DESIGN AND ANALYSIS OF TWO TREATMENTS IN FIVE PERIODS

CROSS-OVER DESIGNS

BY

NYAKUNDI OMWANDO CORNELIOUS

A THESIS SUBMITTED TO THE SCHOOL OF SCIENCES AND
AEROSPACE STUDIES, DEPARTMENT OF MATHEMATICS, PHYSICS
AND COMPUTING IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN

BIOSTATISTICS

MOI UNIVERSITY

2021



DECLARATION

Declaration by Candidate

This thesis is my original work and has not been presented for a degree in any other
University. No part of this thesis may be reproduced without the prior written

permission of the author and/or Moi University.

Sign: Date:

Nyakundi O. Cornelious
PhD/BS/07/17

Declaration by the Supervisors
This thesis has been submitted with our approval as University Supervisors.
Sign: Date:

Prof. Joseph K. Koske
Department of Mathematics, Physics and Computing

School of Science and Aerospace

Moi University

Sign: Date:
Prof. John M. Mutiso

Department of Mathematics, Physics and Computing

School of Science and Aerospace

Moi University

Sign: Date:

Dr. Isaac K. Tum

Department of Mathematics, Physics and Computing
School of Science and Aerospace

Moi University



DEDICATION
To my wife, children, parents, brothers, sisters, and friends without whose love and

support this work would not have been possible.



ACKNOWLEDGEMENT
The writing of this thesis was accomplished with the gracious and generous assistance
of several people’s efforts. It would be impossible, though to name all the people with
whom | was privileged to work with, so the following list is far from being exhaustive.
First, all glory be to God, I thank Him for blessing me with good health and strength

that | needed to write this thesis.

| express my sincere gratitude to Moi University, particularly the department of
Mathematics, Physics and Computing for giving me the opportunity and an appropriate
working environment to write this thesis. | appreciate the comments by both students
and staff in the department which proved to be quite helpful. To my PhD colleagues,
Bernard, Dennis, Nicholas, Ken, Michael and Darkwar, thanks for your encouragement

and co-operation.

I would also like to acknowledge with deep gratitude my supervisors, prof. Joseph
Kipsigei Arap Koske, Prof. John Muindi Mutiso and Dr. Isaac Kipkosgei Tum for their
efficient support and expertise in ensuring the realization of this thesis. Thank you for

helping me to see things as they are and not as they seem to be.

Special thanks go to members of my immediate and extended family. Your confidence
in me has always been a source of motivation in life that indeed | can. Thanks for being
the pillar on which I always lean on whenever the going gets tough and for your selfless
support throughout the programme. Your love, patience and understanding when |
thought | was working too much at your expense gave me motivation to do it all for

your sake. This sacrifice was not in vain.



ABSTRACT

A crossover design is a repeated measurements design such that each experimental unit
receives different treatments during the different time periods. A cross-over design with
t treatments, p periods, and s sequences is denoted by C (t,p,s). In a majority of
bioequivalence studies, design and analysis of lower order cross-over designs are
normally associated with erroneous results. Higher order crossover designs are
desirable in the analysis of crossover designs to eliminate carryover effects. The
purpose of the study was to design and analyze two treatments in five periods crossover
designs. The specific objectives of the study were to: Estimate treatments and residual
effects of the designs; evaluate the design’s optimality criteria; evaluate the design’s
robustness for missing data; and compare the Bayesian and the t- test analysis methods
on treatments and carryover effects. The treatments and residual estimates were
obtained using the Best Linear Unbiased Estimation (BLUE) method while the
optimality criteria of the designs were determined by the variances of the treatments
and carry-over effects, where the designs with minimum variance were considered to
be optimum. In addition, the covariance of the two effects was used to evaluate the
optimality of designs which estimate treatment effects in the presence of carry-over
effects. Break down numbers were used to rank the designs according to their
robustness against missing data. In the Bayesian method of analysis, the posterior
quantities were obtained for the mean intervals of treatments and carry-over effects and
the highest posterior density (HPD) graphs were plotted and interpreted using
conditional probability statements. For validation purposes, the t-tests were performed
and their results were compared with the Bayesian results. The C(2,5,2) in this study
comprised of fifteen designs (D; — D;5) while the C(2,5,4) comprised of twelve
designs(D,¢ — D,7) . The findings of the study indicated that a majority of the designs
considered gave estimates for treatments and carry-over effects . Additionally, two
designs were optimal in estimating treatment effects for C (2x 5 X 2) cross-over
designs. Moreover, one design was found to be optimal and robust for missing data for
C (2x 5 x 4), and it was hence used in the analysis of a hypothetical example. From
the Bayesian analysis, the probability of significant treatment difference in the presence
of carryover effects was 1, while from the t-test, the calculated t —value of 11.73 was
greater than the two sided tabulated value at 5% level of significance. The two analysis
methods implied significant differences in the treatment effects. Finally, the mean
subject profiles for a majority of periods and their respective sequences implied a direct
treatment effect in favor of treatment B. In conclusion, it was established that variance-
balance plays a major role in determining a suitable design. This is due to the fact that
the optimal and robust for missing data in the study was more variance-balanced as
compared to the other designs whose optimality and robustness for missing data were
relatively lower. The study recommends that the optimal and robust for missing data
design in this study be applied in bioequivalence experiments in assessment of efficacy
of new treatments against standard ones. For further research the BLUE method should
be used in estimation of effects for designs with more than two treatments.
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DEFINITIONS OF TERMS

Break down Number: The maximum number of observations that can be lost before

Carry-over effects:

a design can be disconnected.

The effects of a treatment that persist after the end of the
treatment period. Carry —over effects appear when the response
to a current treatment is affected by the treatment that was

applied in a previous period.

Cross-over design: This is a repeated measurements design such that each

experimental unit receives different treatments during the

different time periods.

Direct treatment effect: The effect of treatment at the time of its application. Often

Eventual Design:

Period effect:

times abbreviated to treatment effect (when there is no
possibility of confusion)

The design containing the remaining subjects after drop out.

A period is each one of the occasions in which a treatment is
applied and thus period effects refers to those changes in the
value of the response that are due to the response variable being

measured at say, time t instead of t + 1 or t — 1.

Perpetually Connected Design: A planned design is perpetually connected if all

Woash out Periods:

subjects complete the first two periods and the eventual design
is connected irrespective of subject dropout behavior in

succeeding periods

A washout period is a gap in time between the applications of
treatment levels such that any residual effect of a previous
treatment level is removed and there is no detectable carry —

over effects when assessing treatment effects.



CHAPTER ONE: INTRODUCTION
1.1 Introduction
This chapter covers the background to the study, statement of the problem, study

objectives, significance of the study, justification and the scope of the study.

1.2 Background information

1.2.1 Cross-Over Designs

A cross over study is a longitudinal study in which subjects receive a sequence of
different treatments. The designs are common in many scientific disciplines such as
pharmacy, agriculture and engineering where treatments are normally assessed on their

effectiveness.

A Crossover design which compares two treatments over two periods C(2,2,2), has
held a dominant position in the application of crossover designs to the extent that in the
majority of articles and texts, it is referred to as the cross-over design (Reed, 2012).
Critiques of C (2, 2, 2) with sequence AB and BA are well known. The most serious of
these is that the carryover effect is confounded with sequence by period effects leading
to erroneous analyses (Reed, 2011). Statisticians have been critical of the use of
crossover designs whose carryover effects are not equal for clinical trials because in
such a case the estimate of the treatment difference is biased (Hills & Armitage, 1979).
To overcome the problems experienced in lower order designs, higher order crossover
designs may be used (Hills & Armitage, 1979). The first strategy is to extend the
number of sequences such as Balaam’s C (2, 2, 4) design (Balaam, 1968). Secondly,
the classical C (2, 2, 2) design should be extended by adding a third period, fourth
period or more and repeating the treatments in a particular order. Mathews (1987);
Laska, Meisner, & Kushner, (1983) and Reed (2012) developed a method of obtaining

unbiased estimates for treatment and carry-over effects using BLUE. This was an



alternative to the Ordinary Least Squares (OLS) method which occasionally gave
biased estimates. In this study, unbiased estimates for C (2, 5) designs were obtained
using BLUE method, the sequences and periods of the designs were increased to satisfy

in part the two strategies outlined above.

1.2.1.1 Average treatment effects

The average treatment effects (ATE) is a measure used to compare treatments or
interventions in randomized experiments, evaluation of policy interventions, and
medical trials. The ATE measures the difference in mean outcomes between units
assigned to the treatment and the units assigned to the control or standard treatment.

In arandomized trial, the average treatment effect can be estimated from a sample using
a comparison in mean outcomes for treated and untreated units. Both observational
studies and experimental study designs with random assignment may enable one to

estimate an ATE in a variety of ways.

1.2.1.2 Washout period

A washout period is a period of time during a bioequivalence study when a participant
is taken off a study drug or other medication in order to eliminate the effects of the
treatment. It basically means a period of time a patient is not being actively treated

while awaiting for a new treatment to begin.

1.2.1.3 Carry-over effect

The presence of the effect of one period at the start of the subsequent period is referred
to as the carry-over effect. Carry-over effects normally affect the results obtained when
assessing the treatment efficacy in bioequivalence studies. The presence of carry-over
effects depends on; the design, the setting, the treatment and the response. Carry-over

effects can arise in a number of ways: for example, pharmacological carry-over occurs



when the active ingredients of a drug given in one period are still present in the
following period; psychological carry-over might occur if a drug produces an

unpleasant response that might lead to a downgrading of the perceived response.

1.2.2 Optimality Criteria

The world is facing depletion of resources and search for optimal utilization measures
are inevitable in all fields of human endeavor. Since the resources are scarce, we need
to produce and perform maximally by utilizing optimum cross-over designs in

bioequivalence studies and related experiments.

The alphabetical optimality criteria such as; A-criterion, D-criterion, T-criterion and E-
criterion are normally applied in determining the optimality criteria for crossover
designs. However, this is limited to cross-over designs with three or more treatments.
For two treatments cross-over designs, the criterion usually adopted is that a crossover
design is optimal if it provides minimum variance unbiased estimates of the treatments

and carryover effects.

1.2.3 Robustness for Missing Data

In most crossover experiments where human behavior or animal responses are involved
such as clinical trials, there is a strong possibility of recording missing values
(Godolphin & Godolphin, 2019). Subjects may drop out of the study due to illness,
drug toxicity, vacations and many other unpredictable events leading to missing data
and significant difficulties in statistical analysis (Godolphin & Godolphin, 2015). Data
may be missing due to random process independent of the experiment and its effects, a
process dependent on the experiment or because the design is purposely incomplete
(Mathews & Hernderson, 2013). In studies which use a crossover design, a specific

pattern of dropout behavior can result in a disconnected design in which some and



occasionally all contrasts in treatment direct, treatment carryover and period effects will
not be estimable (Godolphin & Godolphin, 2015). Such a situation has the potential to
compromise the experiment severely, and could result in substantial loss of information
about the aims of the study as well as incurring unwarranted excess monetary and time
costs from a repeated experiment (Godolphin & Godolphin, 2019). The current study
explores the methods used to limit the impact of missing data. And the methods are

illustrated by assessing five period in two and four sequence cross-over designs.

1.2.3.1 Breakdown Numbers

A design is said to be disconnected if the experimenter is unable to estimate both the
treatment effects and carryover effects due to missing data. Different designs can loose
different number of observations before they become disconnected. A breakdown
number is the maximum number of observations that can be lost before a design can be
disconnected. Designs with higher breakdown numbers are regarded as more robust for
missing data compared to designs with relatively lower breakdown numbers and are

highly recommended for bioequivalence studies where missing data is expected.

1.2.3.2 Perpetually Connected Designs.

A perpetually connected design is designed in such a way that, provided that all subjects
have completed the first two periods of study, the design will not be replaced by a
disconnected eventual design due to missing data, irrespective of the type of drop-out

behavior that may occur (Godolphin & Godolphin, 2019).

Perpetually connected designs are the most robust for missing data and are highly
recommended for bioequivalence studies (Godolphin & Godolphin, 2015). In the event
that more than one design is perpetually connected, the variances for treatments

estimates can be used to determine the designs robustness for missing data.



1.2.4 Bayesian Method of Analysis

Crossover designs are mostly applied in clinical trials in assessment of the efficacy of
new therapies as compared to standard therapies that are existing for the purpose of
introducing them to the market. Phase three failure rates for investigational drugs are
disappointingly high and costly. It is estimated that at least 50% of failures are
attributable to some measure of efficacy (Hay et al, 2014). In early drug development,
robust success criteria aid in making informed decisions on whether drug has sufficient
efficacy and differentiation to other products to proceed to phase 3 development and to
deliver benefit to patients. The phase two trial is typically the first time an
investigational drug is tested in the target patient population to establish efficacy. In
such settings, either a traditional approach using classical statistical methods or a
Bayesian approach may be used to analyze the study. In a classical trial design, the null
hypothesis may be rejected in favor of the alternative hypothesis once a pre-specified
significance level is met. In contrast, Bayesian approaches focus on how the trial may
change our opinion about the treatment effect using probability distributions
(Spiegelhalter, Abrams, & Myles, 2004). First a prior belief about the treatment effect
may be presented through a probability distribution. Then the trial is conducted, and
based on the observed data; the prior belief is updated to represent the posterior belief
and the updated probability distribution representing the final opinion of the treatment
effect. Prior beliefs can be informative when based on results from previous studies, or
non-informative when little prior knowledge exists and you wish to allow the current
trial data to drive the posterior belief regarding the treatment effect. Bayesian
approaches to the design and analysis of phase 2 trials are increasingly being advocated
and implemented (Sambucin, 2020).This framework can facilitate more intuitive

success criteria and can easily quantify probabilities of interest, such as the probability



of the drug being at least as efficacious as certain clinically relevant threshold. The
Bayesian analysis can also naturally accommodate adaptive trial design such as interim
analysis to stop the trial for futility and adding or dropping dose levels (Lin & Lee,
2020). This study applied the Bayesian approximation method to analyze the two
treatment five period C (2, 5) crossover designs with the aim of assessing the efficacy

of two treatments.

1.2.4.1 Posterior Probability Density
A posterior probability in Bayesian statistics is the revised or updated probability of an
event occurring after taking into consideration new information. The posterior

probability is calculated by updating the prior probability using the Bayes theorem.

1.3 Statement of the Problem

In a majority of bioequivalence studies, design and analysis of lower order cross-over
designs are normally associated with erroneous analysis. Additionally, the drop-out
behavior problem in cross-over designs results in disconnected designs in which some
and occasionally all contrasts in treatment direct and treatment carry-over effects are
not estimable resulting in; loss of parameter contrasts precision in effects of interest,
and incurring unwarranted excess monetary and time costs from repeated experiments
(Godolphin & Godolphin, 2019). Moreover, the classical hypothesis testing techniques
are inappropriate for cross-over designs and have resulted in biased and erroneous
conclusions (Fleiss, 1989). Higher order cross-over designs like the C (2, 5) designs in
this study are desirable in the analysis of cross-over designs since they eliminate the
effects of carry-over and periods by sequence interaction effects, and are optimal and
robust for missing data. They are also relatively free from analysis errors when

compared to lower order cross-over designs.



1.4 Justification

The Kenyan nation has identified; affordable health care, food security, and
manufacturing as part of the fourth president’s big four agenda for the nation. Cross-
over trials are expected to play a central role in achieving this development goals where
the newly developed treatments are compared with the standard existing treatments in
the market in establishing their effectiveness and safety. Higher order cross-over
designs like the C (2, 5) in this study will be applicable in industrial, pharmaceutical,
and agricultural experiments where the assessment for effectiveness for two treatments

in five periods is a requirement.

1.5 Objectives of the Study
1.5.1 General Objective
The general objective of this study was to design and analyze two-treatment five-period

crossover designs.

1.5.2 Specific Objectives

The specific objectives are to;

1. Estimate treatments and residual effects of the designs using BLUE method

2. Compare the Optimality criteria for C (2, 5) cross-over designs

3. Assess the Robustness for the C (2, 5) cross-over designs against missing data
4. Compare the Bayesian test and t —test analysis methods on the treatments and

carry-over effects.

1.6 Significance of the Study
The five period cross-over design will allow treatment effects to be estimated even in
the presence of carry-over effects, provide unbiased estimates for intra subject

variability and drawing inference on the carry-over effect. Additionally, the optimality



criteria will guide the experimenters on the right designs to apply in estimating
particular contrasts effects. Moreover, the robustness for missing data will enable
experimenters choose designs which are more robust thus avoiding loss of information
about the aims of the study as well as incurring excess monetary and time costs from
repeated experiment. The Bayesian analysis will enable treatment effects to be tested
with or without the carry-over effects, unlike the classical methods where the presence
of carry-over effects is tested first and if the carry-over effects are present, only the first
period is considered with 10 % significance level. This is because the Bayesian methods
has the potential to produce more efficient and informative statistical analyses than

those based on traditional approaches.

1.7: Scope of the Study

The purpose of this study was to extend the work done by Mathews (1994) and Reed
(2012) in three and four periods respectively, to five periods cross-over designs. The
study specifically focused on the development of fifteen new C (2,5,2 ) cross-over
designs. Some pairs of C (2, 5,2 ) were combined to form C (2,5,4 ) cross-over designs.
The treatment effects and carry-over effects for all the designs were obtained using
BLUE method and the variance of all the designs were evaluated. Further, the designs
robustness against missing data was assessed and the most optimal and robust design

was used in the analysis of a hypothetical example.



CHAPTER TWO: LITERATURE REVIEW
2.0 Introduction
The literature review of this study is divided into four components; cross-over designs
with carry-over effects, optimality criteria for cross-over designs, robustness for

Missing data and the analysis of cross-over designs.

2.1 Crossover Designs with Carry-Over Effects

Cross-over designs with carry-over effects were mainly developed to counter changes
in design patterns. (Balaam, 1968). The general linear model presented by this classic
paper was not explicitly analyzed but from the data analysis they performed, it led to a
general liner model with error terms assumed to be identically and normally distributed
with equal correlation. In order to address these critical assumptions, Grizzle in the year
1965 developed the concept of analysis of cross-over designs with residual effect. The
analysis included the assumption of a mixed model in the analysis of two period, two
treatment two sequence cross-over designs under which the subject effects and error

terms are random effects (Grizzle, 1965).

Researchers frequently used designs that had two treatments and two periods in the
analysis of cross-over experiments (Reed, 2011). It was later discovered that these
designs lack the structure to test for carry-over effects and also produce biased direct
treatment effects under the presence of carry-over effects (Hills & Armitage, 1979). In
practice, these designs are not usually recommended despite the suggestions of possible

solutions to it (Fleiss, 1989).

To overcome the problems in the C (2, 2, 2) design, higher order cross-over designs are
recommended (Hills & Armitage, 1979). Two strategies have been recommended. The

first one is the extension of the number of sequences such as Balaam’s C (2, 2, 4)
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design (Balaam, 1968). Secondly, the extension of the classic design through an
addition of the third period, fourth period or more and the repetition of the treatments
in a certain order. Lucas (1957) introduced the extra period design by repeating the
treatment in the last period of the design, an idea that originated from Yates (1947). The
extra period design allows the residual and the direct treatment effects to be orthogonal
to sequences. In contrast, considering these designs, the subject effects and the direct
treatment effects are not orthogonal to each other and the degree of non-orthogonality
is not great (Lucas, 1957). In using these designs, much more attention is put on
increasing efficiency when measuring cumulative and residual effects as compared to
loosing efficiency on direct treatment effects. Lucas’s work was extended by Patterson
in the year 1959 to wide class of extra — period cross-over designs. Atkinson (1966)
described and generalized the idea of tied-double change-over designs. The importance
of designs is realized when the estimates of both direct and residual effects tend to give
equal estimated variances for both effects when the number of periods increases.
Kushner and Federer (1981) presented a class of two treatment cross-over designs and
set up a general model for use with virtually any kind of cross-over designs.
Additionally, they compared the efficiency and effect of complete random designs with
extra period designs and demonstrated that complete random designs will be no better
than the three or four period cross-over alternatives in the presence of residual effects

or period by treatment interactions.

