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ABSTRACT 
 
In recent years the implementation of Erbium-doped fibre amplifiers has allowed the 
extension of high-bit rate transmission over long-haul distances. But the demand for an 
increase in transmission capacity is unprecedented and grows continuously. Despite the 
intrinsically small values of the nonlinear coefficient for silica, the nonlinear 
birefringence effects in optical fibres can be observed even at low powers considering 
that the light is confined in a relatively small area over long (i.e. transoceanic) 
interaction lengths due to the extremely low attenuation coefficient and the event of 
optical amplifiers. Due to this, nonlinear birefringence effects cannot be ignored when 
considering light propagation in optical fibres. In this research, both theoretical and 
experimental investigation of the interaction between linear and nonlinear induced 
birefringence in a fibre and the possibility of using this interaction to design fibre optic 
sensors (FOS) was done. Investigations show that the linear birefringence effect leads to 
a distortion of the signal but when it is frequency independent, its overall effect is just a 
rotation of the signal state of polarization (SOP) on the Poincaré sphere. Further 
investigation show that the effect of nonlinear birefringence alone depolarizes the 
signal, while in high polarization mode dispersion (PMD) links where polarization 
mode coupling is high, the linear and nonlinear birefringence vectors couple together 
such that it may reduce the penalty and improve the signal degree of polarization 
(DOP). As the channel spacing increases, the interaction between the probe and the 
pump signal is reduced, thus the DOP improvement for 100 GHz (0.8 nm) come later, 
after that of 50 GHz (0.4 nm) channel spacing. In optical sensing, the study show that 
the DOP of the probe increases linearly with the applied physical measurand (stress, 
strain, temperature). Also, the study shows that for temperature sensing with 
polarization maintaining fibre (PMF) used as a sensing fibre, the rate or frequency at 
which the DOP varies is faster at high temperatures than at lower temperatures. The 
design of a stress sensor gave the best sensitivity of 0.051 kg-1 over a range of 0-27.5 kg 
with PMF as the sensing fibre and 0.049 kg-1 over a range of 0-15 kg with LEAF as the 
sensing fibre. In strain sensing, a sensitivity of 0.0103 ߤm-1 was obtained with single 
mode fibre (SMF) as the sensing element. Lastly, the design of a temperature sensor 
gave the best sensitivity of 0.181 0C-1 with PMF fibre and 0.0009 0C-1 with SMF, thus, 
PMF fibre would be the best choice as a sensing element. The designed sensors offer a 
unique possibility in high accuracy and sensitivity at low powers than other polarimetric 
sensors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

From ancient times till now, civilizations have advanced as people discovered new 

ways of exploiting various physical resources such as materials, fundamental forces and 

energies. In the recent past, information technology was added to the list when 

computers allowed complex information processing to be performed outside human 

brains. There is now a move towards a society which requires that one accesses 

information at their finger tips when they need it, where they need it, and in whatever 

format they need it. Fibre-optic technology can be considered to be the solution for 

meeting the above need because of its potentially limitless capabilities, huge bandwidth 

(in terms of Tb/s), low signal attenuation (0.2 dB/km), low signal distortion, low power 

requirement, low material usage, small space requirement and low cost [1, 2]. The 

exponential rise in the demand for high speed optical communication systems [3] has 

forced networks to use higher bit rates and transmission powers.  

 

Optical fibres have become an important transmission medium but, of course, such 

transmission is never perfect and non-ideal behaviour leads to limitations in the 

performance of communication systems, based on optical fibres. The two polarization 

states in an ideal, perfectly circular optical fibre are degenerate, so the propagation wave 

number does not depend on the polarization state. Real optical fibres are never perfect, 

they have slight asymmetries or other perturbations that destroy the degeneracy, leading 

to two polarization states with slightly different phase and group velocities, a 
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phenomenon known as birefringence [4]. The birefringence in the fibre contributes to 

polarization mode dispersion (PMD) which is a major limiting factor that leads to 

system impairments for the transmission of high speed optical signals over the already 

embedded optical fibre network. Digital signal propagating through an optical fibre with 

linear birefringence effects may be broadened during transmission and as a consequence 

spread beyond their allocated bit slot and interfere with neighbouring bits. The 

distortion introduced by linear birefringence becomes relevant for systems operating at 

bit rate larger than 10 Gb/s per channel. The introduction of optical amplifiers has 

allowed a considerable increase in the length of the communication link, which in turn 

has also allowed linear effects to accumulate over even longer distances.  

 

Nonlinear effects become significant at high optical power levels and have become 

more important since the development of Erbium-doped fibre amplifier (EDFA) and 

wavelength division multiplexed (WDM) systems. By increasing the capacity of the 

optical transmission line, which can be achieved by increasing channel bit rate, 

decreasing channel spacing or the combination of both, the fibre nonlinearities come to 

play an even more decisive role on the signal transmission.  

 

The origin of the nonlinearities is the refractive index of the optical fibre, which varies 

with the intensity of the optical signal. The high signal intensity associated with the 

large number of channels at closely spaced wavelengths may introduce problematic 

nonlinear effects; such as four-wave mixing (FWM), self-phase modulation (SPM) and 

cross-phase modulation (XPM). Thus, the intensity dependence of the refractive index 
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(optical Kerr effect) is responsible for nonlinear birefringence whose effect is nonlinear 

polarization rotation [5]. These effects just like the linear effects can be detrimental in 

optical communications, but they also, have many useful applications, especially for the 

implementation of all-optical functionalities in optical networks [6]. It is therefore, 

important to analyze the interaction between the linear and nonlinear effects in the 

transmission system in order to utilize their potential to the fullest. 

 

The analysis of the interaction between the linear and nonlinear birefringence may lead 

to design of various optical devices such as optical switches and sensors. Fibre optic 

sensors have been employed in a variety of applications, including in composite 

materials, remote sensing, and monitoring of hazardous environment since they have 

several advantages such as small size and weight, immunity to electromagnetic 

interferences, intrinsically safe in explosive environments and high multiplexing 

potentials. A number of intrinsic and extrinsic fibre sensors have been developed in the 

past few years. Intrinsic fibre sensors fall into the category of polarimetric sensors 

through the employment of high birefringent polarization maintaining fibres as sensing 

elements.  In spite of many advantages, there is growing demand for improved 

sensitivity, reliability, accuracy, flexibility and better compatibility of fibre optic 

sensors for various applications.  

 

1.2 Problem Statement 
 
Signal impairment effects due to optical birefringence introduced through intrinsic or 

extrinsic perturbations seriously degrade network performance. Thus, there is need to 
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investigate effects of linear and nonlinear optical birefringence in order that they be 

fully understood and also, ensure that they contribute constructively to the transfer of 

information in a fibre and in designing of optical devices such as optical switches and 

sensors. Efficient data monitoring in fibre transmission links through network sensing 

require very sensitive and easier to install sensors, making fibre optic sensors to be the 

perfect choice. Also, monitoring environmental changes such as temperature variations 

and impending landslides remains a key challenge, since it requires very reliable and 

accurate sensors; this paves the way for optical sensing.  

 

1.3 Objectives 
 

i. To investigate the effect of linear and nonlinear birefringence on the signal 

transmission. 

ii. To study the possibility of using the nonlinear polarization coupling to develop 

an optical sensor. 

 

1.4 Significance 
 
The demand for an increase in transmission capacity is unprecedented and grows 

continuously e.g. in broadband access to the Internet. A sound knowledge on the useful 

exploitation of the interaction between the linear and nonlinear induced birefringence to 

the design of fibre optic sensors is necessary. Also, it will be a major contribution in the 

communication industry as far as Information and Communication Technology (ICT) is 

concerned, for example biometric voter registration. Optical sensing would have a 

variety of applications, for example, in biomedical applications where the interesting 
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temperature range is relatively narrow, in agriculture to monitor temperature inside the 

green houses, in fuselage or buildings for monitoring the structure’s strain and 

temperature, among others. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Linear Effects in Optical Fibres 
 
An optical fibre is a cylindrical thin hair like dielectric material (glass or plastic) that 

acts like an optical wire. When a dielectric material is subjected to an electric field, a 

slight displacement will occur between the electrons and the ion cores. These small 

movements (ion cores in one direction and electrons in the opposite direction) will 

result in an induced electric dipole moment that leads to polarization, a phenomenon 

which plays an important role in the interaction of light with matter. 

 

 

 

 

 

Fig. 2.1: Diagram showing a section of fibre. 
 

2.1.1  Concept of Polarized Light 
 
Polarization is a property of electromagnetic radiation describing the shape and the 

orientation of the electric field vector as a function of time, at a given point in space. If 

light is assumed to propagate in the positive z-direction, the real instantaneous electric 

field vectors along x-axis and y-axis can be written as  

          
       yεωtkzEz,tyE  ,    xωtkzEz,txE yx


 coscos 00 ……........….. (2.1) 
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where E0x and E0y are the maximum amplitudes in the x and y-axis, k is the propagation 

constant, ߱ is angular frequency, ε is the phase difference between the electric field 

vectors, and t is time. From Eq. (2.1), one can get the equation of an ellipse:  

                                 

εε
E
E

E
E

E
E

E
E

y

y

x

x

y

y

x

x 2

00

2

0
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
















…………………..… (2.2) 

The trace of the state of polarization (SOP) is as shown in Fig. 2.2 and the angle α is the 

SOP orientation angle relative to the x-axis. 

