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Abstract

Skewed and non-normal data are commonly observed in health research. Usually, the

dataset is transformed, censored, or truncated to impose normality, rather than modeling

the data in its natural state. Many conventional approaches to modeling lead to incorrect

estimates of parameters and standard errors due to the assumptions imposed. This study

investigated three statistical problems; Non-normality, Skewness and Correlation under

the Generalized Estimating Equations (GEEs) Framework. The general objective was to

develop flexible models for correlated and Skewed data in health research. The specific

objectives were, to investigate the skewness property of binomial longitudinal data and its

application to model infant morbidity under HIV setting, to review cost spending models

on outpatient care while assuming independence structure under GEE, to develop mod-

els for alternative estimation of the scale parameter under the Generalized Estimating

Equations framework, and to propose methods of analyzing clustered inpatient care data

that relaxes the non-normality. The study applied; the Burrs-10 distribution and sup-

pressor effect assumptions under the GEE to model the correlated infant morbidity data;

exchangeable correlation structure to model predictors of distance for inpatient care; and

independence correlation structure to model the predictors for outpatient care cost with

Bienayme–Chebyshev inequality. The best model selected was the one that displayed the

lowest quasi-likelihood under the independence criterion (QICu). The results revealed

that skewed logit-GEE under the Burrs-10 distribution was able to show an association

between variables which was not identified by the standard GEE. Accordingly, it fitted

our imbalanced health dataset better. The study found out that the SL-GEE was supe-

rior over the standard GEE when asymmetry was assumed. The main contribution of the



study is in the development of the algorithm of estimating the skewness parameter for the

model. The suppressor effect showed some patterns of the disease, which the conventional

approaches failed to reveal. It revealed that gastro intestinal infections were common in

the infants exposed to Bacterial Vaginosis. Modelling the distance for inpatient care re-

vealed that differences in employment, ability to pay for the service and household size

are associated with distance covered to access government facilities. Finally, the best

predictors of outpatient care expenses are age, wealth index, marital status, and educa-

tion of the household head. In conclusion, the methodologies developed are applicable in

modelling of non-normal response variable. The study recommends the reproducibility

of the R-codes developed on different health and biomedical datasets.



Chapter 1

Introduction

1.1 Background

Standard questionnaires are developed by researchers in an attempt to collect data that

are meant to answer certain scientific questions in health research. This includes studies

such as Demographic Health Surveys and the Household health expenditure surveys.

Most of the outcomes of study are either continuous or dichotomous.

In a research on health status of a given population, a response of whether a person

experienced any sickness within a given time period, say a year, can be captured as a

yes or no [KNBS, 2015] and in the same research, distance covered by the patient or cost

incurred at the facility to treat the illness can be captured as a continuous variable [GOK,

2014].

1
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Some of the data collected, though may be of the said form, may not be fully modeled

under the given conventional assumptions. Some binary responses may exhibit asymme-

try, whereby the sensitivity to changes in the independent variable is not maximized at

0.5.

The GLM framework can be extended by including a skewness parameter to relax this

imbalance [Nagler, 1994, Prentice, 1976]. The model relaxes the sensitivity to change

in the dependent variable from 0.5 to a value that is determined by the data. In this

case the stimuli in any of the independent variables for any individual with p=0.5 is not

exaggerated.

Longitudinal data involves taking measures at different points from the same subject over

time. This gives rise to data that exhibit correlation. This correlation should be factored

in during analysis to gain meaningful results. Under the GLM framework, random effects

models are good candidates for this type of analysis [Ibrahim et al., 2010, Rizopoulos

et al., 2017].

However, there are several restrictive assumptions of the GLM, that make them unde-

sirable. For instance, specifying the full likelihood can be ineffective if some information

regarding it are unavailable. Methods that relax these assumptions have been developed

such as the Generalized Estimating Equations (GEE) [Liang and Zeger, 1986].

Models that combine the aspect of skewed correlated responses are desirable. An ex-

tension to accommodate both have been developed by McDaniel et al. [2013]. This is

through a two- stage analysis, whereby in first stage, the skewness parameter is specified

while in the second stage, the value is applied under the GEE framework.
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Hitherto, the research has discussed one angle of the response, that is the binary under

a longitudinal study. Some data may be clustered and exhibit correlation among the

subjects. When the response is continuous, the data can exhibit non-normality. For

example, data on inpatient care for patients who traveled to seek care in government

hospitals. Those who are within reach didn’t cover any distance to the facility, some

covered a moderate distance while others covered very long distances.

Evaluating this response in a plot clearly showed that the data; (1) have a discrete

mass at zero for those within reach and (2) are right skewed for those who covered very

long distances. Such data being collected from the same clusters, say counties, have

respondents exhibiting similar characteristics thus correlated.

It is clear this response is complicated to model, and several attempts have been sug-

gested in the literature. An extension of the Poison to zero inflated Poisson [Lambert,

1992] has been found attractive, however, its ability to handle skewness has been put to

doubt. Another suggestion to handle the continuous right skewed data is the Gamma

model [Agarwal and Kalla, 1996].

An attempt to improve on this method was an extension by [Dunn, 2017, Dunn and

Smyth, 2005, 2008, Gilchrist and Drinkwater, 2000, Smyth and Jørgensen, 2002], in which

under their method, they assumed the data had both Poison-gamma characteristics.

A Bayesian approach incorporating priors under the tweedie distribution was proposed

by Swallow et al. [2016].

However, there have been few methodologies that have considered correlation and few

researchers have attempted to improve on the methods based on GEE [Liang and Zeger,
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1986].

The approach to model non-normal responses is gaining interest among researchers, with

numerous methods considered of late [Bono et al., 2017], and this forms the basis of this

thesis.

The focus on modelling correlated binary outcomes, proposed an improved algorithm for

handling asymmetrical binary responses under the GEE. This study signified an improve-

ment on the works of McDaniel et al. [2013] who made a basic assumption of the skewness

parameter in the model and the work by Prentice [1976] and Nagler [1994] who propose

methods for estimating the value.

By combining assumptions in both works, thestudy was able to show a flexible way of

linking both for flexible parameter estimations under the GEE framework.The said model

together with an application to show the superiority of the Skewed Logit (SL) over the

conventional Logit was presented.

The other consideration accounted for, was data that exhibited discrete mass at zero

and is right skewed. The study proposed an algorithm for modeling clustering while

assuming an independent and exchangeable correlation structure. The study extents the

work of Swan [2006] who considered the AR (1) correlation structure on modeling rainfall

responses. It was shown that the model is insufficient for clustered data and consider a

different correlation structure.

The greatest motivation of this work was the modeling flexibility provided by the GEEs.
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1.2 Statement of the Problem

It is evident that non-normal responses are common in health research and are gaining

favor among researchers. It is also clear that to get more insight on the data, then we

have to employ advance but flexible statistical methods.

Non-normality in data can be determined in several ways for a continuous data. For

example, a response variable is said to be non-normal when it violates the common

normality test such as Andersen Darling test, when it has excess zeroes and when extreme

values are reported.

For a binary data, non-normality is present in the response if it is not possible to put

a threshold that will result in the correct estimation in the model. For example, when

converting a continuous variable into a binary for modelling, it may be difficult to say

where the cut off point is. Assuming you are modelling hospital visits, and you have

patients having upto 30 visits. In such a case then, if you decide the threshold for

moderate visit is 15, then this means that both a patient who visited the facility once,

and those who did 15 times have the same ’weight’.

Conventional approaches to modeling some problems have been found insufficient and

result in biased parameter estimates. It is therefore important to explore and develop

models that will try improve model fit and minimize estimation bias.

Understanding effects of diseases in children is an important aspect for the country for

better policy formulation and maintaining a healthy population. It is also the right

direction in measuring SDG goal 3 on people wellness. Evaluating diseases in a population

is fundamental, in devising ways of addressing them.
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However, some diseases such as bacterial vaginosis have been neglected and considered

minor, yet they contribute to morbidities and at worse mortalities in the population.

They haves been shown to cause morbidities in the early life of an infant. Our aim is to

analyze the effect of the same on infants under a HIV setting over time.

It is key to understand hospital access to a population in order to make meaningful

policies. The population in Kenya is growing exponentially, yet the number of public

health facilities may not be increasing at a rate good enough to accommodate such.

Some of the facilities remain out of reach, while others could be within reach but then

don’t serve the full purpose because of lack of required physical and personnel resources.

What this means is that patients will still be forced to cover longer distances to access

care, especially those with complicated cases that need regular check ups. Understanding

the predictors for distance to access such facilities will definitely be helpful in formulating

alternative policies that can increase access for such care.

Finally, cost spend at the facilities during visit was key to be investigated. Majority of

people would not go to hospital for minor illnesses, due to the cost implication. It’s clear

that most Kenyans are not in the insurance schemes, and in fact only 18% of Kenyans

are [GOK, 2014]. What this means is that, most of the households will be required to

pay cash at the facility. However, this could discourage access especially on the poor who

have very little resources and many needs.
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1.3 Justification

From the problems statement, it is clear that addressing the arising issues is critical. In-

vestigating the association of bacterial vaginosis on infant morbidity and maternal com-

plications during birth, is crucial because infant and maternal morbidities plus mortalities

in Kenya are among the highest in the world.

There is also need to address access to health facilities and probably find out the major

hindrances to the same. This could possibly assist in creating policies that are geared

improve to access and encourage the population to seek care at the facilities.

A deeper analysis regarding the cost and the distance will definitely unearth deeper

understanding on why Kenyans will chose to attend or not to attend a hospital when

they are sick, and further understand the common covariates that can determine access

due to cost and also distance.

Although cost and distance have been discussed in the literature as the main determinants

of access, it was important to investigate on a larger scale their predictors in order to

have a better understanding regarding them.

Such information does not only assist in policy formulation, but also contribute in adding

literature on the subject. This will have a positive effect on a further reduction on depen-

dency in the population, and an increase in capital productivity amongst the population

within the country.
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1.4 Objectives

The general objective was to develop flexible models for analysing Non-normal data in

health research.

Specific Objectives

1. To investigate the skewness property of binomial longitudinal data and its applica-

tion to model infant morbidity under HIV setting

2. To evaluate and develop flexible models with discrete mass at Zero while assuming

independence structure under GEE using the Tweedie distribution

3. To develop models for alternative estimation of the scale parameter under the GEE

framework

4. To design methods of analyzing clustered data that relaxes the non-normality and

correlation assumptions in the response using the Tweedie distributions

1.5 Organization of the Thesis

Chapter 2 is a review of the literature associated with this work, chapter 3 outlines the

methodology, chapter 4 are the results and discussions and finally chapter 5 presents

conclusion, recommendations and further research.

The readers are adviced to follow this sequence 2.2, 3.2 and 4.2; 2.3, 3.3 and 4.3; 2.4,3.4

and 4.4; 2.5, 3.5 and 4.5



Chapter 2

Literature Review

2.1 Introduction to Literature Review

This chapter is about the literature that has been considered in this thesis. We have

reviewed literature for each specific objective and the data considered during application.

2.2 Bacterial Vaginosis (BV)-HIV-1 Co-Existence on

Maternal and Infant health

Bacterial vaginosis (BV), also referred to as vaginal dysbiosis, a state characterized by

altered vaginal biotas has been shown to be a risk factor for birth complications, including

low birth weight and preterm births. Current birthing practices are designed to optimize

newborn exposure to maternal biota for which she already provides immunologic pro-

tection through transplacental immunoglobulin transfer and breastfeeding and thereby

9
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reducing the risk of infection [Fouda et al., 2018], one of the leading causes of deaths

among newborns.

A very high prevalence of BV has been described among human immunodeficiency virus

(HIV)-infected women. However, data on the effects on child morbidity and mortality

remain scarce in Kenya.

Among immuno-suppressed women who are HIV-infected, exposure to BV seems to be

more occurs commonly [Jamieson et al., 2001]. BV is characterized by a lack of Lacto-

bacillus bifidus and predominance of anaerobic polybacteria [Lepargneur and Rousseau,

2002, Priestley et al., 1997] such as Streptococcus, Staphylococcus, Enterobacteriaceae;

Candida albicans; and Trichomonas,.

BV is associated with spontaneous abortions and second-trimester miscarriages [Isik et al.,

2016], fetal malpresentation, preterm birth [Guaschino et al., 2006, McGregor and French,

2000], postpartum infections, and rupture of membranes [Haggerty et al., 2004, van der

Heyden et al., 2013]. Increasing evidence suggests that low birth weight (LBW) and very

low birth weight among infants were associated with BV [Thorsen et al., 2006], early

neonatal deaths [Ravikumara and Bhat, 1996], as well as compromised immunity.

The prevalence of BV varies from one country to the other and among different races,

however, it is more frequent among women in sub-Saharan Africa and women of African

ancestry in different parts of the world [Guaschino et al., 2006]. For example, [Alcendor,

2016] investigated health disparities in BV and its implications for HIV-1 acquisition in

African-American women and reported prevalence rates of 52% and 32% among Black
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and Mexican American women respectively. [Kamga et al., 2019] reported a prevalence

rate of 26% among pregnant women in Cameroon.

In comparison, [Nduati et al., 2000] reported a prevalence rate of 47% in this group of

Kenyan women who are now the subject of this secondary data analysis Other studies

have reported a prevalence rate of 50% for BV among HIV-positive women [Alcaide

et al., 2015]. The actual mechanisms underlying BV and the associated risk factors are

still poorly understood [Freitas et al., 2017]. It is crucial to note that BV could afflict non-

pregnant and pregnant women [Freitas et al., 2017, Kamga et al., 2019] and can also occur

in both sexually-active and -inactive young women [Bump and Buesching, 1988], and in

young and older women. Still, it is more pronounced among younger women [Dingens

et al., 2016].

Current birthing practices are designed to optimize newborn exposure to maternal biota

for which she already provides immunologic protection through trans placental immunoglob-

ulin transfer and through breastfeeding and therefore reducing risk of infection, one of the

leading causes of newborn deaths. Preliminary data comparing HIV-uninfected and in-

fected women showed very little differences in the vaginal biome of women. However, HIV-

exposed sterile babies had different biomes from those of HIV-unexposed babies [Chehoud

et al., 2017].

There has also been established a link between HIV transmission and BV [Farquhar

et al., 2010, Jamieson et al., 2001] making this a public health concern . Previous re-

search showed that BV modifies the vaginal microbiome, and enhances the transmission

of sexually transmitted diseases (STDs. Some studies among HIV-infected women have
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revealed that BV is related to an increase in genital shedding of HIV RNA [Sha et al.,

2005].

The study hypothesized that BV is correlated with an increase in infections among infants

and especially in the context of HIV. This study assessed several determinants of infant

morbidity. It was found that the increase in morbidity is related to the development

of abnormal microbiota among infants that exposes them to ailments. Simultaneously,

maternal HIV infection has been linked to the negligible provision of resistant immunity

against ordinary germs among infants [Jallow et al., 2017]. Since any strategy aimed at

tackling diseases focuses more on risk factors, it is essential to understand any risk factors

associated with BV. Interventions targeting these novel risk factors associated with BV

could lead to more effective prevention of morbidities and mortalities affecting mothers

and infants.

The risk factors associated with BV in the context of HIV are poorly understood as

there have been no reports in these regards. Studies on BV in the context of HIV are

few [Atashili et al., 2008, French et al., 2011, Schmid et al., 2000, Spear et al., 2007].

Still, limited results and data have emanated from Kenya regarding the prevalence and

associated risk factors among HIV-exposed women. The few studies conducted were cross-

sectional surveys and only reported an increased risk of STDs among women exposed to

BV and not necessarily the risk factors associated with this combination. Most available

literature has focused on the health of infants during and after birth, ignoring that of the

mother.

The present study aimed to extend and investigate whether there were any differences

in the health of mothers exposed to BV after birth. It has been argued that a healthy
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mother could positively impact the proper growth of her child. Several authors have cited

the importance of a mother’s care and [Nduati et al., 2000] reported higher mortality and

morbidity rates among children whose mothers had died. Therefore, maternal health is

an important determinant of infant health [Freitas et al., 2017, Keats et al., 2019]. Since

this study focuses on infant survival and wellbeing, it is inevitable to consider the aspect

of maternal health as the two are interlinked.

Although a few studies have assessed the effect of birth-related complications on the

maternal health status after birth, much attention has been accorded to these effects in

first world countries. This work focused on a resource-limited country (Kenya) whose HIV

prevalence is still high. Understanding the differences in morbidity evolution at different

times in the growth of infants, and birth-related complications in a country with limited

resources would provide an excellent platform for better policy formulation, planning,

and execution.

Data from a longitudinal study to determine risk factors for mother-to-child transmission

of HIV among antiretroviral drug näıve women provides an opportunity to determine

whether BV increases the risk of early infant mortality and morbidity in this group of

HIV-exposed infants. ARV’s for prevention of other to child transmission of HIV were

introduced in year 2000 in Kenya, well after completion of the data collection phase of

this study and therefore all the study participants were ARV naive.
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2.3 Non-Normality and Correlation in an Infant Mor-

bidity Longitudinal study

Skewed and non-normal data are commonly observed in health research. Usually, the

dataset is transformed, censored, or truncated to impose normality, rather than modeling

the data in its natural state [Manandhar and Nandram, 2019]. Many conventional ap-

proaches to modeling lead to incorrect estimates of parameters and standard errors due

to the assumptions imposed.

For example, imbalances can occur in binary response data, when symmetry is violated.

There are two types of models which are typically employed to analyze data in these

scenarios - 1) logit and 2) probit models. Logit models have error variables that follow a

logistic distribution and this type of model is considered to be characteristic of discrete

choice models. The probit model uses the cumulative standard normal distribution func-

tion and assumes the error term is normally distributed. Although this assumption is

viewed as a reasonable compromise to achieve mathematical simplicity and parsimonious

results, its suitability has been doubted of late.

Several recent studies have investigated various ways of handling non-normal data. How-

ever, few have focused on the methodology. For example, a paper published by [Bono

et al., 2017] details several non-normal distributions typical in health, education, and

social science, but their substantiation in the literature remains scarce. Further, several

other distributions are not considered in this paper, suggesting that they were not com-

mon in the study’s period of reference. However, these distributions could be vital in
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answering some important scientific questions on binary responses that suffer from sub-

stantial departure from the commonly assumed symmetric logistic distribution [Nagler,

1994, Prentice, 1976, Tay, 2016]. .

For example, for the Bernoulli distribution, binary asymmetry is defined as the sensitivity

to changes in the independent variable that is not maximized at 0.5. This means that a

stimulus in any of the independent variables for any individual with probability P = 0.5

is not exaggerated. Assuming symmetry in some settings could be inefficient and can

lead to biased estimators [Nagler, 1994].

The importance of normality and symmetry in traditional methods of data analysis can-

not be under-estimated. There is a need for compromise between statistical simplicity

and plausible estimates of parameters when these assumptions do not hold. Questions

regarding the suitability of the assumption-based methods have been raised in the lit-

erature [Nagler, 1994]. Put differently, although the numerous probability distribution

function options can fit the data quite well, the data need to speak for themselves, rather

than being forced into a model with assumptions [Manandhar and Nandram, 2019].

There is mounting scientific evidence regarding the inconsistency and weakness of the

logit and probit models for skewed binary response data. Recent studies have proposed

alternative methods for handling binomial responses, such as: a gamma generated logistic

distribution [Castellares et al., 2015], gamma and log-normal distributions [Faddy et al.,

2009], improved analysis for skewed continuous responses [Afifi et al., 2007], a skewed

Weibull regression model [Caron et al., 2018], a generalized logistic distribution [Rathie

et al., 2016], and a skewed logit model [Nagler, 1994]. This shows that modeling non-

normality continues to be a topic of importance in recent general research. However,
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few methods have been considered and applied in health research. Most of the literature

and applications have focused on cross-sectional data in social, political, and economics

research [Coelho et al., 2013, Hay et al., 2019, Tay, 2016, Wright et al., 2013, Zhang and

Timmermans, 2019].

This study is focused on (1) proposing an improved algorithm for handling asymmetry

in binary responses and (2) applying the algorithm in a longitudinal study on infant

morbidities.

Morbidity is the state of being symptomatic or unhealthy due to a disease or condi-

tion [Hernandez and Kim, 2020] and this can be experienced at any stage in life. This

study is focused on BV related morbidities, since this remains a major point of concern

globally and particularly in Africa, where the majority of BV cases are recorded [Garćıa-

Basteiro et al., 2017, Kinney et al., 2010, Tlou et al., 2018]. Child morbidity and mortality

as a consequence of BV in conjunction with human immunodeficiency virus (HIV) has

been a significant hindrance to meeting goal three of the United Nations Sustainable

Development Goals (UN-SDGs) on Good Health and Well-being [Kinshella et al., 2020],

which aims to end preventable deaths of newborns and children under 5 years of age.

The scientific literature has established a link between BV and adverse outcomes in

mothers and their children [Mwenda et al., 2021b]. Past studies have investigated the

occurrence of health deficiencies [Alcaide et al., 2015, Alcendor, 2016], pregnancy loss,

labor complications and preterm delivery [Brocklehurst et al., 2013, Carey et al., 2000,

Guaschino et al., 2006], as well as spontaneous and recurrent abortions [Isik et al.,

2016] among mothers, while others have reported adverse outcomes such as neonatal

malformations [Dingens et al., 2016] and low birth weight [Hillier et al., 2018] among
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the babies. While some studies have tried to investigate the effects of BV in the context

of HIV infection [Alcendor, 2016, Burns et al., 1997, Jamieson et al., 2001], there is still

a lack of knowledge regarding the long-term effects in these cases.

To shed light on this topic, this thesis applied the skewed logit model using Generalized

Estimating Equations (GEE) to evaluate the variations in the data across time in months

and thereby, better understand the infant morbidities. This approach relaxes the strong

conditional probability on a binary response, thereby accommodating for the heterogene-

ity of repeated measures on the same subjects, and accounting for interaction effects in

the selected covariates across time.

2.4 Outpatient Care Cost in Kenya

Kenya is classified among the Low middle income countries (LMIC’s) and among the

fastest growing in Sub-Saharan Africa [Bank, 2015]. To enhance a steady economic growth

and proper social development, there is an emerging need to stabilize the National Health

systems [Kukla et al., 2017].

The country has continued to strive to reform its healthcare system, but faces challenges

such as financial constraints, high debt, weak institutions capacity and large unemploy-

ment rates which in turn raises the rate of dependency ratio [Pezzulo et al., 2017], thus

huge obstacle to achieve any meaningful change. With constrained budget, the monies

allocated for healthcare remains low [Kimathi, 2017], and to achieve any substantial gain,

comprehensive improvements or a complete overhaul of the health sector in Kenya needs

to be done [Kukla et al., 2017].
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Due to the limited resources in LMICs, sound and accurate evidence is needed to make

working health policies, which have been found to be more influenced by the current

countries economy [Rabarison et al., 2015]. This means that enough data is required

to inform strategies by the health professionals in Governments, which are scarce in

this context. This would mean that tough choices in developing countries regarding

resource allocation and spending, with a view of maximizing the outputs have to be

made [Robertson et al., 2019].

In contrast, the developed countries, have continuously benefited from medical security

policies, enhanced proper medical care of their citizens, alleviated economic burden of

diseases by reducing the catastrophic spending on health and provided financial support

to ease the health burden all this made possible, by availability of current data [Jing

et al., 2020, Kato and Okada, 2019, Lee and Shaw, 2014, Li et al., 2019a,b, Liu and Dai,

2020].

In the next decade, literature asserts that the demand for in and outpatient healthcare

is likely to increase [Group, 2020] and this exerts pressure on governments of developing

countries with limited resources on how to handle the expected increase/expansion surge

in demand. Research has established that more than 11 million Africans, within which

0.45 million Kenyans are pushed into extreme poverty each year because of out-of-pocket

health expenses for both in and outpatient.

To caution its citizens against health care spending strain, there have been consistent

efforts by the Kenyan government to have most of its population insured through the

National Health Insurance fund (NHIF), however, 83% of the population remains unin-

sured [Barasa et al., 2017]. Efforts to reform the fund [Mbau et al., 2020] which could
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be a gateway of achieving the universal health care(UHC) for all in Kenya were estab-

lished [Barasa et al., 2018b].

This was achieved by selection of a few counties (Nyeri, Kisumu, Machakos and Isiolo)

that were to act as pilot in which the state was to meet all the medical costs [Obare et al.,

2014, Okech and Lelegwe, 2015] and enhance achievement of the SDG goal 3 [Barasa et al.,

2018a]. The outcome of the pilot was to inform a possibility and sustainability of rolling

out the whole program-me to the whole country.

This is inline with the constant global push towards UHC in LMIC’s, and this has neces-

sitated reforms on health sectors to try and achieve this. The main objective of the UHC

was to caution citizens against the catastrophic and impoverishing effects of out-of-pocket

healthcare payments in Kenya [Chuma and Maina, 2012, Salari et al., 2019] that has led

to poverty in households [Kimani, 2014], Socio-economic inequality and inequity in use

of health care services [Ilinca et al., 2019], and lots of time wasted and longer distance

travelled to access healthcare services [Kukla et al., 2017].

Unfortunately, measured on global level Kenya’s strides remain very inadequate [Obare

et al., 2014] and feedback from the pilot project was that the UHC programme could not

be fully supported by the Exchequer.

Household spending on outpatient care is a very important characteristic of measuring

people’s health in terms of finances to sustain a good health. However, it has not received

attention on recent literature due to the un-seriousness of health conditions that pose no

danger. However, it is important to note that some health conditions which appear
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insignificant, can easily deteriorate with time if not given proper medical attention, thus

it is very key to arrest the situation at the outpatient level.

The choice of seeking outpatient care when sick or injured, could be influenced by (1)

the seriousness of the health conditions of the said individual and (2) the financial ability

to pay for the required service [Awiti, 2014]. In this case, household characteristic of

the member of the households or the care provider from which the member of the said

household needs to seek help is very key [Ensor and Cooper, 2004, Mwabu, 1989, Umar

et al., 2012].

Most of the decisions are determined by the head of the household, who mostly acts as

the bread winner make vital decisions of any given household mostly on how resources

are spent [Posel, 2001].

Therefore, this motivated this study to investigate the outpatient care predictors in ref-

erence to several characteristics of the head of household.

2.5 Distance Traveled for Inpatient Care in Kenya

Inpatient care is defined as a case in which an individual is hospitalized for more than

24 hours and reflects a more serious health complaint. An estimated 1.2 million Kenyans

required these services in 2013, and the number is predicted to increase exponentially in

the upcoming decade [GOK, 2014]. Among those seeking care, various factors are key in

predicting distance traveled.
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For example, differences in wealth would determine the distance traveled. Additionnaly,

those in the higher wealth quintiles can afford to pay fees in any facility, pay insurance

premiums that can guarantee admission at any facility, and have the financial strength

to pay cash at the given facility of choice.

In contrast, those in the lower-income quintiles have fewer choices of the type of facility

for care, as they are limited by finances. Also, although government healthcare facilities

are much more affordable and are the best choice for care, most are miles away and out

of reach from places of residence.

To mitigate this, the Kenyan government has increased the establishment of as many

inpatient services as possible, which includes the upgrading of healthcare facilities that

currently only offer outpatient services by equipping them with machines that are needed

to provide inpatient care. However, this effort often requires the provision of essential

services such as water and electricity, accessible roads, and housing, which limits some

facilities for upgrades.

