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Abstract 

In this work, an investigation on the fraction of tyre pyrolysis oil with a similar distillation 

range to that of automotive diesel (150 – 360 oC) was carried out to determine its suitability as 

an alternative or additive to petro-diesel fuel. The quality of this oil was evaluated by 

comparing its key properties to the requirements of South African National Standards for 

Automotive diesel fuel (SANS-342) and to conventional automotive diesel fuel. The viscosity, 

density, copper strip corrosion of this fuel were found to be within the acceptable limits set by 

SANS while sulphur content and flash point were out of their respective set limits. In addition, 

mixing rule equations for predicting viscosity and density for both pure and blends of the oil 

as a function of temperature were developed and evaluated.  The equations were found to be 

suitable due to their low Absolute Percentage Deviation. Engine performance tests were carried 

out with blends of Distilled Tyre Pyrolysis Oil (DTPO) and petro-diesel fuel in a single cylinder 

air cooled diesel engine. The performance, emission and combustion characteristics of the 

diesel engine while running on these blends were evaluated and subsequently, a comparative 

analysis was performed with conventional petro-diesel fuel as the reference fuel. It was found 

that, the engine could run with up to 60% (DTPO) without any problem. Beyond this level the 

engine became unstable. The power and torque were similar at low and medium speeds. 

However, at high speeds, the power dropped with increase in DTPO in the blend. Fuel 

consumption was very comparable for all the test fuels.  Carbon monoxide and unburned 

hydrocarbons were higher for the blends compared to petro-diesel fuel but oxides of Nitrogen 

were lower. The peak pressure for petro-diesel fuel was marginally higher than that of the 

blends. Present results indicate that, petro-diesel fuel can be blended with up to 60% DTPO 

and produce acceptable performance. Testing the diesel engine under different operating 

conditions is a time consuming and expensive process that also requires the use of specialised 

equipment which may not be readily available. An Artificial Neural Network (ANN) model 



v 
 

based on a back-propagation learning algorithm was developed to predict engine performance 

and emissions separately, based on fuel blend and speed. The performance and accuracy of the 

model were evaluated by comparing experimental and ANN predicted results. The ANN was 

able to predict both engine performance and emissions with acceptable levels of accuracy. The 

values of correlation coefficient between experimental and predicted data being greater than 

0.99. From this work, it can be implied that engine emission and performance can be predicted 

using neural network-based mode, consequently, it will be able to do further investigations 

without running laboratory experiments. Energy recovery from waste is an interesting field for 

engineers and scientists. It is hoped that this work will prompt new research ideals on how tyre 

pyrolysis oil can be improved for use as diesel engine fuel and building better models for diesel 

engine performance and emissions. 
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1 INTRODUCTION 

1.1 Background  

Waste tyre disposal poses challenges especially with the tight regulations being put in place by 

environmental protection agencies. Tyres contain carbon black, steel cords, polyester and nylon 

fibre, steel bead wire, chemicals and fillers and up to 47% rubber/elastomers (Anne & Russ, 

2006). Most of the tyre is composed of thermosetting polymers (Williams, 2013). Scrap tyres 

are difficult to recycle into other components because of their properties (Martínez et al., 2013). 

In South Africa, it is approximated that 60 million tyres are scattered all over the country and 

11 million add to this figure every year (Recycling and Economic Development Initiative of 

South Africa (REDISA), (2004)). The use of landfills in disposing of tyres is not ideal since 

they occupy a lot of space and tyres cannot be compacted unlike other land fill materials. Tyres 

take 80 to 100 years to biodegrade, since they are designed to endure severe operational 

environments (Martínez et al., 2013).   Although landfills have been used in South Africa (SA) 

before, it is being discouraged due to environmental concerns associated with them and the 

space is also becoming scarce. This has led to illegal dumping or burning to recover the steel 

contained in tyres (Nkosi et al., 2013). With South Africa importing most of its oil products, 

one way of dealing with the tyre disposal problem could be through pyrolysis of scrap tyres to 

produce oil that can be used as fuel. A study carried out in Gauteng province of South Africa 

revealed that the province alone has a potential of setting up a tyre pyrolysis industry that can 

produce up to 46.8 million litres of refined Tyre Pyrolysis Oil (TPO) per annum besides other 

valuable products derived from tyre pyrolysis (Pilusa et al., 2014). The use of pyrolysis has 

increased since it provides a means of dealing with the waste tyre problem while recovering 

energy.  
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Internal combustion engines have been a popular source of power for various activities due to 

their portability, versatility and high power/volume ratio. Of the two types of internal 

combustion engines, the diesel engine is preferable because it has higher thermal efficiency 

compared to that of the petrol engine (Richard, 1992). With the rapid economic and population 

growth, there has been a huge demand for this engine as a source of power for automotive, 

agricultural machines, power generation, and home use equipment such as lawnmowers 

amongst other uses. This engine is powered by petro-diesel fuel derived from distillation of 

crude oil. This has in turn increased the demand for petro-diesel fuel whose sources are limited. 

In South Africa for example, the demand for petro-diesel fuel increased from 11,262 million 

litres in 2012 to 11,890 litres in 2013, which equates to an approximate 6% increase 

(http://www.sapia.co.za/publications/annual-reports.html). This demand can only increase 

further while the reserves remain finite. Throughout the world, the need to supplement 

conventional sources of fuel has led researchers to look for alternatives. Some of these 

alternatives include; biodiesel, alcohols such as ethanol, methanol, hydrogen, compressed 

natural gas and tyre pyrolysis oils.  

The study of tyre pyrolysis oil (TPO) as fuel for the diesel engine has been on the rise since it 

provides a way of disposing of used tyres as well as energy recovery (Martínez et al., 2013). 

Pyrolysis has been defined as “the thermal degradation of the organic components of tyres at 

typical pyrolysis temperatures to produce oil, gas and char products in addition to the recovery 

of steel” (Williams, 2013).  During tyre pyrolysis, it is mainly the rubber that breaks down to 

low molecular weight products such oil and gas (Murugan et al., 2009). Yields of up to 60% 

oil have been reported at optimum conditions of reactor time, temperature and particle size 

(Islam et al., 2003). With a reported high energy content of up to 44 MJ/kg (Roy et al., 1999), 

tyre pyrolysis oil presents a potentially good alternative as fuel for the diesel engine. Waste 

tyres can be an attractive source of feedstock for oil production since it is cheaply available, 
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given the vast quantities in dumpsites.  Besides, the other products of pyrolysis such as char 

can have other economic values such as production of activated carbon, carbon black, solid 

fuel and pigment (de Marco Rodriguez et al., 2001). The gas obtained during pyrolysis has a 

reported calorific value of 45 MJ/kg and could be used in gas motors for power production, or 

recycled back to the reactor for heating purposes (Frigo et al., 2014). 

Studies carried out using TPO in petro-diesel fuel have shown a significant difference in engine 

performance compared to petro-diesel fuel especially when blended with petro-diesel fuel in 

high concentration. These observations were attributed to the difference in properties of TPO 

compared to petro-diesel fuel (Aydın & İlkılıç, 2012, Martínez et al., 2014, Sharma & 

Murugan, 2013, Frigo et al., 2014, Doğan et al., 2012, Hariharan et al., 2013, Koc & Abdullah, 

2014). These authors, cited above, used raw or distilled TPO without limiting it to a certain 

distillation range. In other words, the authors compared fuel with totally different boiling 

ranges, hence the difference in performance was expected. The observations included increased 

emissions, low thermal efficiency and power compared to petro-diesel fuel, in some cases the 

engines became unstable when the concentration of TPO in the TPO - petro-diesel fuel blend 

increased among others. Diesel engines were designed for petro-diesel fuel. Therefore, for a 

fuel to be compatible with the diesel engine the properties must be as close as possible to the 

petro-diesel fuel for optimum performance. Key properties of liquid fuels such as density, 

viscosity and Cetane number can be correlated to distillation characteristics of the fuel. 

Crude oil, from which petro-diesel fuel is derived is a complex mixture of hydrocarbons which 

are separated into groups with similar boiling ranges by fractional distillation (Demirbas, 

2008). Similarly, TPO is a mixture of unrefined hydrocarbons with a wide boiling range of 

between 70 and 400 °C (Martínez et al., 2013). Therefore, the compounds in tyre pyrolysis oil 

should be separated according to boiling temperature range and refined in order for it to be 
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suitable for a particular application (Murillo et al., 2006). There is evidence that separating the 

fuel into distinct fractions based on their boiling range can make TPO suitable for specific 

applications. Öztop et al., (2014) investigated the use of light oil fractions of tyre pyrolysis oil 

with an initial boiling point of 65 °C and final boiling point of 303 °C as fuel for the spark 

ignition engine. The light oil fuel had an octane rating that was higher than that of petroleum 

and was found to be able to be blended with up to 60% gasoline fuel without any problem in 

engine operation. Chaala & Roy (1996) found that heavy residue fraction of TPO with boiling 

point of above 350°C meets the requirements for production of good quality speciality coke. 

Pilusa & Muzenda (2013) found that the TPO fraction distilled at 250 oC exhibited properties 

close to those of petro-diesel fuel. de Marco Rodriguez et al. (2001) compared the distillation 

characteristic of TPO distilled between 150 oC and 370 oC to that of commercial petro-diesel 

fuel. Though the two fuels did not exhibit a similar pattern throughout, the authors 

recommended further research on this fraction in order to establish its potential as fuel for the 

diesel engine. Laresgoiti et al. (2004) studied the distillation characteristics of different 

fractions of oil derived from TPO to their corresponding petroleum fractions and also compared 

them to their standard specifications and requirements. They found that the fraction with 

similar boiling range to automotive diesel fuel (150-350 oC) and Heating petro-diesel fuel (150-

390 oC) met the standard specifications for the products based on distillation behaviour. The 

fraction that resembles petrol (70-150 oC) did not meet the required specification. Distillation 

data alone may not be conclusive on whether this fraction is suitable as fuel for diesel engines. 

Therefore, there is need for further examination of the viability of this fraction of TPO that 

resembles petro-diesel fuel.  

Studying the behaviour and characteristics of a process may require modelling. After 

experimental evaluation of engine performance on this fuel, it may be necessary to develop a 

predictive model for engine performance. Modelling provides a way of simulating and 
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understanding the engines response to different input parameters and conditions. The idea of 

modelling diesel engine operational parameters is not new. Analytical or mathematical 

methods have conventionally been used in modelling; however, they are time consuming due 

to the extensive computations involved (Ghobadian et al., 2009). Numerous assumptions also 

have to be made in the course of modelling (Wong et al., 2013, Richard, 1992, Ramos, 1989), 

thus they may not be realistic enough. This has led to the emergence of Artificial Intelligence 

Based Methods such as Artificial Neural Networks (ANN), which have been successfully used 

in various fields of engineering. The ANN is a mathematical model that was inspired by the 

biological neurons; it can receive inputs, perform operations and then predict final results or 

output, after training from experimental data (Yusaf et al., 2011, Ghobadian et al., 2009, Celik 

& Arcaklioğlu, 2005). The ANN can make predictions of numerous output variables based on 

several input parameters without prior knowledge of their relationship, through its ability to 

learn about the system that is being modelled (Ghobadian et al., 2009).  This is done by training 

with experimental data and validation with independent data. ANN has been successfully used 

in modelling and simulation, performance prediction, fault diagnoses, performance monitoring 

and optimisation of diesel engine parameters with an acceptable degree of accuracy 

(Ghobadian et al., 2009, Rawlins, 2005, Nikzadfar & Shamekhi, 2014, Taghavifar et al., 2014, 

Jianmin et al., 2011, Bietresato et al., 2015, Roy et al., 2014, Mohammadhassani et al., 2015, 

Yusaf et al., 2011). 

1.2 Significance of the study 

The variety of fuels being considered for use in the diesel engine is increasing due to the need 

of finding an appropriate substitute or supplement for the petro-diesel fuel. The properties of 

these fuels need to be examined and engine tests carried out to determine their suitability for 

use as alternative fuels for the diesel engine. It is well known that distillation range of a fuel 
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has effects on the fuel properties and in turn this may affect engine performance. Tyre pyrolysis 

oil has a wide distillation rage compared to diesel fuel. Therefore, it may be necessary to extract 

the fraction of TPO that resembles petro-diesel fuel based on distillation range (150 – 360 C) 

through fractional distillation and study of its technical feasibility as fuel for the diesel engine. 

After experimental evaluation, a model to relate engine input parameters to engine performance 

and emissions when the engine is running on TPO petro-diesel fuel blends, needs be developed 

based on Artificial Neural Network.  

1.3 Statement of the problem 

The typical distillation range of petro-diesel fuel is between 150 oC and 360 oC (de Marco 

Rodriguez et al., 2001). 70% of TPO boils at less than 370 oC which is similar to the upper 

limit set for petro-diesel fuel. However, the oil has a significant amount of low boiling point 

fractions (as low as 78 oC) and hence, may not be suitable for use in the diesel engine in that 

state (de Marco Rodriguez et al., 2001). The diesel engine was optimised for petro-diesel fuel 

fuel. There is therefore need to study the fraction of TPO that resembles petro-diesel fuel based 

on boiling range. No work could be found in literature regarding the study of Tyre Pyrolysis 

Oil which is similar to petro-diesel fuel based on distillation range (150 oC and 360 oC). In fact, 

de Marco Rodriguez et al. (2001) recommended research on this fraction in order to establish 

its real potential as fuel for the diesel engine.  

With the increase of the use of internal combustion engines, along with the range of alternative 

fuels being used, scientists and engineers have paid a lot of attention to modelling engine 

characteristics (Nikzadfar & Shamekhi, 2014).  Testing the diesel engine under different 

operating conditions is a time consuming and an expensive process that also requires the use 

of specialised equipment which may not be easily available. This may not always be 

convenient. A technique that can make this prediction without running engine tests can be very 
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convenient. Thus, it is necessary to develop a model that can predict the engine performance 

using ANN. 

1.4 Objectives  

To analyse and model the performance and emission characteristic of a diesel engine operating 

on distilled tyre pyrolysis oil with a distillation range of between 150 oC to 360 oC. 

1.4.1 Specific objectives 

1. To extract the fraction of tyre pyrolysis oil that resemble petro-diesel fuel through 

fractional distillation. 

