yield a global 

model that is able to trace the longitudinal spread as well as its sequential dynamics. 

Each of this zonal model are 𝑉𝐴𝑅𝑋 (𝑝𝑖, 𝑞𝑖) model, meaning that it is a VAR model with 

p𝑖 lags of the endogenous variables and q𝑖 lags of the set of exogenous variables. The 

zonal model for the unit 𝑖 is to examine the endogeneity of the external variables 𝑥𝑖𝑡
∗ , to 

solve the entire global model. Stacking over the zonal models is written as 

𝑥𝑡 = 𝑏0 + 𝑏1𝑡 + 𝛷1𝑥𝑡−1 + ⋯+ 𝛷𝑝𝑥𝑡−𝑝 + 𝛬0𝑤𝑥𝑡 + 𝛬1𝑤𝑥𝑡−1 + ⋯+ 𝛬𝑝𝑤𝑥𝑡−𝑝 + 𝑒𝑡 
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Where;  

𝑥𝑡  𝑖𝑠 𝑁𝑘 × 1 

𝑏0 𝑖𝑠 𝑁𝑘 × 1 

𝑏1 𝑖𝑠 𝑁𝑘 × 1 

𝛷1 …𝛷𝑝 𝑖𝑠 𝑁𝑘 × 𝑁𝑘 

𝑥𝑡−1 …𝑥𝑡−𝑝 𝑖𝑠 𝑁𝑘 × 1 

𝛬0, 𝛬1, … , 𝛬𝑝 𝑖𝑠 𝑁𝑘 × 𝑁𝑘 

The solution of the stacked model is obtained as 

𝑥𝑡 = (𝐼𝑘𝑁 − 𝛬0𝑤)−1(𝑏0 + 𝑏1𝑡 + 𝛷1𝑥𝑡−1 + ⋯+ 𝛷𝑝𝑥𝑡−𝑝 + 𝛬1𝑤𝑥𝑡−1 + ⋯+ 𝛬𝑝𝑤𝑥

+ 𝑒𝑡) 

provided the 𝑒𝑡 are independent in the time dimension, then the endogeneity of the 

regressors 𝑤𝑥𝑡 follows the from 

𝐸(𝑤𝑥𝑡𝑒𝑡) = 𝑤(𝐼𝑘𝑁 − 𝛬0𝑤)−1𝐸(𝑒𝑡𝑒𝑡
′) 

Pesaran et al. (2004) noted that the weight matrices 𝑤𝑖𝑗 are diagonal with 

𝑤𝑖𝑗 = 𝑑𝑖𝑎𝑔(𝑤𝑖𝑗
1 , … , 𝑤𝑖𝑗

𝑘)  

and that 

∑ (𝑤𝑖𝑗
𝑚)

2
→ 0𝑁

𝑗=0 ,     as 𝑁 → ∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑚 

However, this implies that asymptotically external variables have no explanatory power 

in the model. Asymptotic properties of such models are not used as sample guidance 



46 
 

 

for our estimators if some degree of cross-sectional dependences were expected in the 

model. 

The assumption 

∑ |𝑤𝑖𝑗
𝑚|𝑁

𝑗=0 ≤ 𝑐 < ∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑚,  

where the constant 𝑐 does not depend on the sample size 𝑁. This is clearly a weaker 

assumption, but it turns out to be strong enough to allow us to derive asymptotic 

properties of our model. 

3.3.5 The Global Vector Autoregressive framework 

To build a simple version of our Global Vector Autoregression model from each zonal 

model.  

All variables are collected from all zones which creates the global vector. 

𝑥𝑡 = (

𝑥1𝑡
𝑥2𝑡

⋮
𝑥𝑁𝑡

) 

Which is a 𝑘 × 1 vector containing all endogenous variables, where 𝑘 = ∑ 𝑘𝑖
𝑁
𝑖=1 .  

Following the step that give rise to the zones single model above, the identity below is 

obtained 

𝑍𝑖𝑡 = 𝑤𝑖𝑥𝑡 

For 𝑖 = 1, … , 𝑁,𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 is a zonal-specific link matrix of dimensions (𝑘𝑖 + 𝑘𝑖
∗) × 𝑘 

constructed on the basis of weather variable weights. This identity allows writing each 

region model in terms of the global vector. By substituting the above equation in the 

zones single model, the model below is obtained 
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𝐴𝑖𝑤𝑖𝑥𝑖𝑡 = 𝑎𝑖0 + 𝑎𝑖1𝑡 + 𝐵𝑖1𝑤𝑖𝑥𝑖,𝑡−1 + ⋯+ 𝐵𝑖𝑝𝑤𝑖𝑥𝑖,𝑡−𝑝  + 𝑒𝑡 

The individual zone model is then stacked, yielding the model for all variables in the 

global model 𝑥𝑡 to have 

𝐺𝑥𝑡 = 𝑎0 + 𝑎1𝑡 + ∑𝐻𝑗

𝑝

𝑗=1

𝑥𝑡−𝑗 + 𝑒𝑡 

where 

𝐺 = (

𝐴1,0𝑤1

⋮
𝐴𝑁,0𝑤𝑁

), 𝐻𝑗 = (

𝐵1,𝑗𝑤1

⋮
𝐵𝑁,𝑗𝑤𝑁

) , 𝑎0 = (

𝑎1,0

⋮
𝑎𝑁,0

) , 𝑎1 = (

𝑎1,1

⋮
𝑎𝑁,1

) , 𝑒𝑡 = (

𝑒1,𝑡

⋮
𝑒𝑁,𝑡

) 

Pre-multiplying the global model equation by 𝐺−1 yields an Autoregressive 

representation of the Global Vector Autoregression(p) model shown below 

𝑥𝑡 = 𝑏0 + 𝑏1𝑡 + ∑𝐹𝑗

𝑝

𝑗=1

𝑥𝑡−𝑗 + ɛ𝑡 

where 

𝐹𝑗 = 𝐺−1𝐻𝑗 , 𝑏0 = 𝐺−1𝑎0, 𝑏1 = 𝐺−1𝑎1 𝑎𝑛𝑑 ɛ𝑡 = 𝐺−1𝑢𝑡 

This equation is treated like any other VAR equation of order p. 

3.3.6 Bayesian models 

Bayesian inference treats the VAR parameters as random variables, and provides a 

framework to update probability distributions about the unobserved parameters 

conditional on the observed data. This brings out all its different from frequentist 

statistics. Classical estimation may yield imprecisely estimated relations that fit the data 

well only because of the large number of variables included. This results to a problem 
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known as overfitting which has been greatly discussed in the literature. In fact, the 

number of parameters to be estimated, 𝑛(𝑛𝑝 +  d), grows geometrically with the 

number of variables (𝑛) and proportionally with the number of lags (𝑝), while (𝑑)  is 

the number of exogenous variables. The concept behind the Bayesian modeling frame 

is Bayes’ theorem, which states that any prior beliefs regarding an uncertain quantity 

are updated, based on new information, to yield a posterior density of the unknown 

quantity. This process is also referred to as the principle of inverse probability. The 

concept of Bayesian statistics is that the posterior distribution of a parameter 𝜃 gives 

data that is proportional to the likelihood of the data given the parameter multiplied by 

the prior distribution for 𝜃, that is,  

𝑝(θ data⁄ ) ∝ L(data
θ⁄ )𝑝(θ)  

3.3.7 BVAR Model Development 

Let 𝑥𝑡 be an 𝑛 𝑥 1 random vector that takes values in the domain of real numbers. The 

evolution of 𝑥𝑡 the endogenous variable is described by a system of 𝑝 − 𝑡ℎ order 

difference equations in the VAR(p): 

𝑥𝑡 = 𝛼 + 𝐵1𝑥𝑡−1 + ⋯+ 𝐵𝑝𝑥𝑡−𝑝 + 𝑒𝑡 

The vector of 𝑒𝑡, are independent and identically distributed random variable for each 

𝑡. the distribution from which 𝑒𝑡 is drawn which determined the distribution of 𝑥𝑡, 

conditional on its past  

𝑥1−𝑝:𝑡 = {𝑥𝑡−𝑝, …… , 𝑥0, ………𝑥𝑡−2, 𝑥𝑡}. 

The standard assumption is that the errors are Gaussian.    
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  𝑒𝑡~𝑖𝑖𝑑. 𝑁(0, Σ). 

This implies that the conditional distribution of  𝑥𝑡 is also Normal. Bayesian inference 

on the 𝑥𝑡  model amount to updating prior beliefs about the VAR parameters, that are 

seen as stochastic variables, after having observed a sample 

 𝑥1−𝑝:𝑡 = {𝑥𝑡−𝑝, …… , 𝑥0, ………𝑥𝑡−2, 𝑥𝑡}. 

The prior beliefs about the VAR coefficients are summarized by a probability density 

function and updated using Bayes’ Law. 

p(A, Σ x1−p:t⁄ ) =  
 p(A,Σ)p(x1−p:t A,⁄ Σ)

p(x1−p:t)
∝  p(x1−p:t A,⁄ Σ)  

Define A = [𝐴1 ………𝐴𝑃,]’ as a 𝑘 𝑥 𝑛 matrix of the parameters, with k = np + 1,. 

p(A, Σ x1−p:t⁄ ) is the joint posterior distribution of the 𝑉𝐴𝑅(𝑝).  𝑃(𝐴 , 𝛴) is the prior 

distribution of the parameter. Assuming that the model coefficients are random 

variables. The prior distribution is specified based on prior information and combined 

with objective information from the observed data to obtain the posterior distribution 

using Bayes theorem. The prior distribution specification provides shrinkages 

preventing the estimated parameters from depicting what are only spurious correlations. 

The initial information about the model parameters and the sample information is the 

likelihood function p(x1−p:t A,⁄ Σ). The posterior distribution summarizes the entire 

information available and is used to conduct inference on the VAR parameters. Under 

the assumption of Gaussian error, the conditional likelihood of VAR is 

𝑝(𝑥1−𝑇 𝐴,⁄ Σ, 𝑥1−𝑝:0) = ∏
1

(2𝜋)1/2
|Σ|−1𝑒𝑥𝑝

𝑇

𝑡=1

{−
1

2
(𝑥𝑡 − 𝐴′𝑥′𝑡)′Σ

−1(𝑥𝑡 − 𝐴′𝑥𝑡)} 
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where  

𝑥′𝑡 = [𝑥′
𝑡−1 …………… 𝑥′

𝑡−𝑝 ] 

The likelihood in this equation is written in compact form, by using the apparently 

unrelated regression representation of the VAR. 

𝑥𝑡 = 𝐴𝑥 + 𝑒𝑡 

Using this notation and standard properties of the trace operator, the conditional 

likelihood function is equivalently expressed as 

𝑝(𝑥1−𝑇 𝐴,⁄ Σ, 𝑥1−𝑝:0) =    
1

(2𝜋)1/2 |Σ|−1exp {−
1

2
𝑡𝑟[Σ−1𝑆] ̂} 𝑋 𝑒𝑥𝑝{−

1

2
𝑡𝑟[Σ−1(𝐴 −

𝐴̂)′𝑥′𝑥(𝐴 − 𝐴̂)} 

Where 𝐴̂    is the maximum likelihood estimator (MLE) of 𝐴, and 𝑆̂  is the matrix of 

sums of squared residuals that is  𝐴̂ = (𝑥′𝑥)−1𝑥′𝑥𝑡,    𝑆̂ = (𝑥𝑡 − 𝑥𝐴̂)
′
(𝑥𝑡 −  𝑥𝐴̂)       

The likelihood is written in terms of the vectorized representation of the VAR 

𝑥𝑡 = (𝐼𝑛   ⊗ 𝑥) ∝ +𝑒,    𝑒~ (0, Σ ⊗ 𝐼𝑇) 

Where 𝑥𝑡 =  𝑣𝑒𝑐(𝑥)   and 𝑒 = 𝑣𝑒𝑐(e)  are 𝑇𝑛 𝑥 1 vectors, and ∝ = 𝑣𝑒𝑐(𝐴) is 𝑛𝑘 𝑥1. 

In this vectorized notation, the likelihood function is written as 

𝑝(𝑥1:𝑇 𝐴,⁄ Σ, 𝑥1−𝑝:0)

=    
1

(2𝜋)𝑇𝑛/2
|Σ|−𝑇/1exp {−

1

2
𝑡𝑟[Σ−1𝑆] ̂}𝑋 𝑒𝑥𝑝{−

1

2
(∝ −∝̂)′Σ−1 ⊗ (𝑥′𝑥)(

∝ −∝̂)}  
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Where, consistently, ∝̂= 𝑣𝑒𝑐(𝐴̂) is 𝑛𝑘 𝑥 1. The likelihood function is used to update 

the prior information regarding the VAR parameters. An interesting case arises when 

we assume the absence of any information on the location of the model parameters, 

which can be formalized by assuming that A and Σ are independently distributed i.e. 

𝑃(𝐴 , 𝛴) =  𝑃(𝐴 ) 𝑃( 𝛴)  with prior p.d.f as 

 𝑃(𝐴 ) ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 𝑃( 𝛴) ∝ |Σ|−(𝑛+1)/2  

Given this prior we can derive the posterior distribution of the VAR parameters as 

𝑝(𝐴 , 𝛴 𝑥1−𝑝:0⁄ , ) =    |Σ|−(𝑇+𝑛+1)/2exp {−
1

2
𝑡𝑟[Σ−1 ⊗ 𝐼𝑇}(𝑥 − (𝐼𝑛   ⊗ 𝑥) ∝) − (𝐼𝑛   ⊗ 𝑥)

∝} 𝑋 𝑒𝑥𝑝{−
1

2
(∝ −∝̂)′Σ−1 ⊗ (𝑥′𝑥)(∝ −∝̂)}  

The model was used to forecast the data h > 0 steps ahead. 

3.3.8 Bayesian model in GVAR  

Bayesian approach is employed where information believed to be derived from 

background knowledge which is used to select a prior probability distribution for the 

model parameters. The predictions of future observations are made by integrating the 

models’ predictions with respect to the posterior parameter distribution obtained by 

updating the prior to take account of the data. Bayesian analysis of the GVAR model 

requires the elicitation of the prior distributions for all parameters of the model. The 

study uses Minnesota prior structure that were developed for VAR specification for 

individual Zonal-specific models together with standard prior settings for the 

parameters corresponding to weakly exogeneous variables and combines the posterior 

results to obtain the Bayesian Global Vector Autoregressive (B-GVAR) model. 
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Although other key prior distributions are proposed in literature, the choice of the 

Minnesota prior in this study was due to its flexibility. 

3.4 Model performance Analysis 

The sensitivity analysis was done using confusion matrix. 

3.4.1 Confusion Matrix 

A confusion matrix is a summarized table of the number of correct and incorrect 

predictions or actual and predicted values yielded by a classification model for binary 

classification tasks. The Confusion Matrix is used to evaluate the sensitivity, accuracy, 

and specificity of the model. 

 ACTUAL VALUES 

 

PREDICTED 

VALUES 

 Positive Negative 

Positive TP FP 

Negative FN TN 

where:   TP = True Positive, TN = True Negative,  

               FP = False Positive, FN = False Negative 

From the confusion matrix, Accuracy, Sensitivity, and Specificity were evaluated 

using the following equations. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

Sensitivity =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity =   
𝑇𝑁

𝑇𝑁+𝐹𝑃
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3.4.2 Training and test data sets 

The data was divided into two sets, training data set, which was the material through 

which the models were built. It was obtained under simple random sampling 80% of 

the data set, which was used to build the statistical model. The second set was the 

testing, and this set was used to predict the results. Data points in the training set are 

excluded from the testing set. The model is ultimately being trained to predict results 

for which the study does not have the answer. The size of the testing set is typically 

about 20% of the total sample, although this value depends on how long the sample 

is and how far ahead you want to forecast. Because the testing data is not used in 

determining the forecasts, it provides a reliable indication of how well the model is 

likely to forecast with new data. It is also important to evaluate the forecasted 

accuracy using the unaffected developed forecasting model. The accuracy of 

forecasts is only determined by considering how well a model performs on new data 

that are not used when fitting the model. The following points are noted: a model 

which fits the training data well will also tend to forecast well. A perfect fit is always 

obtained by using a model with enough parameters. Over-fitting a model to data is 

just as bad as failing to identify a systematic pattern in the data. Some references 

describe the testing set as the “hold-out set” because these data are “held out” of the 

data used for fitting. Other references call the training set “in-sample data” and the 

testing set “out-of-sample data.” This study prefers to use “training data” and “testing 

data”. 

3.5 Forecasting Analysis 

Sequential analysis is more useful through Bayesian, where the updated information is 

used to generate further information, and the processes keep on and on. In Bayesian, 

the prior gives the scope to obtain posterior information. The obtained posterior is used 
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as the prior for the next posterior generation. The sequential analysis merged with 

Bayesian gives more consistent results in comparison to the classical methods. In 

contrast, Bayesian assumes the random effect of the parameter of interest to generate 

the conclusion about the trial. Whereas, the chances of getting the biased result due to 

the consideration of the random effect of the parameter of interest are certainly low in 

Bayesian. This ability in Bayesian assists in the predictability of the future or the current 

situation. If time series observations are available for a variable of interest and the data 

from the past contains information about the future development of the available, it is 

plausible to use a forecast of some function of the data collected in the past. As 

forecasting is one of the main objectives of multiple time series analysis.  Forecast for 

horizon h ≥ 0 of an empirical VAR(p) process are generated recursively. 

      𝑌𝑇+ℎ/𝑇 = 𝐴1𝑌1+ℎ−1/𝑇 + ⋯ …… .+ 𝐴𝑃𝑌1+ℎ−𝑃/𝑇   

𝑌𝑇+𝑗/𝑇 = 𝑌𝑇+𝑗                                        𝑓𝑜𝑟 𝑗 < 0 

Where; 

𝐶𝑜𝑣

(

 
 

[
 
 
 
 
𝑌𝑇+1 − 𝑌𝑇+1/𝑇

.

.

.
𝑌𝑇+ℎ − 𝑌𝑇+ℎ/𝑇]

 
 
 
 

)

 
 

=  

[
 
 
 
 
 

𝐼 0…… … .0
𝛷1  𝐼 …… 0

…
…
…

𝛷𝑃−1 𝛷𝑃−2  …… . 𝐼]
 
 
 
 
 

(𝛴𝑈  ⊗ 𝐼ℎ)

[
 
 
 
 
 

𝐼 0…… … .0
𝛷1  𝐼 …… 0

…
…
…

𝛷𝑃−1 𝛷𝑃−2  …… . 𝐼]
 
 
 
 
 

       

The matrices 𝛷𝑖 are the empirical coefficient matrices of the Wald moving average 

representation of a stable 𝑉𝐴𝑅(𝑝) - process and the operator ⊗  is the Kronecker 

product. 

3.5.1 Evaluation of predictive model  

The predictive performance is measured on the basis of Root Mean Square Error 

(RMSE) as defined below. The Root Mean Square Error (RMSE) is defined by the 
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square root of the mean squared distance between the predicted target values and the 

observed target value. 

RMSE =    √
1

𝑛
  ∑(𝑥𝑡

𝑛

𝐼=1

−x̂𝑡 )
2  

Where, x̂𝑡, is the forecasted value in the period 𝑡, 𝑥𝑡 is the actual value in the period 𝑡, 

and 𝑛 is the size of the sample. RMSE measures the difference between the values 

predicted by a Bayesian model and the observed true values. In other words, it measures 

the quality of fit between the actual data and the predicted model. For the two measures 

above, the smaller the value, the better the fit of the model. 

In evaluating the accuracy of forecasts, frequently used measures of forecast accuracy 

are employed to assess the performance of the models. These measures are independent 

of the scale of the data and are Mean Percentage Error (MPE), Mean Standard Error 

(MSE), and Mean Absolute Error (MAE). The formulas for these measures of accuracy 

are given as:  

     MPE =  
1

𝑛
∑ |𝑥𝑡

𝑛
𝐼=1 −x̂𝑡 |   

MSE =  
1

𝑛
  ∑(𝑥𝑡

𝑛

𝐼=1

−x̂𝑡 )
2 

MAE =  
∑ |𝑒𝑡

𝑛
𝐼=1 |

𝑛
 

Where x̂𝑡, is the forecasted value in the period 𝑡, 𝑥𝑡 is the actual value in the period 𝑡, 

and 𝑛 is the size of the sample and 𝑒𝑡is the error term. 
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CHAPTER FOUR 

RESULTS AND DISCUSIONS 

4.0 Introduction  

This chapter deals with data analysis and development of the specific model for each 

zone and the global vector. The statistical methods employed in the analysis of the data 

were discussed in Chapter 3. The focus of this chapter was on the application of the 

methodologies discussed earlier and the analysis and interpretation of the results that 

generated forecasts of the stated specific and global zones. It shows that BVAR gives a 

robust model which resulted to a better forecasting. 

4.1 Diagnostic analysis of the variables 

To ensure that the time series data contained no flaws, was stable, and not affected by 

serial correlation, diagnostic analysis was put into use. To achieve these, unit root test 

was carried out where Augmented Dickey Fuller and Phillips Perron were conducted 

to ascertain the stability of the data. The Granger causality test was also conducted to 

find the influence of other time series to the dependent variable time series. The first 

step was to obtain the time plot graph for the endogenous variable to have a clear 

visualization of the data. 
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Time plot graph for the rainfall data  

 
Figure 4.1: Time series graph for zone one 

 
It is clear from the above plot that exhibits a time series in nature which contains 

seasonal variation and shows nonstationary. We difference each of the series 

appropriate number of times till stationarity is achieved. We carry out the Augmented 

Dickey Fuller ADF which is the unit root test and Phillips perron test on the differenced 

series to be certain that they are converted to stationary series.  

4.1.1 Stationary test  

The study adopted two methods of stationarity test the Augmented Dickey fuller (ADF) 

and Phillips perron test. The output from the test reviled that the data were stationary 

after at least first differencing for all regions. The obtained results were presented for 

each region, tabulated and placed in Appendix I. The graph obtained after differencing 

is displayed in figure 4.2 below. 
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Figure 4.2: Time series graph after differencing 

 
This graph exhibits stationarity where mean and the variance are constant. 

4.1.2 Augmented Dickey fuller (ADF) and Phillips-Perron (PP) test 

The Augmented Dickey-Fuller (ADF) test was implemented to check whether the 

variables were stationary or not. The test assumed that the variables were affected by 

the unit root, which implied that the variables were nonstationary. The test is used to 

reject or accept the null hypothesis of the ADF tests. If the alternative hypothesis is 

accepted then the data is stationary, which was the desired result of the test. In this case, 

if the absolute value of the test statistics is less than the critical value and p-value < 0.05 

the null hypothesis is rejected which means that a time series does not have a unit root, 

thus stationary. That means it does not have a time dependent structure. The Phillips- 

Perron (PP) test was used to confirm the results of ADF test.  

4.1.3 ADF and PP test for zone one  

The result of the stationarity test in zone one was listed below and presented in Table 1 

in appendix I.  

