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Theoretical Prediction of Shear Strength Evolution in Steel Fibre Reinforced 

Concrete Beams without Stirrups 
 

By 
 

Timothy NYOMBOI1, Hiroshi MATSUDA2, Ryu HIRAYAMA3, and Hiroshi NISHIDA4, 
 
  Recent research has shown that steel fibres significantly increase the shear capacity and ductility 

in reinforced concrete (RC) beams. Utilization of this structural capacity in RC beams has however, 
been limited by lack of design guidelines. Conventional methods applied in normal design are not 
applicable in this case. Furthermore there exists no unified expression for the complete 
characterization of shear strength and ductility in beams. Fundamentally, steel fibres contribution 
should be considered based on stress transfer mechanism, augmented by concrete and dowel action of 
the main reinforcements in a unified manner. This paper proposes a unified analytical model in which 
the complete behavior of steel fibre reinforced concrete beams is characterized. Verification of the 
model was found to be in agreement with the experimental results tested by the authors. Non linear 
behavior as well as increase in strength observed in the fibrous beams was predicted well. 

  
Key words: Steel fibres concrete, Theoretical model, Shear Strength, Electronic speckle  
       interferiometry (ESPI) 

 

1. Introduction 

 Current application of steel fibres in concrete 
structures is found in areas where improved crack 
control, fatigue resistance, earthquakes resistance, 
impact loads and slope stabilizations (using fibre 
short-Crete) is necessary. Many researchers [1-5, 7] 
have also established that use of steel fibres in 
concrete, lead to increased shear capacity and 
ductility in reinforced concrete. The knowledge of 
the behavior and ability to predict the same is 
therefore paramount to the development of guidelines 
for design applications and utilization of the 
aforementioned benefit in structural systems such as 
beams. Researchers have acknowledged that shear 
phenomenon is a complex and difficult property to 
predict [3, 4, and 6]. A lot has been done on the 
computation of the ultimate shear capacity mainly 
with the use of simplified models and experimental 
data [2, 3, 5, and 7]. However, there is no much 
information on a rational method for the prediction of 
the actual contribution by the steel fibres concrete 
composite and the dowel action of the main 

reinforcements. In this paper a simplified strain ratio 
based analytical model for the prediction of complete 
evolution of shear strength in steel fibre reinforced 
concrete (s.f.r.c) beams failing in shear is proposed. 
The shear resistance due to steel fibre reinforced 
concrete and the dowel action of the main 
reinforcements have all been considered based on 
equilibrium of forces and the stress transfer 
mechanisms． 

2. Shear Strength analytical model derivations 

In the derivation of the analytical model, the 
expressions for the various forces acting to resist the 
shear stress were first determined as outlined in the 
subsequent sections. Finally equilibrium conditions 
between the internal forces and the applied external 
load were evaluated to arrive at a unified predictive 
relation. The following assumptions were considered. 
(i) Plane sections remain plane 
(ii) Failure is predominantly by shear 
(iii) Shear crack occurs at an angle of 45 degrees 
(iv) Concrete is brittle while steel fibres are elastic,  
(v) Fibre ultimately pull out from one side 
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(vi) Re bars dowel action contribute to shear strength 
The geometry and loading conditions used in the 

derivation are as indicated in Fig.1 
Due to symmetry, only half of the geometry in Fig.1 
(portion JKLM) has been considered and its sheared 
profile analyzed. Based on Gere and Timonshenko`s 
shear deformations in a beam [8], the cracked sheared 
profile of portion JKLM has been assumed to 
correspond to the profile shown in Fig.2.0(a) while 
the stress, strain and crack opening diagrams along 
the crack path have been considered to be as shown 
in Fig.3.(a), (b), (c)(d). 
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Fig.1 Basic details of the model beam 
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Fig.2 Cracked sheared profile of portion JKLM 

and details at joint J 
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Fig. 3 simplified stress/force (a,b), strain (c) and 

crack rotation (d) diagrams  
 
2.1 Forces acting to resist the shear  
(1) Compressive force Fcc and Tensile force Fct 

From the geometry in Fig.1 and the stress profile 
(Fig.3a), the expression for the concrete compressive 
and tensile forces along the idealised crack path can 
be determined. The compressive force component is 

obtained from the following relation: 

ccF =
αsin

cF  =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
ψ

σ wcbc
          (1)  

Where b and w are the beam and crack widths 
respectively, while ψ  is the angle of crack rotation.  
As idealized in Fig.3a, it is assumed that the concrete 
possess some minimal tensile strength. The resistive 
tensile force from the concrete is expressed as; 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ψ
σ wbF ctct

    (2) 