2. To characterise the oil sample according to the relevant standards. 

3. To perform engine tests with the oil and its blends with petro-diesel fuel. 

4. To model the performance of an engine running on Distilled Tyre Pyrolysis Oil and its 

blends with petro-diesel fuel. 

1.5 Scope of the study  

This study focuses on the technical feasibility of using the fraction of TPO that resembles diesel 

fuel based on distillation range as diesel fuel, and to develop a model that predicts engine 

performance when running on this fuel using ANN.  
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2 LITERATURE REVIEW 

2.1 The diesel engine 

The diesel engine is a popular engine choice in economic activities compared to the petrol 

engine. Its preference is because it is more robust and has a high thermal efficiency compared 

to the Spark Ignition (SI) engine (Hansdah et al., 2013, Celik & Arcaklioğlu, 2005). Richard 

(1992) gave three reasons for the higher thermal efficiency; it has a higher compression ratio 

than petrol engines, only air is present in the cylinder during initial compression and the air/fuel 

mixture is always lean. Besides that, Hydrocarbons (HC) and carbon monoxide (CO) emissions 

of the diesel engine are lower compared to SI engines, but its particulate matter (PM) and 

nitrogen oxides (NOx) emissions are higher (Belagur & Wadawadagi, 2009).  

2.2 Historical overview of the diesel engine 

Rudolph Diesel developed the diesel engine with the aim of replacing steam engines. Initially 

it was to run on coal dust, but this ideal was later abandoned in favour of oil. In 1892 he filed 

a patent and ran the first model in 1893 with a remarkable efficiency of 26%. The first model 

suitable for practical use was demonstrated in 1897 and ran on peanut oil. Due to the size of 

the injector pump, the early engines were only suitable for large stationery and marine 

applications (Encyclopaedia Britannica, 1974). It was only during the 1920s that smaller high-

speed diesel engines were developed for automotive use (Richard, 1992). With the 

development of drilling technologies there was cheap and abundant fossil fuel available. But 

after the 1973 fuel crisis, research intensified on the diesel engine, initially to design procedures 

and gadgets that could improve on efficiency such as vehicle aerodynamics, turbochargers, and 

intercoolers and consequently reduce fuel consumption. Recently, research has focused on 

identifying alternative fuels that could supplement petroleum sources while complying with 

the stringent environmental and legislative requirements. 
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2.2.1 Principle of operation of the diesel engine 

The diesel engines can be classified as two stroke, where the engine requires two strokes of the 

piston to complete its cycle and the four stroke, where four strokes are required to complete a 

cycle. Diesel engines are commonly four stroke engines. The principle of operation of the 

diesel engine is described by Eastop & McConkey (1993) as follows: The four strokes consist 

of induction, compression, working and exhaust stroke. In the induction stroke, the valves open 

and air is induced into the cylinder as the piston moves from the Top Dead Center (TDC) to 

the Bottom Bead Dead Center (BDC). The second stroke is the compression stroke, here the 

valves close and the piston moves towards the TDC, thus compressing the air. Just before 

reaching the TDC fuel is injected into the chamber, mixes with the hot air and ignites. This 

combustion creates an expansion that pushes the piston down towards the BDC thus creating 

the working stroke. Finally, the valves open as the piston moves upwards, discharging the 

products of combustion. This is the final stage also known as exhaust stroke. 

2.2.2 Performance parameters of an internal combustion engine 

To evaluate engine performance, certain quantities are measured through bench tests at 

different speeds and loads. Then calculations are performed using standard procedures. The 

results are presented graphically in form of performance maps. The following is an overview 

of the key parameters as described by Eastop & McConkey, (1993) and Richard (1992). 

1. Indicated power (IP) – is the rate at which work is done on the piston in the cylinder. It is 

given by 2.1 

IP =
piALNn

2
        2-1 
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Where pi is the indicated mean effective pressure, and is determined from the engines 

indicator diagram. A and L are area and length of the cylinder respectively. N is the 

number of cycles per unit time while n is the number of cylinders. 

2. Brake Power (BP) – this is the useful power as measured from the output shaft by a 

dynamometer. Brake power is calculated by 2.2. 

BP = 2πNT     2-2 

Where T is torque developed by the engine 

3. Friction Power (FP) and Mechanical efficiency (ME) - the difference between the IP and 

BP is accounted for as power to overcome friction. Hence friction power (FP). ME is the 

ratio of BP to IP, usually expressed as a percentage and it normally lies between 80 and 

90%. 

𝐹𝑃 = 𝐼𝑃 − 𝐵𝑃    2-3 

𝑀𝐸 =
𝐵𝑃

𝐼𝑃
 𝑥 100   2-4 

4. Brake Thermal Efficiency (BTE) – this is the overall efficiency of the engine. It’s a criterion 

that evaluates how efficiently the chemical energy of the fuel is converted to mechanical 

energy. 

𝐵𝑇𝐸 =
𝐵𝑃

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑓𝑢𝑒𝑙 × 𝑐𝑎𝑙𝑜𝑟𝑖𝑓𝑖𝑐 𝑣𝑎𝑙𝑢𝑒
  2-5 

 

5. Brake Specific Fuel Consumption (BSFC) – this is Measure of the mass of fuel consumed 

per unit BP produced by the engine; it is a criteria used to evaluate the engines fuel 

economy. Its units are kg/kWh. A lower BSFC of the engine is desired since it shows the 

better fuel economy. 
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𝐵𝑆𝐹𝐶 =
𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝐵𝑃
  2-6 

6. Engine Emissions – these are pollutants available in the exhaust fumes. These emissions 

include carbon monoxide (CO), oxides of nitrogen (NOx), unburned hydrocarbons (HC) 

Sulphur dioxide (SO2) and soot. 

2.2.3 Combustion process in the diesel engine 

The combustion process in a compression ignition can be divided into four stages as follows 

(Benson & Whitehouse, 1983, Richard, 1992): The first stage is the Ignition Delay, this is the 

period between the start of fuel injection and when the first fuel droplets start to ignite. It is 

during this period that the fuel will atomise, vaporise and mix with air. This is followed by the 

next stage of rapid and uncontrolled combustion. The pressure rises rapidly to a maximum 

point due to combustion caused by the ignition of the prepared air/fuel mixture during the 

ignition delay stage. The third stage starts after the air/fuel mixture that was prepared during 

the ignition delay is exhausted.  The rate of combustion at this stage is now determined by the 

fresh air/fuel mixture induced into the cylinder. In the final stage, the rate of combustion is low 

until all the air or fuel is exhausted. Ignition delay hugely determine the smoothness of engine 

operation and emissions. Figure 2-1 shows the pressure vs crank angle diagram for a 

compression ignition engine.   
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Figure 2-1 Pressure diagram of a compression ignition engine 

2.2.4 Fuels and compression ignition engines  

Liquid fuels hold huge quantities of energy per unit volume compared to solid and gaseous 

fuels. Together with the ease of handling and combustion characteristics, they have become an 

appealing source of energy. A variety of fuels have been investigated as for their suitability as 

fuel for the internal combustion engine.  

Alcohols such as bioethanol (Hansdah et al., 2013) n-butanol (Siwale et al., 2013) and 

methanol (Yasin et al., 2014) have also been extensively studied. Their limitation is their low 

Cetane number and viscosity, therefore, they have to be blended with petro-diesel fuel before 

they can be used in the internal combustion engine. Another challenge is that they do not remain 

in one phase after blending, especially over a wide range of temperatures. They can only be 

used in small quantities in blends with petro-diesel fuel or biodiesel and produce acceptable 

performance. The effects of introducing hydrogen as a secondary fuel through the air inlet 

manifold on an engine running on petro-diesel fuel was investigated by Dhole et al. (2014). 

Compared to pure petro-diesel fuel, there was an increase in brake thermal efficiency, 
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Unburned Hydrocarbon (HC) and carbon monoxide (CO). NOx was found to be lower. The 

authors observed that 20% substitution of hydrogen in petro-diesel fuel offered the best 

performance. Yusaf et al. (2010) found that an engine running on Compressed Natural Gas 

CNG-diesel offers better brake thermal efficiency and lower emissions. The problem with the 

use of hydrogen is that extensive modification had to be made on the engine to make it suitable 

for this fuel. The modifications included; changing compression ratio, modifying the diesel 

injection system, installing CNG injection system and modifications on the air manifold and 

inlet valve.  Biodiesel has proved to be an attractive fuel mainly because of the following 

reasons; it can be domestically produced, inherent lubricity, it is biodegradable;  low 

particulate, CO, HC, soot and in some conditions NOx compared to petro-diesel fuel,  contains 

no Sulphur;  compatible with diesel engine amongst others  (Ghobadian et al., 2009, Canakci 

et al., 2009, Demirbaş, 2008). Of the possible alternatives so far, biodiesel is the most attractive 

since it can run in the diesel engine without any modification. Tyre pyrolysis has also been 

investigated and will be discussed in detail in the later sections. 

2.2.5 Petro-diesel fuel 

Crude petroleum is an unrefined mixture of hydrocarbons and a small proportion of non-

hydrocarbons. The hydrocarbons include alkanes (paraffins), cycloalkanes (naphthenes), 

aromatics and Naphtheoaromatics (complex hydrocarbons) while the non-hydrocarbons 

include sulphur, oxygen, nitrogen and metallic compounds (Neumann et al., 1981). Crude oil 

consists of components with wide boiling range. So during petroleum refining, the crude oil is 

separated into components within a desired boiling range before undergoing further treatment 

to make it suitable for specific applications.  As shown in Table 2-1 and described by Neumann 

et al. (1981), the first three fractions of crude oil are distilled under atmospheric conditions. 

The light fuel oil consists of fractions with boiling range of between 30 oC to 100 oC and 100 

oC to 200 oC. The residue with boiling range above 350 oC is normally distilled under vacuum 
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conditions, then the distillation value is converted to standard pressure. The oil produced in 

this distillation range is suitable for use as lubrication oil and asphalt. 

Table 2-1 Distillative separation of crude oil (Source: Richard 1992) 

  

Crude oil 

Distillation under atmospheric pressure Atmospheric residue Vacuum 

residue 

Fraction gas Gasoline 

light 

Gasoline 

heavy 

Gas oil Vacuum distillate  

Boiling 

range oC 

-162 to 30 30 to 

100 

100 to 

200 

200 to 

350 

350 to 

450 

450 to 550  

Technical 

products 

Liquefied 

petroleum 

gas 

 Feed for 

petro- 

chemistry 

Petro-

diesel 

fuel  

Feed for 

catalytic 

cracker 

Lubrication 

oil 

asphalt 

  Gasoline Fuel oil 

light 

Fuel oil heavy 

2.3 Tyre pyrolysis  

2.3.1 Tyre composition 

Anne & Russ (2006) reported that a new tyre weighing approximately 10 kg manufactured by 

Goodyear contains up to 30 types of synthetic rubber, 8 types of natural rubber and carbon 

black, cords, wires, fibres and other additives and ingredients. The composition of passenger, 

lorry and off -road (ORT) tyre as reported by the authors is summarised in Table 2-2.  

Table 2-2 Composition of Passenger, lorry and off road tyre. (Source: Anne & Russ, 2006) 

Constituent Passenger car 

tyre (% weight) 

Lorry tyre 

(% weight) 

Off read tyre 

(% weight) 

Rubber/elastomers 47 45 47 

Carbon black 21.5 22 22 

Metal 16.5 25 12 

Textile 5.5 - 10 

Zinc oxide 1 2 1 

Sulphur 1 1 1 

Additives  7.5 5 6 
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2.3.2 Tyre pyrolysis oil production and yield 

Pyrolysis is defined as the thermal degradation of organic components in the absence of air, 

yielding liquid (oil), gas and solid (char) fractions (Williams, 2013, Alcala & Bridgwater, 2013, 

Edwin Raj et al., 2013). Pyrolysis has been studied with conditions being varied with the aim 

of maximising on the oil yield. These conditions are discussed in this section and summarised 

in Table 2-3.  

Table 2-3 Reported yield at various operation conditions 

Reference 

 

Feed stock, reactor type and operating conditions     Optimum oil Yield % 

Oil char gas 

(Islam et 

al., 2003) 

5-7 cm tire particles externally heated in a fixed bed 

reactor. Temperature of 450°𝐶 . N2 was used as a carrier 

gas. 

61 30 9 

(Murugan 

et al., 

2008a) 

Tyre chips from the periphery of the tyre were fed into 

fixed bed reactor, heated externally in the absence of 

oxygen. Process carried out between temperature range of 

450 and 650°𝐶 at constant heating rate of  5 °𝐶 /𝑚𝑖𝑛  and 

120 min residence time.   

55 34 10 

(Murugan 

et al., 

2008b) 

Tyre chips with bead, steel and fabric removed. Pyrolysis 

carried out in a vacuum and reactor was externally heated. 

Temperature between 450 – 650°𝐶. and residence time of 

90 minutes 

50 40 10 

(Aydın & 

İlkılıç, 

2012) 

Reaction performed at temperature range of 400 – 700 °𝐶 

in increments of 100°𝐶 and at various N2 flow rates. 

Highest liquid yield observed at 500°𝐶 . the effect of N2 

flow rate was negligible 

40.26 47.88 11.86 
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(Banar et 

al., 2012) 

Carried out at atmospheric pressure and temperature of 

between 350oC and 600oC in 50oC increments in a fixed 

bed reactor. Heating rate was 5 and 35oC/min. The highest 

yield was obtained at 400oC and 5oC/min. 

38.8 27.2 34 

(Frigo et 

al., 2014) 

Carried out in an externally heated pilot scale reactor at 

Temperature range of between 300 – 500°𝐶 at various 

crushed tyre flow rate.  

45 50 5 

(Martínez 

et al., 

2014) 

Granulated tyres fed in a continuous auger reactor at feed 

rate of about 6.7 kg/h. reaction temp of 550oC, N2 used as 

carrier gas at 5 L/min. Residence time 3 min. 