Some of these facilities are found in rural areas and slums, which serve a large number of

people, meaning their upgrade would be significantly beneficial for the residents. However,

currently, the poor who live in these areas continue experiencing difficulty when they need

inpatient care. Thus, ease-of-access policies for inpatient services should be implemented.

Distance to inpatient services can determine the well-being of a population and is po-

tentially linked to individual survival. For example, there has been a link between long

distances and poor health outcomes, including longer lengths of stay in hospitals, nonat-

tendance at follow-ups [Kelly et al., 2016], and, at the worst, patient fatality [Karra et al.,
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2017].

A study conducted in Zambia found that long distances and the lack of geographic access

to much-needed obstetric care for pregnant mothers explain why there are still fatalities

due to deliveries without skilled care [Gabrysch et al., 2011], and, in Tanzania, child

mortality has increased due to the lack of access to healthcare facilities [Kadobera et al.,

2012].

In contrast, a short distance to a facility has been associated with higher utilization of

the facility and better health outcomes in sub-Saharan Africa [Schoeps et al., 2011]. In

the event of an emergency, distance could be a defining factor for patient survival, with

long distances predicting higher mortalities [Kadobera et al., 2012]. Studies across some

developing countries, such as Bangladesh [Biswas and Kabir, 2017], Kenya [Escamilla

et al., 2018], Nigeria [Awoyemi et al., 2011, Stock, 1983], Afghanistan [Nic Carthaigh

et al., 2014], and Burkina Faso [Schoeps et al., 2011], point out the importance of distance

in predicting health outcomes.

However, although a correlation between distance and decay exists, with those further

away associated with underuse and those closer associated with appropriate use, there

is little evidence to show how this translates to health outcomes. Therefore, distance

traveled to acquire the required inpatient services requires further investigation and thus

forms the basis of this paper.

This study focused on the secondary analysis of the Kenya Household Health Expenditure

and Utilization Survey (KHHEUS), collected in 2018, and centers on question Q68: What

distance did < name > cover in kms to get to the inpatient facility?
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This study builds on non-normal response analyses under generalized estimating equa-

tions (GEE) by [Mwenda et al., 2021a] and adopts the approach of [Swan, 2006] and [Kurz,

2017]. [Kurz, 2017] analyzed healthcare utilization cost data using a Tweedie distribu-

tion, but his works were based on a generalized linear model, meaning correlation was not

considered. In contrast, Taryn and Mwenda et al. [12] considered a decaying correlation

with time but with applications to rainfall and health data, respectively.

Data used in this study was based on clusters that exhibit patient-to-patient correla-

tion characteristics, meaning if this work used the previous methods (e.g., correlation

decay), then will have incorrect results. Therefore, due to the clustered correlation na-

ture of data used within counties, established a new approach to model the response

using the Tweedie distribution by considering what this work refer to as decay distance

with constant correlation and uses the exchangeable correlation structure under a GEE

framework.

The main goal of the study was to identify which covariates were best associated with

distance traveled for inpatient care in Kenya, which were obtained in this study. To carry

out this kind of analysis, this study created an R function with a Tweedie distribution and

exchangeable correlation structure under the GEE framework. Due to difficulty in linking

inpatient admissions and accessibility, this work relies on self-reports from respondents

on the distance they covered to access the healthcare facility.
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Statistical literature review on the Tweedie

Tweedie distributions have been widely applied in modeling non-normal response data

with a discrete mass at zero because they can incorporate skewness without any data

transformation. Most of the methods suggested in the literature for the analysis of such

data mainly consider data transformation [Manikandan, 2010], two-way analysis [Su et al.,

2018], and Bayesian methods [Swallow et al., 2016].

However, these methods are not efficient for our approach because of the correlation

nature of our data within clusters. Approaches proposed for analyzing non-normal data

in the generalized linear model (GLM) framework have the limitation of ignoring the

correlation, which may exist among subjects who belong to the same cluster. Moreover,

the methods require the specification of a full likelihood. This means that if the likelihood

is misspecified, the results will be incorrect.

The method used in this study, which used quasi-likelihood methods, only requires spec-

ifying how the mean relates to the covariates. It is also very flexible in that, in the

event of the misspecification of the correlation structure, the estimates are still plausible.

Moreover, the methods developed by this study are easy to modify and adapt.

Previous evidence suggests the influence of covariates on distance to healthcare facilities;

however, a research gap on the selection of the best-fitting covariates remains. This study

aims to determine the combination of covariates that influence the distance a Kenyan

citizen will travel to seek inpatient care. This new work enhances the application of the

Tweedie distribution to understand the influence of a given set of covariates on distance.
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The Kenya House Hold Expenditure and Utilization Survey (KHHEUS) inpatient data

were obtained, cleaned, and coded. Thirteen (13) covariates for the dependent variable,

distance were investigated. Residence type was categorized as rural or urban. Five wealth

index quintiles ranging from richest to poorest were constructed from the ownership of

different household assets using the principal component analysis as described by [Filmer

and Pritchett, 2001].

The education categorization followed the justification and methods provided by [Rippin

et al., 2020]. This work considered four categories: those who never went to school (those

under 3 years of age and those who responded, ”Never went to school”), lower educa-

tion (pre-primary, primary, and informal [madrassa]), intermediate education (secondary,

vocational, and college), and higher education (university degree or higher).

Age groupings for employment followed those defined by the Organisation for Economic

Co-operation and Development (OECD). This work divided the patients into four age

groups: those aged below 15 and above 65, who are considered unable to work; age group

15–24, who are entering the labor market following an education; age group 25–54, who

are those in their prime working lives, and age group 55–64, who are passing the peak of

their career and approaching retirement [OECD, 2020].

This thesis divided household size into three categories: small (1–3 members), medium

(4–6 members), and large (7+ members). It also categorized the healthcare admission

duration into 1–5 days, 6–20 days, and 21 or more days. Access to insurance was classified

as yes or no.

The head of a household was classified as male or female. Amounts paid for healthcare
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were categorized into three groups: low (1–3,000 KES), medium (3,001–10,000 KES),

and high (10,000+ KES). The dependent variable, distance, was assumed to be 0 km for

any value captured and less than 2 km, following other studies in Kenya [Mwaliko et al.,

2014].



Chapter 3

Methodology

3.1 Introduction

This chapter considers the methodologies adapted for this work

3.2 Suppressor Effect Application for Modelling Cor-

relation under Indepedence Assumption

This study is based on a 25 year old data set of the randomized trial of breasfeeding and

formula among HIV infected women. [Nduati et al., 2000] embarked on a randomized

clinical trial of breastfeeding versus formula among HIV infected women to enable deter-

mination of the risk of breastmilk transmission, correlates of transmission and maternal

outcomes.

27
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Women were enrolled during pregnancy and a careful assessment was made among others

the presence of sexually transmitted infections including bacterial vaginosis to facilitate

determination of factors associated with mother-to-child transmission of HIV. Women

were then followed through delivery and there after mother-baby pairs were followed up

into end of the study at 24 months post-delivery or the death of an infant.

3.2.1 Study population, enrollment, delivery, and follow up

This study used data on a study that was conducted in Nairobi with active enrolment

from 6th November 1992 to 7th October 1997. Sixteen thousand five hundred and twenty-

nine (16,529) women attending 4 antenatal clinics were screened for HIV, 2315 were found

to be HIV positive while 14,214 wer HIV negative. Of the HIV positive, 1708 returned

for results while 607 did not. Of the women who returned for the results, 425 met study

criteria for enrolment.

Of the 425 eligible and screened for BV, our interest lied on the 401 who had life singleton

births after excluding still births, miscarriages maternal deaths and those lost to follow

up.Enrolled women were subjected to a standard interview and physical examination at

each prenatal visit, delivery and postnatal visits at 6, 10, 14 weeks and then monthly

until the child was one year and thereafter every 3 months until 24 months or death of

an infant.

Maternal enrollments and follow-up: During enrollment a physical examination including

a pelvic examination were performed. During the speculum examination vaginal and cer-

vical secretions and samples were collected for microscopy and gram staining for bacterial
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vaginosis.

At delivery a standard form was used to collect delivery data. Women were encouraged

to deliver at Kenyatta National Hospital and study team nurse midwives provided 24

hour cover to facilitate this process. To determine the viral load and CD4–8 cell counts,

15 ml of blood was collected in purple-top vacutainers. After delivery, blood was drawn

from each infant for testing, and the mother and infant pair was followed up every month

in the first year. At every visit, a history was obtained from the mother and the pair

underwent physical examination using standard tools. At the time of delivery, after

excluding stillbirths and second-born twins, 401 dyad pairs remained. During birth, 348

pairs of mothers and infants were available for analysis, 169 mothers were exposed to BV

while 179 were unexposed. This is after excluding Fifty-three incomplete cases. At the

end of year 1, only data regarding 328 pairs were available for analysis. This is after 20

pairs were excluded from further analysis for the following reasons: 14 babies died and

their morbidity measures were not assessed thereafter and 6 mothers were lost to follow

up. These were finally included in the multiple logistic regression analysis. Among them,

157 mothers tested positive for BV, while the remaining 171 were negative. Flow chart

shown in (Figure 3.1).

Subsequently, on the final pair included, the prevalence of BV was calculated as (159/328)=48%,

which is similar to what [Nduati et al., 2000] reported, and consistent with other studies

that put the generality in Kenya to be between 30-50% [Cohen et al., 2012].
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Figure 3.1: Trial flow diagram describing the recruitment of cases and exclusions

3.2.2 Clinical characteristics

The incidences of morbidities were both self-reported and recorded from hospital visits.

A clinical assessment of clinical characteristics were carried out using a standard tool at

scheduled study visits and non-scheduled ones due to illness.. The occurrence of each

illness was recorded for every infant at each visit.

The process included documentation of any illness or hospital visits/admissions in the

period since last clinic visit. At the visit there was interview using a standard tool for
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any symptoms of illness, a physical examination and collection of relevant study samples

by the team of study doctors, an obstetrics registrar and three consultant of whom two

were pediatrician, and one medicine-pediatrics specialist.

During birth and immediately after birth, several clinical characteristics were assessed for

both neonates and mothers. Among mothers, we considered signs that were indicative of

complications, including excessive bleeding, urinary tract infection, and hypertension.

Infant assessment at birth: Among neonates, in-hospital characteristics were classified

as admissions lasting longer than 24 hours (classified as yes or no) and the number of

days spent at the hospital. Other characteristics of neonates were assessed by measuring

the length (cm) after birth, head circumference (cm), and weight (g). Apgar score at

1 and 5 was recorded at delivery while infant gestational age was carried out using the

Dubowitz scores within 7 days of delivery and those scored below 37 weeks of gestation

were classified as premature. Any issues of breathing were classified as respiratory distress.

We also assessed the neonates for jaundice, conjunctivitis, lymphadenopathy, skin rash,

Asphyxia, Pneumonia, Sephis/meningitis and other abnormality.

Infant assessment during follow-up: At every scheduled and unscheduled visit the babies

underwent anthropometric measurements (weight, height, and head circumference) and a

clinical assessment for the presence of common childhood morbidities, including but not

limited to pneumonia, ear infection, Blood in stool, lymphadenopathy, encephalopathy,

sepsis, conjunctivitis,dehydration, wheezing, hematologic conditions, cold, otitis, fever,

cough, diarrhea, thrush, vomiting, difficulty in feeding, heat rash, fungal rush, Eczema/-

dermatitis, Scabies and mouth ulcer. In order to capture all morbidity events, the partic-

ipants had unrestricted access to care in the study clinic for that run 4 days a week and
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had careful instructions of how to navigate the hospital for other services outside clinic

hours.

3.2.3 Laboratory methods for detection of Bacterial vaginosis

Details on how other specimens were obtained have been described elsewhere [Nduati

et al., 2000]. Test specimens for BV and HIV-1 were collected via pelvic speculum ex-

amination. Vaginal and cervical specimens were collected separately using sterile Dacron

swab. The genital infections, including BV, were diagnosed and treated before delivery.

Women were categorized as having BV using the Nugent criterion (a pH of ≥7 in the

specimen was considered significant).

3.2.4 Ethical Approval

The study protocol was approved by the ethics review boards of the University of Wash-

ington and the University of Nairobi.

3.2.5 Statistical analysis

The effects of BV on neonates and mothers in the Nairobi study were described using ORs.

Continuous variables were reported as means and standard deviations while categorical

variables were reported as frequencies and proportions.

We subsequently analyzed the morbidity incidences ever reported by the infants between

the two groups using Pearson’s chi-squared test and computed the p-values using the
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fishers exact text. However, only 2 morbidities seemed to show any association with

the BV. We then employed the multiple logistic regression modeling approach under the

Generalized Estimating Equations, using the independent correlation structure.

The inclusion of all the morbidities in the model was supported by the fact that some

morbidities which were not significant or associated with BV were significant in the mul-

tiple logistic regression. Additionnaly, we adapted the suppressor effect concept proposed

by [Sun et al., 1996] and argue that the methodological approach could bring out some

patterns of the disease which the conventional approaches could fail to reveal.

Finally, to assess the effects of BV on survival, we estimated the cumulative hazard

using the Kaplan–Meier method, to identify any differences between the two groups. The

method is attractive due to its ease in interpretation of the data such that a researcher

can tell the probability of an infant dying on condition that their mother had BV during

pregnancy and birth.

All statistical analyses were performed using R version 3.6.3 (R Development Core Team,

Vienna, Austria) [R Core Team, 2017]. Analysis items with P<0.05 were considered

statistically significant.
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3.3 Skewed Logit model for correlated binomial lon-

gitudinal data and application to modelling in-

fant morbidity under HIV setting

3.3.1 Materials and methods

Data

The Nairobi Infant Morbidity Study (NIMS) was a randomized clinical trial carried out

by scholars in the International AIDS Research and Training Program supported by

grant NICHD-23412 from the National Institutes of Health. The objective was to collect

high quality longitudinal data on morbidity and mortality of babies from HIV-positive

pregnant women in a random sample considering mothers who either breastfed or gave

their baby formula. The description, analysis and findings of the original study can be

found elsewhere [Nduati et al., 2000].

The study participants were drawn from a population of 16529 pregnant mothers attend-

ing four antenatal clinics in Nairobi, Kenya. After screening for HIV, 2315 were found

to be positive. Of these women, 425 were selected and verbally agreed to be enrolled in

the study. At each prenatal visit, each woman was subjected to a standard physical and

clinical examination, and an interview.

Before birth, at 32 weeks of pregnancy, pelvic examination, including analysis of vaginal

and cervical secretions were conducted for each woman to determine their BV status.

This was done using sterile Dacron swabs by a trained clinical officer and the Nugent
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criteria was used to qualify a woman for a BV diagnosis. A pH value from the swab, of

≥ 7 was considered a case, indicating alkalinity of the vaginal fluids and inhibition of bad

bacteria such as as Trichomonas, Candida albicans, Enterobacteriaceae, Staphylococcus

and Streptococcus

Immediately after birth, infants were assessed for HIV using enzyme-linked immunosor-

bent assay (ELISA). Those who tested positive were subjected to a more accurate Poly-

merase chain reaction (PCR) test. Infants who had three consecutive negative tests were

deemed negative. The pairs of infants who survived were regularly re-examined over the

next two years and their history of ailments were documented at every visit.

The study data was collected in two ways, scheduled and unscheduled visits. Scheduled

visits meant that the dyad pairs were supposed to come to the clinic for examination at

a specific time, while unscheduled visits meant they could pop in any time in case of an

illness. Other physical examinations of the baby, including details like sex, weight, and

height, were observed and recorded

The planned visits were bi-weekly during the first 3 months and monthly thereafter for

up to two years. In all scenarios, data were collected either through parental report or

diagnosis at the hospital or clinic. Of the total number of women enrolled, complete

records from birth to six months were only available for 401 women. The other 24 women

either had miscarriages or still births or did not complete the follow up appointments. Of

the 401 women, 74 pairs had missing values, either for the mother’s BV measure or for the

morbidity incidences of the infants. To address this, we applied a missing completely at

random (MCAR) mechanism. There is sufficient evidence that, using the GEE approach,
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this approach still enables a consistent estimate of the regression parameters so long as

the mean model is correctly specified [Laird, 1988]

A standard questionnaire developed by the principal investigator of the study to identify

illnesses was completed for both the mother and the child. This was achieved using a

19-item yes/no morbidity questionnaire which purports to measure health status of an

infant. The total score of the questionnaire is computed as the count of all the ”yes”

responses. There were a total of 1962 observations from 327 pairs of mothers and babies.

From the total score, we created a binary response of; (1) those who did not have any

illness and (2) those who had either minimal or severe illnesses. Table 4.9 presents an

initial exploratory analysis used to identify the asymmetry in the total responses for each

month. This evidence of asymmetry justifies the use of the skewed logit model.

Ethical approval

The study protocol was approved by the institutional review boards of the University of

Washington and University of Nairobi. Verbal consent was obtained from all mothers

prior to their inclusion in the study. The investigators in the study did not require

documentation of any consent for the participants because at the time of the study,

written consent was not mandated by the ethics bodies involved. Therefore, at that time,

no procedures regarding written consent were violated given the research context of doing

the study in Kenya.
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3.3.2 Statistical Model

Generalized Linear Models (GLMs) and the GEEs were used to model infant morbidity.

The first modeling approach to determine the need for the skewed logit model and the

value for skewness was carried out with GLMs. The response variable was the health

status of the infant within a particular month at the time of the hospital visit or the

reported health status about the infant from the mother. For our study, we considered

all health events, whereby a health event occurred if an infant was reported to have

experienced any illness within the month.

Let Yit be the response for subject i measured at different points in time t = 1, . . . , ni

denote the outcome vector for subjects i = 1, 2, . . . , N and xit is a ni × q matrix of

covariate variables for subject i. The expected value is given by E(Yit) = πit and the

linear predictor that relates the mean to the covariates is given by

g(πit) = ηit = xit
⊺β (3.1)

where xit is the covariate vector for subject i at time t with length q. This includes the

infant weight, mother’s BV status, HIV status of the infant, and feeding status of the

infant. g−1(.) is a known link function such as the skewed logit model and β are regression

parameters.
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For each infant status of illness at any chosen time point, the response follows a Bernoulli

distribution with pi(probability of being ill=πit) and is specified as:

Yit ∼ Bern(πit) (3.2)

To model the outcome, the logit and probit models are preferred options, but they both

have conditional probability distributions, which have a maximum at 0, such that Pi for

i ∈ (0, 1) is 0.5 and thus, they have a fixed symmetry of 0.5. However, this assumption of

symmetry may not be realistic to all Bernoulli responses and therefore, not desired [Coelho

et al., 2013, Goleţ, 2014, Nagler, 1994]. For this reason, the skewed logit approach is

employed here, taking advantage of the fact that the logit model is nested within the

skewed logit model as shown in Fig 3.2 . There are reported similarities in terms of

model specification, estimation, and iterations. Using the skewed logit model made it

possible to see if the data were skewed and therefore, to estimate the skewness value.

The probability of a child experiencing illness is given by

Pr(illness = 1) = g−1(x⊺
itβ) (3.3)

In this work, we aim to consider a response that violates the symmetry assumption, using

the framework described above. Following [Burr, 1942], k−1(.) accommodates asymmetry

through;
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Figure 3.2: Cumulative density function of the skewed logit model with different val-
ues of skewness. The bold continuous line represents the logit model which assumes

symmetry.
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g−1(.) = Pr(yit = 1 | xit) = 1− 1

(1 + exp(xitβ))α
(3.4)

for α > 0 and this is the skew value to be estimated.

This variation implies that the maximum is no longer restricted to P = 0.5. Since the

skew value cannot be observed, a regression model was fitted of all covariates under the

skewed logit model using the GLM approach. Further, the α obtained was used as a

proxy for the disturbance to be used in the GEE.

Detailed methodology on obtaining α can be fount in Appendix 9

To obtain robust standard errors that are meaningful for the parameter estimates, we

adopted the Huber sandwich estimator [Freedman, 2006, Huber, 1964], which has the

ability to relax the intra-group correlation. To increase the efficiency of model conver-

gence, we specify a tolerance value of 0.0001 and set the maximum number of iterations

to 100.

The applicability of the two models using the set of covariates was determined by the

likelihood ratio test that compares the logit and the skewed logit model to identify any

significant differences [StataCorp, 2015].

3.3.3 Estimation of parameters using the GEE

Developed by [Liang and Zeger, 1986] in their land mark paper, GEE can be used to

model correlated data and give a marginal inference interpretation. The strength of
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this approach is its straightforward application, since the mean response depends on the

covariates and not on any random effects or any previous responses. Thus, only the

marginal distribution of the subject dependent vector is specified.

The variance of the response is a function of the mean and is conditional on the vector

of covariates represented as

Var(yit | xit) = v(πit)ϕ

where v is the variance function depending on yit and ϕ is the dispersion parameter

assumed to be 1 for the exponential dispersion model family.

Let D be a diagonal matrix of derivatives ∂πi/∂ηi and V (πi) is a ni×ni diagonal matrix

to be decomposed as;

V (πi) = D[V (πit)]
1
2 I(ni×ni)D[V (πit)]

1
2 (3.5)

This estimation equation treats each observation within a given time point as indepen-

dent. This study focused on the marginal distribution of the response for which the mean

and the variance are averaged over the six observation time points. However, the variance

of correlated data does not have a diagonal form and hence, we replace the identity ma-

trix I(ni×ni) using methods proposed by [Liang and Zeger, 1986] with another correlation

structure Ri(ρ). Gi is the diagonal matrix with jth the diagonal element equal to v(πij)

such that equation 3.5 corresponds to 3.6 as shown:
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Wi = Gi

1
2Ri(ρ)Gi

1
2 (3.6)

The working correlation structure Ri with dimension ni × ni is assumed to depend on

a vector of the association parameter ρ. [Liang and Zeger, 1986] stated that the mis-

specification of Ri(ρ) only affects the efficiency of the β̂ and β̂ is robust against mis-

specification. This study considered several correlation structures. These include the

unstructured structure, where every measure between two points is assigned its associa-

tion parameter; the auto-regressive (AR-1) structure with lag = 1, in which correlation

decreases exponentially with the differences in measurements; the independence structure

in which we use the identity matrix as the correlation structure; and the exchangeable

structure in which correlation is assumed to be equal across different measurements. Liang

and Zeger have provided evidence that mis-specification of the correlation structure only

affects β’s efficiency. This is because of the assumption that the estimation equation

for the regression coefficients is orthogonal to the estimation equation for the correlation

coefficients.

The GEE are as follows;

j∑
1=1

D⊺
iW

−1
i (yi − πi) = 0 (3.7)
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Where Di = GΛixi, Wi = V (πit)
1
2Ri(ρ)V (πit)

1
2 and Λi is a diagonal matrix with jth

entry given by
dk−1(ηij)

dηij

The most traditional way of solving the estimating equations is to employ the iterative

re-weighed least squares algorithm, which is a modification of the Newton–Raphson al-

gorithm. In this approach, the observed Hessian matrix replaces the expected Hessian

matrix, using the Fisher scoring algorithm.

However, [McDaniel et al., 2013] proposed an alternative approach to estimate β’s such

that instead of the summation in Equation 3.7, they are evaluated using the matrix form

as shown;

x⊺ΛG
(
G

1
2Ri(ρ)G

1
2

)−1

Z (3.8)

Several methods of analyzing skewed binary data have been proposed in the literature

[Bazán et al., 2010, Caron et al., 2018, Chen et al., 1999, 2001]. Of particular importance

for this current study is the method described by [Prentice, 1976] that allows for the

elimination of asymmetry through the modification of the inverse link function of the

logit model, given as:

(
expx⊺β

1 + expx⊺β

)α

Statistical analysis was then implemented in R version 3.6.3 [R Core Team, 2017] (The R

Development Core Team, Vienna, Austria). Though most functions are available directly
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in the software, we required an extra library including ”dplyr” [Wickham et al., 2020] for

data manipulation, ”glogis” [Zeileis and Windberger, 2018] for the skewed logit Cumula-

tive Density Functions (CDFs) plots with different values of α and the ”geeM” [McDaniel

et al., 2013] for the skewed logit analysis under the GEE.

The final GEE models were calculated and the probabilities of a child having morbidities

were interpreted. These probabilities were calculated using the inverse-logit function and

odds ratio as the exponential values of the differences in the logits. The p-values were

calculated for each parameter estimate, as were the Z statistic and the model and robust

standard errors.

3.4 Tweedie Distribution for a Response Exhibiting

is continuous, non-negative and Right Skewed

Characteristic Using Independent Structure with

application to health cost data

3.4.1 Exploratory Data Analysis

In a secondary analysis, we used data from the Kenya Household Health Utilization

Survey 2018 (KHHEUS 2018). This was a survey conducted to establish costs incurred

by households and individuals in Kenya on inpatient and outpatient care among other

outcomes from a random representative sample representing all the households in Kenya.



Chapter 3 . Methodology 45

Our outcome variable was the total cost incurred for outpatient care. This consisted of

registration card, medicine/chemotherapy/vaccine, consultation, diagnosis tests (x-rays,

lab etc.), medical checkup and dialysis. Respondents were asked for the breakdown of

each as incurred, and those who couldn’t recall the breakdown, there was a column for

’total’ where the total cost was captured. This therefore means any inconsistency in recall

would not affect our modeling.

In order to establish an association of total cost for the outpatient with covariates, we

selected covariates which are commonly considered to predict health care cost and utiliza-

tion. Among our covariates of choice was, age, gender, level of education, employment,

marital status, whether in the household there was a smoker, or any member suffering

from HIV, asthma, respiratory problems. Employment was used as a proxy to estimate

income of the household head.

From the choice of variables, we only focused on the 1st visit, since there were respondents

who reported more than 4 visits, and we focused on households headed by 18 years and

above. We summed up the total expenditure for health in the households as we are

interested in estimating utilization per household and not individual. After summing

up the total costs incurred by the households, and establishing households’ heads who

were 18 years and over, we got a total of (N=11130). We looked at the respondent for

relationship, and if the respondent was not the head, then the second person with closest

relationship to the head was re-coded to be the head.

Upon exploratory analysis of our data as shown by Table 4.13. There are 37.01% zero

observations on the total spent by a household for outpatient care with a mean of 1141.18
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and a standard deviation of 3232.73. Positive cost alone has a mean of 1811.63 and a

standard deviation of 3921.27. Clearly both data are skewed the right.

We therefore adapted methods by [Hardin, 2013] that will enable us to check model fit

using the QICu criteria. Since QICu is quasi likelihood, we therefore adopted the GEE

framework for our model while assuming an independence correlation structure.

We compared our models based on the QICu computed, and reported the results as

marginal effects, evaluated as the mean of any given covariates. Finally, we compared

the logarithmic and default canonical link to show the advantage of using the logarithmic

link. We also plotted the means per age group of the household head to establish any

relationship.