Alternatively, Reed (2011) introduced a two period design in place of a randomized
two treatment design. Reed used the Grizzle (1965) approach to extend the classic
AB/BA through the addition of a third period in which he realized that the method of
adding an extra period was much less costly and that carry-over effects were measured

with a higher precision. The three period designs are more efficient since they can be
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conducted in the presence of carry-over effects and have much more statistical power
as compared to the classic design (Reed, 2011). The food and drug authority (FDA)
proposed a four period design with four sequences as the most suitable in
Bioequivalence studies with two treatments if the carry-over effects are expected
(F.D.A, 2001). In this regard, Reed (2012) considered four period cross-over designs in
two and four sequences and estimated both the treatment and residual effects using the
methods by Mathews (1987) and Kushner, (1997a). In order to realize efficiency in cost
and statistical power, thorough investigation has been carried out to determine higher
order two treatment designs (Godolphin & Godolphin, 2019). The current study
endeavors to make a contribution by designing and analyzing new higher order for C

(2,5) designs in two and four sequences.

2.2 Optimality Criteria for Cross-Over Designs

Research in the literature of cross-over designs was mainly concentrated in dealing with
continuous response variables (Jankar, Mondal, & Yang, 2020). There has been an
extensive study to determine the problems associated with optimal cross-over designs
for continuous responses. For this reason, Bose and Dey in the year 2009 gave examples
of practical cases where the responses are discrete in nature such as binary responses

(Jones and Kenward, 2014 & Senn, 2001).

As all the effects are fixed for linear models, the fisher information matrix is
independent of model parameters (Kim, 2020; Stufken, 1991). Various optimality
criteria such as A-, D-, and E- optimality criterion depend on this information matrix
(Pukeilsheim, 1993). The literature contains numerous results that rhymes with the
optimality of cross-over designs for linear models. Hedeyat and Afsarinejad (1978),
Cheng and Wu (1980) and Kurnest (1984) studied the optimality of balanced uniform

designs (Lui, 2016). Cheng and Wu (1980) formulated theorems for optimality of
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designs which are neither balanced nor strongly balanced. Dey et al (1983) were among
the first ones to provide results for optimality of designs when p < t considering
arbitrary p and t with both p < tand p > t . Kushner (1997) obtained conditions for
universal optimality through approximate theory. The current study obtained the
optimality criteria for the new C (2x 5) Cross-over design using the variance of

treatment and carry-over estimates as suggested by (Jones & Kenward, 2014).

2.3 Robustness for Missing Data

The problem of missing data is still a concern since it has not been fully addressed in
the literature provided from the analysis of cross-over designs. The occurrence of
missing data poses a challenge in the inter-subject analysis steps suggested by Balaam
(1968) since the subject must be dropped out from the analysis even if only one
observation from the subject is missing and the missing values might be replaced by
estimates which are very difficult to obtain. Lucas (1957) and Balaam (1968) suggested
that missing values can be estimated by the replacement method which minimizes the
error sum of squares during analysis. A second approach is the use of a multivariate
model used in the analysis of incomplete multivariate data. Traditionally, the case wise
deletion method was used to solve the missing data problem in which if there was at
least one missing data point, all data from the same subject was deleted. This was the
case in the early days of multivariate analysis. The application of case-wise deletion to
cross-over designs implies the deletion of all data from any subject for which any one
observation is missing. Another method to deal with missing values was known as
pairwise deletion introduced by Glasser (1964) by using all available data in the jt"
variable to estimate its mean and variance. Further, he suggested that using all available
data in the j**variable of the same subject must be dropped out from the analysis even

if only one observation from the subject is missing and the missing values might be
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replaced by estimates which are very difficult to obtain. There has been little literature
information on how robust various cross-over designs are to data that becomes
unavailable during the course of the experiment. In higher order cross-over studies, this
issue is heightened further as the number of experimental and associated washout
periods are increased which can lead to trials with lengthy follow-up studies (Godolphin
& Godolphin, 2019). The most notable effects of the missing data in any experimental
analysis conducted by a researcher is the loss of precision in the estimation of
parameters related to both the direct treatment and residual effects and a disconnected
design from which essential assumptions are difficult to visualize. (Godolphin &
Godolphin, 2015). The consideration of robustness properties of cross-over designs
with regard to subject dropout appears to be confined to the class of planned designs
which are uniformly balanced repeated measurements, (Majumdar, Dean, & Lewis,
2008; Godolphin & Godolphin, 2015; Godolphin & Godolphin, 2019). The current
study seeks to assess the two treatments, five periods’ designs against missing data. In
particular, some C (2, 5,4) cross-over designs are examined and ranked by breakdown
numbers and minimum variance, thus enabling the identification of a good design

which is robust against missing observations caused by subject dropout.

2.4. Analysis of Cross-over Designs

Box (1954a) considered the problem of the effects of inequality of variance and of
correlation between errors in two way analysis of variance, he found the sum of squares
for treatment effects is not stochastically independent of that error. Additionally, he
noted that there were difficulties in testing hypothesis using dependent data. To test the
treatment effects, he developed a conservative F-test used in the analysis of cross-over
designs. Through his work, a univariate model was developed which was used as a

theoretical basis for testing multivariate data in cross-over designs, although there is no
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direct connection with cross-over design analysis his work gives the theoretical
foundation of hypothesis testing in cross-over design analysis (Trawinski & Bargmann,

1964).

In order to address the problem encountered in the estimation of residual and direct
effects in the two treatment designs, Grizzle (1965) developed a linear model to this
effect. In his model, it is difficult to estimate period effects in the presence of residual
effects. The residual effects are also completely confounded with sequence effects. In
addition, if residual effects are simultaneously present in the model, there’s loss of
efficiency in the estimation of treatment effects since it is only based on first period
data. For hypothesis testing, he found that the subjects — within sequence mean square
is proper term for testing the inequality for residual effects. He also found that there is
no appropriate error term to test the significance of treatments effects in the presence
of residual effects. The early development by Grizzle (1965) took into consideration
the use of first period data to estimate treatment effects. This was later corrected by
(Grizzle, 1974), who noted that data from both periods should be used to estimate the
treatment effects. In contrast, Balaam (1968) presented an interesting analysis
procedure. He performed both intra and inter experimental subject analysis by using
raw data and taking the sum difference of observations from the same subject
respectively. From the experimental intra-subject analysis, he noted that the method is
more efficient than the inter subject analysis since by performing sums and differences
on the observations, it eliminates between subject variability. However, his model is
different from Grizzle’s by including period by treatment interaction effects and

eliminating residual effects.

The analysis of variance for C (2, 2, 2) cross-over design was given by Grizzle (1965),

who proposed a preliminary test for the residual or carry-over effects from a drug
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administration in the first period. The significance of the preliminary test-statistic at
0.05, 0.01 or 0.001 significance level is carried out in order to make a correct decision.
A carry-over effect is ignored if the test statistic is not significant and the ANOVA test
is used to test the hypothesis of no difference. The recommended method to be used in
the analysis of cross-over designs is the confidence interval approach rather than the
hypothesis testing approach (Westlake, 1972, 1973& Metzler, 1974). For this reason,
the authors argue that more focus should be put on testing how significant the difference
IS rather than just testing the difference (Grizzle, 1974). A biologically meaningful
measure of Bioequivalence is the posterior probability that the difference in information
means is less than a specified fraction such as 20% of the standard (Grizzle, 1974). In
support of this assumption, a proposed Bayesian Formulation was illustrated by taking
data from three different drugs and their appropriate posterior probabilities determined
to help in decision making on whether the carry-over effects are present or not. Taking
evidence from the existing literature, little has been done on analysis of higher order
cross-over designs using Bayesian approach. The current study weighs in by analyzing

the most robust C (2, 5,4) using the Bayesian approximation method.
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CHAPTER THREE: METHODOLOGY

3.0 Introduction
In this chapter, the methods used to achieve all the specific objectives are given; the
methods include estimation of the direct treatments and treatments carry-over effects
using BLUE method, Optimality criteria for the C(2,5) Cross-over designs ,
Robustness of the designs against missing data and analysis of a hypothetical example
based on Bayesian methods.
3.1 Estimation of the direct treatments and treatments carry-over effects for C

(2,5) cross-over designs using BLUE.
3.1.1 The Five period cross-over designs
In higher order five period cross-over designs with two treatments, thirty two possible
treatments sequences can result; AAAAA, BAAAA, ABAAA, AABAA, AAABA,
AAAAB, BBAAA, BABAA, BAABA, BAAAB, ABBAA, ABABA, ABAAB,

AABBA, AABAB, AAABB and their duals.

For a cross-over trial, the number of treatments, periods and sequences will be denoted
by, t,p, s respectively. So, for example, in a trial in which each subject received two
treatments A and B, in one of the thirty two sequences ABABA: it is given by; t =
2,p=>5 & s =32. Ingeneral, the response observed on the k™ subject in period j

of sequence group i is denoted by yj;y -

To represent the sums of observations, the dot notation is useful, for example:

yii-=2£i=1 Yijk’ yi--=21p=1 yij. ! Y.=%5 i (3.1.1)

In a similar way, the corresponding mean values will be denoted, respectively, as

— 1

. 1 — 1
Vs 2 ik, Vi, = 5 Ljma Vi, ¥ Zoy Zica Vi, (3.1.2)

ij. 7 n,
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To construct a statistical model, it is assumed that y;;y. is the observed value of a random
variable. For a continuous outcome, the observed value of y;;, can be represented by a

linear model written as;

Vijk = M+ 15 + Tapij) + Adpij-1) T Sik + €jjk (3.1.3)
Where the terms in the model are,

W, an intercept;

T, an intercept associated with period j,j = 1, ..., p;

Tqfij). @ direct treatment effect associated with the treatment applied in period j of

sequence i, d[i,j] =1, ..., t;
sk, an effect associated with the k™ subject on sequence i,i = 1, ...,s,k = 1, ..., n;;

ejjk, a random error term with zero mean and variance o2, and

Aqij-1) » @ simple first order carry-over effect that is affecting the outcome in the
subsequent period only.

Additional terms such as second order carry-over and direct treatment by —period
interaction effects can be added to this model, but such terms are rarely of much interest

in practice.
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3.1.2 The Best Linear Unbiased Estimation Method (BLUE)

Consider the estimation of contrasts among direct and residual treatment effects under

(3.1.3),

Let

fA=(ta — TB), (3.1.4)
and

flo=(Aa — Ag), (3.1.5)

The best linear unbiased estimators of p and p, can be written as linear combinations

of cell means for example;

and

Note that estimability of u and p, ensures that;

i1 =0, (3.1.8)
and
Yo b=0forj=1,...,s, (3.1.9)

Where p represents the number of periods and s represents the number of sequences.
In order to obtain the unbiased estimates given in (3.14) and (3.15), the conditions given

in (3.1.6), (3.1.7) (3.18) and (3.19) must be satisfied.

3.2 Optimality Criteria for C (2x 5)Cross-Over Designs

According to (Laska, Meisner, & Kushner, 1983), the precision of a design is measured
in terms of the covariance matrix, Vg, of the BLUES of the parameters or contrasts of
interest. When there are many parameters, a choice must be made as to a criterion for

V i.e. some function of V. The well-known classical optimality criteria include; D-
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optimality, A-optimality and T-optimality criteria. For two treatments, the criterion
usually adopted in the literature is that a cross-over design is optimal if it provides
minimum variance unbiased estimators of treatment effects and carry-over effects
(Jones & Kenward, 2014, p. 106).

The variances of (3.1.6) and (3.1.7) can be written as;

var(i)=[s Y %ﬁ]oz’ (3.2.1)
and
var(o)=[s3 3 2o, (322

The variances given in (3.2.1) and (3.2.2) are used to obtain the efficiency in estimating

both the direct treatment effects and the carryover effects respectively.

Consider the estimation of contrasts among direct and among carryover effects, the
cumulative treatment effects are defined as the sum of the direct and the carry-over

effects and can be given by;

(ta —t8)c = (Ta — T8) + (A4 — AB). (3.2.3)
Recall,
var(a + b) = var(a) + 2cov(ab) + var(b). (3.2.4)

This implies that,
cov(ab) = %(var(a + b)) — (var(a) + var(b)) (3.2.5)

Substituting (t4 — tg) and (A, — Ag) (3.2.3) to a and b (3.2.5) gives
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cov((ta —Tg)(Aa —Ag) ) = %[Val‘((TA —1g) + (Aa —2Ag) )] — [var(tp — T5) +

var(A, — Ag)]] (3.2.6)

The current study evaluates the variances of the treatment and treatment carry-over
effects for the five period cross-over designs as given in (3.2.1) and (3.2.2) .The
covariance of treatments and carry-over effects given in (3.2.6) will aid in evaluating
the optimality for designs which estimate treatment effects in the presence of carry-over

effects.

3.3 Robustness of the (2x 5) Cross-Over Designs against Missing Data.

A useful measure when planning an experiment to reduce or even prevent the possibility
of a disconnected eventual design is the concept of minimum number of observations
that a planned design is required to lose for the corresponding eventual design to be
disconnected. This is referred in what follows as breakdown number of the planned
design. Planned designs with a high breakdown number are advantageous on grounds

of robustness to missing data.

3.3.1 Robustness of a design (D)
For a given design (D), there are many possible eventual designs (D) which could
occur. We first consider the robustness concept of breakdown number which was

discussed by (Godolphin & Godolphin, 2019) .

3.3.2 Robustness Using Break down Numbers
The break down number (MD) of a planned design is the minimum number of missing

observations that result in one disconnected D,.

This definition implies that there is at least one D, which is disconnected; this design

will consist of MD fewer measurements than could be available from D. Furthermore,
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there will usually be several other disconnected eventual designs which have MD or
more observations missing when compared with the planned design. When D has break
down number MD, then no D, will be disconnected if fewer than MD observations are
lost during the experiment. This D is robust to the unavailability of observations due to

subject dropout if MD is relatively high.

If D, and D, are cross-over designs with the same dimension, then D is said to be more
robust than D, when their break down numbers satisfy MD; > MD,. It follows that if
many designs are under consideration, then the design D with the maximum break down
number is more robust than the competing design and should be preferred in terms of
robustness. When several designs have the same high break down number, then
variance considerations should apply to these designs. Evidently a preliminary step is
to aim to identify those designs that possess the largest break down numbers. All the
five period two treatment designs for four sequences were evaluated and ranked

according to their breakdown numbers.

3.3.3 Robustness for Perpetually Connected Designs
A planned design is perpetually connected if all subjects complete the first two periods

and the D,, is connected irrespective of subject dropout behavior in succeeding periods.

Thus D is perpetually connected if there is no D, which is disconnected, conditional on

no dropout in the first two periods of study.

The break down number of a perpetually connected design D will be denoted by MD

= 00

If several designs are perpetually connected, their robustness should be evaluated using

their variances where the design with the minimum variance is taken as the most robust.
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3.4 Data analysis based on the Bayesian method for C (2, 5) cross over designs

In crossover designs, the group sequences differ substantially, not only in their means
but also in their variances as well. The group sequences are assumed to be normally
distributed. The study assumed a non- informative reference prior where the means and
variances in the priors are approximately independent and locally uniform. This is
because there is no prior information about the likelihood to rely on. In such a case the
posterior distributions are the same as the likelihood distributions. The Behrens fisher
approximation Bayesian approach was the most ideal technique to analyze the five
period cross-over designs .The most robust C (2, 5, 4) cross —over design is considered

for analysis.

3.4.1 Determination of Variance for the C (2, 5, 2)Cross-Over Design

Let : the k™ subject in group1 have k = 1,2,...,n; ; the k™ subject in group2 have
k = 1,2, ...,n,; the k'™ subject in group3 have k = 1,2, ..., ng, and the k™ subject in
group 4 have k = 1,2, ..., n,.

Assuming that sZ, is the variance of the first group and s2, is the variance of the second

group, the pooled variance for the first two groups is given by,

2_ (n—1)si;+(np—-1)s3,
Si= - (3.4.1)

Similarly, assuming that s3, is the variance of the third group and sZ, is the variance of

the fourth group, the pooled variance for the two groups is given by,

2_ (n3—1)s3;+(ny—1)s},
S5= otra?) (3.4.2)
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3.4.2 Determination of Variance for the C (2, 5,4)Cross-Over Design

Let
(ta — TB)1= % (dy; —d2s) (3.4.3)
and
(ta —TB)2= i (d3g — d41) (3.4.4)

Where; dq4,d;q, d3; & dy4q are treatment contrasts for groups 1, 2, 3 and 4 respectively?

The variances of these estimators are.

211 1

V(ta =)= o |+ o (3.4.5)
211 1

V(ta = t8),7 o5 |-+ 7 (3.4.6)

Note that n4, n,, n3, &n, are the sample sizes for groups 1, 2, 3&4 respectively.

A combined estimator of (t, — Tg)w can be obtained by taking a weighted average of
the two estimators where the weights are taken to be inversely proportional to the

variances of the estimators. That is,

1

Wi =S (3.4.7)
and

1
W2 = v, (3.4.8)

Using (3.4.1), (3.4.2), (3.4.7) and (3.4.8), the combined estimator for treatment effects

IS given by,
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(Ta — Te)w = W1(TA—T3\)711VV\\Z(TA—TB)2 (3.4.9)

Thus the variance of (3.4.9) which forms the combined variance estimator is given by,

W,

W

V(ta — 8w =( )2 V(ts — 1)1 + ( )? V(Ts — T8)2 (3.4.10)

The same procedure can be used to obtain (A, — Ag)w and V(A — Ag)w -

3.4.3 The Bayesian Method
We employ an approximation proposed by Patil (1964), who fits a scaled t distribution

to the distribution t.

2 2
It is shown by Patil that ¢ is approximately distributed as ¢(5;, a2 (Sl + Z—z),b) for
2

ng

i=1,2

Where,

8; = [Aa — Aglw , (3.4.11)

8, = [ta — TBlw, (3.4.12)

b—2

a= (%) fi. (3.4.13)
f2

b=4+¢, (3.4.14)
2

— v 2 41 )

fy = (vz_iz) cos®6 + (vl—z) sin?6, (3.4.15)

f=—0  cos*p+——2— sin‘g (3.4.16)

2 (VZ—Z)Z(V2—4) (VZ—Z)Z(V2—4) ) A

Where

s

cos?@ = (24 (3.4.17)

2 L]
S S
st _z>
ni nz
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v, &v,, are the degrees of freedom given by n; —2 and n, — 2 respectively

Whel’e r11 = n11 + n21, and nz = n31 + n4_1.
From (3.3.17) sin 20 = 1 — cos?@. (3.4.18)
To this degree of approximation, the difference of the mean values

[ta — tg]w and [A, — Ag ]w are distributed a posterior as;

t| e - w2 (X + Z—i),b] & t|0n - 2pwa? (Z + Z)b|  (3419)

ng ng ny

The (1- <) H.P.D intervals are given by;

s? s3. .1
(ta—w * () (n_1 + n_2)2 tg (b,95%) (3.4.20)

For treatment effects and

2 2 1
(= Ap)w & te )G+ 217 ta g o5y (3.4.21)
For carry-over effects.

3.4.4 Interpretation of the Bayesian Approximation Method
The strategy was to use a non-informative prior to produce the posterior distribution
which was used to obtain the highest posterior density (H.P.D) interval and to test the

null hypotheses as given in (Patil, 1964).

Different values of(ty — tg)w, (Aa —Agp)w and (ta — tg)w/ (Aa — Ag)w Were
tested and a directional hypothesis tests and a probabilistic statements regarding the
parameter estimates were given and the whole posterior distribution was used. The null
hypothesis of Hy: (Ap —Ag)w = 0, Hp: (ta —t)w = 0, and Hy: (ta — T8)w/

(Aa — Ag)w =0, were tested at a=5%.
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If in the 95 % HPD interval, the probability of the effects of interest greater than zero
was 1 or relatively higher than 0.2, the null hypothesis was rejected. Otherwise the null

hypothesis was not rejected.

3.4.5 Student’s t-test
The t — test was used to validate the results obtained by the Bayesian method of

analysis.

From (3.4.9), (3.4.10), (3.4.11) and (3.4.12), the calculated t values for treatment

effects and carry-over effects are given by,

_ (taA—tB)w
te= (3.4.22)
and
t=—2adBw (3.4.23)

¢ JVAa-2p)w

A simple approximation to the degrees of freedom of the estimated variance of the

combined estimator was obtained using the result given by Satterthwaite (1946).