42.6 40.5 16.9 

 

Younus et al. (2013) carried out pyrolysis on automobile tyres between temperatures of 450 ℃ 

and 650 ℃ for a duration of 2 hours and 30 minutes. The yield from the process was 50% 

TPO, 40% pyro gas and 10% char by weight. The authors found that around 7.8 MJ/kg of 

energy was required for the process. Martínez et al. (2014) produced tyre pyrolysis oil from 

truck, tractor and car tyres in a continuous auger reactor. The reaction was done at optimum 

reactor conditions of 550 ℃ and 1 bar. The feedstock residence time was 3 minutes and flow 

rate was 6.7 kg/h. The liquid, solid and gas yields were found to be about 42.6 %, 40.5 % and 

16.9 % by weight respectively. Effects of tyre particle size, running time and reactor 

temperature on yield was investigated by Islam et al. (2003) in a fixed bed reactor with nitrogen 

gas as a carrier gas. Tyre particle size of 5 – 7 cm was found to have a higher oil yield compared 

to that with particle size of 1 – 4 cm. The authors suggested that this could be because the 

smaller particles of tyre were blown out of the reactor before complete devitalisation. The 

authors also noted that the oil yield kept increasing with time. However, after 90 minutes’ 

reaction time, the oil yield remained constant. This was because all the volatile fractions had 
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been exhausted. The reactor temperature was varied between 400 ℃ and 500 ℃. The optimum 

oil yield of 62% was obtained at a temperature of 450 ℃. At low temperatures, char content 

was higher but reduced with increase in temperature while the gas yield was low and increased 

with increase in temperature. This is because the low temperature was not sufficient for 

complete devitalisation resulting in high char and low oil and gas fractions. Banar et al. (2012) 

noted a 29.5% reduction in liquid yield when the temperature was increased from the optimum 

temperature of 400 oC in that work to 600 oC, while there was an increase in gas yield with 

increase in temperature beyond the optimum point. This is probably due to further cracking of 

the liquid to gas (Murugan et al., 2008b, Williams, 2013, Banar et al., 2012). In a similar work 

by Banar et al. (2012), the effects of increasing heating rate on yield was studied. It was found 

that a lower heating rate of 5 oC/min had a higher oil yield of 38.8% compared to a heating rate 

of 35 oC/min that yielded 31.1% oil.  The influence of tyre brand on yield and composition of 

pyrolysis products was investigated by Younus et al. (2013). Seven brands of tyres from 

different manufacturers were used in this work using a fixed bed reactor under similar 

conditions. The yields of char (37.7 – 38.7% weight), oil (55.4 – 57.4 % weight) and gas (2.7 

– 5 % weight) for the different brands were found to be very similar. However, there were 

differences in the composition of the products. The composition of gasses was found to vary 

with brand. There was similarity in their chemical composition, but the concentration of the 

compounds varied. There was also a variation of elemental composition of the oils with brand.  

Pyrolysis has to be carried out in an oxygen free environment. Therefore, a vacuum can be 

created or an inert gas such as N2 may be used to prevent the tyre particles from burning due 

to the high temperatures in the reactor (Aydın & İlkılıç, 2012) and to carry away vapour from 

the reactor during the process (Islam et al., 2003). Aydın & İlkılıç (2012) investigated the 

effects of N2 flow rate on yield of pyrolysis products. The N2 flow rate was adjusted from 150 

cm3/min to 350 cm3/min in increments of 50 cm3/min. The authors did not find any significant 
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differences in the yields of the products with change in flow rate. Catalytic pyrolysis was 

studied as a means of enhancing oil yield by Kar (2011). The author compared yield of catalytic 

and non-catalytic pyrolysis using expanded perlite as catalyst. The highest oil yield of non-

catalytic pyrolysis was 60.02% by weight while that of catalytic pyrolysis was 65.11% by 

weight. This was a remarkable increment of 8.48% weight oil yield. Frigo et al. (2014) 

investigated the effect of varying crushed tyre flow rate in a continuous pilot scale reactor. The 

flow rates were varied between 5.5 kg/h and 14.5 kg/h. As flow rate increased, the solid yield 

was found to increase while the gas yield reduced. The oil yield kept increasing with increase 

in flow rate up to a maximum of 45% at 10 kg/h flow rate then started to drop. This reactor had 

different sections where the temperatures were varied between 300 oC – 500 oC. Edwin Raj et 

al. (2013) studied the effect of temperature, particle size and feed rate on yield in a fluidised 

bed reactor. They found that temperature was the most significant factor affecting oil yield. 

The highest oil yield in this study was obtained at 440 oC. 

2.3.3 Properties of tyre pyrolysis oil 

There are several fuel properties that are critical for sound operation of the diesel engine. Some 

of these properties for TPO are shown in Table 2.4 and are discussed in the following section. 

Some authors have gone further to modify TPO by distillation. Distilled Tyre Pyrolysis oil 

(DTPO) has been found to have properties closer to petro-diesel fuel than raw TPO. 
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Table 2-4 Properties of TPO reported in literature 
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Elemental analysis % 

C H 

 

 

O N S 

(Islam et al., 

2003) 

971 @ 

15 𝐶° 

41.7 4.8 - 80.30 5.18 10.13 - - 

(Murugan et 

al., 2008a) 

935@ 

15 𝐶° 

42.8 

(gro

ss) 

3.2  - - - - 0.95 

(Murugan et 

al., 2008a)* 

871 

15 𝐶° 

45.6 

(gross) 

1.7 - - - - - 0.03 

(Murugan et 

al., 2008b) 

.9239 

15 𝐶° 

38 3.77 

 

 

- 

83.48 13.12 2.46 0.22 0.72 

(İlkılıç & 

Aydın, 2011) 

945 

@ 20𝐶° 

 

43.34 3.8 - - - - - 0.9 

(Aydın & 

İlkılıç, 2012) 

0.945 

@ 20𝐶° 

43.34 3.8 44 86.87 10.07 1.67 1.184 0.906 

(Bhatt & Patel, 

2012) 

880 @ 

15 𝐶° 

42.7 6.3 42 - - - - - 

(Banar et al., 

2012) 

820@ 

15 𝐶° 

42.61 0.95  

@50

𝐶° 

 

 

68.91 9.6 18.37 2.05 1.07 

(Doğan et al., 

2012)* 

944.4 @ 

15 𝐶° 

39.9  5.06 - - - - - - 
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(Doğan et al., 

2012) 

904 @ 

15 𝐶° 

40.9 2.16 - - - - - - 

(Hariharan et 

al., 2013) 

935 

15 𝐶° 

43.8 3.2 - 81.18 10.92 4.62 1.85 0.72 

(Sharma & 

Murugan, 

2013) 

920 

@ 20𝐶° 

39.2 5.4 - -- - - - - 

(Frigo et al., 

2014) 

903 

 

41.96 2.90 - - - - - 0.97 

(Martínez et 

al., 2014) 

917 @ 

15 𝐶° 

42.7 

 

2.39  86.19 10.33 0 0.79 0.83 

*Distilled Tyre Pyrolysis Oil (DTPO) 

2.3.3.1 Sulphur content  

Literature reviewed has reported a significantly high Sulphur content in TPO compared to that 

of petro-diesel fuel and biodiesel. From Table 2-4, the sulphur content of TPO was from 0.72 

to 1.07 ppm. Sulphur in TPO comes from the original feedstock. It is normally used to 

strengthen rubber in a process known as vulcanisation.  Frigo et al. (2014) estimated that after 

pyrolysis, about 77% mass of the Sulphur in the tyre remains in the solid fraction while the 

remainder remains in the liquid fraction. The sulphur content of a fuel has significant effect on 

fuel emissions. It has been reported that (Tan et al., 2013) exhaust smoke, HC, CO and SO2 

emissions reduced with reduction in sulphur content in the fuel whereas there was a remarkable 

decrease in particulate matter (PM) in the emissions. The authors explained that during 

combustion, sulphur is converted to SO2, thus consuming part of the oxygen that could have 

otherwise oxidised CO and HC to CO2 and H2O. Sulphur reaction also leads to the formation 

of sulphates causing accumulation of carbon hence, soot formation. Apart from emission 
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concerns, sulphur can cause engine corrosion when exposed to high temperatures (Khan & Ali, 

2013). For these reasons, Sulphur levels should be kept as low as possible. SANS 342:2006 

recommends a maximum value of 500 ppm. Studies have been carried out in an attempt to 

reduce sulphur content of TPO. İlkılıç & Aydın (2011) investigated the effects of various 

rations of 𝐶𝑎(𝑂𝐻)2 as a catalyst during pyrolysis on sulphur content of TPO. The optimum 

amount of catalyst was found to be 5% 𝐶𝑎(𝑂𝐻)2. This reduced the sulphur content of raw oil 

by 34%. In a similar study (Aydın & İlkılıç, 2012), effects of using different catalysts such 

as 𝐶𝑎(𝑂𝐻)2, 𝐶𝑎𝑂 and 𝑁𝑎𝑂𝐻 were studied. It was reported that using 5% mass 𝐶𝑎(𝑂𝐻)2 

catalyst during pyrolysis then followed by acid desulphurisation using 10% 𝐻2𝑆𝑂4 with a 

degree of purity of 98% reduced sulfur content by a remarkable 83.75%. Koc & Abdullah 

(2014) reported a reduction of sulphur content of TPO from 0.768% to 0.321% in their study. 

The method used by the authors involved mixing TPO with a binary solution containing 

tetraoctylammonium bromide and HO, then exposing the solution to high intensity ultrasound 

for 5 minutes. Sulphur content has also been found to increase with pyrolysis reaction 

temperature. Aydın & İlkılıç (2012) found that oil obtained at 500 ℃ had 3% higher sulphur 

content compared to that obtained at 400 ℃.  

2.3.3.2 Cetane number and Cetane index 

This is a measure of the fuel’s ability to auto ignite on compression and it has direct influence 

on the ignition delay. Therefore, it determines the ignition quality of a fuel. SANS 342:2006 

recommend a minimum Cetane number of 45 while ASTM Standard D 975-02 recommends a 

minimum of 40. Typical petro-diesel fuels have Cetane numbers in the range of 45–50 (Hansen 

et al., 2005). The diesel engines operate well with fuels that have a Cetane number in the range 

of 40 – 55 (Bhatt & Patel, 2012). Very little literature has reported on the Cetane number of 

TPO. However, from Table 2-4 the reported values of 42 and 44 are well within the above 
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reported range and ASTM D 975-02 specification, but lower than SANS 342:2006 

recommended value. Higher Cetane number fuels have shorter ignition delay periods while 

low Cetane number fuels have longer ignition delay periods, thus delaying start of combustion 

(Hariharan et al., 2013). Increase in Cetane number leads to a decline in PM and HC emissions 

(Tan et al., 2013). Experimental determination of Cetane number is an expensive process, so 

sometimes a calculated value known as Cetane index (CI) is normally used to give an 

estimation of the Cetane number. However, this CI is only accurate when dealing with 

petroleum products rather than alternative fuels.  

2.3.3.3 Density 

The density of TPO is generally higher than that of petro-diesel fuel, though after distillation 

the density of DTPO approaches that of petro-diesel fuel (Tan et al., 2013, Murugan et al., 

2008a). Density of the fuel is also another important parameter. Since fuel is metered to the 

diesel engine on volume basis, a fuel of high density has more mass per unit volume than a fuel 

of low density. Therefore, a fuel with high density is likely to produce more engine power than 

a fuel with low density. At high speeds and loads, this could be a problem. The petro-diesel 

fuel system is meant to inject the fuel on volume basis. Therefore, for the same volume a fuel 

with a larger density will have more fuel being injected into the combustion chamber. This will 

lead to a rich mixture, thus leading to smoke emission. SANS 342:2006 only sets a minimum 

limit of density at 800 kg/m3. The upper limit is not set. The density of TPO is well above this 

value and higher than that of petro-diesel fuel. Another observation is that NOx emission 

increases with an increase in density (Hossain & Davies, 2013, Doğan et al., 2012). 

2.3.3.4 Viscosity 

When a fuel is injected into the cylinder, it will break into droplets, mix with air and vaporise 

before combustion takes place. For proper combustion, the air-fuel mixture must be uniform. 
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The quality of spray, air -fuel mixing and distribution of fuel droplets in the cylinder determines 

the quality of combustion in the cylinder. This property is normally attributed to viscosity. 

From Table 2-4, the lowest reported viscosity of TPO is 2.39 cST, while most of the other 

reported values are higher than that of petro-diesel fuel. The highest reported value being 6.3 

cST. This value is more than twice that of petro-diesel fuel at 2.79 cST (Martínez et al., 2014). 

SANS 342:2006 limits the viscosity range of petro-diesel fuel to between 2.2 - 5.3 cST. High 

viscosity fuels also lead to longer ignition delay since it will result in poor atomisation, thus, 

more fuel-air mixture will be prepared during the premixed combustion phase (Murugan et al., 

2008b). Low viscosity leads to better fuel preparation during ignition delay leading to better 

combustion.  

2.3.3.5 Heating value 

The most important property of a fuel is the amount of energy produced during combustion. 

This is measured using the Heating Value or Calorific Value. It shows the amount of heat 

released per unit mass of fuel burned and it influences power and fuel consumption of the 

engine. From reported values in Table 2-4, TPO has a remarkable heating value of 38 – 44 

MJ/kg. Though this is slightly lower than the reported value of petro-diesel fuel of 45.13MJ/kg 

(Martínez et al., 2014). Carbon content in hydrocarbon fuel is an indicator of energy content 

of a fuel (Hariharan et al., 2013). As seen in Table 2-4, TPO has lower carbon content compared 

to petro-diesel fuel and this explains the low energy content of TPO compared to that of petro-

diesel fuel. 

2.3.4 Engine performance  

Research has been carried out to investigate the effects of using TPO on engine performance 

and emissions (Murugan et al., 2008b, Frigo et al., 2014, Hariharan et al., 2013, Sharma & 

Murugan, 2013, Younus et al., 2013). Petro-diesel fuel was used as the reference fuel so this 
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performance was being compared to that of TPO. Effects of blends of TPO with petro-diesel 

fuel, biodiesel and additives such as ignition improvers have been reviewed in this section. 

Murugan et al. (2008b) prepared three blends of 10%, 30% and 50% TPO with petro-diesel 

fuel by volume and tested in a single cylinder stationary air cooled direct injection diesel 

engine. The results were reported at full load. The Brake Thermal efficiency was found to be 

29.5, 27.2, 28.5 and 28.9% for petro-diesel fuel, TPO 10, TPO 30 and TPO 50 respectively. 

Among the blends, TPO 30 showed better performance at all loads. The CO, NOx and HC 

emissions for the blends were higher when the engine was running on the blends than when 

running on petro-diesel fuel. The CO concentration increased by an average of 12% compared 

to that of petro-diesel fuel. Apart from TPO 30, the rest of the blends exhibited high smoke 

emissions. 