3.4.2 Tweedie Distribution

Tweedie distribution are members of the Exponential dispersion model (EDM) whose

probability density function can be expressed as

p(y; θ, ϕ) = ap(y, ϕ)exp

{
1

ϕ
[yθ − κ(θ)]

}
(3.9)

Or

p(y; θ, ϕ) = bp(y, ϕ)exp

{
−d(y, µ)

2ϕ

}
(3.10)
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where ϕ > 1 is the dispersion parameter, µ = κ
′
(θ) is the position parameter and θ is

the canonical parameter and y is the variable of interest. The mean of the tweedie is

expressed as

E[y] = µ = κ(θ) (3.11)

and the variance given by

var[y] = ϕκ
′′
(θ) (3.12)

A response that an Exponential Dispersion Models (EDM) with mean µ and dispersion

paprameter ϕ such that

y ∼ EDM(µi, ϕ/wi) (3.13)

where wi are known weights usually assumed to be 1 and

g(µi) = η = xT
i β (3.14)

Distributions of selected members of Exponential families is shown by Table 3.1 while the

distribution for the Quasi-likelihood are given in table 3.2

Table 3.1: Distributions of selected members of Exponential families

Distribution κ(θ) µ = E(Y ) Variance function

Normal θ2

2
θ 1

Poisson eθ eθ µ

Binomial ln (1+eθ) eθ

1+eθ
µ(1− µ)

Gamma -ln(-θ) -1
θ

µ2

Inverse Normal -(-2θ)1/2 -2θ µ3

Tweedie θ(1−p)
2−p
1−p

2−p
for p ̸=(1,2) κ

′
(θ) µp for p ̸=(0,1)
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3.4.3 Mean Function

Mean is the first moments and is a function of variance

3.4.4 Variance function

The variance function uniquely identifies a distribution within the class of EDMs whereby

the variance is related to the mean through κ
′
(θ) = µ and v(µ) = κ

′′
(θ). The variance

function describes the mean-variance relationship of a distribution when the dispersion

parameter is constant.

Our interest lies on the last distribution in table 3.1 which is a three parameter family

of distribution in the µ(mean), ϕ > 0(dispersion)and p(index parameter)that determines

the shape of the tweedie distribution. Most of the common distribution are within the

tweedie, and all that one needs is to specify the index parameter. for example, when the

index parameter is 0(Normal), 1(poissom), 2(gamma) and 3(inverse normal).

The variance is given as

V (µ) = µp

where p ∈ (−∞, 0] ∪ [1,∞) is the index determining the distribution [Cook, 2000].

Tweedie models exist for all values of p outside the interval (0,1) Apart fro the 4 distribu-

tions stated above, none of the tweedie models have density functions which have explicit

analytic form or which can be written in closed form. however, the densities can be rep-

resented as infinite oscillating intergrals, the methods of interpolation, inversion of the
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cumulant generating function by the saddle point approximation method or evaluating

the corresponding quasi likelihood of the distribution.

Table 3.2: Quasi Likelihood Distributions for selected members of Exponential Fami-
lies Densities

Distribution Q
Normal −1

2

∑
(y − µ)2

Poisson
∑

{ylogµ− µ}
Binomial(κ)

∑
{ylog( µ

1−µ
+ log(1− µ))}

Gamma -
∑

( y
µ
+ lnµ)

Inverse Normal
∑

{ −y
2µ2 +

1
µ
}

Tweedie 1
ϕ
[y µ1−p

1−p
− µ2−p

2−p
] for p̸=(1,2)

Tweedie with p > 1 have strictly positive means with p > 2 being continuous for positive

Y and shape similar to the gamma, but more right skewed. Distributions with p > 0 are

continuous on the real axis. for 1 < p < 2 the distribution are supported on non negative

real numbers and the distributions are mixtures of the poisson and gamma distributions

with a discrete mass at zero. Tweedies are desured due to their ability to model both

discrete and continuous data.

It is known that

κ
′′
(θ) =

dµ

dθ
= µp

and mean by

µ = κ
′
(θ)

Such that

µp =
∂2κ

∂θ

(
∂κ

∂θ

)
=

∂µ

∂θ
(3.15)

Taking reciprocals on both sides and intergrating with respect to µ gives
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θ =


µ1−p

1−p
p ̸= 1,

logµ p = 1

(3.16)

by setting the abitraly constant of intergration to 0, and µ = κ
′
(θ) gives

κ(θ) =


µ2−p

2−p
, p ̸= 2

logµ, p = 2

(3.17)

The tweedie densities can finally be written as

fp(y;µ, ϕ) = ap(y, ϕ)exp

{
1

ϕ

[
y
µ1−p

1− p
− µ2−p

2− p

]}
for p ̸= (1, 2) (3.18)

A quasi likelihood is used by researchers if they dont know the density of of the distribution

but they know the mean and the variance.

For an observation, Q then

Q(y;µ) =

∫
(y − µ)

V (µ)
dµ (3.19)

[Wedderburn, 1974] showed that to fit a quasi likelihood function, only the mean and the

variance relationship needs to be specified.

Following 3.19 then the tweedie distribution has the following likelihood distribution when

setting arbitrarily constyant of intergration to 0.
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Q(µ; y) =

∫
(y − µ)

V (µ)
dµ (3.20)

=

∫
(y − µ)

µp
dµ (3.21)

=

∫
y

µp
− µ1−pdµ (3.22)

=

∫
(yµ−p − µ1−p)dµ (3.23)

=
yµ1−p

1− p
− µ2−p

2− p
(3.24)

There is similarity of the last equation and 3.18 are similar only that we don’t need to

estimate the a(y, ϕ) that doesn’t have closed form

[Dunn and Smyth, 2005] showed that the probability density function of the tweedie can

be represented as

logfp(y;µ, ϕ) =


−λ, for y = 0

− −y
Υ−λ−logy+logW (y,ϕ,p)

, for y > 0

(3.25)

where Υ = ϕ(p − 1)µp−1, λ = µ2−p

ϕ(2−p)
, and W is an example identified by as wrights

generelised bessel function [Wright, 1933] and can be written as

W (y, ϕ, p) =
∞∑
j=1

y−jα(p− 1)αj

ϕj(1−α)(2−p)j !Γ(−jα)
(3.26)
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Where

α =
(2− p)

1− p

with the mean of the poisson gamma given as µ and its varianve by

Var[y] = ϕµp

Following [Dunn and Smyth, 2005] the probability of travelling zero distance is given by

Pr(Y = 0) = exp(−λ) = exp

[
− µ2−p

ϕ(2− p)

]
(3.27)

3.4.5 Approximating tweedie densities using saddle point ap-

proximation

Various methods can be used to estimate a tweedie density including saddle-point, inver-

sion or interpolation [Dunn, 2017, Dunn and Smyth, 2005]. It this thesis, we will consider

the saddle-point approximation under GLM to approximate the starting values for the

GEE.

There is part of the density that cannot be expressed in closed part, bp(y, µ), as seen in

equation 3.10, but can be replaced by a simple analytic expression such that

p(y | µ, ϕ) = 1√
2πϕyp

exp

{
−d(y, µ)

2ϕ

}
{1 + ω(ϕ)} (3.28)

as ϕ → 0 for the tweedie densities. The ratio is expressed as



Chapter 3 . Methodology 53

ς = bp(y, ϕ)
√

2πϕyp (3.29)

such that

fp(y | µ, ϕ) = 1

y
bp(1, ι)exp

{
−d(y, µ)

2ϕ

}
(3.30)

where ι = ϕp−2 such that the ratio of the density to the saddlepoint is expressed as

ς = bp(1, ι)
√
2πι (3.31)

Which shows that ς is a function of p and not of µ and is a function of y and ϕ through

ι.

Using Chebychevs interpolation method [Salzer, 1969], we can then estimate for any

values of the parameter. The error is given by

f(x)− Pn(x) =
n∏

1=0

(x− xi)
f (n+1)(ϖ(x))

(n+ 1)!
(3.32)

Such that we reduce the interpolation error by choosing xi’s to minimize

||w(x)|| = maxx∈[a,b]|
n∏

1=0

(x− xi)| (3.33)

3.4.6 Estimating the Parameters

We need to estimate β’s in order to fit a model. Under the GLM framework, the maximum

likelihood are used to estimate the parameters using the Iterative weighted least square
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as proposed by [McCullagh, 1984]. The likelihood function is usually defined by

L(ζ | y) =
n∏

i=1

f(y; | ζ) (3.34)

where n is the sample size of the datasets, and ζ is the parameter of interest. The log

likelihood is now defined as

ℓ(ζ | y) = logL(ζ | y) (3.35)

log
n∏

i=1

f(y | ζ) (3.36)

n∑
i=1

logf(y | ζ) (3.37)

Let a random variable with notation Y ∼ ED(µ, ϕ) come from the EDM, with dispersion

parameter ϕ and location parameter µ. Then the log likelihood following equation 3.37

can be expressed as 3.38.

L(θ,Φ | Y1, . . . , Yn) =
n∑

i=1

{
Yitθit − κ(θit)

a(Φ)
+ c(Yit,Φ)

}
(3.38)

To note however, the GEE are build from the GLM. This is through membership to the

exponential family as described below. From a series of several equations and the chain

rule, we differentiate the log-likelihood

for 1, . . . , n with respect to β values through a chain of equations expressed as
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∂L

∂β
=

(
∂ℓ

∂θ

)(
∂θ

∂µ

)(
∂µ

∂η

)(
∂η

∂β

)
(3.39)

We can easily show the derivation of the individual components by the following

Using equation 3.39 on equation 3.38,for the first component we can show that

∂ℓ

∂θ
=

n∑
i=1

1

a(Φ)
[yi − µi] (3.40)

Since the last component c(Yit,Φ) differentiated with respect to θ is zero and κ(θ) w.r.t

θ is κ
′
(θ). From equation 3.11 it is clear that κ

′
(θ) is replaced with µ.

The second component is expressed as

∂θ

∂µ
=

1

V (µ)
(3.41)

This follows twice differential of µ = κ
′
(θ) such that it equals to µ = κ

′′
(θ). Following

3.12 then this is expressed as V (µi) such that when you invert, you get equation 3.41

The third component is estimated as a link function expressed using equation 3.14 such

that differentiating ηi w.r.t µi you get g
′
(µi) and inverting this leads to

∂µi

∂ηi
=

1

g′(µi)
(3.42)

The last part uses this principle. let ηi = β0xi,0 + β1xi,1+, . . . , βjxij+, . . . ,+βpxir where

r is the rank of β. The derivative of ηi w.r.t βj is given as xij.
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A score equation from this derivation can now be expressed as

∂ℓ

∂βj

=
1

a(Φ)

n∑
i=1

(yi − µi)

V (µi)

xij

g′(µi)
(3.43)

To estimate the MLE we set the score equation to 0, and the a(Φ) doesnt need tobe

known.

For the estimating equations as defined by [Liang and Zeger, 1986] for a population

average for GLM, the quasi-likelihood is given by

Ψ(β) =
n∑

i=1

{
1

v(µi)

yi − µi

a(ϕ)
x

′

ijD

}
= 0 (3.44)

whereby the first part of the equation is a generalization of the estimating equations of a

GLM. The variance V (µi) can be decomposed into

V (µi) = D(V (µit))
1/2I(ni × ni)D(V (µit))

1/2 (3.45)

We replace the identity matrix with a more general correlation matrix, say Ri(α), since

the variance matrix for correlated data does not have a closed form. [Wedderburn, 1974]

showed that for any choice of Vi, the estimate of β (say β̂) is asymptotically normal

and consistent such that mis-specification of the variance is not an issue in parameter

estimation.

By modifying the Newton–Raphson algorithm using the Fisher scoring criteria, we can

estimate the β’s. This procedure replaces the observed Hessian matrix with the expected
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Hessian matrix. This is achieved by setting Ri(α) as an identity matrix and the scale

parameter ϕ as estimated from the GLM.

To solve the estimating equations, we employ the iterative reweighted least squares algo-

rithm, which is a modification of the Newton–Raphson algorithm such that the observed

Hessian matrix replaces the expected Hessian matrix. The following approach is used to

estimate β’s.

β̂(r) = β̂(r−1) − {
∑

DT
i v(µ)

−1
i Di}{

∑
DT

i v(µ)
−1
i Si} (3.46)

Di = D(V (µit))D

(
∂µi

∂η

)
Xi (3.47)

Si = yi − g−1(η̂i) (3.48)

The iteration continues until the convergence set by the researcher is achieved.

3.4.7 Working correlation

Researchers have argued that there is always a true correlation that exists, however it is

very hard to know or determine. Therefore, a working correlation matrix R is produced

to obtain an estimate of the covariance matrix. This correlation is of size t × t because

they are measured at fixed time point during the survey. Each correlation matrix is of

size ni × ni.
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A further assumption is that the correlation matrix R depends on a vector of association

parameters denoted by α therefore, the working correlation matrix can be defined by

Ri(α) is now specified by the vector of unknown parameter α. Literature dictates that

the choice of the correlation is fully the modelers preference and choice, its advisable to

choose based on theoretical evidence.

However, we rely on the strength of correctly specifying of how the µi relates to the co-

variates. And the covariance matrix converges to some fixed matrix in that the consistent

parameter estimate is assured. Therefore loss of efficiency is reduced as we increase the

clusters.

3.4.8 Independent Correlation Structure for Imbalanced Data

When it is suspect that no existing correlation in a dataset, then we can decide the cor-

relation structure to be independent. This means we expect the same output as we could

if we used the GLM approach. However, To fit a glm with a Tweedie distribution, the

variance power can be estimated using the tweedie.profile command and link function

are needed to be specified. The default link function is the canonical link function, with

the logarithm link function also available.

The following command is used in r to fit a glm,

mod1< −glm(dependent ∼ independent, family=tweedie(var.power=p,link.power=0),

x=TRUE, data=data)

summary(mod1)
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The above approach however doesn’t compute the AIC, common in GLM to get the best

fitting covariates that influences the dependent. The output from the summary only gives

the p-values that shows the probability of rejecting the null under α= 0.05. The output

for the AIC is given as NA.

The implication herein is that you could have a set of many covariates which are significant

but it is impossible to tell which set of combined covariates are best at predicting the

dependent.

Therefore, for us to be able to draw additional scientific information that is relevant to

our research, then the other approach would be to consider the independent correlation

structure which means that we will still get the same results if we are using the glm,

but better placed to get the best set of covariates for the model. Our approach will also

enable us to pick the best set of covariates using the R-squared.

3.4.9 Models selection

The following set of 6 models were investigated in order to understand the effect of

covariates on predicting outpatient healthcare spending in Kenya;

1. log µ = β0 + β1age+ β2wealthIndex+ β3maritalStatus+ β4education

2. log µ = β0 + β1age+ β2wealthIndex+ β3education

3. log µ = β0 + β1age+ β2wealthIndex+ β3maritalStatus+ β4sex

4. log µ = β0 + β1age+ β2wealthIndex+ β3maritalStatus+ β4education+ β5sex
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5. log µ = β0 + β1age+ β2wealthIndex

6. log µ = β0 + β1wealthIndex

Model 6 is a model on wealth index as a predictor for outpatient spending. The choice

of modelling wealth index as a predictor was because it had the least individual QICu

against the outpatient care spending, and is supported by literature [Awiti, 2014]. Model

5 is model controlling for age and wealth index. Age was also found to have individual

low QICu compared to other covariates and therefore it was essence to find its effect

with wealth index. Model 4 is model controlling for age, wealth index, marital status

education and sex of the household head. Model 3 investigated control for age wealth

index marital status and sex. Model 2 controlled for age wealth index and education.

And finally model 1 controlled for age wealth index marital status and education.

In this model, since it was not possible to investigate all possible outpatient cost models, a

systematic approach was adopted to find the most suitable model. First, a single predictor

was developed and the QICu value examined for each. Models with lowest QICu were

further examined Predictors were added successively in order of importance supported

by the literature. Finally, through diagnostic check on the final models, we chose the one

that fits the data adequately. There was no order in modelling the covariates. The model

outputs are presented in table 4.14

In order to fit a tweedie GLM to the outpatient cost data, then it is appropriate to

estimate the variance power. This is achieved through the profile log likelihood function

with the MLE value corresponding to the most appropriate value of the variance function

p with the respective 95% CI. Due to computational burden associated the method, a
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Figure 3.3: The profile log-likelihood plot for cost of out patient care in Kenya using
the model 1 covariates.The solid line is a saddle-point approximation of the P index

from the data with a value of 1.68 and estimated 95% CI [1.67,1.69]

cubic spline interpolation through these computed points is fitted. This is estimated as

1.68. Figure 3.3 shows the tweedie profile with the estimated index parameter and the

confidence interval for the best fitting model.

3.5 Tweedie distributions in modeling clustered data

using exchengable correlation structure and ap-

plications to distance-for inpatient care data

To model distance for inpatient care, we assume that it follows a gamma distribution.

Let Ri be distance recorded for a kenyan traveling seeking inpatient care.
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We can assume that the distances traveled within a county during the survey period N

follows a poisson distribution with mean λ such that if there is no distance covered, then

N = 0 Finally Y represents total distance covered, and is represented as the poisson

sum of the gamma ramdom variables such that Y = R1+, . . . ,+RN with the resulting

distribution called the poisson-gamma distribution as defined by

3.5.1 Notations

Let yit be a vector of responses with a set of corresponding r covariates Xit where i

indexes K units of analysis i = 1, 2, . . . , K; and t indexes the time points t = 1, 2, . . . , ni

for each unit. Thus the number of clusters observed is K. Also, N =
∑

ni and is the total

number of observations accross all units. for inclusion of an intercept the first element of

Xit is set to 1.

Further, let yi = [yi1, yi2, . . . , yini
] denote the coresponding column vector of observations

on the responses variable for unit i and Xi = Xi1, Xi2, . . . , Xini
indicate the ni× r matrix

covariates for unit i.

In our case application to model distance data, then we can define the following

� The response variable yit is the distance travelled in a given county by any given

individual seeking inpatient care

� With 47 data available for all the counties, then K = 47 and i = 1, . . . , 47

� The linear predictor ηit = xit′β
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� define a link function used to relate the response to the linear combination of the

covariates as

g(µit) = ηit

� and the variance as a function of the mean, thus the distribution of the response

variable is

Var[Yit] = ϕV (µit)

� The correlation structure we are investigating is the exchangeable and the free

specification which is an a hybrid of the unstructured

3.5.2 Exchangeable or Symmetrical Correlation for imbalanced

data

The exchangeable or symmetrical correlation structure assumes that there is a common

correlation within the observation in a given county. Thus all the correlation Ri(α)

are all equal. Our data is based on cross-sectional data, thus they were collected at

a specific time. This makes exchangeable a desired correlation to investigate under a

tweedie distribution in GEE. For the exchangeable correlation structure, Ri(α) is defined

as

Ru,v =


1, u = v

α otherwise

(3.49)

And is given in matrix form as
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Ri =



1 α . . . α

α 1 α

...
. . .

...

α α . . . 1


(3.50)

Following [Hardin, 2013] the exchengable correlation structure uses the pearson residuals

r̂it =
(yit − µ̂it)√

V (µ̂it)
(3.51)

from the current fit of the model to estimate the exchengable correlation parameter. α is

then estimated using the following

α̂ =
1

ϕ̂

n∑
i=1

{∑ni

u=1

∑ni

v=1 r̂iur̂iv −
∑ni

u=1 r̂
2
iu

ni(ni − 1)

}
(3.52)

In this study, a Tweedie distribution is used to model predictors of distance for inpa-

tient care. The justification to use the Tweedie distribution is provided in Fig 3.4, which

shows that distance as the dependent variable has a discrete mass at zero and a contin-

uous characteristic. In addition, Table 3.3 shows that the data are right-skewed with a

skewness value of 4.80. We analyzed the distance with the covariates to determine the

best combinations to explain any existing association.

An important property of Tweedie under GEE, is its ability to accommodate both correla-

tion and right skewedness which is a characteristic of our continuous data. This approach

is used in this paper and it complements the work of [Swan, 2006], who used the AR(1)
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Table 3.3: Descriptive analysis of Distance for inpatient care

Statistic Distance travelled (km)

Minimum 0
1st Quarter 3
Median 10
Mean 32.1
3rd Quarter 30
Maximum 700
Shape Right Skewed
Skewness 4.8

correlation structure. Tweedie regression models allow relation of the mean of distance

to the selected covariates. This allows the mean of distance to be modeled as a linear

function of covariates using the log link given by

log(µi) = β0 + β1xi+, . . . ,+βnxn (3.53)

where βj vectors are regression coefficients that corresponds to the xj vectors of covariates,

all fitted based on Tweedie EDM. Means are calculated to assess the relationship between

covariates and the distance.

To fit the models, we need to estimate the index parameter p and the β’s from the Tweedie

distribution using the GLM framework. This could be computationally difficult but the

R package Tweedie [Dunn and Smyth, 2008] and statmod [Giner and Smyth, 2016] fit

this easily. The calculated index parameter as calculated by the software is shown by

Fig 2 in S2 Appendix. To estimate the β’s, we apply the approach of [McCullagh, 1984]

called the Iterative re-weighted least square (IRLS) method in the GLM’s.

These β’s are then updated under the GEE framework as follows.
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Following [Hardin, 2013], quasi-likelihood estimating equations for GLM without any

preference for mean and variance function with 47 clusters are expressed as

Ψ(β) =
n∑

i=1

{
x

′

ikT
1

V (µi)

yi − µi

a(ϕ)

}
(3.54)

for k = 1, 2, . . . , 47 where T is a diagonal matrix of derivatives

∂µi

∂ηi
(3.55)

V (µi) is an ni × ni diagonal matrix which can be decomposed into

V (µi) = T
[
V (µi)

1/2I(ni×ni)V (µi)
1/2
]

(3.56)

The observations in the clusters are treated as independent, but our focus is on the popu-

lation average for which both the mean and the variance are averaged over all the clusters.

Following [Liang and Zeger, 1986], the identity matrix in the above is replaced with a

more general correlation matrix since the variance matrix for data which is correlated

doesn’t have a diagonal form, as follows

V (µi) = T [V (µi)
1/2]CMi(α)T [V (µi)

1/2] (3.57)

where the correlation matrix CMi(α) is estimated by vector α. Proper specification of

the CMi(α) then the β̂ are consistent and asymptomatically normal. To achieve more

efficiency, then it is necessary to include a hypothesized correlation structure within

the clusters. The structure that is suitable for our clustered data without any time
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dependence is the exchangeable given by

CMik(α) =


1 if i = k

α if i ̸= k

(3.58)

From the above, equation 3.58 the matrix is given as

CMi =



1 0.045 . . . 0.045

0.045 1 0.045

...
. . .

...

0.045 0.045 . . . 1


(3.59)

For the multiple regression analysis, this work adjusted for household head gender, ed-

ucation, age, household size, and wealth index. It further adopted the exchangeable

correlation structure under the GEE approach using the Tweedie distribution.

This work examined the regression model fit to select the best model using the quasi-

likelihood based information criterion, or QICu, proposed by [Hardin, 2013], which is an

extension of the QIC proposed by [Pan, 2001], following the Akaike information criterion

developed for the GLM by [Akaike, 1998].

The QICu imposes a penalty based on model complexity to ensure that only a few co-

variates are used to achieve model parsimony. Data in .sav format were imported into

R statistical software version 3.6.3 [R Core Team, 2017] for cleaning, reformatting, re-

coding, and analysis.



Chapter 3 . Methodology 68

Figure 3.4: The profile log-likelihood plots for the distance travelled for inpatient
care in Kenya using gender of the household head, household size, and education as
covariates. The plot estimated the p as 1.63 (1.59,1.67), with the dots representing

95%. The solid line is a cubic-spline smooth interpolation joining the points.

Figure 3.5: Histogram of Distance travelled to seek inpatient care in Kenya
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Results and Discussion

4.1 Introduction

This chapter presents the results

4.2 Effect of Bacterial Vaginosis (BV)-HIV-1 Co-Existence

on Maternal and Infant health: A Secondary

Data Analysis Results

Table 4.1 presents the Demographic characteristics of the women. The mean age was 23.5

year (range 17-39) for the BV-exposed infants and 24.1 years (15-38) for the unexposed

infants. Among BV-exposed women 27.2% had not completed the 8 years of primary

education, 19.6% had completed 8 years and 53.3% had > 8 years education compared

69
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to 35.9%, 17.2% and 46.9% respectively among the unexposed women, however these

differences were not significant (p=0.18). The majority of the women were married, 81%

of the BV-exposed group and 73.4% of the unexposed group, and these differences were

not significant (p=0.18).

Table 4.2 presents the selected maternal morbidity incidences in relation to BV exposure.

There were significant differences between the two groups.

Among the women with data on maternal conditions at delivery, compared to unexposed

women, women diagnosed with BV had a higher prevalence of maternal complications

(18/169 [10.6%] vs. 7/179 [4%]). Women with BV had a higher rate of hospital admission

(35/135 [26%]) compared to women without BV (21/179 [15%]). The mean duration of

hospital admission was 1.3±3.2 days among women with BV compared to 0.7±2.7 days

among women with BV. Exposed mothers were 2.93 times likelier (95% CI, 1.24–7.71)

to report adverse maternal conditions and 1.95 times likelier (95% CI, 1.08–3.51) to be

admitted to the hospital at birth (P=0.02).

The relationship between BV and log viral load is shown in Table 4.3. There was no

significant difference between the two groups regarding viral load (OR, 1.21; 95% CI,

0.91–1.60, P=0.192).

Sample of distribution of the selected neonatal characteristics are depicted in Table 4.4.

Neonates exposed to BV were comparable to unexposed babies in terms of gestational

age, Apgar score, and anthropometric measures of weight and height. There were fewer

male infants among babies exposed to BV compared to unexposed babies (81/179 [45%]

vs. 99/178 [55%]). However, there were more deaths in the exposed group (9 [5%]) than
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Table 4.1: Comparison of the Mothers Demographic and selected maternal Charac-
teristics between the two Groups

Variable Exposed Unexposed RR(95% CI) P-value

Maternal demographics

Age: Mean (Range) 23.5(17-39) 24.1(15-38) 0.21

Marital Status: N (%)
Single 28(15.2%) 42(21.9%) 0.18
Divorced/Separated/Widowed 7(3.8%) 9(4.7%)
Married 149(81.0%) 141(73.4%)

Education: N (%)
< 8 Years 50 (27.2%) 69(35.9%) 0.18
8 Years Complete 36(19.6%) 33 (17.2%)
>8 Years 98(53.3%) 90 (46.9%)

Number of pregnancies: Mean (Range) 2(1-8) 2(1-6) 0.22

Number of live births: N (%)
0 73(39.7%) 75(39.1%) 0.74
1 and 2 87(47.3%) 86(44.8%)
>3 24(13.0%) 31(16.1%)

Birth Outcome: N (%)
Live 168 (97.7%) 181(98.4%) 0.31
Intra-partum Deaths 2 (1.2%) 3 (1.6%)
Still Births 2 (1.2%) 0(0%)

Any STD: N (%)
Yes 52 (28.3%) 59 (30.7%) 0.71
No 132 (71.7%) 133 (69.3%)

Maternal Characteristics

Log viral load per milliliters:Mean(SD) 10.64(1.79) 10.37(1.88) 0.19

Viral load> 39482: N (%)
Yes 79(53.3%) 76(46.3%) 1.15(0.92-1.44) 0.25
No 69(46.7%) 88(53.7%)

Admitted after birth?: N (%)
Yes 32(19.3%) 16(9.7%) 1.99(1.14-3.48) 0.02
No 134(80.7%) 149(90.3%)

Adverse maternal Conditions?: N (%)
Yes 16(9.7%) 7(4%) 2.45(1.04-5.81) 0.04
No 149(90.3%) 170(96%)
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Table 4.2: Outcomes of maternal morbidity incidences

Bacterial Vaginosis Status

Present Absent OR (95% CI) P-value

Adverse maternal conditions, %
(n)

10.6 (18/169) 4 (7/179) 2.93 (1.19–7.20) 0.02

Maternal hospital admissions, %
(n)

26 (35/135) 15 (21/179) 1.95 (1.08–3.51) 0.02

Mean duration of admission,
days

1.3±3.2 0.7±2.7

OR comparison are made to the bacterial vaginosis unexposed.Data are reported as
proportions (of patients with valid data) or mean ± standard deviation. P-values were
derived from Fisher’s exact test. Maternal admissions were the ones immediately after
birth

Table 4.3: OR of bacterial vaginosis and Log viral load

OR (95% CI) P-value

Viral load 1.21 (0.91–1.60) 0.19

in the unexposed group (5 [2.8%]). On average, BV unexposed infants had a higher mean

body length (48.6±2.5 cm) than BV exposed infants (48.1±4.3 cm). Overall, 5 (3%) of

169 babies exposed to BV had an LBW (<2500 g) compared to 1 (1%) of 178 unexposed

infants.