 

 

                                                               

 

 

 

 

Fig. 2.2: Elliptically polarized light oriented at an angle relative to the x-axis having 
components of amplitude 2E0y and 2E0x. 
 

When the phase ε = ±nπ, (n = 0, 1, 2 …), the ellipse collapses into a straight line and it 

corresponds to a linearly polarized light with a constant orientation and varying 

amplitude. When ε = ±(2n+1) π/2, (n = 0, 1, 2 …), there is constant amplitude (E0x = 

E0y) but varying orientation giving circularly polarized light. Elliptically polarized light 

has both varying orientation and amplitude. 

                                                                   yE  

                  0y2E                                                                                         xE  

                                                                0x2E   

α  
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2.1.2  Jones and Stokes Formalism  

 
The state of polarization of a signal at any given frequency can be uniquely represented 

by two parameters called Jones and Stokes vectors. A Jones vector is essentially a 2 by 1 

unitary vector with complex components.  Each complex component accounts for the 

magnitude and absolute phase of the electric field polarized in either the horizontal or 

vertical directions. The following equation represents the Jones vector [7]: 

                               





















y

x

i φ
y

i
x

y

x

eE
eE

E
E

E
0

0


………………...………….… (2.3) 

where φx and φy are phases of light wave in the x and y-axis. The use of Jones vectors to 

represent states of polarization provides a simple way of mathematically manipulating 

signals with a particular state of polarization.  However, it becomes difficult to directly 

appreciate the changes in the state of polarization of a signal when the complex elements 

of a Jones vector change. In other words, Jones formalism can only deal with 100% 

polarization. However, in the general case, the propagating wave may consist of a 

polarized component and unpolarized component. Therefore, we resort to Stokes vector 

S = [S0, S1, S2, S3], which offer a qualitative way of representing a state of polarization of 

a propagating light-wave. The four Stokes parameters are given as: 

                                          
εEES
εEES

E ES

EES

yx

yx

yx

yx

sin2

cos2

003

002

2
0

2
01

2
0

2
00









….……………………..………...… (2.4) 

The three normalized Stokes vectors s1, s2, and s3 are coordinates on the Poincaré sphere 

that define the unique state of polarization; with S1 referring to vertical/horizontal 

polarizations, S2 to the +45o or -45o and S3 to right/left circular polarization. 
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Linear polarizations are located on the equator, circular states are located at the poles 

with intermediate elliptical states continuously distributed between the equator and the 

poles as shown in Fig. 2.3. Right-hand and left-hand elliptical states occupy the 

northern and southern hemispheres, respectively. Because a state of polarization is 

represented by a point, a continuous evolution of state of polarization can be 

represented as a continuous path on the Poincaré sphere. 

 
 
Fig. 2.3: Representation of different states of polarization on the Poincaré sphere. 
 

The ratio of intensity of the polarized light to the total intensity gives a fundamental 

parameter in fibre optics known as degree of polarization (DOP) [8], given as: 

                                  
10

0

2
3

2
2

2
1 


 DOP,  

S
SSS

I
I

DOP
tol

pol ……………....… (2.5) 
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where Itot is the total intensity (polarized and unpolarized light), Itot = S0. If DOP = 0, the 

light signal is not polarized and its Stokes vector will be found within the volume of the 

Poincaré sphere while if DOP = 1, the light signal is completely polarized and the 

Stokes vector will be located on the surface of the unit sphere. 

 

2.1.3  Polarization Mode Dispersion 
 
Single-mode optical fibres ideally are supposed to maintain a single polarization state 

even after long distance transmission. In practice, the optical pulse propagates along 

single-mode fibre in two polarization modes due to asymmetry in the fibre cross-section 

[9]. The consequence of this asymmetry of cross-section is the existence of optical 

birefringence. As a result of birefringence, a pulse launched into the fibre at a particular 

state of polarization, split into two identical, linearly polarized pulses, having their 

electric field vectors aligned with the symmetry axes of the fibre and having different 

group velocities. The pulses arrive at the output differentially delayed as shown in Fig. 

2.4. The difference in the transmission time of two pulses polarized along the states of 

polarization producing the shortest and longest propagation times is known as the 

Differential Group Delay (DGD) given by Eq. (2.6). The DGD is a measure of an effect 

known as polarization mode dispersion (PMD), which is a phenomenon that leads to 

pulse broadening and system impairments limiting the transmission capacity of the fibre 

[10, 11]. 

                              

 111 ΔβLββL
V
L

V
LΔτ yx

gygx

 ...………....…………….… (2.6) 
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where  Δτ is the differential group delay, L is the length of the fibre, Vgx and Vgy are the 

group velocities along the x and y directions and Δβ1 is the modal birefringence given by 

the difference in birefringence parameters Δβ1x and  Δβ1y. 

 

 

 

 

 

 

, 

Fig. 2.4: Effect of PMD in a birefringent fibre on optical pulse. 
 

2.1.4  Causes of Birefringence and Mode Coupling 
 
As it has been mentioned earlier, PMD has its origin in optical birefringence and the 

causes of this birefringence are the intrinsic and extrinsic perturbations in optical fibre. 

Intrinsic perturbations include the manufacturing process such as drawing or cooling 

stage of fabrication which causes permanent birefringence, while extrinsic perturbations 

include stress which causes non circularity of the fibre core and environmental changes 

like temperature and pressure. These factors are illustrated in Fig. 2.5. The perturbations 

change as the fibre’s external environment changes [12, 13].  

 

 

 

 

Optical 
Pulse 

Differential Group Delay 
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Fig. 2.5: Factors responsible for birefringence in optical fibre. 
 

The birefringence difference between the fast and slow modes can be expressed as [14]: 

                                                 c
ωΔn

c
ωn

c
ωnΔβ fs  ..………..………...…...…….… (2.7) 

where ߱ is the angular optical frequency, c is the speed of light and △n = ns – nf is the 

differential refractive index between the slow and fast modes. Since each mode 

propagating through the fibre experiences different mode indexes, a phase lag is 

introduced between those two components at each frequency. This progressive slippage 

of the two orthogonally polarized modes will, in turn, cause the overall state of 

polarization of the signal to evolve with distance (refer to Fig. 2.6), effectively tracing 

out a circle on the surface of the Poincaré sphere. 
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Fig. 2.6: Schematic illustration of polarization evolution and beat length LB [15]. 
 

The distance over which the state of polarization undergoes a full rotation on the 

Poincaré sphere (i.e. experiences a phase shift of 2π between its components) is called 

the beat length and is given by: 

 

                                            Δβ
π

Δn
λLB

2
 …………………….………………...…..…. (2.8) 

 

2.1.5 Polarization Mode Coupling 
 
In long fibres with various kinds of extrinsic and intrinsic perturbations as mentioned in 

subsection 2.1.4, there are random variations in the axes of the birefringence along the 

fibre length, causing random coupling of the two modes, known as polarization mode 

coupling. Mode coupling can also develop in long transmission systems, where the fibre 

link is composed of a large number of segments of single mode fibres having random 

lengths and random fusion angles between them. Each of these segments has its own 

                  y-axis   

 

x-axis 

 

 

                                                                     LB 
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slow and fast modes and a portion of the signal propagates on each of them. At the 

boundary between the sections, the polarization vectors will be resolved into new pairs 

of local modes belonging to the next segment. The process of rotating the polarization 

vector into the new modes of the following segment is also known as mode coupling. 

Mode coupling becomes an issue for lengths longer than 100 m [16]. In general, PMD 

is caused by the birefringence in the fibre and is complicated by mode coupling in the 

fibre link. 

 

The mode coupling process allows the DGD to increase proportionally to the square 

root of the length of the fibre link [17]. Similarly, the polarization mode dispersion 

coefficient is defined as the PMD divided by the square root of fibre length (measured 

in ps/√km). The DGD does not increase linearly with highly mode-coupled fibres 

because occasionally, the coupling between segments reduces the accumulated DGD 

i.e. when the slow mode of one segment is aligned with the fast mode of the next or 

previous segment, the DGD of both segments will cancel out. It is the mode coupling 

phenomenon which makes the DGD and the fast and slow modes of the fibre to be 

frequency dependent [18]. 

 

2.1.6  Linear Birefringence 
 
In the absence of polarization dependent losses, the input (output) states of polarization 

are mutually orthogonal because there is nothing to break the degeneracy in the two 

supported modes. These states of polarization are commonly [19] referred to as Principal 

States of Polarization (PSPs). The differential transmission time of two undistorted 
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signals polarized along mutually orthogonal states of polarization constitutes what it is 

known as the linear birefringence effect as shown in Fig. 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.7: Optical signal at (a) the input and (b) output of the fibre. 
 

In other words, the PSP is defined as that input polarization for which the output state of 

polarization is independent of frequency to first order [20], i.e., over a small frequency 

range (bandwidth). It implies that any change of frequency within this bandwidth will 
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not change the output polarization. Therefore both the DGD and the PSPs are assumed 

to be frequency independent if only linear birefringence effect is being considered. 