The variable 𝑥0 had an ADF Test Statistics of -28.164, with Phillips-Perron of -273.58, 

Truncation lag parameter was 3, P-Value ADF of 0.01 and the P-Value P.P of 0.0127 

thus showing that it was stationary. Variable 𝑥1 showed ADF Test Statistics of -27.153 
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with Phillips-Perron of -272.51, Truncation lag parameter of 3, P-Value ADF of 0.0121 

while the P-Value P.P was 0.0103 hence it was stationary. Variable 𝑥2 showed ADF 

Test Statistics of -27.879, Phillips-Perron of -79.12, Truncation lag parameter of 3, P-

Value ADF of 0.0213 and the P-Value P.P was 0.0182 thus showing that it was 

stationary. Variable 𝑥3 showed that ADF Test Statistics was -28.808 with Phillips-

Perron of -283.58, Truncation lag parameter was 3, P-Value ADF was 0.0031 while the 

P-Value P.P was 0.0323 thus showing that unit roots exist. Variable 𝑥4 showed ADF 

Test Statistics of -29.758 with Phillips-Perron of -297.84, Truncation lag parameter of 

3, P-Value ADF of 0.0274 and the P-Value P.P of 0.0145 thus showing that it was unit 

roots exist. Variable 𝑥5 showed ADF Test Statistics of -28.762 with Phillips-Perron of 

-286.58, Truncation lag parameter of 3, P-Value ADF of 0.0015 and the P-Value P.P 

of 0.0113 and hence Heteroscedasticity is impacting the results. Variable 𝑥6 showed 

ADF Test Statistics of -28.415 with Phillips-Perron of -290.42, Truncation lag 

parameter of 3, P-Value ADF of 0.0093 and the P-Value P.P of 0.0393.  

The result show that after the first differencing the data was stable as reflected by ADF 

test and confirmed by PP test where their unit root had the p-values < 0.05 which shows 

that they were significant. 

4.1.4 Zone two stationarity test. 

The result is as stated below and presented in Table 2 in appendix I  

The Variable 𝑥0 had an ADF test Statistics of -11.019, with Phillips-Perron of -36.716, 

Truncation lag parameter of 3, P-Value ADF of 0.0156 and the P-Value P.P of 0.0124 

thus showed that it was stationary. Variable 𝑥1 showed ADF Test Statistics of -12.984, 

with Phillips-Perron of -36.762, Truncation lag parameter of 3, P-Value ADF of 0.0126 

and the P-Value P.P of 0.0173 thus showed that it was stationary. Variable 𝑥2 showed 
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ADF Test Statistics of -10.066 with Phillips-Perron of -37.444, Truncation lag 

parameter of 3, P-Value ADF of 0.0524 the P-Value P.P of 0.0473 hence it was 

stationary. Variable 𝑥3 showed ADF Test Statistics of -10.249 with Phillips-Perron of 

-35.759, Truncation lag parameter of 3, P-Value ADF of 0.0026 while the P-Value P.P 

was 0.0149 thus showing that it was stationary. Variable 𝑥4 showed ADF Test Statistics 

of -11.108 with Phillips-Perron of --11.108, Truncation lag parameter of 3, P-Value 

ADF of 0.0138 and the P-Value P.P of 0.0231 hence it was stationary. Variable 𝑥5 

showed ADF Test Statistics of -37.055 with Phillips-Perron of -10.715, Truncation lag 

parameter was 3, P-Value ADF of 0.0361 and the P-Value P.P was 0.0302 thus showing 

that it was stationary. Variable 𝑥6 showed ADF Test Statistics of -10.715 with Phillips-

Perron of -35.215, Truncation lag parameter was 3, P-Value ADF of 0.0054 while the 

P-Value P.P was 0.0215 thus showing that it was stationary. 

The test shows that 𝑥2 is weakly stationary according to ADF but it has been confirmed 

by PP, thus it was treated to be stable, hence the analysis proceeded as per the study.  

4.1.5 Zone three 

The results for zone three were as displayed below and was tabulated in table 3 indicates 

in appendix I. The variable 𝑥0 had an ADF test Statistics of Test Statistics of -11.173, 

with Phillips-Perron of -36.636, Truncation lag parameter of 3, P-Value ADF of 0.0155 

and the P-Value P.P of 0.0352 thus showing that it was stationary. Variable 𝑥1 showed 

ADF Test Statistics of -12.238 with Phillips-Perron of -36.714, Truncation lag 

parameter of 3, P-Value ADF of 0.0268 while the P-Value P.P was 0.01 hence it was 

stationary. Variable 𝑥2 showed ADF Test Statistics of -10.472 with Phillips-Perron of 

-37.385, Truncation lag parameter was 3, P-Value ADF of 0.0246 and the P-Value P.P 

of 0.0165 thus showing that it was stationary. Variable 𝑥3 showed ADF Test Statistics 
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of -10.907 with Phillips-Perron of -36.66, Truncation lag parameter was 3, P-Value 

ADF of 0.0276 and the P-Value P.P of 0.0103 thus showing that it was stationary. 

Variable 𝑥4 showed ADF Test Statistics of -11.555 with Phillips-Perron of -36.763, 

Truncation lag parameter was 3, P-Value ADF was 0.0371 while the P-Value P.P was 

0.0124 hence it was stationary. Variable 𝑥5 showed ADF Test Statistics of -11.633 with 

Phillips-Perron of -36.884, Truncation lag parameter was 3, P-Value ADF of 0.0188 

and the P-Value P.P of 0.01 hence it was stationary. Variable 𝑥6 showed ADF Test 

Statistics of -11.207 with Phillips-Perron of -35.193, Truncation lag parameter of 3, P-

Value ADF of 0.0101 and the P-Value P.P of 0.0297 thus showing that it was stationary. 

The test result shows stationarity in all the variables. 

4.1.6 Zone four  

The results in zone four was as represented below and also in Table 4 Appendix I; 

Variable 𝑥0 showed ADF Test Statistics of -28.245 with Phillips-Perron of -273.61, 

Truncation lag parameter of 3, P-Value ADF of 0.01 and the P-Value P.P of 0.0242 

thus showing that it was stationary. Variable 𝑥1 showed ADF Test Statistics of -28.327 

with Phillips-Perron of -274.36, Truncation lag parameter of 3, P-Value ADF of 0.0260 

while the P-Value P.P was 0.0173 thus showing that it was stationary. Variable 𝑥2 

showed ADF Test Statistics of -27.892, Phillips-Perron of -277.82, Truncation lag 

parameter was 3, P-Value ADF of 0.0124 and the P-Value P.P was 0.0732 thus showing 

that it was stationary. Variable 𝑥3 showed ADF Test Statistics of -28.507, Phillips-

Perron of -28.507, Truncation lag parameter was 3, P-Value ADF was 0.0121 and P-

Value P.P was 0.0493, this showed stationarity. Variable 𝑥4 showed ADF Test Statistics 

of -29.518 with Phillips-Perron of -301.02, Truncation lag parameter was 3, P-Value 

ADF was 0.0386 and the P-Value P.P was 0.0231 thus showing that it was stationary. 

Variable 𝑥5 showed ADF Test Statistics of -29.222 with Phillips-Perron of -287.64, 
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Truncation lag parameter was 3, P-Value ADF of 0.0361 and the P-Value P.P was 

0.0302 thus showed stationarity. Variable 𝑥6 showed ADF Test Statistics of -28.453, 

with Phillips-Perron of -291.18, Truncation lag parameter was 3, P-Value ADF of 

0.0142 and the P-Value P.P was 0.0215 thus showing that it was stationary. 

The stationarity of zone four was obtained after second differencing. The decision was 

reached after most of the variables turned out to be nonstationary. 

4.1.7 Zone five 

The test result is as given below and is presented in appendix I in Table 5 variable 𝑥0 

showed ADF Test Statistics of -11.508 with Phillips-Perron of -37.064, Truncation lag 

parameter was 3, P-Value ADF of 0.01 and the P-Value P.P was 0.0173 thus showed 

that it was stationary. Variable 𝑥1 showed ADF Test Statistics of -12.403 with Phillips-

Perron of -36.616, Truncation lag parameter was 3, P-Value ADF of 0.0387 and the P-

Value P.P was 0.0158 thus stationary. Variable 𝑥2 showed ADF Test Statistics of -

10.33 with Phillips-Perron of -37.838, Truncation lag parameter was 3, P-Value ADF 

of 0.0237 and the P-Value P.P was 0.01 thus showing that it was stationary. Variable 

𝑥3 showed ADF Test Statistics of -10.901 with Phillips-Perron of -36.79, Truncation 

lag parameter was 3, P-Value ADF of 0.0275 and the P-Value P.P was 0.0253 thus 

showing that it was stationary. Variable 𝑥4 showed ADF Test Statistics of -11.438 with 

Phillips-Perron of -36.762, Truncation lag parameter was 3, P-Value ADF of 0.0421 

and the P-Value P.P was 0.0149 thus showing that it was stationary. Variable 𝑥5 showed 

ADF Test Statistics of -10.702 with Phillips-Perron of -37.208, Truncation lag 

parameter was 3, P-Value ADF of 0.0173 and the P-Value P.P was 0.0334 thus showing 

that it was stationary. Variable 𝑥6 showed ADF Test Statistics of -10.586 with Phillips-
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Perron of -35.248, Truncation lag parameter was 3, P-Value ADF of 0.0192 and the P-

Value P.P was 0.0146 thus showing that it was stationary.  

All the variables were found to be stationary after first differencing 

4.1.8 Global vector 

Table 6 in appendix I contains the tests in tabulated form Variable 𝑥0 showed ADF Test 

Statistics of -11.606 with Phillips-Perron of -37.085, Truncation lag   parameter was 3, 

P-Value ADF of 0.01 and the P-Value P.P was 0.01 thus showing that it was stationary. 

Variable 𝑥1 showed ADF Test Statistics of -11.54 with Phillips-Perron of -37.063, 

Truncation lag parameter was 3, P-Value ADF of 0.0379 and the P-Value P.P was 0.01 

thus showing that it was stationary. Variable 𝑥2 showed ADF Test Statistics of -10.315 

with Phillips-Perron of -37.456, Truncation lag parameter was 3, P-Value ADF of 

0.0242 and the P-Value P.P was 0.0186 thus showing that it was stationary. Variable 

𝑥3 showed ADF Test Statistics of -10.888 with Phillips-Perron of --36.3, Truncation 

lag parameter was 3, P-Value ADF of 0.0274 and the P-Value P.P was 0.0101 thus 

showing that it was stationary. Variable 𝑥4 showed ADF Test Statistics of --11.35 with 

Phillips-Perron of -36.638, Truncation lag parameter was 3, P-Value ADF of 0.0298 

and the P-Value P.P was 0.0199 thus showing that it was stationary. Variable 𝑥5 showed 

ADF Test Statistics of -11.57 with Phillips-Perron of -36.931, Truncation lag parameter 

was 3, P-Value ADF of 0.0151 and the P-Value P.P was 0.0437 thus stationary. 

Variable 𝑥6  showed ADF Test Statistics of -11.088 with Phillips-Perron of -35.423, 

Truncation lag parameter was 3, P-Value ADF of 0.0228 while the P-Value P.P was 

0.0382 thus showing that it was stationary. 

The global vector variables were stationary as show in the R output above. 
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4.1.9 Granger causality test. 

This was a statistical test for determining whether one time series was useful in 

forecasting another model. It was conducted for each specific zone and for the global 

vector. The data was also tested for Granger causality between endogenous and 

exogenous variables. This analysis was important in that it helped to know whether 

changes in one variable was influenced by changes in the other variables. This study 

tested whether exogenous variables had a causality effect onto the endogenous variable 

in each of the zones.  

4.1.10 Zone one  

The Granger causality test findings were as represented below and presented in table 7 

appendix I model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥1, 1:6) and Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) 

while the p value was  0.0491 *. For 𝑥2 against 𝑥0, Granger causality test shown that 

Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥2, 1:6). Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p 

value was  0.21703. For 𝑥3 against 𝑥0, Granger causality test shown that Model 1: 𝑥0 ~ 

Lags(𝑥0, 1:6) + Lags(𝑥3, 1:6). Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 

0.006851**. For 𝑥4 against 𝑥0, Granger causality test shown that Model 1: 𝑥0 ~ Lags(𝑥0, 

1:6) + Lags(𝑥4, 1:6). Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 0.02144 *. For 

𝑥5 against 𝑥0, Granger causality test shown that Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥5, 

1:6). Model 2: 𝑥0~ Lags(𝑥0, 1:6) while the p value was 0.31223. For 𝑥6 against 𝑥0, 

Granger causality test shown that Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥6, 1:6). Model 

2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 0.01279 *. 

Therefore, the Granger causality test for Zone one shows that 𝑥2 and 𝑥5 had no 

significant influence on the endogenous variable 𝑥0 but the other variable had a 

significant influence.  
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4.1.11 Zone two  

The test is also presented in Table 8 appendix I 

Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥1, 1:6) Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p 

value was 0.01012 *. For 𝑥2 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 

~ Lags(𝑥0, 1:6) + Lags(𝑥2, 1:6) Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 

0.8279. For 𝑥3 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 

1:6) + Lags(𝑥3, 1:6), Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 0.003519 **. 

For 𝑥4 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + 

Lags(𝑥4, 1:6, Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 0.04426 ***. For 𝑥5 

against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥5, 

1:6, Model 2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 0.4767. For 𝑥6 against 𝑥0, 

Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:6) + Lags(𝑥6, 1:6) Model 

2: 𝑥0 ~ Lags(𝑥0, 1:6) while the p value was 0.03723 *. 

Except 𝑥2 and 𝑥5, all the other variables were having a strong significant influence on 

the causality of the variable 𝑥0. Their level of significant was less than 0.05, but 𝑥2 had 

a p-value of 0.8279 and 𝑥5 had a p-value of 0.4767. 

4.1.12 Zone three  

Table 9 have the tabulated results in appendix I. 

Model 1: 𝑥0 ~ Lags(𝑥0, 1:9) + Lags(𝑥1, 1:9) Model 2: 𝑥0~ Lags(𝑥0, 1:9), while the p 

value was 0.03396 *. For 𝑥2 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 

~ Lags(𝑥0, 1:9) + Lags(𝑥2, 1:9), Model 2: 𝑥0 ~ Lags(𝑥0, 1:9), while the p value was 

0.1548. For 𝑥3 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 

1:9) + Lags(𝑥3, 1:9),Model 2: 𝑥0~ Lags(𝑥0, 1:9) while the p value was 0.004577 **. 

For 𝑥4 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:9) + 



66 
 

 

Lags(𝑥4, 1:9),Model 2: 𝑥0 ~ Lags(𝑥0, 1:9), while the p value was 0.04553 *. For 𝑥5 

against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:9) + Lags(𝑥5, 

1:9),Model 2: 𝑥0 ~ Lags(𝑥0, 1:9) while the p value was 0.04184 *. For 𝑥6 against 𝑥0, 

Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:9) + Lags(𝑥6, 1:9)Model 

2: 𝑥0 ~ Lags(𝑥0, 1:9),while the p value was 0.0007054 ***. 

The test shows that all exogenous variables had a strong causality on the variable 𝑥0. 

4.1.13 Zone four  

The test is as shown below and is also tabulated in Table 10 appendix I  

For 𝑥1 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:5) + 

Lags(𝑥1, 1:5). Model 2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p value was 0.03119 *. For 𝑥2 

against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:5) + Lags(𝑥2, 

1:5,Model 2: 𝑥0~ Lags(𝑥0, 1:5) and the p value was 1.032e-05 ***. For 𝑥3 against 𝑥0, 

Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:7) + Lags(𝑥3, 1:7),Model 

2: 𝑥0 ~ Lags(𝑥0, 1:7) and the p value was 0.006269 **. For 𝑥4 against 𝑥0, Granger 

causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:7) + Lags(𝑥4, 1:7).Model 2: 𝑥0 ~ 

Lags(𝑥0, 1:7) and the p value was 0.04352 *. For 𝑥5 against 𝑥0, Granger causality test 

showed that Model 1: 𝑥0~ Lags(𝑥0, 1:7) + Lags(𝑥5, 1:7). Model 2: 𝑥0 ~ Lags(𝑥0, 1:7) 

and the p value was 0.026 *. For 𝑥6 against 𝑥0, Granger causality test showed that 

Model 1: 𝑥0 ~ Lags(𝑥0, 1:7) + Lags(𝑥6, 1:7), Model 2: 𝑥0 ~ Lags(𝑥0, 1:7) and the p 

value was  0.002428 *.*   

Accordingly, the Granger causality test for Zone four shows that all variables had a p-

value < 0.05, hence causality was positive. 
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4.1.14 Zone five  

The result is as stated below and in Table 11 appendix I. 

Model 1: 𝑥0 ~ Lags(𝑥0, 1:5) + Lags(𝑥1, 1:5). Model 2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p 

value was 0.02655 *. For 𝑥2 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 

~ Lags(𝑥0, 1:5) + Lags(𝑥2, 1:5). Model 2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p value was 

0.0005519 ***. For 𝑥3 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ 

Lags(𝑥0, 1:5) + Lags(𝑥3, 1:5), Model 2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p value was 0.04434 

*. For 𝑥4 against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:5) + 

Lags(𝑥4, 1:5) Model 2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p value was 0.000196 ***. For 𝑥5 

against 𝑥0, Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:5) + Lags(𝑥5, 

1:5), Model 2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p value was 0.003104 **. For 𝑥6 against 𝑥0, 

Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:5) + Lags(𝑥6, 1:5), Model 

2: 𝑥0 ~ Lags(𝑥0, 1:5) and the p value was 0.001708 **.  

The variables had some influence to the dependent time series. 

4.1.15 Global vector granger causality test 

The test result is tabulated in table 12, appendix I. 

For 𝑥1 against 𝑥0, Granger causality test showed Model 1: 𝑥0~ Lags(𝑥0, 1:3) + Lags(𝑥1, 

1:3) 

Model 2: 𝑥0 ~ Lags(𝑥0, 1:3) and the p value was 0.01859 *. The test for 𝑥2 against 𝑥0, 

Granger causality test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:3) + Lags(𝑥2, 1:3), Model 

2: 𝑥0 ~ Lags(𝑥0, 1:3) and the p value was  0.7194.  For 𝑥3 against 𝑥0, Granger causality 

test showed that Model 1: 𝑥0 ~ Lags(𝑥0, 1:3) + Lags(𝑥3, 1:3). Model 2: 𝑥0 ~ Lags(𝑥0, 

1:3) and the p value was 0.01464 *. For 𝑥4 against 𝑥0, Granger causality test showed 
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that Model 1: 𝑥0 ~ Lags(𝑥0, 1:3) + Lags(𝑥4, 1:3) Model 2: 𝑥0 ~ Lags(𝑥0, 1:3) while the 

p value was 0.006 ***. For 𝑥5 against 𝑥0, Granger causality test showed that Model 1: 

𝑥0 ~ Lags(𝑥0, 1:3) + Lags(𝑥5, 1:3).Model 2: 𝑥0 ~ Lags(𝑥0, 1:3) and the p value was 

0.04715 *.  For 𝑥6 against 𝑥0, Granger causality test showed that Model 1: 𝑥0~ Lags(𝑥0, 

1:3) + Lags(𝑥6, 1:3), Model 2: 𝑥0 ~ Lags(𝑥0, 1:8) and the p value was 0.0274 *.  

The test shows that there is causality among the variables. 

4.2 Development of the model 

Having confirmed the stationarity of the data, as well as the positive granger causality 

test for all the regions, the model development was readily formulated. This involved 

lag setting, obtaining the model coefficient and testing their significance. The 

estimations of VAR equations were analyzed by use of multiple least square. The 

endogenous variable rainfall was the determinant, and the target for this study was to 

obtain equations in terms of 𝑥0 in all the stated zones.  

4.2.1 Lag order selection  

When using a VAR-model it is important to use the correct number of lags. Lag 

determination was an important step and optimal lag for each zone was obtained 

through lag selection criterion of AIC, HQ, SC and FPE. 

4.2.2 Zone one lag order selection 

In zone one the lag order was 3 as shown below 
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Table 4.1: Lag order and criteria for zone one 

$selection 

===================================== 

AIC(n)      HQ(n)             SC(n)    FPE(n) 

---------------------------------------------------------------- 

    3          3                   3       3  

---------------------------------------------------------------- 

$criteria       

 

   1             2            3           4           5             6              7            8          9            10    

-----------------------------------------------------------------------------------------------------------------

AIC(n)  -6.441    -9.470    -16.989   -16.828   -13.960   -14.725   -15.662    -16.096   -16.459   -11.615 

HQ(n)   -6.364    -11.406  -16.312    -15.551   -13.617   -14.315   -15.186   -15.553   -15.849    -9.327 

SC(n)    -6.236    -9.087    -15.176   -14.087   -13.041   -13.627   -14.386    -14.641 -14.825   -11.054 

FPE(n)  0.002    0.0001    0.00000   0.00001   0.0000    0.0000     0.0000     0.0000   0.0000   0.00000 

----------------------------------------------------------------------------------------------------------------- 

The lag selection is obtained from AIC where its criteria had the minimal value. 

4.2.3 The model system output for zone one 

To ensure the model used is stable the Roots of the characteristic polynomial are 

obtained and confirmed that they are inside the unit circle. 

Roots of the characteristic polynomial are as listed below. 

0.4781 0.4782 0.4649 0.4289 0.4288 0.4287 0.3997 0.3936 0.3935 0.3659 0.3658 

0.3526 0.3528 0.3085 0.3185 0.2918 0.2915 0.2899 0.2555 0.2434 0.2432 

This implies that the Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6  

are stationary and the model can be developed. 

The zone one model  

𝑥0 = 0.056 + 0.087𝑥0. l1  + 0.142𝑥1. l1   + 0.187𝑥3. l1   + 1.08𝑥4. l1   + 

0.072𝑥6. l1   + 0.108𝑥0. l2  - 0.101𝑥1. l2   + 0.37𝑥3. l2   + 0.0165𝑥4. l2   + 

0.39𝑥6. l2  + 0.44𝑥0. l3  + 0.14𝑥1. l3  + 0.45𝑥3. l3  + 0.39𝑥4. l3   - 0.0415𝑥6. l3  . 
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Zone one model coefficient testing 

Table 4.2: Zone one model coefficient 

Variables Estimate Std. Error t-value Pr(>|t|)     

𝑥0. l1      0.087072    0.009360   -9.303 3.07e-06 *** 

𝑥1. l1   0.142341    0.031443   -4.527 0.001097 ** 

𝑥3. l1   0.187338    0.044428   -4.217 0.001781 ** 

𝑥4. l1   1.082147    0.084548 -12.79 1.59e-07 *** 

𝑥6. l1     0.071938  0.008197  -5.368 4.00e-04 *** 

𝑥0. l2     0.10808    0.040665   -2.479 0.032598 *   

𝑥1. l2   -0.101519    0.026880 -3.777 0.036216 * 

𝑥3. l2     0.370303    0.076375   -4.848 0.000673 *** 

𝑥4. l2     0.016500    0.260521 0.462 0.007417 *** 

𝑥6. l2     0.392382    0.91500    1.839 0.012372 * 

𝑥0. l3   0.43523   0.05175    4.905 0.001755 ** 

𝑥1. l3   0.141775     0.08784   -4.792 0.000215 *** 

𝑥3. l3   0.44951   0.08137    3.535 4.31e-06 *** 

𝑥4. l3   0.38672    0.07908    2.263 0.002771 ** 

𝑥6. l3   -0.0415    0.0165    0.036 0.095243 * 

𝐶𝑜𝑛𝑠𝑡  0.056100    0.212506 0.264 0.007147 *** 

 

The model parameters are all statistically significant at different levels. From the 

analysis 𝑥2   and 𝑥5    were dropped from the model since they had no granger causality 

to the endogenous variable x and their parameters were not significant.  

The coefficients were highly significant including the constant. The model had also a 

great fit, as the adjusted R2 was 0.9895, meaning that 98.95% of a change in the 

response variable were explained by the model. This result is presented in the appendix 

III output of the analysis. 