Table 4.4: Distribution of neonatal characteristics

Bacterial vaginosis status

Exposed Non-exposed

Died, n (%) 9 (5.4) 5 (2.8)
Birth weight per 100 g 31±5.5 32±5.0
Length, cm 48.1±4.3 48.6±2.45
Gender (male), n (%) 81 (46.5) 99 (55.6)
Head circumference, cm 35.2±1.49 35.2±1.59
Maturity, weeks of gestation 39.5±2.35 39.8±2.03
Apgar score 9.63±1.29 9.71±0.87
Maturity, Dubowitz score 57.7±8.2 57.8±8.11
Low birth weight (<2500 g), n (%) 5 (3) 1 (1)

Table 4.5 presents the association between exposure to BV and birthweight which had
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been shown in other studies to be the most important independent predictor of BV,

whereby a non-linear association was reported. Exposed neonates had 0.96 times odds of

weight compared to unexposed. However, the results not significant at the 0.05 level.

Table 4.5: Bacterial vaginosis and birth weight as a continuous variable

OR (95% CI) P-value

Birth weight 0.96 (0.92–1.00) 0.08

Evaluation of any morbidity incidences among the neonates is presented in Table 4.6.

It is not surprising that no morbidity incidence are associated with BV. This is because

babies interact with their mothers biome during birth and therefore the effects of BV are

evident after birth.

Table 4.6: ORs of morbidity incidence among the neonates

OR (95% CI) P-value

Jaundice 1.2 (0.58–2.52) 0.62
Conjunctivitis 1.39 (0.57–3.50) 0.47
Lymphadenopathy 0.70 (0.30–1.57) 0.39
Respiratory distress 1.03 (0.12–8.66) 0.98
Skin rash 0.93 (0.48–1.77) 0.82
Prematurity 0.70 (0.09–4.29) 0.7
Asphyxia 1.06 (0.25–4.55) 0.93
Pneumonia 2.13 (0.20–46.12) 0.62
Sepsis/meningitis 0.63 (0.13–2.60) 0.53
Other abnormality on exam 1.29 (0.34–5.28) 0.71

To assess overall morbidity of incidences with the percentage on, ever reported, among

infants during the year, the study results are presented in Table 4.7. In the Chi-Square(χ

2) test of association between BV and the various morbidities, only hepatomegaly and

having a cold showed statistical significance. No other morbidities assessed exhibited any

association at (P<0.05).
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Table 4.7: Overall morbidity incidences reported and correlation analysis of bacterial
vaginosis and morbidity incidences

Bacterial vaginosis status Chi-squared test

Overall morbid-
ity incidence,
n(%)

Exposed, n (%) Non-exposed, n (%) P-value

Pneumonia 111 (34) 47 (30) 64 (37) 0.2
Ear infection 32 (10) 17 (10) 15 (27) 0.5
Blood in stool 38 (12) 21 (13) 17 (10) 0.3
Lymphadenopathy 140 (43) 62 (39) 78 (46) 0.3
Encephalopathy 3 (1) 1 (1) 2 (1) 0.6
Sepsis 22 (7) 11 (7) 11 (6) 0.8
Conjunctivitis 78 (24) 43 (27) 35 (21) 0.1
Dehydration 5 (2) 2 (2) 3 (1) 0.7
Wheezing 70 (21) 30 (19) 40 (23) 0.3
Hepatomegaly 47 (14) 14 (9) 33 (19) 0.007
Cold 283 (86) 129 (82) 154 (90) 0.04
Otitis 21 (6) 9 (6) 12 (7) 0.6
Fever 243 (74) 111 (70) 132 (77) 0.2
Cough 290 (88) 134 (84) 156 (91) 0.1
Diarrhea 20 (6) 7 (4) 13 (8) 0.2
Thrush 96 (29) 43 (27) 53 (31) 0.5
Vomiting 146 (45) 72 (46) 74 (43) 0.6
Difficulty feeding 146 (45) 72 (46) 74 (43) 1.6
Heat rash 120 (37) 58 (37) 62 (36) 0.9
Fungal rash 64 (20) 33 (21) 31 (18) 0.5
Eczema/dermatitis 62 (19) 28 (18) 34 (20) 0.6
Scabies 63 (19) 30 (19) 33 (19) 0.99
Mouth ulcers 15 (5) 8 (5) 7 (4) 0.7

Results of multiple logistic regression analysis are described in Table 4.8. The study

findings shows that at 6 months, infants of BV exposed mothers were 3.08 times likelier

to have bloody stool and 2.94 times of being dehydrated. They were also more likely

to vomit 1.64 times and had higher odds of mouth ulcers at 12.8 times. At 12 months,

exposed infants were 1.81 times likely to be dehydrated and were more likely to vomit

with odds of 1.39. Our results depicts a trend of decrease in morbidity with growth of an

infant.

Additionally, there were higher reports of hospitalization (OR 1.12 95% CI(0.61,1.68),

p=0.96) among the exposed though results not statistically significant, and higher clinic

visits among the exposed (OR 1.26, 95% CI(1.01,1.61),p=0.07) though results are not

statistically significant.
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Table 4.8: Predictors of bacterial vaginosis at 6 and 12 months with corresponding
95% Confidence Intervals (CI) and p-values

Six months Twelve months

OR (95% CI) P-value OR (95% CI) P-value

Pneumonia 1.14 (0.75–1.72) 0.54 1.20 (0.88–1.65) 0.25
Ear infection 0.55 (0.18–1.54) 0.27 0.63 (0.33–1.17) 0.14

Respiratory Wheezing 0.67 (0.34–1.27) 0.22 0.87 (0.59–1.27) 0.47
infections Cold 1.09 (0.88–1.35) 0.44 0.99 (0.84–1.16) 0.88

Otitis 1.10 (0.60–2.01) 0.76 1.10 (0.79–1.55) 0.57
Cough 0.97 (0.77–1.23) 0.81 0.93 (0.78–1.10) 0.39

Stool with blood 3.08 (1.11–10.00) 0.04 1.19 (0.67–2.12) 0.56
Gastrointestinal Dehydration 2.94 (1.44–6.37) 0.01 1.81 (1.05–3.19) 0.03
infections Diarrhea 0.72 (0.43–1.22) 0.23 0.64 (0.45–0.89) 0.01

Vomiting 1.64 (1.06–2.56) 0.03 1.39 (1.01–1.92) 0.04
Mouth ulcers 12.8 (2.27–241.21) 0.02 2.34 (1.00–6.03) 0.06

Lymphadenopathy 0.74 (0.55–0.99) 0.04 0.65 (0.52–0.82) 0.01
Encephalopathy 0.55 (0.07–3.57) 0.53 0.51 (0.07–2.74) 0.45
Sepsis 1.27 (0.55–2.96) 0.57 1.18 (0.53–2.65) 0.68
Conjunctivitis 1.32 (0.84–2.08) 0.24 1.41 (0.95–2.10) 0.09
Difficulty feeding 0.74 (0.49–1.12) 0.16 0.78 (0.63–0.97) 0.02

Other Heat rash 0.79 (0.55–1.13) 0.2 0.75 (0.56–1.01) 0.06
infections Fungal rash 1.04 (0.62–1.77) 0.87 1.15 (0.75–1.78) 0.51

Eczema/dermatitis 0.95 (0.76–1.19) 0.67 0.87 (0.73–1.04) 0.13
Scabies 0.78 (0.37–1.62) 0.5 1.04 (0.69–1.55) 0.86
Hepatomegaly 0.47 (0.19–1.05) 0.08 0.56 (0.32–0.94) 0.03
Fever 0.75 (0.57–0.99) 0.04 0.89 (0.73–1.07) 0.22
Thrush 0.94 (0.64–1.37) 0.74 0.92 (0.67–1.28) 0.63

4.2.1 Mortality in the first twelve months of life

We compared survival between infants whose mothers were exposed and those whose

mothers were not (Figure 4.1). There was no significant difference in the mortality dis-

tribution between the two groups (p=0.65); however, the graph showed a trend of higher

mortalities in the BV exposed group.

4.2.2 Discussion

The results of this study suggest that exposure to BV has a significant effect on the in-

cidence of morbidity among babies and their mothers. It was important to analyze the

status of the baby after birth, because healthy babies grow well, 6 months because that
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Figure 4.1: Kaplan–Meier analysis of infant mortality over 12 months between infants
with maternal exposure/ non-exposure to bacterial vaginosis

is the time a baby is initiated into complementary feeding and 1 year as it marks end of

infancy and beginning of childhood. As supported by the literature, in the assessment of

neonates, no morbidity showed statistically significant results even after adjustment for

other morbidities. This has previously been reported by [Nduati et al., 2000]. However,

the findings of the study showed adverse neonatal effects among the exposed subjects,

similar to that reported by [Dingens et al., 2016]. Several studies have established an

association between BV and various morbidities. For example, [Hillier et al., 2018] re-

ported that exposed women had twice the chance of giving birth to children with LBW.

Our analysis (which yielded non-significant results at the 0.05 alpha level) showed a 0.95
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times likelihood of LBW among exposed subjects. The lower mean birth weight in the

exposed group is also a good pointer to the consistencies in association as reported in

other related studies [Freitas et al., 2017, Isik et al., 2016, Thorsen et al., 2006]).

Hospital visits (including admissions and non-admissions) for different morbidities have

been investigated by several authors. Maternal hospitalization after birth has drawn the

interest of researchers and particularly in developed countries, there has been a trend

toward shortening the postpartum stay in hospital. Some of the factors include cost

and availability of hospital beds for other mothers in need of care. [Evans et al., 2008]

investigated the impact of early discharge on outcomes among infants and found no

differences in the outcomes of early and late discharge. However, the authors conducted

a meta-analysis on the same data and found no study that reported any differences, even

though there was an international trend toward shortening the postpartum length of stay

in hospitals among women who have undergone vaginal delivery to improve the mother’s

sleep, for proper bonding of the mother and infant, and to protect the infant-mother dyad

from nosocomial infections [Benahmed et al., 2017].

Our analysis showed a 1.95-fold increase in the frequency of maternal hospital admissions

among exposed subjects compared to non-exposed subjects. Although no benefit or risk

has been associated with a longer stay in hospital, long admissions always have a cost

implication. The hospitalization of infants has been investigated previously. [Jones et al.,

2018] investigated hospitalization as a result of general specific causes in Europe and re-

ported higher odds among infants with jaundice and difficulty feeding. While this study

does not specify the causes of hospitalization, it compares the odds of hospitalization
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between the two groups. From the study results, there were no differences in hospitaliza-

tion at 6 months; however, higher odds among exposed subjects for both admissions and

non-admissions were reported.

Although not statistically significant at the 0.05 alpha level, the results show a direction

and strength of the effect, with a 1.12-fold increase among exposed and hospitalized

subjects. Hospitalization was a very key indicator of health outcomes because in as much

as an infant could be hospitalized due to specific morbidities, he/she may end up being

diagnosed with a different morbidity which will also be treated. This could result in

what we refer to as reverse causality, in which an unexposed subject could show higher

odds for a disease than an exposed subject. This is evidenced by morbidity incidences

regarding hepatomegaly, diarrhea, and difficulty feeding which showed higher odds among

unexposed subjects at 12 months. Diarrhea, in contrast to our findings, has been found

to be a good predictor of infant morbidity in other studies [Anigilaje, 2018, Berger et al.,

2007, Chang et al., 2018, Khalil et al., 2019].

Lymphadenopathy and fever at 6 months, showed higher odds among unexposed subjects;

as this result was incongruent to that reported in the literature, we performed further

analyses. Infant hospitalization does not only have a negative effect on the development

and physical growth of an infant, but also results in psychological distress and loss of

parenting on the part of the mother [Lean et al., 2018]. This is one of the indicators

of childhood morbidity as infants with longer periods of hospitalization tend to show

higher morbidity rates due to the risk of disease exposure at care facilities, particularly

in developing countries [Shiva et al., 2017].
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At 6 months, there was a 3.08-fold increase in the passage of bloody stool among exposed

subjects, the results of which were significant at the 0.05 alpha level. A growing body

of evidence has linked this with infant colitis and intestinal infections [Murphy, 2008],

which were not assessed as morbidities in the present study. Though not direct link with

BV, our results suggest a causal relationship.

Another morbidity of interest is dehydration which yielded significant results at both 6

and 12 months. [Finberg, 2002] defined dehydration in infants as a loss of water and salt

or extracellular fluid, caused by bacterial and viral agents. Our results showed a 2.94-

fold and 1.181-fold increase in the rate of dehydration among exposed subjects at 6 and

12 months, respectively. Vomiting has been associated with a 1.64-times and 1.39-times

increase in odds among exposed subjects at 6 and 12 months, respectively, the results of

which were significant at the 0.05 alpha level. Some authors have associated this with a

lot of infant discomfort, thus hindering their optimal proper growth [Gibson, 1959].

Finally, the other morbidity of interest is mouth ulcers. These, which vary in size, are

open wounds that spread across the mouth lining of an infant and have diverse effects on

their growth. Some direct effects include difficulty feeding as a result of pain, burning,

and irritation of the mouth. A 12.8-fold increase at 6 months and a 2.34-fold increase at

12 months among exposed subjects demonstrates the seriousness of the effects of BV. This

is a morbidity that requires proper intervention to enable proper growth of the infant.

The maternal viral load was investigated, and 1.21-fold odds were reported among exposed

subjects, the results of which were not statistically significant. Our results were consistent

with those reported by [Burns et al., 1997] who reported an association and a 3-fold odds

of vaginal candidiasis among women infected with HIV but with low CD4 counts. In
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addition, a statistically significant association was reported by [Atashili et al., 2008]

between HIV and BV.

Although there is no direct link between the CD4 count and viral load, low levels of the

latter are desirable. [Jamieson et al., 2001] reported on severe BV among women infected

with HIV. The viral load is a very essential component, particularly in the context of

HIV and an undetectable viral load is very desired as it reduces the risk of transmission,

especially from mother to child.

[Mbori-Ngacha et al., 2001] reported that any BV could be treated during pregnancy

; however, studies have shown that treatment does not scale down the adverse effects

associated with preterm birth and neonatal risks [Brocklehurst et al., 2013, Carey et al.,

2000].

There has not been any published literature linking mortality directly to BV. However,

there is an indirect link through the risk factors of BV. Preterm birth, pregnancy compli-

cations, and prematurity are risk factors that greatly affect neonates and infant mortality

as reported in the Demographic and Health Surveys [Leidman et al., 2018] and by other

authors [Chaim et al., 1997, Ukah et al., 2020].

While, in their previous study, [Nduati et al., 2000] excluded intrapartum deaths, still-

births, and abortions, our analysis captured intrapartum deaths. The Kaplan–Meier

analysis through the cumulative hazard plot showed no differences in the hazard of mor-

tality (p=0.65); however, the graph showed a trend toward a higher mortality rate in the

BV exposed group. Therefore, this means that the risk of mortality still exists among

infants whose mothers are exposed to BV.
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In conclusion, the study results were consistent with those reported in the literature and

added further knowledge in the area of HIV. This study showed that BV among HIV-

exposed women could result in infants who are more vulnerable to several infections due

to a compromised immune status. Assessing the risk of BV infection in HIV-positive

women could be a step in the right direction of developing policies targeting limited

resource countries that could finally mitigate the fatal adverse outcomes on mothers and

their infants.

4.3 Skewed Logit Model for Correlated data and its

application to infant morbidity results

The preliminary analysis showed that 148 (45%) infants were born to women who tested

positive for BV while the remaining 179 (55%) were born to women who tested negative

for BV. 185 (57%) infants were breastfed, while 142 (43%) were formula-fed. 168 (51%)

were males and 159 (49%) were female. 61 (19%) of the infants were HIV-positive, while

266 (81%) were HIV-negative.

It was of scientific interest to model the effects of BV on the marginal probability of

an infant suffering from different morbidities in the first six months of life. Assuming

morbidity incidence as the response, our data had the number of morbidity incidences

recorded in a given month for each infant. Zero was recorded if no incidences occurred.

The study sought to assess whether children born to women who tested positive for BV

were more likely to have a higher morbidity incidence than their counterparts and if the
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effects would change with time. The literature has shown that BV has more effects during

the first months after birth as the child continues to build immunity as they grow. Also,

we expect children who gain weight consistently to have fewer morbidity incidences than

those babies who take time to gain weight.

Table 4.9: BV with morbidity incidences reported from month one to six for both
BV-exposed and unexposed babies in the Nairobi data survey

Time in Months BV present(n=148) BV absent(n=179) Total(n=327)

1 115(78%) 85(47%) 200(61%)
2 97(66%) 84(47%) 181(55%)
3 97(66%) 85(48%) 182(56%)
4 92(62%) 101(56%) 193(59%)
5 86(58%) 96(53%) 182(56%)
6 79(53%) 103(58%) 182(56%)

The frequency of morbidity incidence seemed to decrease evenly in the BV present group.

This was not the same in the BV absent group, which evidenced increases and decreases

in morbidities in the different months considered(Table 4.9). It was, therefore, important

to examine the effect of BV on infant morbidity over time. In order to correctly estimate

the marginal effect of the parameters of interest to be estimated, a distribution had to be

chosen for the dependent variable, which did not involve assuming a specific distribution

would apply. Thus, we considered the following logistic model:

logit(πik) = log

(
πik

1− πik

)
= β0 + β1BVi + β2HIVi + β3feedingi + β4malei

+ β5timek + β6weighti + β51timek × BVi

(4.1)

for k = 1, . . . , 6, i = 1, . . . , 327 where Timek = 1 if the reference moth is under considera-

tion and zero otherwise. Malei = 1 if the ith child is male and 0 if female, HIVi = 1 if the
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child tests positive to HIV and 0 otherwise, Breastfedi = 1 if the child was randomized

to the breastfeeding group and 0 if randomized to the formula feeding group, BVi = 1 if

the mother tested positive for BV and 0 if she tested negative, and Weighti is recorded

continuously for each infant across the six months. Data on morbidities from birth were

included in the month 1 tally, and not as an independent time period, since morbidities

due to BV on neonates was found to be insignificant in previous research [Mwenda et al.,

2021b, Nduati et al., 2000]. Interaction of time and BV was used to assess changes in

immunity over the time of exposure.

Our data can effectively account for the within-subject correlation. Hence, we consider

the following correlations structures in terms of independence, as well as whether they

are exchangeable, AR(1), M-dependent, and unstructured. This study was interested in

comparing two models, the skewed logit-GEE and the standard GEE, when the response

is assumed to be asymmetric.

We assessed different correlation structures and all our parameter estimates were within

the acceptable standard error ranges. However, measurements which were not taken for

the same individual exhibit lower correlation and follow a pattern imposed by AR(1), thus

for the interpretation of our work, AR(1) was adopted. For the M-dependent variable,

the default m = 1 was used.

Very few iterations are needed for the convergence of the models in GEE. Therefore,

we initially set the maximum iterations to 50, however, the models with M-dependent

variable and AR(1) correlation structure did not converge. We increased the maximum

iterations to 200 and this achieved convergence. More precisely, independence converged
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Table 4.10: Regression Parameter Estimates with Model-Based and Empirical
Standard Errors (SE) for Independence, Exchangeable, AR(1), Unstructured and M-
dependent Correlation Structures Estimated Using Unconditional Residuals for GEE

and skewed logit-GEE

GEE SL-GEE

Effect Corr Est Model SE Rob SE Wald Z p-value Est Model SE Rob SE Wald Z p-value

Intercept Ind 0.253 0.228 0.276 0.918 0.359 0.176 0.209 0.239 0.737 0.461
Exch 0.088 0.263 0.264 0.335 0.738 0.024 0.242 0.235 0.100 0.920
AR(1) 0.119 0.267 0.276 0.430 0.667 0.043 0.245 0.239 0.180 0.858
Unstr 0.029 0.272 0.272 0.108 0.914 -0.038 0.249 0.238 -0.160 0.873
M -dep 0.129 0.261 0.276 0.468 0.640 0.050 0.239 0.239 0.207 0.836

Breastfed Ind -0.057 0.108 0.157 -0.361 0.718 -0.062 0.099 0.136 -0.455 0.649
Exch -0.022 0.146 0.150 -0.148 0.883 -0.027 0.134 0.134 -0.205 0.838
AR(1) -0.052 0.137 0.157 -0.332 0.740 -0.058 0.126 0.136 -0.425 0.671
Unstr -0.027 0.149 0.155 -0.173 0.863 -0.031 0.137 0.138 -0.224 0.823
M -dep -0.051 0.131 0.157 -0.323 0.747 -0.057 0.121 0.136 -0.416 0.678

BV Ind 1.086 0.431 0.791 1.373 0.170 1.495 0.348 0.420 3.561 <0.001
Exch 1.049 0.470 0.802 1.308 0.191 1.475 0.371 0.419 3.524 <0.001
AR(1) 1.000 0.533 0.910 1.099 0.272 1.494 0.421 0.444 3.368 <0.001
Unstr 0.901 0.530 0.957 0.941 0.347 1.286 0.440 0.553 2.326 0.020
M -dep 1.017 0.526 0.926 1.098 0.272 1.513 0.417 0.451 3.353 <0.001

BV:Time Ind -0.199 0.091 0.145 -1.376 0.169 -0.275 0.077 0.083 -3.310 <0.001
Exch -0.198 0.088 0.144 -1.368 0.171 -0.277 0.072 0.083 -3.340 <0.001
AR(1) -0.191 0.107 0.163 -1.176 0.240 -0.280 0.088 0.087 -3.214 <0.001
Unstr -0.176 0.099 0.170 -1.036 0.300 -0.246 0.084 0.103 -2.383 0.017
M -dep -0.196 0.106 0.166 -1.180 0.238 -0.285 0.088 0.088 -3.227 0.001

HIV Ind 0.189 0.179 0.309 0.612 0.541 0.222 0.159 0.244 0.910 0.363
Exch 0.248 0.250 0.299 0.830 0.406 0.273 0.225 0.249 1.096 0.273
AR(1) 0.216 0.234 0.326 0.662 0.508 0.253 0.208 0.253 1.001 0.317
Unstr 0.193 0.253 0.323 0.596 0.551 0.232 0.225 0.259 0.894 0.371
M -dep 0.212 0.224 0.328 0.646 0.518 0.250 0.198 0.253 0.989 0.323

Male Ind -0.370 0.117 0.168 -2.202 0.028 -0.382 0.107 0.145 -2.632 0.009
Exch -0.358 0.156 0.158 -2.261 0.024 -0.358 0.144 0.143 -2.495 0.013
AR(1) -0.359 0.148 0.166 -2.162 0.031 -0.369 0.135 0.144 -2.568 0.010
Unstr -0.319 0.159 0.165 -1.937 0.053 -0.329 0.145 0.146 -2.262 0.024
M -dep -0.363 0.142 0.167 -2.173 0.030 -0.373 0.130 0.144 -2.589 0.010

Time Ind 0.178 0.062 0.076 2.346 0.019 0.192 0.057 0.066 2.915 0.004
Exch 0.146 0.067 0.075 1.941 0.052 0.165 0.061 0.065 2.539 0.011
AR(1) 0.135 0.071 0.076 1.783 0.075 0.150 0.065 0.065 2.289 0.022
Unstr 0.110 0.069 0.075 1.457 0.145 0.126 0.063 0.065 1.918 0.055
M -dep 0.143 0.070 0.076 1.875 0.061 0.156 0.064 0.066 2.370 0.018

Weight Ind -0.112 0.057 0.071 -1.581 0.114 -0.125 0.052 0.061 -2.043 0.041
Exch -0.068 0.067 0.069 -0.982 0.326 -0.087 0.062 0.060 -1.447 0.148
AR(1) -0.062 0.067 0.071 -0.871 0.384 -0.076 0.062 0.061 -1.242 0.214
Unstr -0.034 0.068 0.072 -0.481 0.631 -0.050 0.063 0.062 -0.805 0.421
M -dep -0.068 0.065 0.071 -0.953 0.341 -0.080 0.060 0.061 -1.311 0.190
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after 12 iterations, exchangeability was achieved after 16 iterations, unstructured compli-

ance was achieved after 14 iterations, AR1 was achieved after 89 iterations and after 108

iterations, the model was m-dependent.

The results showed significant differences in the coefficients and their marginal effect,

particularly in the interaction terms. When we chose a p-value =0.05 level of significance,

parameter estimates from the standard GEE were not significant. In this case, only time

and gender were significant. However, when using the skewed logit GEE, gender, time,

BV, and the interaction between time and BV were significant.

Table 4.11: Calculated coefficient of bacterial vaginosis with time from exp(β1+β15×
time), achieved by replacing the respective values from the skewed logit-GEE model with

the AR-1 correlation structure

Time Coefficient of effects of bacterial vaginosis

Month 1 3.37
Month 2 2.54
Month 3 1.92
Month 4 1.45
Month 5 1.11
Month 6 0.83

4.3.1 Effects of time on BV

This work proceeded and calculated the effects of BV across time on infants given by

exp(β̂1 + β̂15time) and reported in Table 4.11. This table shows that the effects of BV

on morbidity tend to decrease with time from month 1 to month 5. For example, if

we compare month 1 and month 5, this work can conclude that at month 1, the OR of

having morbidity incidences are 3.37 times higher for exposed than unexposed babies. At

month 5, the OR decreases to 1.11 for exposed babies. At month 6, we observe a reverse

causality, whereby the unexposed had higher OR for morbidities.
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This can be explained such that sick babies had more hospital visits and therefore, were

treated for different illnesses, thus achieving a better health status in the long run. This

leaves the BV unexposed group of babies vulnerable to other illnesses during growth, with

minimal health intervention as they rarely sought medical attention. This is likely due

to the non-threatening nature of the health conditions. With time, these could have led

to an increase in illnesses experienced by infants in the unexposed group.

4.3.2 Discussion

In the present study, this work utilized the skewed logit technique under the GEE frame-

work to analyze the risk factors associated with BV. It built on the existing contributions

put forth by Nagler [Nagler, 1994] and Liang and Zeger [Liang and Zeger, 1986]. The

model adopted in the present study is based on logistic regression, but modified assuming

a parameter for skewness, to allow it to accommodate both symmetric and asymmetric

responses.

There are several situations in which the relationship between the function of the response

and covariates is not strictly symmetric. The asymmetric model is a class of models that

borrows strength from both symmetric and asymmetric forms and can be applied in

both scenarios, while still maintaining model parsimony. Furthermore, the frequently

encountered assumption of symmetry is very restrictive, unrealistic, and can lead to

incorrect conclusions regarding the parameter estimates.

The model adopted by this thesis has been shown to be useful in applications when the

symmetry properties of a binary outcome are unknown, and it seems to be applicable
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in both symmetric and asymmetric cases. Due to the correlated nature of longitudinal

data, and needing an easy means of marginal interpretation, the GLM methods seem

insufficient, but the use of GEE has been recommended and successfully applied in recent

literature.