 

2.1.7  Linear Birefringence Vector 
 

Based on the principal states model, the linear birefringence vector 


  is defined as 

follows [21]: 

                                                   



 qτΩ ……………………………………………….… (2.9) 

where τ is the magnitude of the linear vector and is called the DGD, 


q  is the unit 

Stokes vector pointing in the direction of the fast principal state of polarization in 

Stokes polarization space while -


q  points along the orthogonal slower axis. These 

orthogonal unit Stokes vectors are 1800 apart. The input inΩ


, and output 


Ω , linear 

vectors for an optical fibre are related by inΩMΩ


 , where M is Muller matrix. It can 

then be shown that angular frequency derivative of equation (2.9) will lead directly to 

the law of infinitesimal rotation, inout SMS


 . 

                                            














out
out

out SΩ 
dω
SdS

ω
…………………….…….… (2.10) 

where T
ωMMΩ  and MT is the transpose of M. This means that for a fixed input 

SOP, the output SOP, 


outS , will precess around 


Ω  as the angular frequency is changed. 
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The angle of precession is determined by the direction of 


outS  relative to 


Ω  while the 

rate at which 


outS  precesses around 


Ω  is determined by the magnitude, τ. 

 

2.2 Nonlinear Effects in Optical Fibre 
 
The response of any dielectric to light becomes nonlinear for intense electromagnetic 

fields, and optical fibres are no exception. On a fundamental level, the origin of 

nonlinear response is related to anharmonic motion of bound electrons under the 

influence of an applied field. This implies that the induced polarization will not be 

linear in the electric field anymore (harmonic approximation) but satisfies the more 

general relation: 

                                 
......   )EEE  χEE     χE   (χεP  321

0 …….....…………... (2.11) 

where E is the electric field, ε0 the vacuum permittivity and χ (j) the j-th order 

susceptibility at optical frequencies. The first term, χ (1), describes the linear behavior of 

the system whereas the second term χ (2) describes quadratic effects such as second 

harmonic generation and sum frequency generation. However, in glasses, because of the 

optical isotropy, the second-order susceptibility is zero unless the glass has been poled 

[6]. The third term χ (3) is responsible for nonlinearities in the fibre and can result in 

nonlinear refraction (Kerr effect) given by [22]: 

                                 



oncontributi
nonlinear    

effA
Pnnn 20  …………….………………….………... (2.12) 



18 
 
 
where n0 is the linear refractive index, n2 is the nonlinear-index coefficient, Aeff is the 

effective core area of the medium and P is the optical power inside the fibre. The 

intensity dependence of the refractive index leads to a large number of interesting 

nonlinear effects; the most widely studied due to their negative effect on the signal in a 

WDM system are self-phase modulation (SPM), cross-phase modulation (XPM) and 

four-wave mixing (FWM) [23]. 

 

2.2.1 The Coupled Nonlinear Schrodinger Equations 
 
Based on [23], the propagation equations for the two principal polarizations in 

birefringent media can be obtained by factoring out the transverse dependence of the 

electric field components Ex and Ey: 

                       z)(iβt)H(x,y)A(z,E(r,t) 0exp …………………..……….………... (2.13) 

where H describes the spatial distribution of the single fibre mode, A is the (slowly 

varying) amplitude envelope and β0 is the propagation constant. Making allowance for 

PMD (including polarization mode coupling) and polarization dependent loss (PDL), 

the slowly varying amplitudes, Ax and Ay, are described well by the following set of two 

coupled stochastic nonlinear Schrödinger equations [24]: 
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where κ(z) is the random mode coupling coefficient, △β0 is the birefringence parameter, 

αx and αy are the losses for the two polarization modes and the nonlinear parameter γ is 

given by: 

                        effA
n

λ
πγ 22

 ………………………..…………………….……...… (2.15) 

The average loss is given by α = (αx + αy)/2, while △α = αx - αy represents the 

polarization dependent loss (PDL) in the link. The last term on the right-hand side of 

Eq. (2.14) is due to coherent coupling between the polarization components and leads to 

degenerate Four-Wave Mixing (FWM). However, if the fibre length L >> LB from Eq. 

(2.8) in subsection 2.1.4, chapter 2, such as is considered here, it changes signs often 

and averages out to zero and therefore it can be neglected.  

 

If it is assumed that the fibre is linearly birefringent then mode coupling, PDL and third-

order dispersion β3 can be neglected since β2 is not equal to zero. The reduced equations 

now become: 
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The first term on the right-hand side in the brackets represents the self-phase 

modulation (SPM). The second term represents the cross-phase modulation (XPM). 

 

2.2.2 Self Phase Modulation (SPM) 
 
In SPM, the intensity modulation of an optical beam results in the modulation of its own 

phase via modulation of the refractive index of the medium. The resulting time-

dependent change, or modulation of the phase, leads to spectral broadening or 

frequency chirping [25]. 
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dt
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effλA
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 ……………...……. (2.17) 

where I is the optical intensity, k and φNL the wavevector and nonlinear phase shift, 

respectively. Because of the time derivative in Eq. (2.17), it is clear that SPM is 

essentially a pulse effect, with the leading edge of the pulse being red-shifted and the 

trailing edge blue-shifted. In addition, the pulse spectrum exhibits characteristic 

oscillations, which are due to the interference, within the pulse, of component waves 

with the same frequency but different phases. The nonlinear spectral broadening can be 

either compensated or magnified by the chromatic dispersion of the fibre. In the normal 

chromatic-dispersion regime (λ < λZDW), in which red light travels faster than blue light, 

the nonlinear dispersion is magnified by the chromatic dispersion, resulting in enhanced 

broadening. In the anomalous dispersion regime (λ > λZDW), the nonlinear dispersion is 

compensated, leading to pulse compression or, when exactly balanced, to the formation 

of solitons [26]. 
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The net effects of SPM depend essentially on the characteristics of the initial pulse, its 

temporal shape, spectrum, and initial chirp, to which one must add the effect of 

chromatic dispersion. The shorter the pulse, the shorter the dispersion length LD, and the 

more important group velocity dispersion (GVD) becomes. With appropriate dispersion 

and pulse characteristics, SPM can be used for the spectral and temporal compression of 

pulses, soliton generation and pulse regeneration.  

 

2.2.3 Cross-Phase Modulation (XPM): 
 
Cross-phase modulation is a similar effect to SPM, but it involves two optical beams 

instead of one [27]. In XPM, the intensity modulation of one of the beams results in a 

phase modulation of the other. As in SPM, the phase modulation translates into a 

frequency modulation that broadens the spectrum. However, because the total intensity 

is the square of a sum of two electric-field amplitudes, the spectral broadening caused 

by XPM is twice as large as in SPM. 
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In the expression for the nonlinear phase shift in Eq. (2.18), the presence of two terms 

shows that XPM (second term) is always accompanied by SPM (first term). A similar 

expression can be written for the second beam  zω
NLφ 2 . If one of the two beams (the 

pump) is much stronger than the other (the probe or signal), XPM will primarily act 

from that pump beam to the weaker signal beam. Because it is a nonlinear effect 
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resulting from a two-beam interaction, XPM can be used for a number of all-optical 

applications in communication networks: wavelength conversion, demultiplexing, 

switching [28], and other optical-control applications. 

 

However, XPM can create significant problems in WDM communication networks 

because of the crosstalk it can induce between nearby channels [29]. This can affect the 

pulse shapes and amplitudes in different channels and lead to the time-dependent 

depolarization of nearby channels [30]. When taking polarization into consideration, an 

array of new nonlinear effects can be predicted and are indeed observed in fibres. As 

should be expected, these effects depend intimately on the particular birefringence 

characteristics of the fibre and on the SOP of the optical wave(s). This birefringence can 

be intrinsic to the fibre, but it can also be induced by optical nonlinearities. The 

nonlinear contributions to birefringence are given by [31]. 
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where n2 is the nonlinear parameter defined earlier. From equation (2.19), it is easy to 

see that the nonlinear birefringence and related effects must depend on the relative 

optical intensities in the x and y direction. These two components interact nonlinearly in 

a way that is analogous to XPM, resulting in a relative nonlinear phase shift between the 

two components [31]: 

               
  yPxPBγLΔφ effNL  1 …………………………...…..…………. (2.20) 

where Px,y  are the powers in the x and y components, respectively, and B describes the 

ellipticity of the fibre (B = 2/3 for a linearly birefringent fibre). Such a relative nonlinear 
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phase shift can be introduced by co-propagating a strong pump, polarized along the x-

axis of the fibre, along with a weak arbitrarily polarized signal. ΔφNL then determines 

the particular evolution of the polarization as the beam propagates and can, for instance, 

lead to a rotation of the polarization (optical Kerr effect) [32]. When taking the 

respective polarization of the two beams into account, XPM can also give rise to 

interesting temporal and spectral polarization effects. In a pump-probe situation, the 

probe polarization can be shown to rotate, with different parts of the pulse developing 

different SOP [32]. 

 

2.2.4 Four-Wave Mixing (FWM) 
 
FWM is a parametric process, in which three optical fields, propagating at different 

frequencies (non- degenerate case) in the same direction along a fibre, producing a 

fourth field, propagating in the same direction, which drains power from the originating 

three fields. If three intense lightwaves of different frequencies (߱i, ߱j, ߱k) are input to 

an optical fibre, additional frequencies are generated through the four-wave mixing 

(FWM) process and the generated fourth signal is given by [33]. 