Let,
Wy
A = (3.4.24)
W,
2 = Woaws (3.4.25)
V; = Var(tsy — t8)1 (3.4.26)
V, = Var(ty — t5)32, (3.4.27)
And

Vi = Var(ty — tg)w - (3.4.28)
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Similarly, let f, , f, and f,, be the degrees of freedom respectively, of the estimates of

Vi, V, &V
_ (a1Vqi+apVy)?
Thenf,, = W (3.4.30)
f f,

By comparing the tabulated value at f, degrees of freedom in (3.4.30) with the
calculated value from (3.4.22) and (3.4.23), the null hypothesis is rejected if the

calculated value is greater than the tabulated value at 95% confidence interval.

3.4.6 Plotting the Data

3.4.6.1 Subject Profiles Plot

The objective of cross-over trial is to focus attention on within- individual treatment
differences. A good plot for displaying these differences is the subject profiles plot. In
this case, subject profiles graphs were plotted for each group to represent the change in
each individual’s response over two treatments periods. For each value of k, the pairs

of Points (y11k, Y12ks Y13k Y1aks Y1sk)» V21ks Y22ks Y23k Y24k Y25k )

and

(V31K Y32k Y33k Y34k V35k)» Vatkr Yazkr Yaskr Yaaks Yask) » Were plotted.

This plot helped to identify the general trend and ascertain the effectiveness of treatment

B (the new treatment) with regard to treatment A (the standard treatment).

3.4.6.2 Group by Periods Plot

In this case, the graphs that compared the average values over each group for each
period were plotted. The eight group by period’s
means yi;, Y1j, ¥2i» ¥2j ¥3i0 ¥3j. Vair &Yaj. for iandj=12,3,4and5
respectively, against their corresponding period labels were plotted and joined. On the

graph, the means were labeled in terms of the group and treatments they represented
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I.e. as 1A, 1B; and 2B, 2A for the first two groups respectively. In this regard, 1A was
joined with 2A and 2B with 1B and the same procedure was applied for the 3" and 4%
groups respectively .This plot was used to ascertain presence of treatment by period

interaction.
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CHAPTER FOUR: RESULTS AND DISCUSSIONS
4.0 Introduction
In this chapter, the direct treatments and treatments carry-over effects for (2x 5) cross-
over designs are presented using (BLUE), Their optimality criteria and robustness for
missing data are established and the treatment effects and carry-over effects for the
optimum and most robust design are analyzed using the Bayesian approximation

method.

4.1 Estimation of the direct treatments and treatments carry-over effects for (2x
5) cross-over designs using Best Linear Unbiased Estimation method (BLUE).

In higher order five period cross-over designs with two treatments, thirty two possible
treatments sequences can result to ; AAAAA, BAAAA, ABAAA, AABAA, AAABA,
AAAAB, BBAAA, BABAABAABA, BAAAB, ABBAA, ABABA, ABAAB,
AABBA, AABAB, AAABB, and their duals. A combination of particular group

sequences with their respective duals gives

C (2,5, 2) cross over designs. Similarly, combinations of pairs of C (2, 5, 2) gives C (2,

5, 4) crossover designs. The following are the C (2, 5. 2) designs that were obtained;

4.1.1 Five Period Two Treatments Design for Sequence BAAAA and its Dual
(Design 1)

The design is represented as given in Table 4.1.1 below.

Table 4.1.1: C (2x 5 x 2) Design 1

SEQ P1 | P2 | D3 | Pa|Ds
BAAAA B |[A |[A A |A

ABBBB |[A (B |B |B |B

Substituting model (3.1.3) to Table (4.1.1) gives;



Table 4.1.2: Expected Values for C (2x 5 x 2) Design 1

30

SEQ P1 P2 Ps P4 Ps
BAAAA U+ Ty n+ Ty + n+ T3 + n+ 1y n+ T

+ 1p Tpo + A Tat Ap +Ta+Ay | +TAT AL
ABBBB U+ Ty n+ Ty + n+ T3 + W+ Ty n+ s

+ Ta g +Aa gt A +tg+Ag | +Tg+ A

4.1.1.1 Direct Treatments Estimate for Design 1 using (BLUE)
The contrasts C; and C, , identified from table 4.1.2 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C))=E(Y11 + Y2 — Y3+ Vg +Yis) =3 p+ (my +my —m3 + 1y +15) +2 Ty

+1g + (A + )

E(C) =E(Ya1 + Yoo = Yoz + You +Yo5) = 3p + (M + T — T3 + 1, +15) + 2 T3
+ta + (Aa +2Ap)

The treatments difference is obtained by finding difference between the two contrasts.
Thus,

(4.1.2)

TA—TB:C1—C2 .

4.1.2 Five Period Two Treatments Design for Sequence ABAAA and its Dual
(Design 2)

The design is represented as given in Table 4.1.3 below,

Table 4.1.3: C (2x 5 x 2) Design 2

SEQ P1 | P2 | D3 | Pa|Ds
ABAAA|A [B |A |A |A

BABBB |[B |A |B B |B

Substituting model (3.1.3) to Table (4.1.3) gives;



Table 4.1.4: Expected values for C (2x 5 x 2) Design 2

31

SEQ P1 P2 Ps P4 Ps
ABAAA U+ Ty n+ Ty + n+ T3 + n+ 1y n+ T

+ Ta g +Aa Tat A +Ta+Ay | +TAT AL
BABBB U+ Ty n+ Ty + n+ T3 + W+ Ty n+ s

+ 1p Tpo + A Tt Ap +tg+Ag | +Tg+ A

4.1.2.1: Direct Treatments Estimate for Design 2 using (BLUE)
The contrasts C; and C, , identified from Table 4.1.4 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C3) =E(Y11 + Yo+ Y3 —Yiu + Vi) =3 p+ (Mg +my + M3 — 1y +T5) +2 Ty

+1g + (A + )

E(Cy) =E(Yo1 + Yoo +Yo3 = You + Yp5) = 3u + (my + my + 3 —my +15) + 2 13

+TA + ()\A + )\B),

From (3.1.4) the treatment difference is obtained by finding difference between the two

contrasts.
Thus,
Ta — Tg= C3 — C4

(4.1.2)

4.1.3 Five Period Two Treatments Design for Sequence AABAA and its Dual
(Design 3)

The design is represented as given in Table 4.1.5 below.

Table 4.1.5: C (2x 5 x 2) Design 3

SEQ P1 | P2 | P3| Da| Ds
AABAA [A |A B |A [A

BBABB (B |B |A |B |B




Substituting model (3.1.3) to table (4.1.5) gives;

Table 4.1.6: Expected values for C (2x 5 x 2) Design 3

32

SEQ b1 b2 p3 1Z Ps
AABAA n+ Ty n+ T, + n+ T3 + n+ Ty n+ T

+ Ty Ta +2Aa Tgt Aa +Tpa+Ag | +TaA+ AL
BBABB n+ Ty n+ T, + n+ T3 + n+ Ty n+ Ts

+ g Tg + A Tat Ag +Ttg+Ay | +Tg+ AR

4.1.3.1 Direct Treatments Estimate for Design 3 using (BLUE)
The contrasts C; and Cg , identified from Table 4.1.6 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C5) =E(Y11 — Yo+ Y3+ Yiu + Vi) =3 p+ (Mg —my + M3 + 1y +T5) +2 Ty

+1g + (Aa +2p)

E(C) =E(Yo1 = Yoo + Y3+ You + Yo5) = 3pu + (M —my + Mg + 1y +15) + 2 15

+TA + ()\A + )\B

From (3.1.4), the treatment difference is obtained by finding difference between the

two contrasts.
Thus,
(4.1.3)

Ta —Tg=Cs5 — Cq

4.1.4 Five Period Two Treatments Design for Sequence AAABA and its Dual
(Design 4)

The design is represented as given in Table 4.1.7 below.

Table 4.1.7: C (2x 5 x 2) Design 4

SEQ P1 | P2 |P3|Ps| Ds
AAABA |A |A |A |B |A

BBBAB |[B |[B |[B |A |B




Substituting model (3.1.3) to Table (4.1.7) gives;

Table 4.1.8: Expected values for C (2x 5 x 2) Design 4

33

SEQ b1 b2 p3 1Z Ps
AAABA n+ Ty n+ T, + n+ T3 + n+ Ty W+ 15

+ Ta Ta+t Ay Tat Aa +Tg+Ay | +TaA+ AR
BBBAB n+ Ty n+ T, + n+ T3 + n+ Ty W+ 15

+ 1 g + A Tt A +Tpo+Ag | +Tg+As

4.1.4.1: Direct Treatments Estimate for Design 4 using (BLUE)
The contrasts C, and Cg , identified from Table 4.1.8 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C;) =E(Y11 — Yo+ Y3+ Yiu + YVi5) = 3 p+ (my — My + 13 + 1y +15) + (214

+1g)+(Aa + Ap)

E(Cg) = E(Yo1 — Yoo + Yo3 + You + Yo5) =3 p+ (M —my + M3 + 1y +15) + (215

+Tp)+(Aa + AB)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,
Thus,
(4.1.4)

Ta—Tg=C; —Cg

4.1.5 Five Period Two Treatments Design for Sequence AAAAB and its Dual
(Design 5)

The design is represented as given in Table 4.1.9 below.

Table 4.1.9: C (2x 5 x 2) Design 5

SEQ P1 | P2 | P3| Pa| Ps
AAAAB |A |A |A |A |B

BBBBA |B |[B |B |B |A




Substituting model (3.1.3) to table (4.1.9) gives;

Table 4.1.10: Expected values for C (2x 5 x 2) Design 5
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SEQ P1 P2 Ps P4 Ps
AAAAB U+ Ty n+ T, + n+ T3 + B+ 1y n+ T

+ Ta Ta+t Ay Tat Ag +Ta+Ay | +TR+H AL
BBBBA U+ Ty n+ T, + n+ T3 + n+ Ty n+ T

+ 1p g + A gt A +Tg+Ag | +Tat+ AR

4.1.5.1 Direct Treatments Estimate for Design 5 using (BLUE)

The contrasts CqandC,, , identified from Table 4.1.10 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(Cy) = E(=Yy1 + Y12 — Y13 + Yy — Yi5)= —p — (g — M, + 113 — My + T5) — Tp,

E(Ci0) = E(—Ya1 + Yo — Yo3 + You — Yp5)=—p — (my — M, + 3 — Ty + T5) — Ta

Thus (3.1.4) is obtained by finding difference between the two contrasts,

Ta —Tg =Co — Cyp

(4.1.5)

4.1.6 Five Period Two Treatments of Sequence BBAAA and its Dual (Design 6)

The design is represented as given in Table 4.1.11 below.

Table 4.1.11: C (2x 5 x 2) Design 6

SEQ

P1

P2 | P3

(2

Ps

BBAAA

B

B |A

A

A

AABBB

A

A |B

B

B

Substituting model (3.1.3) to table (4.1.11) gives;



Table 4.1.12: Expected values for C (2x 5 x 2) Design 6
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SEQ P1 P2 Ps P4 Ps
BBAAA n+ Ty n+ 1, + n+ T3 + H+ Ty n+ 15

+ 1p g + A Tat A +Ta+Ay | +TA+AL
AABBB n+ Ty n+ 1, + n+ T3 + n+ 1y n+ T

+ Ta Ta+ s Tt Ap +tg+Ag | +Tg+ A

4.1.6.1 Direct Treatments Estimate for Design 6 using (BLUE)

The contrasts C,, and C,, , identified from Table 4.1.12 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C11) =E(NY11 — Y2+ Vi3 = Yy + Yyg)=p+ (my —mp + 3 — My + 1s) + 74

E(Ci2) = E(Yz1 — Yop + Yo3 — You + Yps)=p + (M) — 1y + 13 — My + T5) + T

Thus (3.1.4) is obtained by finding difference between the two contrasts given by,

Ta—Tg= Ci; —Cyp

(4.1.6)

4.1.6.2 Carryover Treatments Effects Estimate for Design 6 using (BLUE)

The contrasts C;3 and Cy, , identified from Table 4.1.12 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

1 1
E(Cy3) = EE(Y11 = Y12 —2Y13+ Y14 + Yi5) = g[ (my —mp — 2m3 + My + 1) +

224 — 37g]

1 1
E(Cyy) = EE(Y21 = Yo — 2Yp3 + Yy + st)zg [(my =Ty — 213 + My +115) —

s + 275]

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts,

Thus,Ay, —Ag =Cy3 — Cy4

(4.1.7)
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4.1.7 Five Period Two Treatments Design for Sequence BABAA and its Dual
(Design 7)

The design is represented as given in Table 4.1.13 below.

Table 4.1.13: C (2x 5 x 2) Design 7

SEQ P1 | P2 | P3| DPa| Ps
BABAA|B |A |B |A |A

ABABB|A |B |A|B |B

Substituting model (3.1.3) to Table (4.1.13) gives;

Table 4.1.14: Expected values for C (2x 5 x 2) Design 7

SEQ P1 P2 Ps P4 Ps
BABAA U+ 1y n+m, + n+ 13 + W+ Ty H+ T

+ 1p Tao + 2 Tt s +Ta+Ag | +Ta+ AL
ABABB u+ 1y n+ 1, + n+ s+ W+ Ty W+ Ts

+ Ty g +As Tat+ A +1g+Ay | +T5+Ap

4.1.7.1 Direct Treatments Estimate for Design 7 using (BLUE)

The contrasts C;zand C4¢ , identified from Table 4.1.14 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(Cis) = E(Y11 — Y12 = Y13+ Yo + Yi5) = p+ (M — 1y — T3 + Ty + T5) + Tp

E(Ci6) = E(Yo1 — Yoo —Yo3 + You + Yo5) = p+ (Mg — M, — 13 + 1y +15) + Tp

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,

Thus,

Ta — Tg= G35 — Cy6

(4.1.8)
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4.1.7.2: Carryover Treatments Effects Estimate for Design 7 using (BLUE)
The contrasts C;, and Cg , identified from Table 4.1.14 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

E(Ci7) = E(Y11 — 2Yyp — Yy3 + Yia + Yg5) =(m; — 2my — 3 + 1y + 15) — Ap

E(Cig) = E(Y21 — 2Y3 — Ya3 + You + Yp5)= (g — 2T, — T3 + Ty + T5) —Ap

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts,
Thus,
Ay —Ag=C17 — Cyg

(4.1.9)

4.1.8 Five Period Two Treatments Design for Sequence BAABA and its Dual
(Design 8)

The design is represented as given in Table 4.1.15 below.

Table 4.1.15: C (2x 5 x 2) Design 8

SEQ P1 | P2 | P3| Pa|Ps
BAABA |[B |A [A |B |A

ABBAB |[A |B |B |A |B

Substituting model (3.1.3) to Table (4.1.15) gives;

Table 4.1.16: Expected values for C (2x 5 x 2) Design 8

SEQ P1 P2 P3 P4 Ps
BAABA n+ 1y n+m, + n+ 13 + K+ Ty W+ T

+ 1p Tao+ A Tat Ap +1g+Ay | +TA+ AR
ABBAB n+ 1y n+m, + n+ 13+ K+ Ty W+ T

+ Ty g+ A, gt A +To+Ag | +Tg+ Ay
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4.1.8.1 Direct Treatments Estimate for Design 8 using (BLUE)
The contrasts C,9andC,, , identified from Table 4.1.16 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

1 1
E(Cy9) :gE(Y11—Y12 +Y13—Y14+Y15):§ [0+ (g —my + 13—y +15) +

3TA]

1 1
E(Cy) = EE(Y21 = Y3 + Yo3 — Yyu + Yp5) = ;[u + (M —my + 1y — Ty + ) +
3t ]

From (3.1.5), the treatment difference is obtained by finding difference between the two

contrasts,
Thus,
Ta —Tg = C19 - CZO (4110)

4.1.8.2 Carryover Treatments Effects Estimate for Design 8 using (BLUE)
The contrasts C,, and C,, , identified from Table 4.1.16 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;
E(Cy1) = E(Yy1 + Y12 + Y13 — Yy — Yi5) = p+(my + 1, + 13 — My — 2m5) — A
E(Cy2) = E(Ya1 + Yau + Y3 — You — Yp5)= u+(my + My + 13 — My — 2m5) —Ap

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts,
Thus,

AA - AB: Cz]_ - C22 (4111)
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4.1.9 Five Period Two Treatments Design for Sequence BAABA and its Dual
(Design 9)

The design is represented as given in Table 4.1.17 below.

Table 4.1.17: C (2x 5 x 2) Design (9)

SEQ P1| P2 |P3|Dal|Ds
BAAAB |B |[A |A |A |B

ABBBA |A |B |B |B |A

Substituting model (3.1.3) to table (4.1.17) gives;

Table 4.1.18: Expected values for C (2x 5 x 2) Design (9)

SEQ P1 P2 Ps P4 Ps
BAAAB n+ 1y n+ Tty + n+ s+ W+ Ty W+ T

+ 1p Tpo + 2B Tat Ag +Ta+Ay | +T5+ AL
ABBBA n+ 1y n+ Tty + n+ s+ W+ Ty W+ Ts

+ T,y g+ A, Tgt+ A +1g+Ag | +TA+ AR

4.1.9.1 Direct Treatments Estimate for Design 9 using (BLUE)

The contrasts C,3;andC,, , identified from Table 19 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(Cy3) = E(—Y11 — Y12 —Yi3 + Y14 = Yi5)= — p + (—my — M, — T3 + My — T5) —

(2tg + 1a) —(Aa + Ap)

E(Cy4) = E(—Y21 — Yo = Yo3 + You — Y5)= —p + (—my — Ty — T3 + 1My — T5) —

(2ta + 1t8) —(Aa + 2p)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,

Thus,

Ty —Tg = Cy3 — Cyy

(4.1.12)
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4.1.9.2 Carryover Treatments Effects Estimate for Design 9 using (BLUE)
The contrasts C,zandC, , identified from Table 4.1.18 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

1
E(Cys) = EE[(Yn —2Y;, + Y3+ Vi —Yi5)] =

Wl

[2u +(mty — 2my + T3 + Ty —

1'[5)— 2}\]3 + )\A]

1 1
E(Cy) = 3 E[(Y21 — 2Y2, + Yo3 + You — Ya5)]= 5[2}1 +(my — 21, + M3 + My — T05)
—2A5 + Ag]

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts,
Thus,

AA — AB: C25 — C26 (4113)

4.1.10 Five Period Two Treatments Design for Sequence ABBAA and its Dual
(Design10)

The design is represented as given in Table 4.1.19 below.

Table 4.1.19: C (2x 5 x 2) Design 10

SEQ P1 | P2 | D3 | Pa | Ds
ABBAA [A B |[B [A [A

BAABB (B |/A A |B |B

Substituting model (3.1.3) to Table (4.1.19) gives;

Table 4.1.20: Expected values for C (2x 5 x 2), Design 10

SEQ P1 P2 P3 P4 Ps
ABBAA n+ 1y n+m, + n+ 13 + K+ Ty U+ T

+ Ty g+ A, gt A +To+Ag | +TA+ AL
BAABB B+ 1y n+ 1, + n+ T3 + n+ Ty U+ T

+ 1p Ta + A Tat Aa +tg+Ay | +Tg+ AR




41

4.1.10.1 Direct Treatments Estimate for Design10 using (BLUE)
The contrasts C,-and C,g , identified from Table 4.1.20 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;
E(Cy7) = E(Yy1 — Y12 + Y13 — Y14 + Yis)= p+ (M — My + 13 — Wy + T5) + (T4)
E(Cyg) = E(Yz1 — Yo + Y3 — You + Ya5)= p + (M — My + 13 — Ty + T5) + (1)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,
Thus,
TA - TB: C27 - C28 (4114)

4.1.10.2: Carryover Treatments Effects Estimate for Design 10 using (BLUE)
The contrasts C,4 and C5, , identified from Table 4.1.20 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

E(Cy) = %E[(Yn + Yo+ Y13 — 2V + Yi5)] = %[ZH +(my + My — M3 — 2mMy + M)

— Ag + 274]

1 1
E(C3p) = 3 E[(Y21 + Ya2 + Yo3 — 2Yp4 + Y35)]= E[ZH +(my + My, — M3 — 2my + M)
—Aa + 2Ag]

From (3.1.5), the treatment difference is obtained by finding difference between the two

contrasts,
Thus,

A.A - AB = ng - C30 (4115)



42

4.1.11 Five Period Two Treatments Design for Sequence ABABA and its Dual
(Designll)

The design is represented as given in Table 4.1.21 below.

