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_________________________________________________________________________________ 

ABSTRACT— It is possible to save a binary tree to a file and restore it at a later time. Because these two operations 

are frequently necessary and therefore important, an efficient algorithm to represent a binary tree in a compact way is 

very desirable. For special types of binary trees, there are efficient algorithms, otherwise, there is a method that stores 

both the inorder and either preorder traversal or postorder traversal of the binary tree which requires two traversals 

of the binary tree during construction of the storage array. In this paper, I present an approach for which only one 

traversal is sufficient for construction of the storage array.  I also present a more efficient complement algorithm for 

restoration of the binary tree. 
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_________________________________________________________________________________ 

1. INTRODUCTION 

Writing a tree to a file is called serialization of the tree and reading back from the file to reconstruct the exact same 

tree is known as deserialization of the tree. These two operation are necessary in any of the following situations: 

 There is need to transmit a tree via network and load it into another host 

 The tree must be usable after a power outage 

The process of storing a tree degrades to representing the binary tree as a linear structure like an array from which the 

nodes can then each be written in turn to a file on a file system. 

2. BINARY TREE REPRESENTATIONS 

This section is a look at two ways of implementation of a binary tree. 

4.1 Array Implementation 

One way of storing an a binary tree in an array and still preserve its functionalityas a binary tree is to store the root of 

the tree in the first element of the array. Then, for each node in the tree that is stored at subscript k, the node's left child 

can be stored at subscript 2k+1 and the right child can be stored at subscript 2k+2, (k = 0, 1, 2, ...). 
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Figure 1: A non-complete binary tree 

This way, the tree in Figure 1 will be stored in an array as shown in Table 1.  

Table 1: Array implementation of the binary tree in Figure 1 

A B C D E F     G     H I 

We end up with 4 elements wasted in the array. The amount of space wasted depends on the shape of the tree. This 

implementation works very well for a complete binary tree, a binary tree in which each level of the tree is completely 

filled except possibly the bottom level, but there, the nodes are in the leftmost positions i.e. if the bottom level is not 

filled out, it has all of its nodes filled in from left to right. The completeness property guarantees that the data items will 

be stored in consecutive locations at the beginning of the array; if there are N nodes in a complete tree, the nodes will 

correspond to the first N positions of the array. 

4.2 Linked Representation 

It is clear that if you store a binary tree that is not complete using the scheme above, you can end up with a great deal 

of wasted space in the array. Because of this, a binary tree that is not guaranteed to be complete is implemented as a 

linked structure in which each node of the structure has two links, one to its left child if any and another to its right child 

if any. See Figure 2. This way, a node can be anywhere in memory. 

 

Figure 2: Visual representation of a node of a binary tree 

The two link fields left and right in a node are pointers to nodes representing its left and right children, respectively, 

or are null pointers if the node does not have a left or a right child. A leaf node is thus characterized by having null 

values for both left and right. See Figure 3. 
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Figure 3: Visual representation of a leaf node of a binary tree 

A linked structure also provides additional flexibility when the tree grows or shrinks. The size of an array cannot be 

changed once created; the changing of array size whenever necessary can only be simulated by creating a new array and 

then copying all data from the array with the old size to the new array which is clearly an expensive operation in terms of 

time and space usage. Also, insertion or deletion of a node in an array implementation would require the expensive 

shifting of other nodes, because of the requirement that elements of an array are adjacent (separated by the same 

distance) in computer memory. In a linked structure implementation, insertion and/or deletion of a node involves only 

the relatively cheap operation of manipulation of links. 

3. THE TWO-TRAVERSAL METHOD 

A binary tree can be stored on file (or serialized) as two arrays. One of the arrays stores the preorder traversal of the 

binary tree and the other stores either postorder traversal of the binary tree or preorder traversal of the binary tree. A 

unique binary tree cannot be built or deserialised from a combination of preorder and postorder traversals [1]. 

The following is the procedure for construction of a binary tree from two traversals. 

1. If preorder traversal is given, then the first node in the linear order is the root node. If the 
postorder traversal is given, then the last node is the root node. 

2. Once the root node is known, the nodes in the left subtree and the right subtree are 
established by using inorder sequence. 