                        kωjωiωijkω  ……………………...…………………..….. (2.21) 

with i,j≠k.  

 

In every WDM system, it is important to eliminate the effect of four-wave mixing 

because it induces channel crosstalk which limits the capacity of WDM trans-mission, 

particulary over optical dispersion shifted fibres (DSF). From [34], it was observed that 

when all the lasers were modulated, crosstalk was observed at all frequencies between 
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the two adjacent channels. It was concluded that FWM crosstalk becomes significant 

when the signal powers exceed 0 dBm/channel in a 10 GHz spaced, 100-channel system 

using 1.5-pm sources and a single-mode fibre. Thus, the successful design of high-

capacity orthogonal frequency-division multiplexing (OFDM) systems must include 

careful consideration of possible FWM interactions in the transmission fibre. Since the 

dispersion-shifted fibre is no longer being used for data transmission, FWM is not much 

of an issue in communication systems. 

 

2.3 Nonlinear Polarization Evolution in Birefringent Fibre 
 
The nonlinear interaction in WDM systems induces a nonlinear polarization scattering 

in one optical channel whenever there is high optical power present in the other 

channel. This leads to a power dependent change of the state of polarization. When 

analyzing nonlinear polarization evolution, two co-propagating channels are considered 

having arbitrary polarization. If the slowly varying envelopes of the fields for the two 

channels are denote by aA


 and bA


, their evolution in the fibre can be described by the 

equation [35]: 
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where 


A is the transpose of A. 

By neglecting polarization mode dispersion (PMD) and polarization dependent loss 

(PDL), it can also be shown that no polarization evolution takes place between 

orthogonally polarized signals. This can be understood from [35] which showed that the 
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rate of change of Stokes vectors aS


 and bS


 of the two channels along the z-axis is 

given by: 
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where aS


 and bS


 represent the Stokes vectors of the two channels, P0  is the optical 

power, and the average vector of aS


 
and bS


, is 


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
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ba SSS
2
1

0 . Equation (2.23) 

indicates that the Stokes vectors of two signals rotate at the same rate about the vector

0

S . 

 

The magnitude of the vector  mPS 0


 depends on the fixed relative polarization angle ߠ 

between the probe and pump and the peak powers of probe (Ps) and the pump (Pp), 

respectively, according to the equation [36]: 

                
θPPPPP pspsm cos222  …………..……..…....…………….... (2.24) 

According to Eq. (2.24), the channel with the dominant power remains fixed, since its 

Stokes vector is almost coincident with 0

S  . Therefore the output Stoke vector of the 

probe channel is guided by the relative angles between the pump and probe input SOP 

vectors and the magnitude of the pump power. The probe signal is highly depolarized if 

the input pump power is high and also if the input SOP vectors of the pump and probe 

are perpendicular to one another in Jones space. But the signal remains polarized if the 

input SOP vectors are anti-parallel or parallel, regardless of the input pump power. This 

is demonstrated in the results discussed in section 4.0. 
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Since the linear SOPs rotate around S1 while the nonlinear SOPs rotate around S3, it 

would be interesting to explore how the linear and nonlinear effects influence the state 

of polarization evolution.  

 

2.4 Interaction of Linear and Nonlinear Polarization Rotation 
 
At low intensities, the linear birefringence causes polarization fluctuations which 

produce linear signal pulse distortion known as linear PMD. However, as the distance 

of transmission continues to increase, the signals carrying high intensities also need to 

increase in order to reduce the number of repeaters and amplifiers along the link. Under 

these conditions, in addition to linear birefringence, the intensity induced-birefringence 

known as nonlinear birefringence is developed in the fibre. The power dependent 

polarization fluctuation is produced causing the intensity dependent signal pulse 

distortion known as nonlinear PMD [37]. Thus, the nonlinear PMD exists whenever 

there is high intensity carried by the signals and its effect will affect very high data rate 

systems operating at near 100 Gb/s [38]. Also, from [38] it was stated that reducing the 

linear effects by decreasing the decorrelation length reduces the rate of mixing on the 

Poincaré sphere which in turn increases the nonlinear effects. 

 

The numerical study of the coupling between linear orthogonal modes due to nonlinear 

polarization evolution has been carried out where it was concluded that the interaction 

between the linear and nonlinear birefringence causes the successive and periodic 

energy exchange between the fast and slow linear modes of the fibre [39]. Models have 
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been developed that describe the interaction between XPM, PMD and PDL [40]. It 

showed that XPM changes the direction of the polarization but does not affect the DGD. 

 

2.5 Fibre Optic Sensor 
 
The field of measurement and instrumentation, particularly sensor development, is one 

that has expanded rapidly in recent years. The need for high quality sensors to be 

integrated into sophisticated measurement and control system is clear. In parallel with 

rapid advance in development of sensors based on microelectronics, those based on 

optical techniques have expanded significantly over last few years and have found many 

applications in the industrial field. This is because, compared with other types of 

sensors, fibre optic sensors have several advantages such as small size and weight, 

immunity to electromagnetic interferences, large bandwidth and hence offers possibility 

of high multiplexing potentials, intrinsically safe in explosive environments, highly 

reliable and secure with no risk of fire, high sensitivity and accuracy [41], just to 

mention but a few. Fibre optic sensors (FOS) can be used for the measurement of many 

physical or chemical properties [42]. The principle is based on the fact that light in an 

optical fibre can be modified in response to an external physical, chemical, biological, 

biomedical or similar influence. Most properties can be detected with fibre optic sensors 

such as strain, pressure, sound, displacement (position), temperature, magnetic field, 

electric field, chemical analysis, liquid level, rotation, radiation, vibration, among 

others.  

 



28 
 
 
2.5.1 Classification of Fibre Optic Sensors 
 
Fibre optic sensors can be specified in terms of the types of perturbation or the principle 

of operation. Thus, they can be described by the chemical concentration, strain, 

temperature, stress or the other physical measurand. The operating principle can be 

based on variations of intensity, phase, polarization and wavelength [42]. Extrinsic or 

intrinsic sensors are another classification scheme. In the former, sensing takes place in 

a region outside the fibre and the fibre essentially serves as a conduit for the to-and-fro 

transmission of light to the sensing region in an efficient and desired form. On the other 

hand, in an intrinsic sensor one or more of the physical properties of the fibre undergo a 

change. Fibre optic sensors can also be classified in response to their measurements 

points. The three important classes here are; point to point sensors, multiplex sensors 

and distributed sensors. In point to point type there is a single measurement point at the 

end of the fibre optic connection cable, similar to most electrical sensors. Multiplexed 

sensors allow the measurement at multiple points along a single fibre line and 

distributed sensors are able to sense at any point along a single fibre line, typically 

every meter over many kilometers of length [43].   

 

More commonly, fibre optic sensors (FOS) can be divided into two basic categories: 

Intensity based sensors and interferometric-based sensors. Generally, intensity 

modulated FOS are related   to the displacement or some other physical perturbation 

that interacts with the fibre. The perturbation induces light intensity change at the 

detector. Interferometric-based FOS commonly compare the phase of light in a sensing 

fibre to a reference fibre in an interferometer. They are much more accurate and 
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sensitive than intensity-based sensors because the phase of light wave propagating in an 

optical fibre is more sensitive to external influences than any other parameter [44] and 

as such, they can be used over a much larger dynamic range. However, since optical 

phase change cannot be directly detected (optical waves have frequencies in the range 

of few hundred THz), they require much more complex signal processing techniques 

which make them expensive. 

 

2.5.2 Intensity-based Fibre Optic Sensor 
 
Intensity-based sensors measure the optical intensity as a function of the perturbing 

environment, as shown in Fig. 2.8 below. The change of the optical intensity can be 

related to transmission, reflection, microbending, or other phenomena such as 

absorption, scattering, or fluorescence. Intensity-based fibre optic sensors can be 

divided into reflection sensors, transmission sensors, and microbending sensors. 

 

 

 

 

 

 

 

Fig. 2.8: Intensity-based sensor. 
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Fig. 2.9: Fibre optic sensor using reflection. 
 

Figure 2.9 shows the basic principle of a fibre optic sensor using reflection. Light 

travels along the fibre from left to right, leaves the fibre end, and incidents on a 

movable reflector. If the reflectors move towards the fibre, most of the light can be 

reflected back into the fibre so that a high light intensity signal is detected. However, 

when the reflector moves away from the exit end of the fibre, less light is coupled back 

into the fibre, and so a weak signal is detected. Therefore, the monotonic relationship 

between fibre–reflector distance, and reflected light intensity can be used to measure the 

displacement distance. To avoid the influence of the intensity fluctuation of the light 

source, a suitable reference signal is usually added in this type of intensity-based fibre 

optic sensor. 

 

The major problem associated with intensity sensors are random changes of 

transmissivity of optical path and variations of the output power of the optical source, 

which directly affects the accuracy of the sensor. Intensity sensors therefore need a 

mechanism that compensates for those changes. 
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2.5.3 Interferometric-based Fibre Optic Sensor 
 
Interferometric-based sensors take advantage of interferometric techniques to measure 

pressure, temperature, rotation angle, magnetic field, e.t.c. Generally, the sensor uses a 

coherent laser source and two single mode fibres. The light is split and put into each 

fibre. If the environment perturbs one fibre relative to the other, a phase shift occurs that 

can be detected precisely. The shift of the phase is detected by an interferometer. There 

are four interferometric configurations: the Mach-Zehnder, the Michelson, the Fabry-

Perot, and the Sagnac. Figure 2.10 shows the schematic of a Mach-Zehnder 

interferometer. 