Table 4.1.21: C (2x 5 x 2) Design 11

SEQ P1| P2 |P3|Dal|Ds
ABABA |A |B |A |B |A
BABAB |B [A |[B |A |B

Substituting model (3.1.3) to Table (4.1.21) gives;

Table 4.1.22: Expected values for C (2x 5 x 2) Design 11

SEQ P1 P2 Ps P4 Ps
ABABA u+ 1y n+ Tty + n+ s+ W+ Ty 1+ T

+ T,y g+ A, Tat+ A +1g+Ay | +TA+ AR
BABAB u+ 1y n+ 1, + n+ s+ W+ Ty U+ T

+ 1p Tpo + 2B Tt s +Ta+Ag | +13+ A,

4.1.11.1 Direct Treatments Estimate for Designl11 using (BLUE)
The contrasts Cz;and Cs, , identified from Table 4.1.22 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C31) =E(Yy1 + Y12+ Y3+ Y, +Yi5)= Sp + (mp+my+m3+my +ms) +

(3TA+2TB) + 2()\A + }\B)

E(C33) = E(Yz1 + Yoo + Y3+ You +Yo5)= 5p + (my+my +m3 +my +15)  +

(2tp+31R) + 2(Ap + AB)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,

Thus,

TA - TB = C31 - C32 (4116)
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4.1.11.2 Carryover Treatments Effects Estimate for Design 11 using (BLUE)
The contrasts C53 and C5, , identified from Table 4.1.22 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

E(C33) = E(Yll + 2Y12 + Y13 + Y14 + Y15) == 6“. +(T[1 + 21-[2 + T[3 + T[4_ + T[5) +

(3TA+3TB) + (3}\A + ZAB)

(3TA+3TB) + (2)\A + 3}\]3)

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts,

Thus,

)\A - )\B: C33 - C34 (4117)

4.1.12: Five Period Two Treatments of Sequence ABABA and its Dual (Design12)

The design is represented as given in Table 4.1.23 below.

Table 4.1.23: C (2x 5 x 2) Design 12

SEQ P1 | D2 | P3| Pa| Ds
ABAAB |A |B |A |A |B

BABBA |B |[A |B |B |A

Substituting model (3.1.3) to table (4.1.23) gives;
Table 4.1.24: Expected values for (2x 5 x 2) Design 12

SEQ P1 P2 P3 P4 Ps

ABAAB p+m | pt+my+ n+ T3 + L+ Ty + Ta n+ 15 + Tg
+TA T +)\A TA+ AB +)\A +AA

BABBA U+ 1y n+m, + n+ 13+ HL+ Ty + T UL+ T + Ta
+TB Ta +AB TB+ )LA +)\B +AB
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4.1.12.1 Direct Treatments Estimate for Design12 using (BLUE)
The contrasts C;andC, , identified from Table 4.1.24 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C35) =E(—Y11 — Y12 — Y3+ Y, — Yy5) = =3p + (= — My — M3 + 1y — T5) —

(tat2t) — (Aa + Ap)

E(C36) = E(—Ya21 — Ya3 — Y3 + You — Yp5) = —3p + (—my — 1, — T3 + My — T5) —

(2tatTe) — (Aa +2AB)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,
Thus,
Ta — Tg= C35 — C36 (4118)

4.1.12.2 Carryover Treatments Effects Estimate for Design 12 using (BLUE)
The contrasts C3,andCsg , identified from Table 4.1.24 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

1
E(C37) = EE(_Yll + Y12 — Yi3 + 2Y14 — Yi5) =

(SR
—

(—T[1 + T, — T3 +

21T4—1T5)+2AA - AB ]

1 1
E(C3g) = EE(—Y21 + Yo, — Ya3 + 2Yp4 — Y5) = 5[ (—my + My — T3 + 21y — T05)

+2Ag — A4l

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts. Thus,

As — Ag=Cs7 — Csg (4.1.19)
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4.1.13 Five Period Two Treatments Design for Sequence AABBA and its Dual
(Designl3)

The design is represented as given in Table 4.1.25 below.

Table 4.1.25: C (2x 5 x 2) Design 13

SEQ P1| P2 |P3|Dal|Ds

AABBA |A |A |B |B |A
BBAAB |B |[B |A |A |B

Substituting model (3.1.3) to Table (4.1.25) gives;

Table 4.1.26: Expected values for (2x 5 x 2) Design 13

SEQ P1 P2 Ps P4 Ps
AABBA n+ 1y n+m, + n+ 13 + W+ Ty n+ T

+ 1) Ta+ s Tt Ap +Tg+Ag | +TaAt+ AR
BBAAB n+ 1y n+m, + n+ 13 + K+ Ty n+ T

+ 1p g + A Tat+ A +Ta+Ay | +T5+ AL

4.1.13.1 Direct Treatments Estimate for Design13 using (BLUE)

The contrasts Cs9andC,, , identified from table 4.1.26 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

E(C39) = E(Y11 — Y12 + Y13 — Y14 + Yis)=p+ (M — 1y + 3 — Ty + T5) + (Ta)

E(C40) = E(Yz21 — Yo + Yo3 — You + Yo5)=p + (M — 1, + M3 — 1y + 15) + (Tp)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts,

Thus,

Ta — Tg=C39 —

Cao

(4.1.20)
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4.1.13.2 Carryover Treatments Effects Estimate for Design 13 using (BLUE)
The contrasts C,;and C,, , identified from Table 4.1.26 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

E(C41) = E(—Y11 +2Y12 — Y13 + Vo4 — Vi) = (-1 + 21, — T3 + Ty — T5) + Ay

E(Csz) = E(—Ya21 +2Ypp — Yp3 + Y4 — Yo5)= (—my + 2, — T3 + Ty — Ti5) +2p

From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts. Thus,

)\A - )\B = C41 - C42 (4121)

4.1.14 Five Period Two Treatments Design for Sequence AABAB and its Dual
(Design14)

The design is represented as given in Table 4.1.27 below.

Table 4.1.27: C (2x 5 x 2) Design 14

SEQ P1 | P2 | D3 | Pa | Ds
AABAB |[A |A B |A |B

BBABA B (B |A |B |A

Substituting model (3.1.3) to Table (4.1.27) gives;

Table 4.1.28: Expected values for C (2x 5 x 2) Design 14

SEQ P1 P2 P3 P4 Ps
AABAB u+ 1y n+m, + n+ 13 + W+ Ty U+ Tig

+ Ty Ta+ s Tt Ay +Ta+Ag | T3+ A,
BBABA u+ 1y n+m, + n+ 13+ W+ Ty U+ Tig

+ 1p g + A Tat A +1g+Ay | +TA+ AR

4.1.14.1 Direct Treatments Estimate for Design14 using (BLUE)

The contrasts C43andC,, , identified from Table 4.1.28 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;
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E(Cy3) =E(—Y11 + Y12 — Y3 — Yia — Yy5)=—3p + (—my +mp — M3 — My — Ts) —

(2tg + Ta) — (Aa + Ap)

E(Csa) = E(—Ya1 + Yo5 — Yo3 — You — Yp5)= —3p + (—Ty + 1, — T3 — Ty — T5) —

(2ta +t8) — (Aa + 2p)

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts. Thus,
Ta — TB: C43 — C44 (4122)

4.1.14.2: Carryover Treatments Effects Estimate for Design 14 using (BLUE)
The contrasts C,5 and C,¢ , identified from Table 4.1.28 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;

1 1
E(Cys) = 3 E(—=Y11 + 2Y1, + Y13 — Y34 — Yi5) = 3 [(—my + 21, + 13 — My — T5) +2

Aa — Ag]

1 1
E(Cye) = 3 E(—Y21 + 2Yp, + Yo3 — You — st)zg [(—my + 21, + 3 — Ty — T5)
+2A5 — A4l

From (3.1.4), the carryover difference is obtained by finding difference between the

two contrasts. Thus,
Ay —Ag=Cys — Cye (4.1.23)

4.1.15 Five Period Two Treatments Design for Sequence ABABA and its Dual
(Design15)

The design is represented as given in Table 4.1.29.



Table 4.1.29: C (2x 5 x 2) Design 15

SEQ P1 | D2 | D3 |Pa|Ds
AAABB | A A|B|A|B
BBABA | B B|A|B |A

Substituting model (3.1.3) to table (4.1.29) gives;

Table 4.1.30: Expected Values for C (2x 5 x 2) Design 15
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SEQ P1 P2 Ps P4 Ps
AAABB n+ 1y n+m, + n+ 13 + K+ Ty H+ T

+ T,y Tpo+ 24 Tat Ag +1g+Ay | +T5+ AR
BBBAA n+ 1y n+ Tty + n+ s+ H+ Ty W+ T

+ 1p g + A Tgt+ A +Ta+A5 | +TA+ AL

4.1.15.1 Direct Treatments Estimate for Design15 using (BLUE)
The contrasts C4,andC,g , identified from Table 4.1.30 in such a way that (3.1.6), and

(3.1.8) are satisfied are given by;

1 1
E(Cyy) = EE[(Yll + Y, + Y3 — Y +Yi5)] = 3 [Bu + (my +my + 13 — Wy + T5)

+3TA + O\A + )\B)]

1 1
E(Cyg) = EE[(Yu + Yo, + Yo3 — You + Yp5)] = ;[311 + (Mt g -yt
T[5)+3TB + ()\A + )\B)]

From (3.1.4), the treatment difference is obtained by finding difference between the two

contrasts. Thus,

TA - TB: C47 - C48 (4124)

4.1.15.2 Carryover Treatments Effects Estimate for Design 15 using (BLUE)
The contrasts C49andCs, , identified from Table 4.1.30 in such a way that (3.1.7), and

(3.1.9) are satisfied are given by;
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1 1
E(Cyo) = 3 E(—Yy; — Yo +2Yy3 + Y14 — Yi5) = 3 [(—my — Ty + 215 + My — T5) +2

Ay = Ag]

1 1
E(Cso) = 3 E(—Yz1 — Yoz +2Yo3 + You — st)zg [(—my — 1p + 215 + 4 — T5)
+2Ag — A4l
From (3.1.5), the carryover difference is obtained by finding difference between the

two contrasts. Thus,

(4.1.25)

Ay —Ag=Cy9 — Csg

4.1.16: Five Periods, Two Treatments, and four sequence design (D{ + D,)

The design is represented as given in Table 4.1.31 below.

Table 4.1.31: C (2x 5 X 4) Design 16

SEQ P1 | P2 |DP3|Pa|Ps
BAAAA | B AlA A A
ABBBB | A B |B |B |B
ABAAA | A B|A|A[A
BABBB | B A|B |B |B

Substituting model (3.1.3) to table (4.1.31) gives;

Table 4.1.32: Expected values for C (2x 5 x 4) Design 16

SEQ P1 P2 P3 Pa Ps
BAAAA n+ 1y n+ 1, + n+ 13 + W+ Ty H+ g

+ 13 Ta + A Ta+ Ag +Ta+As | FTA+ AL
ABBBB n+ 1y n+ T, + n+ 13 + W+ Ty H+ T

+ 1T,y Tg +Aa Tgt+ A +1g+Ag | +T5+ A
ABAAA n+ 1y n+ T, + n+ 13+ W+ Ty 1+ T

+ Ty g +Aa Tat A +Ta+Ay | FTAT AL
BABBB n+ 1y n+ T, + n+ 13 + W+ Ty 1+ T

+ 1p Tpo + A Tt Ay +1g+Ag | +T5+ A
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4.1.16.1: Direct Treatments Estimate for Design16 using (BLUE)
The contrasts d,, d,,dsand d, , identified from table 4.1.32 in such a way that (3.1.6),

and (3.1.8) are satisfied are given by;

1 1
E(dy) = EE(Y11 = Y12 — Y13 + Y14 + Yi5) = 5[3 uo+ (g —my — 1y + My + )
+(t8)+(Aa — Ag)]

1 1
E(d;) = EE(Y21 — Y3 — Yo3 + Yy + Yy5) = > [Bu + (my —my —m3 +mMy + 75)

+(ta )+ (A — Aa)]

1
E(d3) = EE(Y31 + Y3, = Ya3+Y3, —Y35) ==[3 p + (M +mp — M3+ My — )

N =

+(t8)+(Aa — 2g)]

E(d,) = %E(YM +Yuo — Yaz3 + Yau — Yys) = %[3}1 +(my + My — M3+ My — 1) H(Ta
)+ (Ag —Aa)]

Thus (3.1.4) is obtained by finding the sum of the four contrasts,

Ta—Tg = (d; +d, +d3 +dy) (4.1.26)

4.1.16.1 Carryover Treatments Estimate for Design16 using (BLUE)
The contrasts ds, dg, d-and dg , identified from table 4.1.32 in such a way that (3.1.7),

and (3.1.9) are satisfied are given by;

1 1
E(ds) = ZE(Yll — Y1, — Yi3 + Yiu + Yi5) = Z[ p+ (m —my, — T3 +my +T5) +1p
+(Aa — )]
1 1
E(de) = ZE(Y21 =Y — Yo3 + You + Yp5) = " W+ (M =y — M3+ 1y +T5) +Ta

+ (A — 4]
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1 1
E(d;) = ZE(Y31 + Y33 + Y33 — Y34 — Y35) = Z[ w+ (my +my My —s) +1p

+(Ag — )]
1 1
E(dg) = ZE(Y41 + Y42 + Yaz — Yaa — Yys) = " [w+ (g + Ty + T3 — Ty — T5) +T4 +
(Aa —2Ap)]
Thus (3.1.5) is obtained by finding difference between the four contrasts,

As — Ag=(ds — dg — d, + dg) (4.1.27)

4.1.17 Five Periods, Two Treatments, and four sequence design (D + D3)

The design is represented as given in Table 4.1.33 below.

Table 4.1.33: C (2x 5 X 4) Design 17

SEQ P | P2 |P3|Ps|Ds
BAAAA | B AlA A A
ABBBB | A B|B |B|B
AABAA | A AlB A [A
BBABB | B B|A|B|B

Substituting model (3.1.3) to Table (4.1.33) gives;

Table 4.1.34: Expected values for C (2x 5 x 4) Design 17

SEQ P1 P2 P3 P4 Ps
BAAAA n+ 1y n+ T, + n+ ms + W+ Ty W+ T

+ 13 Ta + A Ta+ Ag +Ta+As | FTA+ AL
ABBBB n+ 1y n+ T, + n+ 13 + W+ Ty H+ T

+ 1T,y g +Aa Tgt+ A +1g+Ag | +T5+ A
A ABAA n+ 1y n+ T, + n+ 13 + H+ Ty H+ g

+ 1T,y Ta+t Ay T+ Ay +Ta+A5 | +TAa+ AL
BBABB n+ 1y n+ 1, + n+ 13 + H+ Ty U+ T

+ 1p g + A Tat A +1g+Ay | +Tg+ A
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4.1.17.1 Direct Treatments Estimate for Design17 using (BLUE)
The contrasts do,d;, dy;and d;, , identified from Table 4.1.34 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by

1 1
E(dy) = EE(Yll + Y12 — Y13 + Y14 + Yi5) 25[ 3+ (m +my — M3 +my + 1) +2
Tp +15 +(Aa + Ap)]

1 1
E(dyo) = EE(Y21 + Yz, — Ya3 4+ Yau + Yi5) = > [Bu+ (my + 1My — 13 + My + M5) + 2

Tg +Ta + (Aa + Ap)]

1
E(dyq) = EE(Y31 — Y3y + Y33+ Y34+ Y35) = [3p+(my —mp + 13 + 1My + 105) +2

N |-

Tp 15 +(A5 + Ap)]

1 1
E(d;z) = EE(Y41 = Yo + Yy3 + Yuu + Yys) = > [Bu+ (my —mp + 13 + My + M5) + 2
Tg +Ta + (Aa + Ap)]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
Ta — Tg = (dg — dyp) + (d1; — dy2) (4.1.28)

4.1.17.2 Carryover Treatments Estimate for Designl17 using (BLUE)
The contrasts d;3,d4,d;sand dq¢ , identified from Table 4.1.34 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(ds3) = ZE(Yn =Y, — Y3 — Y14 + Yi5) = Z[ 2 u o+ (M — Ty - T3 — My + )
+(2 Tp —Tg) +(3Aa — Ap)]

1 1
E(dy,) = ZE(Y21 = Y22 = Ya3 — Yau + Y35) = " [2u + (Mg — My — T3 — Ty + T05)

+(2 15 —Ta) + (B35 — A4)]
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[ 2 p + (M +7p, — T3 — Ty — T5)

L

1
E(dss) = ZE(Y31 + Y3, — Y33 — Y34 — Y35) =
—(t8) —(Ag + )]

1 1
E(dse) = ZE(Y41 + Yao = Ya3 — Yau — YVys) = " [2n + (M + 1y — T3 — Ty — )
—(ta) — (Aa +2p)]
Thus (3.1.5) is obtained by finding difference between the four contrasts,
Ap — Ag=(dy3 — dy4 — 3dy5 + 3dy6) (4.1.29)

4.1.18 Five Periods, Two Treatments, and four sequence design (D4 + Dy)

The design is represented as given in Table 4.1.35 below.

Table 4.1.35: C (2x 5 X 4) Design 18

SEQ P1 | P2 | D3 |Pa|Ds
BAAAA | B AlA[A]A
ABBBB | A B|B |B |B
AAABA | A AlA B |A
BBBAB | B B|B |A|B

Substituting model (3.1.3) to Table (4.1.35) gives;

Table 4.1.36: Expected values for C (2x 5 x 4) Design 18

SEQ P1 P2 Ps P4 Ps
BAAAA H+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ 1p Ta t A Ta +Ap TatAp Ta tAp
ABBBB H+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ Ta g +Aa g + A g + A g + A
A AABA n+ 1y n+ T, + n+ 13 + n+ 1y + u+ 1 +
+ Ta Ta+t Ay Ta+t Ay g+ s Tp + A
BBBAB H+ Ty n+ Ty, + n+ T, + n+ 1y + n+ 15 +
+ 1 g + A g + A Tp + A g +Aa
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4.1.18.1 Direct Treatments Estimate for Design18 using (BLUE)
The contrasts d;-, dyg, d;9and d,( , identified from Table 4.1.36 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by

1 1
E(dy7) =5E(Y11 + Yy, — Yi3 + Yiu + Yi5) 25[3 n+ (Mg +my — Ty + Ty + 1) +2

Ta +15 +(Aa + Ap)],

1 1
E(dsg) = EE(Y21 + Yz, — Ya3 4+ Yau + Yi5) = 5[3H +(my + 1y — T3+ My +Ts) + 2

Tg +Ta + (Aa + )],

1
E(dyo) = EE(Y31 — Y3y + Y33+ Y34 + Y35) =

N |-

[Bp+(my —my + M3+ My +15) 42
Ta +15 +(Ap + Ap)],

1 1
E(dy) = EE(Y41 = Yo + Yy3 + Yuu + Yys) = 2 [Bu+ (my — My + 13 + 1My + 15) + 2
TB +TA + ()\A + AB)]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
Ta — Tg = (dy7 — dyg) + (d19 — dyp) (4.1.30)

4.1.18.2 Carryover Treatments Estimate for Design18 using (BLUE)
The contrasts d,;,d,,,d,3and d,, , identified from Table 4.1.36 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(d21):ZE(Y11—Y12—Y13—Y14+Y15):Z[ 2 u o+ (m —my — Ty — My + )

+(2 tp —T8) +(3Aa — AB)]

1 1
E(dy;) = ZE(Y21 = Y22 = Ya3 — Yau + Y35) = " [2u + (Mg — Ty — T3 — Ty + Ts)

+(2 15 —Ta) + (B35 — A4)]
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1 1
E(dy3) = ZE(Y31 + Y3, — Y33 — Y34 — Y35) = Z[ 2 p o+ (Mg Ty — Ty — My — )
—(t8) —(Ag + )]

1 1
E(dyy) = ZE(Y41 + Yao — Ya3 — Yau — Yys) = " [2n + (M +mp — T3 — My — )

—(ta) — (Aa +2p)]

Thus (3.1.5) is obtained by finding difference between the four contrasts,
Ap — Ag=(dz1 — dzz — 3dp3 + 324) (4.1.31)

4.1.19: Five Periods, Two Treatments, and four sequence design (D3 + D4)

The design is represented as given in Table 4.1.37 below.