4.2.4 Model diagnostic test 

The following test were tested to check model suitability; serial correlation, arch, 

normality test and stability test to a certain that the model was stable. The test found 

that for serial correlation the p-value = 0.152 was not significant which implied that 

there was no serial correlation of the residual inside the VAR system and thus the test 

was approved. The test for heteroscedasticity was done using ARCH test that gave a p-

value = 1.2e-16 therefore the test was good and the model does not suffer from 
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heteroscedasticity. The normality test failed, but it did not rule out the development of 

the model and its application. The stability test was represented in the graphs which 

displayed no structural breaks, since no point were outside the confidence interval lines. 

Thus, the system was stable and suitable for the forecasting. The tests are well presented 

in appendix III. 

4.2.5 Zone two  

In zone two the lag order was 3 as shown below 

Table 4.3: Lag order and criteria for zone two 

$selection 

===================================== 
AIC(n)      HQ(n)             SC(n)    FPE(n) 

---------------------------------------------------------------- 

    3          3                   3       3    

--------------------------------------------------------------- 

$criteria 

=================================================================== 

1             2                  3           4           5             6              7              8            9        10    

----------------------------------------------------------------------------------------------------------------- 

AIC(n) -21.250   -21.333   -21.350  -21.336   -21.312   -21.290   -21.327  -21.387  -21.348 -21.311 

HQ(n)  -21.174   -21.191   -21.274   -21.121   -20.970   -20.881   -20.851  -20.845 -20.739 -20.636 

SC(n)  -21.046   -20.951   -20.311   -21.775   -20.394   -20.194   -20.052   -19.935 -19.717 -19.502 

FPE(n)       0             0       0        0        0            0              0            0     0       0    

----------------------------------------------------------------------------------------------------------------- 

The lag selection is obtained from AIC where its criteria had the minimal value. 

4.2.6 The model system output for zone two 

The Roots of the characteristic polynomial were obtained and confirmed to be inside 

the unit circle. They included: 0.8092 0.4988 0.4987 0.4601 0.4222 0.4221 0.4163 

0.4161 0.4104 0.3603 0.3613 0.3479 0.3477 0.3440 0.3439 0.3213 0.3211 0.3152 

0.3151 0.1289 0.1287 

It is important to observe that all the roots are inside the unit circle, which means that 

the system is stable. The zone two model coefficient were obtained and inserted to form 

the model. 
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𝑥0    = 0.037 + 0.571𝑥0. l1-2.01 𝑥1. l1+0.727 𝑥3. l1+ 0.922𝑥4. l1+ 0.326 

𝑥6. l1+0.856 𝑥0. l2+1.47 𝑥1. l2+ 0.945 𝑥3. l2+ 0.954 𝑥4. l2- 0.292 𝑥6. l2+0.294 

𝑥0. l3 - 0.418 𝑥1. l3 + 0.449 𝑥3. l3 + 0.286 𝑥4. l3 + 0.00414 𝑥6. l3 

 

Zone two model coefficient testing 

Table 4.4: Zone two model coefficient 

Variables Estimate Std. Error t value Pr(>|t|)     

𝑥0. l1 0.57135     0.03947   14.477 8.13e-10 *** 

𝑥1. l1 -2.01085     0.12175 -16.516 1.42e-10 *** 

𝑥3. l1 0.72686     0.10209    7.120 5.17e-06 *** 

𝑥4. l1 0.92207     0.08577   10.751 3.78e-08 *** 

𝑥6. l1 0.32639     0.10769    3.031 0.008986 ** 

𝑥0. l2 0.85648     0.11749    7.290 3.97e-06 *** 

𝑥1. l2 1.47058     0.18822   -7.813 1.80e-06 *** 

𝑥3. l2 0.94533     0.16376    5.773 4.83e-05 *** 

𝑥4. l2 0.95473     0.15654    6.099 2.75e-05 *** 

𝑥6. l2 -0.29238     0.15900    1.839 0.087237.   

𝑥0. l3 0.29352     0.07515    3.905 0.001585 ** 

𝑥1. l3 -0.41775     0.08478   -4.927 0.000223 *** 

𝑥3. l3 0.44999     0.08137    5.530 7.41e-05 *** 

𝑥4. l3 0.28647     0.07908    3.623 0.002771 ** 

𝑥6. l3 0.00415     0.06538    0.063 0.0095024 **  

𝐶𝑜𝑛𝑠𝑡 0.03735     0.12818    0.291 0.0017508 *** 

 

The model coefficients were statistically significant except 𝑥6. l2 which had a p-value= 

0.087237, but it was still used to form the model. Two variables 𝑥2 and 𝑥5 were dropped 

from the model since they had no granger causality to the endogenous variable x and 

their parameters were not significant. The model also had a great fit, as the adjusted 𝑅2 

was 0.9961, meaning that 99.61% of the change in the response variable was explained 

by this regression model. It was also worth mentioning that the trend coefficients were 

highly significant including the constant.  This result is presented in the appendix III 

output of the analysis. 

4.2.7 Model diagnostic test 

The stability test used Portmanteau Test (asymptotic) which found that the serial 

correlation had the p-value = 0.1328, therefore no serial correlation of the residual 
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inside the model and thus the test was approved. The test for heteroscedasticity was 

done using ARCH test that gave a p-value = 0.1622 therefore the test was good and the 

model does not suffer from heteroscedasticity. The normality test failed, but it did not 

rule out the development of the model and its application. The stability test was 

represented in the graphs which displayed no structural breaks, since no point were 

outside the confidence interval lines. Thus, the system was stable and suitable for the 

forecasting. All these tests were well presented in appendix III. 

4.2.8 Zone three  

In zone three the lag order was 3 as shown below 

Table 4.5: Zone three Lag order and criteria   

$selection 

===================================== 

AIC(n)      HQ(n)             SC(n)    FPE(n) 

---------------------------------------------------------------- 

    3          5                   4       3    

--------------------------------------------------------------- 

$criteria 

============================================================= 

1             2            3           4         5             6              7          8         9        10    

------------------------------------------------------------------------------------------------------- 
AIC(n)   -21.418   -21.401   -21.459  -21.410   -21.377   -21.352   -21.340  -21.347 -21.301 -21.277 

HQ(n)   -21.035    -21.258   -21.150   -21.143   -21.334   -20.943   -20.864 -20.805 -20.693 -20.602 

SC(n)    -20.206    -21.019   -20.799   -21.679   -20.460   -20.256   -20.065 -19.894 -19.670 -19.468 

FPE(n)     0              0              0            0              0             0            0           0            0           0   

------------------------------------------------------------------------------------------------------- 

The lag order was determined from criteria with the minimal value, which happened to 

be AIC with order three.  

4.2.9 Zone three model  

The Roots of the characteristic polynomial were obtained and confirmed to be inside 

the unit circle. They included: 0.8296 0.4461 0.412 0.422 0.4123 0.4122 0.3735 

0.3521 0.3542 0.3460 0.3459 0.341 0.342 0.3301 0.3311 0.3248 0.3247 0.2998 



74 
 

 

0.2996 0.1693 0.1691. All the roots are inside the unit circle, which means that the 

system is stable. 

The observed roots values are all inside the unit circle, which means that the model is 

generally stable. 

𝑥0 = 0.23 - 0.67 𝑥0. l1 - 1.51𝑥1. l1+ 2.42 𝑥3. l1+ 2.39 𝑥4. l1+ -0.54𝑥6. l1 +-

0.93𝑥0. l2 +1.48𝑥1. l2  + 2.83𝑥3. l2 + 2.37𝑥4. l2 + 2.37𝑥6. l2 +-0.61𝑥0. l3 +-

0.49𝑥1. l3 +1.20𝑥3. l3 + 0.85𝑥4. l3 + 0.41𝑥6. l3 

 

Zone three model coefficient testing 

Table 4.6: Zone three model coefficient 

Variables Estimate Std. Error t value Pr(>|t|)     

𝑥0. l1 -0.67334     0.09010   -7.473 1.24e-05 *** 

𝑥1. l1 -1.51131     0.11488 -13.156 4.50e-08 *** 

𝑥3. l1 2.42137     0.30024    8.065 6.05e-06 *** 

𝑥4. l1 2.38636     0.31760    7.514 1.18e-05 *** 

𝑥6. l1 -0.54220     0.09695   -5.593 0.0162 * 

𝑥0. l2 -0.93043     0.11799   -7.886 7.49e-06 *** 

𝑥1. l2 -1.48498     0.14198 -10.459 4.71e-07 *** 

𝑥3. l2 2.83377     0.38570    7.347 1.45e-05 *** 

𝑥4. l2 2.36645     0.39394    6.007 8.84e-05 *** 

𝑥6. l2 -0.58036     0.12982   -4.470 0.000946 *** 

𝑥0. l3 -0.61184     0.06635   -9.221 1.65e-06 *** 

𝑥1. l3 -0.49540     0.08979   -5.518 0.000181 *** 

𝑥3. l3 1.20002     0.19285    6.223 6.51e-05 *** 

𝑥4. l3 0.84650     0.19622    4.314 0.001227 ** 

𝑥6. l3 -0.40831     0.08150   -5.010 0.001396 ** 

𝐶𝑜𝑛𝑠𝑡 0.23067     0.35266   --0.654 0.045264 * 

 

The model coefficients were statistically significant and they were used to develop the 

model for zone three. The analysis found that 𝑥2 and 𝑥5 p-values were not significant 

and thus not included in the model. The VAR model was able to confirm that the 

response variable was affected by both its own lagged values and the lagged values of 

the predictor variables. These coefficients were all highly significant. The model also 

had a great fit, as the adjusted 𝑅2  was 0.9994, meaning that 99.94% of a change in the 

response variable was explained by this regression model. It was also worth mentioning 
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that the trend coefficients were highly significant and the intercept was also significant.  

Which means that the model variables were determined by the considered variables and 

other variables that were not taken into consideration in this study.  

4.2.10 Model three diagnostic test 

The stability test used asymptotic test which found that the serial correlation had the p-

value = 0.1167, therefore no serial correlation of the residual in the model and thus the 

test was approved. The test for heteroscedasticity was done using ARCH test that gave 

a p-value = 1.4e-6 therefore the test was good and the model does not suffer from 

heteroscedasticity. The normality test used the JB-test (multivariate) where p-value less 

and for kurtosis and skewness the p-value was great than 0.05 which passed the 

normality test. The stability test graphs had no structural breaks, since no point were 

outside the confidence interval lines. Thus, the system was stable and suitable for the 

forecasting. All these tests were well presented in appendix III. 

4.2.11 Zone four model 

In zone four the lag order was 2 as shown below 

Table 4.7: Lag order and criteria for zone four 

$selection 

===================================== 

AIC(n)      HQ(n)             SC(n)    FPE(n) 

---------------------------------------------------------------- 

    2          3                   3       2    

--------------------------------------------------------------- 

$criteria 

============================================================= 

1             2            3           4         5             6           7     8        9        10    

----------------------------------------------------------------------------------------------

--------------------- 
AIC(n)   -20.508  -20.768  -20.645  -20.655  -20.631  -20.615  -20.576     -20.556   -20.514   -20.474 

HQ(n)    -20.432  -20.542  -20.554  -20.379   -20.288  -20.206   -20.100   -20.014  -19.905    -19.799 

SC(n)     -20.304   -20.302  -20.403   -19.916   -19.713  -19.519   -19.301  -19.104  -18.882    -18.665 

FPE(n)     0              0              0            0              0             0            0           0            0           0   

------------------------------------------------------------------------------------------------------- 
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The above table show the value of the smallest selection criteria which was taken to be 

AIC of lag order 2. 

4.2.12 The model system output for zone four 

The Roots of the characteristic polynomial were obtained using R-software and they 

were confirmed to be inside the unit circle. They included: 0.9207 0.4219 0.4066 

0.3963 0.3913 0.3913 0.3743 0.3568 0.3553 0.257 0.2474 0.18 0.09407 0.09417. All 

the roots were inside the unit circle, which made the model to be stable.  

𝑥0 = 0.11 - 5.16𝑥0. l1 +1.80 𝑥1. l1 + 1.46𝑥2. l1 + 1.71𝑥3. l1 + 1.74𝑥4. l1 + 

2.33𝑥5. l1 + 2.29𝑥6. l1 + 3.09x𝑥0. l2 +1.19 𝑥1. l2 + 2.10 𝑥2. l2 + 1.77𝑥3. l2 + 

5.61𝑥4. l2 + 0.36𝑥5. l2 - 2.43𝑥6. l2  

Zone four model coefficient testing 

Table 4.8: Zone four model coefficient 

Variables Estimate Std. Error t value Pr(>|t|)     

𝑥0. l1 -5.1629      1.4287   -3.614 0.004738 ** 

𝑥1. l1 1.8011      0.5829   -3.090 0.011449 *   

𝑥2. l1 1.4644      0.2707    5.410 0.000297 *** 

𝑥3. l1 1.7064      0.9135    1.868 0.091323.   

𝑥4. l1 1.7417      0.5853   -2.976 0.013913 *   

𝑥5. l1 2.3322      0.8748    2.666 0.023659 *   

𝑥6. l1 2.2922      1.0235    2.240 0.049037 *   

𝑥0. l2 3.0851      0.9321   -3.310 0.007883 ** 

𝑥1. l2 1.1852      0.3807   -3.113 0.011006 *   

𝑥2. l2 2.0965      0.6506    3.222 0.009137 **  

𝑥3. l2 1.7720      0.3811   -4.649 0.000909 *** 

𝑥4. l2 5.6150      1.7671   -3.178 0.009860 ** 

𝑥5. l2 0.3640      0.3348    1.087 0.0302471 *    

𝑥6. l2 -2.4316      0.6745   -3.605 0.004809 ** 

𝐶𝑜𝑛𝑠𝑡 0.1099      0.6123    0.179 0.000861 *** 

 
The model coefficients were statistically significant except 𝑥3. l1 which had a p-value= 

0.091323 however, they were used to develop the model for zone four. The adjusted 𝑅2  

is 0.994, meaning that 99.4% of a change in the response variable were explained by 

this regression model. It was also worth mentioning that the trend coefficients were 

highly significant.  



77 
 

 

4.2.13 Model four diagnostic test 

The stability test used asymptotic test which found that the serial correlation had the p-

value = 1.624e-09, therefore no serial correlation of the residual in the model and thus 

the test was approved. The test for heteroscedasticity was done using ARCH test that 

gave a p-value = 2.2e-16 therefore the test was good and the model does not suffer 

from heteroscedasticity. The normality test used the JB-test, kurtosis and skewness test 

had their p-value was great than 0.05 which passed the normality test. The stability test 

graphs had no structural breaks, since no point were outside the confidence interval 

lines. Thus, the system was stable and suitable for the forecasting. All these tests were 

well presented in appendix III. 

4.2.14 Zone five model 

In zone five the lag order was 1 as shown below 

Table 4.9: Lag order and criteria for zone five 

$selection 

===================================== 

AIC(n)      HQ(n)             SC(n)    FPE(n) 

---------------------------------------------------------------- 

    1          1                  1       1   

--------------------------------------------------------------- 

$criteria 

============================================================= 

  1           2         3           4           5             6        7           8        9        10    

------------------------------------------------------------------------------------------------------- 
AIC(n)   13.193   24.078   17.843   19.553    16.506      14.214    22.265    20.592    20.880   22.227 

HQ(n)    13.403   24.154  17.987     19.830    16.850    14.625   22.743     21.137    20.269   21.549 

SC(n)     3.756    24.282   18.227    10.295   7.427        5.314     13.545     12.051    10.757  10.411 

FPE(n)    6.145   28.631  87.900     15.000   53.675      20.04     93.52       69.22       71.808   10.108 

------------------------------------------------------------------------------------------------------- 

The above table show the value of the smallest selection criteria which was taken to be 

AIC of lag order 1. 
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4.2.15 The model system output for zone five 

The Roots of the characteristic polynomial were obtained using R-software and they 

were confirmed to be inside the unit circle. They included: 0.7837 0.7449 0.7449 

0.7419 0.7419 0.7225 0.6662. All the roots were inside the unit circle, which made the 

model to be stable. 

𝑥0 = 0.46 + 0.75𝑥0. l1 - 0.157𝑥1. l1 + 0.59𝑥2. l1 +0.80𝑥3. l1 + 1.22𝑥4. l1 - 

0.38𝑥5. l1 + 0.74𝑥6. l1  

 

Zone five model coefficient testing 

Table 4.10: Zone five model coefficient 

 

Variables Estimate Std. Error t value Pr(>|t|)     

𝑥0. l1 0.75462     0.19954    3.782   0.00359 ** 
𝑥1. l1 -0.15744     0.38071   -0.414   0.03687 *    
𝑥2. l1 0.58847     0.05364 -10.972 6.75e-07 *** 
𝑥3. l1 0.80424     0.18164   -4.428   0.00128 ** 
𝑥4. l1 1.21706     0.37087   -3.282   0.00827 ** 
𝑥5. l1 -0.38317     0.13787   -2.779   0.01948 *   
𝑥6. l1 0.73979     0.30570    2.420   0.03606 *   
𝐶𝑜𝑛𝑠𝑡 0.45538     1.05863    0.430   0.67620    *** 

 

The coefficients were highly significant including the constant. The model had also a 

great fit, as the adjusted 𝑅2  was 0.9823, meaning that 98.23% of a change in the 

response variable were explained by the regression model.  

4.2.16 Model diagnostic test 

The stability test used asymptotic test which found that the serial correlation had the p-

value = 0.03993, therefore no serial correlation of the residual in the model and thus 

the test was approved. The test for heteroscedasticity was done using ARCH test that 

gave a p-value = 4.23e3 therefore the test was good and the model suffers from 

heteroscedasticity. The normality test used the JB-test, kurtosis and skewness test had 

their p-value was great than 0.05 which passed the normality test. The stability test 



79 
 

 

graphs had no structural breaks, since no point were outside the confidence interval 

lines. Therefore, the system was stable and suitable for the forecasting. All these tests 

were well presented in appendix III.    

4.2.17 Global vector  

In Global vector the lag order was 3 as shown below 

Table 4.11: Lag order and criteria for Global vector 

$selection 

===================================== 

AIC(n)      HQ(n)             SC(n)    FPE(n) 

---------------------------------------------------------------- 

    3          3                  3       3    

--------------------------------------------------------------- 

 

$criteria 

========================================================== 

                1         2            3           4        5         6           7        8        9        10    

--------------------------------------------------------------------------------------------------- 
AIC(n)   -20.691  -20.654  -20.829  -20.704 -20.710  -20.687  -20.732  -20.696 -20.752  -20.712 

HQ(n)   - 20.615  -20.512  -20.719  -20.428 -20.368  -20.278  -20.257  -20.154 -20.144  -20.037 

SC(n)     -20.487  -20.272   -20.568  -19.965 -19.792  -19.591  -19.458  -19.243 -19.121 -18.903 

FPE(n)     8.631    7.900       6.145     15.000   13.675    20.04     13.52     19.22      7.808  10.108 

---------------------------------------------------------------------------------------------------

------------------ 

The lag order of global vector was 3 as obtained from the above tables.4.113…18  

4.2.18 The model system output for global vector 

The Roots of the characteristic polynomial were obtained using R-software and they 

were confirmed to be inside the unit circle. They included: 0.7834 0.4474 0.423 0.423 

0.4173 0.4173 0.4105 0.4105 0.3943 0.36 0.36 0.336 0.336 0.3359 0.3359 0.3256 

0.3256 0.3248 0.3248 0.2634 0.2634. All the roots were inside the unit circle, which 

made the model to be stable. 

𝑥0= 0.05 + 1.31𝑥0. l1 + 0.70𝑥1. l1 + 2.68𝑥3. l1 - 4.15𝑥4. l1 + 1.89𝑥6. l1 + 

1.08𝑥0. l2 + 0.56𝑥1. l2 + 3.12𝑥3. l2 + 4.83𝑥4. l2 + 3.66𝑥6. l2 + 0.67𝑥0. l3 + 

0.38𝑥1. l3 + 1.18𝑥3. l3 + 1.01𝑥4. l3 +  1.93𝑥6. l3  
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The Global model coefficient testing 

Table 4.12: Global model coefficient 

Variables Estimate Std. Error t value Pr(>|t|)     

𝑥0. l1 1.31387     0.13867   -9.475 1.26e-06 *** 

𝑥1. l1 0.69994     0.10293    6.800 2.95e-05 *** 

𝑥3. l1 2.68024     0.24603 -10.894 3.12e-07 *** 

𝑥4. l1 -4.14922     0.48832   -8.497 3.67e-06 *** 

𝑥6. l1 1.88787     0.23913    7.895 7.41e-06 *** 

𝑥0. l2 1.07847     0.20245   -5.327 0.000242 *** 

𝑥1. l2 0.55664     0.18559    2.999 0.012095 *   

𝑥3. l2 3.11604     0.28575 -10.905 3.09e-07 *** 

𝑥4. l2 4.83226     0.72821   -6.636 3.68e-05 *** 

𝑥6. l2 3.66172     0.42100    8.698 2.92e-06 *** 

𝑥0. l3 0.66616     0.12831   -5.192 0.000298 *** 

𝑥1. l3 0.38099     0.09545    3.991 0.002117 ** 

𝑥3. l3 1.17905     0.13707   -8.602 3.26e-06 *** 

𝑥4. l3 1.01060    0.31844  -3.174 0.008863 ** 

𝑥6. l3 1.92924     0.23391    8.248 4.88e-06 *** 

𝐶𝑜𝑛𝑠𝑡 0.05123     1.14477   -0.045 0.000156 *** 

 

The fitted model explained 96.9% of the model variables the value that was obtained 

from adjusted R- squared which showed that the model fitted the data better. R-

squared measures the strength of the relationship between your model and the 

dependent variable on a convenient of 0% to 100% scale.  

4.2.19 Model diagnostic test for global vector. 

The stability test used asymptotic test which found that the serial correlation had the p-

value = 1.256e-05, therefore no serial correlation of the residual in the model and thus 

the test was approved. The test for heteroscedasticity was done using ARCH test that 

gave a p-value = 3.21e-6 therefore the test was good and the model suffers from 

heteroscedasticity. The normality test used the JB-test, kurtosis and skewness test which 

had their p-value was less than 0.05 which failed the normality test. The stability test 

graphs had no structural breaks, since no point were outside the confidence interval 

lines. Thus, the system was stable and suitable for the forecasting. All these tests were 

well presented in appendix III.   
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4.2.20 Models Performance Accuracy Measure 

The accuracy was measured using sensitivity analysis. Each model was tested using 

MAE, MSE and RMSE.  

4.2.21 Performance Measures   

The different accuracy measure gave the following values in different zones as show in 

the table below; 

The table below contain accuracy measure values for all the Models 

Table 4.13: Performance Analysis for the developed models. 

ZONES MAE  MSE RMSE AIC BIC 

ZONE 1 0.897018 0.9131199 0.9555731 33.37781 42.70324 

ZONE 2 0.8354289 0.7486969 0.8652727 31.32569 43.48938 

ZONE 3 0.9090333 0.778894 0.8825497 37.57943 49.74311 

ZONE 4 0.7339015 0.698275 0.835628 45.21378 56.29842 

ZONE 5 0.9006911 0.9596382 0.979611 33.37781 42.70324 

GLOBAL 

VEC 

0.889702 0.923199 0.960832 31.73782 43.90374 

 

In addition, the findings also indicated that the Performance of the models ranged 

between 73.39% to 90.90% for MAE, 69.82% to 95.96% for MSE and 83.56% to 

97.08% for RMSE. The performance criterion used were AIC and BIC where AIC gave 

the minimal values. These shows that the models Performances were good. 