This work found that gender is a reliable predictor of infant morbidity. Specifically, girls

were more likely to be healthy than boys. This finding is supported by previous studies

and adds to the large body of knowledge indicating that boys require more attention and

health care than girls. With girls having a higher survival probability than boys, our

results appear consistent with the reports of Stevenson et al. [Stevenson et al., 2000].

This finding implies that there is hopes for a decline in mortality among boys if better

interventions targeting their health can be implemented.

BV was found out to have a significant relationship with infant morbidities when other

covariates are controlled for. Infants whose mothers tested positive for BV were found

to have higher morbidity incidences compared to those whose mothers tested negative.

The effect of BV on infant health has been reported in several studies, but with different

conclusions on morbidities and mortalities [Lassi et al., 2013, Monebenimp et al., 2011].

The most important finding in this work was the degree of significance observed in the

skewed logit model for the interaction between BV and time. This finding would be of

interest to doctors, as it indicates the need to plan for proper treatment and monitoring

of an infant’s health after confirming the maternal BV status, particularly during the first

six months. This finding can also inform targeted infant morbidity campaigns, depending

on the mother’s BV status and the age of the infant.
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The negative coefficient of weight and infant morbidities could indicate that an increase

in weight gain could reduce morbidity. Babies who eat well tend to gain nutrients from

food and have better capabilities of fighting illness in their bodies. Proper weight gain

is also an indicator of proper growth. These results were consistent with those reported

by [Berger et al., 2007].

Past work by Verma et al. indicated an increase in the number of illnesses during infant

growth when [Verma and Kumar, 1968]. This is in contrast with what was reported in

table 4.9, which shows only an insignificant decline among all the infants(5%), from a

high of 61% to a low of 56%. To be more precise, considering the BV-exposed group,

there was a huge decline of 25%, from a high of 78% in the first month to 53% in the

sixth month.

However, in the non-exposed group, there was a slow increase, whereby the number of

morbidities observed increased from 47% in month one to 58% in month six. Morever,

this study was based on the general population of the infants, without factoring in any

other factors defining the exposed group or applying any randomization.

Not all covariates included in our study were statistically significant at p = 0.05. Nonethe-

less, their coefficient sign could assist in detecting a trend of association with the response.

The covariate set included, e.g. the mode of feeding, whereby breastfeeding had a nega-

tive relation with infant morbidities. This finding could reflect behaviors that have been

reported in other studies whereby breastfed infants were healthier than their counterparts

who were formula-fed [Nduati et al., 2000, Venkatesh et al., 2011].

Finally, the HIV status of the infant exhibited a positive coefficient with infant morbidity.
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Infants who tested positive for HIV presented signs of morbidity, consistent with the

results obtained by [Venkatesh et al., 2011]. Morbidities associated with HIV were found

to increase infant mortality risk according to studies conducted in Kenya [Mbori-Ngacha

et al., 2001], Botswana [Shapiro et al., 2007], Cameroon [Monebenimp et al., 2011], and

South Africa [Venkatesh et al., 2011].

The novelty of this study is the consideration of a skewed logit model under the GEE

framework in health research. This study is one of the few studies that specifically explores

the effect of BV on infants across time and considering the HIV status.

Longitudinal binomial data are likely to be observed in numerous health fields where the

binary components are correlated. Logit and probit models are widely used for modeling

this outcome, which means applying the assumption that data is symmetrical. However,

some competing methods for symmetry have been proposed as the logit and probit models

do not support skewed binomial responses.

This work has shown that skewed logit-GEE is able to show an association between

variables which is not identified by the standard GEE. Accordingly, it fits our imbalanced

health dataset better. This thesis has further shown the superiority of the SL-GEE over

the standard GEE when asymmetry is assumed. In our approach, the score of morbidities

is converted to a binary, with asymmetry in the extreme morbidity cases.

Literature supports an association between BV and morbidity among infants [Mwenda

et al., 2021b]. Thus, since skewed logit-GEE has predicted a BV-time interaction, this

work concludes that asymmetry is an important factor to consider before choosing the

analysis method. It must be appropriately accounted for in analytical models to avoid
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biases in final parameter estimates, as has been established in this paper and other works

[Coelho et al., 2013, Nagler, 1994, Prentice, 1976, Tay, 2016].

Our research has focused on the commonly neglected ’minor diseases’ which have been

ignored at the expense of ’major causes’ of infant morbidity and mortality [Kellerman

et al., 2013, Ladner et al., 2013]. Therefore, this work recommend further research and

policies that target infant morbidity on a more holistic level.

4.3.3 Model Diagnostics

This thesis subjected the model to test its robustness using the variance ratio method.

Model-based vs Sandwich-based Variance Ratio

Table 4.12 shows the differences in variances from the model and the Huber sandwich

estimate in which this work sought to establish by what factor are they different. This

was calculated using

V.R =

(
Robust S.E

Model S.E

)2

As expected, and confirmed by our results, the major differences between the model-

based and empirical variance occur as a result of the independence correlation structure.

The largest differences are in the estimated variance of the BV with the sandwich-based

variance ratio. There are differences, but these do not have a notable influence on the

variances. They are comparable within the correlation structure.
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Table 4.12: Differences in Model-based vs Sandwich-based Variance Ratios for both
GEE and SL-GEE

GEE SL-GEE

Effect Corr Est V.R Est V.R

Intercept Ind 0.253 1.465 0.176 1.317
Exch 0.088 1.006 0.024 0.944
AR(1) 0.119 1.062 0.043 0.952
Unstr 0.029 0.996 -0.038 0.917
M -dep 0.129 1.115 0.050 0.997

Breastfed Ind -0.057 2.099 -0.062 1.893
Exch -0.022 1.051 -0.027 0.997
AR(1) -0.052 1.309 -0.058 1.169
Unstr -0.027 1.085 -0.031 1.022
M -dep -0.051 1.433 -0.057 1.274

BV Ind 1.086 3.364 1.495 1.458
Exch 1.049 2.915 1.475 1.275
AR(1) 1.000 2.911 1.494 1.109
Unstr 0.901 3.262 1.286 1.578
M -dep 1.017 3.108 1.513 1.172

BV:Time Ind -0.199 2.507 -0.275 1.168
Exch -0.198 2.690 -0.277 1.331
AR(1) -0.191 2.328 -0.280 0.977
Unstr -0.176 2.923 -0.246 1.505
M -dep -0.196 2.446 -0.285 1.006

HIV Ind 0.189 2.968 0.222 2.343
Exch 0.248 1.436 0.273 1.225
AR(1) 0.216 1.947 0.253 1.487
Unstr 0.193 1.634 0.232 1.322
M -dep 0.212 2.145 0.250 1.626

Male Ind -0.370 2.057 -0.382 1.845
Exch -0.358 1.027 -0.358 0.989
AR(1) -0.359 1.268 -0.369 1.128
Unstr -0.319 1.069 -0.329 1.001
M -dep -0.363 1.395 -0.373 1.234

Time Ind 0.178 1.498 0.192 1.344
Exch 0.146 1.261 0.165 1.137
AR(1) 0.135 1.132 0.150 1.003
Unstr 0.110 1.207 0.126 1.090
M -dep 0.143 1.180 0.156 1.049

Weight Ind -0.112 1.538 -0.125 1.365
Exch -0.068 1.057 -0.087 0.963
AR(1) -0.062 1.120 -0.076 0.979
Unstr -0.034 1.098 -0.050 0.988
M -dep -0.068 1.189 -0.080 1.042
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The least variances differences are observed in the AR(1) correlation structure. This

supports our choice for using the AR(1) correlation structure for model interpretation.

This is because, for a correctly specified correlation, this work expect the model and

sandwich errors to be comparable, thus increasing the efficiency in the estimation of the

β’s.

4.4 Predictors for Outpatient Care Cost in Kenya

4.4.1 Model Results

A summary of the total cost for outpatient care incurred by the households from the

KHHEUS 2018 data are shown in table 4.13. The minimum total cost by household

for outpatient care is 0 and 1 KES (0.01 USD) with a maximum spending of 90000 KES

(900USD). The mean spend by households was 1141.18 KES (14.41 USD) while for greater

than zero was 1811.63 KES (18.11 USD). Very high standard deviation was observed with

the data being right skewed. Therefore, to take care of the skewness, there was need to

factor it in and the tweedie model under GEE has been found to be a great candidate for

this type of modelling.

The output with the QICu as explained in the six models are as shown in the Table 4.1.

The model with the lowest QICu was preferred and it this is the model this work will use

for explanation of our results.
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Table 4.13: A summary of the total cost for outpatient care incurred by the house-
holds from the KHHEUS 2018 data. Statistics have been recorded for the survey month
total cost ≥ 0 KES (all the households) and survey month cost > 0 KES (Those
who spend money on outpatient care only). All measurements are recorded in Kenya

Shillings(KES).

Statistic Total cost ≥ 0 by the household Total Cost > 0 by the household

Minimum 0 1
Maximum 90000 90000
Mean 1141.18 1811.63
Median 170 640
Standard Deviation 3232.73 3921.27
Skewness 8.5 7.05
Characteristic of the skewness Right skewed Right skewed

The output with the QICu as explained in the six models are as shown in the Table 4.14.

The model with the lowest QICu was preffered and it was the only one which this work

will use for explanation of our results.

Table 4.14: Different model outputs with calculated QICu. The model with the lowest
QICu is selected as the best fitting model. In our case, Model 1 is selected as the most
parsimonious model for predicting outpatient care cost among households in Kenya using

the Kenya Household Health Utilization Survey 2018

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

QICu 976341.2 976874 977759.3 985834 978755 982713.3

Coefficient β̂ p β̂ p β̂ p β̂ p β̂ p β̂ p

(Intercept) 6.61 0.00 6.59 0.00 6.49 0.00 6.77 0.00 6.37 0.00 6.88 0.00
Age 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
Wealth Index
Ref (Poorest)
Poor 0.04 0.64 0.05 0.59 -0.01 0.87 0.04 0.68 0.00 0.98 -0.02 0.85
Middle 0.09 0.32 0.09 0.34 0.00 1.00 0.09 0.29 0.00 0.96 0.02 0.82
Rich 0.41 0.00 0.40 0.00 0.30 0.00 0.41 0.00 0.31 0.00 0.31 0.00
Richest 0.59 0.00 0.58 0.00 0.53 0.00 0.61 0.00 0.53 0.00 0.42 0.00
Marital Status
Ref (Single)
Married -0.04 0.63 0.00 1.00 -0.03 0.76
Separated -0.24 0.07 -0.15 0.25 -0.19 0.17
Divorced -0.22 0.07 -0.06 0.63 -0.12 0.35
Education
Ref (None)
Primary -0.25 0.00 -0.24 0.00 -0.27 0.00
Secondary -0.41 0.00 -0.38 0.00 -0.44 0.00
Post secondary -0.08 0.52 -0.05 0.70 -0.12 0.33
Sex
Ref (Male)
Female -0.16 0.00 -0.19 0.00
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The best fitting model with the lowest QICu was Model 1 with coefficient and covariates

expressed as ;

log µ = 6.61 + 0.01Age+ 0.04Poor+ 0.09Middle+ 0.41Rich+ 0.59Richest

− 0.04Married− 0.24Separated− 0.22Divorced

− 0.25Primary− 0.41Secondary− 0.08Post-Secondary

Where

� µ is the expected cost of outpatient care

� Age is a continuous variable

� Wealth index was in 5 different categories (Poorest, Poor, Middle, Rich, Richest).

Poorest was the reference category

� marital status was grouped into 4 categories (Single, Married, Separated and Di-

vorced). Single was the reference category

� education status was grouped into 4 categories (None, Primary, Secondary and

Post-Secondary). None was the reference category

Since the results are in logarithmic form, this work convert to exponential for interpreta-

tion.

Surprising, age factor for the household head was found to be a significant predictor of

outpatient care cost. However, there is no much differences in terms of odds. A unit
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Figure 4.2: Variations of mean cost for out-patient by household head age

increase with age, results to an increase of healthcare spending by a factor 1.01 (p-value

0.00 ). The cost of out-patient care was found to change with age in a Sinusoidal manner.

Figure 4.2 shows the variation of total cost for outpatient expenses by households with

age of the household head during the survey period. Higher cost is experienced where

the age of the household head is high.

Outpatient care costs increase across the wealth quantile, with the rich and richest spend-

ing more, 1.50 and 1.80 respectively compared to the poorest, results significant at p=0.05.

The poor and the middle had higher expenses on outpatient 1.04 and 1.09 compared to

the poor, but the results are not significant at p=0.05.

Outpatient cost varied differently across marital status. Married, separated and Divorced
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spend less on outpatient compared to the unmarried 0.96, 0.78 and 0.80 respectively, but

not significant at 0.05.

Outpatient cost varied across different levels of education. Primary, secondary and post-

secondary spend less compared to those who never attended school at 0.77, 0.66 and 0.92

respectively. However, only primary and secondary were statistically significant while

post-secondary was insignificant at p=0.05.

4.4.2 Discussion

This study utilizes the Generalized Estimating Equations techniques to analyze predic-

tors of outpatient spending in Kenya. The study develops and uses the Quasi Information

Criteria [Hardin, 2013] to assist in identifying factors that best show association of out-

patient care with the relevant covariates. This study builds on existing work by [Swan,

2006] and [Dunn and Smyth, 2005].

The models in this paper are based on Quasi likelihood criteria, which means this work

doesn’t need to specify the full likelihood, but it just need to show how the mean relates

to the covariates. There are situations where data are correlated and non-normal meaning

the conventional methods could be in appropriate for modelling. The GEEs are class of

models that cater for both correlated and skewed responses.

Furthermore, the most regularly encountered assumptions of specifications of full likeli-

hood are solved. Consequently, the ability to compute the QICu for model comparison

gives us more flexibility in statistical analysis.
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In this study, wealth index, as a measure of socio-economic status was found to be a good

predictor of outpatient spending. This finding is consistent with literature and has been

reported in other studies [Girma et al., 2011, Kevany et al., 2012]. Yet other studies have

not shown any association of wealth index and spending since the study population was

homogeneous poor [Ngugi et al., 2017]. This implying that spending in relation to wealth

index varies by sample selection.

The rich are also likely to seek care in private hospitals which are more expensive, thus

the higher costs reported. The Government of Kenya is making efforts to reduce poverty

among its citizen in order to raise their socio-economic status to ensure that the house-

holds have the extra income to spend on their care. In addition, the government should

strive to lower fees for outpatient care to encourage citizens to visit when sick before their

conditions deteriorate. Some developing countries have conducted a cost benefit analysis

of their healthcare [Shon et al., 2018].

A study by [Muriithi, 2013] found out that user fees was among the key determinants of

whether a patient is treated or not. The implication thereof is that, we could be having

people who don’t seek care during sickness or injury due to the un-affordability of fees

charged at the facilities. The wealthy could spend more, since they are spoilt for choice

and can afford any doctor of their choice, especially the private clinics. Very minor cases

can be assigned to highly trained doctors thus not making full utility of this doctor who

could be handling more complicated cases.

The unmarried spend more on outpatient healthcare compared to married, separated or

divorced. possibly, they could be spending more on inpatient. For example, this group is

mostly comprised of parents, and therefore could be spending more on other illnesses and
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services that comes with lifestyle and old age. for example, most chronic diseases affect

mainly the aged and services such as child birth are mostly inpatient.

So this finding could suggest that the unmarried spend more on outpatient while the

other group could be spending more on inpatient. The finding could caution the youth

on what to expect as they move to their next stages of life. The unmarried are mostly

younger, and sole decision makers. They are also mostly young and could be trying to

be financially stable.

It is interesting to observe that the less educated spend more on outpatient care than

the ones who have any education. The learned could be self-medicating for less serious

illnesses hence spend less, yet the less educated could only be believing that every illness

require hospital visit.

In Kenya, most outpatients are considered out of pocket spending. Most educated could

have better financial status and afford different insurance which pay for them. Sometimes

the values paid since they are swapped, may not have been captured in the data collection.

Most educated have better lifestyle, due to better finances thus can have better health.

Better health means you need less outpatient care. In contrast, less educated could mostly

have poor lifestyle, poor feeding, poor housing mostly live in slums and have a higher

probability of exposure to different illnesses, that would finally require care. This means

they have to seek medical care, thus spend more.

Households with elderly persons spend more thus explaining an increase in cost spend

with age. As you age, your immunity becomes compromised, more likely to have diseases

thus would be required to pay more on outpatient care.
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This work went ahead and calculated some probabilities based on [Dunn and Smyth,

2005] to demonstrate the usefulness of the tweedie in modeling cost for outpatient care.

When 1 < p < 2, then the tweedie parametres (µ, p, ϕ) can be parameterized to poisson

and gamma parameters (λ, γ, α) which can be used to provide some estimates that this

work can compare to other outputs. This are given in equation

λ = µ(2−p)/ϕ(2− p)

γ = ϕ(p− 1)µ(p−1)

α = (p− 2)/(1− p)

Where λ is the average spend per month, γ is the shape of the cost distribution when a

households pays for inpatient care and α γ is the mean spend per month.

Considering our best fitting model, the parameter index p is 1.68, µ=6.76, ϕ is 30.85.

When it reparametrize to gamma and poisson gives the predicted mean cost spend per

month calculated as

λ =
6.76(2−1.68)

30.85(2− 1.68)
= 0.18

and

γ = 30.85(2− 1.68)6.76(1.68−1) = 36.12

finally

α =
1.68− 2

1− 1.68
= 0.47
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The mean amount spend per month on out patient care is αγ = 0.47∗36.12 = 16.97 KES

(0.17 USD) per month, which translates to 1403 KES (14.03 USD) per year.

Following [Dunn and Smyth, 2005] the probability of incurring zero cost on outpatient

by the household (in other words, the probability of not seeking outpatient care) is given

by

Pr(Y = 0) = exp(−λ) = exp

[
− µ2−p

ϕ(2− p)

]
(4.2)

such that, probability of zero outpatient is given by exp(−0.18) = 0.83 meaning that 83%

of household will not spend any cost on outpatient care in any given month. Therefore

only 17% will spend on out patient cost. consistent with other results.(cite khheus)

Table 4.15: The residual deviance and degrees of freedom for a Tweedie glm with
differing link functions using Model 1 covariates

Link function Deviance DF

Logarithm 404663.6 11118
Canonical 404872.7 11118

Conclusions

In terms of model selection using the QICu approach, this work selected model 1 as the

best model for predicting outpatient care with QICu of 976341.2. However, in terms

of the most parsimonious model with the least number of covariates for predicting out

patient expense is model 2 with a QICu of 976874.



Chapter 4 . Results and Discussions 101

This can be explained as follows; adding marital status to the model 2, lowers the QICu

significantly, but it is not significant at α = 0.05. The differences in the QICu is basi-

cally due to penalty imposed during calculation equivalent to increase in the number of

covariates.

The data collected were on recall of the 4 visits during the year. In terms of recall,

spending on the 4th visit could be more accurate, however our study focused on the first

visit. A further research on each individual visit would be necessary.

More spending on subsequent visits was expected since a revisit would mean the previ-

ous one was not effective and thus require more medical tests. Also, more research on

subsequent visit is required.

There is a thin line between inpatient and outpatient care. A difference in financial status

could bring out the difference. For example, a headache could be a symptom of a serious

condition like migraines. Having financial strength would facilitate more test like scans

which can bring out the issue clearly.

This could lead to an admission for better treatment and probably inpatient admission.

However, the poor may opt for pain killers which is what they can afford. In this case, the

rich could have its problem solved, while the poor person’s health condition would con-

tinue deteriorating. This means, a serious inpatient case can be converted to outpatient

care due to financial constraints.

In addition, outpatient in Kenyan could also include those who bought medicine at a

chemist. So, some of the outpatient could be self-diagnosed. Those who are educated

are better placed to do self-diagnosis before moving to a hospital. This could further
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our support for less spending during visit 1 by those who are educated than the less-

educated. It would be interesting to see how education associates with outpatient care in

the subsequent visits, which are more serious.

It is common knowledge that not all the rich are better educated, but most better educated

have better socio economic status. However, this work observed the rich spend more, while

the most educated spend less, thus the characteristic not coming out clearly. However,

the differences could be (1) mode of payment for example, it is easier to recall a cash

payment for a service than when someone swipes an insurance card.

This value may be missed during data collection, and (2) computation of wealth index

which involve assets which may be outdated, for example a teacher who lives in an urban

area far away from his main family could not be having assets like a fridge, TV and could

be classified more poorer than a poor household which has a car and telephone which is

not functioning.

In this work, the following 17 assets were used to determine how wealthy the households

were. Radio, TV with Free to Air Set-top-box/Digital TV, TV with Pay TV Decoder, In-

ternet protocol TV (IP TV), Analogue TV (With no connection/signal), Internet through

mobile phone/Modem, Fixed Internet at home e.g. Fiber, Satellite dish, LAN, Wi-Fi,

Computer/Laptop/Tablet, Bicycle, Motor Cycle, Car, Truck/Lorry/tractor/ bus/ three

wheeler truck, Refrigerator, Motor boat, Animal Drawn cart, Canoes and Tuktuk.

The challenge with this approach is that a household which has a Digital Tv that combines

functionality of Radio and TV worth like 5000USD, is ranked poorer than a household

with a detached Radio, digital TV and analogue TV not in use but available, worth
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20USD, 500USD and 200USD. The sum which is much lower that the single TV held by

the different household. Computation of such should be revised. Additionally, it would

be interesting see if this characteristic is also observed on inpatient care cost.

This study recommends UHC as it will be an equalizer for all the Kenyans who need

medical care as well as other developing countries.

Finally, a reproducible R code is provided in Appendix 9.

Further analysis on the Age

Also, the single best predictor of cost was age with a QICu of but although wealth index

had a lower QICu. The same principle of penalty applies and the difference in QICu is

ignored. so, this work investigated further the age variable that can inform policy.

Include spatial maps to make the thesis cute(plot both median age and median spend

and mean and ) The variable age was statistically very significant, but the coefficient

1.01 showed no major difference. However, this variable was wiggling and behaved is a

sinusoidal manner.

It also had the lowest Qicu. In order to draw a valid conclusion on its implication, this

work subjected it to bivariate spatial mapping to understand how it varies regionally with

cost. This work plotted age versus mean spending in Kenyan counties.
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Figure 4.3: Bivariate plot of mean cost for mean out-patient costs by household head
age for regions in Kenya

Interpreting the bivariate map of Mean outpatient

cost and age of the household head

In our map, this work identified that in our map 4.4, we identified that counties (Turkana,

West-Pokot, Busia, and Migori) in North western part of the country, (Kilifi) in the South

eastern part of the country fell in Lowest household head age/Lowest outpatient cost

suggesting that this counties may be important targets for increase in resources since
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Figure 4.4: Bivariate plot of median cost for out-patient costs by household head age
for regions in Kenya

they are also among the poorest.

This counties are headed by young heads of households thus policies targeting having more

responsible members should be developed. Additionally, counties with high household

age and high cost of outpatient (Kisii and Nyamira) in western. Kiambu in Central and

Makueni in Eastern may be important for targeting reduction in cost for outpatient care

and inequalities in wealth.
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Counties with High age/low mean cost (Nyandarua, Nyeri, Muranga, Kirinyaga, and

Embu) in central could suggest could have more population in old age

High cost/low age (Narok and Kajiado) in southern, (Laikipia and Isiolo) in Eartern and

Lamu in South eastern would require policies targeting the lowering cost as they are the

largest counties in terms of land size and cultures.

To reverse the inequalities, this thesis suggest a shift in distribution of resources across

counties.

4.5 Results from Analysis of Distance Traveled for

Inpatient Care in Kenya

4.5.1 Model selection

This work presented 10 competing models for distance that demonstrates the best-fitting

model with the lowest QICu, as shown in Table 4.16. This work used the backward

selection approach [Zhang, 2016] as a proxy to identify the best predictors for distance

under a GLM.

However, our model output and interpretation are only based on distance adjusted for

the respective covariates in the GEE framework. This work added the covariates into the

model and computed their QICu and R2. It then removed the covariates one by one and

checked whether the changes improved the model fit. The model with the best-fitting

covariates from Table 4.16 is model 7 written as
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log(µ) = 0.093+0.222paidMed+1.226paidHigh−0.523employed+0.092hMed+0.471hLarge

where µ is the expected distance traveled to access inpatient care. In this model, the

amount paid for healthcare (medium and high) takes a value of 0 or 1 depending on

which category is being assessed.

The low group is the reference category. Employment takes a value of 1 if the respondent

is employed. Finally, household size (medium and large) takes a value of 0 or 1 depending

on what is being assessed. The reference category, small household size, does not appear in

the equation. This model resulted in ϕ=6.12 , α=0.045 , R2=9.96%, and QICu=13158.23

with p=1.64,95% CI(1.59,1.68).

Table 4.16: Models selection using QICu and R2

Model
number

Covariates QICu R2 Variance
power
P(95%CI)

No. of co-
variates

10 Ability to pay, employment status, house-
hold size, wealth index, education level, age

13304.7 10.39 1.63(1.58,1.67) 6

9 Ability to pay, employment status, house-
hold size, wealth index, education level

13306.16 10.41 1.63(1.59,1.67) 5

8 Ability to pay, employment status, house-
hold size, wealth index

13317.38 9.7 1.62(1.59,1.67) 4

7 Ability to pay, employment status, house-
hold size

13158.23 9.96 1.64(1.54,1.68) 3

6 Ability to pay, employment status 13280.7 9.5 1.64(1.59,1.68) 2
5 Have insurance, place of residence 12733.1 0.19 1.67(1.63,1.71) 2
4 Ability to pay 13066.33 8.38 1.64(1.60,1.68) 1
3 Place of residence 12773.2 0.17 1.67(1.63,1.71) 1
2 Household size 12755.65 0.54 1.67(1.63,1.71) 1
1 Employment 12698.31 1.4 1.67(1.63,1.67) 1

Model 7 was selected as the best model, even though models 9 and 10 had higher R2

values. This work selected the model with the best balance between the QICu and the R2,
in which model 7 fits as the best parsimonious model, with the least covariates with
acceptable QICu and R2 values.

To interpret the coefficients, which are captured in logarithmic form, the exponential was

taken. From the given model, all factors remained constant, and the population average



Chapter 4 . Results and Discussions 108

distance to a government inpatient center in Kenya is approximately exp(3.093), which

is 22.04 km.

Compared to those who paid the lowest amounts for healthcare (1–3,000 KES), citizens

in the middle pay category (3,001–10,000 KES) traveled 1.24 times the distance to a

healthcare facility, whereas those who paid the most traveled 3.40 times the distance.

The employed traveled half the distance to a healthcare facility for inpatient care than the

unemployed (0.59 times). Compared to small household sizes (1–3 members), medium

households (4–6 members) traveled 1.096 times the distance to a healthcare facility, and

the largest household sizes (7+) traveled 1.60 times the distance than small households.

Finally Table 4.17 shows under the current setting, considering a Logarithmic link func-

tion is more acceptable since it has lower deviance compared to the canonical link function,

which is the default in the software.