Frigo et al. (2014) compared blends of 5 - 45% TPO with petro-diesel fuel. There was no 

significant change in engine performance with blends containing up to 20% TPO compared to 

that of petro-diesel fuel. However, the engine became unstable when running on fuel with 

above 40% TPO concentration. Brake Specific Fuel Consumption (BSFC), Torque, Power 

output and emissions of an engine fuelled with blends of TPO and petro-diesel fuel were 

investigated by İlkılıç & Aydın (2011). In that study TPO was blended to 5 (TPO5), 

10(TPO10), 15(TPO15), 25(TPO25), 35(TPO35) and 75% (TPO75) by weight with petro-

diesel fuel. Engine power was found to reduce with increase in TPO concentration in the blend 

while the BSFC increased with increase in TPO concentration.  The torque and engine power 

of TPO 100 was 11.86% and 16.6% lower than that of petro-diesel fuel while the BSFC of 

TPO was found to be 12% higher. HC and CO for TPO 100, 75 and 50 were much higher than 

those of lower blends (TPO 15, 25 and 35). SO2 increased with increase in TPO concentration 

in the blend. This study concluded that blends of up to TPO 35 could be used in diesel engines 
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without engine modifications. TPO 50 -100 was found to be unsuitable due to the high CO, 

HC, SO2 and smoke emissions. (Kumar et al., 2012) also noted that a blend containing 20% 

TPO with diesel engine produced optimum performance in terms of thermal efficiency and 

BSFC while keeping emissions low.  

The effects of TPO that has been improved by distillation on engine performance and emissions 

was studied by Doğan et al. (2012). The experiments were performed at full load and varying 

speed. Blends containing DTPO 10, 30, 50, 70 and 90% with petro-diesel fuel were prepared 

for this work. There was no significant difference in the torque and power output for up to 70% 

DTPO. There was no significant difference in Brake Specific Energy Consumption (BSEC) 

with blends of up to 50% DTPO. Beyond 50%, there was an increase in BSEC at medium 

loads. At low and high engine speeds, the thermal efficiency of the blends was higher than that 

of petro-diesel fuel. There was a tendency of NOx, CO increasing with increase in DTPO 

concentration while the opposite trend was noted for HC, smoke opacity.   

Effects of ignition improver, Diethyl Ether (DEE) as an additive to TPO on diesel engine 

performance was investigated by Hariharan et al. (2013). DEE was inducted into the engine 

through intake air at flow rates of 65g/h, 130g/h and 170g/h. HC, CO and smoke emissions 

were higher than that of petro-diesel fuel, but there was an improvement with increase in DEE 

flow rate. NOx was found to be lower than that of petro-diesel fuel. Due to the low Calorific 

Value of DEE, the thermal efficiency reduced while the BSFC increased with increase in DEE 

flow rate. 

The use of TPO and Jatropha Methyl Ester (JME) blends on performance of the diesel engine 

has been investigated by Sharma & Murugan (2013). TPO from10% to 50% in increments of 

10% by volume was blended with Jatropha Methyl Ester. JMETPO 20 exhibited the best 

performance. The thermal efficiency of this blend at high load was found to be close to that of 
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petro-diesel fuel while the BSEC was 7.8% higher than that of petro-diesel fuel at high loads. 

CO, HC and smoke emissions at full load were lower than those of petro-diesel fuel by 9.09, 

8.6 and 26% respectively while NO2 was 24% higher. 

The use of ternary blends containing biodiesel, petro-diesel fuel and TPO in engine 

performance was investigated by Koc & Abdullah (2014).  Five fuel samples were used in this 

study. B5D95, B10D90, B5T5D90, B10T10D80 and D100. B, T and D represent biodiesel, 

TPO and petro-diesel fuel respectively while the numeric value represent the percentage 

concentration. In terms of power, torque, fuel consumption and CO emissions, B10T10D80 

exhibited better overall performance. B10T10D80 produced the highest power, torque and 

lowest fuel consumption compared to other blends. The authors suggested that future research 

need to focus on improving fuel properties with pre-treatment and identifying the ideal 

biodiesel, TPO and petro-diesel fuel blends that will produce optimum engine performance 

with reduced emissions. 

The general observation was that tyre pyrolysis oil is not suitable for diesel engines without 

blends and additives. The higher the blend concentration the higher the emissions. The fuels 

with high TPO concentrations tended to produce lower torque and power. This could be due to 

the lower heating energy than that of petro-diesel fuel. Brake Specific Fuel Consumption 

(BSFC) is an indication of the mass required to produce a unit output of Brake Power. Using 

TPO, the same amount of power as the one produced by petro-diesel fuel was able to be 

achieved. However, due to the low energy content of TPO, more fuel will be required. This 

will lead to the reported high fuel consumption and low Brake thermal efficiency (BTE). 
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2.3.5 Combustion analysis of tyre pyrolysis oil  

2.3.6 Ignition delay 

TPO has a lower Cetane number and higher viscosity compared to that of petro-diesel fuel, 

thus the engine is expected to exhibit a longer ignition delay. Murugan et al. (2008b) reported 

an increased ignition delay with increase in TPO Petro-diesel fuel blends. This was attributed 

to the high viscosity of TPO and its blends compared to petro-diesel fuel. Hariharan et al. 

(2013) investigated the effect of DEE in ignition delay of an engine running on TPO. It was 

found that the ignition delay reduced with increase in quantity of DEE. The Cetane number of 

DEE (125) is much higher than that of petro-diesel fuel, therefore, it reduced the ignition delay 

period compared to that of petro-diesel fuel. Martínez et al. (2014) found that there was little 

difference between the ignition delay of TPO5 and that of petro-diesel fuel. This was attributed 

to the small difference in Cetane number and the lower viscosity of the fuel in this blend partly 

compensated with improved combustion. In another study (Sharma & Murugan, 2013) it was 

reported that an engine running on JME, JMETPO10 and JMETPO20 had a shorter ignition 

delay compared to that of petro-diesel fuel. This was attributed to the higher Cetane number of 

JME and the presence of oxygen in JME that resulted in improved reaction and combustion. 

2.3.7 Cylinder peak pressure and rate of pressure rise 

The peak pressure and the rate of pressure rise is linked to the ignition delay. The rate of 

pressure rise determines the smoothness of engine operation. A rapid rise will lead to vibrations 

while a slower pressure rise will lead to a smoother operation. When the ignition delay is long, 

a large amount of charge will accumulate in the cylinder during the ignition delay period. This 

will rapidly burn during the uncontrolled ignition leading to high peak pressure and rate of 

pressure rise. Blends of TPO and petro-diesel fuel have been found to have high peak pressure 

and higher rate of pressure rise compared to petro-diesel fuel. Blends of JMETPO have been 
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found to have a lower rate of pressure rise compared to petro-diesel fuel, apart from JMETPO 

10 and 20, while the peak pressure increased with the quantity of TPO in the blend (Sharma & 

Murugan, 2013). JMETPO30 and JMETPO 50 had longer ignition delays due to reduction of 

CN with increase in TPO in the blend.  

2.3.8 Analysis of Engine emissions 

During combustion, exhaust emissions such as CO, NOx, HC, SO2, and particulates are formed 

as a result of incomplete combustion.  

Unburned hydrocarbon (UBH) is an important indication of combustion efficiency and is 

composed of fuel that is not completely burned (Naima & Liazid, 2013, Enweremadu & Rutto, 

2010). Hydrocarbon emissions are normally as a result of incomplete combustion. The amount 

of UBH emitted depend on engine operating conditions, fuel properties and air-fuel mixing in 

the combustion chamber (Enweremadu & Rutto, 2010). Most literature reported that the higher 

the concentration of TPO in a blend the higher the HC emissions of the engine. Murugan et al. 

(2008b) studied the effects of load on HC emissions of TPO-DF blends. The authors noted 

higher emissions at full and low loads while blends with higher TPO content resulted in higher 

HC emissions. The high aromatic nature of TPO could also cause an increase of unburned 

hydrocarbon. One study (Doğan et al., 2012) reported lower HC emission for blends of up to 

50% TPO with petro-diesel fuel and higher HC for blends with more than 50%. The viscosity 

of the oil in that work was less than that of petro-diesel fuel. JMETPO blends of 10 and 20 

percent showed lower HC emissions compared to reference petro-diesel fuel due to better 

combustion of JME (Sharma & Murugan, 2013).  

CO is a colourless and very toxic gas and its emission should be kept as low as possible. CO 

emissions depend on air-fuel ratio, a rich mixture tends to increase CO emission (Naima & 

Liazid, 2013) while at lean mixtures the CO will be further oxidised to CO2. While some 
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authors have reported an increase in CO with increase of TPO in the blend, others have found 

no significant difference. İlkılıç & Aydın (2011) observed a reduction in CO emissions with 

increase in engine speed for both petro-diesel fuel and blends with TPO. This is due to the fact 

that as engine speed increases, the air movement in the cylinder creates a more uniform air-

fuel mixture leading to improved combustion, and consequently lower CO emissions. Though, 

in general, the CO content from TPO and its blends was found to be higher than that of petro-

diesel fuel (İlkılıç & Aydın, 2011). Doğan et al. (2012) observed a reduction in CO emissions 

with increase in TPO content in blends at lower speeds (1400 & 2000 rpm) while at higher 

speeds (2600-3200 rpm) an opposite trend was noted. However, these differences in CO 

emissions were not significantly different to those of petro-diesel fuel. 

NOx emissions are formed by a series of reactions between nitrogen and oxygen in the air. Both 

TPO (Murugan et al., 2008b) and DTPO (Doğan et al., 2012) blends with petro-diesel fuel 

exhibited high NOx emissions compared to petro-diesel fuel. The effect of speed on NOx 

emission was studied by İlkılıç & Aydın (2011). They reported that at low and medium speeds 

TPO100 and blends with high concentration of TPO exhibited significantly lower NOx 

emissions, the opposite trend was noted at high speeds. NOx emissions are mainly affected by 

aromatic content, cylinder gas temperature, density and residence time (Jaichandar & 

Annamalai, 2013, Enweremadu & Rutto, 2010, Tan et al., 2013, Hossain & Davies, 2013, 

Murugan et al., 2008b). Fuels with high aromatic content exhibit longer ignition delay, thus, 

leading to increase in NOx. The aromatic content of TPO is higher than that of petro-diesel fuel, 

therefore, it is expected that the NOx values will increase with increased TPO content in the 

blend.  

Limited literature was found on SO2 emission. An increase in SO2 with use of TPO or with an 

increase in TPO concentration in blends was reported (İlkılıç & Aydın, 2011). In that work, it 
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was found that SO2 increased almost linearly with TPO content in blends. This was probably 

due to the high sulphur content in the TPO. The Sulphur content of TPO in their work was 

4.5% higher than that of petro-diesel fuel. 

Smoke consists of soot in exhaust gas. Smoke opacity is essential, since it shows the amount 

of pollutants emitted, higher smoke may indicate higher particulate matter (İlkılıç & Aydın, 

2011). It was found that TPO10 and TPO50 (Murugan et al., 2008b) had similar smoke 

emission levels but slightly higher than that of petro-diesel fuel. This was attributed to the 

higher aromatic content of TPO. In a similar study, İlkılıç & Aydın (2011) found that all blends 

exhibited higher smoke opacity levels than that of petro-diesel fuel. The reasons given were 

the high density and large TPO molecules could have given rise to poor atomisation. Smoke 

opacity of DTPO was found to reduce with an increase in DTPO concentration in the oil (Doğan 

et al., 2012). The low flash point and viscosity of DTPO was attributed to this observation. 

Low flash point for a fuel means high volatility.  

In general, any factor that causes incomplete combustion will also lead to an increase in HC 

and CO emissions. These could include higher density, poor volatility, high aromatic content, 

rich fuel mixtures, lower Cetane number, longer ignition delay and higher carbon residue 

(İlkılıç & Aydın, 2011, Doğan et al., 2012, Murugan et al., 2008b). Diesel engines are designed 

to run on a lean mixture. The density of TPO is generally higher than that of diesel so when 

fuel is being injected into the combustion chamber, due to the higher density, more fuel will be 

injected into the chamber on mass basis leading to a rich mixture. It has been shown by (Tan 

et al., 2013) that emissions such as exhaust smoke, PM, NOx, HC and CO reduce with a decline 

of fuels’ aromatic content. Martínez et al. (2014) found the aromatic content of TPO to be 

65.2%, which was much higher than that of petro-diesel fuel at 29.8%. This could also explain 

why the emissions of TPO are higher than that of petro-diesel fuel.  
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2.4 Diesel Engine modelling 

Engine modelling is carried out for two main purposes; to predict engine performance without 

performing tests and to determine the parameters that cannot be evaluated experimentally 

(Richard, 1992). The complexity of processes in the diesel engine make it difficult to model 

from first principles, as a result engine models rely a lot on experimental data and empirical 

correlations (Richard, 1992). For example, in a turbo charged diesel engine, the following 

processes may be involved; air compression and intercooling, unsteady flow in the induction 

systems, flow through valves, spray formation and penetration, air/fuel mixtures in the 

combustion chamber, injection system dynamics, combustion, heat transfer, turbine 

performance amongst others (Richard, 1992).     

Estimation of engine performance at a given speed and loads is normally done using engine 

performance maps which are experimentally generated (Celik & Arcaklioğlu, 2005, Richard, 

1992). The maps mainly display contours of BMEP and BSFC, but can also contain plots for 

emissions, ignition timing and air/fuel mixture strength (Richard, 1992). These parameters are 

plotted graphically against speed. Generating these engine maps is a long and tedious process 

besides the requirement of skilled personnel and specialised instruments. For example, 400-

600 engine test runs at different combination of speed and load may be required to generate a 

fuel consumption map for a particular engine (Rawlins, 2005). 

Traditionally, the diesel engine combustion process has been simulated using mathematical 

models. However, these models have several limitations and assumptions. Mathematical 

models for diesel engine combustion can be divided into two groups; thermodynamic models 

and multidimensional models. Thermodynamic models can further be divided into two groups 

of models. Single-zone models and multi-zone models. Single zone models assume the air/fuel 

charge into the combustion chamber is homogenous in temperature and composition and 
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behaves like an ideal gas. The first law of thermodynamics is applied assuming that the working 

fluid is a thermodynamic system undergoing mass and energy transfer. Single zone modelling 

leads to a series of ordinary differential equations for charge pressure, temperature and mass. 