4.2.22 Sensitivity Analysis 

The sensitivity analysis was conducted by use of confusion Matrix. The matrix was 

represented by Zone Three extracted as shown below  

                      status1 

    pred1       correct      incorrect 

correct         530             18 

incorrect       11              121 

From the confusion matrix; 
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Accuracy =  
651

680
= 0.9574,  Sensitivity =  

530

541
= 0.9797 , Specificity =   

121

139
=

0.8705 

The model gives an accuracy of 96.55% of the prediction and a 96% sensitivity level. 

4.3 Forecasting the rainfall pattern 

4.3.1 Zone one: Residual analysis 

 

Figure 4.3: Ljung-Box test 

The Ljung-box test shows three items; the graph of the residuals, which displays the 

deviations from the actual values, it also displayed the ACF graph, which helps to check 

for uncorrelation in the residuals. It is the standard residual diagnostic to check if they 

behave as white noise and therefore the model can be used for forecasting. In this case 

the developed model can be used for the intended purposes of forecasting. The last part 

is the histogram, which is used to check for the gaussian behavior. The bell shape is 
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well displayed in the histogram, and since a good forecast method should have normally 

distributed residuals, then the model would give a good forecast. 

Stability test for zone one 

 

Figure 4.4: Stability graph 

The study employed to investigate model stability by developing OLS-CUSUM graphs 

dor each variable. The model is found to be stable because the graph oscillates within 

the control limit lines.  
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4.3.2 Zone one forecasting analysis 

Table 4.14: Zone one forecasting analysis  

Points fcst lower upper CI 

1 0.4435105  0.3638516944  0.8508728  0.4873558 

2 0.5907031 0.0723471584  1.2537533  1.1814061 

3 0.4862335  0.3390821988  1.1115492  0.7724670 

4 0.7652912   0.0008073628  1.5297750  1.5289676 

5 0.5235901  0.2554446203  1.3026249  1.0471803 

6 0.4256933  0.3559468631  1.2073335  0.8513866 

7 0.5165178 0.4687087960  1.1017444  0.6330356 

8 0.6283320  0.4594947612  1.1161588  0.6566640 

9 0.6991094  0.4991364994  1.0973553  0.5982188 

10 0.5 431256  0.4608876550  1.1471390  0.6862513 

 

The table shows the forecasted values and the intervals between the lower and upper 

limit values where the forecasting values will lie between. It also shows the confindent 

interval from the mean forecasted value. 

4.3.3 Zone one model comparison results of actual and predictive 

Table 4.15: The Prediction Accuracy Test 

Points Actual value Predicted value Error 

1 0.09292385 0.09307039 -0.00014653 

2 0.60660266 0.55920463 0.04739802 

3 0.25305800 0.18979422 0.06326378 

4 0.36735499 0.31946700 0.04788799 

5 0.64869131 0.52741294 0.12127836 

6 0.08976720 0.06899376 0.02077343 

7 0.18768907 0.50749100 -0.3198019 

8 0.1282763 0.1236670 0.0046093 

9 0.1582632 0.1406648 0.0175984 

10 0.7836330 0.7575771 0.0260559 

 

This table above was used to campare the forecasted value from BVAR model and the 

actual values. The p-value of t-test is p = 0.8613 which is greater than the signigicance 

level 0.05. In conclusion, there is no difference between the two variance of actual and 

predicted values. The developed model had a high forecasting ability.  
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Figure 4.5: HoltWinters forecast for zone one 

The figure shows the 80% and 90%, ten months forwand forecasting, where the thick 

blue represents the 80% while the light blue is the 90%. 

4.3.4 Zone Two 

Zone Two Forecasting Analysis 

Table 4.16: Zone Two Forecasting Analysis 

Points fcst lower upper CI 

1 0.16261840 0.0496275 0.1710383 0.1214108 

2 0.16079294 0.1454337 0.3327519 0.1873182 

3 0.23503271 0.2104697 0.6805351 0.4700654 

4 0.27284283 0.1855569 0.7312426 0.5456857 

5 0.42222782 0.3651445 0.6096001 0.2444556 

6 0.53352417 0.4732197 0.5402680 0.0670483 

7 0.47436820 0.4399424 0.5886788 0.1487364 

8 0.55271189 0.3665874 0.6720112 0.3054238 

9 0.46461172 0.3558062 0.6850296 0.3292234 

10 0.51846059 0.4034188 0.6403400 0.2369212 

The table shows the forecasted values and the intervals between the smallest lower limit 

= 0.4034188 and maximum upper limit = 0.7312426 values where the forecasting values 

will lie between. It also shows the confindent interval from the mean forecasted value. 
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Zone two model comparison results of actual and predictive 

Table 4.17: Zone Two Prediction Error Analysis 

Points Actual value Predicted value Error 

1 0.2099334357 0.397611215 -0.187677780 

2 0.0087685612 0.187554743 -0.178786182 

3 0.0009600614 0.136364679 -0.135404617 

4 0.0641001024 0.008314018   0.055786085 

5 0.0698604711 0.004570093   0.065290378 

6 0.0239375320 0.032621564 -0.008684032 

7 0.0501472094 0.435995180 -0.385847971 

8 0.3279249872 0.304371484   0.023553503 

9 0.0451228879 0.071784835 -0.026661948 

10 0.3874017 0.3775781 0.0098236 

    

This table above was used to campare the forecasted value from BVAR model and the 

actual values. The p-value of t-test is p = 0.5609 which is greater than the signigicance 

level 0.05. In conclusion, there is no difference between the two variance of actual and 

predicted values.  

4.3.5 Zone Three Forecasting 

Zone three forecasting analysis 

Table 4.18: Forecasting Intervals Analysis 

Points fcst lower upper CI 

1 0.81191764 0.7894719 0.8343634 0.0448915 

2 0.46466077 0.1709029 1.1002245 0.9293216 

3 0.55993465 0.4613027 0.8811720 0.4198693 

4 0.32951045 0.1329601 0.5919810 0.5919810 

5 0.63947370 0.5047473 0.8257999 0.3210526 

6 0.08500537 0.0193076 0.1893183 0.1700107 

7 0.15270713 0.0975858 0.2700716 0.1724858 

8 0.56771934 0.4283934 0.8070453 0.3786519 

9 0.56980961 0.4212342 0.9183850 0.4971508 

10 0.32853181 0.1020572 0.6550064 0.5529492 

 

The table shows the forecasted values and the intervals between the smallest lower limit 

= 0.0193076 and maximum upper limit = 1.1002245 values where the forecasting values 

will lie between. It also shows the confindent interval from the mean forecasted value 
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Zone three BVAR model comparison results of actual and predictive 

Table 4.19: Prediction Error Analysis 

Points Actual value Predicted value Error 

1 0.29505728 0.07323858 0.22181870 

2 0.36242070 0.64851021 -0.28608951 

3 0.19424034 0.07051018 0.12373016 

4 0.10825613 0.01842611 0.08983002 

5 0.13472685 0.16657751 -0.03185066 

6 0.06909771 0.02545807 0.04363964 

7 0.22121309 0.57787942 -0.35666633 

8 0.44165031 0.57137946 -0.12972915 

9 0.14476747 0.42009414 -0.27532667 

10 0.1266253 0.1445741 -0.0179488 

 

This table above was used to campare the forecasted value from BVAR model and the 

actual values. The p-value of t-test is p = 0.2698 which is greater than the signigicance 

level 0.05. In conclusion, there is no difference between the two variance of actual and 

predicted values.  

4.3.6 Zone Four 

Zone four forecasting analysis 

Table 4.20: Forecasting Analysis 

Points fcst lower upper CI 

1 0.6486216 0.3591513 0.8563945 0.4972432 

2 0.6304823 0.3801009 0.7610655 0.3809646 

3 0.5133975 0.4104680 0.7372629 0.3267949 

4 0.5894680 0.4746094 0.8535454 0.3789360 

5 0.6031851 0.3865770 0.9829473 0.5963703 

6 0.4109852 0.2913824 0.6133528 0.3219704 

7 0.4273526 0.2789988 0.5337039 0.2547051 

8 0.3834961 0.3230151 0.7900073 0.4669922 

9 0.3445475 0.3033779 0.5524729 0.2490950 

10 0.4294349 0.3802816 0.6391513 0.2588697 

 

The table shows the forecasted values and the intervals between the smallest lower limit 

= 0.2789988 and maximum upper limit = 0.9829473 values where the forecasting values 

will lie between. It also shows the confindent interval from the mean forecasted value. 
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Zone four BVAR model comparison results of actual and predictive 

Table 4.21: Zone four Prediction Error Analysis 

Points Actual value Predicted value Error 

1 0.71353620 0.6721457 0.04139053 

2 0.01932494 0.2453208 -0.22599591 

3 0.01403463 0.1868350 -0.17280033 

4 0.35768625 0.6882216 -0.33053531 

5 0.23229276 0.3104205 -0.07812777 

6 0.68419902 0.7472730 -0.06307402 

7 0.37644281 0.6778950 -0.30145214 

8 0.17095138 0.2950825 -0.12413116 

9 0.29122945 0.4463421 -0.15511263 

10 0.20264953 0.2509196 -0.14827010 

The table above was used to campare the actual and predicted values and calculate the 

accuracy level. The p-value of t-test is p= 0.8119 which is greater than the signigicance 

level 0.05. In conclusion, there is no difference between the two variance of actual and 

predicted values.  

4.3.7 Zone Five 

Zone five forecasting analysis 

Table 4.22: Forecasting Analysis for Zone five 

Points fcst lower upper CI 

1 0.4486216 0.3591513 0.6563945 0.2972432 

2 0.5904823 0.3801009 0.7610655 0.3809646 

3 0.6133975 0.5104680 0.7372629 0.2267949 

4 0.6894680 0.4746094 0.8535454 0.3789360 

5 0.5031851 0.3865770 0.9929473 0.6063703 

6 0.4109852 0.2913824 0.7133528 0.4219704 

7 0.4273526 0.2789988 0.6337039 0.3547051 

8 0.3834961 0.3230151 0.5900073 0.2669922 

9 0.4445475 0.3633779 0.6524729 0.2890950 

10 0.5294349 0.3802816 0.7391513 0.3588697 

The table shows the forecasted values and the intervals between the smallest lower limit 

= 0.2789988 and maximum upper limit = 0.9929473 values where the forecasting 

values will lie between. It also shows the confindent interval from the mean forecasted 

value. 
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Zone five model comparison results of actual and predictive 

Table 4.23: Prediction Error Analysis for Zone five 

Points Actual value Predicted value Error 

1 0.09834357 0.3677607 -0.26941716 

2 1.00000000 0.7352895 0.26471051 

3 0.59967566 0.6345414 -0.03486578 

4 0.47565543 0.6351184 -0.15946294 

5 0.13904012 0.4547479 -0.31570774 

6 0.15614502 0.3401993 -0.18405425 

7 0.08130997 0.06777652 0.01353345 

8 0.17715939 0.14582165 0.03133774 

9 0.36519333 0.32300049 0.04219284 

10 0.62482868 0.62798413 0.00315545 

 

This table above was used to campare the forecasted value from zone five model 

predicted values and the actual values. The p-value of t-test is p = 0.3893 which is 

greater than the signigicance level 0.05. In conclusion, there is no difference between 

the two variance of actual and predicted values.  

4.3.8 Global Region forecasting analysis 

Table 4.24: Forecasting Analysis for Global Vector 

Points fcst lower upper CI 

1 0.486216 0.296353 0.563945 0.267592 

2 0.304823 0.221118 0.610663 0.389545 

3 0.233975 0.104680 0.372637 0.267957 

4 0.494680   0.474609 0.535462 0.060853 

5 0.631851 0.465770 0.929481 0.464872 

6 0.198852 0.123824 0.333536 0.209712 

7 0.513526 0.389988 0.637047 0.247059 

8 0.734961 0.630151 0.900171 0.270020 

9 0.445475 0.233779 0.524737 0.290958 

10 0.294349 0.102816 0.391522 0.288706 

 

The table shows the forecasted values and the intervals between the smallest lower limit 

= 0.104680 and maximum upper limit = 0.900171 values where the forecasting values 

will lie between. It also shows the confindent interval from the mean forecasted value. 
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4.3.9 Global region model comparison results of actual and predictive 

Table 4.25: Prediction Error for Global Vector 

Points Actual value Predicted value Error 

1 0.53396298 0.53604143 -0.002078454 

2 0.14318096 0.31297298 -0.169792019 

3 0.06667926 0.22819949 -0.161520233 

4 0.15531923 0.19788896 -0.042569729 

5 0.30681526 0.52991659 -0.223101324 

6 0.11578769 0.07328579 0.042501899 

7 0.34267473 0.52983639 -0.187161659 

8 0.43071402 0.60557426 -0.174860248 

9 0.14357764 0.31468782 -0.171110183 

10 0.32300049 0.36519333 -0.04219284 

 

The p-value of t-test is p = 0.6988 which is greater than the signigicance level 0.05. In 

conclusion, there is no difference between the two variance of actual and predicted 

values for the ten point values of the months of May 2016. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.0 Introduction 

This chapter summarizes the findings of the study. It provided the conclusions that were 

drawn from the results discussed in chapter four. Finally, it provided the statistical 

contributions of the study and the recommendations for further research. 

5.1 Summary of the Findings 

This study was propelled by the requirement of the meteorological need for the 

determinants of the climate changes in assisting the meteorologists to predict the future 

weather changes.  

5.1.1 Diagnostic analysis of the Variables 

The graphs of the initial data were plotted and they exhibited a time series behavior 

which contained non stationarity. The preprocessing of data was required and at least 

first differencing was done.  Two tests were conducted to confirm data stationarity and 

causality.  

5.1.2 Model Development 

The lag order for each region were determined which was three for most of the zones, 

two for zone four and one for zone five. The models for each zone were developed after 

their coefficients were statistically obtained. The model coefficients were tested to 

ascertain their usefulness where most of them were found to be statistically significant. 

The constant in all the models were found to be statistically significant.  

5.1.3 The Model Performance Measures 

The performance analysis for the developed models were tested using MAE, MSE and 

RMS. Their critical values were determined using AIC and BIC.   
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5.1.4 Forecasting Model  

The ten-point interval estimation and actual against predicted values were forecasted 

using the developed models. This clearly was exhibited by use of graphs and 

HoltWinters diagrammatic representation for forecasting. The achieved accuracy of the 

models was found to be good for forecasting.  

5.2 Conclusion of the Study 

The following conclusions were arrived at on the basis of the study objectives: 

5.2.1 Diagnostic analysis  

After first differencing, the study variables were found to be stationary. The graphs of 

the differenced data depicted stationarity, where the mean and variance were constant. 

The stationarity test was evaluated using two tests, ADF and PP test. Their ADF and 

PP values had a significant p- value < 0.05. The variables in all the regions were found 

to have a causal effect to the exogenous variable rainfall (𝑥0), except in zone one and 

two where 𝑥2 and 𝑥5 had a p-value > 0.05. The conclusion was arrived at if both ADF 

and PP models rejected the null hypothesis, thus the data was treated to be stationary. 

All zones were found to be stationary from the ADF and confirmed by PP test which 

gave a strong statistical significance of the p – values. The granger causality test, which 

was to test if there was any serial correlation and if the lags of the predictor variables 

influenced that of response variable were conducted. It was concluded that the 

temperature, relative humidity, atmospheric pressure, wind speed, granger caused 

rainfall in all the zones but radiation and wind gust failed in zone one and two. This 

was clearly given by the statistically significant p-values in the zones. Finally, the ADF 

and PP test for unit roots was conducted for time series data used for the study. The 

result of unit root test at the first or second difference level was shown in different tables 
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appended in the appendices I. The null hypothesis of non-stationarity was performed at 

5% significance levels. The result of the test illustrated that the data series was 

nonstationary before the first differencing. However, the result of the test on the first 

difference strongly supports that all data series were stationary at 5%, significance 

level. The test was a fundamentally a statistical significance test. That means, there was 

a hypothesis testing involved with a null and alternative hypothesis and as a result a test 

statistic was computed and p-values obtained tested for its significant. From the statistic 

test and the p-values, an inference was made onto whether the given time series was 

stationary or not. In conclusion, the data was stationary and this gave an allowance for 

conducting time series analysis and developing a forecasting model. 

5.2.2 Model Development for specific zones 

The determined lag order ranged between one and three for the zones and global vector. 

The roots of the characteristic’s polynomial were equal to the number of variables and 

they were confirmed to be inside the unit circle. The coefficients of the models were 

tested for their significant and found to be less than the p-value (0.05). The models had 

also a great fit as reflected in adjusted R squared, which was more than 82%. The 

models were diagnosed by checking model suitability through; serial correlation test, 

heteroscedasticity test, normality test and stability test. The model had no serial 

correlation and their p-value was greater than 0.05. The models did not suffer from 

heteroscedasticity since their p-value < 0.05. In most of the models, the normality test 

failed, but these was attributed to the type of data used. The graphs of stability test had 

no structural breaks, since on point were outside the confidence interval lines. These 

depicted the strength of the model coefficients and their predictability ability. 

Therefore, the developed models were suitable for forecasting ability.  
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5.3 Performance and Sensitivity of the Model 

The model performances ranged between 73.56% to 90.64% for MAE, 69.82% to 

95.95% for MSE and 83.56% to 97.96% for RMSE with AIC of 33.37% which were 

termed as good. The sensitivity analysis of the models was tested using confusion 

matrix. The accuracy for zone one was 96.55% and its sensitivity was 96%. This shows 

a high level of accuracy and sensitivity of the developed models.  

5.4 Forecasting  

The researcher established and estimated a forecasting model from the daily variables. 

This was done by applying Vector Autoregressive (VAR) method and the Bayesian 

method of multivariate time series analysis. It was found that the rainfall variable and 

other related variables namely temperature, humidity, atmospheric pressure, and wind 

speed were interrelated. A VAR was then developed and a BVAR was generated and 

customized for forecasting purposes. Using the training data, it was possible to test the 

model and come up with the future predicted values. The variances of the actual and 

the predicted values were compared using t-test, and it was found that, there was no 

significant difference between their variances. Hence, rainfall patterns were forecasted 

for a maximum of ten future days. It was also found that different zones adopted 

different variables depending on their location; in zone one radiation and wind gust had 

no influences on the dependent variable. In zone two wind gust had no effect and thus 

it was dropped. In zone five radiation had very minimal effects and thus it was not 

included in the predictive model.   

5.5 Contribution of the Study 

The outcomes and the technique implemented in this study may contribute as a source 

of model for forecasting prospective of weather for other countries within the tropical 
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region. The techniques utilized and the outcomes displayed as a part of this study give 

experience into the impact of these factors on the meteorological forecasting. This study 

discovered that weather changes are influenced by several factors that need to be 

considered and applied to give a good forecast performance. The results shows that the 

use of the VAR coupled with the recognition of BVAR produced better forecasts over 

long forecasting horizons. The most important contribution of this study was the 

forecasting model developed could be used in artificial intelligent areas of 

meteorological department which would greatly improve their predictability 

performance.  

5.6 Recommendations  

This part consists of two sections recommendation which is derived from the study 

findings and recommendation for further research that the research feels that may be 

investigated further.  

5.6.1 Recommendations of the study 

Since the predictive model had a more accurate prediction, it is recommended that it be 

adopted in the area of Artificial Intelligence in weather forecasting. When comparing 

the weather variables for different regions, the rainfall pattern was been influenced by 

a number other weather variable, therefore the study recommends that for any other 

weather variable to be forecasted, influencing factors should be put into consideration. 

Different regions gave specific weather prediction models, where some of the weather 

variables had no contribution to the final models. Therefore, it is important to handle 

model per region before developing the global forecasts model. The sample sizes of 

secondary data were limited to 4 years of daily observations and the researcher 
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recommends on an increased amount of historic data which would better the accuracy 

of the model developed. 

5.6.2 Recommendations for further study  

For further research, it is recommendable to use more weather variables like 

topography, cloud cover, sun shine duration among others to improve the predictability. 

Other researchers may use other variable like temperature since the effects of global 

warming are noted through the irregular changes of precipitation or temperature. The 

study used secondary data for 2014 to 2018, therefore the researcher recommends that 

current data for 2019 to 2022 may be used to make current future predictions. Climate 

models only predict a range of possible future scenarios, the extent of how far the future 

would be should be studied. The study recommends for further inclusion of more 

weather variables in the Bayesian vector autoregression area. The researcher 

recommends for application of other technique like Random Forest and Bootstrapping 

technique to check whether the accuracy may be further improved from these models. 
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APPENDICES 

Appendix I: Analysis Tables 

Stationarity Test  

Zone One  

Table 1: Zone One Stationarity Test 

 

Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation 

lag 

parameter 

P-Value 

ADF 

P-

Value 

P.P 

Remarks 

𝑋0 -28.164 -273.58 3 0.01 0.0127 Stationary 

𝑋1 -27.153 -272.51 3 0.0121 0.0103 Stationary 

𝑋2 -27.879 -79.12 3 0.0213 0.0182 Stationary 

𝑋3 -28.808 -283.58 3 0.0031 0.0323 Stationary 

𝑋4 -29.758 -297.84 3 0.0274 0.0145 Stationary 

𝑋5 -28.762 -286.58 3 0.0015 0.0113 Stationary 

𝑋6 -28.415 -290.42 3 0.0093 0.0393 Stationary 

 

From table 1, it shows that after differencing once all the variables are stationary, and 

they have a unit root. Thus, we make a conclusion that zone one data is stationary. 

Stationarity test for zone two 

Table 2: Zone two show that the variables are Stationary 

Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation lag 

parameter 

P-Value 

ADF 

PValue 

P.P 

Remarks 

𝑋0 -11.019 -36.716 3 0.0156 0.0124 Stationary 

𝑋1 -12.984 -36.762, 3 0.0126 0.073 Stationary 

𝑋2 -10.066 -37.444 3 0.0524 0.0473 Stationary 

𝑋3 -10.249 -35.759 3 0.0026 0.0149 Stationary 

𝑋4 -11.108 -11.108 3 0.0138 0.0231 Stationary 

𝑋5 -37.055 -10.715 3 0.0361 0.0302 Stationary 

𝑋6 -10.715 -35.215 3 0.0054 0.0215 Stationary 
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Stationary test for zone three 

Table 3: Zone three Stationarity Test 

Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation 

lag para 

P-Value 

ADF 

P-Value 

P. P 

Remarks 

𝑋0 -11.173 -36.636 3 0.0155 0.0352 Stationary 

𝑋1 -12.238 -36.714 3 0.0268 0.01 Stationary 

𝑋2 -10.472 -37.385 3 0.0246 0.0165 Stationary 

𝑋3 -10.907 -36.66 3 0.0276 0.0103 Stationary 

𝑋4 -11.555 -36.763 3 0.0371 0.0124 Stationary 

𝑋5 -11.633 -36.884 3 0.0188 0.01 Stationary 

𝑋6 -11.207 -35.193 3 0.0101 0.0297 Stationary 

 

Stationarity Test for Zone Four 

Table 4: Zone four Stationarity Test 

Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation 

lag param. 