 

 

 

 

 

 

 

 

Fig. 2.10: Interferometric sensor (Mach-Zehnder interferometer). 
 

The laser beam from the light source splits at the beam splitter so that light travels in the 

reference single mode fibre and the sensing fibre, which is exposed to the perturbing 

environment. If the light in the sensing fibre and the light in the reference fibre are 

exactly in phase after recombining, they constructively interfere and the output signal 

intensity is high. If they are out of phase, destructive interference happens and the 

  

 

 

 

 

 

 

 

Detector Signal 
Processor 

Laser 

Modulator 

Transmitting 
fibre 

Beam splitter 

Perturbing field 

Reference fibre 

Sensing fibre 



32 
 
 
received optical intensity is lower. Such devices have a phase shift if the sensing fibre 

has a length or refractive index change, or both. 

 

In the Fabry-Perot interferometer, a multiple-beam is used. Figure 2.11 shows a fibre 

optic Fabry-Perot interferometer. Due to the high reflectivity of the mirrors, in this type 

of interferometer the light bounces back and forth in the cavity many times, increasing 

the phase delay many times. The transmitted output intensity of the Fabry–Perot 

interferometer is given by the fact that the higher the reflection coefficient (Fc), the 

sharper the interference peak will be. In other words, near the peak region, the output 

light intensity is very sensitive to the small change in the phase delay. 

 

 

 

 

 

 
Fig. 2.11: Fabry-Perot interferometer-based fibre optic sensor. 
 

The larger the Fc number, the sharper the interference peak will be. Thus, the sensitivity 

of a Fabry-Perot interferometer-based fibre sensor can be much higher than that of the 

Mach-Zehnder or Michelson interferometer [45]. 

 

In summary, fibre optic interferometric sensors usually have the advantage such as the 

design flexibility, the large dynamic range and high resolution. However, because of the 
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nonlinear periodic characteristic of the interference signal, the accurate detection of the 

differential phase change of an interferometer turns to be a real challenge. 

 

2.5.4 Polarization-based Fibre Optic Sensor 
 
Inspite of many advantages, there is a growing demand for improved sensitivity, 

reliability, accuracy, flexibility and better compatibility of fibre optic sensors for 

various applications. Among the various optical sensor designs, polarimetric fibre optic 

sensor (PFOS) has its unique advantages over the rest [46]. When a force is applied 

along the length of a polarimetric fibre, an additional birefringence is introduced due to 

the elasto-optic effect i.e. the change in refractive index due to the applied force and is 

given by: 

                                    FCΔn B ………………………...……………….…...…. (2.25) 

where CB is Brewster constant and F is the applied force. In addition, in many cases, the 

stress or strain in different directions is different, so that the induced refractive index 

change is also different in different directions. Thus, there is an induced phase 

difference between different polarization directions. In other words, under the external 

perturbation, such as stress or strain, the optical fibre works like a linear retarder. 

Therefore, by detecting the change in the output polarization state, the external 

perturbation can be sensed [43]. To make the fibre optic sensor practical, it is necessary 

to display sensitivity to the phenomenon designed to measure insensitivity to changes in 

other environmental parameters. For the strain or stress measurement, environmental 

temperature is unwanted external parameter. For PFOS, environmentally induced 

refractive index changes in the two polarization directions are almost the same. Thus, 
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there is almost no induced phase difference between two polarization states and 

environmental temperature fluctuation will not substantially deteriorate the sensor’s 

performance. 

 

In this research, PFOS utilize the concept of nonlinear polarization coupling where the 

pump and the probe signals interact and only the probe signal is filtered out for analysis. 

The pump-probe scheme uses the three operating principles of FOS (intensity, phase 

and polarization) as will be seen in the results in chapter 4. Though, a number of sensors 

have been developed based on the effect of polarization coupling between two 

orthogonally polarized eigenmodes of polarization maintaining fibre [47, 48], few have 

been designed based on this scheme. From equation (2.23) in section 2.3, the Stokes’ 

vectors aS


 and bS


for the two channels perform a rotation around a time- and z-

independent pivot 0

S . At coordinate z, the rotation angle is [49] 

                                
    ''

sp

z 'αz
m  dzzdtpeγPzψ   

0
9
8 ……………….……..….. (2.26) 

and depends on the section of the pump bits that have walked past the probe from the 

input to coordinate z, as expressed by the normalized pump power  '
sp zdtp   in the 

above integral. The length over which the pump walks past the probe by one bit is 

known as walk off length (L߱ = T/dsp) where T is the bit time and dsp is walk-off 

parameter. The magnitude of the pivot Pm is given by Eq. (2.24) and the rotation speed 

in Eq. (2.26) decreases in z because of the fibre attenuation α. It should be noted that the 



35 
 
 
rotation angle does not depend on the channel spacing between the pump and probe: no 

matter how far apart, the two CW channels undergo the rotation given in Eq. (2.26).  

 

At the fibre output z = L the SOP of the probe depicts in time a circular trajectory 

around the pivot, with a rotation angle that swings around an average value  L,tψ   by 

an amount      L,tψL,tψL,tΔψ  , whose expression is obtained from (2.26).  

Without loss of generality, a reference frame of the Stokes’ space in which the pivot is 

aligned with the third Stokes’ axis S3 is chosen, and the component of the average probe 

output SOP along S2 is zero, so that the time-dependent output probe SOP is expressed 

as: 

                                

   
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s θ
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L,tθ

P
L,tsL,ts

cos
sinsin
cossin

ˆ


……………….….……. (2.27) 

where the zero-mean process △ψ(L,t) represents the SOP’s azimuth, and ߠs is the angle 

between the probe and the pivot. Such an angle can be obtained from ߠ and the pump- 

probe power ratio PR = (Pp/Ps) through the analytical relationship ߠs = ߠ–

arctan((sinߠ)/(PR+cos ߠ)). Using equation (2.27) in the definition of DOP yields                                                                                                                              

                                     



  2sin2cos12sin1 tΔψtΔψsθ-DOP …….... (2.28) 

where all that is needed is evaluation of the time averages  tΔψcos and  tΔψsin .  

Already, some conclusions can be drawn from such equations. First, the larger the 

swing angle, the smaller the DOP. Next, if pump and probe Stokes’ vectors are initially 

aligned or counter-aligned, then sin ߠs = 0, so that the DOP is unity. Unfortunately, the 
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presence of polarization mode dispersion (PMD) prevents such initial alignment to be 

kept during propagation, so that depolarization occurs. The effect of PMD can be 

understood as follows. If the real fibre is assumed as a concatenation of randomly 

oriented birefringent plates, then within each plate, pump and probe rotate by different 

angles around the local birefringence vector. Hence, the net effect of PMD is to 

randomly vary the relative polarization angle ߠ and the orientation of the pivot 0

S

 
during propagation. 

 

To evaluate the time-averages in Eq. (2.28),  tΔψcos and  tΔψsin are expanded in 

Fourier series as 
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where Jn(.) is the Bessel function of the first kind of order n. By averaging over a time 

much longer than 2T, one gets [50] 
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Now using equation 2.30 in 2.28 gives: 
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  





  2cos12sin1 tΔψsθ-DOP ………..…....…….… (2.31) 

where the dependence of the DOP on the relative pump-probe polarization angle ߠ is 

implicit in ߠs and Pm. From equations (2.30) and (2.31) it can be concluded that, if 

polarization control of the signals (ߠ = ߠs = 0 or ߠ = ߠs = π) cannot be achieved due to 

PMD, the basic countermeasure against DOP degradation is to increase the bit walk-off 

by further spacing the channels or by using a more dispersive fibre, so as to reduce the 

argument of the Bessel function. Clearly, also increasing the bit rate implies a reduction 

of XPM-induced DOP degradation. 

 

2.6 Split-Step Fourier Method 
 

It is required to solve the nonlinear Schrödinger equation to understand various 

impairments occurring during signal transmission. However, it is not possible to solve it 

analytically when both the nonlinearity and the dispersion effect are present, except in 

the very special case of soliton transmission. Therefore, numerous numerical algorithms 

have been developed to solve Eqs. (2.14) or (2.16). The split-step Fourier method is one 

of them, and is the most popular algorithm because of its good accuracy and relatively 

modest computing cost [51] compared with most finite difference schemes. The 

algorithm is briefly discussed in the following. Equation (2.16) can be expressed as: 

                                        

ANL
z
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
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where the linear operator,
 2

2
2

22 t
iβαL







 and the nonlinear operator, 2A(z,t)iγN 


.  
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When the electric field envelope, A(z, t), has propagated from z to z+△z, the analytical 

solution of Eq.(2.32) will be of the form: 

                                       ))A(z,t)NLz((z,t)A(z ΔΔ ˆˆexp   ………...……..….………. (2.33) 

In the split-step Fourier method, it is assumed that the two operators commute with each 

other. That is, 

                                       )A(z,t)Nz() Lz(z,t)A(z ΔΔΔ ˆexpˆexp  ……….…….....…….. (2.34) 

Equation (2.34) suggests that A(z+△z,t) can be estimated by applying the two operators 

independently. The exponential operator )Lz(Δ


exp can be evaluated in the Fourier 

domain using the prescription: 

                                       

  B(z,t)FiωLzF)B(z,t)L( tΔtΔ 













expexp 1 ………………... (2.35) 

where Ft denotes the Fourier-transform operation, )( iL


 is obtained from operator


L   

by replacing the differential operator 
t
  by iω and ω is the frequency in the Fourier 

domain. As )( iL


 is just a number in the Fourier space, the evaluation of Eq. (2.35) is 

straightforward. The use of the Fast Fourier Transform (FFT) algorithm makes 

numerical evaluation of Eq. (2.35) relatively fast. It is for this reason that the split-step 

Fourier method can be faster by up to two orders of magnitude compared with most 

finite-difference schemes.  