This model does not take fuel vaporisation and variation in temperature and composition into 

account. This assumption of homogeneity in single zone models is unrealistic. Multi-zone 

models take this analysis further by dividing injected liquid into different zones assumed to 

have even composition and temperature. Thus, accounting for the variation of turbulence, 

pressure, temperature and composition. These models are mainly used to predict cylinder 

pressure and heat release rate as a function of crank angle (Richard, 1992).  

2.5 Artificial Neural Network 

Artificial Neural Network (ANN) is a data processing system inspired by the biological central 

nervous system (Oğuz et al., 2010, Ghobadian et al., 2009). It consists of interconnected 

neurons that pass information to each other. The connections have weights that can be adjusted 

based on experience, hence making the network adopt to input and capable of learning. ANN 

can predict multiple outputs from multiple inputs which are variable and an input or output 

without prior knowledge of their relationship (Oğuz et al., 2010). The predictive capability of 

a neural network results from training with empirical data then validation by independent data 

(Ghobadian et al., 2009).  

2.5.1 The neuron  

The basic element of the NN is the neuron which consists of weights (w), biases (b) summers 

and transfer function as shown in Figure 2.2a. But usually, a neuron has more than one input 

as illustrated in Figure 2-2b. Three processes take place in the neuron. The first process is 

referred to as the weight function, where the scalar input p is multiplied by scalar weight w to 

form product wp. The net function weighted input wp is added to the scalar bias b to form the 
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net input n. Finally, the net input is passed through the transfer function, which produces the 

scalar output a. 

 

Figure 2-2 Single input (a) and multiple input (b) neuron (Demuth & Beale, 1993) 

 

2.5.2 Network architectures 

Two or more neurons combine to form a layer (Figure 2-3). A typical neural network consists 

of three layers; input, output and hidden layer(s), each consisting of a network of 

interconnected neurons (Oğuz et al., 2010, Ghobadian et al., 2009). The input layer comprises 

of all the input variables which are then processed in the hidden layer(s) and the output is 

computed in the output layer. The number of neurons in the input layer corresponds to the 

number of input variables while the number of neurons in the output layer correspond to the 

output parameters. Each neuron has a transfer function that receives signals from the neurons 

in the previous layer (Celik & Arcaklioğlu, 2005).  
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Figure 2-3 One-layer network with r input elements and r neurons (Demuth & Beale, 2001) 

 

Each neuron receives an input  𝑝1, 𝑝2, 𝑝3 … 𝑝𝑘 . Each input is then multiplied by the 

corresponding weight of the neuron connection 𝑤𝑠𝑟. Where 𝑠 indicates destination neuron of 

the weight and 𝑟 indicates the source of the weight. The bias 𝑏𝑠 which has a non-zero value is 

added to the summation of inputs to give a net input 𝑛𝑠 (2-7). 

𝑛𝑆 = ∑ 𝑤𝑠𝑟𝑝𝑟 + 𝑏𝑟
𝑟
𝑟=1          2-7 

Finally, the net input is processed according to the type of transfer or activation function, to 

yield scalar output 𝑎𝑠 (2-8) 

𝑎𝑠 = 𝑓(𝑛𝑠)                         2-8 

The neuron layer outputs form a column vector a, represented by 2-9.  

𝑎 = 𝑓(𝑊𝑝 + 𝑏)                2-9 
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𝑤 = [

𝑤1,1 𝑤1,2…….. 𝑤1,𝑅

𝑤2,1 𝑤2,2 … . 𝑤2,𝑅

𝑤𝑆,𝑅 𝑤𝑆,2 … . 𝑤𝑆,𝑅

]          2-10 

A network can have several layers as shown in Figure 2-4. Each having a weight matrix (2-10) 

a bias vector b, and an output vector a. The outputs for each intermediate layer are the inputs 

for the following layers as shown by 2-11 to 2-14. 

 

Figure 2-4 Three layer network (Demuth & Beale, 2001) 

𝑎1 = 𝑓1(𝐼𝑊1,1𝑝 + 𝑏1)      2-11 

𝑎2 = 𝑓2(𝐿𝑊2,1𝑝 + 𝑏2)      2-12 

𝑎3 = 𝑓3(𝐿𝑊3,2𝑝 + 𝑏3)      2-13 

𝑎3 = 𝑓3(𝐿𝑊3,2𝑓2(𝐿𝑊2,1𝑓1(𝐼𝑊1,1𝑝 + 𝑏1) + 𝑏2) + 𝑏3)    2-14 

 

Weights and bias are adjustable parameters of the neuron. The idea is to be able to adjust them 

to exhibit a certain behaviour. The transfer function is selected by the designer and then the 

weights and biases will be adjusted by some learning rule in such a manner that the neuron 

input/output relationship meets a desired target. This process is called training. The objective 

of training is to get the optimum set of weights which minimises the error. Each neuron has a 
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transfer function that receives signals from the neurons in the previous layer (Celik & 

Arcaklioğlu, 2005).  

2.5.3 Transfer function 

Transfer function brings non-linearity into the neural network, making it more superior to linear 

transformation (Roy et al., 2014). A particular transfer function is selected to meet some 

requirement of the problem that the neuron is trying to solve. ANN is sensitive to the nature of 

data, therefore, different data sets require different transfer functions (Ismail et al., 2012). 

Linear (pureline), log sigmoid (logsig) and tangent sigmoid (tansig) are the most common 

transfer functions used, they normalise data to a range used by the transfer function (Ismail et 

al., 2012). The output of a linear transfer function (Figure 2-5) is equal to its input ( 𝑎 =  𝑛). 

Neurons of this type are suitable for use in the final layer of multilayer networks (Yusaf et al., 

2011). 

 

Figure 2-5 Linear transfer function (Demuth & Beale, 2001) 

The log-sigmoid transfer function resets the input that may have a value of between plus and 

minus infinity into the range of 0 to 1 according to 2-15. The log-sigmoid transfer function 

(Figure 2-6) is commonly used in hidden layers of multilayer networks that are trained using 

the back-propagation algorithm partly because this function is differentiable (Demuth & Beale, 

2001). 
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𝑎 =
1

1−𝑒−𝑛          2-15 

 

Figure 2-6 Log sigmoid transfer function (Demuth & Beale, 2001) 

 

Other transfer functions include the hard limit, symmetrical hard limit, saturating linear, 

symmetrical saturating linear, Hyperbolic, Tangent Sigmoid, positive linear and competitive 

transfer function. More details of these transfer functions can be found in Demuth & Beale, 

(2001). 

2.5.4 Neural network design process 

Neural network design process primarily involves seven steps (Demuth & Beale, 2001); (i) 

Collect data (ii) create the network; (iii) Configure the network; (iv) Initialise the weights and 

biases; (v) Train the network; (vi) Validate the network; and (vii) use the network. After the 

data have been collected and the network created, it is configured and trained. Configuration 

involves setting up the network input and output sizes, preprocessing settings and initialising 

weights in such a manner that it is compatible with the problem and sample data. Training 

involves adjusting weights and biases in such a way that the network’s performance is 

optimised. Once training is complete the networks prediction ability is analysed. If 

performance is satisfactory the network can be used to make new predictions.   
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The basic training process is as follows (Demuth & Beale, 2001, Celik & Arcaklioğlu, 2005, 

Ismail et al., 2012): Inputs are introduced to a network together with desired output(s). Signals 

from input layers are conveyed to neurons in the hidden layers. The transfer function estimates 

the non-linear behaviour of the input data set. Weights and biases of the interconnected 

neurons, which were initially randomly chosen, are adjusted while targeting the desired output 

(Figure 2-7). This process is repeated over several iterations until a satisfactory level of 

performance is achieved, then training stops and the network stores this information as 

knowledge. The network can now be used to make predictions.   

 

Figure 2-7 Basic neural network training process (Demuth & Beale, 2001)  

 

2.5.5 Model evaluation 

The objective of training a neural network is to minimise error between the output and the 

target values. Evaluation of the accuracy of the network is usually done with a statistical 

method. They include; Sum of Squares Error (SSE), Mean Square Error (MSE), Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error (RMSE) and the correlation coefficient 

squared R2 (Demuth & Beale, 2001). The MSE, SSE and RMSE show the difference between 

predicted and actual values, R2
 shows the proportionality of predicted and actual data sets. The 

R2 value is always between 0 and 1. A value closer to one indicates that there is a good 

Adjust weights 

Target   

Output  Input  

Neural network 

including connections 

between neurons 
Compare 
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correlation between predicted and experimental values. A value close to zero indicated a poor 

correlation. These statistical evaluation methods are defined by the equations below. 

𝑆𝑆𝐸 = (∑ |𝑡𝑗 − 𝑜𝑗|
2

J ) …………………………………………………………...…… 2-16 

𝑀𝑆𝐸 = ((
1

𝑃
) ∑ |𝑡𝑗 − 𝑜𝑗|

2

𝐽 ) …………………………………………………………… 2-17 

𝑅𝑀𝑆𝐸 = √((
1

𝑃
) ∑ |𝑡𝑗 − 𝑜𝑗|

2

𝐽 )  …………………………………………………….… 2-18 

𝑀𝐴𝑃𝐸 =
1

𝑝
∑ (

𝑡𝑗−𝑜𝑗

𝑡𝑗
× 100)𝑗  ………………………………………………….…...… 2-19 

𝑅2 = 1 − (
∑ (𝑡𝑗−𝑜𝑗)

2
𝐽

∑ (𝑜𝑗)𝑗
2 )…………………………………………………………...…… 2-20 

 

Where t is the target value, o is the output value and p is the number of pattern. 

2.5.6 Feed forward, back-propagation 

The most popular and commonly used algorithm is the back-propagation (BP) algorithm, it 

consists of two stages; the feed forward and back-propagation (Oğuz et al., 2010, Sharma et 

al., 2016). Feed forward NN is a type of NN architecture where information is fed forward 

from the input layer through the hidden layers to the output layer (do not form connections or 

loops) (Taghavifar et al., 2015). Back-propagation is a training algorithm that minimises error 

between input and output by gradient decent (Roy et al., 2014). The errors between targeted 

and predicted values are calculated and then propagated backwards after feed forward, and the 

weights are adjusted with this algorithm to minimise the error (Taghavifar et al., 2015). Several 

iterations take place, each time with a new set of weights and biases, and stops after a certain 

set of weights that minimises the error is arrived at (Bietresato et al., 2015, Mwasiagi et al., 

2008). The weights are adjusted in such a manner that some inputs are made more significant 
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than others and will, therefore, have a larger influence when the output is calculated. Once the 

network is trained it can generalise to similar cases. 

Due to shortcomings such as slow convergence rate, the standard Back-Propagation (BP) 

algorithm is not appropriate for practical problems, as a result, heuristic and numerical 

optimisation techniques have been developed to hasten the process (Mwasiagi et al., 2008, Rao 

et al., 2016). The heuristic techniques can be classified as variable learning rate and resilient 

back-propagation training algorithms. Numerical optimisation techniques can be classified as 

conjugate gradient, quasi-Newton or Levenberg-Marquardt algorithms (Mwasiagi et al., 2008, 

Sharma et al., 2016, Rao et al., 2016). 

2.5.7 Data requirements and preparation for neural network 

Though the general perception is that a lot of data sets are required for neural network 

modelling, there is no information on the exact number of data sets that are adequate to train a 

NN. Related studies have shown that with as little as 30 data sets, ANN models can converge 

and make accurate predictions. Silitonga et al. (2015) used 30 experimental data sets to train 

(25 data sets for training) and test (5 data sets for testing) a ANN model to predict engine 

performance, emission and combustion of a turbo charged diesel engine based on engine speed 

and percentage fuel blend. The authors noted that the correlation coefficient was within the 

range of 0.9798–0.9999 for the ANN model and test data. Ilangkumaran et al. (2016) used 19 

experimental data values for training and 11 values for testing. That is a total of 30 data sets to 

train and evaluate the model. In this work, the authors had two input parameters of engine load 

and fuel blend percentages, and the model could satisfactorily predict seven engine 

characteristics.  

It is important to note that NN can only generalise well within the range of inputs used for 

training, beyond this limit it cannot accurately extrapolate (Demuth & Beale, 2001). Thus, it is 
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essential to have data sets which span within the limits for which the network will be used.  It 

is also important to scale down or normalise data within a certain range e.g. -1 to 1 or 0 to 1 

(Rotich, 2014) depending on the transfer function. This ensures that each input variable offers 

the same influence in the ANN (Rao et al., 2016).  Thus training becomes faster, memory 

efficient and it produces more precise results (Rotich, 2014, Ilangkumaran et al., 2016) 

normalising of data also helps to improve the performance of the network (Ilangkumaran et al., 

2016). 

2.6 Application of Artificial Neural Network in modelling diesel engine parameters 

Due to the lengthy computations involved in mathematical and simulating programs, machine 

learning methods such as ANN are attractive due to their simplicity, accuracy and fast response 

(Ghobadian et al., 2009, Mohammadhassani et al., 2015). ANN is being accepted as a fast, 

powerful and accurate tool for prediction of relationships between engine parameters and 

output responses based on experimental data (Ismail et al., 2012). It has been successful in 

predicting various aspects of the diesel engines with a high level of accuracy. Ghobadian et al. 