4.5.2 Discussion

This work has demonstrated the use of a new technique for clustered and correlated

non-normal responses that depict a discrete mass at zero under generalized estimating

equations. This study presents the best set of covariates for predicting distance traveled

by Kenyans to access inpatient care from 47 counties. Data from each county are rep-

resentative, and the pooled data contributed substantial information about distance for

inpatient care. A set of potential covariates was investigated to better understand their

effects.
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Table 4.17: The residual deviance and degrees of freedom for a Tweedie glm with
differing link functions using Model 7 covariates

Link function Deviance DF

Logarithm 5251.198 455
Canonical 5280.799 455

The model without covariates showed that, on average, a Kenyan seeking inpatient care

traveled a distance of 22.04 km. However, the travel cost can differ substantially, in

that the road terrain, which is preferred for accessing hospitals, varies widely in Kenya.

Some roads are all-weather, whereas others are seasonal, meaning during rainy times,

accessibility is greatly hampered.

Healthcare system performance can be assessed according to the healthcare service distri-

bution, access, and utilization [Thaddeus and Maine, 1994]. Access is mostly determined

by cost and distance. Thus, irrespective of the availability of a service in a hospital, if it

is not utilized by the target group, its full utility cannot be actualized. The aim of the

United Nations Sustainable Development Goal 3 is to ensure healthy lives and promote

well-being for all at all ages, and this work shows the importance of distance in measuring

this goal.

Most inpatient care is usually critical and requires specialized attention by a medical

expert; therefore, distance to access could determine survival. Although some studies

have not linked accessibility to use [Nesbitt et al., 2016], there has been evidence that

ease of access could potentially save lives, as some life-threatening conditions are worsened

by long distances to see a physician. For example, when a patient suffers a heart attack,

the time to get to the hospital can determine their survival.
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As shown in the inpatient data, some patients were admitted to healthcare centers op-

erated by the government. Although not able to handle extreme cases, they are well-

equipped to handle many cases, such as childbirth. However, in the event of complications

from childbirth, such as the need for cesarean services, patients may need to be referred

to a larger facility. Therefore, major conditions still need referrals to large hospitals,

and thus access for inpatient care for these services at lower-level hospitals remains a

challenge.

[Noor et al., 2006] investigated access to government healthcare centers and reported a

distance of less than 10 km. Although they focused on only four districts in Kenya, these

districts could be used as a proxy for the national distance estimate.

However, their focus was on small healthcare centers mostly used for outpatient care and

thus could be misleading when predicting inpatient access. Also, it is important to note

that distance in Kenya is difficult to predict because of the differences in terrain and

road types (e.g., tarmacked, marram grass, and earth); thus, a low value R2 of 9.9% is

reasonable.

Distance for inpatient care is important to the Kenyan government as it tries to achieve

universal healthcare coverage. The main goal of universal healthcare is to ensure that

every citizen has access to quality healthcare services; however, this can only be achieved

if the distance to access is reasonable and achievable. What this means is that for the

government to achieve the general objective, it needs to improve access for inpatient

services.

It is also evident that although distance to inpatient services is generalized, Kenya has



Chapter 4 . Results and Discussions 111

a unique geographical terrain that can affect access. For example, it may be easier to

access a facility that is further away in an urban area than close by in a rural area.

This is because most urban cities have good road networks, making access easy. If the

government wants to increase access, more needs to be done to improve the road network

infrastructure in rural areas.

Our results show that high costs are associated with longer distances traveled to access

inpatient care. This work can interpret this in two ways. First, the cost incurred could

signify an expensive procedure or care. Second, those with higher incomes could choose

a facility that is farther away and more expensive, even though the required care is not

complicated, as they could be more confident regarding the care in these hospitals.

Those who had paid the most (10,001+ KES) tended to travel a greater distance (up

to 3.40 times the distance) for inpatient care compared with those who paid the least

(1–3,000 KES), and those in the middle amount paid category (3,001–10,000 KES) tended

to travel 1.24 times the distance. Higher wealth gives a person the freedom to choose any

facility they are comfortable with for inpatient care, and high hospital fees are associated

with complex medical needs and procedures.

For example, a cesarean section costs more than a normal delivery, although both require

inpatient care. However, a large hospital is likely more suited to handle a cesarean on

a woman with preeclampsia than small hospitals. This is because sophisticated medical

equipment is required for the procedure and is mainly found in large referral hospitals.

Therefore, a patient with high financial means will travel longer distances for the proce-

dure and pay higher medical costs. Those with low incomes will check in at the closest

and most affordable facility.
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Our results indicate that Kenyans traveled longer distances for complex medical proce-

dures or for better services, which may not necessarily be found in the closest inpatient

healthcare facility. Some people may have traveled a long distance to obtain privacy. For

example, a person could be more comfortable being admitted for inpatient care for an

STD in a hospital further away from home. However, our results may not be comprehen-

sively conclusive, and further investigation on why those who travel farther paid more for

services should be established.

In Kenya, after adopting a new constitution in 2010, healthcare services devolved to

obtain proper and closer management at low levels. However, due to limited budgets

and other indirect effects, such as poor roads and lack of electricity, there has been slow

growth in terms of hospital upgrades for inpatient care. For example, setting up an

inpatient care facility deep in a rural area without a good road network or proper supply

of electricity would be meaningless in terms of serving the people. Thus, facilities are

mainly established in areas where such services can be accessed easily. This means that

people in remote areas still must travel long distances for inpatient service.

Inequalities in employment opportunities also determine the distance traveled to access

inpatient care. It is evident that the employed travel half the distance as the unemployed

to obtain care, as supported by [Allin et al., 2009].

This means that the unemployed (with lower incomes) are forced to use facilities within

reach and may be prevented by the lack of financial resources to access better facilities

for specialized treatment. Additionally, the employed have the advantage of being able

to afford to live in an area where large inpatient facilities are found.
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For example, large referral and specialized hospitals are typically found in capital cities

and large towns so they are accessible and serve many people. These facilities also need to

be connected to an uninterrupted supply of water and electricity. Most employed people

choose to live in places where such services can be found.

Family size was the last covariate that determined distance traveled, with medium and

large households traveling longer distances than small households. This difference could

be because large households are mostly found in rural areas and slums rather than urban

areas. It is easier to raise a large family in rural areas because food and accommodations

are affordable, as many people live on their ancestral land where they also farm most of

their food.

This shows that there is a need to improve inpatient facilities in rural areas and slums.

Without a strong policy focus to support equal access to inpatient services in Kenya, pri-

oritizing the rural areas and slums, opening up job opportunities, and encouraging smaller

families, the dream of achieving universal healthcare coverage will remain unfulfilled.

This work is the first to estimate the distance for inpatient care in Kenya, analyzing

all responses from 47 counties. This provides the best estimate and evidence on which

policies to formulate. This area has been understudied by researchers focusing on both

inpatient and outpatient care, and an analysis of the scarce existing literature could lead

to wrong conclusions and poor policy formulation.

For example, [Noor et al., 2006] reported a distance to access of less than 10 km, which

indicates that every person has access to healthcare. However, as stated earlier, most of

these facilities are for outpatient care. Thus, if policies are based on this conclusion, there
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may not be improvements to much-needed inpatient care that requires sophisticated and

complex procedures, as well as doctors.

A drawback of previous studies is the analysis of distance using summary statistics,

whereby researchers do not dig deep into the data and only report averages. Using Table

2 as a guide, for example, this work could have reported a median of 10 km, which

may be misleading, as it did not factor in skewness and the correlations that exist in the

data, which could provide more insight. This shows that our advanced statistical analysis

provides a more meaningful interpretation of the data by factoring in both skewness and

correlations.

We calculated probabilities based on [Dunn and Smyth, 2005] to demonstrate the ap-

plicability of the tweedie distrubutions in modeling distance traveled to access inpatient

care. When 1 < p < 2, then the tweedie parameters (µ, p, ϕ) can be parameterized to

poisson and gamma parameters (λ, γ, α) which this work uses for estimation. This are

given in equation

λ = µ(2−p)/ϕ(2− p)

γ = ϕ(p− 1)µ(p−1)

α = (p− 2)/(1− p)

Where λ is the average distance traveled, γ is the shape and α γ is the mean

Considering our best fitting model, the parameter index p is 1.64, µ=22.04, ϕ is 6.12.

When this work reparametrize to gamma and poisson gives the predicted mean cost



Chapter 4 . Results and Discussions 115

spend per month calculated as

λ =
22.04(2−1.64)

6.12(2− 1.64)
= 1.38

and

γ = 6.12(1.64− 1)22.04(1.64−1) = 28

finally

α =
1.64− 2

1− 1.64
= 0.56

The mean distance to access inpatient care is αγ = 0.56 ∗ 28 = 15.75

Following [Dunn and Smyth, 2005] the probability of incurring zero cost on outpatient

by the household (in other words, the probability of not seeking outpatient care) is given

by

Pr(Y = 0) = exp(−λ) = exp

[
− µ2−p

ϕ(2− p)

]
(4.3)

such that, probability of households covering zero distance is given by exp(−1.38) = 0.25

meaning that 25% of household that require inpatient care will cover less than 2KM; such

that three quarter of the population cover large distance to access inpatient services. (only

25% of households had inpatient care within their reach).

This thesis have demonstrated a new approach for handling correlated non-normal data

and created an R function GitHub repository

https://github.com/samwenda/Tweedie-with-Exchengable-CorrelationOur approach
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has demonstrated how distance decay can affect access to much-needed healthcare ser-

vices. Our approach can be used in other datasets that have a discrete mass at zero and

correlation within clusters. Our study has also provided a new way of calculating the

denominator, following [Hardin, 2013] as shown in Appendix 2.

Further advancement of this study could be to focus on individual analyses of the 47

counties. This is out of the scope of this work, which only focuses on the population

average. Although some studies have found no association with use [Nesbitt et al., 2016],

better access regardless of the quality is still influenced by distance.

This study has some limitations. First, the data were missing a significant amount of

information, which made it difficult to input. Therefore, this work only used complete

data. New complex statistical methodologies for predicting non-normal data need to be

developed.

Finally, for policy implications, policies targeting having more government healthcare

facilities in rural areas and slums should be developed because large populations exist in

those areas.

In addition, policies advocating smaller families should be encouraged to ensure that

people can afford better healthcare. Job availability will also increase flexibility in the

choice of a facility. Sophisticated services should be brought closer to low-income families

to ensure they do not travel long distances for much-needed services.
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4.5.3 Model Diagnostics

4 competing models were subjected to further analysis to find the most appropriate model.

The models are 7,8,9 and 10.

4.5.4 A non-parametric test of the randomness of residuals

[Hardin, 2013] has documented clearly the test to be conducted as adviced by [Chang,

2000] who directed using the non parametric test such as the Wald-Wolfowitz randomness

test. This analysis determines if the model assumptions are violated by the data.

The Wald-Wolfowitz randomness test, is Z-statistic given by equation 4.6, which was

performed on each of the 4 models to test the signs of raw residuals were distributed in

a random sequence.

Following [Hardin, 2013], the expectation given as

E(T ) =
2npnn

np + nn

+ 1 (4.4)

and Variance given as

V ar(T ) =
2npnn(2npnn − npnn)

(np + nn)2(np + nn − 1)
(4.5)

The test statistic for the hypothesis that the signs of the residuals are randomly dis-

tributed is,
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Wz =
T − E(T )√
V ar(T )

(4.6)

which has an approximately standard normal distribution, and thus the corresponding

p-value can be determined using z-tables one sided.

Table 4.18: Models Diagnostics using Wald–Wolfowitz run test

Model Negative
Residuals
(nr)

Positive
Residuals
(pr)

Observed
runs (T )

Expected
Value(E(T ))

Variance(V ar(T )) Test Statistic (Wz) p-value

10 330 121 179 178.07 69.28 0.111 0.456
9 336 115 177 172.35 64.87 0.577 0.288
8 336 115 169 172.35 64.87 -0.416 0.338
7 332 119 165 176.20 67.82 -1.36 0.086

Extreme values of Wald–Wolfowitz run test(Wz) indicate that the model does not ade-

quately reflect the underlying structure of the data

The test reveals that using α=0.05 there is not enough evidence to reject the hypothesis

that the residuals from the model are random. In general, the result of the runs test

does not significantly change due to the hypothesized structure when the model is correct

in terms of including necessary covariates in their proper form. Our result suggest that

since the 4 models meet the minimum thresh hold for randomness, then they can be used

as predictors for distance of inpatient care. It is now at the discretion of a researcher to

select the models based on literature for analysis and prediction.
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4.5.5 Raw residuals analysis using Plots and graphical assess-

ments

Since the 4 competing models passed the threshold of Wald–Wolfowitz run test, the other

approach for checking model adequacy is to investigate plots of the raw and Quantile

residuals.

Raw residuals versus the observation numbers

The plot shows by Figure 4.5 shows that the magnitude of the positive residuals is larger

than that of the negative residuals. This indicates that all the four models are not

sufficient enough to model extreme cases of distance as accurate as possible. In addition,

distance travelled for inpatient care had to be greater than zero thus the negative residuals

are expected to have a lower magnitude. With this results, this work prefers to subject

our models to further tests.

QQ normal Plots

Another criteria suggested by researchers for testing randomness is the QQ plots. The

plots as shown by Figure 4.6 shows that all the model are appropriate for modeling

distance for inpatient care, as the residuals lie close to the Normality line. This means

with such results, this work still need further testing to determine the best model fit.
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Figure 4.5: Plot of raw residuals versus the observation numbers

Raw residuals versus the Linear Predictor

It has been established that there were no differences in terms of graphical representation

on for both tests, that is the QQplot and the raw residual versus observation number.

This work therefore subject the models to further test to try seek if it can find the model

that fits the data well. This work considered the raw vesus linear predictor plots as shown

by Figure 4.7

This plot gives a great direction in terms of model selection. It is evident that model

8,9 and 10 have similar fit and do not show uniform spread of the points. This means

the models have a poor fit in predicting distance as far as residual plots are concerned.
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Figure 4.6: QQ normal Plots

Figure 4.7: Plot of raw residuals versus the Linear Predictor
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However, model 7 has better spread of points showing a better fit, and is our most

preffered model.



Chapter 5

Conclusions, Recommendations and

Further Research

Conclusions

This thesis has investigated various aspects of non-normality and correlation under the

GEE framework. Past application under non normality assumptions have seen utiliza-

tion in; (1) insurance field on modeling claims [Peña-Sanchez, 2019, Smyth and Jørgensen,

2002]; (2) meteorological field on analyzing rainfall [Hasan and Dunn, 2012, Swan, 2006];

(3) Health field on examining medical costs [Kurz, 2017] and (4) Dose response data [Mc-

Daniel et al., 2013, Prentice, 1976].

We evaluated two types of datasets, (1) a longitudinal dataset collected over time and (2)

a cross sectional dataset collected over subjects but on the same time. This two datasets

pose diverse challenges in that they are susceptible to skewness and are correlated. A

123
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further challenge on the longitudinal data is the individual risk changing over time as

measurements apart are always different. This leads us to an interesting challenge of

whether the changing in risk profile is important.

This has motivated us to consider different settings to solve health related problems and

add knowledge to the large body of literature. Our first approach was to investigate

the applicability in binomial data when asymmetry was violated and more particularly

estimating the skewness parameter.

In this work, we clearly merged the ideas of [Burr, 1942], [Nagler, 1994] and [McDaniel

et al., 2013] together to provide an improved and scientifically supported algorithm that

determines the skewness parameter from the GLM framework which we finally fit in the

GEE model.

We then tested the performance of the skewness parameter proposed under the GEE by

considering a conventional logit (CL) and the skewed logit(SL). The results show that

the SL performed better than the CL in bringing out relationship of BV with time as

supported by the literature.

The contribution by [Swan, 2006] in addressing the correlation under the tweedie dis-

tribution in the GEE framework, motivated us to consider a different type of setting.

While he considered longitudinal data on rainfall with zero months when there was no

rain recorded, we adopted a different approach by considering clustered data on distance

to access inpatient care and cost incurred during outpatient care with zero distance for

patients within facility reach and zero cost for the households that did not spend money

on outpatient care.
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[Swan, 2006] work adapted the AR(1) correlation structure to find the best predictors

for the rainfall, while considering the QICu [Hardin, 2013]. One of his assumption was

that the correlation was from the same subject (same site for rainfall data collection)

over time. The AR (1) are good candidates for modelling time delay correlation as they

assume closest time points have higher correlation than data collected further apart for

the same subject.

We proposed a different approach by considering clustering within a cluster thus our

source of correlation was associations within the same (county). Our modeling approach

is supported by the fact that people who live in the same cluster are more likely to share

similar characteristics such as hospitals, roads and leadership.

Neglecting the correlation would jeopardize our attempts to have better parameter esti-

mates with minimized standard errors in trying to estimate the best predictors for cost

and distance. We therefore considered the tweedie distributions under independence and

exchangeable correlations to find the best predictors for cost and distance.

A quick attraction to the tweedie under the GEE setting, is in its unique characteristic

to accommodate the discrete mass at zero, relax correlation and account for the right

skewness in the data. Apart from estimating the best predictors for cost and distance,

our work contributed to the statistical methodologies regarding modeling non-normal

data and new approaches in estimating the scale parameter as was discussed by [Hardin,

2013].

GEE are applicable to both normal and non-normal responses, however, if data is non

normal and the assumption is violated, then the parameter estimates could be wrong or
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underestimated. Our work is therefore very relevant since alot of biological data is usually

non normal thus providing a new arena of modeling such.

Recommendation

This work further asserts that researchers should have a keen look at the data before

modeling, and allow the data to speak for itself rather than forcing conventional ways

to model. It further recommends policies targeting the neglected diseases that cause

morbidities and mortalities among infant and mothers.

Policies targeting increase in number of health facilities and qualified personnel together

with proper equipping of public hospitals are encouraged to minimize the long-distance

people travel to seek for inpatient care. Alternative policies that would lead to abolishing

cost associated with outpatient care, will also encourage more people to seek the same

without the worry of getting poorer.

Further Research

This thesis has investigated several issues related to non-normality under GEE setting.

The first two objectives we investigated skewness characteristics in binomial data and

selected the model based on its strength to detect a BV time interaction. The conclu-

sions for this approach follow the [Lipsitz et al., 2019] proposal on selecting models that
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can show an association supported by the literature. This approach may not be practi-

cal for all the models and therefore other methods of getting the best model would be

recommended.

The Quasi Information Criteria (QIC) and the Quasi Information Criteria under indepen-

dent assumptions QICu proposed by [Pan, 2001] have been found to be great candidates

for model selection, and therefore should be modified in such a way that they can be

useful in many unique scenarios like we had.

The main problem with our model was the fact that it contained the same number

of model covariates, and the QIC and QICu are based on penalizing complex models.

Therefore, if we adopt the criteria, we will end up with the same value for the two models

and thus can’t be compared.

In our other two objectives, we investigated independence and exchangeable characteris-

tic for non-normal responses under the GEE framework, since the AR(1) structure had

already been investigated by [Swan, 2006] in modelling rainfall in Australia.

This thesis recommends consideration of other structures in analysis. Some good research

problems that future researches can consider include;

� Scenarios where data are balanced but have a non-normal characteristic. Literature

supports an unstructured correlation in such scenarios as it is not under any influ-

ence, but fits the real correlations. Under such a setting, a good research problem

would be, proposed methodological approach for balanced non-normal data using

the GEE. In such a scenario, the researchers can modify the R code in this thesis

that we adopted for other structures.
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� Proposed hybrid correlation structure under a tweedie distribution could be a po-

tential topic to investigate. Take a case scenario where public hospitals in counties

could be correlated by the fact that they are run by the same body, thus are more

likely to receive similar services. While patients who visit these hospitals are only

correlated at the level of facility they visit, they have a different correlation from

those who visit a different facility (in terms of distance). It would be interesting to

see how such a scenario is modelled out

� Modification of QICu to better select the best covariates. We know the QICu criteria

by [Pan, 2001] tends to penalize models depending on the number of covariates.

Researchers need to look at the penalty imposed by QICu to better select models.

A case example is in our table 4.14 and 4.16,we had difficulties in choosing the

most appropriate model because they were competing in that some models have

low QICu but also low R2 values, which is statistically true but contradicting. A

good research problem would be, Striking a Balance in model selection when QICu

and R2 are contradicting
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Appendix A: Obtaining the

disturbance term α for use in section

4.3

Notations and statistical methods

Consider n independent subjects observed at a specified time t. Given the number of

subjects in our data, let, i = i, . . . , n where n = 327 represents the total number of

subjects and we let the ith infant be observed ni times, where j = 1, . . . , 6. A subject

could be observed at a common set of time t = 1, . . . ,m up to a maximum of 6 times.

The methods can also be applied to unequally spaced time t1 < · · · < tm points (see

Hardie and Hilbe [Hardin, 2013]. pg 75).

Let xi = (xi1, . . . , xinj
)T represent an ni × p matrix-vector of covariates and let yit be

an ni × 1 vector of responses. This study assumes that our response variable, Yij has a

Bernoulli distribution, i.e.,

yij | ρij ∼ Bern(ρij) (1)
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with unknown

E(yij) = ρij (2)

The outcome at time t which is morbidity can be represented as Yi = 1 if Yes for mor-

bidity and 0 otherwise This dependent variable is related to the covariates through a link

function given by

g(ρij) = x
′

ijβ (3)

, where g(.) is a logit link function, β is a p− dimensional vector of regression coefficients,

and xij is an n− dimensional vector of covariates.

To model the marginal and subject specific probability of this type of response, authors

have suggested we parametrize using a probit link Φ−1µ or a logit link

ln

(
µ

1− µ

)
(4)

Subject specific analyses are important since their interpretation is at a lower level, but

are complex to handle when there is a large number of respondents. A probit link function

given by

Φ

(
Xitβ

ss√
1 + σ2

v

)
(5)

is a good candidate for this type, but has computation complexity for modeling higher

order associations, while the logit link function given by

Φ

(
Xitβ

ss√
1 +Qσ2

v

)
(6)
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is easy to implement but has no closed form. The constant is expressed by

Q = 16
√
3/15π (7)

This poses a challenge in the interpret ability and practical applicability of the model.

Furthermore, the link functions are widely applicable in GLMs, which require that the

full likelihood be specified. A major drawback to this approach for repeated measures

is that an increase in the number of the measures results in an exponential increase in

the number of parameters to be specified in the model and estimated. Both the logit

and probit have conditional probability distributions, which are maximum at 0 such that

Pi for i ∈ (0, 1) is 0.5 and thus has a fixed symmetry at 0.5. However, symmetry may

not be realistic to all Bernoulli or continuous responses as demonstrated by the works of

different researchers in different fields such as political science by [Nagler, 1994], social and

behavioral sciences by [Goleţ, 2014], and fisheries by [Coelho et al., 2013]. In these entire

analyses, the researchers obtained better results by ignoring normality in the response.

The methods used by Nagler followed an asymmetric logistic distribution and his re-

sults hold for models without repeated measures. Therefore, there was an assumption

of independence among the responses. The restriction to models with independence is

unappealing to models in a longitudinal set up where there is correlation within the sub-

ject measurements with time and interaction of covariates with time is of essence. The

research conducted by [Coelho et al., 2013] was based on the GEE framework but their

response was continuous.
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As far as we are concerned, we have not come across any work on asymmetric binary under

the GEE framework. We constructed a flexible link function that can accommodate both

symmetric and asymmetric binary responses. Consider the model in which the response

Yi relates to the latent Y ∗
i as follows:

Yi =


1, if Y ∗

i > 0

0,Otherwise

(8)

The probability density function (PDF) of subject i falling in the category of morbidity

incidence as given by Nagler is

Pi = Pr[Xiβ + µi > 0] (9)

and the cumulative distribution function (CDF) is given by

Pi = 1− F(−Xiβ) (10)

such that Yi can be expressed as

Pi(Y0 = 1) = F(−Xiβ) (11)

The marginal effect on Pi for a change in Xm is expressed as

∂Pi

∂(Xm)
=

∂[1− F (−Xiβ)]

∂(Xm)
= f(−Xiβ)βm (12)
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We estimate the probability Pi for which the sensitivity ∂Pi/∂(Xm) is the maximum. To

relax the strong conditional probability on a binary response, accommodate the hetero-

geneity of repeated measures on the subjects, and put up for interaction time effects in

the selected covariates, we employ the Burr type 10 distribution in the logit link under

the GEE. This caters for the disturbance introduced in the logit during this process.

Therefore, as proposed by Nagler, we have a more flexible predictor that can handle both

symmetric and asymmetric responses in the binary variable. However, to modify the link

function, the logit link is usually preferred as it is easier to modify and can easily be

generalized to imitate or mimic the Burr type 10 distribution proposed by Irving Burr

in 1942 Burr [1942] which is a desired characteristic in this work. We introduce another

parameter ϕ that will be referred to as the skewness parameter, and will be used to modify

our response curve. This variation implies that the maximum is no longer restricted to

P = 0.5.

The disturbance term estimated as α̂ is independent of time and therefore its GLM

estimate is assumed to be unbiased for a true α. This is achieved through an iterative

weighted least square method put forth by [McCullagh, 1984]. An advantage of this

model extension is that the disturbance term is assumed to be a constant. Therefore,

our model can still be easily generalized to conform to the exponential dispersion model

(EDM) which can then be easily adopted in the GEE framework. [Burr, 1942] developed

the Burr type 10 distribution given a random variable X with a cumulative distribution

F (x) with its CDF distribution defined as
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F (x) =


1− 1

(1+xc)k
, if x ≥ 0

0,Otherwise

(13)

with PDF given by

F
′
(x) = f(x) = 1− kcxc−1

(1 + xc)k+1
(14)

.

John Nagler recently proposed a new family of distributions called the skewed logit in

which he modified the Burr type 10 CDF to mimic the logit such that the characteristic

′S ′-shaped curve of the sigmoid function

S(x) =
1

1 + e−x
(15)

is retained to accommodate a binary response.

This was achieved by adding a constant parameter

F (k;ϕ) =
1

(1 + e−k)ϕ
(16)

, for ϕ > 0, which is non-zero, non-negative and continuous, to the logit distribution

function. This makes the estimator more flexible in modeling real binary data, since the

logit is now nested in the scobit such that when the parameter is 1, then the proposed

estimator conforms to the logistic distribution (see Figure 3.2 for various values of the
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parameter). As can be seen, the sigmoid slope takes on its maximum values at different

probability levels depending on the parameter of choice.

There is a myriad of approaches to estimating skewness particularly under the GLM

framework in which independence is assumed and the conventional way is to model binary

’conditional independence models’. We propose a new way of modeling binary data

referred to as the ’unconditional dependence model’ a few methods of which exist.

This paper proposes a modification of the link function in the GEE proposed by Liang and

Zeger to handle asymmetry in data with dependence. The skewed logit proposed under

the GEE framework has a multiplier with a constant, meaning it can still be expressed as

an EDM. This property makes it very easy to integrate in the GEE as the mean-variance

relationship can easily be estimated.

This property also implies that we do not have a difficult task in specifying a full likelihood

(in which we arrive at wrong conclusions when we specify a wrong one) but we could

flexibly select any correlation structure and still obtain plausible results and reduction in

the margin of error and bias. Since we are dealing with a binary response calculated as

a score from a continuous response, the common approach would be to assume the logit

model given by

log

(
µ

1− µ
= βXT

i ∈ ℜ
)

(17)

where Xi’s are the model covariates that include the weight, mother’s BV status, HIV

status of the infants, and feeding status in our data and the β values are the coefficients

to be estimated. The logit assumes that the probability of success or failure is the same,
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maintaining symmetry assumptions and the maximum of the logit is achieved at p = 0.5.

In this work, we aim to consider a response that violates the symmetry assumption, but

still within the same framework. Let k(.) be the link function and E(Y ) = µ such that

k(µ) = Xβ. The k(−1) is the logit link for a binary response.