Table 4.1.37: C (2x 5 x 4) Design 19

SEQ P | P2 |P3|Ps|Ds
AABAA | A A|[B A [A
BBABB | B B|A|B|B
AAABA | A A|A B |A
BBBAB | B B|B|A|B

Substituting model (3.1.3) to Table (4.1.37) gives;

Table 4.1.38: Expected values for C (2x 5 x 4) Design 19

SEQ P1 P2 Ps P4 Ps
AABAA H+ 1 n+ Ty + n+ T3 + n+ 1y, + n+ 15 +
+ Ta Ta +2Aa g +Aa Tp + A Ta+t2As
BBABB H+ Ty n+ Ty, + n+ T3 + n+ 1y + n+ 15 +
+ 1 Tg + A Ta + A g+ s g + A
A AABA n+ 1y n+ T, + n+ 13 + M+ 1y + u+ 1 +
+ Ta Ta+t Ay Ta tAp g+ Ap Ta t A
BBBAB H+ Ty n+ T, + n+ T, + n+ 1y + n+ 15 +
+ 1p g + A g + A Ta t A Tg + Ap

4.1.19.1 Direct Treatments Estimate for Design19 using (BLUE)

The contrasts d,;,d,,,d,3and d,, , identified from Table 4.1.38 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by
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1 1
E(dy,) = EE(Y11 —Yi2 + Vi3 + Y +Yi5) = 2 [Bu+(m —my +m3 +my +1s) +2
Ta +15 +(Aa + Ap)]

1 1
E(dyy) = EE(Y21 = Y2 + Ya3 4+ Yau + Yi5) = 2 [Bu+ (my — 1y + 13 + 1My + 15) + 2
Tg +Ta + (Aa + Ap)]

1 1
E(dy3) = EE(Y31 — Y3z + Y33+ Y34 + Y35) = > [Bu+ (m—my+m3+my +m5) +
(21p +18)+(Aa + AB)]

1 1
E(dy,) = EE(Y41 = Yo + Yy3 + Yuu + Yys) = 5[3 w+ (myg —my + 1y +my + ) +
(21 +1A)+(Aa + Ap)]
Thus (3.1.4) is obtained by finding the sum of the differences of the four contrasts given
by,

Ta — Tg = (dpg — dyz) + (da3 — dz4) (4.1.32)

4.1.19.2 Carryover Treatments Estimate for Design18 using (BLUE)
The contrasts d,g, d,, d,7and d,g , identified from Table 4.1.38 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(dys) = ZE(Yll =Y, + Y3+ Yy — Yi5) = " [ 0 + (m —mp + 13+ 1y — 1)
+(t8) +(Ag — Aa)l,

1 1
E(dy) = ZE(Y21 =Y, + Yo3 + You — Yp5) = 7 b+ (M —my +m3 +mMy —T5) +

(ta) + (Aa — 2Ap)],
1 1
E(dy,) = ZE(Y31 = Y3z + Y33+ Y34 — Y35) = Z[ u+ (m —my +mg+my —ms) +

(tg)+(Aa — AB)],
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[ W+ (M —my+ 13 +my —T5) +

NI

E(dze) = iE(Yau =Yz + Y3 + Yaq — Yys5) =
(ta)+(A — A4)],

Thus (3.1.5) is obtained by finding difference between the four contrasts,

Aa — Ag=(dze — d3zs5) + (d27 — dzs) (4.1.33)

4.1.20 Five Periods, Two Treatments, and four sequence design (Ds + D)

The design is represented as given in Table 4.1.39 below.

Table 4.1.39: C (2x 5 X 4) Design 20

SEQ P1 | D2 |P3|Ps|Ds
AAAAB | A A|lA|A|B
BBBBA | B B|B |[B |A
BBAAA | B B|A A |A
AABBB | A A|B |B |B

Substituting model (3.1.3) to Table (4.1.39) gives;

Table 4.1.40: Expected values for C (2x 5 x 4) Design 20

SEQ P1 P2 Ps Pa Ps
AAAAB n+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ Ta Ta+ Ay Ta+ Ay TaA+ 24 g +Aa
BBBBA n+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ 1p g + A g + A g + A Ta t A
BBAAA B+ 1y n+ T, + n+ms + n+ Tty + n+ ms +
+ 1p g + A Tao + A T+ 24 Ta tAp
AABBB H+ Ty n+ T, + n+ T, + n+ 1y + n+ 15 +
+ Ta Ta+t Ay g +Aa g + A Tg + A

4.1.20.1: Direct Treatments Estimate for Design 20 using (BLUE)
The contrasts d,q, d3o, d31and ds, , identified from Table 4.1.40 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by

1
E(dy) = EE(—Y11 + Y, — Y13+ Yia — Yi5)= —pu— (M — My + M3 — Ty + T5) — T
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E(d3o) = %E(_Yu + Yoo = Yo3 4 You — Yos5)=—p — (0 — T + T3 — Ty + T5) — Tp
E(ds;) = %E(Y31 — Y3z + Y33 — Yaq + Ya5)= u+ (1 — T + T3 — Ty + T5) + Ty
E(ds;) = %E(Yﬁu = Yaz + Ya3 — Yaq + Yys)=p + (1p — T, + 103 — T4 + T05) + T

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
Ta — Tg = (dp9 — d3p) + (d3q — d33) (4.1.34)

4.1.20.2: Carryover Treatments Estimate for Design20 using (BLUE)
The contrasts dss, d34, d3sand ds, , identified from Table 4.1.40 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;
E(ds3) = iE(Yn = Y1z + Yy + Y1 — Yi5) = i[ 3p + (Mg — My + T + My — )
+Q2ta—18) ],

1
E(dsy) = ZE(Y21 =Yoo+ Yo3+ You —Yo5) = S[Bp + (M — T + 13 + 1My —Ts) +

&R

(ZTB - TA) ]1

1 1
E(dss) = ZE(Y31 + Y3, — Y33+ Y34 + Y35) = 2 [4p+(my +m, —m3 + 1y +15) +
(TA + ZTB)+2(}\A + )\B)],

1 1
E(d3e) = ZE(Y41 + Yao — Yu3 + Yau + Yys) = Z[ 4p + (my + My — T3 + My + 1) +
(ZTA + TB)+2()\B + )\A)],

Thus (3.1.5) is obtained by finding difference between the four contrasts,

Ay — Ap=(d33 — d34) — (d3s + ds6) (4.1.35)



4.1.21: Five Periods, Two Treatments, and four sequence design (D, + Dg)

The design is represented as given in Table 4.1.41 below.

Table 4.1.41: C (2x 5 X 4) Design 21

SEQ P1 | P2 |P3|Ps|Ds
BABAA | B A|[B |A[A
ABABB | A B|A[B|B
BAABA | B A|A|B |A
ABBAB | A B|B|A|B

Substituting model (3.1.3) to Table (4.1.41) gives;

Table 4.1.42: Expected values for C (2x 5 x 4) Design 21
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SEQ P1 P2 Ps P4 Ps
BABAA n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ 15 Ta t A g +Aa Ta + A TatAp
ABABB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Ta T + Aa Ta + A g +Aa g + A
BA ABA n+ 1y n+ T, + n+ 13 + B+ Ty + n+ s +
+ 1p TA + A Ta +Ap gt Ap Ta t A
ABBAB n+ 1y n+ 1, + n+ T, + n+ 1y + n+ 15 +
+ Ta T + Aa g + A Ta t A g +Aa

4.1.21.1 Direct Treatments Estimate for Design 21 using (BLUE)

The contrasts ds, dsg, d3gand dy, , identified from Table 4.1.42 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by

1 1
E(ds7) =ZE(Y11 = Y12 — Y13 + Y14 + Yi5) =Z[I~1+(Tf1 — T, — T3 + Ty + T5) + T4 ]

1 1
E(dsg) = JE(Y21 — a2 — Yo3 + You + Yo5) = 2 [+ (my — T — T3 + 114 + 105) + 15 ]

1 1
E (d39) = 5 E(Y31 = Y32 + Y33 = Y34 + Y35) = = [t (0 — 10, + 103 — 1, 4+ 705) + 314 ]

1 1
E(dy) = EE(YM —Yaz + Y43 — Yaqu + Yys) = E[H + (M —my + M3 — My + T5) + 315 ]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
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Ta — Tg = (d37 — d3g) + (d3o — dyo) (4.1.36)

4.1.21.2 Carryover Treatments Estimate for Design 21 using (BLUE)
The contrasts d,q, dy,, dgzand dy, , identified from table 4.1.42 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(dg1) = 5E [(Ya1 — 2Y1p — Yiz + Yag + Vag)] = 2 [ — 21, — 103 + 104 + T5) — Ag]
E(dsz) = 5 E[ (Y21 — 2Yz2 — Yo3 + Yau + Ya5)]= 5 [(my — 27, — 3 + 104 + T5) —Aa]

E(dss) = 5E[(Ya1 + Yaz + Yag = Yaq — Ya5)] =5 [ W+(y + 1y + 103 — 1, — 25) — Ag]
E(das) =5 E[(Yar + Yaz + Yaz — Yau = Yas)]= 5 [0 +(y + 10, + 115 — 10, — 2115) —Aa]
Thus (3.1.5) is obtained by finding difference between the four contrasts,

Ay = Ag=(dsq — ds2) + (daz — das) (4.1.37)

4.1.22 Five Periods, Two Treatments, and four sequence design (Dg + D1g)

The design is represented as given in Table 4.1.43 below.

Table 4.1.43: C (2x 5 X 4) Design 22

SEQ P1 | P2 |P3|Ps|DPs
BAAAB | B A|A|A|B
ABBBA | A B|B [B[A
ABBAA | A BB |[A]A
BAABB | B A|A|B |B

Substituting model (3.1.3) to Table (4.1.43) gives;
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Table 4.1.44: Expected values of C (2x 5 x 4) Design 22

SEQ P1 P2 Ps P4 Ps
BAAAB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ 15 Ta + A Ta +Ap TatAp T +Aa
ABBBA n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Tp T +Ap g + A T3 + A Ta + A
ABBAA n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Ta g+ A, g + A Tp + A Ta+2Aa
BAABB n+ 1y n+m, + n+m, + n+my + n+ s +
+ 1 Tpo + A Ta+t s g+ s g + A

4.1.22.1: Direct Treatments Estimate for Design 22 using (BLUE)
The contrasts d,s, d,e, dy7and d,g , identified from Table 4.1.44 in such a way that
(3.1.6), and (3.1.8) are satisfied are given by

1 1
E(dss) = EE(—Y11 — Yo — Y3+ Y4 — Y15):5 [—p+ (- —mp — T3 + My — T5)
— (215 + Tta) —(Aa + 2B)]

1 1
E(dse) = EE(—Yu — Yoo — Yo3 4+ You — st)zz [ —u+ (=1 — 1y — 13 + 1y — T5)
— (2ta + t8) —(Aa + 2B)]

1 1
E(dsy) = EE(Y31 = Y35 + Y33 — Y34 + Y35)= 2 [ W+ (=T +m5 —my +15) +
(ta)l

1 1
E(dsg) = EE(Y41 = Yy + Yoz — Yau + Yus5)= 2 [ W+ (M —mp+ 13—y +15) +
(tB)]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,

Ta — Tg = (dgs — dyg) + (dyg7 — dug) (4.1.38)
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4.1.22.2: Carryover Treatments Estimate for Design 22 using (BLUE)
The contrasts d,q, dsg, ds;and ds, , identified from Table 4.1.44 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(dyo) = gE[(Yn —2Y1, + Y13+ Yy, — Yi5)] = P [2p +(1ty — 21, + T3 + Ty — T5)
— 27 + 4]

1 1
E(dso) = P E[(Y21 — 2Yy; + Yao3 + You — Ya5)]= g[2u +(my — 21, + 13 + My — )
—2A5 + Ag]

1 1
E(ds,) = gE[(Y31 + Y35 + Y33 — 2Y3, + Y35)] = P 2 +(my + My — T3 — 21y + T5)
— Ag + 2A4]

1 1
E(dsy) = P E[(Y41 + Yap + Ya3 — 2Y4y + Yys)]= g[2u +(my + My — T3 — 2my + W)
—Aa + 2Ag]
Thus (3.1.5) is obtained by finding difference between the four contrasts,
Aa — Ag=(d49 — dsp) + (dsq — ds2) (4.1.39)

4.1.23: Five Periods, Two Treatments, and four sequence design (D41 + D12)

The design is represented as given in Table 4.1. 45 below.

Table 4.1.45: C (2x 5 X 4) Design 23

SEQ P1 | D2 | P3| DPalPs
ABABA | A B|A B |A
BABAB | B A|B |A B
ABAAB | A B |A |A|B
BABBA | B AlB B [A

Substituting model (3.1.3) to Table (4.1.45) gives;
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SEQ P1 P2 Ps P4 Ps
ABABA n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Tp T + Ap Ta + A T3 + Ap Ta + A
BABAB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ 15 Ta + A g +Aa TaA + A g +Aa
ABAAB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Ta g+ A, Tao + A Ta+ 24 g +As
BABBA n+ 1y n+m, + n+m, + n+my + n+ s +
+ 1 TA t A g +Aa g + A Ta + A

4.1.23.1: Direct Treatments Estimate for Design 23 using (BLUE)

The contrasts dss, ds,, dssand dsg , identified from table 4.1.46 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by

1 1
E(ds3) = EE(Y11 + Y, + Y3+ Y, + Y15):5 [Bp + (my + 1y + 13 + My + TS)

(3ta+213) + 2(Aa + AB)],

1 1
E(dsy) = EE(Yu + Y, + Ya3 + You + Yp5)= > [Sp + (my +my + 13 + My + T5)

(2ta+37) + 2(Aa + AB)],

1
E(dss) = E(=Y31 — Y32 — Y33 + Y34 — Y35) =

) — (ta+218) — (Aa + A5)],

1 1
E(dse) = EE(—YM —Yyp — Va3 + Yuu — Yys) = 2 [-3u + (—m —my — T3 + Ty

) — (2Ta*+T8) — (Aa + Ap)],

N |-

[-3pu + (—my —my, — T3+

Thus (3.1.4) is obtained by finding the sum of the differences of the four contrasts as

shown below,

Ta — Tg = (ds3 — dsg) + (dss — dsg)

(4.1.40)
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4.1.23.2: Carryover Treatments Estimate for Design 23 using (BLUE)
The contrasts ds7, dsg, dsgand dg , identified from Table 4.1.46 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(d57) = %E(Yll + 2Y12 + Y13 + Y14_ + Y15) = % [6|J. +(T[1 + 21-[2 + T[3 + T[4_ + T[5) +
(3TA+3TB) + (3AA + 2}\]3)]

1 1
E(dsg) = EE(YZl + 2Y22 + Y23 + Y24_ + Y25):E [6“. +(T[1 + 21-[2 + T3 + Ty + 1-[5) +

(3TA+3TB) + (2)\A + 3)\]3)]

1
E(dsg) = EE(_Y31 + Y3, — Y33 + 2Y3, — Y35) = (—my +my, — T3 +

[N N
=

2m,—Ti5)+2A5 — Ag |

E(deo) = %E(—Ytu + Ya2 = Yaz + 2Y44 — Yys) = %[ (=T + Ty — T3 + 21, — )
+2Ag — Aa]

Thus (3.1.5) is obtained by finding difference between the four contrasts,

Aa — Ag=(ds7 — dsg) + (dsg — dgo) (4.1.41)

4.1.24: Five Periods, Two Treatments, and four sequence design (D43 + D14)

The design is represented as given in Table 4.1.47 below.

Table 4.1.47: C (2x 5 X 4) Design 24

SEQ P1 | D2 | D3 |Pa|Ds
AABBA | A AlB |[B|A
BBAAB | B B|A|A|B
AABAB | A A|B |A]|B
BBABA | B B|A|B |A

Substituting model (3.1.3) to Table (4.1.47) gives;
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Table 4.1.48: Expected values for C (2x 5 x 4) Design 24

SEQ P1 P2 Ps P4 Ps
AABBA n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Tp TatAp g +Aa T3 + A Ta + A
BBAAB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ 15 T8 + A Ta + A TatAp g +Aa
AABAB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Ta TatAp g +Aa Tp + A g +As
BBABA n+ 1y n+m, + n+m, + n+my + n+ s +
+ 1 g + A Ta + A g+ s Ta + A

4.1.24.1 Direct Treatments Estimate for Design 24 using (BLUE)
The contrasts dgq, dg,, dg3and dg4 , identified from Table 4.1.48 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by
E(dey) = %E(Yll — Yo+ Y3 — Y + Y15)=% [w+(my —my + 13 — My + 15) +(T4) ]
E(de2) = %E(Yu —Ya2 + Y23 = You + st):% [+ (Mg — T, + 13 — Ty + 75) + (T5) ]

1 1
E(de3) = EE(_Yll + Y12 — Vi3 — Y4 — Y15):; [-3u + (—my + M, — M3 — My — )
— (215 + 1) — (A4 + Ap)]

1 1
E(des) = EE(_Yu + Yo — Yo3 — You — Ya5)= 2 [—3p + (=T + T, — T3 — Ty — Ts)
— (21p + 18) — (A4 + 2AB)]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
Ta — Tg = (dgg — dgz) + (dg3 — dea) (4.1.42)

4.1.24.2: Carryover Treatments Estimate for Design 24 using (BLUE)
The contrasts dgg, dgg, dg7and dgg , identified from Table 4.1.48 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;
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E(des) = %E (=Y11 +2Y1, = Vi3 + Yiu — Yi5) = %[ (=1 + 21, — 13 + 1y — T5) + Ap]
E(dgs) = % E(=Yz1 4 2Yp; — Ya3 + Y2u — Y25)= % [(—my + 21, — 13 + 1, — T05) +2]
E(de7) = % E(—=Y11 +2Y1, + Vi3 — Y1, — Yi5) = % [(—mt1 + 21, + T3 — Ty, — T5) +2
Ap — Ag]

1 1
E(des) = 7 E(=Ya1 + 2Y55 + Yp3 — You — Yo5)=; [(—mty + 21, + T3 — T, — TI5)
+2Ag — A4l
Thus (3.1.5) is obtained by finding difference between the four contrasts,
Asy — Ag=(dgs — des) + (de7 — des) (4.1.43)

4.1.25 Five Periods, Two Treatments, and four sequence design (D14 + Dq5)

The design is represented as given in Table 4.1.49 below.

Table 4.1. 49: C (2x 5 x 4) Design 25

SEQ P1 | P2 |P3|Ps|Ds
AABAB|A |A |[B |A |B
BBABA | B B|A[BJ[A
AAABB|A |A |A|B |B
BBBAA | B BB |[A|A

Substituting model (3.1.3) to Table (4.1.49) gives;

Table 4.1.50: Expected values for C (2x 5 x 4) Design 25

SEQ P1 P2 Ps P4 Ps
AABAB n+ Ty n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Ta TatAp g + s Ta t A Tg + Ap
BBABA n+ 1y n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ 1p T3 + A Ta t A g+ Ap Ta t A
AAABB n+ 1y n+ 1, + n+ T3 + n+ 1y + n+ 15 +
+ Ta TatAp Ta +Ap g+ Ap T + A
BBBAA n+ 1y n+m, + n+m, + n+my + n+ s +
+ 1p T + A g + A TA t A Ta tAp
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4.1.25.1 Direct Treatments Estimate for Design 25 using (BLUE)
The contrasts dgg, d5g, d71and d,, , identified from Table 4.1.50 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by
1 1
E(dgo) = EE(_Yll + Y — Vi3 — Y4 — Y15):5 [-3u + (—my + T — T3 — My — )
— (215 + 1a) — (A4 + Ap)]
1 1
E(d;p) = EE(—Y21 + Y3 — Ya3 — Yaou — Y35)= 2 [3p + (—my + T — T3 — Ty — )

— (214 + 1) — (A4 + AB)]

1
E(d;) = gE[(Y31 + Y3, + Y33 — Y34 + Y35)]== [Bp + (my +my + 13 —my + 15)

o=

+3TA + (}\A + )LB)]

1 1
E(d;;) = EE[(YM + Yo + Ya3 — Yau + Yys)]= g[3li + (my + 1y + 3 — 1y +
T[5)+3TB + ()\A + )\B)]

Thus (3.1.4) is obtained by finding the sum of the differences of the four contrasts as

shown below,
Ta — Tg = (dgg — d7o) + (d71 — d72) (4.1.44)

4.1.25.2: Carryover Treatments Estimate for Design 25 using (BLUE)
The contrasts d3,d-,, d,sand d-¢ , identified from Table 4.1.50 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(d;3) = P E(=Y11 +2Y1, + Y13 — Yia — Yi5) = P [(=my + 21, + M3 — Ty — T5) +2

Ay — Ag]

1 1
E(d;,) = P E(—=Y21 + 2Yy; + Yo3 — You — st):g [(—my + 21, + 3 — Ty — T5)

+2Ag — Al
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1 1
E(Cs5) = P E(—Ys; — Y32+ 2Y33 + Y34, — Y35) = P [(—Tty — Tt + 213 + Ty — T05)
+2 Ap — Ag]

1 1
E(Cye) = P E(=Y41 — Yap + 2Y43 + Yau — Y45):g [(—mty — T, + 215 + 11y — T05)
+2Ag — Aal
Thus (3.1.5) is obtained by finding difference between the four contrasts,
Ay — Ag=(d73 — d74) + (d75 — d76) (4.1.45)

4.1.26: Five Periods, Two Treatments, and four sequence design (D4 + Dg)

The design is represented as given in Table 4.1.51 below.