Where ctσ  = the tensile strength of plain concrete 

(2) Shear forces in compressed and cracked region  
Determination of the concrete and crack-slip 

shearing forces (Fa and Fcv) in the compressed region 
and cracked region respectively, are considered in a 
unified manner under equilibrium analysis of all the 
forces (see section 2.2).  
(3) Fibre tensile forces Ft (1) and Ft (2)  

In order to determine the expression for the steel 
fibre tensile forces Ft (1) and Ft (2) as shown in Fig 3(a), 
expressions for the average normal fiber force and 
strain is first established.  
Average normal fibre force and pull out strain 

The derivations are made by considering an 
infinitesimal force dF as shown in Fig 3(a) and 
orientation of the fibres across a shear crack, Fig.4  
In the derivation, two regimes are considered as 
illustrated by the stress diagram in Fig.3 (a). These 
are; 
-Elastic range (fibers elastically strain) 10 xx ≤≤   
-Pull out range （fibers pulling out ）

ψ
wxx ≤≤1

 

Elastic Range 
The force per fibre crossing the crack at right angles 
in the elastic range is determined as；  

f
ff

f
fff l

xAE
l
wAEF ψ
==    (3) 

Where, and  are the area, elastic modulus, 
ib g

at any distance 

fA ,
fE fε

strain and f re len th, respectively. 
From Fig.3 (d), the crack width w 
x is obtained ψψ xxw ≅= tan  where ψ is 

all. Thus eq. 3 becsm omes  

f
fffff

xAEwAEF
f ll

ψ
==  (Where = the)   (4) 

The fibres are randomly distributed (Fig.4). The 

fl

average normal fibre force is determined as;  

θθ
π

π
dFF f

e
fN ∫= sin1    

0
(5) 
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Substituting for the for
integrating;  

ce per fibre from eq.4 and 

f
ff

e
fN

xAEF
l
ψ

π
2

=    (6) 

Pull out range 
The average normal fibre force in the pull out range 

   is determined as

fpff
p

fN AEF ε
π
2

=     (7) 
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Fig.4 Fibre behavior across a shear crack 
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Fig. 5 Fibre pull-out equilibrium mechanism The fibre pull out strain is a function of the bond  

stress bτ and the fibre aspect ratio rA . To derive an 

express n for the pull out strain, a rbitrarily fibre 

The equilibrium of force between the concrete matrix 
and a fibre under tension will be;  

fcfctcftf AAA σσσ −=    (8) 

Where Af and Ac are the fibre an

(2) Force Ft (1) 

Referring to the stress diagram in Fig.3a, the tensile 
force carried by the fibres during the elastic stage is 
determined as follows;  

io n a
pull out mechanism as shown in Fig.5 is considered. 

l

( ) ∫=
1

01

x

t dFF

fN

 Where    (14) 

= Number of fibres cross the crack 

e
fNf FNdF ×=

The number of fibres can be derived based on the 
fraction of fibres Vf crossing the crack as follows; 

d concrete areas 

respective y while ftσ and tcσ are the fibre and 

concrete stresses r Assuming that the 

ctcftf AA

espectively. 
effect of the fibre compression force is negligible;  

σσ =     (9) 

Equilibrium of forces at the fibre-concrete interfac

sc

ff
f A

AN
V =  

bdx
AN ff=  

Where Af is cross sectional area of a single fibre 

∴
f

f
f A

bdxV
N =             (15) 

e 
is expressed as 

Substituting for  from eq. 6 and from eq. 

15 above, the relation for in eq. 14 is obtained 
as;  

e
fNF fN

)1(tF
 

 ffbctc ldA πτσ =                  (10) 

For fibre pull out to occur, the force in the fibre 
hould exceed th rfacial ( ) ∫=

1

01

2 x
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f
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1          (16) s e inte shear force. This can be 
expressed by combining eq.s 9 and 10 as; 

ffbctcftf ldAA πτσσ ≥≥  

∴
Assuming that at pull out stage, the strain in the fibre 
is equal to the pull out strain;  

fpf εε = . From Fig 3a,  
ffbfpff ldEA πτε ≥          (11) 

ψ
wxx ≅= 1

, and from Fig.4, 
ff

f
f l

w
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ffb
fp EA

ldπτ
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Experimental investigations e show  
fibre pull out length is equal to lf/4[7], thus eq. 12 can 

hav n that the net

Where flΔ = fibre pull-out displacement change 
corresponding to the increase in the crack width. 
Substituting for in eq. 16 from eq. 17, the 

force is expressed as: 
1x

)1(tF

be re-written as  

f
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With 
π
ε fpff VE

K =1
         (19) 