K−1(µij) = ηij = XT
ij (18)

Fitting a GLM to the data to obtain the disturbance parameter

After specifying the parameters, the initial estimate of β and the disturbance term were

obtained using the GLM approach using scobit as the link function. However, the β values

are just a proxy of association or what researchers refer to as “starting values” and not

correct since they assume the presence of independence. The assumption of independence

implies that the standard errors could be underestimated or overestimated, because we

ignore within-subject dependency.

Assuming that the parameter is a constant and that the scobit and logit are related, then

by a direct relationship, a scobit belongs to the EDM defined by the marginal density

of the response belonging to the family of exponential distributions. For the repeated

Bernoulli response where measurements for subject i are taken repeatedly at time t, the

PDF is given by

exp

{
Yitθit − b(θit)

aΦ
+ c(Yit,Φ)

}
(19)

where θ is the natural or canonical parameter, ai(ϕ) > 0 is the scale parameter, and

c(y, ϕ) is the normalizing constant to ensure the PDF integrates to one. From basic
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principles, it can easily be shown that the variance is a function of the mean using

V (yi) = v(µi) = µi(1−µi) where µi ∈ (0, 1) depends on the expected value of the response,

and to ensure that the CDF integrates to 1, the normalizing constant is independent of

the natural parameter. Being an EDM means it is easy to form estimating equations to

estimate the β values.

Estimating the β values

Step 1

Rather than assuming an extremely restrictive distribution for the binary data (which

restricts the maximum change to probability 0.5), we propose that a distribution such as

the Burr type 10 distribution be chosen, as it allows for the inclusion of a disturbance

term without strong assumptions of symmetry. This is advantageous in that, as shown in

the equation, when ϕ = 1, the distribution transforms itself to the logit. This means that

our model is flexible in modeling both symmetrical and asymmetrical binomial data.

Step 2

Choose an initial ϕ(0) for the skewness parameter to estimate the true ϕ. We use the

estimate from the skewed logit regression from the binomial GLM, which includes the

same fixed effect (model covariate) and different time intercepts. We also use the VCE

to relax the assumption of independence inherent in the GLMs. The VCE is given by

(X
′
X)−1

∑
µ

′

iµj(X
′
X)−1 (20)
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. Our data were collected over time and are therefore, not independent.

Step 3

Confirm that kJ (−1)k
′
< ϵ where ϵ is a small constant, such as 0.001 . Repeat step 2 using

these educated guesses. Once the conditions are satisfied, it means that convergence has

been achieved and the estimated ϕ is the most robust estimate to be used in the GEE.

Step 4

From the Burr type 10 distribution,

F (k;ϕ) =
1

(1 + exp−k)ϕ
, k−1(µij) = XT

ij (21)

will be the link function that relates the first moments to the covariates of interest.

Step 5

After obtaining the estimated value of ϕ, we use it to modify the skewness parameter for

the binomial response, (usually assumed to be 1 in the GEEM package in the R software).

Use the estimated ϕ to update the estimated values of β.
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Step 6

Run the GEEMmodel using morbidity as the response and BV, feeding group, HIV status,

weight, and gender as the covariates. To obtain an adequate model, we systematically

added the predictors in order of importance while updating the β values as shown by

the equation. Once convergence was attained, the estimated β values and their standard

errors were obtained considering significance at p = 0.05.



Appendix B: Proof for alternative

calculation of scale parameter by

altering the denominator under

Exchangeable correlation

Scale parameter

Following [Hardin, 2013] the scale parameter also known as dispersion parameter is usually

estimated as

ϕ̂ =
1

(
∑n

i ni)− p

n∑
i

ni∑
i

r̂2it (22)

Where
∑

ni is the total number of observation, r̂it is the i
it pearson residual and p is the

total number of covariates used in the model.
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To estimate α, Hardin [2013]calculates the denominator of an exchangeable correlation

on page 98 as

ni∑
i

0.5× ni(ni − 1)− p (23)

We propose that the same can be implemented using combinations. We suggest the

following

ni∑
i

niCombn, 2− p (24)

for ni > 1 where ni are intergers

Proof by induction

For balanced clusters, assume the data given by Hardin and Hilbe page 66. The data has

2 subjects with 4 time periods. To calculate the denominator then it can be shown that

0.5× 4(4− 1) + 0.5× 4(4− 1) = 12− p

Similarly using our method

4Combn, 2 = 6× 2 = 12− p

Hence the proof.
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We gain more efficiency in run time when we use our proposed approach than when we

use Hardin and Hilbe approach as seen in Table 1

Table 1: Run time in seconds in calculating the denominator of the scale parameter

Method Run time in seconds

Hardin and Hilbe 0.033
Proposed method 1 0.0319
Proposed method 2 0.0289
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To create the Bivariate maps on mean and median

cost with the household age

load the master shapefile>layers>add vector layers>select the master shapefile.

To split into different counties shapefiles.

click vector>datamanagement tools>split vector layer>select the required attribute(example

are the counties)> on input leave blank>output directory, select the folder to put the

split files.

finally after saving in a folder, if you want to bring in like 2 files ,Kitui number 30 and

embu number 28, locate their files through the split numbers.

go to layers>import layers you want>this case the two counties

To prepare the files for use in R

Working with the QGIS to create shapefiles to use in R to produce spatial maps.

Download freely available shapefiles at https://www.diva-gis.org/gdata and save in a

folder. This include .CPG, .DBF, .PRJ, .QPJ, .SHP, and .SHX. Open a new project in

QJIS and import the shape file. This is done by clicking Layer>add layer> Add vector

layer>vector. Then on the dialog box select the .SHP file into the project.

That command loads the shapefiles into the QGIS for use. But for us to get the correct

format to enable us merge our prepared CSV with the counties data, we export as .CSV.

Right click on the file>export>save feature as>on the format select, comma separated

157
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value>dialogue opens, on file name input the extension to the folder>file name; leave the

rest default then>ok.

Now you have the counties in form of .CSV. ensure your counties name are marching.

Some like Keiyo-Marakwet are reffered to as Elgeyo marakwet. Ensure your .CSV file

with attributes such as distance to health facility, cost of pay, with the ID COUNTY. ;

matches with the ID COUNTIES in the exported .CSV.

Go back to the QGIS, create new project>import the master shape files as above(originally

downloaded shape files).

To add our .CSV file for merging purpose, click on Add layer>add delimited text layer>file

name> select the minor .CSV with your data for bivariate analysis>add.

Right click on the master file>properties.......OR......click on the master layer>layer prop-

erties.

At the bottom of that screen there is a + sign ; on the left something looks like a tri-

angle shaded blue>click> dialogue box opens>join layer>select the minor layer>join

field>select the unique id(county which are matching in both files)> on target field se-

lect unique id again. Ensure the master and the minor files have the same unique ids.

Joined field select all the attributes from the minor that you would wish to plot the

bivariates>click ok.

On top left of the dialogue screen you should see >join layer>value of the other to

join>OK

To ensure you have the attributes correctly imported>right click on the master imported>open

attribute table>ensure the needed attributes are there. If not repeat again. Export this

file >select Esri shape file>select the file name to save, on the folder you are working

with in R>on CRS select the EPSG:4326-WGS84>the rest are default then click ok. You

should see all the files .CPG, .DBF, .PRJ, .QPJ, .SHP, and .SHX.with the name you gave

them. The .SHP should have the largest size.

NB. Ensure that your .CSV are general in the numbers as you save. Else they will be

read as factors in R.
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To rename the headers in QGIS

Once you merge the QGIS shape files with the covariates of choice as calculated by the

R program, then you may need to rename before exporting as shapefiles to use in R.

Right click on tha shapefile>properties>sourcefields[there are three icons on top,New

field, delete field, toggle field,field calculator]> select toggle edit field>edit to the name

of choice>you can save the shapefiles as you wish

R Code for Tables in section 4.2

rm(list = ls())##clean the memory

setwd("C:/Users/user/Desktop/restructureFRONTIERS")

library(geepack)# perfoming GEE regression

library(Greg)## displaying the odds ratio for GLM

library(haven)#for importing spss datasets

library(fmsb) #for odds ratio

library(dplyr)##for data wrangling and manipulation

library(lubridate)##for manipulating the dates

library(survminer)##for survival curves

library(survival)##for survival curves

library(KMsurv)##for survival curves

#####we create the bacterial vaginosis from the BV data.

any value greater than 7 then positive for BV

df1 <- read_sav("mbbv.sav") ##read the BV data

df1_1<-select(df1, IDNUM, BV) #subset df1 by selecting

the BV measure only. It’s a pH measures between 0 and 14

df1_2<-df1_1[complete.cases(df1_1), ] #remove any NA or

Missing data from the dataset

df1_bv<-df1_2 %>% group_by(IDNUM)%>% summarise(BV=max(BV))

#--we want to work with the maximum BV values. assumption,

if you have tested positive for BV then you are exposed
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df1_bv$IDNUM<-as.integer(df1_bv$IDNUM) #convert to interger

for joining with the morbidity dataset

head(df1_bv) ##the BV data with the pH values as intergers

##############################################################

########### PART 2 ###########################################

##############################################################

#####Next we read the infant morbidity dataset################

#####which we will merge with the BV dataset above############

#####then we analyse##########################################

##############################################################

##############################################################

mbinfant <- read_sav("mbinfant.sav")#read the infant morbidity data

mbneo <- read_sav("mbneo.sav") ##read the neonates data

mbneo$IWEIGHT<-mbneo$BIRTHWT/10 ##match weight in the two datasets

mbneo$HEIGHT<-mbneo$LENGTH #match height/length in the 2 datasets

#merge the data to obtain W00(week Zero/birth) in mbinant and

calculate the number of days

mbInfNeo<-merge(mbinfant, mbneo,

+ by =c("IDNUM","DAY","MONTH","YEAR","YEAR2K","VISIT","MB","MBNUM",

+ "PERIOD","TIME","IWEIGHT","HEIGHT"), all = TRUE, sort = TRUE)

mbneo2 <- read_sav("mbneo2.sav") ##load data with mortality information

##get the age at death/survival

mbneo2_dead<-mbneo2 %>% group_by(idnum,randgrp,deathage,dead,

+ pcrpos,deathage,monthage) %>% summarise()

mbneo2_dead_1<-mbneo2_dead %>% replace(is.na(.), -100)##replace NA with a

unique small number to easen filtering

##group by id and summarize

mbd2a<-mbneo2_dead_1 %>% group_by(idnum) %>% summarise(dead=max(dead),

+ hiv=max(pcrpos),rndgrp=max(randgrp),death_age=max(deathage),

+ month_age=max(monthage))# %>% max_age=pmax(deathage, monthsage)

##find survival age OR age at Death
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mbd2a$max_age<-with(mbd2a, pmax(death_age, month_age)) #get age at

death/ survival upto the time

mbd2<-mbd2a %>% mutate(age2=max_age*30)##convert the age months into

days by multiplying by 30 days

#########################################################

colnames(mbd2)[1]<-"IDNUM" #rename the first column from "idnum" to

"IDNUM" to match the other datasets

####join the selected data with deaths from mbne0 with the mbinfant

mbd2$IDNUM<-as.integer(mbd2$IDNUM)

dg1_1<-mbInfNeo %>% left_join(mbd2, by="IDNUM") ##use the function

left_join to merge the 2 datasets

##join the data with the BV data created above

dg1<-dg1_1 %>% left_join(df1_bv, by="IDNUM") #merge bv

#sorting with dates

dg1$Date <- with(dg1, dmy(sprintf(’%02d%02d%04d’,DAY,MONTH,YEAR2K)))#convert

the date into the R format of date

dg3<-dg1 %>% mutate(Date = ymd(Date))

dg4<-dg3[with(dg3,order(IDNUM,Date)),] ##ordering the dates in the data,

so that they are properly arranged.from birth upto the last visit

dg5<-dg4 %>% group_by(IDNUM) %>% mutate(diff2 = Date-first(Date))##find the

difference in days between the visits

########### PART 3 ###########################################

#####Next we Analyse data for the first 6months###############

##### data analysis for the 180 days(6months) ############

##the first 180 days

dg6<-dg5 %>% filter(diff2<180) ##filter to remain with data for 180days

dg6$bvyes<-ifelse(dg6$BV>=7,1,0)##if the pH is 7 or greater than 7

then they are positive for BV and 0 otherwise

dg6$bvyes[is.na(dg6$bvyes)] <- -100 ##recode missing to -100 for filtering

dg63<- dg6 %>% filter(bvyes>-1) ###filter all -100 which were missing

##our data for analysis is called dg63###



Appendix C. R codes 162

#### Table 1 #################################

#### We use simple logistic regression ##########

### Since there is no corelation to account for #

#merge the neonates data with the BV data from women to

calculate unadjusted odds ratios

mbneo <- read_sav("mbneo.sav") #read the neonates data

mbneo$IDNUM<-as.integer (mbneo$IDNUM) #convert NEONATES id to

interger for merging

df1_bv$IDNUM<-as.integer(df1_bv$IDNUM) #convert the mothers BV

data to interger

dh1<-mbneo %>% left_join(df1_bv, by="IDNUM") #join the data sets

dh1$BV[is.na(dh1$BV)]<--100 ##assign a large negative interger for

ease of filtering

dh2<- dh1 %>% filter(BV>-1) # filter all missing

dh2$bvys<-ifelse(dh2$BV>=7,1,0)# recode the pH to numeric

############dealing with continuous variables in table 1 ####

dh2_0<-dh2 %>% filter(bvys==0)

dh2_1<-dh2 %>% filter(bvys==1)

mean(dh2_0$LENGTH, na.rm=TRUE)

mean(dh2_1$LENGTH, na.rm=TRUE)

stdev(dh2_0$LENGTH, na.rm=TRUE, unbiased=TRUE)

stdev(dh2_1$LENGTH, na.rm=TRUE, unbiased=TRUE)

range(dh2_0$LENGTH, na.rm=TRUE)

range(dh2_1$LENGTH, na.rm=TRUE)

length(dh2_0$MB)

## average BIRTHWT

mean(dh2_0$BIRTHWT, na.rm=TRUE)

mean(dh2_1$BIRTHWT, na.rm=TRUE)

range(dh2_0$BIRTHWT, na.rm=TRUE)

range(dh2_1$BIRTHWT, na.rm=TRUE)

stdev(dh2_0$BIRTHWT, na.rm=TRUE, unbiased=TRUE)
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stdev(dh2_1$BIRTHWT, na.rm=TRUE, unbiased=TRUE)

########no of days in hospital stay

dh2_0 <- dh2[ which(dh2$bvys==’0’),]

mean(dh2_0$HOSPSTAY, na.rm=TRUE)

stdev(dh2_0$HOSPSTAY, na.rm=TRUE, unbiased=TRUE)

median(dh2_0$HOSPSTAY, na.rm=TRUE)

summary(dh2_0$HOSPSTAY, na.rm=TRUE)

range(dh2_0$HOSPSTAY, na.rm=TRUE)

sum(dh2_0$HOSPSTAY>0, na.rm = TRUE)

sum(dh2_1$HOSPSTAY>0, na.rm = TRUE)

dh2_1 <- dh2[ which(dh2$bvys==’1’),]

mean(dh2_1$HOSPSTAY, na.rm=TRUE)

stdev(dh2_1$HOSPSTAY, na.rm=TRUE, unbiased=TRUE)

range(dh2_1$HOSPSTAY, na.rm=TRUE)

##more than 24 hours in hospital

sum(dh2_0$HOSP24HR, na.rm=TRUE)

sum(dh2_1$HOSP24HR, na.rm=TRUE)

###nsephis

sum(dh2_0$NSEPSIS, na.rm=TRUE)

sum(dh2_1$NSEPSIS, na.rm=TRUE)

##MATCOND

sum(dh2_0$MATCOND, na.rm=TRUE)

sum(dh2_1$MATCOND, na.rm=TRUE)

##NRASH

sum(dh2_0$NRASH, na.rm=TRUE)

sum(dh2_1$NRASH, na.rm=TRUE)

#NLYMPHAD

sum(dh2_0$NLYMPHAD, na.rm=TRUE)

sum(dh2_1$NLYMPHAD, na.rm=TRUE)

##DISTRESS

sum(dh2_0$DISTRESS, na.rm=TRUE)
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sum(dh2_1$DISTRESS, na.rm=TRUE)

## head circumfrence

mean(dh2_0$NHCIRC, na.rm=TRUE)

mean(dh2_1$NHCIRC, na.rm=TRUE)

range(dh2_0$NHCIRC, na.rm=TRUE)

range(dh2_1$NHCIRC, na.rm=TRUE)

stdev(dh2_0$NHCIRC, na.rm=TRUE, unbiased=TRUE)

stdev(dh2_1$NHCIRC, na.rm=TRUE, unbiased=TRUE)

##apgar score

mean(dh2_0$APGAR, na.rm=TRUE)

mean(dh2_1$APGAR, na.rm=TRUE)

range(dh2_0$APGAR, na.rm=TRUE)

range(dh2_1$APGAR, na.rm=TRUE)

stdev(dh2_0$APGAR, na.rm=TRUE, unbiased=TRUE)

stdev(dh2_1$APGAR, na.rm=TRUE, unbiased=TRUE)

##dubowitz score

mean(dh2_0$DUBOWITZ, na.rm=TRUE)

mean(dh2_1$DUBOWITZ, na.rm=TRUE)

range(dh2_0$DUBOWITZ, na.rm=TRUE)

range(dh2_1$DUBOWITZ, na.rm=TRUE)

stdev(dh2_0$DUBOWITZ, na.rm=TRUE, unbiased=TRUE)

stdev(dh2_1$DUBOWITZ, na.rm=TRUE, unbiased=TRUE)

##maturity

mean(dh2_0$MATURITY, na.rm=TRUE)

mean(dh2_1$MATURITY, na.rm=TRUE)

range(dh2_0$MATURITY, na.rm=TRUE)

range(dh2_1$MATURITY, na.rm=TRUE)

stdev(dh2_0$MATURITY, na.rm=TRUE, unbiased=TRUE)

stdev(dh2_1$MATURITY, na.rm=TRUE, unbiased=TRUE)

##jaundice

sum(dh2_0$NJAUNDH, na.rm=TRUE)
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sum(dh2_1$NJAUNDH, na.rm=TRUE)

##conjuviticus

sum(dh2_0$NCONJUNC, na.rm=TRUE)

sum(dh2_1$NCONJUNC, na.rm=TRUE)

#########################glm model for neonates

##run a simple logistic model to exctract unadjusted odds ratio

mod4<-glm(bvys~DISTRESS+NSEPSIS+NRASH+NLYMPHAD+JAUNDICE+NCONJUNC,

+ data =dh2,family = "binomial")

printCrudeAndAdjustedModel(mod4)[-1,] #print odds ratio less intercept

#### Table 2 for the 180 days #################################

#### We use GEE with indepedencecorrelation ######################

### Since there is corelation within the infant to account for ##

#create a subset of the main data dg63 with variables of analysis

dg63_2<-dg63%>% select(IDNUM,bvyes,IPNEUM,EARINFEC,STOOLBLD,

ILYMPHAD,IDIARMON,ENCEPHAL,ISEPSIS,ICONJUNC,DEHYDRAT,

GEDIARRH,GEVOMIT,WHEEZING,IHEPATOM,COLD,OTITIS,IHAIRYLP,

STOOLBLD,IHOSPIT,CLINIC,IFEVER,ICOUGH,IDIARHEA,ORSLW,ITHRUSH,

VOMIT,FEEDDIFF,HEATRASH,FUNGRASH,ECDERMAT,SCABIES,IORALULC)

dataModel1<-na.omit(dg63_2)##remove all missing data to work well with GEE

modGEE<-geeglm(bvyes~IPNEUM+EARINFEC+STOOLBLD+

ILYMPHAD+ENCEPHAL+ISEPSIS+ICONJUNC+DEHYDRAT+

GEDIARRH+GEVOMIT+WHEEZING+IHEPATOM+COLD+OTITIS+

STOOLBLD+IHOSPIT+CLINIC+IFEVER+ICOUGH+IDIARHEA+ORSLW+ITHRUSH+

VOMIT+FEEDDIFF+HEATRASH+FUNGRASH+ECDERMAT+SCABIES+IORALULC,

family=binomial(link="logit"),data =dataModel1,id = IDNUM,

corstr = "independence")

summary(modGEE)

coefi<-summary(modGEE)$coefficients[, 1]##exctract model coefficients

se.err<-summary(modGEE)$coefficients[, 2] ##exctract the standard errors

tocalculate the confidence interval

oddsRatio<-exp(coefi) ##calculate the odds ratio by exponentiating
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the coefficients

lowerCI<-exp(coefi-1.96*se.err) ##2.5% lower confidence interval

upperCI<-exp(coefi+1.96*se.err) ##97.5% upper bound

oddsGEE<-cbind(oddsRatio,lowerCI,upperCI) #bind all the data together

oddsGEE ##the output

###using GLM to compare the results

###but since our method is about GEE, we only report results from the GEE output

modGLM<-glm(bvyes~IPNEUM+EARINFEC+STOOLBLD+

ILYMPHAD+ENCEPHAL+ISEPSIS+ICONJUNC+DEHYDRAT+

GEDIARRH+GEVOMIT+WHEEZING+IHEPATOM+COLD+OTITIS+

STOOLBLD+IHOSPIT+CLINIC+IFEVER+ICOUGH+IDIARHEA+ORSLW+ITHRUSH+

VOMIT+FEEDDIFF+HEATRASH+FUNGRASH+ECDERMAT+SCABIES+IORALULC,

data =dataModel1,family = "binomial")

summary(modGLM)

exp(cbind("Odds ratio" = coef(modGLM), confint.default(modGLM,

+ level = 0.95)))##calculate odds ratio from model adjusted

printCrudeAndAdjustedModel(modGLM)[-1,] ##both unadjusted and adjusted odds ratio

Additionally R Code for Models in section 4.3 for comparing

Logit and Skewed Logit under GEE

#finding the skewness parameter using stata scobit function

#scobit fev time weight brestfed male hiv_infected bv##

time ,vce(cluster idnum) nrtol(1e-3)

#######start here

library(geeM)

#library(geepack)

modelData <- read.csv("C:/Users/user/Desktop/trash2/longd2.txt")

k <- 1

linkfun <- function(p){log((p^(1/k))/(1 - p^(1/k)))}

variance <- function(p){p * (1-p)}
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linkinv <- function(eta){(exp(eta)/(1 + exp(eta)))^k}

mu.eta<-function(eta){k*(exp(eta))^(k-1)/(1+exp(eta))^(k+1)}

FunList <- list(linkfun, variance, linkinv, mu.eta)

model_GEE<-geem(fev~bv*time+male+BRESTFED+HIV_INFECTED+weight,

data =modelData,id=IDNUM,family = FunList,corstr="ar1")

summary(model_GEE)

#model SGEE after substarcting the skewness parameter from 1.

# 1 is normal

k <- 0.9224

linkfun <- function(p){log((p^(1/k))/(1 - p^(1/k)))}

variance <- function(p){p * (1-p)}

linkinv <- function(eta){(exp(eta)/(1+exp(eta)))^k}

mu.eta <- function(eta){k*(exp(eta))^(k-1)/(1+exp(eta))^(k+1)}

FunList <- list(linkfun, variance, linkinv, mu.eta)

model_SGEE<-geem(fev~bv*time+male+BRESTFED+HIV_INFECTED+weight,

data =modelData,id=IDNUM,family = FunList,corstr="ar1")

summary(model_SGEE)

R code for section 4.4 on Data

rm(list = ls())#clear any data in memory

library(haven)

library(dplyr)

library(haven)

library(stats)

library(statmod)

library(tweedie)

library(labelled)

library(foreign)

library(purrr)

library(ggplot2)
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library(e1071)

library(sf)

library(biscale)

library(ggplot2)

library(cowplot)

library(sp)

library(rgdal)

library(tmap)

library(dplyr)

library(leaflet)

##analysis starts here

df1 <- read_sav("C:/redd/paper3/tweedie_kheus_data/

Rcodes2013/kheus2018/khheus_c1.sav")

attach(df1)

d2<-df1 %>%

select(county,resid,clid,hhid,s_numb,wealth_index1,q3,q4,q5,q6b,q8,

q10,q11,q14,q15a,q15b,q15c,q15d,q15e,q15f,q15g,q15h,q15i,q36tot)%>%

rename(county=county,res=resid,clNum=clid,hh=hhid,vis_num=s_numb,

wealthIndx=wealth_index1,rel_Head=q3,sex=q4,religion=q5,age=q6b,

high_educ=q8,mar_status=q10,empl_stats=q11,smoker=q14,hypert=q15a,

cardiac=q15b,diabetes=q15c,asthma=q15d,TB=q15e,other_respiratory=q15f,

HIV=q15g,cancer=q15h,mental=q15i,total_cost=q36tot)

data<-d2 %>% filter(s_numb==1)##filter to remain with 1 visit only

##household head information

f1<-data %>% group_by(clNum,hh)%>% filter(rel_Head==min(rel_Head))%>%

filter(age==max(age))

d4<-f1 %>% select(clNum,hh,sex,religion,age,high_educ,

mar_status,empl_stats)

head(d4)%>% as.data.frame()

#Household information

d5<-data %>% group_by(clNum,hh)%>%
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summarise(res=max(res),wlth_index=max(wealthIndx),

smoker=min(smoker),hypert=min(hypert),cardiac=min(cardiac),

diabetes=min(diabetes),asthma=min(asthma),TB=min(TB),

any_respiratiry=min(other_respiratory), HIV=min(HIV),

cancer=min(cancer), mental=min(mental),

totSpend=sum(total_cost, na.rm = TRUE))

d6<-d4 %>% left_join(d5,by=c("clNum","hh")) %>% as.data.frame()

d7 =d6%>% filter(age>17)%>% filter(mar_status<5 )

d8<-dplyr::select(d7, -clNum,-hh,-religion)