3. The above two steps are repeated to form subtree and finally the required binary tree. 

Table 2 is a description of the binary tree of Figure 1 using its inorder traversal and its preorder traversal. This 

example is from [1]. 

Table 2: A representation of a binary tree using inorder and preorder traversals 

 

From the preorder traversal, clearly A is the root (first node in the preorder is the root). In the inorder traversal, D, G, 

B, and E are the nodes in the left subtree (all nodes left of root A) and H, F, we, and C in the right subtree (all nodes right 

of A) as shown in Figure 4. 

 

Figure 4 

By repeating the same procedure, B is the root node of the left subtree and C is the root of the right subtree. These 

root nodes are bracketed. See Figure 5. E is the right node of B. D is the root node of the left subtree and F is the root of 

the right subtree. 
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Figure 5 

H and I are the left and right child nodes of F. G is the right child node of D. This way, you end up with the binary 

tree in Figure 1. Because, it is possible to reconstruct a binary tree from its two traversals, we can just store these two 

traversals which are just arrays. Then when we want to use the tree, we use the above procedure to reconstruct it first. In 

this paper, I will call this method the two-traversal method. 

 

Note: The inorder traversal visits nodes of a binary search tree (BST) in non-decreasing (ascending) order of the 

values of the keys of the nodes. So using this method, to store a BST, you only need to store either the postorder 

traversal or the preorder traversal. 

4. THE ONE TRAVERSAL METHOD 

The implementation of the binary tree in Figure 1 as an array is shown in Table 1. The problem with the scheme is 

that space is wasted in the array implementing the tree if the array is to support the functionality of the binary tree. 

If we need the array only for storage and not at the same time implementing the functionality of the binary tree, then 

we could remove the wasted spaces in the array and remain with the array as shown in Table 3. 

 

Table 3 

A B C D E F G H I 

When the empty elements are not there, the array is no longer a representation (implicit) of the binary tree. To restore 

the tree, you must also know the index of the element each key would occupy in the array that implements the binary 

tree. In other words we need the information in Table 4. 

 

Table 4 

index 0 1 2 3 4 5 8 11 12 

key A B C D E F G H I 

Given only the information Table 4, can we efficiently reproduce the binary tree in Figure 1 that it represents? And 

given the binary tree in Figure 1, can we efficiently produce the information in Table 4 that stores it? The answer to 

each of these is yes and I now present the algorithms for these two operations. 

But before we look at the two algorithms, there is another condition. The algorithm that reconstructs the binary tree 

works only if the indices are in the sequence the nodes of the binary tree would be visited in preorder traversal. The 

content of Table 4 must therefore be as shown in Table 5. 
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Table 5: Preorder sequence of the nodes of binary tree of figure 1. 

index 0 1 3 8 4 2 5 11 12 

key A B D G E C F H I 

Therefore, the serializing algorithm should produce the preorder sequence of the keys and the indices of the elements 

the keys would occupy in an array implementing the binary tree. 

4.3 The Serialization Algorithm 

The serialization algorithm is simply the inorder traversal of the binary tree with the following actions performed 

during a visit; 

1. store the index of the node, 

2. compute the index of it left child, then recursively traverse the tree whose root is this child 

node. 

3. compute the index of it right child, then recursively traverse the tree whose root is this child 

node. 

The algorithm is shown in Algorithm 1 

Algorithm 1: The serialization algorithm 

ALGORITHM serialize(root, preIndex[N], preData[N], i=0, index=0) 

/* 

 * encodes the structure of a binary tree 

*/ 

//INPUT: root of a binary tree 

//OUTPUT: array containing storing the binary tree 

if (root != null AND i < N) 

   preIndex[i] = index 

   preData[i] = root.data 

   serialize(root.left, preIndex[N], preData[N], i+1, 2*index+1) 

   serialize(root.right, preIndex[N], preData[N], i+1, 2*index+2) 

4.4 The deserialization algorithm 

The algorithm reconstructs a binary tree from the preorder sequence of the indices of the array elements the keys 

would be stored in if the binary tree were to be implemented as an array. Since the mapping of indices to keys is one-to-

one, if a language supports records or structures, you don’t need to use two arrays as Table 5 illustrates. Instead, you use 

only one array whose elements are each a composition of a key node and its array index as its fields. The form in which 

the algorithm is presented is simplified to work only with a sequence of the indices. Modifying the algorithm to work 

with both indices and key is trivial. 