(2009) found that ANN was satisfactory in predicting Torque, Specific Fuel Consumption, HC 

and CO emissions of a diesel engine running on waste cooking oil biodiesel using the back-

propagation algorithm. The prediction was done based on blend concentration and engine 

speed. An analysis performed showed a good relationship between independent experimental 

data and predicted data with a correlation coefficient close to one and a mean square error of 

0.0004. In a related study, (Oğuz et al., 2010) ANN was used to estimate the Brake Power, 

torque, fuel consumption and Specific Fuel Consumption of an engine running on blends of 

petro-diesel fuel, biodiesel and bioethanol. A statistical t-test analysis between the predicted 

and experimental results showed no significant difference at 95% reliability.  Nikzadfar & 

Shamekhi (2014) employed ANN to investigate the contributive effect of 10 operational 
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parameters on the performance of a common rail diesel engine. A 6% error was noted between 

predicted and experimental results. These parameters include; inlet pressure and temperature 

of air, mass of injected fuel, exhaust gas recirculation rate, exhaust gas temperature, injection 

timing on torque, soot NOx and Brake Specific Fuel Consumption. Spray quality as a function 

of engine variant parameters has been investigated using the Levenburge-Marquardt training 

Algorithm of ANN by Taghavifar et al. (2014). The spray quality parameters; sauter mean 

diameter and penetration were predicted with R2 values closer to 1. These parameters were 

predicted with respect to crank angle, vapour mass, flow rate, turbulence and nozzle outlet 

pressure. ANN has been used for engine diagnosis of the diesel engine. Diagnosing of misfiring 

of one or more cylinders is usually done by measuring cylinder pressure, this requires the 

installation of a pressure sensor which is a taxing process. Jianmin et al. (2011) used the back-

propagation algorithm to diagnose the diesel engine misfire. ANN was able to accurately locate 

a misfiring cylinder based on cylinder vibration signal. From data of exhaust gas temperature 

and engine speed Bietresato et al. (2015), was able to estimate torque and BSFC of a farm 

tractor engine using ANN. However, the results showed that the prediction of torque was more 

accurate than that of BSFC. Rawlins (2005) developed an ANN model to aid in monitoring the 

performance of the diesel engine operation in industrial set up. Roy et al. (2014) was able to 

predict BSFC, BTE, CO2, NOx and PM with regard to load, fuel injection pressure, EGR and 

fuel injected per cycle. The ANN model showed results which showed excellent correlation 

with empirical data, where the mean square error was within the range of 1.1 and 4.57%, and 

correlation coefficients within the range of 0.987–0.999.  Mohammadhassani et al. (2015) 

successfully employed the combination of artificial neural network (ANN) and Ant colony 

optimisation (ACO) algorithm for modelling and reducing NOx and soot emissions from a 

direct injection diesel engine. The combination of ANN and ACO yielded a 32% and 7% 

reduction in NOx and soot respectively with a response time of 4 minutes. The input factors 
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were engine speed, air intake pressure, mass fuel injection rate and power. In view of these 

advances, there is evidence that ANN is a suitable tool to simulate parameters of a diesel engine 

satisfactorily. Ismail et al. (2012) noted that “ANN is now highly regarded as a promising tool 

in predicting accurately the complex interactions between engine control parameters and output 

responses rapidly”. 

2.7 Conclusion  

The main products of tyre pyrolysis are liquid oil, gas and char. Given that the oil yield can go 

up to 65%, pyrolysis presents an alternative and suitable way of tyre disposal, especially in 

developing countries where there are large stockpiles of tyres like in South Africa. The quantity 

and quality of tyre pyrolysis products depend on reactor type, tyre particle size, heating rate 

and pyrolysis temperature, as opposed to tyre composition. The optimum oil yields can be 

obtained in temperatures ranging between 450 oC – 550 oC depending on reactor design and 

operating conditions. Beyond this optimum temperature, the gas yield increased because the 

oil and char was being volatised to gas. At lower temperatures, the solid yield was high because 

the temperatures are not sufficiently high enough to thermally degrade it to gas and oil. The 

use of a catalyst has a remarkable effect on yield.   

From the reviewed literature, it can be established that pyrolysis of used scrap tyres can be used 

as an alternative method of disposing of waste tyres as well as producing fuel that can produce 

acceptable performance when in diesel engines, but only when blended in small quantities with 

petro-diesel fuel or with further processing. 

The liquid from pyrolysis can be used for many purposes including fuel for the internal 

combustion engine after some modification like Sulphur reduction or blending with petro-

diesel fuel or other fuels. The diesel engine is optimised for petro-diesel fuel. Thus, for any 

other fuel to run in the diesel engine, its properties must be as close as possible to those of 
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petro-diesel fuel. The properties of TPO have a significant effect on engine performance and 

emissions. Due to this, TPO is not suitable for use in the diesel engine in raw state or without 

modifications to the engine. These properties include high aromatic content, density, viscosity, 

sulphur content, low cetane number and most importantly, different boiling range compared to 

petro-diesel fuel. There is a correlation between fuel properties and boiling range of a fuel.  

Literature review indicates that TPO can easily be separated into distinctive fractions based on 

their boiling point and be suitable for specific applications, just like crude oil. The easiest way 

to bring TPO closer to petro-diesel fuel is to distil TPO and extract the fraction that resembles 

petro-diesel fuel based on boiling range. In spite of the extensive research on TPO as fuel for 

the diesel engine, no literature could be found in which TPO was distilled to the fraction that 

resembles petro-diesel fuel and tested as fuel for the diesel engine. It may be interesting to 

establish the engine performance characteristics when it runs on this fuel type and its blend 

with petro-diesel fuel and biodiesel fuel. 

Testing the diesel engine under different operating conditions is a time consuming and 

expensive process that also requires the use of specialised equipment which may not be easily 

available. After experimental evaluation of engine performance on this fuel, it may be 

necessary to develop a predictive model for engine performance. Modelling provides a way of 

simulating and understanding the engines response to different input parameters and 

conditions. ANN has proved to be an adequate tool for modelling and analysing engine 

performance. After experimental evaluation, it may be necessary to develop a predictive model 

that can accurately relate input parameters to engine performance when the engine is running 

on TPO petro-diesel fuel blends.  
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3 METHODOLOGY 

3.1 Distillation process of tyre pyrolysis oil 

The distillation apparatus for this work is shown in Figure 3.1. It consists of a 500 ml round 

bottomed flask connected to a 400 mm Liebig condenser packed with steel and this acted as a 

fractionating column. It was then connected to a condenser with water as the cooling medium. 

The condenser empties the condensate into a beaker. The heating mantle is rated at 400 kW 

and has a knob to conveniently adjust heating rate up to a maximum temperature of 400 oC. A 

glass thermometer with a range of -10 to 400 oC was used to monitor the temperature, with 

adjustment of the heat of the heating mantle.  

The TPO was separated into three fractions as follows: The low boiling point fraction with a 

temperature range of ≤150Co, the middle distillate whose temperature range is between 150 oC 

and 360 oC and the heavy residue that distil at temperatures above 360 oC. The temperature of 

TPO was raised and maintained at 150 oC. The vapour was collected and condensed for a 

certain period until no more droplets were seen. The temperature was then raised to 360 oC and 

held there as the condensed vapour was collected in a separate container. This was continued 

until there was no more liquid being collected.  The three fractions were stored in separate 

containers.  

3.2 Characterisation of distilled tyre pyrolysis oil 

Blends of DTPO with diesel fuel were prepared and are referred to as DTPO X, where X 

represents the percentage DTPO in the blend by mass. The blends were prepared on mass basis, 

because unlike volume blends, the mass fractions of each fuel in the blend remain the same 

with change in temperature. The fuel samples were characterised by standard methods which 

are shown later in Table 4-1. SANS-342 requirements for automotive diesel, properties of crude 
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TPO, and conventional diesel have also been presented in the same table for comparison 

purposes. The variation of temperature with density and viscosity of the oil samples was also 

studied. Additionally, mixing rule equations for predicting viscosity and density for both pure 

and blends of the oil as a function of temperature were developed and evaluated. 

3.3 Engine performance tests for fuel samples 

These tests were performed at the thermodynamics lab at the Vaal University of Technology 

using a set of Test Set (TD 302) complete with its auxiliaries.  The parameters of interest in 

this work were BSFC, BTE, power, torque, emissions and combustion characteristics. The 

major components of the test set are shown in  

 

 

 

Figure 3-1 
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Figure 3-1 A schematic layout of the engine test experiment setup 

Description  

1. Fuel tank 

2. Automatic volumetric fuel gauge with digital readout (mm/min) 

3. Diesel engine (specifications shown in Table 3.1) 

4. Crank angle encoder  

5. Electric Dynamometer 

6. Computer 

7. piezoelectric pressure transducer 

8. engine cycle analyser 

9. Exhaust gas Analyser (Specifications are shown in Table 3-2) 

Torque  
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10. Exhaust 

11. Versatile data acquisition system (VDAS) 

Table 3-1 Engine specifications of TD302 Four-stroke Diesel engine 

Absolute maximum power (ISO 3046-1) 7.3 kW (9.9hp) at 3600 rev/min 

Continuous rated power (ISO 3046-1) 6.5 kW (8.8 hp) at 3600 rev/min 

Number of cylinders 1 

Bore 88 mm 

Stroke/crank radius 79 mm/38 mm 

Connecting rod length 124 mm 

Engine capacity 462 cm3, 462 cc or 0.462 L 

Compression ratio 20.5:1 

Oil type Multigrade SAE 10W-30 

 

 

Table 3-2 Exhaust gas analyser specifications 

Gas Range Tolerance 

Oxygen 0 – 25% ± 0.21 

Carbon dioxide CO2 0 - 20 % ± 0.2 

Hydrocarbon HC 0 – 100% ± 1 

Nitric oxide NOx 0 – 5000 ppm ± 50 

Sulphur dioxide SO2 0 – 5000 ppm ± 50 

Excess air/lambda  0 - 99%  

 

The engine speed was adjusted to 800, 1200, 1600, 2000, 2400 2800, 3200 and 3500 rev/s. At 

each speed the torque, fuel flow rate, emissions, pressure/volume vs crank angle and exhaust 
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gas temperature were recorded. Then other parameters such as power BSFC, rate of heat rise 

and thermal efficiency were calculated. Before the tests began, the engine was adequately 

warmed up with petro-diesel fuel. The fuel lines were then drained off at each change of fuel 

sample.  The test fuel was run through the system for a specific duration to purge the system 

of any remaining fuel from the previous tests. Each test was repeated twice to ensure 

repeatability was within acceptable limits and average values were noted. The parameters 

computed were plotted in graphs against speed and a performance analysis of their performance 

carried out. Petro-diesel fuel was used as the baseline sample for comparison purposed. 

3.4 Artificial neural network modelling of engine performance 

The data collected in section 3.3 was used to train and validate a neural network. During this 

stage, four sub-problems were addressed when developing a NN.  

 Description of the input parameters that adequately describe diesel engine performance 

which in this case will be engine speed and fuel blend ratio. 

 Collection, selection and partitioning of data which best describe the problem 

 Neural network topology selection, training and validation 

 comparison of model output with experimental data 

Selection of optimal network topology is the most important aspect in NN modelling, i.e. 

number of hidden layers, neurons and activation function (Omidvarborna et al., 2016, Roy et 

al., 2014, Rao et al., 2016). The ANN model was developed on MATLAB 2009a platform. 

Training parameters are presented in Table 3-3 . MATLAB was a natural choice, because it 

has been extensively used by other researchers in similar studies (Omidvarborna et al., 2016, 

Roy et al., 2014, Tosun et al., 2016) and due to its availability. A three-layer network; input, 
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one hidden and output layer were used in this work. The feed forward back-propagation 

architect was used for modelling.   

Table 3-3 Training parameters of the proposed ANN model on MATLAB 2009a platform 

SOFTWARE MATLAB 2009a 

Training algorithm Levenberg-Marquardt algorithm  

Data Training subset 70% 

Validation subset 15% 

Test Subset 15% 

Hidden layer activation function logsig 

Output layer activation function purelin 

Performance function Minimum MSE (1x 10-5) 

Normalising range  0 to -1 

 

Two independent models were developed for engine performance and emissions respectively. 

Both models had two input variables namely engine speed and DTPO percentage concentration 

in the DTPO petro-diesel fuel blend. For the first model on engine performance, there were 

four outputs which included power, torque, BSFC and Peak pressure. Therefore, the network 

had two input nodes and four output nodes. The second model had three output nodes 

corresponding to HC, CO and NOx. Data obtained from experiments were used to train the 

network.  

In this work, 38 experimental data sets were used for training and testing. 70% was randomly 

selected for training, 15% for testing and 15% for validation. This was the default setting of 

the software, nevertheless, other researchers have used this partitioning ratio with satisfactory 

results (Roy et al., 2014, Omidvarborna et al., 2016). 

The data were pre-processed and scaled to a range of 0 – 1 according to equation       

  3-13-1 and in compliance with logsig transfer function. 

𝑋𝑛 =
𝑋𝑟−𝑋𝑟,𝑚𝑖𝑛

𝑋𝑟,𝑚𝑎𝑥−𝑋𝑟,𝑚𝑖𝑛
∗ (𝑋ℎ − 𝑋𝑙) + 𝑋𝑙          3-1 
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Where 𝑋𝑛 is the normalised variable input, 𝑋𝑟 raw input variable, 𝑋𝑟,𝑚𝑖𝑛 and 𝑋𝑟,𝑚𝑎𝑥 are 

maximum and minimum of input variable, and 𝑋ℎ and 𝑋𝑙 are set to 0 and 1.  

 

The activation functions and training and learning algorithms selected play significant roles in 

the network modelling (Mohammadhassani et al., 2015, Ghobadian et al., 2009, Sharma et al., 

2016). The feed forward back-propagation neural networks with a Levenberg-Marquardt 

training algorithm is popular and has been successfully used to make accurate estimates 

(Ghobadian et al., 2009, Omidvarborna et al., 2016, Taghavifar et al., 2015, Sharma et al., 

2016, Rao et al., 2016, Tosun et al., 2016). So Levenberg-Marquardt was chosen as the training 

algorithm for this study. The purelin transfer function was used in the output layer while the 

logsig transfer functions were used in the hidden layer. This is a frequently used arrangement 

of activation functions in ANN modeling and has produced satisfactory results elsewhere 

(Sharma et al., 2016, Tosun et al., 2016). There are no general criteria for deciding the number 

of neurons in the hidden layer, it’s done by trial and error (Oğuz et al., 2010, Uzun, 2012, Rao 

et al., 2016). Networks are very sensitive to the number of neurons, too many neurons in the 

hidden layer can lead to overfitting while too few neurons can lead to under fitting (Demuth & 

Beale, 2001). A suitable number of neurons used in other related studies has been found to 

range from 10 to 25 (Ismail et al., 2012). Therefore, in this work the number of neurons was 

adjusted in steps of two within the same range till the highest correlation coefficient was 

achieved. The goal was to maximise correlation coefficient. The maximum number of epochs 

was set at 1000 and the correlation coefficient was selected as the function to be maximised. 

The training data set was presented to the network and used for training, the gradient was 

computed and weights and biases adjusted according to its error (Omidvarborna et al., 2016). 