P-Value 

ADF 

P-Value 

P. P 

Remarks 

𝑋0 -28.245 -273.61 3 0.01 0.0242 Stationary 

𝑋1 -28.327  -274.36 3 0.0260 0.0173 Stationary 

𝑋2 -27.892 -277.82 3 0.0124 0.0732 Stationary 

𝑋3 -28.507 -281.73 3 0.0121 0.0493 Stationary 

𝑋4 -29.518 -301.02 3 0.0386 0.0231 Stationary 

𝑋5 -29.222 -287.64 3 0.0361 0.0302 Stationary 

𝑋6 -28.453 -291.18 3 0.0142 0.0215 Stationary 
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Stationarity Test for Zone Five 

Table 5: Zone five Stationarity Test 

Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation 

lag param 

P-Value 

ADF 

P-Value 

P.P 

Remarks 

𝑋0 -11.508 -37.064 3 0.01 0.0173 Stationary 

𝑋1 -12.403 -36.616 3 0.0387 0.0158 Stationary 

𝑋2 -10.33 -37.838 3 0.0237 0.01 Stationary 

𝑋3 -10.901 -36.79 3 0.0275 0.0253 Stationary 

𝑋4 -11.438 -36.762 3 0.0421 0.0149 Stationary 

𝑋5 -10.702 -37.208 3 0.0173 0.0334 Stationary 

𝑋6 -10.586 -35.248 3 0.0192 0.0146 Stationary 

 

Stationarity Test for Global Vector 

Table 6: Global Region Stationarity Test. 

Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation 

lag param 

P-Value 

ADF 

P-Valu 

P.P 

Remarks 

𝑋0 -11.606 -37.085 3 0.01 0.01 Stationary 

𝑋1 -11.54 -37.063 3 0.0379 0.01 Stationary 

𝑋2 -10.315 -37.456 3 0.0242 0.0186 Stationary 

𝑋3 -10.888 -36.3 3 0.0274 0.0101 Stationary 

𝑋4 -11.35 -36.638 3 0.0298 0.0199 Stationary 

𝑋5 -11.57 -36.931 3 0.0151 0.0437 Stationary 

𝑋6 -11.088 -35.423 3 0.0228 0.0382 Stationary 
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Granger causality test 

Zone One 

The hypothesis was that rainfall is not granger caused by the independent variables. 

 Hypothesis Testing for Granger causality Zone one 

Table 7: Granger Causality test zone one 

X*𝑋𝑖 F P Null hypothesis 

rejected 
𝑋1 -6 2.1133 0.0491 * √ 
𝑋2 -3 3.2283 0.02173 * √ 
𝑋3 -6 1.9587 0.006851** √ 
𝑋4 -3 3.2381 0.02144 * √ 
𝑋5 -6 2.7284 0.01223 * √ 
𝑋6 -3 3.6161 0.01279 * √ 

 

Zone Two 

The hypothesis was that rainfall is not granger caused by temperature, humidity, 

wind, wind gust, atmospheric pressure and radiation.  

Hypothesis Testing for Granger causality Zone two 

Table 8: Granger test zone two  

X*𝑋𝑖 F P Null hypothesis rejected 
𝑋1 -6 2.8097 0.01012 * √ 
𝑋2 -3 0.2966 0.8279 Not 
𝑋3 -3 4.5503 0.003519 ** √ 
𝑋4 -3 2.7022 0.04426 * √ 
𝑋5 -6 2.1268 0.04767 * √ 
𝑋6 -3 2.5982 0.03723 * √ 

 

Therefore, the granger causality test for zone two shows that all the variables were 

having a strong significant influence on the causes of dependent variable 𝑋0. Their 

level of significant was less than 0.05. 

Zone Three 

The hypothesis was that rainfall is not granger caused by temperature, humidity, 

wind, wind gust, Atmospheric pressure and radiation.  
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Hypothesis Testing for Granger causality Zone three 

Table 9: Granger test zone three  

X*𝑋𝑖 F P Null hypothesis rejected. 
𝑋1 -3 2.899 0.03396 * √ 
𝑋2 -6 1.5613 0.1548 √ 
𝑋3 -3 4.361 0.004577 ** √ 
𝑋4 -3 2.681 0.04553 * √ 
𝑋5 -6 2.1863 0.04184 * √ 
𝑋6 1 -3 2.5628 0.0007054 *** √ 

 

Therefore, the granger causality test for Zone three shows that all the variables had a 

strong significant influence on the Causes of dependent variable X.  

Zone Four. 

The hypothesis was that rainfall is not granger caused by temperature, humidity, 

wind, wind gust, Atmospheric pressure and radiation. 

Hypothesis Testing for Granger causality Zone four 

Table 10: Granger test zone four  

X*𝑋𝑖 F P Null hypothesis rejected 
𝑋1 -8 2.1204 0.03119 * √ 
𝑋2 -8 1.9036 1.032e-05 *** √ 
𝑋3 -6 3.0123 0.006269 ** √ 
𝑋4 -6 2.1685 0.04352 * √ 
𝑋5 -6 2.3997 0.026 * √ 
𝑋6 -6 1.8441 0.002428 ** √ 

So, the granger causality test for Zone four shows that all the variables had a strong 

significant influence on the Causes of dependent variable X.  

Zone Five 

The hypothesis was that rainfall is not granger caused by temperature, humidity, 

wind, wind gust, Atmospheric pressure and radiation.  

Hypothesis Testing for Granger causality Zone five 

 

X*𝑋𝑖 F P Null hypothesis rejected 
𝑋1 -3 3.0811 0.02655 * √ 
𝑋2 -3 5.8745 0.0005519 *** √ 
𝑋3 -6 2.16 0.04434 * √ 
𝑋4 -6 4.4176 0.000196 *** √ 
𝑋5 -6 1.8439 0.003104 ** √ 
𝑋6 -6 1.9563 0.001708 ** √ 
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Table 11: Granger test zone five 

Global Region 

The hypothesis was that rainfall is not granger caused by temperature, humidity, 

wind, wind gust, Atmospheric pressure and radiation. 

 

Hypothesis Testing for Granger causality global 

Table 12: Granger Causality test 

X*𝑋𝑖 F P Null hypothesis rejected 
𝑋1 -3 2.2026 0.01859 * √ 
𝑋2 -3 0.4471 0.7194 Not 
𝑋3 -3 3.5176 0.01464 * √ 
𝑋4 -3 2.5578 0.006 *** √ 
𝑋5 -6 2.1318 0.04715* √ 
𝑋6 -3 2.6221 0.0274 * √ 
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Appendix II: Figures 

Holtwinters Forecasting Analysis 

Zone Two: Forecasting 

    

Figure 4: forecast for zone two 

 

Figure 5: HoltWinters forecast for zone two 
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Zone Three: Forecasting analysis 

 

Figure 6: forecast for zone three 

Figure 7: HoltWinters forecast for zone three 
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Zone Four: Forecasting Analysis 

 

Figure 8: forecast for zone four 

Figure 9: HoltWinters forecast for zone four 
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Zone Five: Forecasting analysis 

 
Figure 10: forecast for zone five 

 

Figure 11: HoltWinters forecast for zone two 
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Global Region: Forecasting Analysis 

 

Figure 12: forecast for Global Region  

 

Figure 13: HoltWinters forecast for zone two 
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Appedix III: Output 

Zone One Model Output 

Zone one model had the following variables, 𝑥0. l1, 𝑥1. l1, 𝑥3. l1, 𝑥4. l1, 𝑥6. l1, 𝑥0. l2, 

𝑥1. l2, 𝑥3. l2, 𝑥4. l2, 𝑥6. l2, 𝑥0. l3, 𝑥1. l3, 𝑥3. l3, 𝑥4. l3 and 𝑥6. l3 with a constant. As 

indicated in table 2 the findings showed variable 𝑥0. l1 had t value of -9.303 

and the Pr(>|t|) of 3.07e-06 *** variable 𝑥1. l1 had t value of -4.527 and the 

Pr(>|t|) of 0.001097 **Variable 𝑥3. l1 had t value of -4.217 and the Pr(>|t|) of 

0.001781 **. Variable 𝑥4. l11 had t value of -12.79 and the Pr(>|t|) of 1.59e-

07 *** while Variable 𝑥6. l1 had t value of -5.368 and the Pr(>|t|) of 4.00e-04 

***. Variable 𝑥0. l2 had t value of -2.479 and the Pr(>|t|) of 0.032598 *   

Variable 𝑥1. l2 had t value of -3.777 and the p-value of 0.003621 ** Variable 

𝑥3. l2 had t value of -4.848 and the Pr(>|t|) of 0.000673 ***. while 𝑥4. l2 had t-

value 0.462 and the p-value of 0.007417 *** while, 𝑥6. l2 had t value of 1.839 

and the Pr(>|t|) of 0.012372 *.  As indicated in table …. the findings showed 

variable 𝑥0. l3 had t value of 4.905 and the Pr(>|t|) of 0.001755 ** variable 

𝑥1. l3 had t value of -4.792 and the Pr(>|t|) of 0.000215 *** Variable 𝑥3. l3 had 

t value of 3.535 and the Pr(>|t|) of 4.31e-06 ***. Variable 𝑥4. l3 had t value 

of 2.263 and the Pr(>|t|) of 0.002771 ** while Variable 𝑥6. l3 had t value of 

0.036 and the Pr(>|t|) of 0.009524 ** and the constant had at value of 0.264 

and the Pr(>|t|) of 0.007147 ***.   

Zone Two Model Output 

Zone two model had the following variables 𝑥0. l1, 𝑥1. l1, 𝑥3. l1, 𝑥4. l1, 𝑥6. l1, 𝑥0. l2, 

𝑥1. l2, 𝑥3. l2, 𝑥4. l2, 𝑥6. l2, 𝑥0. l3, 𝑥1. l3, 𝑥3. l3, 𝑥4. l3 and 𝑥6. l3 with a constant. As 

indicated in table 4 the findings showed variable 𝑥0. l1 had t value of 14.477 

and the Pr(>|t|) of 8.13e-10 ***, variable 𝑥1. l1 had t value of -16.516 and the 

Pr(>|t|) of 1.42e-10 ***Variable 𝑥3. l1 had t value of 7.120 and the Pr(>|t|) of 

5.17e-06 ***. Variable 𝑥4. l1 had t value of 10.751 and the Pr(>|t|) of 3.78e-

08 ***while Variable 𝑥6. l1 had t value of 3.031and the Pr(>|t|) of 0.008986 **.  

Variable 𝑥0. l2 had t value of 7.290 and the Pr(>|t|) of 3.97e-06 ***, Variable 

𝑥1. l2 had t value of -7.813 and the p-value of 4.83e-05 *** Variable 𝑥3. l2 had t 

value of 5.773 and the Pr(>|t|) of 4.83e-05 *** while 𝑥4. l2 had t-value 6.099 

and the p-value of 2.75e-05 *** while, 𝑥6. l2 had t value of 1.839 and the 
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Pr(>|t|) of 0.087237.  As indicated in table 4 the findings showed variable 

𝑥0. l3 had t value of 3.905 and the Pr(>|t|) of 0.001585 ** variable 𝑥1. l3 had t 

value of -4.927 and the Pr(>|t|) of 0.000223 *** Variable 𝑥3. l3 had t value of 

5.530 and the Pr(>|t|) of 7.41e-05 ***. Variable 𝑥4. l3 had t value of 3.623 and 

the Pr(>|t|) of 0.002771 ** while Variable 𝑥6. l3 had t value of 0.063 and the 

Pr(>|t|) of 0.950286    and the constant had at value of 0.291 and the Pr(>|t|) 

of 0.775018.  

Zone Three Model Output 

Zone three model had the following variables, 𝑥0. l1, 𝑥1. l1, 𝑥3. l1, 𝑥4. l1, 𝑥6. l1, 𝑥0. l2, 

𝑥1. l2, 𝑥3. l2, 𝑥4. l2, 𝑥6. l2, 𝑥0. l3, 𝑥1. l3, 𝑥3. l3, 𝑥4. l3 and 𝑥6. l3 with a constant. As 

indicated in table 6 the findings showed variable 𝑥0. l1 had t value of -7.473 

and the Pr(>|t|)  of 1.24e-05 ***, variable 𝑥1. l1 had t value of -13.156 and  

the Pr(>|t|) of 4.50e-08 *** Variable 𝑥3. l1 had t value of 8.065 and the Pr(>|t|)    

of 6.05e-06 ***Variable 𝑥4. l1 had t value of 7.514 and the Pr(>|t|) of 1.18e-

05 *** while Variable 𝑥6. l1 had t value of -5.593 and the Pr(>|t|)  of 0.000162 

***Variable 𝑥0. l2 had t value of -7.886 and the Pr(>|t|) of 7.49e-06 ***, 

Variable 𝑥1. l2 had t value of --10.459 and the p-value of 4.71e-07 ***, Variable 

𝑥3. l2 had t value of 7.347 and the Pr(>|t|)  of  1.45e-05 ***, while  𝑥4. l2 had  

t-value 6.007 and the p-value of 8.84e-05 ***, while , 𝑥6. l2 had t value of  -

4.470 and  the Pr(>|t|)     of 0.000946 ***.  As indicated in table 6 the 

findings  showed variable 𝑥0. l3 had t value of -9.221 and  the Pr(>|t|)    of 

1.65e-06 ***, variable 𝑥1. l3 had t value of -5.518 and  the Pr(>|t|)    of 

0.000181 ***, Variable 𝑥3. l3 had t value of 6.223 and the Pr(>|t|)    of 6.51e-

05 ***, Variable 𝑥4. l3 had t value of 4.314 and the Pr(>|t|)  of 0.001227 **, 

while Variable 𝑥6. l3 had t value of -5.010 and  the Pr(>|t|)    of 0.000396 *** 

and the constant had  a t value of  --0.654 and the Pr(>|t|)     of  0.526497.  

Zone Four Model Output 

Zone four model had the following variables, 𝑥0. l1, 𝑥1. l1, 𝑥2. l1, 𝑥3. l1, 𝑥4. l1, 𝑥5. l1, 

𝑥6. l1, 𝑥0. l2, 𝑥1. l2, 𝑥2. l2, 𝑥3. l2, 𝑥4. l2, 𝑥5. l2 and 𝑥6. l2 with a constant.  As indicated in 

table 8 the findings showed variable 𝑥0. l1had t value of -3.614 and the Pr(>|t|) 

of 0.004738 ** variable 𝑥1. l1had t value of --3.090 and the Pr(>|t|) of 0.011449 

*, Variable 𝑥2. l1 had t value of 5.410 and the Pr(>|t|) of 0.000297 ***, Variable 
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𝑥3. l1 had t value of 1.868 and the Pr(>|t|) of 0.091323. Variable 𝑥4. l1 had t 

value of -2.976 and the Pr(>|t|) of 0.013913 * Variable 𝑥5. l1 had t value of 

2.666 and the Pr(>|t|) of 0.023659 *   while Variable 𝑥6. l1 had t value of 2.240 

and the Pr(>|t|)  of 0.049037 *  Variable 𝑥0. l2  had t value of --3.310 and the 

Pr(>|t|)  of 0.007883 ** Variable 𝑥1. l2 had t value of -3.113 and the Pr(>|t|) 

of 0.011006 *,Variable 𝑥2. l2 had t value of 3.222 and the p-value of 0.009137 

** Variable 𝑥3. l2 had t value of -4.649 and the Pr(>|t|)  of  0.000909 ***, 

while 𝑥4. l2 had  t-value -3.178 and the p-value of 0.009860 **, variable 𝑥5. l2  

had t value of 1.087 and  the Pr(>|t|)    of 0.302471, while Variable 𝑥6. l2  had 

t value of -3.605 and  the Pr(>|t|)    of 0.004809 ** and the constant had  a 

t value of  0.179 and the Pr(>|t|)  of  0.861135.  

Zone Five Model Output 

Zone five models had the following variables; 𝑥0. l1, 𝑥1. l1, 𝑥2. l1, 𝑥3. l1, 𝑥4. l1, 𝑥5. l1 and 

𝑥6. l1 with a constant.  As indicated in table 10 the findings showed variable 

𝑥0. l1 had t value of 3.782 and the Pr(>|t|) of 0.00359 **, variable 𝑥1. l1had t 

value of -0.414 and the Pr(>|t|) of 0.68793    Variable 𝑥2. l1 had t value of -

10.972 and the Pr(>|t|) of 6.75e-07 ***Variable 𝑥3. l1 had t value of -4.428 and 

the Pr(>|t|) of 0.00128 **. Variable 𝑥4. l1 had t value of -3.282 and the Pr(>|t|) 

of 0.00827 ** Variable 𝑥5. l1 had t value of -2.779 and the Pr(>|t|) of 0.01948 

* while Variable 𝑥6. l1 had t value of 2.420 and the Pr(>|t|) of 0.03606 *   and 

the constant had at value of 0.430 and the Pr(>|t|) of 0.67620.  

Global Vector Model Output 

Global region models had the following variables; 𝑥0. l1, 𝑥1. l1, 𝑥3. l1, 𝑥4. l1, 𝑥6. l1, 

𝑥0. l2, 𝑥1. l2, 𝑥3. l2, 𝑥4. l2, 𝑥6. l2, 𝑥0. l3, 𝑥1. l3, 𝑥3. l3, 𝑥4. l3 and 𝑥6. l3 with a constant.  As 

indicated in table 12 the findings showed variable 𝑥0. l1 had t value of -9.475 

and the Pr(>|t|)  of 1.26e-06 *** variable 𝑥1. l1 had t value of 6.800 and  the 

Pr(>|t|) of 2.95e-05 ***,Variable 𝑥3. l1 had t value of -10.894 and the Pr(>|t|) 

of 3.12e-07 ***, Variable 𝑥4. l1 had t value of -8.497 and the Pr(>|t|) of 3.67e-

06 ***, Variable 𝑥6. l1 had t value of 7.895 and the Pr(>|t|) of 7.41e-06 ***, 

Variable 𝑥0. l2 had t value of --5.327 and the Pr(>|t|)  of 0.000242 ***, Variable 

𝑥1. l2 had t value of 2.999 and the Pr(>|t|) of 0.012095 *, Variable 𝑥3. l2 had t 

value of  -10.905 and the Pr(>|t|)  of  3.09e-07 ***, while 𝑥4. l2 had  t-value 
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-6.636 and the p-value of 3.68e-05 ***, while Variable 𝑥6. l2  had t value of 

8.698 and  the Pr(>|t|) of 2.92e-06 ***, variable 𝑥0. l3 had t value of -5.192 

and  the Pr(>|t|) of 0.000298 ***, variable 𝑥1. l3 had t value of 3.991 and  the 

Pr(>|t|)    of 0.002117 **, variable 𝑥3. l3 had t value of -8.602  and  the 

Pr(>|t|)    of 3.26e-06 ***, variable 𝑥4. l3  had t value of -3.174 and  the 

Pr(>|t|)    of 0.008863 **, variable 𝑥6. l3  had t value of 8.248 and  the 

Pr(>|t|)    of 4.88e-06 ***, and the constant had  a t value of  -0.045 and 

the Pr(>|t|)  of  0.000156 ***.  

The Roots of the characteristic polynomial for zone one 

VAR Estimation Results: 

=========================  

Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

Deterministic variables: const  

Sample size: 1457  

Log Likelihood: 1079.708  

Roots of the characteristic polynomial: 

0.4781 0.4782 0.4649 0.4289 0.4288 0.4287 0.3997 0.3936 0.3935 0.3659 

0.3658 0.3526 0.3528 0.3085 0.3185 0.2918 0.2915 0.2899 0.2555 0.2434 

0.2432 

Call: 

VAR(y = Data1, p = 3, type = "const", exogen = NULL) 

Zone one Residual standard error 

Residual standard error: 0.9763 on 14 degrees of freedom 

Multiple R-Squared: 0.9895, Adjusted R-squared: 0.9761  

F-statistic:  1919 on 15 and 14 DF, p-value: < 1.27e-16 

Model diagnostic test 

Serial correlation test 

         Portmanteau Test (asymptotic) 

data:  Residuals of VAR object model 

Chi-squared = 59.144, df = 14, p-value = 0.152 
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Heteroscedasticity test 

         ARCH (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 9784.2, df = 14, p-value < 1.2e-16 

Normality test 

$JB    JB-Test (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 1074307, df = 14, p-value < 2.2e-16 

$Skewness 

         Skewness only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 303.24, df = 7, p-value < 2.2e-16 

$Kurtosis 

         Kurtosis only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 1074004, df = 7, p-value < 2.2e-16 

Stability test for Zone one 

 

OLS-CUSUM of equation X

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0

OLS-CUSUM of equation X1

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0

OLS-CUSUM of equation X2

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0

OLS-CUSUM of equation X3

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0

OLS-CUSUM of equation X4

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0

OLS-CUSUM of equation X5

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0

OLS-CUSUM of equation X6

Time

E
m

p
ir
ic

a
l 
f
lu

c
t
u
a
t
io

n
 
p
r
o
c
e
s
s

0.0 0.2 0.4 0.6 0.8 1.0

-
1
.
0

0
.
0

1
.
0



119 
 

 

Zone two output 

The Roots of the characteristic polynomial for zone two 

VAR Estimation Results: 

=========================  

Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

Deterministic variables: const  

Sample size: 1457  

Log Likelihood: 762.749  

Roots of the characteristic polynomial: 

0.8092 0.4988 0.4987 0.4601 0.4222 0.4221 0.4163 0.4161 0.4104 0.3603 

0.3613 0.3479 0.3477 0.3440 0.3439 0.3213 0.3211 0.3152 0.3151 0.1289 

0.1287 

Call: 

VAR(y = Data1, p = 3, type = "const", exogen = NULL) 

Zone two Residual standard error 

Residual standard error: 0.6973 on 14 degrees of freedom 

 Multiple R-Squared: 0.9995,     Adjusted R-squared: 0.9961  

 F-statistic:  1919 on 15 and 14 DF, p-value: < 1.3e-16 

Model diagnostic test 

Serial correlation test 

        Portmanteau Test (asymptotic) 

 

data:  Residuals of VAR object model 

Chi-squared = 107.05, df = 14, p-value = 0.1328 .  

Heteroscedasticity test 

     ARCH (multivariate) 

 

data:  Residuals of VAR object model 

Chi-squared = 8556.8, df = 14, p-value < 0.1622 . 