 

The simulation time of Eq. (2.34) will greatly depend on the size of △z. To reduce 

simulation time, a more refined algorithm, the so called symmetrized split-step Fourier 
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method, was devised [23]. Mathematically, the symmetrized split-step Fourier method 

can be expressed as follows: 
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While Eq. (2.34) assumes that nonlinearities are lumped at every △z, Eq. (2.36) assumes 

the nonlinearities are distributed through △z, which is more realistic. Because of the 

symmetric form of the exponential operators in Eq. (2.36), this scheme is known as the 

symmetrized split-step Fourier method. The integral in the middle exponential is useful 

to include the z dependence of the nonlinear operator

N . When △z is sufficiently small, 

the evaluation of the nonlinear operator is approximated as: 
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2
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However, Eq. (2.37) requires iterative evaluation because z)(zN Δ


is not known at 

z+△z/2. Initially, z)(zN Δ


 will be assumed to be the same as (z)N


. Although the 

iterative evaluation is time-consuming, the improved numerical algorithm allows the 

use of larger △z than that of Eq. (2.34), which will result in saving overall 

computational time. 

 

The implementation of the split-step Fourier method is relatively straightforward. The 

fibre length is divided into a large number of segments that need not be spaced equally. 

The optical pulse is propagated from segment to segment using the prescription of Eq. 

(2.36). More specifically, the optical field A(z,t) is first propagated for a distance △z/2 
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with dispersion only using the FFT algorithm in Eq. (2.35). At the midplane z+△z/2 the 

field is multiplied by a nonlinear term that represents the effect of nonlinearity over the 

whole segment length △z. Finally, the field is propagated in the remaining distance △z/2 

with dispersion only to obtain  z,tzA Δ . In effect, the nonlinearity is assumed to be 

lumped at the midplane of each segment. 

 

In the implementation of SSFM, it is required that step sizes in z and t be selected 

carefully to maintain the required accuracy. In particular, it is necessary to monitor the 

accuracy by calculating the conserved quantities such as the pulse energy (in the 

absence of absorption) along the fibre length. The optimum choice of step sizes depends 

on the complexity of the problem. Although a few guidelines are available [52, 53], it 

may sometimes be necessary to repeat the calculation by reducing the step size to 

ensure the accuracy of numerical simulations. The time window should be wide enough 

to ensure that the pulse energy remains confined within the window. Typically, window 

size is 10–20 times the pulse width. In some problems, part of the pulse energy may 

spread so rapidly that it may be difficult to prevent it from hitting the window boundary. 

This can lead to numerical instabilities as the energy reaching one edge of the window 

automatically re-enters from the other edge (the use of the FFT algorithm implies 

periodic boundary conditions). It is common to use an “absorbing window” in which the 

radiation reaching window edges is artificially absorbed even though such an 

implementation does not preserve the pulse energy. 
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The name SSFM arises for two reasons. First, the method relies on computing the 

solution in small steps, and treating the linear and the nonlinear steps separately. 

Second, it is necessary to Fourier transform back and forth because the linear step is 

made in the frequency domain while the nonlinear step is made in the time domain. This 

makes the technique superior to the course step method. The Coupled Nonlinear 

Schrodinger Equation (C-NLSE) is generally numerically integrated by the SSFM, as 

shown schematically in Fig. 2.12. Generally, the split-step Fourier method is a powerful 

tool provided care is taken to ensure that it is used properly. 

 

 

 

 

 

 
 
 
 
 
Fig. 2.12: Schematic representation of the structure of the SSFM algorithm in one fibre 
segment.  
 

where D-Dispersion, LBR-Linear birefringence, NL-nonlinearity, FT-Fourier transform, 

IFT-inverse Fourier transform, L=>C and C=>L indicate transformation from linear to a 

circular basis and vice versa, respectively [54]. 
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CHAPTER 3 

METHODOLOGY 

3.1 Research Design 
 
In this research, both experimental and simulation work was carried out. Two 

simulation packages Optiwave and Matlab were used in this study because both 

Optiwave and Matlab simulation tools employ pseudo-spectral numerical method (Split 

Step Fourier Method) to solve Coupled Nonlinear Schrodinger Equation (C-NLSE). 

The advantage of this method over other numerical methods is given in section 2.6. All 

the experimental work presented in this thesis was done in Optical Fibre Research Unit, 

Physics Department, Nelson Mandela Metropolitan University-Port Elizabeth, South 

Africa. The setup was as shown in Figure 3.1. 

 

 

 

 

 

 

 

 
Fig. 3.1: A set up of a two-channel system (PC = polarization controller and R = 
sensing fibre used only for sensor set up) 
 

Figure 3.1 shows the setup that was used for both experimental and simulation studies. 

A linearly polarized probe of input wavelength 1552.52 nm and a similarly polarized 

pump at input wavelength 1552.92 nm, giving a channel spacing of 50 GHz (0.4 nm) 
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both in the form of continuous waves, were coupled using a 2x1 coupler and co-

propagated in a 1.7 km single mode fibre (SMF). The standard single mode fibre had 

linear PMD of 0.5 ps/√km, effective area of 80 m2 and a dispersion parameter of 17 

ps/nm-km. The probe and the pump signals were provided by a wavelength division 

multiplexing (WDM) source. Polarization controller, PC1, maximized the probe input 

power into the fibre, while polarization controller, PC2, rotated the input pump SOPs 

with respect to the probe signal SOP. An optical filter of bandwidth 0.3 nm was used to 

filter out the probe signal and a polarimeter was used to monitor the DOP of the probe. 

The pump signal was launched at powers of 3 dBm and 13 dBm and for each input 

power the pump signal SOPs were rotated through 180o while observing the output 

DOP of the probe (Fig. 4.3 see in the following chapter).  

 

Also, simulation was done using a fibre of length 24 km which was modified into a 

concatenation of linearly birefringent trunks of constant length Lc to obtain different 

segments. As the input power of the pump signal was varied, the DOP and SOP angles 

of the probe were collected. The input probe power was kept constant. Using a similar 

set up as that used to generate data for Fig. 4.3, experimental work was done but using 

different channel spacing of 50 GHz, 100 GHz and 200 GHz where the DOP and SOP 

vectors of the probe were used as output indicators.   

 

More simulations were done numerically using the Matlab tool, fibre of length 24 km 

was modeled as a concatenation of linearly birefringent trunks with length Lc = 100 m 

and random birefringence axis orientation. At a relatively high pump power and low 
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probe power, the output amplitude of the signal was measured over time at different 

values of modal birefringence △β1 and the corresponding Poincaré sphere 

representation given by plotting the SOPs on the sphere. Also, simulations were done 

where modal birefringence △β1 was kept constant  and using higher pump power and 

low probe power the probe output signal was investigated over time. 

 

For fibre optic sensor experiments, the external perturbation acted on the sensing fibre 

(R) in Fig. 3.1. For the design of stress sensor, polarization maintaining fibre (PMF) and 

large effective area fibre (LEAF) were used as sensing elements. The pump channel at 

R-section in Fig 3.1 was subjected to varying weights within the range of 2.5-32.5 kg 

while the output probe DOP measured.  

 

In temperature sensing, (PMF) and single mode fibre (SMF) were used as sensing 

fibres. The sensing length was immersed in a jar containing water that was heated to 

approximately 100 0C and allowed to cool. A thermocouple was used to measure 

temperature as the DOP of the probe was monitored with decrease in temperature. In all 

the designs, the channel spacing between the pump and the probe was 50 GHz (0.4 nm). 

The experimental set up for the optical fibre sensors are given in appendix B.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 
 
In this chapter the effects of linear and nonlinear birefringence are investigated. The 

interaction between the linear and nonlinear birefringence was also studied and the 

results discussed in detail in this chapter. This led to the possibility of designing a fibre 

optic sensor.  The designed sensor was used to measure stress, strain and temperature. 

 

4.2 Effect of Linear Birefringence 
 

 

 

  

 

 

 

 
 
 
 
 
 
Fig. 4.1: Matlab simulation: (a) Effect of modal birefringence △β1 on the signal and (b) 
the corresponding Poincaré sphere representation. 
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At pump power of 2.8 dBm and probe power of -6 dBm, the output signal was 

investigated over time, at different values of modal birefringence △β1 (Fig. 4.1 (a), and 

the corresponding Poincaré representation given in Fig. 4.1 (b).  