During the training process, the error on the validation set was monitored and training stopped 

when generalisation stopped improving. The network weights and biases were saved at the 
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minimum of the validation set error. The test data were used to independently check the overall 

performance of the network.  Finally, to evaluate the model prediction ability, a regression 

analysis of the network’s output values and the desired target values was performed to 

investigate the networks generalisation. The result and findings are presented in Sections 4.3 

and 4.4. 
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4 RESULTS AND DISCUSSION 

The evaluated physical and chemical properties of the fuel samples are presented in Table 4-1. 

4.1 Characterisation of oils 

Table 4-1 Properties of pure fuel samples 

PROPERTY Method/instrument SANS 342 

limits 

Petro-

diesel 

fuel 

TPO DTPO 

Heating value (MJ/kg)  CAL 2K ECO 

calorimeter 

NA 46.0 43.44 43.7 

Density  @ 20oC  kg/m3 SVM 3000 Stabinger 

Viscometer 

800 826 905 904 

Viscosity @ 40 oC mm2/s 2.2 - 5.3  2.21 3.13 2.74 

Cetane number ISO 5165 45 50.5 52.5 50 

Cloud point °C D5773  -0.1 9.7 -3.81 

Flash point °C ISO 3679 55 oC min 69.1 <30.1 34.1 

Sulphur ppm XRF  500  245 14775 19180 

Copper strip corrosion ISO 2160 1 max 1a 1b 1b 

Water content ppm 200  2.97 157 93.66 

Sulphated ash Content, 

% 

ISO 3987  0.042 0.016 0.064 

Total contamination 

mg/kg 

EN 12662 24 MAX 0.07 0.2 0.1 

 

 

4.1.1 Viscosity of fuel samples 

Viscosity of a fuel affects the quality of spray, air/fuel mixing and distribution of fuel droplets 

in the engine, thus, it determines the quality of combustion in the cylinder. To improve 

atomisation quality, viscosity is the first property to be reduced.  The standard SANS 342 

recommends optimum viscosity range of 2.2 mm2/s to 5.3 mm2/s at 40 oC. From Table 4-1 it 

can be seen that distilling TPO leads to a drop in viscosity from 3.13 mm2/s to 2.74 mm2/s. 

This value is much closer to that of petro-diesel fuel at 2.21 mm2/s and well within the SANS 

342 specification. All the other fuels, both pure and blends met this standard specification as 
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seen in Figure 4-1. Figure 4-1 also shows the effect of temperature on viscosity of the various 

fuel samples.  

 

Figure 4-1 Variation of viscosity of the fuels with increase in temperature 

 

It can be seen that the temperature dependent behaviour for all the samples is similar, there was 

a reduction in viscosity with increase in temperature. As expected, the viscosity of DF/DTPO 

blends increased with increase in DTPO content in the blend. Viscosity of DTPO20 and 

DTPO40 were very close to that of petro-diesel fuel. Unlike other properties the relationship 

between viscosity and temperature/blend concentration does not follow a linear trend since it 

depends on molecular interactions (Centeno et al., 2011).  The experimental data in Figure 4-1 

was correlated by second degree Equation (4-1) as a function of temperature, where A, B and 

C are constants and are presented in Table 2. 𝜂  is viscosity and T represents temperature. In 

addition, Andrade-type Equation 4-S2, which is commonly used to express the variation of 
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temperature with viscosity, was also used to make estimates and its coefficients are also 

presented in Table 4-2. Absolute Percentage Deviation (APD) given in Equation 4-3 is 

commonly used to evaluate the suitability of these equations in making estimates (Selim et al., 

2015).  Where 𝜑𝑒𝑥𝑝 is the experimental value and φpr is the predicted value. Table 4-3 shows 

the measures and calculated viscosity using both Equations 4-1 and 4-2. APD is also presented 

in the same table. From Table 4-3 the lowest APD, when using Equation 1, is -1.79 while the 

highest is - 6.55. But when using Equation 4-2, the APD vary over a narrower range of -2.9 to 

-3.9%. Thus from the results, Equation 4-2 is better at making estimates for viscosity than 

Equation 1 since the values of APD obtained by Equation 4-2 vary within a narrower range 

than for Equation 4-1.  

𝜂 = 𝐴𝑇2 + 𝐵𝑇 + 𝐶                                 (4-1) 

𝑙𝑛 𝜂 = 𝐴 +
𝐵

𝑇
+

𝐶

𝑇2         (4-2) 

𝐴𝑃𝐷 =
𝜑𝑒𝑥𝑝−𝜑𝑝𝑟

𝜑𝑒𝑥𝑝
       (4-3) 

Table 4-2 Regression parameters for Equations 1 and 2 

 Fuel 

type 

Equation 1 Coefficients 

  

Equation 2 Coefficients 

  

A B C A B C 

DTPO 0.0005 -0.101 6.0588 -0.7713 100.5297 -1112 

DTPO80 0.0005 -0.09 5.5416 -0.7701 96.9717 -1073.5 

DTPO60 0.0004 -0.084 5.2211 -0.7004 89.9115 -983.1 

DTPO40 0.0004 -0.075 4.8125 -0.7684 91.41 -1015 

DTPO20 0.0004 -0.071 4.6191 -0.76 89.2956 -991.389 
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Table 4-3 Measured and estimated values of viscosity for Equation 4-1 and 4-2 along with 

APD 

Fuel type 𝜑𝐸𝑋𝑃  

Equation 1 Equation 2 

𝜑𝑃𝑅 APD 𝜑𝑃𝑅 APD 

DTPO 2.7417 2.8268 -3.10391 2.848927 -3.91097 

DTPO80 2.573 2.7416 -6.55266 2.673143 -3.89208 

DTPO60 2.4689 2.5131 -1.79027 2.541997 -2.96073 

DTPO40 2.334 2.4485 -4.90574 2.416874 -3.55073 

DTPO20 2.2765 2.4111 -5.91259 2.346142 -3.05916 

  

4.1.2 Density fuel samples 

SANS 342:2006 only sets a minimum limit of density for the fuel at 800 kg/m3. The upper limit 

is not set. From Figure 4-2, the density of all the fuel samples and their blends are well above 

this limit and higher than that of petro-diesel fuel. From Table 4-1, there was no difference in 

the densities of TPO (904 kg/m3) and DTPO (905 kg/ m3). Therefore, the distillation process 

did not affect density. The density of the fuel is a very important parameter. Since fuel is 

metered to the diesel engine on volume basis, a fuel of high density has more mass per unit 

volume than a fuel of low density. Therefore, a fuel with high density is likely to produce more 

engine power than a fuel with low density. However, this could also be a problem when the 

fuel density is very high. It can lead to a rich air/fuel mixture resulting in incomplete 

combustion and an increase in HC, CO and soot can occur (İlkılıç & Aydın, 2011). Other 

authors have observed an increase in NOx emission with increase in density (Hossain & Davies, 

2013, Doğan et al., 2012). The effect of temperature on density is shown Figure 4-2. It can be 

seen that density reduces linearly with increase in temperature. Experimental data were 

correlated by linear regressions as shown in Equation 4-4, where ρ is density, A and B are 
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constants and T is temperature. From Table 4 it can be seen that the equation fits the data well 

with regression coefficient (R2) higher than 0.99, so there was no need for higher degree 

equations. The values for constants A and B are presented in Table 4-4. 

𝜌 = 𝐴𝑡 + 𝐵                                 4-4 

 

Figure 4-2 Variation of density of the fuels with temperature 

 

The variation of density and viscosity with DTPO blend concentration is shown Figure 4-3. 

The density was measured at 20 °C while the viscosity was measured at 40 °C. Both density 

and viscosity increased with DTPO percentage in the blend. The density increased from 0.826 

kg/m3 for pure petro-diesel fuel to 0.904 kg/m3 for pure DTPO. The viscosity increased from 

2.21 mm2/s for pure petro-diesel fuel to 2.74 mm2/s for pure DTPO. The heating value of petro-

diesel fuel was 46 MJ/kg while that of DTPO was 43.7 MJ/kg. The density, viscosity and 

heating value of TPO was 0.905 kg/m3, 3.13 mm2/s and 43.44 MJ/kg respectively as can be 

seen in Table 4-1. Distilling TPO reduced viscosity significantly while the difference in heating 
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value and Density was not significant. The sulphur content also reduced by 22 %, from 19,180 

to 14,775 ppm.  

 

Figure 4-3 Variation of density and viscosity with blend concentration 

 

Table 4-4 Linear regression parameters for fuel densities 

Fuel            A            B            𝑅2 

DTPO -0.0007 0.9203 0.9986 

DTPO80 -0.0007 0.9026 0.9976 

DTPO60 -0.0007 0.8856 0.9986 

DTPO40 -0.0007 0.8698 0.9983 

DTPO20 -0.0007 0.8548 0.9989 

DF -0.0007 0.8406 0.9998 

 

y = 3E-05x2 + 0.0022x + 2.2108
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4.1.3 Heating value fuel samples 

The most important property of a fuel is the amount of energy produced during combusting. It 

shows the amount of heat released per unit mass of fuel burned and it influences power and 

fuel consumption of the engine. Assuming other factors to be constant, power output will tend 

to be proportional to heating value. From Table 4-1. The heating value of DTPO (43.7 MJ/kg) 

was slightly higher than that of TPO (43.44), but lower than that of DF (46.0MJ/kg). Since 

injector systems deliver fuel to the combustion chamber on volume basis, heating value on 

volume basis is a more important parameter to determine fuel consumption (Martínez et al., 

2013). Thus, on volume basis the heating value of DF, TPO and DTPO will be 37.997MJ/L, 

39.31 MJ/L and 39.50 MJ/l respectively. Thus, of the three fuels, DTPO is expected to produce 

higher power, based on heating value only.  

4.1.4 Sulphur content of fuel samples 

TPO had a sulphur content of 19180 ppm but this reduced to 14755 ppm after distillation. Both 

samples had higher sulphur content than the recommended SANS limit of 500ppm and this 

could pose a problem. The sulphur content of a fuel has a significant effect on fuel emissions. 

It has been reported that (Tan et al., 2013) exhaust smoke, HC, CO and SO2 emissions reduced 

with reduction in sulphur content in the fuel, whereas, there was a remarkable decrease in PM 

emission. The authors explained that during combustion, sulphur is converted to SO2, thus, 

consuming part of the oxygen that could have otherwise oxidised CO and HC to CO2 and H2O. 

Sulphur reaction also leads to the formation of sulphates causing accumulation of carbon, 

hence, soot formation. Apart from emissions concerns, sulphur can cause engine corrosion 

when exposed to high temperatures (Khan & Ali, 2013). For these reasons, sulphur levels 

should be as low as possible, hence, SANS 342:2006 recommends a maximum value of 500 

ppm. Sulphur in TPO comes from the original feedstock. It is normally used as an additive to 
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strengthen rubber in a process known as vulcanisation.  It has been estimated that after 

pyrolysis, about 77% of the sulphur mass in the tyre remains in the solid fraction while the 

remainder remains in the liquid fraction (Frigo et al., 2014). The reduction of sulphur content 

by 22.7% after distillation is remarkable, even though it was still outside of the SANS 

requirements. The drop in sulphur content was because a light naphtha fraction (IBP < 160) of 

TPO has a high concentration of sulphur (Roy et al., 1995, Benallal et al., 1995) and most of 

this fraction was removed during distillation. 

4.1.5 Flash point of fuel samples 

This property is important with regard to safety, storage and handling of the fuel, but has no 

effect on engine performances.  SANS has set this limit at 55 oC. The flash point for petro-

diesel fuel was 69.1 oC, well within this limit. The flash point of DTPO (34.1 oC) was higher 

than that of TPO (<30.1 oC) even though both were lower than the recommended limit.  

 

4.1.6 Copper strip corrosion of fuel samples 

This test shows the potential of the fuel to corrode metal parts. Both DTPO and TPO recorded 

1b while petro-diesel fuel recorded 1a, all these fuels were within the limits for SANS of 1 

max. That means that they do not have the tendency to cause corrosion. 

4.2 Engine performance emission and combustion  

In this section, the effects of using DTPO as an additive to petro-diesel fuel on the engine 

performance, combustion and emissions are discussed. The engine was initially run on petro-

diesel fuel to generate reference data. Blends were prepared containing 20, 40, 60 and 80% 

DTPO by mass and tests were conducted at engines speeds of 800, 1200, 1600, 2000, 2400, 

2800, 3200 and 3500 rpm. These results are illustrated in Figure 4-4 to Figure 4-11 and 
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subsequently, a comparative analysis was performed with conventional petro-diesel fuel as the 

reference. The engine could run without any problems with blends of up to 60% DTPO. 

However, at 80% DTPO the engine became erratic, especially at high speeds. The engine speed 

was fluctuating and this definitely affected all other parameters. So, no further tests were 

performed with blends containing 80% DTPO or more.   

4.2.1 Effects of DTPO/Petro-diesel fuel blends on engine performance 

The power output of the engine and torque for DTPO/Petro-diesel fuel blends are presented 

and compared with the reference petro-diesel fuel in Figure 4-4 and Figure 4-5. Engine Power 

is a function of torque output and engine speed. So, as expected, the graph of engine torque 

output verses speed and that of power vs speed showed similar characteristics. Both the power 

and torque increased with speed, up to a maximum point then started reducing. The maximum 

power and torque were noted at speeds of about 3000 rpm and 2200 rpm respectively. At low 

engine speeds, there is low turbulence in the cylinder leading to poor air/fuel mixing. Therefore, 

the combustion efficiency is low, but this will increase as speed increases, thus, leading to 

increased power and torque. However, as speed increases further, the volumetric efficiency of 

the engine decreases, leading to a reduction in power and torque output (Aydın & İlkılıç, 2015).  

From Figure 4-4, there was no significant difference in power for the test fuels up to a speed 

of 2800 rpm. Beyond this speed, the power developed by the engine reduced with an increase 

in DTPO concentration in the blends.  At 3200 rpm, the power developed by DTPO20, 

DTPO40 and DTPO60 were 2.8%, 3.0% and 5.3% respectively lower, compared to that of 

petro-diesel fuel. Similarly, it can be seen in Figure 4-5 that there was no significant difference 

in torque up to a speed of 2400 rpm. However, at 3200 rpm and 3500 rpm the torque output 

decreased with increase in speed. For example, at 3500 rpm, the torque for DTPO20, DTPO40 

and DTPO60 was lower than that of petro-diesel fuel by 2.7%, 2.9% and 5.1% respectively. 

This behaviour may be attributed to the high viscosity of DTPO. At high engine speeds, there 
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is insufficient time for DTPO blends to vaporise, mix with air and burn efficiently as compared 

to the low viscosity petro-diesel fuel. 