Algorithm 2: The iterative deserialization algorithm 

ALGORITHM iterativeTreeReconstructor(preArray[N]) 

/*  

 * Reconstructs binary tree from preorder sequence of the indices 

 * the keys in its nodes would occupy if the binary tree were to 

 * be stored in an array 

*/ 

//Input: array of indices of the elements that would store the nodes 

//Output: the reconstructed binary tree 

parentStack = empty stack 

newNode = a new node whose key correspond to preArray[0] 

parentStack.push(node) 

for index = 1 to N - 1 

if (preArray[index] == 2 * parentStack.peek() + 1) 
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newNode = new node corresponding to preArray[index] 

parentNode = parentStack.peek() 

parentNode.left = newNode 

parentStack.push(newNode) 

else 

while (parentStack.peek() != preArray[index] / 2 - 1) 

parentStack.pop() 

newNode = new node corresponding to preArray[index] 

parentNode = parentStack.peek() 

parentNode.right = newNode 

parentStack.push(newNode) 

//================ end of iterative version ================== 

Algorithm 3: The recursive deserialization algorithm 

The following is the recursive version of the above algorithm. 

ALGORITHM recursiveTreeReconstructor(preArray[N], parentStack, index = 0) 

/*  

 * Reconstructs a binary tree from the preorder sequence of 

   the indices its nodes would occupy if the binary tree were 

   to be stored in an array 

*/ 

//Input: array of indices of elements that would store the keys 

//Output: the reconstructed binary tree 

 

if (index == 0 && N > 0) 

newNode = a new node whose key correspond to preArray[0] 

parentStack.push(newNode) 

else 

if (index < N) 

//left subtree 

if(preArray[index] == 2 * parentStack.peek() + 1) 

newNode = new node corresponding to preArray[index] 

parentNode = parentStack.peek() 

parentNode.left = newNode 

parentStack.push(newNode) 

recursiveTreeReconstructor(preArray[N], index + 1) 

//right subtree 

else 

while(parentStack.peek() != preArray[index] / 2 - 1) 

parentStack.pop() 

newNode = new node corresponding to preArray[index] 

parentNode = parentStack.peek() 

parentNode.right = newNode 

parentStack.push(newNode) 

recursiveTreeReconstructor(preArray[N], index + 1) 

//================= end of recursive version ==================== 

5. CONCLUSION 

This paper has demonstrated that the structure (the shape) of any binary tree, complete or not, can be stored in an 

array of integers of the same number of elements as the nodes of the binary tree. The paper has also shown how the 

binary tree can be reconstructed from the array of integers. The following are advantages this method, the one-traversal 

method, has over the method of reconstruction from two traversals, the two-traversal method. 

4.5 Shorter process of storage. 

The one-traversal method requires only one traversal to store the tree while the two-traversal method will require 
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two traversals. 

4.6 Efficiency 

The one-traversal methodduring reconstruction, does searching only done when creating the right subtree. In the 

two-traversal method, searching is done each time the root node has been identified i.e. at each iteration. 

4.7 Storage space 

If we take it that the preorder traversal sequence defines the binary tree, then any other information is extraneous. 

This information for the two-traversal method is the inorder traversal sequence of the keys in the nodes while for one-

traversal method, it is a sequence of integers. For any non-trivial application, the data type for key is always likely to be 

of a larger size than integer data types. This means that the two-traversal method will store a binary tree in a smaller 

space than the two-traversal method. 

6. FUTURE WORK 

A large fraction of the space in a typical binary tree node implementation is devoted to structural overhead, not 

storing data; each node contains two pointers in addition to carrying the data. The serialization that is achieved by the 

algorithm illustrated in this paper results in compressed form of the tree if the tree being serialized is implemented as a 

linked structure. For every node, the algorithm needs just one more piece of information while the overhead from a node 

implementation is 2. But the goal in data structure compression is to represent the structure in small space, but at the 

same time preserve its functionality. The serialization algorithm specifies the destination address (index) of a key in the 

array that would implement the tree. Because each key has its address in the array that would implement the tree known, 

it is possible that the storage array can permit queries using the rank and select (or similar) algorithms as explained in 

[2]. 
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9. APPENDIX 

The following is a implementation in C++ of the reconstruction algorithms bundled together with the 

main function as a driver. The input array is a preorder sequence of the indices of the elements of the 

array that would store the nodes of the binary tree. 