##create variables

d8$high_educ1<-ifelse(d8$high_educ==8|d8$high_educ==9,0,

ifelse(d8$high_educ==1|d8$high_educ==2|d8$high_educ==7,1,

ifelse(d8$high_educ==3|d8$high_educ==6,2,3)))

d8$empl_stats1<-ifelse(d8$empl_stats==1|d8$empl_stats==2,1,0)

d9<-d8 %>% filter(smoker<3)%>% filter(hypert<3)%>%

filter(cardiac<3)%>% filter(diabetes<3)%>% filter(asthma<3)%>%

filter(TB<3)%>% filter(any_respiratiry<3)%>% filter(HIV<3)%>%

filter(cancer<3)%>% filter(mental<3)

d10<-dplyr::select(d9, -high_educ,-empl_stats)

power2=tweedie.profile(totSpend~age+factor(wlth_index)+

factor(mar_status)+factor(high_educ1),

p.vec=seq(1.5,1.8,length=10),

do.ci=TRUE, method="interpolation", data = d10)

p1=power2$p.max

power2$ci

glmmodel1<-glm(totSpend~age+factor(mar_status)+factor(wlth_index)+factor(high_educ1),

family=tweedie(var.power=p1, link.power=0),x=TRUE, data=d10)

fits1<-glmmodel1$fitted.values

beta=glmmodel1$coefficients

phi = power2$phi.max

n=length(d10$totSpend)
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r1=glmmodel1$rank

quasi<-sum((totSpend*fits1^(1-p1)/(1-p1))-((fits1^(2-p1))/(2-p1)))

qicu<-(-2*quasi)+(2*r1)

qicu

# Finding a suitable link function

glmmodel<-glm(totSpend~age+factor(wlth_index)+factor(mar_status)+

factor(high_educ1),

family=tweedie(var.power=p1, link.power=0),x=TRUE, data=d10)

glmmodel.other<-glm(totSpend~age+factor(wlth_index)+

factor(mar_status)+factor(high_educ1),

family=tweedie(var.power=p1),x=TRUE, data = d10) # Canonical

#Deviances

glmmodel$deviance

glmmodel.other$deviance

#Df Residuals

glmmodel$df.residual

glmmodel.other$df.residual

dk1<-data %>% group_by(age) %>%

summarise(tt_cost=mean(total_cost,na.rm = TRUE))

dk2<-d10 %>% group_by(age) %>%

summarise(tt_cost=mean(totSpend,na.rm = TRUE),n=n())%>%as.data.frame()

dk3<-dk2 %>% filter(age<97)

ggplot(dk2) +

geom_line( mapping = aes(x = age, y = tt_cost))

dk3$x<-dk3$age

dk3$y<-dk3$tt_cost

plot(dk3$x, dk3$y, type = "l", lty = 1,

xlab="Age in Years of Household Head",

ylab = "Mean Cost for Outpatient Care per Household")

lines(dk3$x, dk3$y, type = "l", lty = 1)

sd(d10$totSpend)
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mean(d10$totSpend)

median(d10$totSpend)

skewness(d10$totSpend)

max(d10$totSpend)

min(d10$totSpend)

d11<-d10 %>% filter(totSpend>0)

sd(d11$totSpend)

mean(d11$totSpend)

median(d11$totSpend)

skewness(d11$totSpend)

max(d11$totSpend)

min(d11$totSpend)

##bivariate spatial maps

head(data)

dh1<-data %>% select(county,age,total_cost)

dh2<-dh1 %>% group_by(county) %>%

summarise(age1=mean(age, na.rm = TRUE),

tot_mean=mean(total_cost,na.rm = TRUE),

age2=median(age,na.rm = TRUE),tot_med=median(total_cost,na.rm = TRUE))

dh3<-dh1 %>% filter(age>17) %>% filter(age<97)

dh21<-dh3 %>% group_by(county) %>%

summarise(age1=mean(age, na.rm = TRUE),

tot_mean=mean(total_cost,na.rm = TRUE),

age2=median(age,na.rm = TRUE),tot_med=median(total_cost,na.rm = TRUE))

##for producing maps

fg<-"C:......county.shp"

fg

nc <- st_read(fg)

head(nc)

data <- bi_class(data, x = Mean_age,
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y = mean_cost, dim = 3)

head(data)

ggplot() +

geom_sf(data = data, aes(fill = bi_class),

color = "red", size = 0.1, show.legend = TRUE) +

bi_scale_fill(pal = "GrPink", dim = 3) +

bi_theme()

legend <- bi_legend(pal = "GrPink", dim = 3,

xlab = "Mean age of Household head",

ylab = "Mean outpatient cost(KES)", size = 8)

plot <- ggdraw() +

draw_plot(map, 0, 0, 1, 1) +

draw_plot(legend, 0.1, 0.1, 0.2, 0.2)

plot
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R code for section 4.5: Part 1 on Data cleaning

# Initial setting of data

# Load libraries that are needed to perform calculations

rm(list = ls())

library(dplyr)

library(haven)

library(stats)

library(statmod)

library(tweedie)

library(labelled)

library(foreign)

#----set working directory

setwd(’C:/redd/paper3/tweedie_kheus_data/Rcodes2013’)

#-----------------set sink() directory

sink(’sink/inpatients_out.txt’)

#---read the data. Note all the output regarding the data are

put in the sink() file

#dh<- read_sav("kheus2013_data_questionnaire/In-patients_Data.sav")

dj<-read.spss("kheus2013_data_questionnaire/In-patients_Data.sav",

+ to.data.frame=TRUE)

View(dj) ##View the data

head(dj) # first few variables but in the .txt file

##incase you want to deactivate the sink, uncoment on the sink(below)

#sink() ##deactivating the sink

##########---------------------------------------End of thread

#some analysis using dplyr

##sumarise the number of times county

a1<-dj %>% group_by(CountyCode) %>% summarise(number = n())

##sumarise the number of times of hospital visits

a2<-dj %>% group_by(Q50) %>% summarise(number = n())

#amount paid for 6 admissions
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sixAdmPay<-dj %>% filter(Q50==6)

#how long was name admitted

n_admit<-dj %>%group_by(Q51)%>% summarise(n=n())

####type of facility and ownership(the one visited)---

#-OWNERSHIP OF THE FACILITIES GROUPED

l_hosp<-dj %>% group_by(Q53) %>% summarise(n=n())

dj$fac_owned_govt<-ifelse(dj$Q53=="Govt. Hospitals"

+ |dj$Q53=="Govt. Health Centre",1,0)

dj$fac_owned_private<-ifelse(dj$Q53=="Private hospitals"

+ |dj$Q53=="Private Health Centre"|dj$Q53=="Nursing/Maternity Homes",1,0)

dj$fac_owned_mission<-ifelse(dj$Q53=="Mission Hospital"

+ |dj$Q53=="Mission health centre",1,0)

######---------------end of clasifying

##counties where they visited traditional healer

trad_healer<-dj %>% filter(Q53=="Traditional healer")

##is this the nearest inpatient facility?

near_facilit<-dj %>%group_by(Q54)%>% summarise(n=n())

####type of facility and ownership(the one close to home)

l_hosp2<-dj %>% group_by(Q55) %>% summarise(n=n())

#reason for passing the facility

####why pass facility(reason 1) arrange in descending order

reas_passA<-dj %>% group_by(Q56A) %>% summarise(n=n())%>% arrange(desc(n))

####why pass facility(reason 2) arrange in descending order

reas_passB<-dj %>% group_by(Q56B) %>% summarise(n=n())%>% arrange(desc(n))

####why pass facility(reason 3) arrange in descending order

reas_passC<-dj %>% group_by(Q56C) %>% summarise(n=n())%>% arrange(desc(n))

#reason for choosing the facility---some analysis to selects the 5main

#reasons for CHOOSING THE HEALTH FACILITY

####why pass facility(reason 1) arrange in descending order

reas_chooseA<-dj %>% group_by(Q57A) %>% summarise(n=n())%>% arrange(desc(n))

####why pass facility(reason 2) arrange in descending order
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reas_chooseB<-dj %>% group_by(Q57B) %>% summarise(n=n())%>% arrange(desc(n))

####why pass facility(reason 3) arrange in descending order

reas_chooseC<-dj %>% group_by(Q57C) %>% summarise(n=n())%>% arrange(desc(n))

reas1<-dj %>% select(Q57A)%>% rename(reas=Q57A)

reas2<-dj %>% select(Q57B)%>% rename(reas=Q57B)

reas3<-dj %>% select(Q57C)%>% rename(reas=Q57C)

total <- rbind(reas1,reas2,reas3)

re<-total %>% group_by(reas) %>% summarise(n=n())%>% arrange(desc(n))

#create a binary close to home as reason for choosing the facility

dj$reason_closehome<-ifelse(dj$Q57A=="Close to home"

+ |dj$Q57B=="Close to home"|dj$Q57C=="Close to home",1,0)

dj$reason_closehome[is.na(dj$reason_closehome)]<-0

dj$reason_staffQualified<-ifelse(dj$Q57A=="Staff are qualified"

+ |dj$Q57B=="Staff are qualified"|dj$Q57C=="Staff are qualified",1,0)

dj$reason_staffQualified[is.na(dj$reason_staffQualified)]<-0

dj$reason_medicineavailable<-ifelse(dj$Q57A=="Medicine available"

+ |dj$Q57B=="Medicine available"|dj$Q57C=="Medicine available",1,0)

dj$reason_medicineavailable[is.na(dj$reason_medicineavailable)]<-0

dj$reason_Less_costly<-ifelse(dj$Q57A=="Less costly" |dj$Q57B=="Less costly"

+ |dj$Q57C=="Less costly",1,0)

dj$reason_Less_costly[is.na(dj$reason_Less_costly)]<-0

dj$reason_Goodstaffattitude<-ifelse(dj$Q57A=="Good staff attitude"

+ |dj$Q57B=="Good staff attitude"|dj$Q57C=="Good staff attitude",1,0)

dj$reason_Goodstaffattitude[is.na(dj$reason_Goodstaffattitude)]<-0

dj$reason_Wasreferred<-ifelse(dj$Q57A=="Was referred"

+ |dj$Q57B=="Was referred"|dj$Q57C=="Was referred",1,0)

dj$reason_Wasreferred[is.na(dj$reason_Wasreferred)]<-0

dj$reason_Lesswaitingtime<-ifelse(dj$Q57A=="Less waiting time"

+ |dj$Q57B=="Less waiting time"|dj$Q57C=="Less waiting time",1,0)

dj$reason_Lesswaitingtime[is.na(dj$reason_Lesswaitingtime)]<-0

dj$reason_Moreprivacy<-ifelse(dj$Q57A=="More privacy"
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+ |dj$Q57B=="More privacy"|dj$Q57C=="More privacy",1,0)

dj$reason_Moreprivacy[is.na(dj$reason_Moreprivacy)]<-0

####------------------------------END of reasons FOR CHOOSING FACILITY

####reason for seeking inpatient services at the facility---REASON SICKNESS

reas_admitA<-dj %>% group_by(Q58A) %>% summarise(n=n())%>% arrange(desc(n))

reas_admitB<-dj %>% group_by(Q58B) %>% summarise(n=n())%>% arrange(desc(n))

reas_admitC<-dj %>% group_by(Q58C) %>% summarise(n=n())%>% arrange(desc(n))

sicknes1<-dj %>% select(Q58A)%>% rename(sick=Q58A)

sicknes2<-dj %>% select(Q58B)%>% rename(sick=Q58B)

sicknes3<-dj %>% select(Q58C)%>% rename(sick=Q58C)

sickt <- rbind(sicknes1,sicknes2,sicknes3)

re2<-sickt %>% group_by(sick) %>% summarise(n=n())%>% arrange(desc(n))

#create a binary for sickness

dj$Malaria_fever<-ifelse(dj$Q58A=="Malaria/fever" |dj$Q58B=="Malaria/fever"

+ |dj$Q58C=="Malaria/fever",1,0)

dj$Malaria_fever[is.na(dj$Malaria_fever)]<-0

dj$respiratory_pneumonia<-ifelse(

dj$Q58A=="Diseases of Respiratory including pneumonia"

+ |dj$Q58B=="Diseases of Respiratory including pneumonia"

+ |dj$Q58C=="Diseases of Respiratory including pneumonia",1,0)

dj$respiratory_pneumonia[is.na(dj$respiratory_pneumonia)]<-0

dj$normal_delivery<-ifelse(dj$Q58A=="normal delivery"

+ |dj$Q58B=="normal delivery"|dj$Q58C=="normal delivery",1,0)

dj$normal_delivery[is.na(dj$normal_delivery)]<-0

dj$Accidents_and_injuries<-ifelse(dj$Q58A=="Accidents and injuries"

+ |dj$Q58B=="Accidents and injuries"|dj$Q58C=="Accidents and injuries",1,0)

dj$Accidents_and_injuries[is.na(dj$Accidents_and_injuries)]<-0

dj$Hypertension<-ifelse(dj$Q58A=="Hypertension" |dj$Q58B=="Hypertension"

+ |dj$Q58C=="Hypertension",1,0)

dj$Hypertension[is.na(dj$Hypertension)]<-0

dj$Diarrhoea<-ifelse(dj$Q58A=="Diarrhoea" |dj$Q58B=="Diarrhoea"
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+ |dj$Q58C=="Diarrhoea",1,0)

dj$Diarrhoea[is.na(dj$Diarrhoea)]<-0

dj$caesarean<-ifelse(dj$Q58A=="caesarean" |dj$Q58B=="caesarean"

+ |dj$Q58C=="caesarean",1,0)

dj$caesarean[is.na(dj$caesarean)]<-0

dj$Diabetes<-ifelse(dj$Q58A=="Diabetes" |dj$Q58B=="Diabetes"

+ |dj$Q58C=="Diabetes",1,0)

dj$Diabetes[is.na(dj$Diabetes)]<-0

mode.pay<-dj %>% group_by(Q61F) %>% summarise(n=n())

##change the factors into characters

dj$Q61A<-as.character(dj$Q61A)

dj$Q61B<-as.character(dj$Q61B)

dj$Q61C<-as.character(dj$Q61C)

dj$Q61D<-as.character(dj$Q61D)

dj$Q61E<-as.character(dj$Q61E)

dj$Q61F<-as.character(dj$Q61F)

dj$pay_cash<-ifelse(dj$Q61A=="Cash"|dj$Q61B=="Cash"

+ |dj$Q61C=="Cash" |dj$Q61D=="Cash" |dj$Q61E=="Cash"|dj$Q61F=="Cash",1,0)

dj$pay_cash[is.na(dj$pay_cash)]<-0

dj$NHIF_and_other_methods<-

ifelse(dj$Q61A=="Community health insurance scheme"

+ |dj$Q61B=="Community health insurance scheme"|

dj$Q61C=="Community health insurance scheme" |

+ dj$Q61D=="Community health insurance scheme"|

dj$Q61E=="Community health insurance scheme"|

+ dj$Q61F=="Community health insurance scheme"|

dj$Q61A=="Given opportunity to pay later (credit)"|

dj$Q61B=="Given opportunity to pay later (credit)"|

dj$Q61C=="Given opportunity to pay later (credit)" |

dj$Q61D=="Given opportunity to pay later (credit)"|

dj$Q61E=="Given opportunity to pay later (credit)"|
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dj$Q61F=="Given opportunity to pay later (credit)"|

dj$Q61A=="Waived/exempted"|dj$Q61B=="Waived/exempted"|

dj$Q61C=="Waived/exempted" |dj$Q61D=="Waived/exempted"|

dj$Q61E=="Waived/exempted"|dj$Q61F=="Waived/exempted" |

dj$Q61A==" Paid in kind"|dj$Q61B==" Paid in kind"|

dj$Q61C==" Paid in kind" |dj$Q61D==" Paid in kind"|

dj$Q61E==" Paid in kind"|dj$Q61F==" Paid in kind" |

dj$Q61A==" National Hospital Insurance Fund (NHIF)"|

dj$Q61B==" National Hospital Insurance Fund (NHIF)"|

dj$Q61C==" National Hospital Insurance Fund (NHIF)" |

dj$Q61D==" National Hospital Insurance Fund (NHIF)"|

dj$Q61E==" National Hospital Insurance Fund (NHIF)"|

dj$Q61F==" National Hospital Insurance Fund (NHIF)"|

dj$Q61A=="Private health insurance"|

dj$Q61B=="Private health insurance"|

dj$Q61C=="Private health insurance" |

dj$Q61D=="Private health insurance"|

dj$Q61E=="Private health insurance"|

dj$Q61F=="Private health insurance",1,0)

dj$NHIF_and_other_methods[is.na(dj$NHIF_and_other_methods)]<-0

dpkl<-dj %>% select(Q61A,Q61B,Q61C,Q61D,Q61E,Q61F,pay_cash,NHIF_and_other_methods)

pay<-dj %>% group_by(Q59) %>% summarise(n=n())

## total pay for the service; sum all the breakdowns, q60_1 to q60_7;

including drugs, admission....

dj<-dj %>% mutate(sumTotPay = rowSums(cbind(Q60_1, Q60_2, Q60_3,

+ Q60_4, Q60_5, Q60_6, Q60_7), na.rm = T))

##replace the total sum above, by creating a new variable where if

total q60_8 ismissing, replace with above value

dj$sumTot<-ifelse(is.na(dj$Q60_8),dj$sumTotPay,dj$Q60_8)

#provider drugs and clinical service

drug_clin<-dj %>% group_by(Q64) %>% summarise(n=n())%>% arrange(desc(n))
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#overal satisfaction

overal_satif<-dj %>% group_by(Q65) %>% summarise(n=n())%>% arrange(desc(n))

####-------------------------------------dealing with time and distance

##time to admission as a tweedie-------------starts here

dj$timeToAdmission_Tweedie<-ifelse(is.na(dj$Q67ah),0,dj$Q67ah)

##time to admission as a tweedie--------Ends here

##time to admission as continuous------------------starts here

dj$timeAdmi_hour_to_minutes<-dj$Q67ah*60

##add the minutes of Q67am and the new coputed minutes from Q67ah

dj<-dj %>% mutate(timeMinutesAddmision =

+ rowSums(cbind(timeAdmi_hour_to_minutes, Q67am), na.rm = T))

###replace the NA in the computed variable with zero

dj$timeMinutesAddmision[is.na(dj$timeMinutesAddmision)]<-0

##time to admission as continuous------------------------Ends here

##Time to arrive at the facility as a tweedie------------starts here

dj$timeToArrive<-ifelse(is.na(dj$Q67bh),0,dj$Q67bh)

##Time to arrive at the facility as a tweedie------------------Ends here

##Time to arrive at the facility as continuous-----------starts here

dj$timeArrive_facility_hour_to_minutes<-dj$Q67bh*60

##add the minutes of Q67am and the new coputed minutes from Q67ah

dj<-dj %>% mutate(timeMinutesArriveFacility =

+ rowSums(cbind(timeArrive_facility_hour_to_minutes, Q67bm), na.rm = T))

###replace the NA in the computed variable with zero

dj$timeMinutesArriveFacility[is.na(dj$timeMinutesArriveFacility)]<-0

##Time to arrive at the facility as continuous----------------Ends here

##dealing with DISTANCE

dj$newDistBelowOneKm<-ifelse(dj$Q68<=1,0,dj$Q68)

dj$newDistBelowOneKm[is.na(dj$newDistBelowOneKm)]<-0

###### end of exploatory data analysis---------------end

###Q69 those who didnt pay any fare,NA with zero replace

dj$Q69[is.na(dj$Q69)]<-0
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###create a dataset with the covariates variables of choice

data<-dj %>% select(newDistBelowOneKm,Q69,timeMinutesAddmision,w_index,hhsize,

gender,age,Q61A,Q65,Q57A,Q58A,Q56A,Q55,Q53,Q54,rurb,

fac_owned_govt,fac_owned_private,fac_owned_mission,

reason_closehome,reason_staffQualified,reason_medicineavailable,

reason_Less_costly,reason_Goodstaffattitude,reason_Wasreferred,

reason_Lesswaitingtime,reason_Moreprivacy,Malaria_fever,

respiratory_pneumonia,normal_delivery,Accidents_and_injuries,

Hypertension,Diarrhoea,caesarean,Diabetes,pay_cash,

NHIF_and_other_methods,CountyCode)%>%

rename(costPayFareToFacility=Q69,satisfiedWithService=Q65,

mainReasonChoseFacility=Q57A,reasonAdmision=Q58A,

whoOwnsTheFacilityNearHome=Q55,reasonPassingNearFac=Q56A,

whoOwnsFacilityYouVisited=Q53,isThisNearestFac=Q54,

modeOfPayment=Q61A)

colSums(is.na(dk))

data<-data%>% filter(newDistBelowOneKm<999)

data2<-data %>% select(newDistBelowOneKm,CountyCode,costPayFareToFacility,

timeMinutesAddmision,w_index,hhsize,gender,age,modeOfPayment,rurb,

fac_owned_govt,fac_owned_private,fac_owned_mission,reason_closehome,

reason_staffQualified,reason_medicineavailable,reason_Less_costly,

reason_Goodstaffattitude,reason_Wasreferred,reason_Lesswaitingtime,

reason_Moreprivacy,Malaria_fever,respiratory_pneumonia,normal_delivery,

Accidents_and_injuries,Hypertension,Diarrhoea,caesarean, Diabetes,

pay_cash,NHIF_and_other_methods)

colSums(is.na(data2)) #summing all missing data

data3<-na.omit(data2) #remove all rows with missing data

length(data3$newDistBelowOneKm)##3167 observations

##------------------main data is data3
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R code for proof by induction and table 1

##R code for the proof using Hardin and Hilbe Approach

library(dplyr)

fun_M1<- function() {

id<-c(1,1,1,1,2,2,2,2)

t<-c(1,2,3,4,1,2,3,4)

y<-c(4,5,6,7,5,6,7,8)

x<-c(0,1,0,1,0,1,0,1)

fd<-data.frame(id,t,y,x)

m1<-glm(y~x,x=TRUE, data = fd)

y.res=m1$residuals

n=length(fd$id)

new.phi2<-sum(y.res^2)/(n-r)

res_total_n_for_alph<-fd %>%

group_by(id) %>%

summarise(resd = sum(combn(y.res, 2, FUN = prod)),n = n())%>%

mutate(sampl_n = 0.5*n*(n-1))

sum_res_alpha<-sum(res_total_n_for_alph$resd)

sum_n_alpha<-sum(res_total_n_for_alph$sampl_n)

alpha2<-(1/new.phi2)*(1/(sum_n_alpha-r))*sum_res_alpha

alpha2 }

start_time <- Sys.time()

fun_M1()

end_time <- Sys.time()

end_time - start_time

##R code for the proof using our proposed method 1

fun_M1<- function() {

fd<-data.frame(id,t,y,x)

m1<-glm(y~x,x=TRUE, data = fd)

y.res=m1$residuals

n=length(fd$id)
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new.phi2<-sum(y.res^2)/(n-r)

res_total_n_for_alph<-fd %>%

group_by(id) %>%

summarise(resd = sum(combn(y.res, 2, FUN = prod)),n = n())%>%

mutate(sampl_n = choose(n, 2))

sum_res_alpha<-sum(res_total_n_for_alph$resd)

sum_n_alpha<-sum(res_total_n_for_alph$sampl_n)

alpha2<-(1/new.phi2)*(1/(sum_n_alpha-r))*sum_res_alpha

alpha2 }

start_time <- Sys.time()

fun_M1()

end_time <- Sys.time()

end_time - start_time

##R code for the proof using our proposed method 2

library(dplyr)

fun_M1<- function() {

fd<-data.frame(id,t,y,x)

m1<-glm(y~x,x=TRUE, data = fd)

y.res=m1$residuals

n=length(fd$id)

new.phi2<-sum(y.res^2)/(n-r)

res_total_n_for_alph<-fd %>%

group_by(id) %>%

summarise(resd = sum(combn(y.res, 2, FUN = prod)),n = n())%>%

mutate(sampl_n = n*(n-1)/2)

sum_res_alpha<-sum(res_total_n_for_alph$resd)

sum_n_alpha<-sum(res_total_n_for_alph$sampl_n)

alpha2<-(1/new.phi2)*(1/(sum_n_alpha-r))*sum_res_alpha

alpha2 }

start_time <- Sys.time()

fun_M1()
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end_time <- Sys.time()

end_time - start_time

R code for Raw residuals versus the observation numbers plot

4.5

par(mfrow = c(2, 2))

attach(d2)

#-------------------model 7

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the raw residuals, model 7")

abline(0,0) # add a horizontal line at 0

#-------------------model 8

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index),
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family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the raw residuals, model 8")

abline(0,0) # add a horizontal line at 0

#-------------------model 9

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the raw residuals, model 9")

abline(0,0) # add a horizontal line at 0

#-------------------model 10

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max
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modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat)+factor(new_age_work_group),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(residuals,xlab="Observation Number",ylab="Raw Residuals",

main="Plot of the raw residuals, model 10")

abline(0,0) # add a horizontal line at 0

R code for QQ normal Plot 4.6

par(mfrow = c(2, 2))

attach(d2)

#-------------------model 7

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

quantile=qres.tweedie(modGlm) # Quantile residuals

qqnorm(quantile, main = "Normal probability plot, model 7",

xlab="Standard Normal Quantiles", ylab="Quantile Residuals")

qqline(quantile) # Normality line
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#-------------------model 8

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

quantile=qres.tweedie(modGlm) # Quantile residuals

qqnorm(quantile, main = "Normal probability plot, model 8",

xlab="Standard Normal Quantiles", ylab="Quantile Residuals")

qqline(quantile) # Normality line

#-------------------model 9

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

quantile=qres.tweedie(modGlm) # Quantile residuals
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qqnorm(quantile, main = "Normal probability plot, model 9",

xlab="Standard Normal Quantiles", ylab="Quantile Residuals")

qqline(quantile) # Normality line

#-------------------model 10

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat)+factor(new_age_work_group),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

quantile=qres.tweedie(modGlm) # Quantile residuals

qqnorm(quantile, main = "Normal probability plot, model 10",

xlab="Standard Normal Quantiles", ylab="Quantile Residuals")

qqline(quantile) # Normality line

R code for Raw residuals versus the Linear Predictor plot 4.7

par(mfrow = c(2, 2))

attach(d2)

#-------------------model 7

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)
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var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(log(fitted.v),residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of raw residuals vs linear predictor, model 7")

#-------------------model 8

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(log(fitted.v),residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of raw residuals vs linear predictor, model 8")

#-------------------model 9

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+
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factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(log(fitted.v),residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of raw residuals vs linear predictor, model 9")

#-------------------model 10

var.power=tweedie.profile(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat),

p.vec=seq(1.4,1.75,length=10),

do.ci=TRUE, method="saddlepoint", data = d2)

var.p=var.power$p.max

modGlm<-glm(dist~factor(emp_cat)+factor(paid_cat)+

factor(hhsize_group)+factor(wlth_index)+

factor(school_cat)+factor(new_age_work_group),

family=tweedie(var.power=var.p,link.power=0),x=TRUE, data=d2)

#summary(modGlm)

fitted.v<-modGlm$fitted.values

residuals=dist-fitted.v

plot(log(fitted.v),residuals,xlab="Linear Predictor", ylab="Pearson

Residuals",main="Plot of raw residuals vs linear predictor, model 10")
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Figure 1: Infant mortalities for one year between infants whose mothers are exposed
to the BV and unexposed
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Figure 2: Weight gain for age for the exposed and unexposed
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Table 2: Compute the skewness parameter(α)

Variable Coef. Std. Err. z P>z [95% Conf. Interval]

Time in Months 1.26 0.43 2.93 0.00 0.42 2.10
weight(in Kilograms) -0.90 0.39 -2.28 0.02 -1.67 -0.13
Feeding(Reference Formula fed) -0.32 0.92 -0.35 0.73 -2.11 1.48
Gender(Reference Male) -2.46 0.97 -2.53 0.01 -4.36 -0.56
HIV status(Reference Positive) 1.88 1.52 1.24 0.22 -1.10 4.86
Vaginal Dysbiosis (Reference yes) 10.80 2.14 5.05 0.00 6.61 14.99

Time in Months

2 -0.46 0.95 -0.49 0.63 -2.32 1.39
3 -0.77 1.09 -0.71 0.48 -2.91 1.37
4 1.22 1.25 0.97 0.33 -1.24 3.68
5 -0.53 1.29 -0.41 0.68 -3.05 2.00

Vaginal Dysbiosis *Time

1 2 -5.42 2.21 -2.45 0.01 -9.76 -1.08
1 3 -5.60 2.50 -2.24 0.03 -10.49 -0.70
1 4 -9.41 2.72 -3.46 0.00 -14.74 -4.08
1 5 -9.18 2.42 -3.79 0.00 -13.93 -4.43
1 6 -12.20 2.45 -4.98 0.00 -17.01 -7.40

(Intercept) 11.41 1.79 6.39 0.00 7.91 14.91

ln α -2.56 0.05 -49.11 0.00 -2.66 -2.45

α 0.08 0.00 0.07 0.09
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