 

From Fig. 4.1 (a), the output signal varies in an oscillatory fashion and the signal 

broadens as the linear birefringence △β1 increases. Because of fibre birefringence, the 

state of polarization (SOP) of the optical signal rotates (oscillatory pattern) when 

propagating in the fibre. For a total phase walk-off, ∆β1L = 2π, between the two 

orthogonal polarization modes, the SOP of the signal at the fibre output completes a full 

2π rotation. According to Eqs. (2.6) and (2.7) in section 2.1 chapter 2, this polarization 

rotation can be induced by the changes of the fibre length L, the differential refractive 

index ∆n, or the signal optical frequency ω [55]. Since the length L was a constant and 

birefringence is frequency independent up to first order, only the changes in modal 

birefringence caused the linear rotations as observed above. Also, since linear 

polarizations trace a circle at the equator of the Poincaré sphere (see discussions in 

subsection 2.1.2, chapter 2), then the overall result of birefringence is just a rotation of 

the signal State of Polarization (SOP) on the Poincaré sphere as shown in Fig. 4.1 (b). 
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4.3 The Effect of Pump Power on the Probe Signal 

 

  

 

 

 
 
 
 
 
 
Fig. 4.2: Matlab simulation: Graphs showing (a) the effect of high pump power on the 
probe signal and (b) the corresponding Poincaré sphere representation. 
 

Figure 4.2 gives results for simulations done at a constant modal birefringence, △β1 = 

0.025 ps/m, and low probe power of -6 dBm. At pump power of 2.8 dBm and 21 dBm, 

the probe output signal was investigated over time (Fig. 4.2 (a) and the corresponding 

SOPs represented as shown in Fig 4.2 (b). It is observed that when the pump power is 

relatively low (2.8 dBm), the probe signal is sinusoidal (Fig. 4.2 (a) and traces a 

uniform circle on the Poincaré sphere (discussed in section 4.1), but when the pump 

power is increased to 21 dBm, there is more formation of peaks on the output probe 

signal. This is because the induced nonlinear polarization rotations (NPR) due to high 

pump power results into different polarization states of the probe signal and each state 

carries its own power. Also, looking at the Poincaré sphere, there is no periodicity and 

the output signal scatters in most parts of the sphere (magenta line), implying that the 

signal is degraded. Nonlinearity becomes significant at pump powers above 3 dBm [56]. 
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4.4 Dependence of Probe Signal DOP on the Orientation of Pump Signal SOPs 

  

 

 

 

 

 

 

Fig. 4.3: Variation of probe DOP with relative angles for fibre length 1.7 km.  
 

From Fig. 4.3, it is observed that the  rotation of the pump signal SOPs has a high effect 

on the probe signal, as the relative angles between SOPs of probe and pump signal 

approach 90o, but the probe signal is less affected when the relative SOPs are launched 

parallel (0o) or anti parallel (180o) in frequency domain. When the input SOPs of the 

probe and pump signals were launched at 90o from each other, the depolarization of the 

probe signal increased with increasing pump input power; however, if the launching 

angle was 0o or 180o, increasing the pump power did not affect the probe signal. This 

implied that the non-linear birefringence penalty was high (low DOP) when the signal 

input SOPs in the two channels were perpendicular to one another. On the other hand, 

when the signal input SOPs were parallel or anti-parallel to each other, the nonlinear 

birefringence penalty was very low. This is because at 90o the power is coupled equally 

into the two birefringent axes, and therefore the interaction is strong but when the 
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relative signal SOPs are parallel or anti-parallel to each other, there is weak interaction 

between the signals, resulting in a minimal nonlinear birefringence effect. The 

difference in experimental and theoretical results in Fig. 4.3 (previous page), was due to 

the power losses at the used for connecting the fibre components. The power losses can 

be minimized by cleaning the fibre and its components and reducing the number of 

splicing points and the mid couplers used for connecting fibre components. 

 

4.5 The Effect of Linear and Nonlinear Birefringence in Different Links 

 

 

 

 

 

 

Fig. 4.4: The variation of DOP of the probe signal as a function of the input pump 
power for different links from Optiwave simulation. 
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coupling, the DOP decreases more with increasing input pump power. In other words, 

the nonlinear birefringence increases with the input pump power. Since the 24 km spool 

has low intrinsic birefringence, the relative states of polarization of the channels are 

preserved over a distance long enough for nonlinear polarization to occur. The 

nonlinear birefringence therefore, breaks the degeneracy, rotates and scatters the SOPs 

over large angles. Since the random birefringence in a fibre causes the output SOP 

vector to change, then the deviation or scattered angle measured between two output 

SOP vectors can be used as a measure of the birefringence effect.  

 

In Fig. 4.5 below, the scattering angles were investigated as the input pump power 

increased. 

 

 

 

 

 

 

 
 
Fig. 4.5: Probe SOP angles as a function of the input pump power for different links 
from Optiwave simulation.  
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When the input pump power increases, there is an observable effect of the nonlinear 

birefringence on the probe signal through all the three links. Since the nonlinear 

birefringence rotates the polarization vector in the opposite direction to linear 

birefringence, it is probable that due to non-linear birefringence effects, the SOPs of the 

signal in one segment, are rotated such that the principal state of polarization (PSP) 

from the previous fast axis/slow axis is aligned to the slow/fast axis of the next segment. 

This reduces the resultant linear birefringence vector, and yields the low scattering 

angles of the SOPs, as observed in Fig. 4.5. Another explanation could be the effect of 

nonlinear polarization rotation (NPR) on the probe signal. The NPR usually rotates the 

SOPs of the signal and it is known that it reduces for a larger number of 

couplings/segments (small coupling length Lc) [57]. This reduction is due to the 

increased probability that the NPR action in one trunk is compensated for by another. 

Generally, the nonlinear birefringence vector may be added to or subtracted from the 

linear birefringence vector [58]. In summary, the interaction between the linear and 

nonlinear birefringence in the fibre sometimes reduces the effect of nonlinear 

birefringence on the signal.  
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4.6 Dependence of Probe DOP, SOP Vector and Angles on Channel Spacing 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.6: Experimental results for (a) variation of probe DOP with input pump power 
(b) variation of relative SOP angles as a function of input power. 
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in the range of 3-13 dBm. The probe signal DOP reduces drastically with increasing 

input power, for 50 GHz and 100 GHz channel spacing then it starts to improve after a 

particular value of pump power; while for 200 GHz it decreases monotonically. 

Nonlinear birefringence vector tends to rotate in such a way that it adds to the linear 

vector and cancels its existence, hence giving rise to the DOP improvement as shown in 

Fig. 4.6 (a) (black and red). As the channel spacing increases, the interaction between 

the probe and the pump signal is reduced, thus the DOP improvement for 100 GHz 

come later, after that of 50 GHz channel spacing.  When two vectors are equal and 

parallel, there is a maximum polarization scattering, as indicated by the scattering 

angles in Fig. 4.6 (b). The SOPs for 50 GHz rotate faster due to smaller channel spacing 

hence, large scattering angles while for 200 GHz SOPs rotate much slower, leading to 

very small scattering angles, as seen in Fig. 4.6 (b). Further analysis was done on the 

experimental results obtained for figure 4.6 above and discussed as follows. 

 

  

 

 

 

 

Fig. 4.7: Experimental results for (a) Probe SOP vectors against input pump power and 
(b) is the Poincaré sphere representation of the three SOP vectors (s1, s2, s3). 
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Figure 4.7 (a) shows how the SOP vector (S1) varies with input pump power. Since the 

graphs are linear, it implies that the vector is linear too. The influence of pump power is 

the rotation of the vector and the change in its direction (crossing of the blue line). As 

the channel spacing increases, the corresponding values of the pump power, at the 

turning point, also increase as seen in Fig. 4.7 (a). This is due to the interaction between 

the probe and the pump signals that reduces as the spacing increases, such that it will 

require larger pump power to cause the change in the vectors direction, as in the case of 

200 GHz channel spacing. The states of polarization given by the vectors s1, s2 and s3 for 

different channel spacing are clearly depicted in Fig. 4.7 (b) and is dominated by s1 

since it’s along its axis. Thus, the variation of DOP in Fig. 4.6 (a) and angles in Fig. 4.6 

(b) is due to the movement of the vector s1. It can also, be observed that for 50 GHz 

channel spacing where there is high interaction, the vector s1 has already crossed into 

the other half of the sphere, closer to the pump axis, followed by s1 for 100 GHz; while 

s1 for 200 GHz trails behind them and has not even crossed. It’s like the pump rotates 

and pulls the vector s1 towards its axis and once it has crossed the s2-s3 axis, it acquires 

the same sign as the nonlinear vector, which leads to improved DOP.  
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4.7 Effect of Attenuation on the Probe Signal. 