Table 4.1.51: C (2x 5 X 4) Design 26

SEQ P1 | P2 | D3 |Pa|Ds
AAABA | A A|A B |A
BBBAB | B B|B|A |B
AAAAB | A A|A |A|B
BBBBA | B B|B|B |A

Substituting model (3.1.3) to Table (4.1.51) gives;

Table 4.1.52: Expected values for C (2x 5 x 4) Design 26

SEQ P1 P2 Ps P4 Ps
AAABA n+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ Ta Ta+t Ay Ta tAp g+ Ap Ta t A
BBBAB H+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ 1p g + A g + A Tp + A Tg + Ap
AAAAB H+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ Ta Ta +2Aa Ta+t Ay Ta + 24 g +Aa
BBBBA H+ Ty n+ Ty, + n+ T, + n+ 1y + n+ 15 +
+ 1 Tg + A g + A g + A Tp + A

4.1.26.1: Direct Treatments Estimate for Design 26 using (BLUE)
The contrasts d,,, d,g, d79and dg, , identified from Table 4.1.52 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by
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E(d77) = E(Y11 — Y12 + Y13 + Y14 — Yi5) = [0+ (g — My + 3 + My — 75) + (1) +
(2A4 — 2p)]
E(dsg) = E(Yz1 — Yo + Yo3 + You — Yp5) = [u+ (my — 1y + 13 + My — 1s) + (T4) +
(2Ag — Ap)]
E(d79) = 3E(Y3; + Y32 — 2Y33 + Y34 + Y35)] = 3[2p + (m; + 1, — 213 + 1My + T5)
+(ta +18) + (Aa)]
E(dgo) = 3E(Ya1 + Yap — 2Y43 + Yas + Yas)] = 3[2pn + (Mg +mp —2m3 +1my +
T5)+ (g + Ta) + (A)]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
Ta — T = (dyg — d77) + (d79 — dgo) (4.1.46)

4.1.26.2 Carryover Treatments Estimate for Design 26 using (BLUE)
The contrasts dg,, dg,, dgzand dg, , identified from Table 4.1.52 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(dg) = ZE(Y11 =Yy, — Yi3 — Y14 + Yi5) :Z['H + (M =T, — My — My +Ts) —

() + (A — 3A4)]

1
E(dgy) = ZE(Y21 =Yoo = Yo3—You+ Yo5)= = [ + (M — Ty — T3 — My +Ts) —

(ta) + (Aa — 3Ap)]

1 1
E(dg3) = ZE(Y31 = Y3, — Y33 + Y34 + Y35)] " [u + (Mg — T, — T3 + Ty + )

+(t8) |
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1 1
E(dgy) = ZE(Y41 = Yo — Yaz + Yau + Yus)] = " v + (mMm-m-—my+m+
T5)+(Ta) ]

Thus (3.1.5) is obtained by finding difference between the four contrasts as shown

below,
Aa — Ag = (dg4 + dgp) — (dg3 + dg1) (4.1.47)

4.1.27: Five Periods, Two Treatments, and four sequence design (D5 + Ds)

The design is represented as given in Table 4.1.53 below.

Table 4.1.53: C (2x 5 X 4) Design 27

SEQ P1 | P2 | D3 |Pa|Ds
AAAAB | A A|A B |A
BBBBA | B B|B|A |B
AAAAB | A A|A |A|B
BBBBA | B B|B|[B |A

Substituting model (3.1.3) to Table (4.1.53) gives;

Table 4.1.54: Expected values for C (2x 5 x 4) Design 27

SEQ P1 P2 Ps P4 Ps
AAAAB n+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ Ta Ta+ Ay Ta +Ap TatAa g +Aa
BBBBA n+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ 1p g + A g + A g + A Ta t A
AAAAB H+ Ty n+ T, + n+ T3 + n+ 1y + n+ 15 +
+ Ta Ta +2Aa Ta+t Ay Ta + 24 g +Aa
BBBBA H+ Ty n+ Ty, + n+ T, + n+ 1y + n+ 15 +
+ 1 Tg + A g + A g + A Tp + A

4.1.27.1 Direct Treatments Estimate for Design 27 using (BLUE)
The contrasts dgs, dgg, dg7and dgg , identified from Table 4.1.54 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by
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E(dgs) = gE(Yu + Y12 — 2Yy3 + Y14 — 2Y35) :§ [-p + (g + 1, — 273 + Ty — 2715)
+(ta — 218) — 2(AA)]
E(dge) = gE(Yu + Y22 — 2Y33 4 You — 2Y55) = % [p + (my+my— 215 — Ty —
2m5)+ (1 — 274) — 2 (AB)]
E(dgy) = %E(Y31 + Y33 — 2Y33 + Y34 + Y35)] :% [2pn + (my + 1, — 213 + T, + TO5)
+(ta +18) + (Aa)]
E(dgs) = %E(an + Y42 — 2Yy3 + Yaq + Yy5)] :g [2p + (M +m—2m; +my +
T5)+(tg + Ta) + (Ap)]

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as

shown below,
Ta — Tg = (dgs — dge) + (dg7; — dgsg) (4.1.48)

4.1.27.2: Carryover Treatments Estimate for Design 27 using (BLUE)
The contrasts dgg, dgg, dgjand do,, , identified from Table 4.1.54 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1
E(dgo) = EE(Y11 Y2 —Yi3—Yiu + Y15):5 [w  + (g — My — M3 — My + T5)
—ZTA + T -2 )\A]

1 1
E(dgo) = EE(Y21 =Y, — Yo3 — Yau + Yp5)= > [Fu+(my —my, — T3 — My +T5) —271p
+Tp — Z}LB]

3 3
E(dyy) = EE(Y31 = Y3z — Y33 + Y34 + Y35)]= 2 [+ (m —my —m3 +my + T5)

+(t8) |
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3
E(dyy) = EE(Y41 = Yo — Ya3 + Yau + Yy5)]=

N | Ww

v + (Mm-—my—mg+m+
T5)+(Ta) |

Thus (3.1.5) is obtained by finding difference between the four contrasts,

Aa — Ag=(dgo — dgo) + (do; — do3) (4.1.49)

4.1.28 Discussion

The method gave best linear unbiased estimates for both treatments and carry-over
effects for a majority of the five period cross-over designs. However,
D,,D,, D5, D,, &D< were found not to have unbiased estimates for carry-over effects.
This is because in all the five designs, the first four periods received a similar treatment
while the remaining one period for the five designs received alternative treatments. This
implies that as we moved from one period to the other, the carry-over effects diminishes
if the same treatment is assigned in two or more subsequent periods. The fact that the
carryover effects for (D; — Ds) were not obtained implies that the designs can be
effectively used to estimate the treatments effects even when the carryover effects are
expected in the experiment. This is because the design by itself can eliminate the carry-
over effects. For the rest of the designs (D¢ — D,7), the significance of carry-over
effects difference needs to be evaluated and their contribution to treatment differences

be established.

4.2. Optimality criteria for C (2x 5)Ccross-Over Designs
4.2.1 Direct Treatments variance for C (2x 5 x 2)
4.2.1.1 Design D4

From (4.1.1),

Ta—Tg = E[Y11 + Y12 = Vi3 + Vg + Yis — Yo — Yop + Yo3 — Yoo — Yps] (4.2.1.1)
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Applying (3.2.1) on (4.2.1.1) gives,
var(ty — 1) = 10 %2 (4.2.1.2)
4.2.1.2 Design D,
From (4.1.2),

Ta — T = E[Y11 + Y15 + Y3 — Yiu + Yi5 — Yo — Yoo — Yo3 + You — Yo5] (4.2.1.3)
Applying (3.2.1) on (4.2.1.3) gives,
var(ty — t5) = 102 (4.2.1.4)

4.2.1.3 Design D3

From (4.1.3),
Ta — T = E[Y11 — Y15 + Va3 + Yiu + Yi5 — You + Yoo — Yo3 — You — Ya5] (4.2.1.5)
Applying (3.2.1) on (4.2.1.5) gives,
0.2
var(ty — 1) =10 - (4.2.1.6)

4.2.1.4 Design D,

From (4.1.4),
Ta — T = E[Y11 — Yio + Va3 + Yiu + Yi5 — You + Yoo — Yo3 — You — Ya5] (4.2.1.7)

Applying (3.2.1) on (4.2.1.7) gives,

var(ty — 1) =10 %2 (4.2.1.8)



4.2.1.5 Design Dg

From (4.1.5),
Ta—Tg = E[-Yy1 + Yi2 = Vi3 + Yy — Yi5 + Vo1 — Yap + Yo3 — You + V5]
Applying (3.2.1) on (4.2.1.9) gives,
0-2
var(ty — Ttg) = 10—

4.2.1.6 Design Dg

From (4.1.6),
Ta— T = E[Y11 = Y2 + Y13 — Yiu + Y15 — Y1 + Yo — Vo3 + You — Yo5]
Applying (3.2.1) on (4.2.1.11) gives,
0.2
var(ty, —tg) =10 -

4.2.1.7 Design D

From (4.1.8),
Ta— Tg = E[Y11 — Y12 — Yi3 + Yiu + Y15 — Yoq + You + Y3 — You — Yos]
Applying (3.2.1) on (4.2.1.13) gives,
(72
var(ty, —tg) =10 —

4.2.1.8 Design Dg

From (4.1.10),
1
TA—Tg = gE[Yn — Y1z + Yi3 — Yy + Yi5 — Yoq1 + You — Yo3 4+ You — V5]

Applying (3.2.1) on (4.2.1.15) gives,

74

(4.2.1.9)

(4.2.1.10)

(4.2.1.11)

(4.2.1.12)

(4.2.1.13)

(4.2.1.14)

(4.2.1.15)
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var(ty — t5) = 1111 & (4.2.1.16)

4.2.1.9 Design Dg

From (4.1.12),
TA - TB = E[_Y11 - Y12_Y13 + Y14_ - Y15+Y21 + Y22 + Y23 - Y24_ + Y25] (42117)

Applying (3.2.1) on (4.2.1.17) gives,
var(ty — 1) =10 %2 (4.2.1.18)

4.2.1.10 Design Dy

From (4.1.14),
Ta — T = E[Y11 — Yio+Yi3 — Yiu + Yis—Yo1 + Yoo — Yoz + Y2u — Ya5] (4.2.1.19)

Applying (3.2.1) on (4.2.1.19) gives,
var(ty — t5) = 10 & (4.2.1.20)

4.2.1.11 Design Dy4

From (4.1.16),
Ta —Tg = E[Y11 + Yio+Yi3 + Yiu + Yi5—Yo1 — Yoo — Y3 — You — Yas5] (4.2.1.21)

Applying (3.2.1) on (4.2.1.21) gives,
var(ty — t5) = 10 & (4.2.1.22)

4.2.1.12 Design Dy,

From (4.1.18),
Ta— T8 = E[—Y11 = Yo~ Yoz 4 Yia — Yis+Yo1 4+ Yoo + Va3 — You + Yas]  (4.2.1.23)

Applying (3.2.1) on (4.2.1.23) gives,
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var(ty — t5) = 10 & (4.2.1.24)

4.2.1.13 Design Dq3

From (4.1.20),

Ta — T = E[Y11 — Y12+ Y13 — Y14 + Yi5—Yo1 + Yoo — Vo3 + You — Yo5] (4.2.1.25)
Applying (3.2.1) on (4.2.1.25) gives,
var(ty — ) =10 (4.2.1.26)

4.2.1.14 Design D4

From (4.1.22),

Ta — T = E[—Y11 + Yio—Yi3 — Yia — Yis Yo — Yop + Yo3 + You + Yps]  (4.2.1.27)
Applying (3.2.1) on (4.2.1.27) gives,
var(ty — ) =10 (4.2.1.28)

4.2.1.15 Design D45

From (4.1.24),
TaA—TB= gE[Yn + Yo +Yi3 = Yig + Yis Yoy — Yop — Yoz + Yo — Yis] (4.2.1.29)
Applying (3.2.1) on (4.2.1.29) gives,

var(ty —tp) = 111 & (4.2.1.30)
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4.2.2 Residuals variance for C (2x 5 x 2)
4.2.2.1 Design Dg

From (4.1.7),

Mo —Ag = ZE[Y1y — Yip — 2Yy3 + You + Yog — You + Yop + 255 — You — Y] (4.2.2.1)
Applying (3.2.2) on (4.2.2.1) gives,
var(As — Ag) = 0.64 & (4.2.2.2)

4.2.2.2 Design D5

From (4.1.9),

Ay —Ag = E[Y11 — 2Y1; — Vi3 + Yau + Yis — You + 2Y5 + Yoz — You — Yas] (4.2.2.3)
Applying (3.2.2) on (4.2.2.3) gives,
var(s —Ag) =16 & (4.2.2.4)

4.2.2.3 Design Dg

From (4.1.11),

A=A =E[Yi1 + Yo + Y3 —Yiu —Yis — Yo — Yo — Yoz + Yo, — Yos] (4.2.2.5)
Applying (3.2.2) on (4.2.2.5) gives,
var(s —Ag) =10 & (4.2.2.6)

4.2.2.4 Design Dg

From (4.1.13),
1
A —Ag = EE[Yll = 2Y1p4 Y13 + Yiu — Yis—Yo1 + 2Yop — Ya3 — You + Yos5]  (4.2.2.7)

Applying (3.2.2) on (4.2.2.7) gives,
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var(h, — Ag) = 1.78 & (4.2.2.8)

4.2.2.5 Design D4,

From (4.1.15),

Aa—Ap = SE[Yay + Yip+ Yoy — 24 + Yis—Yo1 — Voo — Vo3 + 2Y54 — Yos]  (4.2.2.9)
Applying (3.2.2) on (4.2.2.9) gives,
var(As —Ag) = 1.78 & (4.2.2.10)

4.2.2.6 Design Dqq

From (4.1.17),

Ay —Ag = E[Yq1 + 2Yio+Yq3 + Yig + Yis—Yo; — 2Yp, — Yo3 — You — Yo5]  (4.2.2.11)
Applying (3.2.2) on (4.2.2.11) gives,
var(s —Ag) =16 & (4.2.2.12)

4.2.2.7 Design Dy,

From (4.1.19),

Aa—Ap = TE[—Y11 + Yip—Yi3 + 2Ya4 — Yis+Ya1 — Yoo + Vo3 — 2Yp4 + Yys] (4.2.2.13)
Applying (3.2.2) on (4.2.2.13) gives,
var(h, —Ag) = 1.78 & (4.2.2.14)

4.2.2.8 Design Dq3

From (4.1.21),

Aa —Ag = E[—Y1; + Y12—Yi3 + Y14 — Yis Yo — You + Yo3— Yo, + Yas5] (4.2.2.15)
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Applying (3.2.2) on (4.2.2.15) gives,
var(s —Ag) =16 & (4.2.2.16)

4.2.2.9 Design Dq4

From (4.1.23),

Ap—Ag = %E[—Yll +2Y15+Y 3 — Yo — Yis+Yo, — 2Yoy — Yo3 + You + Yoo] (4.2.2.17)
Applying (3.2.2) on (4.2.2.17) gives,
var(h, —Ag) = 1.78 & (4.2.2.18)

4.2.2.10 Design Dq5

From (4.1.25),

Aa—Ap = TE[~Y11 — Yip+2Y15 + Yog — Yis+Ya1 + Yoo — 2Yp3 — Yau + Y] (4.2.2.19)
Applying (3.2.2) on (4.2.2.19) gives,
var(Ay —Ag) = 1.78 & (4.2.2.20)

4.2.3 Treatments and Residuals Covariance for C (2x 5 x 2) Cross-Over Designs
4.2.3.1 Design Dg

Summing (4.2.1.11) and (4.2.2.1) gives,

1 1
(tao—18) + (Aa —Ag) = P E(6y11 — 6y12 + 3y13 — 4y14 + 6y15) — : E(6y,; —

6y22 + 3y23 — 4y24 + 6Y25) (4.23.1)

Applying (3.2.1) and (3.2.2) on (4.2.3.1) gives,

var[(ty — ) + (s — Ap)] = 10.64> (4.2.3.2)
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Substituting (4.2.1.12), (4.2.2.2) and (4.2.3.2) to (3.2.6) gives,
covar[(tp —tg) + Ay — Ap)] = 5.32%2

4.2.3.2 Design D,

Summing (4.2.1.13) and (4.2.2.3)

(ta— 1) + Aa —2Ag) = E(2y11 — 3y12 — 2y13 + 2y14 + 2y15) — E(2yz; —

3Y22 = 2Y23 + 2Y24 + 2¥25) (4.2.3.3)

Applying (3.2.1) and (3.2.2) on (4.2.3.3) gives,

var[(ty — ) + (s — Ap)] =50 & (4.2.3.4)
Substituting (4.2.1.14), (4.2.2.4) and (4.2.3.4) to (3.2.6) gives,
covar[(ty —tg) + Aa —Ap)] =1 %2 (4.2.3.5)

4.2.3.3 Design Dg

Summing (4.2.1.15) and (4.2.2.5)

1 1
(tao—18) + (Aa —Ag) = 3 E(4y11 + 2y12 + 4y13 — 414 — 2Y15) — 3 E(4y,; +
2y22 + 4y23 — 4y24 — 2¥25) (4.2.3.6)

Applying (3.2.1) and (3.2.2) on (4.2.3.6) gives,
0.2
var[(tp —tg) + (Ap — )] = 12.44 — (4.2.3.7)
Substituting (4.2.1.16), (4.2.2.6 and (4.2.3.7) to (3.2.6) gives,

covar[(ty —tg) + (A4 — Ag)] = 4.89 %2 (4.2.3.8)
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4.2.3.4 Design Dg

Summing (4.2.1.17) and (4.2.2.7) gives
(ta — ) + (A4 — 2Ap) = %E (=2y11 — 5y12 — 2y13 + 4y14 — 4y15) —
~E (=2y31 — 522 — 2¥23 + 424 — 4¥25) (4.2.3.9)
Applying (3.2.1) and (3.2.2) on (4.2.3.9) gives,
var[(ty — ) + (s — Ap)] = 14.44 = (4.2.3.10)
Substituting (4.2.1.18), (4.2.2.8) and (4.2.3.10) to (3.2.6) gives,
covar[(ty — Tg) + (s — Ap)] = 4.56 & (4.2.3.11)

4.2.3.5 Design D4,

Summing (4.2.1.19) and (4.2.2.9) gives

1 1
(ta —18) + (Aa — A) =3 E(4Y11 — 2y +4y13 — Sy1a t+ 4}’15) —3 E(4Y21 -

275 + 4Y23 — 5Y24 + 4Y25) (4.2.3.12)