Normality test 

$JB 

        JB-Test (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 848864, df = 14, p-value < 1.2e-10 

$Skewness 

         Skewness only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 3399.1, df = 7, p-value < 4.3e-9 
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$Kurtosis 

         Kurtosis only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 845464, df = 7, p-value < 2.2e-11 

Stability test graph for Zone two 

 

Zone three output 

Zone three Roots of the characteristic polynomial 

VAR Estimation Results: 

=========================  

Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

Deterministic variables: const  

Sample size: 1457  

Log Likelihood: 1090.255  

Roots of the characteristic polynomial: 

0.8296 0.4461 0.412 0.422 0.4123 0.4122 0.3735 0.352 0.352 0.3459 

0.3459 0.34 0.34 0.3301 0.3311 0.3248 0.3247 0.2996 0.2996 0.1691 

0.1691 

Call: 

VAR(y = Data1, p = 3, type = "const", exogen = NULL) 

Zone three Residual standard error 

Residual standard error: 1.812 on 11 degrees of freedom 

Multiple R-Squared: 0.9997,     Adjusted R-squared: 0.9994  

F-statistic:  2745 on 15 and 11 DF, p-value: < 3.2e-16 
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Model three diagnostic test 

Serial correlation test 

             Portmanteau Test (asymptotic) 

data:  Residuals of VAR object model 

Chi-squared = 94.003, df = 14, p-value = 0.0001167 

Heteroscedasticity test 

    ARCH (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 6860.3, df = 14, p-value < 1.4e-16 

Normality test 

$JB 

         JB-Test (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 769276, df = 14, p-value < 2.1e-16 

$Skewness 

         Skewness only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 661.84, df = 7, p-value < 1.3e-16 

$Kurtosis 

         Kurtosis only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 768614, df = 7, p-value < 2.2e-16 
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Stability test graph for Zone three  

 

Zone four model 

The Roots of the characteristic polynomial output for zone four 

VAR Estimation Results: 

=========================  

Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

Deterministic variables: const  

Sample size: 1457  

Log Likelihood: 609.47  

Roots of the characteristic polynomial: 

0.9207 0.4219 0.4066 0.3963 0.3913 0.3913 0.3743 0.3568 0.3553 0.257 

0.2474 0.18 0.09407 0.09417 

Call: 

VAR(y = Data1, p = 2, type = "const", exogen = NULL) 
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Zone four Residual standard error  

Residual standard error: 3.008 on 10 degrees of freedom 

Multiple R-Squared: 0.9975,     Adjusted R-squared: 0.994  

F-statistic: 282.9 on 14 and 10 DF, p-value: 4.622e-11 

Model diagnostic test for zone four 

Serial correlation test 

     Portmanteau Test (asymptotic) 

data:  Residuals of VAR object model 

Chi-squared = 131.79, df = 14, p-value = 1.624e-09 

Heteroscedasticity test 

       ARCH (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 8684.1, df = 14, p-value < 2.2e-16 

Normality test 

      JB-Test (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 1099592, df = 14, p-value < 2.2e-16 

$Skewness 

         Skewness only (multivariate) 

Data:  Residuals of VAR object model 

Chi-squared = 839.71, df = 7, p-value < 2.2e-16 

$Kurtosis 

         Kurtosis only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 1098752, df = 7, p-value < 2.2e-16 
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Stability test graph for zone four 

  

 

Zone five model 

The Roots of the characteristic polynomial for zone five 

VAR Estimation Results: 

=========================  

Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6Deterministic variables: 

const  

Sample size: 1456  

Log Likelihood: -9521.494  
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Roots of the characteristic polynomial: 

0.7837 0.7449 0.7449 0.7419 0.7419 0.7225 0.6662 

Call: 

VAR(y = dat2, p = 1, type = "const", exogen = NULL) 

Zone five Residual standard error 
 

Residual standard error: 4.463 on 10 degrees of freedom 

Multiple R-Squared: 0.9896,     Adjusted R-squared: 0.9823  

F-statistic: 136.1 on 7 and 10 DF, p-value: 4.161e-09 

 

Model diagnostic test for zone five 

Serial correlation test 

         Portmanteau Test (asymptotic) 

data:  Residuals of VAR object model 

Chi-squared = 50.885, df = 7, p-value = 0.3993 

Heteroscedasticity test 

         ARCH (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 5813.5, df = 7, p-value < 0.2216 

Normality test 

$JB 

         JB-Test (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 1286491, df = 7, p-value < 4.23e-1 

$Skewness 

         Skewness only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 5743.7, df = 7, p-value < 1.5e-7 

$Kurtosis 

         Kurtosis only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 1280747, df = 7, p-value < 3.26e-10 
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Stability test graph for zone five 

 

 

Global vector output 

Roots of the characteristic polynomial 

VAR Estimation Results: 

=========================  

Endogenous variables: 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

Deterministic variables: const  

Sample size: 1457  

Log Likelihood: 633.572  

Roots of the characteristic polynomial: 

0.7834 0.4474 0.423 0.423 0.4173 0.4173 0.4105 0.4105 0.3943 0.36 0.36 

0.336 0.336 0.3359 0.3359 0.3256 0.3256 0.3248 0.3248 0.2634 0.2634 

Call: 

VAR(y = Data1, p = 3, type = "const", exogen = NULL) 
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Global model 

 Residual standard error 

Residual standard error: 5.84 on 11 degrees of freedom 

Multiple R-Squared: 0.9496,    Adjusted R-squared: 0.969  

F-statistic:  1769 on 15 and 11 DF, p-value: < 2.2e-16 

Model diagnostic test for global vector. 

Serial correlation test 

        Portmanteau Test (asymptotic) 

data:  Residuals of VAR object model 

Chi-squared = 102.3, df = 14, p-value = 1.256e-05  

Heteroscedasticity test 

         ARCH (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 7799.6, df = 14, p-value < 3.21e-6  

Normality test 

          JB-Test (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 493886, df = 14, p-value < 6.2e-10 

$Skewness 

         Skewness only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 2639.4, df = 7, p-value < 4.13e-7 

$Kurtosis 

         Kurtosis only (multivariate) 

data:  Residuals of VAR object model 

Chi-squared = 491247, df = 7, p-value < 2.2e-16  
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Stability test 

 

Performance Measures   

Accuracy measure in different zones, 

ZONE 1 showed MAE was 0.897018, MSE of 0.9131199, RMSE of 0.9555731, AIC of 

33.37781 and BIC of 42.70324.  

ZONE 2 showed MAE was 0.8354289, MSE of 0.7486969, RMSE of 0.8652727, AIC of 

31.32569 and BIC of 43.48938.  

ZONE 3 showed MAE was 0.9090333, MSE of 0.778894, RMSE of 0.8825497, AIC of 

37.57943, and BIC of 49.74311.  

ZONE 4 showed MAE of 0.7339015 MSE of 0.698275, RMSE of 0.835628, AIC of 

45.21378, and BIC of 56.29842.  

ZONE 5 showed MAE of 0.9006911 MSE of 0.9596382, RMSE of 0.9796113, AIC of 

33.37781 and BIC of 42.70324.  

GLOBAL VEC showed MAE of 0.889702 MSE of 0.923199, RMSE of 0.960832, AIC of 

31.73782, BIC of 43.90374. 

F- Test   Comparing variances of Actual and Predicted 

ZONE ONE  

a<-

c(0.53396298,0.14318096,0.06667926,0.15531923,0.30681526,0.11578769,0.342674

73,0.43071402, 

0.14357764,0.32300049) 

a 

p<-

c(0.53604143,0.31297298,0.22819949,0.19788896,0.52991659,0.07328579,0.529836

39, 

0.60557426,0.31468782,0.36519333) 

p 

#Results 

var.test(a,p) 

 

        F test to compare two variances 
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data:  a and p 

F = 0.76676, num df = 9, denom df = 9, p-value = 0.6988 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.1904516 3.0869587 

sample estimates: 

ratio of variances 0.7667569  

ZONE TWO 

var.test(a,p) 

        F test to compare two variances 

data:  a and p 

F = 0.67045, num df = 9, denom df = 9, p-value = 0.5609 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.1665307 2.6992350 

sample estimates: 

ratio of variances  0.6704518 

 

ZONE THREE 

var.test(a,p) 

        F test to compare two variances 

data:  a and p 

F = 0.46531, num df = 9, denom df = 9, p-value = 0.2698 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.1155753 1.8733177 

sample estimates: 

ratio of variances 0.4653056  

ZONE FOUR 

var.test(a,p) 

        F test to compare two variances 

data:  a and p 

F = 1.1773, num df = 9, denom df = 9, p-value = 0.8119 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.2924151 4.7396473 

sample estimates: 

ratio of variances 1.177261 

ZONE FIVE 

var.test(a,p) 

        F test to compare two variances 

data:  a and p 

F = 1.8116, num df = 9, denom df = 9, p-value = 0.3893 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.4499753 7.2934822 

sample estimates: 

ratio of variances 1.811598 

 

GLOBAL VECTOR 

var.test(a,p) 

        F test to compare two variances 

data:  a and p 

F = 0.76676, num df = 9, denom df = 9, p-value = 0.6988 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

 0.1904516 3.0869587 

sample estimates: 

ratio of variances 0.7667569 

 

 

Training data 

𝑋0          𝑋1      𝑋2         𝑋3      𝑋4         𝑋5        𝑋6 
2  0.453955751 0.16666667 1.0000000 0.32352941 0.9217221 0.02096680 0.1679688 

3  0.605699062 0.24358974 0.6460107 0.79411765 0.6497065 1.00000000 0.1289062 

4  0.403181590 0.23076923 0.6789415 0.61764706 0.6281800 0.52145215 0.0000000 

7  0.153171937 0.20512821 0.5250445 0.82352941 0.5146771 0.51252184 0.6484375 
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8  0.082358392 0.11538462 0.7073847 0.70588235 0.6183953 0.91322073 0.1953125 

9  0.007027298 0.06410256 0.6075365 0.82352941 0.5146771 0.92351000 0.2382812 

10 0.000000000 0.08974359 0.8090807 0.29411765 0.6790607 0.00000000 0.2226562 

11 0.018263253 0.00000000 0.0000000 0.14705882 0.7710372 0.02834401 0.3828125 

12 0.070543264 0.00000000 0.9946545 0.02941176 0.9941292 0.03222675 0.5117188 

13 0.114405962 0.89743590 0.4738996 0.70588235 0.1878669 0.43409047 0.1835937 

16 0.263214796 0.94871795 0.3947733 0.85294118 0.0000000 0.51562803 0.1132812 

17 0.284953087 1.00000000 0.3512836 0.85294118 0.1624266 0.02795574 0.1523438 

18 0.405343836 0.96153846 0.4595130 0.76470588 0.2544031 0.19685498 0.1679688 

19 0.219043206 0.83333333 0.6954398 0.52941176 0.4383562 0.20093186 0.2109375 

20 0.290783428 0.83333333 0.5997492 0.61764706 0.5107632 0.37817899 0.2109375 

22 0.342522877 0.83333333 0.5288062 0.64705882 0.5381605 0.21199767 0.1679688 

23 0.033669254 0.85897436 0.7277767 0.23529412 0.7142857 0.07202485 0.2187500 

24 0.033823700 0.83333333 0.8427374 0.05882353 0.8747554 0.08328480 0.3046875 

25 0.037105680 0.84615385 0.8334323 0.00000000 1.0000000 0.09124442 0.3164062 

28 0.167110699 0.75641026 0.1323170 1.00000000 0.5048924 0.19180742 0.1015625 

> testing data 

         𝑋0        𝑋1        𝑋2        𝑋3        𝑋4         𝑋5        𝑋6 

1  0.09834357 0.2051282 0.9555864 0.2941176 0.9452055 0.09939818 0.1210937 

5  1.00000000 0.3076923 0.3451462 0.9117647 0.4227006 0.92583964 0.2929687 

6  0.59967566 0.1923077 0.4892761 0.8529412 0.4422701 0.96000777 1.0000000 

14 0.60504267 0.9358974 0.3607206 0.8529412 0.3287671 0.43777907 0.0781250 

15 0.47565543 0.8333333 0.5086122 0.8823529 0.2446184 0.51718113 0.1132812 

21 0.13904012 0.8076923 0.6607932 0.5294118 0.6203523 0.05785284 0.2460938 

26 0.15614502 0.8333333 0.7094305 0.2647059 0.9941292 0.55193166 0.2851562 

27 0.18935094 0.8589744 0.5736158 0.5588235 0.7710372 0.21976315 0.2343750 

 

 

 

======================================================================================

================== 

                                                            Dependent variable:                              

------------------------------------------------------------------------ 

                                                                     X                                       

                               (1)        (2)        (3)        (4)        (5)        

(6)        (7)     

-------------------------------------------------------------------------------------- 

𝑋0.l1                           0.252***  -0.538***    -0.041    0.180**     -0.083    

0.190**     0.080    

                              (0.077)    (0.078)    (0.080)    (0.081)    (0.080)    

(0.079)    (0.080)   

                                                                                                             

𝑋1.l1                         -0.087    0.712***   0.205***    0.010     0.245***    -

0.054     0.085    

                              (0.075)    (0.075)    (0.077)    (0.078)    (0.077)    

(0.076)    (0.078)   

                                                                                                             

𝑋2.l1                         0.155***   0.153***   0.164***   0.150***   0.142***   

0.193***   0.135***  

                               (0.025)    (0.026)    (0.026)    (0.026)    (0.026)    

(0.026)    (0.026)   

                                                                                                             

𝑋3.l1                         0.172***   0.177***   0.189***   0.219***   0.146***   

0.175***   0.120***  

                              (0.024)    (0.024)    (0.025)    (0.025)    (0.025)    

(0.024)    (0.025)   

                                                                                                             

𝑋4.l1                         0.119***   0.115***   0.148***   0.187***   0.196***   

0.131***   0.122***  

                              (0.025)    (0.025)    (0.026)    (0.026)    (0.026)    

(0.026)    (0.026)   

                                                                                                             

𝑋5.l1                         0.138***   0.137***   0.130***   0.116***   0.134***   

0.151***   0.173***  

                              (0.025)    (0.025)    (0.026)    (0.026)    (0.026)    

(0.026)    (0.026)   

                                                                                                             

𝑋6.l1                         0.184***   0.182***   0.144***   0.118***   0.142***   

0.168***   0.244***  

                              (0.025)    (0.025)    (0.025)    (0.026)    (0.026)    

(0.025)    (0.026)   
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-------------------------------------------------------------------------------------- 

Observations                    1,459      1,459      1,459      1,459      1,459      

1,459      1,459    

R2                              0.715      0.727      0.709      0.718      0.699      

0.716      0.714    

Adjusted R2                     0.714      0.726      0.707      0.717      0.698      

0.715      0.713    

Residual Std. Error (df = 1452) 0.301      0.303      0.310      0.315      0.311      

0.307      0.311    

F Statistic (df = 7; 1452)  520.220*** 552.490*** 504.350*** 527.980*** 482.740*** 

524.130*** 518.390*** 

====================================================================================== 

Note:                                                                      *p<0.1; 

**p<0.05; ***p<0.01 
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Appendix IV: R-Codes 

#Test for the Causality using Granger Causality test. 

library(vars) 

library(mFilter) 

library(tseries) 

library(TSstudio) 

library(forecast) 

library(tidyverse) 

library(lmtest) 

library(BVAR) 

#NET WORK MODELS 

#zone 1 

#data=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data1=read.csv("C:\\Users\\User\\Desktop\\phd\\z1N.csv",header=TRUE) 

data1 

#attach(data1) 

#str(data1) 

#names(data1) 

#Normalization of data 

data1$𝑥0<-(data1$𝑥0-min(data1$𝑥0))/(max(data1$𝑥0)-min(data1$𝑥0)) 

data1$𝑥1<-(data1$𝑥1-min(data1$𝑥1))/(max(data1$𝑥1)-min(data1$𝑥1)) 

data1$𝑥2<-(data1$𝑥2-min(data1$𝑥2))/(max(data1$𝑥2)-min(data1$𝑥2)) 

data1$𝑥6<-(data1$𝑥6-min(data1$𝑥6))/(max(data1$𝑥6)-min(data1$𝑥6)) 

data1$𝑥3 <-(data1$𝑥3 -min(data1$𝑥3))/(max(data1$𝑥3)-min(data1$𝑥3)) 

data1$𝑥5<-(data1$𝑥5-min(data1$𝑥5))/(max(data1$𝑥5)-min(data1$𝑥5)) 

data1$𝑥4<-(data1$𝑥4-min(data1$𝑥4))/(max(data1$𝑥4)-min(data1$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data1$𝑥0 

𝑥1 <-data1$𝑥1 

𝑥2 <-data1$𝑥2 

𝑥3 <-data1$𝑥3 

𝑥4 <-data1$𝑥4 

𝑥5 <-data1$X5 

𝑥6 <-data1$X6 

data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

data1 

𝑥0 <- diff(𝑥0, differences = 1) 

𝑥1 <- diff(𝑥1, differences = 1) 

𝑥2 <- diff(𝑥2, differences = 1) 

𝑥3 <- diff(𝑥3, differences = 1) 

𝑥4 <- diff(𝑥4, differences = 1) 

𝑥5 <- diff(𝑥5, differences = 1) 

𝑥6 <- diff(𝑥6, differences = 1) 

# Access a subset of the fred_qd dataset 

dat1 <- data1[, c("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6")] 

dat1 

# Transform it to be stationary 

dat<- fred_transform(data1, codes = c(2,2, 2, 2, 2, 2, 1), lag = 2) 

dat 

# Estimate a BVAR using one lag, default settings and very few draws 

BV <-bvar(data1,lags=4,n_draw = 1000,n_burn = 500,n_thin = 5, 

fcast = NULL,irf = NULL,verbose = FALSE) 

BV 

# Calculate and store forecasts and impulse responses 

predict(BV) <- predict(BV, horizon = 8) 

predict(BV) 

irf(BV) <- irf(BV, horizon = 8, fevd = FALSE) 

irf(BV) 

bv_minnesota(lambda = bv_lambda(),alpha = bv_alpha(),psi = bv_psi(),var = 

10000000,b = 1) 

bv_mn(lambda = bv_lambda(),alpha = bv_alpha(),psi = bv_psi(),var = 10000000,b 

= 1) 

bv_lambda(mode = 0.2, sd = 0.4, min = 0.0001, max = 5) 
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bv_alpha(mode = 2, sd = 0.25, min = 1, max = 3) 

bv_psi(scale = 0.004, shape = 0.004, mode = "auto", min = "auto", max = "auto") 

bv_minnesota 

# Adjust alpha and the Minnesota prior variance. 

bv_mn(alpha = bv_alpha(mode = 0.5, sd = 1, min = 1e-12, max = 10), var = 1e6) 

# Optionally use a vector as shorthand 

bv_mn(alpha = c(0.5, 1, 1e-12, 10), var = 1e6) 

# Only adjust lambda's standard deviation 

bv_mn(lambda = bv_lambda(sd = 2)) 

# Provide prior modes for psi (for a VAR with three variables) 

bv_mn(psi = bv_psi(mode = c(0.7, 0.3, 0.9))) 

## Not run: 

# Check convergence of the hyperparameters with a trace and density plot 

plot(BV) 

# Plot forecasts and impulse responses 

plot(predict(BV)) 

plot(irf(BV)) 

# Check coefficient values and variance-covariance matrix 

summary(BV) 

#Differencing to attain stationarity  

data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

data1 

𝑥0 <- diff(𝑥0, differences = 6) 

𝑥1 <- diff(𝑥1, differences = 1) 

𝑥2 <- diff(𝑥2, differences = 6) 

𝑥3 <- diff(𝑥3, differences = 6) 

𝑥4 <- diff(𝑥4, differences = 6) 

𝑥5 <- diff(𝑥5, differences = 6) 

𝑥6 <- diff(𝑥6, differences = 6) 

 

𝑥0 <-(𝑥0 -min(𝑥0))/(max(𝑥0)-min(𝑥0)) 

𝑥1 <-(𝑥1 -min(𝑥1))/(max(𝑥1)-min(𝑥1)) 

𝑥2 <-(𝑥2 -min(𝑥2))/(max(𝑥2)-min(𝑥2)) 

𝑥3 <-(𝑥3-min(𝑥3))/(max(𝑥3)-min(𝑥3)) 

𝑥4 <-(𝑥4 -min(𝑥4))/(max(𝑥4)-min(𝑥4)) 

𝑥5 <-(𝑥5-min(𝑥5))/(max(𝑥5)-min(𝑥5)) 

𝑥6 <-(𝑥6 -min(𝑥6))/(max(𝑥6)-min(𝑥6)) 

 

Da1 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Da1 

fit11<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6,family = gaussian,data = Da1) 

fit11 

summary(fit11) 

a<-coef(fit11)[1] 

a 

b<-coef(fit11)[2] 

b 

c<-coef(fit11)[3] 

c 

d<-coef(fit11)[4] 

d 

e<-coef(fit11)[5] 

e 

f<-coef(fit11)[6] 

f 

g<-coef(fit11)[7] 

g 

Xhat<-a+b*𝑥1+c*𝑥2++d*𝑥3++e*𝑥4++f*𝑥5++g*𝑥6+ 

Xhat 

deviation<-𝑥0-Xhat 

cbind(𝑥0,Xhat,deviation) 

SSE<-0 

for(i in 1:length(𝑥0)){ 

SSE= SSE+(𝑥0[i] - Xhat[i])^2 

} 

print(SSE) 
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#Obtaining th Mean Squared error(MSE) 

MSE<- SSE/length(𝑥0) 

MSE 

#ROOT MEAN SQUARED ERROR (RMSE) 

RMSE<-sqrt(MSE) 

print(RMSE) 

summary(fit11) 

D1 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

D1 

fit1<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6-1,family = gaussian, data = Data1) 

fit1 

summary(fit1) 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 6) 

grangertest(𝑥0 ~ 𝑥2, order = 6) 

grangertest(𝑥0 ~ 𝑥3, order = 6) 

grangertest(𝑥0 ~ 𝑥4, order = 6) 

grangertest(𝑥0 ~ 𝑥5, order = 6) 

grangertest(𝑥0 ~ 𝑥6, order = 6) 

Acf1<-acf(Data1) 

Acf1 

plot(acf1) 

v1 <- cbind(𝑥0, 𝑥1, 𝑥3,, 𝑥4) 

colnames(v1) <- cbind("𝑥0", "𝑥1", "𝑥3", "𝑥4") 

lagselect <- VARselect(v1, lag.max = 15, type = "const") 

lagselect$selection 

Model1 <- VAR(v1, p = 2, type = "const", season = NULL, exog = NULL)  

#Model1 

summary(Model1) 

Serial1 <- serial.test(Model1, lags.pt = 5, type = "PT.asymptotic") 

Serial1 

Arch1 <- arch.test(Model1, lags.multi = 15, multivariate.only = TRUE) 

Arch1 

Norm1 <- normality.test(Model1, multivariate.only = TRUE) 

Norm1 

Stability1 <- stability(Model1, type = "OLS-CUSUM") 

plot(Stability1) 

#NN ANALYSIS 

set.seed(222) 

ind<-sample(2,nrow(Data1),replace = TRUE, prob = c(0.7,0.3)) 

training<-Data1[ind==1,]#first sample 

testing<-Data1[ind==2,]#second sample 

training 

testing 

library(neuralnet) 

set.seed(333) 

library(neuralnet) 

names(Data1) 

#training=training[-c(1,9)] 

training=data.frame(training) 

#attach(training) 

nn<-neuralnet(𝑥0~𝑥1+𝑥3+𝑥4+𝑥6,data = Data1, hidden = 1, linear.output = FALSE) 

plot(nn) 

#PREDICTION ANALYSIS 

out=compute(nn, training[,-c(1)])#excludes the dependent variable 

out#net.result =probabilities 

head(out$net.result) 

head(data[1,])#first row values# 

#confusion matrix 

p1=out$net.result 

pred1=ifelse(p1>0.5,1,0) 

X=training$x 

length(X) 

length(pred1) 

tab1=table(pred1, 𝑥0) 

tab1 

1-sum(diag(tab1))/sum(tab1) 
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par(mfrow=c(2,3)) 

hist(Data1$𝑥0, breaks=4) 

hist(Data1$𝑥1,breaks=4) 

#hist(Data1$𝑥2,breaks=4) 

hist(Data1$𝑥3,breaks=4) 

hist(Data1$𝑥4,breaks=4) 

#histData1$𝑥5,breaks=4) 

hist(Data1$𝑥6,breaks=4) 

#CONFUSION MATRIX 

library(caret) 

status=as.numeric(training$x) 

status1=ifelse(status>0.05,0,1) 

status1 

cm=table(pred1,status1) 

colnames(cm)=c("correct", "incorrect") 

rownames(cm)=c("correct", "incorrect") 

cm 

pred=as.factor(pred1) 

𝑥0=as.factor(𝑥0) 

library(caret) 

library(MLmetrics) 

MSE(as.numeric(pred),training$𝑥0) 

RMSE(as.numeric(pred),training$𝑥0) 

MAE(as.numeric(pred),training$𝑥0) 

MAPE(as.numeric(pred),training$𝑥0) 

aicmodel<-glm(𝑥0~𝑥1+𝑥3+𝑥4+𝑥6,family = binomial, data = data1) 