π
α s

d
A

kwF cos=                 (27) 

eq. 18 can be re –written as  However, from the geometry of Fig.2a the shear 
displacement in relation to the shear angleγ  (equal 
to shear strain) is determined as;  

( ) ψ
ε ffp

t

lbK
F 1

1 =          (20) 

(3) Force Ft (2) γγαδ aawv ≅== tancos  (γ  is small)        (28) 
Similarly from Fig.3, eq. 7 and 15, the expression for 
the pull out tensile force carried by the steel fibres is 
obtained as;  

αcosca =  (From Fig 1)         (29) 
Combination of eq. 28 and 29 yields the expression 
for the general crack width as; 

)2(tF =   f
p
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2 xwbVE ffpf ψ
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   (21) γcw =           (30) 

Where, = the general length of the crack path  c
Noting that 

π
ε fpff VE

K =1
 from eq. 20 and The crack width is expressed from eq.30 in terms of 

fibre pull out strain and initial yield shear 
strain yγ as; 

ψ
ε ffp l
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y
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Where is the initial yield crack 
width     32  

ffpy lc εγ =
 
(4) Dowel Force Fd The actual net fibre pull out length is given as 0.25lf 

[7], however this length is reduced during gradual 
pull out of the fibre. Thus the remaining effective 
length expressed in terms of the yield shear strain 
ratio after substitution of (cy) from 33 becomes 

The expression for the dowel force Fd has been 
derived based on dowel bearing mechanism in 
concrete road pavements [9]. It is assumed that the 
relative shear displacement between the crack faces 
is in tandem with that of the reinforcement bar as 
shown in Fig 6. The dowel load is transferred to the 
supporting concrete across the crack through bearing 
and the interface bond between concrete and the 
anchored part of the re-bar.  Equations applied on 
dowel bars on concrete road pavements [9, 10] are 
applied in this study. Where ;   

wll f
ef
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−
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fpfl
γ
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Re-writing the term (w) in eq 27 in terms of eq. 33 
the expression for the dowel force will be; 
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Where bσ = bearing stress 

dy = deflection of the dowel bar (mm) 

k  = modulus of dowel support (N/mm2),  
The value of modulus of dowel support is estimated 
from that suggested by Frigberg [10].  
k =6895 or cE25.0         (24) 

Referring to Fig.6 and applying eq.23 in the 
derivation of dowel force Fd, 

dF bb dσ= bd dky=          (25) Fig. 6 Relative deflections of Reinforcement bar 
and the crack faces 

Re-writing eq.25 in terms of the area of the 

reinforcement bar and substituting for
2

cos
2

αδ wy v
d ==  

from ig.6, Fig.2b, then              

 
(5) Bar Tensile Force Fs 

The tensile force acting on the re bar can be 
assessed in a similar manner as that of the fibre. An 
effective pull out length from the shortest anchored 
side from the crack face is assumed. The tensile force 2

cos
2

αδ wy v
d ==                   (26) 
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                (42) acting on the re bar is determined as;  

sF  ssA σ=   

spss EA ε=          (35) 
Substituting eq.38 and determining the approximate 
solution, eq.41 becomes; Where ,  sA sE sσ  are the area, elastic modulus 

and stress of the re bar.  
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Substituting for strain from eq.12, with replacement 
of fibre parameters with those of the bar 
reinforcement, then 

π
πτ sef
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lF 2=                  (36)  
Substitute for Q1, F1, F2 from eq.41 and with = c

αcos/a
a
(Fig.1). From the shear span to depth ratio 

relation, = βd . Thus eq.43 becomes;  
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2.2 Shear Strength Predictive Eq. 
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dF αTanFs                 (44) The overall shear strength predictive relation is 
derived based on the equilibrium of external and 
internal forces previously derived in section 2.1. 

To account for the influence of the shear span to 
depth ratio in shear, eq.44 is re written as follows 
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                 (46) 

It can be seen that eq.46
applied principle of superposition and can sim

 follows the traditionally 
ply be αcos

21 b
QQ = , αcos1 b

F
F d= 、 αsin2 b

F
F s=                 (41) 

written as  

dcfc VVVV ++=          (47) The expression for 
ψ
w  is obtained from eq. 38 as: 
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In order to make evolution predictions, the shear 
strain ratio in eq.46 ust be applied incm rementally (ie 

γ
γ y =0, 1, 2, 3 etc) in the prediction analysis.  

yield shear strain is determined theoretiThe cally 
based on the relation given by Gere and Timoshenko 
[8], however since this is not the maximum value, the 
factor applied in the given equation has been 
assumed to be equal to 1.2.  

yγ
c

y

GA
Q

2
2.1

=           (48) 