 

 

Figure 4-4 Variation of power with engine speed 

 

Figure 4-5 Variation of torque with engine speed 
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The changes in Brake Specific Energy Consumption (BSEC) of petro-diesel fuel and 

DTPO/Petro-diesel fuel blends with engine speed is illustrated in Figure 4-6. BSEC is a good 

parameter to compare fuel economy of different fuels especially when the densities and energy 

content of the fuels are different. It can be observed from Figure 4-6 that as the speed increased 

the BSEC reduced for all the test fuels. DTPO20 had the lowest average energy consumption 

(21.53 MJ/kWh) followed by Petro-diesel fuel (22.03 MJ/kWh) then DTPO40 (22.11 MJ/kWh) 

and DTPO 60 (22.09 MJ/kWh). However, based on the average values, these differences were 

not significant. It was noted that, since fuel is supplied to the engine volumetrically, heating 

value on volume basis is a good indicator of fuel consumption and economy (Martínez et al., 

2013).  On volume basis, the heating values of Petro-diesel fuel and DTPO were 38 MJ/L and 

39.5 MJ/L respectively which show a small difference. The difference will be lesser for the 

blends of the two fuels and this explains the minor difference in fuel consumption.  

 

 

Figure 4-6 Variation of Brake Specific Energy Consumption (BSEC) with engine speed 
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4.2.2 Effects of DTPO/Petro-diesel fuel blends on Exhaust emission  

Unburned hydrocarbons (HC) consist of hydrocarbon fuel that is not completely burned 

(Naima & Liazid, 2013, Pundir, 2007), therefore, it is a result of incomplete combustion. The 

variation of HC with speed for DTPO/petro-diesel fuel blends is illustrated in Figure 4-7. Petro-

diesel fuel had the lowest HC compared to the blends at all the test speeds. At the same time, 

HC increased with an increase in the concentration of DTPO in the blends. Usually, high 

density, high viscosity and high aromatic hydrocarbons can lead to incomplete combustion 

resulting in an increase in unburned hydrocarbons as reported elsewhere (Murugan et al., 2009, 

Aydın & İlkılıç, 2015).  Fuel is supplied to the engine volumetrically, thus, when the density 

is high, the mass of the fuel being injected into the cylinder increases. Therefore, the high 

density of DTPO may lead to a rich mixture and, thus, to incomplete combustion. Viscosity is 

responsible for the quality of spray and mixing of fuel in the combustion chamber. The high 

viscosity of DTPO could also have led to poor penetration and mixing of fuel into the 

combustion chamber leading to incomplete combustion. Thus, any factor that can cause 

incomplete combustion can lead to a rise in the formation of unburned hydrocarbons. 
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Figure 4-7 Variation of HC with speed 

Carbon monoxide (CO) is an odourless and highly toxic gas. It results from insufficient oxygen 

in the air/fuel mixture during combustion (Pundir, 2007). The effects of Petro-diesel fuel and 

Petro-diesel fuel/DTPO blends on CO and speed are shown in Figure 4-8.  It was observed that 

the CO increased with the increase in speed.  In addition, the average CO emissions for Petro-

diesel fuel and DTPO 20 are very comparable, with a difference of 1.3%. DTPO 40 and DTPO 

60 were 6.92% and 9.05% higher than the reference petro-diesel fuel. CO emissions depend on 
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oxidation of CO.   
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Figure 4-8 Variation of CO with speed 

 

Nitrogen Oxides (NOx) consist mainly of Nitrogen oxide NO and small amounts of Nitrogen 
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Figure 4-9 Variation of NOx with speed 

4.2.3 Effects of DTPO/Petro-diesel fuel blends on Combustion characteristics of the 
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to a maximum point (Benson & Whitehouse, 1983).   From Figure 4-10, the peak pressure of 

petro-diesel fuel was highest compared to those of the other blends. From Figure 4-11, it can 

be seen that, the combustion of Petro-Diesel took place earlier compared to the blends 

DTPO20, DTPO40 and DTPO 60 in that order. It can also be noted that the ignition delay of 

the fuels increased with an increase in concentration of DTPO in the blend as shown in Figure 

4-11. Ordinarily, when the ignition delay is longer, there is an increase in the quantity of fuel 

in the combustion chamber which will have time to mix with air and be more homogeneous. 

Subsequently when the accumulated fuel ignites, it will burn rapidly leading to a rise in 

temperature and high peak pressure (Aydın & İlkılıç, 2015, Murugan et al., 2009).  However, 

the test fuels exhibited the opposite behaviour. This observation could be due to the inefficient 

combustion of DTPO due to the high viscosity and its poor ignition quality. Aromatic content 

of TPO is normally high and fuels with high aromatic content have poor ignition quality (Aydın 

& İlkılıç, 2015, Murugan et al., 2009).  

 

Figure 4-10 Variation of peak pressure with engine speed 
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Figure 4-11 Variation of in cylinder pressure with crank angle at 3200 rpm 

4.3 Prediction of engine performance using Artificial Neural Network 
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Table 4-5 Evaluation of network performance 

neurons train valid test all MSE 

8 0.98339 0.99357 0.99276 0.98907 0.001146 

10 0.99476 0.99606 0.99699 0.99519 0.000396 

12 0.99575 0.99187 0.99725 0.99526 0.000768 

14 0.9968 0.99751 0.96511 0.99181 0.000365 

16 0.98491 0.994779 0.99167 0.98746 0.000242 

 

To analyse the model further, a regression analysis of the predicted Power, torque, SFC and 

peak pressure, and the measured experimental values were carried out and the results are shown 

in Figure 4-12 to Figure 4-15. From these figures, it is important to note that the predicted 

values are very close to experimental values, all with R higher than 0.99. The highest accuracy 

was noted in prediction of power with an R value of 0.9988, then followed by SFC (0.9852) 

then peak pressure (0.98).   

 

Figure 4-12 Predicted and the measured values for engine torque 
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Figure 4-13 Predicted and measured values for engine power 

 
 

Figure 4-14 Predicted vs measured values for SFC 
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Figure 4-15 Predicted and measured values of peak pressure 

 

Using the weights and biases of the trained ANN model presented on Table 4-6, equations 4-5 
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𝑠𝑓𝑐 = 0.687379𝐹1 + 1.158229𝐹2 + 4.013523𝐹3 + 2.364102𝐹4+0.544825𝐹5 +
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 4-7 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = −4.87243𝐹1−6.89962𝐹2 + 0.40131𝐹3 + 0.791098𝐹4 + 2.109962𝐹5 −

0.00679𝐹6 + 0.602341𝐹7 + 1.305551𝐹8 + 0.71885𝐹9 − 0.42125𝐹10 +2.429029 

 4-8 

𝐹𝑅 =
1

1−𝑒−𝑛𝑅
          4-9 

 

𝑛𝑅 = (%𝐷𝑇𝑃𝑂)𝑊1𝑅 + (𝑅𝑃𝑀)𝑊2𝑅 + 𝑏𝑅       4-10 

 

Table 4-6 Weights between input and hidden layer for engine performance network 

R W1R W2R bR 

1 -9.76025 -12.4795 14.54184 

2 6.648437 7.144041 -9.16342 

3 1.979585 -2.15947 -2.53553 

4 -3.49731 1.656516 2.546858 

5 2.986831 -0.98879 2.189052 

6 6.245957 4.506771 -0.95217 

7 0.01654 -2.35417 -0.17246 

8 -9.31786 0.50364 -5.47606 

9 -0.14736 10.10856 -8.31487 

10 -5.19179 -7.23604 -10.3794 

 

4.4 Prediction of engine emissions using Artificial Neural Network 

A network with one hidden layer was developed to predict HC, CO and NOx. The optimum 

number of neurons in the hidden layer was found to be 10. The correlation coefficient did not 

increase beyond 10 neurons. Subsequently, a network with 10 neurons was considered 

satisfactory. The proposed ANN model for predicting HC, CO and NOx had correlation 

coefficients of 0.99761, 0.991 and 0.99552 for training, test and validation data sets 

respectively. The correlation coefficient for the whole network was 0.9975. Additionally, the 
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MSE was 0.000163, that shows that the network was able to learn the relationship between the 

input and output parameters reasonably well.   

To further evaluate the prediction ability of the ANN, regression curves were plotted for the 

predicted vs measured HC, CO and NOx values as shown in Figure 4-16 to Figure 4-18. It was 

found that the R2 values for HC, O and NOx were 0.9961, 0.9921 and 0.997 respectively. Based 

on the high R2 values it can be concluded that the model was able to generalise between the 

input parameters of engine speed and DTPO blend concentration and the emissions 

satisfactorily.  

 

Figure 4-16 predicted and measured values for HC 

 

R² = 0.9961

0

5

10

15

20

25

0 5 10 15 20 25

P
re

d
ic

te
d

 H
C

measured HC



75 
 

 

Figure 4-17 Predicted and measured values for NOx 

 

Figure 4-18 predicted and measured values for CO 

 

Using the weights and biases of the trained ANN model presented on Table 4-7. Equations 4-

11 to 4-13 were developed for predicting HC, CO and NOx respectively. Where FR and nR 
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Table 4-7 Weights between input and hidden layer for engine performance network 

 r W1r W2r br 

1 -1.79787 7.87059 7.152767 

2 -7.22874 2.27573 6.371598 

3 -6.97209 -5.94619 5.622027 

4 -8.89691 -1.8935 0.869408 

5 -4.63349 -6.23566 -1.68392 

6 -0.57759 4.088858 2.202833 

7 -3.61501 3.704252 -1.93043 

8 -9.88563 1.215642 -1.97992 

9 -4.59867 -5.96368 -5.77231 

10 9.964487 -4.79473 10.47497 

 

𝐻𝐶 = −0.36519𝐹1+0.065603𝐹2+0.071209𝐹3 + 0.032547F4 + 0.154972F5

− 1.48203F6 − 0.23816F7 + 0.112772F8 + 0.058713F9 + 0.165329F10

+ 0.754924 

 4-11 

NOx = −0.34459F1 + 0.237247F2−0.55315F3+0.059885F4−0.44424F5 + 0.698149F6

+ 0.751985F7 − 0.11371F8−0.03451F9 − 0.30068F10 + 0180492 

 4-12 

 

NOx = −0.26591F1−0.23792F2 + 0.091302F3−0.1377F4+0.126094F5 −

0.15905F6−0.26941F7 − 0.71392F8 − 0.02062F9 + 0.190374F10 + 0.68119  

            4-13 

Fr =
1

1−e−nr
            4-14 

 

nr = (%DTPO)W1r + (RPM)W2r + br      4-15 
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5 GENERAL CONCLUSIONS 

This study was carried out to evaluate the technical feasibility of using the fraction of tyre 

pyrolysis oil that has the same typical distillation range as diesel fuel. Basic properties of the 

fuel were determined and the performance, emission and combustion characteristics of the fuel 

and its blends with petro-diesel fuel were experimentally evaluated. An ANN model was 

developed to predict engine performance and emissions based on fuel blends. From the findings 

of this work, the following conclusions are made: 

 The viscosity, density, copper strip corrosion of DTPO were found to be within the 

acceptable limits set by SANS-342, while the sulphur content and flash point were out of 

these limits. 

 The viscosity and density of DTPO and its blends with petro-diesel fuel at various 

temperatures between 20 °C – 100 °C can be estimated using the equations developed with 

an acceptable level of accuracy.  

 Distilling TPO had an effect on most of the properties. For instance the viscosity of DTPO 

was lower than that of TPO and closer to that of petro-diesel fuel. The energy content of 

DTPO on volume basis was higher compared to petro-diesel fuel and TPO. There was a 

22% reduction in sulphur content after distilling TPO. The flash point of DTPO was higher 

than that of TPO. The only property that was not affected was the density.    

 The engine was able to run without any operational problems with blends of up to 60% 

DTPO. When the blend concentration was increased to 80%, the engine operation became 

unstable.  

 There was no significant difference in BSEC for the test fuels. The lowest BSEC was 

obtained for DTPO20. There was no significant difference in power and torque up to a 
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speed of 2800 rpm. Beyond this speed, the power reduced with increase in DTPO in the 

blend. Therefore, the performance of the engine was slightly lower when the DTPO was 

increased.  

 HC and CO increased with the concentration of DTPO in the test fuels, while NOx
 reduced 

with DTPO concentration. These observations were attributed to Petro-diesel fuel having 

better combustion characteristics due to its lower viscosity, density and better ignition 

quality. 

 Petro-diesel fuel’s peak pressure was high compared to those of the blends. It was also 

found that the ignition delay of the blends of DTPO was longer than that of petro-diesel 

fuel due to the aromatic nature of TPO which in turn reduced its ignition quality.  

 Engine performance and emissions can be predicted reasonably well using the ANN models 

that were developed. There was a strong correlation between ANN predicted values and 

experimental values. The ANN successfully predicted four engine performance outputs and 

three exhaust emission parameters. Therefore, the developed model can be used to predict 

engine performance and emission of a diesel engine running on various blends of DTPO 

and petro-diesel fuel at different engine speeds. 

6 LIMITATIONS 

The ANN model developed and validated in this work is limited to predicting engine 

performance when running on DF/DTPO blends with upto 60% DTPO concentration. 

Therefore it may not be suitable for extrapolation beyond this limits. The model can only be 

used for prediction for the specific or similar engine used in this work and not any other type 

of engine and within the speed of 3500 rpm.  
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7 RECOMMENDATIONS FOR FURTHER STUDIES 

Research is a continuous process and with each step, new areas to explore normally come up. 

There are, therefore, areas that have been identified for further research concerning the use of 

TPO in diesel engines as highlighted below. 

 The sulphur content in this study was found to be high, therefore, different methods of 

sulphur reduction should be explored to reduce the sulphur content to acceptable limits. As 

Sulphur is also associated with lubricity of the oil, the effect of Sulphur reduction on 

lubricity should also be studied.   

 One of the main concerns when using alternative fuels in diesel engines is the long term 

effects on wear and durability of the engine. Therefore, it is recommended that a study on 

wear and durability of using TPO on diesel engines be studied.  

 A model was developed to predict engine performance and emissions based on artificial 

neural network. It is recommended to use single zone, zero-dimensional and multi-

dimensional models to gain a proper insight into the combustion process of the diesel 

engine running on tyre pyrolysis oil.    
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