#include <iostream> 

#include <stack> 

void iterativeTreeReconstructor(int *preArray, int arraySize) 

{ 

std::cout << "new node " << preArray[0] 

<< " the ROOT node" << std::endl; 

std::stack<int> node; 

node.push(preArray[0]); 

for (int nextNodeIndex = 1; nextNodeIndex < arraySize; nextNodeIndex++) 

{ 

//left subtree 

if (preArray[nextNodeIndex] == 2 * node.top() + 1) 

{ 

std::cout << "new node " << preArray[nextNodeIndex] 

<< " LEFT child of " << node.top() << std::endl; 

node.push(preArray[nextNodeIndex]); 

} 

else 

//right subtree 

{ 

while(node.top() != preArray[nextNodeIndex] / 2 - 1) node.pop(); 

std::cout << "new node " << preArray[nextNodeIndex] 

<< " RIGHT child of " << node.top() << std::endl; 

node.push(preArray[nextNodeIndex]); 

} 

} 

} 

//=================================== 

void recursiveTreeReconstructor(int *preArray, int arraySize, std::stack<int>* 

node, int nextNodeIndex = 0) 

{ 

if (nextNodeIndex == 0 && arraySize > 0) 

{ 

std::cout << "new node " << preArray[0] << " the ROOT node" << std::endl; 

node->push(preArray[0]); 

recursiveTreeReconstructor(preArray, arraySize, node, 1); 

} 

else 

if (nextNodeIndex < arraySize) 

{ 

//left subtree 

if(preArray[nextNodeIndex] == 2 * node->top() + 1) 

{ 

std::cout << "new node " << preArray[nextNodeIndex] 

<< " LEFT child of " << node->top() << std::endl; 

node->push(preArray[nextNodeIndex]); 

recursiveTreeReconstructor(preArray, arraySize, node, ++nextNodeIndex); 

} 

//right subtree 

else 

{ 

while(node->top() != preArray[nextNodeIndex] / 2 - 1) 

node->pop(); 

std::cout << "new node " << preArray[nextNodeIndex] 
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<< " RIGHT child of " << node->top() << std::endl; 

node->push(preArray[nextNodeIndex]); 

recursiveTreeReconstructor(preArray, arraySize, node, ++nextNodeIndex); 

} 

} 

} 

//======================================= 

 

int main() 

{ 

int pre[] = {0,1,3,8,4,2,5,11,12}; 

std::cout << "\n ==== iterative version ==== \n"; 

iterativeTreeReconstructor(pre,sizeof(pre)/sizeof(int)); 

std::cout << "\n ==== recursive version ==== \n"; 

std::stack<int> nodeStack; 

recursiveTreeReconstructor(pre,sizeof(pre)/sizeof(int),&nodeStack); 

//=================== 

std::cout << std::endl << "Strike ENTER/RETURN key to quit..."; 

std::cin.clear(); 

std::cin.get(); 

//============== 

return 0; 

} 

The output of the above program is 

==== iterative version ====  

new node 0 the ROOT node 

new node 1 LEFT child of 0 

new node 3 LEFT child of 1 

new node 8 RIGHT child of 3 

new node 4 RIGHT child of 1 

new node 2 RIGHT child of 0 

new node 5 LEFT child of 2 

new node 11 LEFT child of 5 

new node 12 RIGHT child of 5 

new node 6 RIGHT child of 2 

new node 13 LEFT child of 6 

 

 ==== recursive version ====  

new node 0 the ROOT node 

new node 1 LEFT child of 0 

new node 3 LEFT child of 1 

new node 8 RIGHT child of 3 

new node 4 RIGHT child of 1 

new node 2 RIGHT child of 0 

new node 5 LEFT child of 2 

new node 11 LEFT child of 5 

new node 12 RIGHT child of 5 

new node 6 RIGHT child of 2 

new node 13 LEFT child of 6 

 

Strike ENTER/RETURN key to quit... 