Where the yield shear load is at tio of 1  shear ra

( )υ+12
A  = Cross sectional area of the concrete beam 

= cE
G , is the shear modulus (N/mm )     (49) 2

c
υ   = Pois

span of the beam are obtained 
re relations [8] 

an

son ratio 
 
2.3 Determination of deflections 

Deflections at mid 
by combination of moment-curvatu

d moment-deflection relations [12]. The curvature 
ratio relationship in beams before and after cracking 
is given as follows [8]: 

y

y M23

1

−
=

κ
M

κ           (50) 

Where 
ρ

κ 1
=  is the curvature in elastic bending and 

yκ is c ture at yielding beyond which inelastic urva
ing occurs,bend M is the general moment between 

bending is obtain based on the relations given in 

the yield and plastic moment, respectively. That is 
py MMM ≤≤   

Estimation of the mid span deflection due to elastic 
ed 

[12]. Based the relations, elastic deflection in beam 
under bending is given as: 

ρ
ξδ 12

ee l=                  (51) 

here W
ϕ
ϕϕξ

48
184 2 +−   a= nd ela /=ϕ  

For sm oment curv e relation
in elasti rm

all deflections, m atur ship 
c bending can be dete ined as  

EI
M

=
ρ
1  noting that here 

yMM ≤≤0       (52) 

It is assu at onset med in this study that of yield, the 
ature limit is ature,elastic curv equal to yield curv  

therefore 

. 
y

y

κ
ρρ

==
11                       (53) 

Combination of eq.51 to 54 yields the relation for the 
determination of deflections (eq.54) from elastic to 
inelastic bending (after cracking). By inspection of 
eq.60, the curvature ratio range is found to be within 
a ratio not exceeding 1.73.  
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The deflections due to bending from eq. 54 are then 

Ml
  

added to shear deflections estimated from the relation 
between the shear strains and the shear displacement 
from eq. 28. Where the shear displacements are 
obtained as follows: 

sδ  = γa    

= )(a
y

y γ
γγ  

     = )(
2

2.1
γ
γ y

c

y

GA
Q

a                (55) 

 deflections are thThe total en estimated as follows 

tδ = sδ + bδ                  (56) 
 

. Verification of shear strength formula eq. (46) 

46 was checked against 
ex

 the specimens 
w

 

3
3.1 Basis of verification 

Validity of the derived eq.
perimental results obtained from a total of 12 test 

beams. Geometry and reinforcement details similar to 
those used in the experiments (Fig7) were used in the 
theoretical predictions. The tensile and compressive 
strengths applied were obtained from concrete 
cylinder tests; however the bond strength was 
estimated based on the value (4.15Mpa) proposed by 
Narayanan R, et al [2]. Other properties are as shown 
in Table1. Twelve simply supported beams under 
bending- shear (Fig.7) were tested in the experiments. 
Tests on the specimens were done using a 300kN 
capacity universal testing machine.  

Controlled loading was applied on
hile the full field deformations (displacements) 

were monitored and recorded using a set of optical 
measurements equipment system (ESPI) comprising 
a Desk top computer (PC) and CCD camera (ESPI 
sensor) equipped with laser beam sensors as shown in 
Fig.8.  
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Table 1 Parameters applied in analysis  
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(c) a/d =1.83 

Fig. 9 Theoretical prediction eq. (46) 

(2) Experimental a comparisons 
Fig ental 

ood 
co

 
) b) Processor 
 

 
 
3

) Analytical predictions 
m eq. (47) 

a en 

ESPI CCD with sensor 
nd theoretical 

ESPI camera and specim 10 shows comparisons between experim
and theoretical results. There is generally a very g

Fig. 8 Full filed optical equipment and set up
rrelation between the theoretical predictions and 

the experimental results. Both results also indicate an 
increase in strength in the fibrous beams over non 
fibrous beams. A decrease in the strength with 
increase in shear span depth ratio is also observed in 
both theoretical and experimental results. In Fig 10a, 
ductility representation after yield is observed to be 
limited in the ESPI results as compared with the 
theoretical predictions. This is because the failure 
was predominantly shear in which deformation after 
failure at mid span could not be detected well by the 
ESPI method due to presence of rigid displacement. 

 

.2 Verification results and Discussions 
(1
Fig.9 shows the theoretical predictions fro
for fibrous beams. As depicted in these figures, the 
strength evolution behavior is approximately linear in 
the initial stages beyond which a non linear behavior 
is observed. Complete deformation behavior in which 
increase in the shear strength commensurate with the 
fibre content is predicted well. The reduction in shear 
strength with increase in the shear span to depth ratio, 
a phenomenon commonly observed in practice is also 
predicted well.  
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