AIC(aicmodel) 

BIC(aicmodel) 

 

#code for zone 2 

data2=read.csv("C:\\Users\\User\\Desktop\\PHD\\z2N.csv",header = TRUE) 

data2 

attach(data2) 

str(data2) 

names(data2) 

data2$𝑥0<-(data2$𝑥0-min(data2$𝑥0))/(max(data2$𝑥0)-min(data2$𝑥0)) 

data2$𝑥1<-(data2$𝑥1-min(data2$𝑥1))/(max(data2$𝑥1)-min(data2$𝑥1)) 

data2$𝑥2<-(data2$𝑥2-min(data2$𝑥2))/(max(data2$𝑥2)-min(data2$𝑥2)) 

data2$𝑥3<-(data2$𝑥3-min(data2$𝑥3))/(max(data2$𝑥3)-min(data2$𝑥3)) 

data2$𝑥4<-(data2$𝑥4-min(data2$𝑥4))/(max(data2$𝑥4)-min(data2$𝑥4)) 

data2$𝑥5<-(data2$𝑥5-min(data2$𝑥5))/(max(data2$𝑥5)-min(data2$𝑥5)) 

data2$𝑥6<-(data2$𝑥6-min(data2$𝑥6))/(max(data2$𝑥6)-min(data2$𝑥6)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data2$𝑥0 

𝑥1 <-data2$𝑥1 

𝑥2 <-data2$𝑥2 

𝑥3 <-data2$𝑥3 

𝑥4 <-data2$𝑥4 

𝑥5 <-data2$𝑥5 

𝑥6 <-data2$𝑥6 

data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

data1 

# Access a subset of the fred_qd dataset 

dat1 <- data1[, c("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6")] 

dat1 

 

Data2 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data2 

fit2<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6-1,family = gaussian, data = Data2) 

fit2 

summary(fit2) 

#Differencing to attain stationarity   

𝑥0 <- diff(𝑥0, differences = 9) 

𝑥1 <- diff(𝑥1, differences = 9) 
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𝑥2 <- diff(𝑥2, differences = 9) 

𝑥3 <- diff(𝑥3, differences = 9) 

𝑥4 <- diff(𝑥4, differences = 9) 

𝑥5 <- diff(𝑥5, differences = 9) 

𝑥6 <- diff(𝑥6, differences = 9) 

#Data2 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

#Data2 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 6) 

grangertest(𝑥0 ~ 𝑥2, order = 6) 

grangertest(𝑥0 ~ 𝑥3, order = 6) 

grangertest(𝑥0 ~ 𝑥4, order = 6) 

grangertest(𝑥0 ~ 𝑥5, order = 6) 

grangertest(𝑥0 ~ 𝑥6, order = 6) 

 

v2 <- cbind(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

 

colnames(v2) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

    lagselect <- VARselect(v2, lag.max = 15, type = "const") 

lagselect$selection 

Model2 <- VAR(v2, p = 3, type = "const", season = NULL, exog = NULL)  

summary(Model2) 

Serial2 <- serial.test(Model2, lags.pt = 5, type = "PT.asymptotic") 

Serial2 

Arch2 <- arch.test(Model2, lags.multi = 15, multivariate.only = TRUE) 

Arch2 

Norm2 <- normality.test(Model2, multivariate.only = TRUE) 

Norm2 

Stability2 <- stability(Model2, type = "OLS-CUSUM") 

plot(Stability2) 

 

#Bayesian Analysis 
library(bvartools) 

data1=read.csv("C:\\Users\\User\\Desktop\\PhD 

FINAL\\PHD\\z12N.csv",header=TRUE) 

data1 

 

𝑥0<-log(data1$𝑥0) 

𝑥1<-log(data1$𝑥1) 

𝑥2<-log(data1$𝑥2) 

𝑥3<-data1$𝑥3 

𝑥4<-log(data1$𝑥4) 

𝑥5<-log(data1$𝑥5) 

𝑥6<-data1$𝑥6 

 

Data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)) 

Data1 

Dat1 = ts(Data1,start=c(2014,1,1),frequency=365.25) 

plot.ts(Dat1) 

 

data <- gen_var(Dat1, p = 2, deterministic = "const") 

data 

y <- t(data$data$Y) 

y 

x <- t(data$data$Z) 

x 

A_freq <- tcrossprod(y, x) %*% solve(tcrossprod(x)) # Calculate estimates 

round(A_freq, 3) # Round estimates and print 

 

u_freq <- y - A_freq %*% x 

u_sigma_freq <- tcrossprod(u_freq) / (ncol(y) - nrow(x)) 

round(u_sigma_freq, 2) 

 

# Reset random number generator for reproducibility 

set.seed(1234567) 
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iter <- 30000 # Number of iterations of the Gibbs sampler 

burnin <- 15000 # Number of burn-in draws 

store <- iter - burnin 

tt <- ncol(y) # Number of observations 

k <- nrow(y) # Number of endogenous variables 

m <- k * nrow(x) # Number of estimated coefficients 

 

# Set priors 

a_mu_prior <- matrix(0, m) # Vector of prior parameter means 

a_v_i_prior <- diag(1, m) # Inverse of the prior covariance matrix 

 

u_sigma_df_prior <- 6 # Prior degrees of freedom 

u_sigma_scale_prior <- diag(1, k) # Prior covariance matrix 

u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom 

 

# Initial values 

u_sigma_i <- solve(u_sigma_freq) 

 

# Data containers for posterior draws 

draws_a <- matrix(NA, m, store) 

draws_sigma <- matrix(NA, k * k, store) 

 

# Start Gibbs sampler 

for (draw in 1:iter) { 

  # Draw conditional mean parameters 

  a <- post_normal(y, x, u_sigma_i, a_mu_prior, a_v_i_prior) 

 

  # Draw variance-covariance matrix 

  u <- y - matrix(a, k) %*% x # Obtain residuals 

  u_sigma_scale_post <- solve(u_sigma_scale_prior + tcrossprod(u)) 

  u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 

1], k) 

  u_sigma <- solve(u_sigma_i) # Invert Sigma_i to obtain Sigma 

 

  # Store draws 

  if (draw > burnin) { 

    draws_a[, draw - burnin] <- a 

    draws_sigma[, draw - burnin] <- u_sigma 

  } 

} 

A <- rowMeans(draws_a) # Obtain means for every row 

A <- matrix(A, k) # Transform mean vector into a matrix 

A <- round(A, 3) # Round values 

dimnames(A) <- list(dimnames(y)[[1]], dimnames(x)[[1]]) # Rename matrix 

dimensions 

 

A # Print 

 

Sigma <- rowMeans(draws_sigma) # Obtain means for every row 

Sigma <- matrix(Sigma, k) # Transform mean vector into a matrix 

Sigma <- round(Sigma, 2) # Round values 

dimnames(Sigma) <- list(dimnames(y)[[1]], dimnames(y)[[1]]) # Rename matrix 

dimensions 

 

Sigma # Print 

 

bvar_est <- bvar(y = data$data$Y, x = data$data$Z, A = draws_a[1:18,], 

                 C = draws_a[19:21, ], Sigma = draws_sigma) 

summary(bvar_est) 

 

bvar_est <- thin_posterior(bvar_est, thin = 15) 

 

bvar_pred <- predict(bvar_est, n.ahead = 10, new_d = rep(1, 10)) 

 

plot(bvar_pred) 

 

FEIR <- irf(bvar_est, impulse = "X", response = "cons", n.ahead = 8) 
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plot(FEIR, main = "Forecast Error Impulse Response", xlab = "Period", ylab = 

"Response") 

 

OIR <- irf(bvar_est, impulse = "X", response = "cons", n.ahead = 8, type = 

"oir") 

 

plot(OIR, main = "Orthogonalised Impulse Response", xlab = "Period", ylab = 

"Response") 

 

GIR <- irf(bvar_est, impulse = "X", response = "cons", n.ahead = 8, type = 

"gir") 

 

plot(GIR, main = "Generalised Impulse Response", xlab = "Period", ylab = 

"Response") 

 

bvar_fevd_oir <- fevd(bvar_est, response = "cons") 

 

plot(bvar_fevd_oir, main = "OIR-based FEVD of consumption") 

 

bvar_fevd_gir <- fevd(bvar_est, response = "cons", type = "gir") 

 

plot(bvar_fevd_gir, main = "GIR-based FEVD of consumption") 

 

#CONFUSION MATRIX 

library(caret) 

status=as.numeric(training$x) 

status1=ifelse(status>0.05,0,1) 

status1 

cm=table(pred1,status1) 

colnames(cm)=c("correct", "incorrect") 

rownames(cm)=c("correct", "incorrect") 

cm 

pred=as.factor(pred1) 

X=as.factor(x) 

library(caret) 

library(MLmetrics) 

MSE(as.numeric(pred),training$x) 

RMSE(as.numeric(pred),training$x) 

MAE(as.numeric(pred),training$x) 

MAPE(as.numeric(pred),training$x) 

aicmodel<-glm(𝑥0~𝑥1+𝑥3+𝑥4+𝑥6,,data = Data2,family = binomial(link = "identity")) 

AIC(aicmodel) 

BIC(aicmodel) 

 

#code for  zone 3 

#zone 3 

#data3=read.csv(file.choose(),header=TRUE) 

# Gitonga PhD Thesis 

data3=read.csv("C:\\Users\\User\\Desktop\\PHD\\z3N.csv",header=TRUE) 

attach(data3) 

str(data3) 

names(data3) 

data3$𝑥0<-(data3$𝑥0-min(data3$𝑥0))/(max(data3$𝑥0)-min(data3$𝑥0)) 

data3$𝑥1<-(data3$𝑥1-min(data3$𝑥1))/(max(data3$𝑥1)-min(data3$𝑥1)) 

data3$𝑥2<-(data3$𝑥2-min(data3$𝑥2))/(max(data3$𝑥2)-min(data3$𝑥2)) 

data3$𝑥3<-(data3$𝑥3-min(data3$𝑥3))/(max(data3$𝑥3)-min(data3$𝑥3)) 

data3$𝑥4<-(data3$𝑥4-min(data3$𝑥4))/(max(data3$𝑥4)-min(data3$𝑥4)) 

data3$𝑥5<-(data3$𝑥5-min(data3$𝑥5))/(max(data3$𝑥5)-min(data3$𝑥5)) 

data3$𝑥6<-(data3$𝑥6-min(data3$𝑥6))/(max(data3$𝑥6)-min(data3$𝑥6)) 

 

𝑥0 <-data3$𝑥0 

𝑥1 <-data3$𝑥1 

𝑥2 <-data3$𝑥2 

𝑥3 <-data3$𝑥3 

𝑥4 <-data3$𝑥4 
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𝑥5 <-data3$𝑥5 

𝑥6 <-data3$𝑥6 

data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

data1 

#Data3 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

#Data3 

#Differencing to attain stationarity 

𝑥0 <- diff(𝑥0, differences = 12) 

𝑥1 <- diff(𝑥1, differences = 12) 

𝑥2 <- diff(𝑥2, differences = 12) 

𝑥3 <- diff(𝑥3, differences = 12) 

𝑥4 <- diff(𝑥4, differences = 12) 

𝑥5 <- diff(𝑥5, differences = 12) 

𝑥6 <- diff(𝑥6, differences = 12) 

   

Data3 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data3 

fit3<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6-1,family = gaussian,data = Data3) 

fit3 

summary(fit3) 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 9) 

grangertest(𝑥0 ~ 𝑥2, order = 9) 

grangertest(𝑥0 ~ 𝑥3, order = 9) 

grangertest(𝑥0 ~ 𝑥4, order = 9) 

grangertest(𝑥0 ~ 𝑥5, order = 9) 

grangertest(𝑥0 ~ 𝑥6, order = 9) 

 

v3 <- cbind(𝑥0, 𝑥1, 𝑥3, 𝑥4, 𝑥6) 

colnames(v3) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6" )    

lagselect <- VARselect(v3, lag.max = 15, type = "const") 

lagselect$selection 

Model3 <- VAR(v3, p = 3, type = "const", season = NULL, exog = NULL)  

Model3 

summary(Model3) 

Serial3 <- serial.test(Model3, lags.pt = 5, type = "PT.asymptotic") 

Serial3 

Arch3 <- arch.test(Model3, lags.multi = 15, multivariate.only = TRUE) 

Arch3 

Norm3 <- normality.test(Model3, multivariate.only = TRUE) 

Norm3 

Stability3 <- stability(Model3, type = "OLS-CUSUM") 

plot(Stability3) 

#code for zone 4 

#zone 4 

#data4=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data4=read.csv("C:\\Users\\User\\Desktop\\PHD\\z4.csv",header=TRUE) 

attach(data4) 

str(data4) 

names(data4) 

data4$𝑥0<-(data4$𝑥0-min(data4$𝑥0))/(max(data4$𝑥0)-min(data4$𝑥0)) 

data4$𝑥1<-(data4$𝑥1-min(data4$𝑥1))/(max(data4$𝑥1)-min(data4$𝑥1)) 

data4$𝑥2<-(data4$𝑥2-min(data4$𝑥2))/(max(data4$𝑥2)-min(data4$𝑥2)) 

data4$𝑥6<-(data4$𝑥6-min(data4$𝑥6))/(max(data4$𝑥6)-min(data4$𝑥6)) 

data4$𝑥3 <-data4$𝑥3 -min(data4$𝑥3))/(max(data4$𝑥3)-min(data4$𝑥3)) 

data4$𝑥5<-(data4$𝑥5-min(data4$𝑥5))/(max(data4$𝑥5)-min(data4$𝑥5)) 

data4$𝑥4<-(data4$𝑥4-min(data4$𝑥4))/(max(data4$𝑥4)-min(data4$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data4$𝑥0 

𝑥1 <-data4$𝑥1 

𝑥2 <-data4$𝑥2 

𝑥3 <-data4$𝑥3 

𝑥4 <-data4$𝑥4 
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𝑥5 <-data4$𝑥5 

𝑥6 <-data4$𝑥6 

data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

data1 

#Data4 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

#Data4 

#fit4<-glm(X~X1+X2+X3+X4+X5+X6,family=gaussian,data=Data4) 

#fit4 

#summary(fit4) 

#Differencing to attain stationarity   

Data4 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data4 

fit4<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6,family = gaussian, data = Data4) 

fit4 

summary(fit3) 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 7) 

grangertest(𝑥0 ~ 𝑥2, order = 7) 

grangertest(𝑥0 ~ 𝑥3, order = 7) 

grangertest(𝑥0 ~ 𝑥4, order = 7) 

grangertest(𝑥0 ~ 𝑥5, order = 7) 

grangertest(𝑥0 ~ 𝑥6, order = 7) 

 

v4 <- cbind(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

colnames(v4) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v4, lag.max = 15, type = "const") 

lagselect$selection 

Model4 <- VAR(v4, p = 3, type = "const", season = NULL, exog = NULL)  

Model4 

summary(Model4) 

Serial4 <- serial.test(Model4, lags.pt = 5, type = "PT.asymptotic") 

Serial4 

Arch4 <- arch.test(Model4, lags.multi = 15, multivariate.only = TRUE) 

Arch4 

Norm4 <- normality.test(Model4, multivariate.only = TRUE) 

Norm4 

Stability4 <- stability(Model4, type = "OLS-CUSUM") 

plot(Stability4) 

#code for zone 5 

#zone 5 

#data5=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data5=read.csv("C:\\Users\\User\\Desktop\\PHD\\z5.csv",header=TRUE) 

attach(data5) 

str(data5) 

names(data5) 

data5 

Data5$𝑥0<-(data5$𝑥0-min(data5$𝑥0))/(max(data5$𝑥0)-min(data5$𝑥0)) 

data5$𝑥1<-(data5$𝑥1-min(data5$𝑥1))/(max(data5$𝑥1)-min(data5$𝑥1)) 

data5$𝑥2<-(data5$𝑥2-min(data5$𝑥2))/(max(data5$𝑥2)-min(data5$𝑥2)) 

data5$𝑥6<-(data5$𝑥6-min(data5$𝑥6))/(max(data5$𝑥6)-min(data5$𝑥6)) 

data5$𝑥3 <-(data5$𝑥3 -min(data5$𝑥3))/(max(data5$𝑥3)-min(data5$𝑥3)) 

data5$𝑥5<-(data5$𝑥5-min(data5$𝑥5))/(max(data5$𝑥5)-min(data5$𝑥5)) 

data5$𝑥4<-(data5$𝑥4-min(data5$𝑥4))/(max(data5$𝑥4)-min(data5$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data5$𝑥0 

𝑥1 <-data5$𝑥1 

𝑥2 <-data5$𝑥2 

𝑥3 <-data5$𝑥3 

𝑥4 <-data5$𝑥4 

𝑥5 <-data5$𝑥5 

𝑥6 <-data5$𝑥6 

data1<-data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

data1 
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#Differencing to attain stationarity 

𝑥0 <- diff(𝑥0, differences = 9) 

𝑥1 <- diff(𝑥1, differences = 9) 

𝑥2 <- diff(𝑥2, differences = 9) 

𝑥3 <- diff(𝑥3, differences = 9) 

𝑥4 <- diff(𝑥4, differences = 9) 

𝑥5 <- diff(𝑥5, differences = 9) 

𝑥6 <- diff(𝑥6, differences = 9) 

   

Data5 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data5 

fit5<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6-1,family=gaussian,data=Data5) 

fit5 

summary(fit5) 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 5) 

grangertest(𝑥0 ~ 𝑥2, order = 5) 

grangertest(𝑥0 ~ 𝑥3, order = 5) 

grangertest(𝑥0 ~ 𝑥4, order = 5) 

grangertest(𝑥0 ~ 𝑥5, order = 5) 

grangertest(𝑥0 ~ 𝑥6, order = 5) 

 

v5 <- cbind(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

 

colnames(v5) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v5, lag.max = 15, type = "const") 

lagselect$selection 

Model5 <- VAR(v5, p = 3, type = "const", season = NULL, exog = NULL)  

Model5 

summary(Model5) 

Serial5 <- serial.test(Model5, lags.pt = 5, type = "PT.asymptotic") 

Serial5 

Arch5 <- arch.test(Model5, lags.multi = 15, multivariate.only = TRUE) 

Arch5 

Norm5 <- normality.test(Model5, multivariate.only = TRUE) 

Norm5 

Stability5 <- stability(Model5, type = "OLS-CUSUM") 

plot(Stability5) 

#CODE FOR GLOBAL VECTOR 

#dataG=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

dataG=read.csv("C:\\Users\\User\\Desktop\\PHD\\GZ1.csv",header=TRUE) 

attach(dataG) 

str(dataG) 

names(dataG) 

dataG$X<-(dataG$X-min(dataG$X))/(max(dataG$X)-min(dataG$X)) 

dataG$X 

dataG$𝑥0<-( dataG$𝑥0-min(dataG$𝑥0))/(max(dataG$𝑥0)-min(dataG$𝑥0)) 

dataG$𝑥1<-( dataG$𝑥1-min(dataG$𝑥1))/(max(dataG$𝑥1)-min(dataG$𝑥1)) 

dataG$𝑥2<-( dataG$𝑥2-min(dataG$𝑥2))/(max(dataG$𝑥2)-min(dataG$𝑥2)) 

dataG$𝑥6<-( dataG$𝑥6-min(dataG$𝑥6))/(max(dataG$𝑥6)-min(dataG$𝑥6)) 

dataG$𝑥3<-( dataG$𝑥3-min(dataG$𝑥3))/(max(dataG$𝑥3)-min(dataG$𝑥3)) 

dataG$𝑥5<-( dataG$𝑥5-min(dataG$𝑥5))/(max(dataG$𝑥5)-min(dataG$𝑥5)) 

dataG$𝑥4<-( dataG$𝑥4-min(dataG$𝑥4))/(max(dataG$𝑥4)-min(dataG$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

 

𝑥0 <-dataG$𝑥0 

𝑥0 <- dataG$𝑥0 

𝑥1 <- dataG$𝑥1 

𝑥2 <- dataG$𝑥2 

𝑥3 <- dataG$𝑥3 

𝑥4 <- dataG$𝑥4 

𝑥5 <- dataG$𝑥5 

𝑥6 <- dataG$𝑥6 
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DataG <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

DataG 

fitG<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6,family = gaussian,data = DataG) 

fitG 

summary(fitG) 

#Differencing to attain stationarity  

𝑥0 <- diff(𝑥0, differences = 12) 

𝑥1 <- diff(𝑥1, differences = 12) 

𝑥2 <- diff(𝑥2, differences = 12) 

𝑥3 <- diff(𝑥3, differences = 12) 

𝑥4 <- diff(𝑥4, differences = 12) 

𝑥5 <- diff(𝑥5, differences = 12) 

𝑥6 <- diff(𝑥6, differences = 12) 

 

DataG1 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

DataG1 

fitG1<-glm(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6-1,family=gaussian,data=DataG1) 

fitG1 

summary(fitG1) 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 8) 

grangertest(𝑥0 ~ 𝑥2, order = 8) 

grangertest(𝑥0 ~ 𝑥3, order = 8) 

grangertest(𝑥0 ~ 𝑥4, order = 8) 

grangertest(𝑥0 ~ 𝑥5, order = 8) 

grangertest(𝑥0 ~ 𝑥6, order = 8) 

 

set.seed(222) 

ind<-sample(2,nrow(DataG1),replace=TRUE,prob=c(0.7,0.3)) 

training<-DataG1[ind==1,]#first sample 

testing<-DataG1[ind==2,]#second sample 

training 

testing 

library(neuralnet) 

set.seed(333) 

library(neuralnet) 

names(DataG1) 

training=training[-c(1,9)] 

training=data.frame(training) 

attach(training) 

nn=neuralnet(𝑥0~𝑥1+𝑥2+𝑥3+𝑥4+𝑥5+𝑥6,data= DataG1, hidden=1,act.fct = "logistic", 

                linear.output = FALSE) 

# plot neural network 

plot(nn) 

vG <- cbind(𝑥0, 𝑥1, 𝑥3, 𝑥4, 𝑥6) 

colnames(vG) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(vG, lag.max = 15, type = "const") 

lagselect$selection 

ModelG <- VAR(vG, p = 3, type = "const", season = NULL, exog = NULL)  

summary(ModelG) 

SerialG <- serial.test(ModelG, lags.pt = 5, type = "PT.asymptotic") 

SerialG 

ArchG <- arch.test(ModelG, lags.multi = 15, multivariate.only = TRUE) 

ArchG 

NormG <- normality.test(ModelG, multivariate.only = TRUE) 

NormG 

StabilityG <- stability(ModelG, type = "OLS-CUSUM") 

plot(StabilityG) 

predict(ModelG,n.ahead=3,newxreg=NULL,se.fit=TRUE) 

plot(forecast(ModelG)) 

forecasts <- HoltWinters(x, beta=FALSE, gamma=FALSE) 

HoltWinters(x, beta=FALSE, gamma=FALSE, l.start=23.56) 

fit <- HoltWinters(x,gamma=FALSE) 

plot(forecast(fit)) 

#Test for the Causality using Granger Causality test. 

library(vars) 
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library(mFilter) 

library(tseries) 

library(TSstudio) 

library(forecast) 

library(tidyverse) 

library(lmtest) 

library(BVAR) 

#NET WORK MODELS 

#zone 1 

#data=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data1=read.csv("C:\\Users\\User\\Desktop\\phd\\z1N.csv",header=TRUE) 

data1 

attach(data1) 

str(data1) 

names(data1) 