 

  

 

 

 

 

 

  

 

 

 

 

 
 
Fig. 4.8: (a) Variation of probe DOP with input pump power (b) variation of SOP with 
input pump power (c) variation of relative SOP angles as a function of input power and 
(d) is the Poincaré  sphere representation of the three SOP vectors (s1, s2, s3). 
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realized earlier than for the case of -1.9 dBm. As the relative magnitude power between 

the probe and the pump increases, more pump power fluctuates into the probe axis and 

alters the orientation of the probe SOPs much faster. Thus, when the input probe power 

is -6 dBm, the SOP vector changes its direction (crossing of the blue line) much earlier 

than in the case of -1.9 dBm, as seen in Fig. 4.8 (b). The point at which the vector 

changes its direction becomes the turning point and it implies that at that point, the 

linear and nonlinear birefringence cancels out. Also, from Fig. 4.8 (c) the rate of angle 

spread is higher when the probe input power is -6 dBm than when it is -1.9 dBm. This is 

because the SOP vector rotation is much faster when the relative power between the 

pump and the probe is high. This is also, evident on the Poincaré sphere Fig. 4.8 (d), 

where the vector s1 for -6 dBm precedes that of -1.9 dBm and crosses the s2-s3 axis 

much earlier. The difference in experimental and simulated results can be due to 

attenuation of the probe signal at the connectors and spliced points, while for 

simulations, an ideal condition was assumed.  

 

4.8 Characteristics of a Designed Stress Sensor 
 
In this experiment, two different fibres were used (PMF and LEAF) as sensing 

elements, where the channel spacing between the pump and the probe was 50 GHz (0.4 

nm) and the relative input polarization angle between the pump and the probe SOPs was 

900. A channel spacing of 0.4 nm was used because from the results in section 4.6, it 

gives the highest interaction between the pump and the probe signals. The sensor was 

optimized at different pump-probe power ratios PR, and at each value of PR, the pump 

channel at R-section in Fig 3.1, was subjected to varying weights within the range of 
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2.5-32.5 kg. The output probe DOP was then measured (Fig. 4.9 (a) and (c)). The 

sensing length (10.5 cm) was sandwiched between two thin transparent plastic sheets, to 

cover the sensor for protection against stress concentration. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4.9: Experimental results for the stress sensor using (a) polarization maintaining 
fibre (PMF) and (c) LEAF fibre. Corresponding scattering angles are given by (b) and 
(d). 
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Mathematically, it can be argued that increase in birefringence reduces the walk-off 

length Lw (check subsection 2.5.4), which in turn reduces the argument of the Bessel 

function in Eq. (2.30) subsection 2.5.4, thus, improved DOP in Eq. (2.31) ( same 

subsection), since the term  tψcos   increases. The sensor operates effectively up to 

a maximum critical weight beyond which the DOP tends to remain unchanged (black 

line for PMF), or drops (LEAF) with increasing weights. This is because the 

polarization rotations of the pump has reached maximum, due to elasto-optic limit 

nature of the fibre. 

 

As the pump-probe power ratio PR reduces, the sensitivity of the sensor increases. For 

PMF fibre (PR = 6.4) has higher sensitivity per unit weight of 0.051 kg-1, followed by 

0.045 kg-1 (PR = 7.0) and lastly, 0.034 kg-1(PR = 7.7); while LEAF fibre (PR = 3.2) has 

sensitivity of 0.049 kg-1, higher than that of 0.041 kg-1(PR = 4). Reduction in PR leads 

to reduced ߐs, according to the expression given in the paragraph above Eq. (2.28), 

found in subsection 2.5.4. When ߐs is small, it reduces the value of the sine in Eq. 

(2.31) hence, improved sensitivity. It also, implies that the scattering on the probe signal 

has been minimized as depicted by Fig. 4.9 (b) and (d). For example, (PMF) black line 

which has less PR is less scattered than green. Polarization maintaining fibre (PMF) 

covers a wider range of weights, than large effective area fibre (LEAF). In LEAF, Aeff is 

increased intentionally, to reduce the impact of fibre nonlinearity (check Eq. (2.12) in 

section 2.2, chapter 2). In other words, the LEAF fibre is a highly birefringent fibre 

thus; it reaches its elasto-optic limit much earlier. 
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4.9 Strain Sensor  

 

 

 

 

 

 

Fig. 4.10: Experimental results for a strain sensor using a single mode fibre (SMF) as 
the sensing fibre. 
 

A section of polarimetric optical fibre strain sensor was embedded in two plastic sheets, 
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interaction between the pump and the probe ( as discussed in section 4.4) hence 
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constant DOP after strain of 0.25 mm. The sensitivity of the sensor was determined to 

be 0.0103 ߤm-1 by getting the gradient of the graph. 

 

4.10 Temperature Sensor  

 

 

 

 

 

 

 

Fig. 4.11: Experimental results for temperature sensor using (a) PMF (b) SMF. 
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reduce as the water cools, resulting in slower DOP variations as observed in Fig. 4.11 

(a) and vice versa. Similarly, for single mode fibre, as the temperature reduces, 

temperature-induced rotations reduce, hence, DOP also reduces as observed in Fig. 4.11 

(b). The sensitivity for SMF was very small (0.0009 0C-1), implying that the sensor was 

less sensitive to temperature variations, thus, PMF fibre would be the best choice as a 

sensing element since it has a higher sensitivity of 0.181 0C-1 over a range of 34-90.9 

0C. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions  

 
The important findings of the study are summarized in this chapter. The rotations of 

SOPs due to linear birefringence alter the shape of the signal. The effect of nonlinear 

birefringence-induced polarization rotation in a fibre depends on the orientation of the 

relative input polarization vectors of co-propagated channels and the power carried by 

each polarization vector. In low intrinsic birefringence link, the nonlinear induced-

birefringence effects scatter the SOPs thereby depolarizing the signal. Therefore the 
linear and nonlinear birefringence constitute the major limiting factors of modern 

systems employing fibre optic elements. 

 

The interaction between the linear and nonlinear induced birefringence in a fibre with 

consideration of mode coupling was investigated. For links with high polarization mode 

coupling, the nonlinear birefringence sometimes couples with the linear birefringence 

vector such that it reduces the penalty and improves the signal DOP. A sound 

knowledge of the interaction between linear and nonlinear birefringence led to the 

pump-probe scheme used in the design of fibre optic sensor. A sensor was successfully 

designed and the investigation show that the degree of polarization (DOP) of the probe 

increases linearly with the applied physical measurand (stress and strain). Further 

investigations show that for temperature sensing with polarization maintaining fibre 

(PMF) used as a sensing fibre, the rate or frequency at which the DOP varies is faster at 

high temperatures than at lower temperatures. The design of a stress sensor gave the 
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best sensitivity of 0.051 kg-1 over a range of 0-27.5 kg with PMF as the sensing fibre 

while that of strain sensor gave a sensitivity of 0.0103 ߤm-1 over a range of 0.16 -0.26 

mm with single mode fibre as the sensing element. Lastly, the design of a temperature 

sensor gave the best sensitivity of 0.181 0C-1 with PMF fibre over a range of 34-90.9 0C. 

The designed sensors offer unique possibility in high accuracy and sensitivity since they 

take into account the three operating principles of fibre optic sensor (FOS) (intensity, 

phase and polarization). 

 

From the discussions in chapter 4, a sensor can be designed according to its sensor 

requirements by selecting an appropriate type of fibre and by varying the relative pump-

probe powers for sensor optimization. The simplicity of the design and low power 

requirements which results in the low cost of the fabrication is the point which makes it 

suitable for actual field application. The designed sensor also has a reproducible high 

performance, a very important factor in the operation of any sensor system.   

 

5.2 Recommendations for further studies 

 
In this study, polarization dependent loss (PDL) for linear and nonlinear interaction in 

the fibre was assumed to be negligible. Therefore it is recommended that an 

investigation be carried out to account for the effects of PDL in the interaction of linear 

and nonlinear birefringence on the signal. The wavelength division multiplexing 

(WDM) laser source used in the experimental work could not provide power above 13 

dBm which limited investigations of nonlinear effects for pump powers above 13 dBm. 
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For further research it is recommended that the investigation be carried out in this 

respect. 

 

The pump-probe scheme uses only two channels; there is an open door for 

investigations for many inter-channel interactions but using the same principles as the 

ones employed in this study for possibility of other sensor designs. Also, from the laser 

source the minimum channel spacing that could be obtained was 50 GHz (0.4 nm); 

further investigations should be done using channel spacing less than 0.4 nm as it will 

give more interaction between the channels. In order to increase the sensitivity of the 

temperature sensor, it is recommended that a thermosensitive cladding of the fibre be 

used. Last but not least, for temperature sensor, investigations were done up to a 

minimum temperature of 340, it is recommended that investigations be done below this 

temperature. Generally, fibre optic sensor technology offer unique possibilities in a 

measurement context and where this will lead depends particularly on the initiatives of 

the research community. 
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Appendix B 
 
Experimental set up for fibre sensors 
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Appendix C 
 
Experimental results showing how the probe SOP vectors (s1, s2, s3) vary with input 

pump power.  

 

 

 

 

 

 

 

 
 
Fig. C.1: Probe SOP vectors (s1, s2, s3) against input pump power for 50 GHz channel 
spacing. 
 
  

 

 

 

 

 

 

 

 
Fig. C.2: Probe SOP vectors (s1, s2, s3) against input pump power for 100 GHz channel 
spacing. 
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Fig. C.3: Probe SOP vectors (s1, s2, s3) against input pump power for 200 GHz channel 
spacing. 
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