Applying (3.2.1) and (3.2.2) on (4.2.3.12) gives,

var[(ty — ) + (s — Ap)] = 17.11 = (4.2.3.13)
Substituting (4.2.1.20), (4.2.2.10) and (4.2.3.13) to (3.2.6) gives,
covar[(ty — ) + (s —Ap)] = 322 & (4.2.3.14)

4.2.3.6 Design D44

Summing (4.2.1.21) and (4.2.2.11) gives
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(ta — 1) + (Aa — Ap) = E(2y11 + 3y12 + 2y13 + 2y14 + 2y15) — EQQy21 +
3y22 + 2Y23 + 2y24 + 2y35) (4.2.3.15)
Applying (3.2.1) and (3.2.2) on (4.2.3.15) gives,

var[(ty — ) + (A — Ag)] =50 & (4.2.3.16)
Substituting (4.2.1.22), (4.2.2.12) and (4.2.3.16) to (3.2.6) gives,
covar[(ty —tg) + Aa —2Ap)] =1 %2 (4.2.3.17)
4.2.3.7 Design Dy,
Summing (4.2.1.23) and (4.2.2.13) gives

(ta —T8) + (Aa — ) = ;E (—4y11 — 2y12 — 4y13 + 5y14 — 4y15) —
%E (—4y21 — 2y22 — 4Y23 + 5Y24 — 4Y25) (4.2.3.18)
Applying (3.2.1) and (3.2.2) on (4.2.3.18) gives,

var[(ty — ) + (s — Ap)] = 17.11 = (4.2.3.19)
Substituting (4.2.1.24), (4.2.2.14) and (4.2.3.19) to (3.2.6) gives,
covar[(ty —tg) + (A4 —Ag)] = 3.22 %2 (4.2.3.20)
4.2.3.8 Design Dq3
Summing (4.2.1.25) and (4.2.2.15) gives

(ta—18) + (Aa —Ag) = E(y12 +y22 ) (4.2.3.21)
Applying (3.2.1) and (3.2.2) on (4.2.3.21) gives,

0.2
var[(ta —tg) + (Ap —Ag)] =2 — (4.2.3.22)



Substituting (4.2.1.26), (4.2.2.16) and (4.2.3.22) to (3.2.6) gives,
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covar[(ty —g) + (Aa — Ap)] = 25 & (4.2.3.23)
4.2.3.9 Design Dq4
Summing (4.2.1.27) and (4.2.2.17) gives

(ta —18) + (Aa — AB) = % E(—4y11 + 5y12 — 2y13 — 4y14 — 4y15) —
= E(—4y21 + 522 — 2Y23 — 424 — 4Y25) (4.2.3.24)
Applying (3.2.1) and (3.2.2) on (4.2.3.24) gives,

var[(ty — 1) + (s — Ap)] = 17.11 = (4.2.3.25)
Substituting (4.2.1.28), (4.2.2.18) and (4.2.3.25) to (3.2.6) gives,
covar[(ty — 5) + (s — Ap)] = 322 & (4.2.3.26)
4.2.2.10 Design Dq5
Summing (4.2.1.29) and (4.2.2.19) gives

(ta — 1) + Ap — A5) = E(y13 + ¥23) (4.2.3.27)
Applying (3.2.1) and (3.2.2) on (4.2.3.27) gives,

var[(ty — ) + (a —Ap)] =2 = (4.2.3.28)
Substituting (4.2.1.30), (4.2.2.20) and (4.2.3.28) to (3.2.6) gives,
covar[(ty — 5) + (s — Ap)] = 189 & (4.2.3.29)
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4.2.4 Treatments effects variance for C (2x 5 X 4) Cross-Over Designs
4.2.4.1 Design D44

From (4.1.26),

1
Tpa— T = EE([Yn = Y12 — Y13 + Yiu + Vis] + [Ya1 — Yoo — Yoz + You + Yos] +

[Y31 + Y32 - Y33 + Y34- - Y35] + [Y41 + Y4-2 - Y43 + Y4-4 - Y45]) (4241)
Applying (3.2.1) on (4.2.4.1) gives,

0.2
var(ty — 1) =5 — (4.2.4.2)

4.2.4.2 Design D47

From (4.1.28),

1
Tao—Tg = EE([Yll +Y,— Y3+ Y+ Y15] —[Ya1 + Yoo — Yo3 + Yo, + st] +

[Ya1 — Yaz + Y33 + Y34 + Ya5] — [Ya1 — Yaz + Yaz + Yau + Yus]) (4.2.4.3)
Applying (3.2.1) on (4.2.4.3) gives,

0.2
var(ty —tg) =5 — (4.2.4.4)

4.2.4.3 Design Dqg

From (4.1.30),

1
Tpo— T = EE([Yn + Y1z — Vi3 + Yiu + Vis] = [Ya1 + Yoo — Yoz + You + Yos] +

[Ya1 — Yaz + Y33 + Y34 + Ya5] — [Ya1 — Yaz + Yaz + Yau + Yus]) (4.24.5)

Applying (3.2.1) on (4.2.4.5) gives,

var(ty — 1) =5 %2 (4.2.4.6)
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4.2.4.4 Design D49

From (4.1.32),

1
Tao—Tg = EE([Yll =Yy + Y13+ Yig + Yis] — [Yo1 — Yoo + Y3 + You + Ya5] +

[Y31 — Yap + Y33 + Y34 + Ya5] — [Ya1 — Yap + Yaz + Yaq + Yas]) (4.2.4.7)
Applying (3.2.1) on (4.2.4.7) gives,

0.2
var(ty —tg) =5 — (4.2.4.8)

4.2.4.5 Design D,

From (4.1.34),

1
TpA—Tg = EE([—Yn + Y1z — Yz + Yo — Yis] = [=Y21 + Yoo — Yo3 + You —

Yos5] + [Ya1 — Yaz + Yag — Yau + Yas] — [Yag — Yao + Yaz — Yau + Yas]) (4.2.4.9)
Applying (3.2.1) on (4.2.4.9) gives,

0.2
var(ty — 1) =5 — (4.2.4.10)

4.2.4.6 Design D,

From (4.1.36),

1 1
Tao—Tg = ZE[Yll —Yi2 — Y3+ Y+ Y15] _ZE[Y21 =Yoo — Yo3+ You + st] +

1 1
S E[Ya1 = Ysp + Y33 = Y34 + Y35] = SE[Ya1 — Yoo + Yoz — Yag + Yus]  (4.24.11)
Applying (3.2.1) on (4.2.4.11) gives,

var(ty — 1) = 0.6944 %2 (4.2.4.12)
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4.2.4.7 Design D5,

From (4.1.38),

1 1
Tp —Tg = EE[_YII — Y12 — Y3+ Yy — Yi5] — ;E[_Ym — Yoy — Ya3 + You — Yp5] +

~E[Ys1 — Yoz + Yag = Yau + Yas] = S E[Yay — Yoy + Ya3 — Yoy + Yag] (4.2.4.13)
Applying (3.2.1) on (4.2.4.13) gives,

var(ty — 5) =5 % (4.2.4.14)

4.2.4.8 Design Dj3
From (4.1.40),
1 1
Ta — T = S E[Y11 + Y12 + Yig + Yig + Yis] = SE[Ya1 + Yop + Yoz 4+ Yo + Yas] +

1 1
SE[=Ys1 = Y35 — Y33 + Y34 — Ya5] = SE[—Ya1 — Yap — Va3 + Yaq — Yis5] (4.2.4.15)

Applying (3.2.1) on (4.2.4.15) gives,
var(ty — 5) =5 % (4.2.4.16)

4.2.4.9 Design D,y
From (4.1.42),
1 1
TA—Tg = EE[—Yn +2Y12 — Y13 + Y4 — V5] = EE[—Y21 + 2Y; + Yo3 — Yau + Yos5| +

1 1
EE[—Y31 + Y33 — Y33 — Y34 — Y35] — EE[_Y4-1 + Yaz — Ya3 — Yau — Yas] (4.2.4.17)

Applying (3.2.1) on (4.2.4.17) gives,
var(ty —15) =5 % (4.2.4.18)

4.2.4.10 Design D5

From (4.1.44),
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1 1
Tp—Tg = EE[_Yll + Y12 — Y13 — Y14 — Yis5] — EE[_Y21 + Yoz — Yo3 — You — Yas] +

%E[Y31 + Y32 + Y33 - Y34 + Y35] - %E[Y4_1 + Y4_2 + Y4_3 - Y4_4_ + Y45] (42419)
Applying (3.2.1) on (4.2.4.19) gives,
var(ty — t5) = 2.78 < (4.2.4.20)

4.2.4.11 Design Dy
From (4.1.46),

Ta—Tg = E[Yy1 — Yip + Vi3 + Y1y — YVis] — E[Yo1 — Yop + Yo3 4+ You — Yos5] +

3E[Ys; + Y35 — 2Y33 + Ya4 + Ya5] — 3E[Ya1 + Yao — 2Yy3 + Yau + Yys] (4.2.4.21)
Applying (3.2.1) on (4.2.4.21) gives,

var(ty — 1) = 154 = (4.2.4.22)
4.2.4.12 Design Dy,

From (4.1.48),

1 1
Tp—Tg = gE[Yll + Y12 — 2Yy3 + Yiu — 2Y55] — gE(Yzl + Yy, — 2Yp3 + You — 2Y35) =

+§E(Y31 + Y32 - 2Y33 + Y34_ + Y35) - %E(Y41 + Y42 - 2Y43 + Y4_4_ + Y4_5) (4.2.4.23)
Applying (3.2.1) on (4.2.4.23) gives,
var(ty —tg) = 9.6 %2 (4.2.4.24)

4.2.5 Carryover variance for C (2x 5 x 4)
4.2.4.1 Design Dy

From (4.1.27),
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1

Ay —Ag = " (E[Y11 — Y12 — Yi3 + Yiu + Yis] + [Y21 — Yop — Y3 + You + Yo5] +
[Y31 + Y32 + Y33 — Y3, — Ya5] + [Yag + Yap + Yaz3 — Y — Yus]) (4.25.1)
Applying (3.2.2) on (4.2.5.1) gives,

var(l, — Ag) = 1.25% (4.2.5.2)
n

4.2.4.2 Design D47

From (4.1.29),

1
)\A - )\B = Z (E[Yll - Y12 - Y13 - Y14- + Y15] - [Y21 - YZZ - Y23 - Y24 + YZS] +

[Y31 + Y32 — Y33 — Y34 — Y35 — [Yaq + Yao — Yaz — Yau — Yus]) (4.25.3)
Applying (3.2.2) on (4.2.5.2) gives,
var(hy — Ag) = 1.25% (4.2.5.4)

4.2.4.3 Design Dqg

From (4.1.31),

1
Ay —Ag = " (E[Y11 — Y12 — Yi3 — Y14 + Yis] — [Y21 — Yop — Y3 — You + Yos5] +

[Ya1 + Ya2 — Y33 — Yaq — Ya5] — [Ya1 + Yoo — Yaz — Yay — Yus]) (4.25.5)
Applying (3.2.2) on (4.2.5.5) gives,

0.2
var(A, — Ag) = 1.25 — (4.2.5.6)

4.2.4.4 Design Dqgq

From (4.1.33),

1
}\A - )\B = Z (E[Yll - Y12 + Y13 + Y14 - Y15] - [Y21 - Y22 + Y23 + Y24 - YZS] +

[Ya1 — Yao + Y33 + Y34 — Ya5] — [Ya1 — Yaz + Yoz + Yaq — Yus]) (4.2.5.7)
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Applying (3.2.2) on (4.2.5.7) gives,
var(hy —Ag) = 1.25% (4.2.5.8)

4.2.4.5 Design D,

From (4.1.35),

1
Ay —Ag = " (E[Y11 — Y12 + Yi3 + Y14 — Yis] — [Y21— Y22 + Yo3 + You — Ya5] +

[Ya1 + Y32 — Ya3 + Y4 + Yas] — [Yar + Yao — Yaz + Yag + Yas]) (4.2.5.9)
Applying (3.2.2) on (4.2.5.9) gives,
var(hy —Ag) = 125 % (4.2.5.10)

4.2.4.6 Design D,y

From (4.1.37),

1 1
)\A - )\B = E(E[Yll - 2Y12 - Y13 + Y14- + Y15] - EE[Y21 - 2Y22 - Y23 + Y24- + YZS] +

%E[Ym + Yaz + Y33 = Ya3u — Ya5] — ;E[qu + Yao + Va3 = Yau — Yy5]) (4.2.5.11)
Applying (3.2.2) on (4.2.5.11) gives,
var(As — Ag) =65 (4.25.12)

4.2.4.7 Design D5,

From (4.1.39),

1 1
)\A - )LB = E(E[Yll - 2Y12 + Y13 + Y14- - Y15] - EE[Y21 - 2Y22 + Y23 + Y24- - Y25] +

1 1
EE[Y31 + Y32 + Y33 - 2Y34_ + Y35] - EE[Y41 + Y4_2 + Y4_3 - 2Y4_4_ + Y45]) (42513)

Applying (3.2.2) on (4.2.5.13) gives,
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var(A, — Ag) = 0.89 > (4.2.5.14)

4.2.4.8 Design D3

From (4.1.41),

Aa—Ap = E[Yay + 2V, + Yoy + Yig + Yis] = S E[Yay + 2Yy5 + Vg + You + Yos] +
~E[~Ya1 + Ya; — Ya3 + 2Yay — Yas] — ~E[~Yyq + Yiz — Y3 + 2Yss — Vi) (4.25.15)
Applying (3.2.2) on (4.2.5.15) gives,
var(h, — Ag) = 4.44 & (4.2.5.16)

4.2.4.9 Design D,y

From (4.1.43),

1 1
)\A - )\B = EE[_Yll + 2Y12 - Y13 + Y14- - Y15] - EE[_Y21 + 2Y22 - Y23 + Y24 -

1 1
Yos] + gE[—Y31 + 2Y3; + Y33 — Y34 — Y35] — gE[—qu + 2Y4p + Ya3 — Yas — Yys]

(4.2.5.17)
Applying (3.2.2) on (4.2.5.17) gives,
var(Ay — Ap) = 1.56 = (4.2.5.18)

4.2.4.10 Design D,¢

From (4.1.45),

1 1
A —Ag = P E[—Y1; + 2Y15 + Yi3 — Yy — V5] = EE[—Y21 + 2Y; + Yo3 — You — Yos5| +

1 1
SE[=Y31 = Ya5 + 233 + Y34 — Y35] = ~E[Yaq — Yap + 2Vs3 + Yau — Yus] (4.2.5.19)

Applying (3.2.2) on (4.2.5.19) gives,
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var(hy — Ag) = 0.87 & (4.2.5.20)

4.2.4.11 Design Dy

From (4.1.47),

Ay —Ag = %E[Yn —Yip = Yi3 — Yia + Yis] + %E(Yu = Y22 — Yo3 = You + Yo5) —
%E(Y31 — Y33 — Y33 + Y34 + Y35) — iE(Y4»1 = Yaz — Ya3 4 Yaq + Yus5)] (4.2.5.21)
Applying (3.2.2) on (4.2.5.21) gives,

var(hy —Ag) = 1.25 & (4.2.5.22)

4.2.4.12 Design Dy,

From (4.1.49),

1 1
A —Ag = EE(Yll =Yy, = Yi3 = Y4 + Yi5) — EE(Y21 — Yo, — Yo3 — You + Yz5) +

%E(Ym — Y33 — Y33+ Y34 + Y35) — %E(qu — Y42 — Yaz + Yaq + Yus) (4.2.5.23)
Applying (3.2.2) on (4.2.5.23) gives,
var(hy —Ag) =25 & (4.2.5.24)

4.2.6 Treatments and Residuals Covariance for C (2x 5 X 4)
4.2.6.1 Design Dy

Summing (4.2.4.1) and (4.2.5.1) gives,
(ta—1B) + (A4 —Ap) = i E(By11 — 3y12 — 3y13 + 3y14 + 3yi5)

1 1
+Z E(y21 — Y22 — Y23 + Y22 T ¥25) + 7 E(ys31 —y32 — 3y33 + 3y24 — ¥25) +

1
Py E(3Ya1 + 3Ya2 = Yaz + Yaa — 3Yas) (4.2.6.1)

Applying (3.2.1) and (3.2.2) on (4.2.6.1) gives,
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var[(ty — g) + (s — Ap)] = 625 (4.2.6.2)
Substituting (4.2.4.2), (4.2.5.2) and (4.2.6.2) to (3.2.6) gives,
covar[(ty — tg) + (A, — Ap)] =3.125 %2

4.2.6.2 Design D47

Summing (4.2.4.3) and (4.2.5.3)
1
(ta— 1) + (Mg —Ap) = " Ey11 +y12 — 3y13 + Y14 + 3y15)

+% E(=3y21 — Y22 + 3Y23 = Y24 — 3¥25) +% E(=y31 = 5y32 + 5y33 + 5y34 +
5Y25) +% E(Ya1 + 5Y42 — 5Y43 — 5Y44 — 5Y45) (4.2.6.3)
Applying (3.2.1) and (3.2.2) on (4.2.6.3) gives,

var[(ty — ) + (s — Ap)] = 16.25 = (4.2.6.4)
Substituting (4.2.4.4), (4.2.5.4) and (4.2.6.4) to (3.2.6) gives,
covar[(ty —tg) + (A4 —Ag)] = 1.875 %2 (4.2.6.5)

4.2.6.3 Design Dqg

Summing (4.2.4.5) and (4.2.5.5)
(ta— 1) + (Aa —2Ap) = i Ey11 +y12 — 3y13 + Y14 + 3Y15)

1 1
3 E(—3y21 — Y22 + 3y23 — Y24 — 3y25) + " E(—y3; — 5y32 + 5y33 + 5y34 +

1
5y35) + 7 E(Va1 + 5¥az — 5¥43 — 5Ya4 — 5¥as) (4.2.6.6)

Applying (3.2.1) and (3.2.2) on (4.2.6.6) gives,
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var[(ty — ) + (s — Ap)] = 16.25 = (4.2.6.7)
Substituting (4.2.4.6), (4.2.5.6 and (4.2.6.7) to (3.2.6) gives,

covar[(ty — 5) + (s — Ap)] = 1.875 = (4.2.6.8)

4.2.6.4 Design D49

Summing (4.2.4.7) and (4.2.5.7) gives,
1
(ta—Tt8) + (Aa —2Ap) = " EBy11 — 3y12 + 3y13 + 3y14 + y15)

+% E(—3yz21 + 3y22 — 3y23 — 3Y24 — ¥25) +i E(3ys1 — 3ysz + 3yss + 3yzs +
Y2s5) +% E(—3ya41 * 3Yaz — 3Y43 — 3Y44 — Yas) (4.2.6.9)
Applying (3.2.1) and (3.2.2) on (4.2.6.9) gives,

var[(ts — ) + (Aa — Ap)] = 9.25 & (4.2.6.10)
Substituting (4.2.4.8), (4.2.5.8) and (4.2.6.10) to (3.2.6) gives,
covar[(ty — g) + (s — Ap)] = 1.625 = (4.2.6.11)

4.2.6.5 Design D,

Summing (4.2.4.9) and (4.2.5.9) gives
(ta— 1) + (Aa —Ag) = i E(—=y11 + Y12 — Y13 + 3y14 — 3y1s)

1 1
3 E(y21 — Y22 + Y23 — 3y24 + 3y25) + " E(ys1 — 3ys32 + 3y33 — 3y34 +y35) +

1

" E(=3y41 + Y42 — Ya3 + Yaa — 3yas) (4.26.12)

Applying (3.2.1) and (3.2.2) on (4.2.6.12) gives,
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var[(ty — 1) + (Aa — Ap)] = 5.75 & (4.2.6.13)
Substituting (4.2.4.10), (4.2.5.10) and (4.2.6.13) to (3.2.6) gives,

covar[(ty — T5) + (s — Ap)] = 3375 = (4.2.6.14)

4.2.6.6 Design D,y

Summing (4.2.4.11) and (4.2.5.11) gives
(ta—7t)+(Aa—2g) = i E(3y11 — 5y12 — 3y13 + 3y14 + 3¥15)