#Normalization of data 

data1$𝑥0<-(data1$𝑥0-min(data1$𝑥0))/(max(data1$𝑥0)-min(data1$𝑥0)) 

data1$𝑥1<-(data1$𝑥1-min(data1$𝑥1))/(max(data1$𝑥1)-min(data1$𝑥1)) 

data1$𝑥2<-(data1$𝑥2-min(data1$𝑥2))/(max(data1$𝑥2)-min(data1$𝑥2)) 

data1$𝑥6<-(data1$𝑥6-min(data1$𝑥6))/(max(data1$𝑥6)-min(data1$𝑥6)) 

data1$𝑥3 <-(data1$𝑥3 -min(data1$𝑥3))/(max(data1$𝑥3)-min(data1$𝑥3)) 

data1$𝑥5<-(data1$𝑥5-min(data1$𝑥5))/(max(data1$𝑥5)-min(data1$𝑥5)) 

data1$𝑥4<-(data1$𝑥4-min(data1$𝑥4))/(max(data1$𝑥4)-min(data1$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data1$𝑥0 

𝑥1 <-data1$𝑥1 

𝑥2 <-data1$𝑥2 

𝑥3 <-data1$𝑥3 

𝑥4 <-data1$𝑥4 

𝑥5 <-data1$𝑥5 

𝑥6 <-data1$𝑥6 

Data1 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data1 

#Differencing to attain stationarity for X1  

𝑥0 <- diff(𝑥0, differences = 9) 

𝑥1 <- diff(𝑥1, differences = 9) 

𝑥2 <- diff(𝑥2, differences = 9) 

𝑥3 <- diff(𝑥3, differences = 9) 

𝑥4 <- diff(𝑥4, differences = 9) 

𝑥5 <- diff(𝑥5, differences = 9) 

𝑥6 <- diff(𝑥6, differences = 9) 

 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 6) 

grangertest(𝑥0 ~ 𝑥2, order = 6) 

grangertest(𝑥0 ~ 𝑥3, order = 6) 

grangertest(𝑥0 ~ 𝑥4, order = 6) 

grangertest(𝑥0 ~ 𝑥5, order = 6) 

grangertest(𝑥0 ~ 𝑥6, order = 6) 

 

v1 <- cbind(x, x1, x3, x4,x6) 

colnames(v1) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v1, lag.max = 15, type = "const") 

lagselect$selection 

Model1 <- VAR(v1, p = 3, type = "const", season = NULL, exog = NULL)  

summary(Model1) 

Serial1 <- serial.test(Model1, lags.pt = 5, type = "PT.asymptotic") 

Serial1 

Arch1 <- arch.test(Model1, lags.multi = 15, multivariate.only = TRUE) 

Arch1 

Norm1 <- normality.test(Model1, multivariate.only = TRUE) 

Norm1 

Stability1 <- stability(Model1, type = "OLS-CUSUM") 

plot(Stability1) 
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#code for zone 2 

data2=read.csv("C:\\Users\\User\\Desktop\\PHD\\z2N.csv",header=TRUE) 

data2 

attach(data2) 

str(data2) 

names(data2) 

data2$𝑥0<-(data2$𝑥0-min(data2$𝑥0))/(max(data2$𝑥0)-min(data2$𝑥0)) 

data2$𝑥1<-(data2$𝑥1-min(data2$𝑥1))/(max(data2$𝑥1)-min(data2$𝑥1)) 

data2$𝑥2<-(data2$𝑥2-min(data2$𝑥2))/(max(data2$𝑥2)-min(data2$𝑥2)) 

data2$𝑥6<-(data2$𝑥6-min(data2$𝑥6))/(max(data2$𝑥6)-min(data2$𝑥6)) 

data2$𝑥3<-(data2$𝑥3-min(data2$𝑥3))/(max(data2$𝑥3)-min(data2$𝑥3)) 

data2$𝑥5<-(data2$𝑥5-min(data2$𝑥5))/(max(data2$𝑥5)-min(data2$𝑥5)) 

data2$𝑥4<-(data2$𝑥4-min(data2$𝑥4))/(max(data2$𝑥4)-min(data2$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data2$𝑥0 

𝑥1 <-data2$𝑥1 

𝑥2 <-data2$𝑥2 

𝑥3 <-data2$𝑥3 

𝑥4 <-data2$𝑥4 

𝑥5 <-data2$𝑥5 

𝑥6 <-data2$𝑥6 

 

Data2 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data2 

#Differencing to attain stationarity  

𝑥0 <- diff(𝑥0, differences = 9) 

𝑥1 <- diff(𝑥1, differences = 9) 

𝑥2 <- diff(𝑥2, differences = 9) 

𝑥3 <- diff(𝑥3, differences = 9) 

𝑥4 <- diff(𝑥4, differences = 9) 

𝑥5 <- diff(𝑥5, differences = 9) 

𝑥6 <- diff(𝑥6, differences = 9) 

 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 6) 

grangertest(𝑥0 ~ 𝑥2, order = 6) 

grangertest(𝑥0 ~ 𝑥3, order = 6) 

grangertest(𝑥0 ~ 𝑥4, order = 6) 

grangertest(𝑥0 ~ 𝑥5, order = 6) 

grangertest(𝑥0 ~ 𝑥6, order = 6) 

 

v2 <- cbind(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

colnames(v2) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v2, lag.max = 15, type = "const") 

lagselect$selection 

Model2 <- VAR(v2, p = 3, type = "const", season = NULL, exog = NULL)  

summary(Model2) 

Serial2 <- serial.test(Model2, lags.pt = 5, type = "PT.asymptotic") 

Serial2 

Arch2 <- arch.test(Model2, lags.multi = 15, multivariate.only = TRUE) 

Arch2 

Norm2 <- normality.test(Model2, multivariate.only = TRUE) 

Norm2 

Stability2 <- stability(Model2, type = "OLS-CUSUM") 

plot(Stability2) 

#code for  zone 3 

#zone 3 

#data3=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data3=read.csv("C:\\Users\\User\\Desktop\\PHD\\z3N.csv",header=TRUE) 

attach(data3) 

str(data3) 

names(data3) 

data3$𝑥0<-(data3$𝑥0-min(data3$𝑥0))/(max(data3$𝑥0)-min(data3$𝑥0)) 

data3$𝑥1<-(data3$𝑥1-min(data3$𝑥1))/(max(data3$𝑥1)-min(data3$𝑥1)) 
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data3$𝑥2<-(data3$𝑥2-min(data3$𝑥2))/(max(data3$𝑥2)-min(data3$𝑥2)) 

data3$𝑥6<-(data3$𝑥6-min(data3$𝑥6))/(max(data3$𝑥6)-min(data3$𝑥6)) 

data3$𝑥3<-(data3$𝑥3-min(data3$𝑥3))/(max(data3$𝑥3)-min(data3$𝑥3)) 

data3$𝑥5<-(data3$𝑥5-min(data3$𝑥5))/(max(data3$𝑥5)-min(data3$𝑥5)) 

data3$𝑥4<-(data3$𝑥4-min(data3$𝑥4))/(max(data3$𝑥4)-min(data3$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data3$𝑥0 

𝑥1 <-data3$𝑥1 

𝑥2 <-data3$𝑥2 

𝑥3 <-data3$𝑥3 

𝑥4 <-data3$𝑥4 

𝑥5 <-data3$𝑥5 

𝑥6 <-data3$𝑥6 

Data3 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data3 

#Differencing to attain stationarity  

𝑥0 <- diff(𝑥0, differences = 12) 

𝑥1 <- diff(𝑥1, differences = 12) 

𝑥2 <- diff(𝑥2, differences = 12) 

𝑥3 <- diff(𝑥3, differences = 12) 

𝑥4 <- diff(𝑥4, differences = 12) 

𝑥5 <- diff(𝑥5, differences = 12) 

𝑥6 <- diff(𝑥6, differences = 12) 

 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 9) 

grangertest(𝑥0 ~ 𝑥2, order = 9) 

grangertest(𝑥0 ~ 𝑥3, order = 9) 

grangertest(𝑥0 ~ 𝑥4, order = 9) 

grangertest(𝑥0 ~ 𝑥5, order = 9) 

grangertest(𝑥0 ~ 𝑥6, order = 9) 

 

v3 <- cbind(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

colnames(v3) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v3, lag.max = 15, type = "const") 

lagselect$selection 

Model3 <- VAR(v3, p = 3, type = "const", season = NULL, exog = NULL)  

summary(Model3) 

Serial3 <- serial.test(Model3, lags.pt = 5, type = "PT.asymptotic") 

Serial3 

Arch3 <- arch.test(Model3, lags.multi = 15, multivariate.only = TRUE) 

Arch3 

Norm3 <- normality.test(Model3, multivariate.only = TRUE) 

Norm3 

Stability3 <- stability(Model3, type = "OLS-CUSUM") 

plot(Stability3) 

#code for zone 4 

#zone 4 

#data4=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data4=read.csv("C:\\Users\\User\\Desktop\\PHD\\z4.csv",header=TRUE) 

attach(data4) 

str(data4) 

names(data4) 

data4$𝑥0<-(data4$𝑥0-min(data4$𝑥0))/(max(data4$𝑥0)-min(data4$𝑥0)) 

data4$𝑥1<-(data4$𝑥1-min(data4$𝑥1))/(max(data4$𝑥1)-min(data4$𝑥1)) 

data4$𝑥2<-(data4$𝑥2-min(data4$𝑥2))/(max(data4$𝑥2)-min(data4$𝑥2)) 

data4$𝑥6<-(data4$𝑥6-min(data4$𝑥6))/(max(data4$𝑥6)-min(data4$𝑥6)) 

data4$𝑥3 <-data4$𝑥3 -min(data4$𝑥3))/(max(data4$𝑥3)-min(data4$𝑥3)) 

data4$𝑥5<-(data4$𝑥5-min(data4$𝑥5))/(max(data4$𝑥5)-min(data4$𝑥5)) 

data4$𝑥4<-(data4$𝑥4-min(data4$𝑥4))/(max(data4$𝑥4)-min(data4$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data4$𝑥0 



146 
 

 

𝑥1 <-data4$𝑥1 

𝑥2 <-data4$𝑥2 

𝑥3 <-data4$𝑥3 

𝑥4 <-data4$𝑥4 

𝑥5 <-data4$𝑥5 

𝑥6 <-data4$𝑥6 

Data4 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

Data4 

#Differencing to attain stationarity  

𝑥0 <- diff(𝑥0, differences = 9) 

𝑥1 <- diff(𝑥1, differences = 9) 

𝑥2 <- diff(𝑥2, differences = 9) 

𝑥3 <- diff(𝑥3, differences = 9) 

𝑥4 <- diff(𝑥4, differences = 9) 

𝑥5 <- diff(𝑥5, differences = 9) 

𝑥6 <- diff(𝑥6, differences = 9) 

  

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 7) 

grangertest(𝑥0 ~ 𝑥2, order = 7) 

grangertest(𝑥0 ~ 𝑥3, order = 7) 

grangertest(𝑥0 ~ 𝑥4, order = 7) 

grangertest(𝑥0 ~ 𝑥5, order = 7) 

grangertest(𝑥0 ~ 𝑥6, order = 7) 

 

v4 <- cbind(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

colnames(v4) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v4, lag.max = 15, type = "const") 

lagselect$selection 

Model4 <- VAR(v4, p = 3, type = "const", season = NULL, exog = NULL)  

summary(Model4) 

Serial4 <- serial.test(Model4, lags.pt = 5, type = "PT.asymptotic") 

Serial4 

Arch4 <- arch.test(Model4, lags.multi = 15, multivariate.only = TRUE) 

Arch4 

Norm4 <- normality.test(Model4, multivariate.only = TRUE) 

Norm4 

Stability4 <- stability(Model4, type = "OLS-CUSUM") 

plot(Stability4) 

#code for zone 5 

#zone 5 

#data5=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

data5=read.csv("C:\\Users\\User\\Desktop\\PHD\\z5.csv",header=TRUE) 

attach(data5) 

str(data5) 

names(data5) 

#data5 

Data5$𝑥0<-(data5$𝑥0-min(data5$𝑥0))/(max(data5$𝑥0)-min(data5$𝑥0)) 

data5$𝑥1<-(data5$𝑥1-min(data5$𝑥1))/(max(data5$𝑥1)-min(data5$𝑥1)) 

data5$𝑥2<-(data5$𝑥2-min(data5$𝑥2))/(max(data5$𝑥2)-min(data5$𝑥2)) 

data5$𝑥6<-(data5$𝑥6-min(data5$𝑥6))/(max(data5$𝑥6)-min(data5$𝑥6)) 

data5$𝑥3 <-(data5$𝑥3 -min(data5$𝑥3))/(max(data5$𝑥3)-min(data5$𝑥3)) 

data5$𝑥5<-(data5$𝑥5-min(data5$𝑥5))/(max(data5$𝑥5)-min(data5$𝑥5)) 

data5$𝑥4<-(data5$𝑥4-min(data5$𝑥4))/(max(data5$𝑥4)-min(data5$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

𝑥0 <-data5$𝑥0 

𝑥1 <-data5$𝑥1 

𝑥2 <-data5$𝑥2 

𝑥3 <-data5$𝑥3 

𝑥4 <-data5$𝑥4 

𝑥5 <-data5$𝑥5 

𝑥6 <-data5$𝑥6 

Data5 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 
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Data5 

#Differencing to attain stationarity   

𝑥0 <- diff(𝑥0, differences = 9) 

𝑥1 <- diff(𝑥1, differences = 9) 

𝑥2 <- diff(𝑥2, differences = 9) 

𝑥3 <- diff(𝑥3, differences = 9) 

𝑥4 <- diff(𝑥4, differences = 9) 

𝑥5 <- diff(𝑥5, differences = 9) 

𝑥6 <- diff(𝑥6, differences = 9) 

 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 3) 

grangertest(𝑥0 ~ 𝑥2, order = 3) 

grangertest(𝑥0 ~ 𝑥3, order = 3) 

grangertest(𝑥0 ~ 𝑥4, order = 3) 

grangertest(𝑥0 ~ 𝑥5, order = 3) 

grangertest(𝑥0 ~ 𝑥6, order = 3) 

 

v5 <- cbind(𝑥0, 𝑥1, 𝑥3, 𝑥4, 𝑥6) 

colnames(v5) <- cbind("𝑥0", "𝑥1", "𝑥2","𝑥3","𝑥4","𝑥5","𝑥6") 

lagselect <- VARselect(v5, lag.max = 15, type = "const") 

lagselect$selection 

Model5 <- VAR(v5, p = 3, type = "const", season = NULL, exog = NULL)  

Model5 

summary(Model5) 

Serial5 <- serial.test(Model5, lags.pt = 5, type = "PT.asymptotic") 

Serial5 

Arch5 <- arch.test(Model5, lags.multi = 15, multivariate.only = TRUE) 

Arch5 

Norm5 <- normality.test(Model5, multivariate.only = TRUE) 

Norm5 

Stability5 <- stability(Model5, type = "OLS-CUSUM") 

plot(Stability5) 

#CODE FOR GLOBAL VECTOR 

#dataG=read.csv(file.choose(),header=TRUE)# Gitonga PhD Thesis 

dataG=read.csv("C:\\Users\\User\\Desktop\\PHD\\GZ1.csv",header=TRUE) 

attach(dataG) 

str(dataG) 

names(dataG) 

dataG$X<-(dataG$X-min(dataG$X))/(max(dataG$X)-min(dataG$X)) 

dataG$X 

dataG$𝑥0<-( dataG$𝑥0-min(dataG$𝑥0))/(max(dataG$𝑥0)-min(dataG$𝑥0)) 

dataG$𝑥1<-( dataG$𝑥1-min(dataG$𝑥1))/(max(dataG$𝑥1)-min(dataG$𝑥1)) 

dataG$𝑥2<-( dataG$𝑥2-min(dataG$𝑥2))/(max(dataG$𝑥2)-min(dataG$𝑥2)) 

dataG$𝑥6<-( dataG$𝑥6-min(dataG$𝑥6))/(max(dataG$𝑥6)-min(dataG$𝑥6)) 

dataG$𝑥3<-( dataG$𝑥3-min(dataG$𝑥3))/(max(dataG$𝑥3)-min(dataG$𝑥3)) 

dataG$𝑥5<-( dataG$𝑥5-min(dataG$𝑥5))/(max(dataG$𝑥5)-min(dataG$𝑥5)) 

dataG$𝑥4<-( dataG$𝑥4-min(dataG$𝑥4))/(max(dataG$𝑥4)-min(dataG$𝑥4)) 

#data$timestamp<-(data$timestamp-min(data$timestamp))/(max(data$timestamp)-

min(data$timestamp)) 

 

𝑥0 <-dataG$𝑥0 

𝑥0 <- dataG$𝑥0 

𝑥1 <- dataG$𝑥1 

𝑥2 <- dataG$𝑥2 

𝑥3 <- dataG$𝑥3 

𝑥4 <- dataG$𝑥4 

𝑥5 <- dataG$𝑥5 

𝑥6 <- dataG$𝑥6 

 

DataG <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)) 

DataG 

#Differencing to attain stationarity  

𝑥0 <- diff(𝑥0, differences = 12) 

𝑥1 <- diff(𝑥1, differences = 12) 
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𝑥2 <- diff(𝑥2, differences = 12) 

𝑥3 <- diff(𝑥3, differences = 12) 

𝑥4 <- diff(𝑥4, differences = 12) 

𝑥5 <- diff(𝑥5, differences = 12) 

𝑥6 <- diff(𝑥6, differences = 12) 

 

DataG1 <- data.frame(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) 

DataG1 

#Obtaining granger causality 

grangertest(𝑥0 ~ 𝑥1, order = 8) 

grangertest(𝑥0 ~ 𝑥2, order = 8) 

grangertest(𝑥0 ~ 𝑥3, order = 8) 

grangertest(𝑥0 ~ 𝑥4, order = 8) 

grangertest(𝑥0 ~ 𝑥5, order = 8) 

grangertest(𝑥0 ~ 𝑥6, order = 8) 

 

vG <- cbind(𝑥0, 𝑥1, 𝑥3, 𝑥4, 𝑥6) 

colnames(vG) <- cbind("𝑥0", "𝑥1", "𝑥2", "𝑥3", "𝑥4", "𝑥5", "𝑥6") 

 

lagselect <- VARselect(vG, lag.max = 15, type = "const") 

lagselect$selection 

ModelG <- VAR(vG, p = 3, type = "const", season = NULL, exog = NULL)  

summary(ModelG) 

SerialG <- serial.test(ModelG, lags.pt = 5, type = "PT.asymptotic") 

SerialG 

ArchG <- arch.test(ModelG, lags.multi = 15, multivariate.only = TRUE) 

ArchG 

NormG <- normality.test(ModelG, multivariate.only = TRUE) 

NormG 

StabilityG <- stability(ModelG, type = "OLS-CUSUM") 

plot(StabilityG) 

Theil's U 

 

        Ljung-Box test 

 

Q* = 21.054, df = 5, p-value = 0.0007912 

Model df: 0.   Total lags used: 5 

predict(Model1,n.ahead=10,newxreg=NULL,se.fit=TRUE) 

$X 

> predict(Model1,n.ahead=10,newxreg=NULL,se.fit=TRUE) 

> plot(forecast(Model1)) 

Smoothing parameters: > HoltWinters(𝑋0, beta=FALSE, gamma=FALSE, 

l.start=23.56) 

From the findings,  alpha was  0.3511712, beta  was FALSE and the  gamma was 

FALSE with a Coefficients of  0.2042217 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Showed that HoltWinters (𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE, l.start = 23.56) 

and the Smoothing parameters showed that   alpha was  0.9879182,  beta  was  

FALSE and the  gamma was FALSE. The Coefficients was showed as 0.188547 > fit 

<- HoltWinters(𝑋0,gamma=FALSE) > plot(forecast(fit) 

 Theil's U showed that Training set was NA while the Test set was 0.9265776 

        Ljung-Box test 

The   Residuals from Naive method shwed that  Q* = 5.1557, df = 5, p-value = 

0.3972, With Model df of 0 leading to a Total lags used of  5 

> predict (Model1,n.ahead=10,newxreg=NULL,se.fit=TRUE) 

$𝑋0 

> plot(forecast(Model1)) 

> forecasts <- HoltWinters(𝑋0, beta=FALSE, gamma=FALSE) 

> forecasts 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Call: 

HoltWinters(𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE) 

Smoothing parameters: 

 alpha: 0.02949134 
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 beta : FALSE 

 gamma: FALSE 

Coefficients: [,1] 

a 0.1623501 

> HoltWinters(𝑋0, beta=FALSE, gamma=FALSE, l.start=23.56) 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Call: 

HoltWinters(𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE, l.start = 23.56) 

Smoothing parameters: 

 alpha: 0.999319 

 beta : FALSE 

 gamma: FALSE 

Coefficients: 

        [,1] 

a 0.04514694 

> fit <- HoltWinters(𝑋0,gamma=FALSE) 

> plot(forecast(fit)) 

data:  Residuals from Naive method 

Q* = 4.3446, df = 5, p-value = 0.5009 

Model df: 0.   Total lags used: 5 

> predict(Model1,n.ahead=10,newxreg=NULL,se.fit=TRUE) 

$𝑋0 

> plot(forecast(Model1)) 

> forecasts <- HoltWinters(𝑋0, beta=FALSE, gamma=FALSE) 

> forecasts 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Call: 

HoltWinters(𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE) 

Smoothing parameters: 

 alpha: 0.0242375 

 beta : FALSE 

 gamma: FALSE 

Coefficients: 

       [,1] 

a 0.2550029 

> HoltWinters(𝑋0, beta=FALSE, gamma=FALSE, l.start=23.56) 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Call: 

HoltWinters(𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE, l.start = 23.56) 

Smoothing parameters: 

 alpha: 0.9967289 

 beta : FALSE 

 gamma: FALSE 

Coefficients: 

      [,1] 

a 0.1452681 

> fit <- HoltWinters(𝑋0,gamma=FALSE) 

> plot(forecast(fit) 

> checkresiduals(fc) 

        Ljung-Box test 

data:  Residuals from Naive method 

Q* = 16.168, df = 5, p-value = 0.006381 

Model df: 0.   Total lags used: 5 

> predict(Model1,n.ahead=10,newxreg=NULL,se.fit=TRUE) 

$X 

> plot(forecast(Model1)) 

> forecasts <- HoltWinters(𝑋0, beta=FALSE, gamma=FALSE) 

> forecasts 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Call: 

HoltWinters(𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE) 

Smoothing parameters: 

 alpha: 0.6309507 
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 beta : FALSE 

 gamma: FALSE 

Coefficients: 

       [,1] 

a 0.2524445 

> HoltWinters(𝑋0, beta=FALSE, gamma=FALSE, l.start=23.56) 

Holt-Winters exponential smoothing without trend and without seasonal 

component. 

Call: 

HoltWinters(𝑥0 = 𝑋0, beta = FALSE, gamma = FALSE, l.start = 23.56) 

Smoothing parameters: 

 alpha: 0.9970127 

 beta : FALSE 

 gamma: FALSE 

Coefficients: 

       [,1] 

a 0.2032076 

> fit <- HoltWinters(𝑋0,gamma=FALSE) 

> plot(forecast(fit)) 

> accuracy(fc, my.test) 

> checkresiduals(fc) 

        Ljung-Box test 

data:  Residuals from Naive method 

Q* = 3.605, df = 5, p-value = 0.6076 

Model df: 0.   Total lags used: 5 

> predict(Model1,n.ahead=10,newxreg=NULL,se.fit=TRUE) 

 

 