+% E(=3y21 + 5y22 + 3y23 = 3y24 — 3y25) + % E(7y31 4 5¥32 + 7¥33 = 7¥34 —
5y35) + = E(=7Y41 = 5¥42 = 743 + 7aa + 5¥as) (4.2.6.15)
Applying (3.2.1) and (3.2.2) on (4.2.6.15) gives,

var[(ts — 5) + (s — Ap)] = 10.36 = (4.2.6.16)
Substituting (4.2.4.12), (4.2.5.12) and (4.2.6.16) to (3.2.6) gives,
covar[(ty —tg) + (A4 —Ag)] = 2.0138 %2 (4.2.6.17)

4.2.6.7 Design D5,

Summing (4.2.4.13) and (4.2.5.13) gives
(ta— 1) + (Aa —Ag) = % E(—2y11 — 5y12 — 2y13 + 4y14 — 4Y15)

1 1
+s E(2y,1 + 5Y22 — 2y23 — 4y24 + 5¥25) +< E(4ys31 — 2y3; + 4y33 — 5y3a +

1
4y3s) + P E(—4y41 + 2y4; — 4y43 + 544 — 4Y4s) (4.2.6.18)

Applying (3.2.1) and (3.2.2) on (4.2.6.18) gives,
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var[(ty — g) + (s — Ap)] = 8.139 = (4.2.6.19)
Substituting (4.2.4.14), (4.2.5.14) and (4.2.6.19) to (3.2.6) gives,

covar[(ty — 5) + (s — Ap)] = 1821 = (4.2.6.20)

4.2.6.8 Design D3

Summing (4.2.4.15) and (4.2.5.15) gives
(ta—Tt8) + (Aa —2Ap) = % EQ2y11 + 3y12 + 2y13 + 2y14 + 2y55)

1 1 1
+3 E(—2y21 — 3y22 — 223 — 2y24 — 2¥35) +g E(—2y3;) +g E(—4y4; + 2y, —

4y43 + 5Yas — 4Yas) (4.2.6.21)

Applying (3.2.1) and (3.2.2) on (4.2.6.21) gives,

var[(ta — 5) + (s — Ap)] = 3.638 = (4.2.6.22)
Substituting (4.2.4.16), (4.2.5.16) and (4.2.6.22) to (3.2.6) gives,
covar[(ty —tg) + (A4 —Ag)] = 7.62 %2 (4.2.6.23)

4.2.6.9 Design D,y

Summing (4.2.4.17) and (4.2.5.17) gives

(ta — ) + (Aa — 2B) = % E(y12) —% E(y2) +% E(—4ys; + 5ysz — 2y33 —
4y3s — 4y35) + < E(4ya1 — 542 + 2V + 4Vas + 4as) (4.2.6.24)
Applying (3.2.1) and (3.2.2) on (4.2.6.24) gives,

var[(ty — ) + (s — Ap)] = 477 & (4.2.6.25)

Substituting (4.2.4.18), (4.2.5.18) and (4.2.6.25) to (3.2.6) gives,
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covar[(ty —tg) + (A4 —Ag)] = 4.1712 %2 . (4.2.6.26)

4.2.6.10 Design Dyg

Summing (4.2.4.19) and (4.2.5.19) gives

(ta—7t) +(Aa—2g) = % E(—4y11 + 5Y12 — Y13 — 4Y14 — 4Y15)
+= E(4y21 — 522 + 2Y23 + 4y24 + 425) + = EGyss) — 2 EGyss)  (4.2.6.27)
Applying (3.2.1) and (3.2.2) on (4.2.6.27) gives,

var[(ty — g) + (s — Ap)] = 4.694 = (4.2.6.28)
Substituting (4.2.4.20), (4.2.5.20) and (4.2.6.28) to (3.2.6) gives,
covar[(ty — 5) + (s — Ap)] = 130 & (4.2.6.29)

4.2.6.11 Design Dy

Summing (4.2.4.21) and (4.2.5.21) gives
1
(ta—718) + (A4 — Ap) = " E(5y11 — 5y12 + 3y13 + 3y14 — 3y15)

1 1
+3 E(—3y21 + 3y22 — 5¥23 — 5y24 + 5y25) + " E(11y3; + 13y3; — 23y33 +

11Y34 + 11Y35) +i E(—13Y41 — 11Y4,2 + ZSY43 — 13Y44 — 13Y45) (42630)
Applying (3.2.1) and (3.2.2) on (4.2.6.30) gives,
0.2
var[(ty — tg) + (A4 — Ag)] = 155.25 — (4.2.6.31)
Substituting (4.2.4.22), (4.2.5.22) and (4.2.6.31) to (3.2.6) gives,

covar[(ty — Tg) + (s — Ap)] = 77.625 & (4.2.6.32)
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4.2.6.12 Design D,

Summing (4.2.4.23) and (4.2.5.23) gives
(ta—1t) + (Aa —2Ap) = % E(5y11 — Y12 — 7¥13 — Y14 — Y15)

+% E(=5y21 + Y22 + 7¥23 + Y24 + ¥25) +% E(13y31 — 5y3z — 17y33 + 13y34 +
13y35) + ¢ E(—=13y41 + 5¥42 + 17Y43 — 13Y4s — 13ya4s) (4.2.6.33)
Applying (3.2.1) and (3.2.2) on (4.2.6.33) gives,

var[(ty — 5) + (s — Ap)] = 49.89 = (4.2.6.34)
Substituting (4.2.4.24), (4.2.5.24) and (4.2.6.34) to (3.2.6) gives,
covar[(ts — T5) + (As — Ap)] = 9.66 & (4.2.6.35)

Table 4.2.1: Summary of Variances and Covariance of C (2x 5 x 2) Designs in

2
Multiples of =

Design Treatment  effects | Carry-over effects | Covariance of
variance variance treatment and carry-

over effects

D, 10.00 - -

D, 10.00 - -

D, 10.00 - -

D, 10.00 - -

D 10.00 — -

D¢ 10.00 0.64 5.32

D, 10.00 16.00 1.00

Dg 1.11 10.00 4.89

Dy 10.00 1.78 4.56

Dio 10.00 0.64 3.22

Diq 10.00 16.00 1.00

Di, 10.00 1.78 3.22

Di3 10.00 16.00 25.00

Di, 10.00 1.78 3.22

Dis 1.11 1.78 1.89
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Table 4.2.2: Summary of Variances and Covariance of C (2x 5 X 4) Designs in

2
Multiples of =~

Design Treatment effects Carry-over Covariance of
variance effects variance | treatment and carry-
over effects
D6 5.000 1.250 3.125
D, 5.000 1.250 1.875
Dig 5.000 1.250 1.875
D 5.000 1.250 1.625
D,o 5.000 1.250 3.375
D, 0.690 6.500 2.014
D,, 5.000 0.890 1.821
D, 5.000 4.440 7.620
D,, 5.000 1.560 4.171
D,s 2.780 0.870 1.300
D, 154.000 1.250 77.625
D, 9.600 25.000 9.660

4.2.7 Discussion

In this section, the optimality criteria of the five period cross-over designs were
evaluated. The significance of this section is to enable experimenters who would like
to obtain efficient designs in estimating effects of interest make informed decisions
when two or more competing designs are involved. In their book on design and analysis
of cross-over designs, Jones and Kenward in the year 2015 asserts that the optimality
for two treatments cross-over designs can be evaluated using their variances. In this
regard, the C (2x 5x 2) designs were categorized into three groups depending on the

estimates required. In estimating carry-over effects,Dq& D;, were the most optimum

2
since they gave the least variance of 0.64 % whereas D,, D;;& D;5; were the least
2
optimum with variance of 16%. Dy, D15, D1,&D,5 Were found to be equally optimum

with a variance of 1.78%2 while Dg had a variance of 10%2 . Additionally, the estimation

of treatment effects prefers Dg & D, due to the fact that they give minimum variance

2 2
of 1.11% . All the other designs are equally optimum with a variance of 10%. Moreover,
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the estimation of treatment effects in the presence of carry-over effects requires the use

of covariance to assess their optimality. In this regard, D, & D;; were the most

optimum with variance of %2 whereas D, ; was the least optimum with variance of 25%2
. Dyo, D15, &D;, Were equally optimal with variance of 3.22‘%2 while Dg, Dg, Dg&D;c
had variances of 5.32%-, 4.897, 4.567-&.1.89% respectively. For the C (2x 5 x 4), Dy,
was optimum for estimating treatment effects with a variance of 0.69%2 while D,¢
was the least optimal with a variance of 154%2 . all the other designs were found to be
equally optimal with a variance of 5 %2 except D,s & D,, whose variance was 2.7%2
and, 9.6%2 respectively. With regards to carry-over effects, D,z & D,, were the most
optimal with variances 0.87%2 and 0.89%2 respectively while D,, was the least optimal
with variance of 25%2. Dy¢, D17, D1g, D19, Dy, &D,¢ , Were found to be equally optimal
with variance of 1.25‘%2 whereas D,4, D,5, &D,, had optimal values of 6.5%2, 4.44%2 and
1.56"72 respectively. For estimating treatments effects in the presence of carry-over
effects, D, was the most optimal with 1.3%2 while D, was the least optimal with
77.625%2 . D;7 and D;g were found to be equally optimal with 1.875%2 whereas
D16, D1s, Do, Da1, Dz, Dz, D24&D; had optimal values of 3.125% 1.6257 3.375%

20147 18217 7620 41717 &9.66% respectively.
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4.3 Assessment of Robustness For The (2x 5) Cross-Over Designs Against Missing
Data.

4.3.1 Robustness for Missing Data for D44

Table 4.3.1: Expected values for Design D4, With only two complete periods for

all subjects

SEQ P1 P2 Ps P4 Ps

BAAAA K+ 1y L+ T, +T4 + * * *
+ Tg }\B

ABBBB U+ u+m,+1 + * *
+ Ta }\A *

ABAAA U+ 1y u+m,+1 + * * *
+ Ta }\A

BABBB T H+ T, + Ty + * * *
+ Tg }\B

4.3.1.1 Robustness for Missing Data in Carry-over Effects for D44
The contrasts a;,a,,a; and a, , identified from Table 4.3.1 in such a way that (3.1.7),

and (3.1.9) are satisfied are given by;

E(ar) = sE(Yyq + Yiz) =3[2 p+ (g + )] + (T4 +Tp) + Ag]

E(a,) = %E(Yu +Y,,) = %[Zu + (M + 1) + (1 +T4) T A4]

E(az) = %E(Y31 +Ys,) = %[2 w+ (M + 1) +(Ta +18) tAA]

E(ay) = %E(YM +Yy) = %[ZH +(1y +12) + (T +7T4) + Ag]

A linear combination of (a, - a;) + (a3 — a,) forms unbiased estimate of carry-over

effects,
Thus, [ Ay — Ag] = (ay-a1) + (a3 — ay) (4.3.2)

From (4.2.1), the design remains connected for the first two periods in all sequences,

whence the design is said to be perpetually connected for carry-over effects.
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4.3.1.2 Robustness for Missing Data in Treatment Effects for D4
The contrasts ag, ag, a; and ag , identified from Table 4.3.1 in such a way that (3.1.6),

and (3.1.8) are satisfied are given by;

Eas) = 5E(Y1y — Yi2) = 2 [ (my — )] + (Ta —T5) - Ag]
E(ag) = éE(Yu —Yy) = %[ (g —12) + (T8 —Ta) - Aal
E(a;) = %E(Y31 —Y3;) = % [ (ty —m2) +(ta —Tg) -A4l

1 1
E(ag) = SE(Ys1 — Yap) = 5[ (M — 1) + (1 —Ta) - Ag]
A linear combination of (a5 - ag) + (a; — ag) forms unbiased estimate for treatment

effects,
Thus,
[ta —t8] = (a5-26) + (a7 —ag) . (4.3.2)

From (4.2.2), the design remains connected for the first two periods in all sequences,

whence the design is said to be perpetually connected for Treatment effects.

4.3.2 Robustness for Missing Data for D4~

Table 4.3.2: Expected values of design D4 with only two complete periods for all

subjects

SEQ P1 P2 Ps P4 Ps

BAAAA U+ 1y W+, +14 + * * *
+ Tg }\B

ABBBB U+ 1y u+m,+1tg + * *
+ Ta )\A *

A ABAA u+ 1y W+, +1t4 + * * *
+ Ta )\A

BBABB T H+m, +15 + * * *
+ Tg }\B
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4.3.2.1 Robustness for Missing Data in Carry-over Effects for D4~
The contrasts d,, d,, d; and d, , identified from Table 4.3.2 in such a way that (3.1.7),

and (3.1.9) are satisfied are given by;

E(dy) = %E(Yn + Y1) =

N |-

[2 p+ (g + 1) + (Ta + TR) 2]
E(dz) = ZE(Ya1 + Ya2) =5 [20+ (M +T5) + (T +T4) + Aa
E(d3) = ZE(—Yay + Ya2) = 2 [~ (3 + 102) + A4]
E(ds) = ZE(—Yaq + Yaz) = 2 [(—m + 72) + Ag]

A linear combination of (d, - d;) + (d; — d,) forms unbiased estimate of carry-over

effects,
Thus,[Ap —Ag] = (d, -d;) + (d3 —dy,) (4.3.3)

From (4.3.3), the design remains connected for the first two periods in all sequences,

whence the design is said to be perpetually connected for carry-over effects.

4.3.2.2 Robustness for Missing Data in Treatment Effects for D4,
The contrasts ds, dg, d,and dg , identified from Table 4.3.2 in such a way that (3.1.6),

and (3.1.8)are satisfied are given by;

E(ds) = sE(Yyq + Yip) =5 [2 1+ (my + 1) + (Ta + Tp) +Ag]

N |-

E(dg) = 5 E(Yz1 + Yz2) = 5 [20+ (Mg + 1) + (T +Ta) + 2]

E(dy) =2 E(Yay + Y32) = 5[ (M +105) + 274 + Aa]

E(dg) = 5 E(Ya + Yaz) = 3 [(m; + 1) + 275 + Ag]

A linear combination of (ds - dg) + (d; — dg) forms unbiased estimate of treatment

effects,

Thus, [ty — tg] = (ds5 - dg) + (d; — dg) (4.3.4)
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From (4.3.4), the design remains connected for the first two periods in all sequences,

whence the design is said to be perpetually connected for treatment effects.

4.3.3 Robustness for Missing Data for D4g

Table 4.3.3: Expected values for Design D4g with only two complete periods for

all subjects

SEQ P1 P2 Ps3 P4 Ps

BAAAA K+ 1y L+ T, +T4 + * * *
+ 13 A

ABBBB U+ 1y u+m,+15 *+ * * *
+ T A

A AABA n+ 1y L+ T, +T4 + * * *
+ Ta }\A

BBBAB U+ my u+m,+1 + * * *
+ 13 A

4.3.3.1 Robustness for Missing Data in Carry-over Effects for Dqg
The contrasts dg,d;o,d;; and d;, , identified from Table 4.3.3 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(ds) = SE(Yaq + Yip) = [2p+ (my + 1) + (Ta + Tp) +Ag]

E(dy0) = %E(Ym +Y22) = % [2p+ (1, +12) + (Tt +7T4) + A4]

E(dip) = %E(—Y31 +Ys;) = %[ (=T + ) +AA]

E(d;) = %E(—qu +Yy,) = %[(—“1 + 1)+ Ag)

A linear combination of (d;( - dg) + (dy; — d4,) forms unbiased estimate of carry-
over effects,

Thus, [As — Ag] = (dqo -do) + (d11 — dy3) (4.3.9)

From (4.3.5), the design remains connected for the first two periods in all sequences,

whence the design is said to be perpetually connected for carry-over effects.
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4.3.3.2 Robustness for Missing Data in Treatment Effects for Dg
The contrasts d;3,d4,d;5 and dy¢ , identified from Table 4.3.4 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

E(di3) = %E(Yn —Yyp) = %[ (mty —m3) + (Ta — T8) — Al

E(di,) = %E(_Yu +Yy,) = % [(—m1 + 12) + (=T +7Ta) + A4l

E(dss) = %E(Y31 —Y3;) = %[ (Tty — T3) — A4]

E(dys) =5 E(Yar — Yaz) = 5 [(my — 1) — Ag]

A linear combination of (d;3 + d;4 + d;5 — d;¢) forms unbiased estimate for treatment

effects,
ThUS, [TA - TB] = (d13 + d14 + d15 - d16)' (436)

From (4.3.6), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for Treatment effects.

4.3.4 Robustness for Missing Data for D4q

Table 4.3.4: Expected values for Design D49 with only two complete periods for

all subjects

SEQ P1 b2 P3 P4 Ps

AABAA U+ 1y U+, +14 + * * *
+ Ta )\A

BBABB T H+m, +15 + * * *
+ T )\B

A AABA W+ 1y L+, +T4 + * * *
+ Ta )\A

BBBAB U+ 1y u+m,+1tg + * * *
+ Tg }\B

4.3.4.1 Robustness for Missing Data in Carry-over Effects for Dq
The contrasts d,;, d;g,d;9 and d,, , identified from Table 4.3.4 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;
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E(dy7) = %E(—Yn +Y2) = % [(—my + 1mp) +2A4]
E(dig) =5 E(—Ya1 + Yz2) = 5 [(—=T1; + 1) + Ag]
E(dy9) = %E(_Y31 +Y3;) = % [ (—my +13) +24]

1 1
E(dyo) = EE(_Y41 + Ya2) = > [(—my + T3) +2g]
A linear combination of (d;; + d;9 — d;g — dy). forms unbiased estimate of carry-

over effects,
Thus, [As — Ag] = (dy7 +dy9 — dyg — d3o)- (4.3.7)

From (4.3.7), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

Table 4.3.5: Expected values for Design D9 with 10 Observations missing

SEQ P1 P2 ps3 P4 Ps

AABAA n =+ 1y H+T, +Ty | put+my+1t8 + * *
+ Ta }\A }\A

BBABB U=+ 1y H+T,+Tg + | u+Ty+T4p + * *
+ T AB }\B

A AABA u+ 1y W+ T, + T4 + * * *
+ Ta AA

BBBAB U+ 1y u+m, +18 + * * *
+ Tg )\B

4.3.4.2 Robustness for Missing Data in Treatment Effects for D4q
The contrasts d,;, d,,,d,3 and d,, , identified from Table 4.3.5 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

1 1
E(dy,) = ZE(Yn + Y, — 2Yy3) = ;[ (g + 1y — 213) 42T, — 2T — Ap]
1 1
E(dy,) = ZE(—Yu =Y, + 2Yp3) = " [(—my — M, + 2m3) =271 + 274 + Ag]
1 1
E(dy3) = ZE(Y31 —Y3) = " [ (my —m,) —2A4]

E(d,s) = iE(Yu —Y4) = i[(TH — ;) —Ag]
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A linear combination of (d,; + d,, + d,4 — dy3). forms unbiased estimate of treatment

effects,

Thus, [ ta — tg] = (da1 +dzz + dps — dp3) (4.2.8)

From (4.3.8), the maximum number of subjects that can be lost and the design remains

connected is 10, whence the break down number DM=10.

4.3.5 Robustness for Missing Data for D5

Table 4.3.6: Expected values for Design D, with only two complete periods for

all subjects

SEQ P1 P2 P3 P4 Ps

AAAAB U+ my W4T, + 14 * * *
+ Ta }\A

BBBBA W+ Ty H+ 1, + 1p * * *
+ TB )LB

BBAAA n+ 1y H+m, +15 + * * *
+ Tg )\B

AABBB U+ 1y LW+ T, +T4 + * * *
+ Ta )LA

4.3.5.1 Robustness for Missing Data in Carry-over Effects for D,
The contrasts d,s, d,6,d,7 and d,g , identified from Table 4.3.6 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(dzs) = 3 E(—Yaq + Yi2) =5 [ (1 +105) +44]
E(dzg) = 5 E(—Ya1 + Y22) = 3 [(M; + T02) + Ag]
E(dyy) = %E(_Y31 +Ysz) = % [ (g + 12) +24]
E(dzg) = 5 E(=Yar + Yaz) = 3 [(m; + 1) +Ag]
A linear combination of (d,s + d,; — d,¢ — d,g). forms unbiased estimate of carry-

over effects,
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ThUS,AA - }\B = d25 + d27 - d26 - d28 (439)

From (4.3.9), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

Table 4.3.7: Expected values for Design D, with 10 Observations missing.

SEQ P1 P2 P3 Ps | Ps
AAAAB u+m+t, |(ptn+ra+ Ay * * *
BBBBA U+m,+1t5 |p+m,+15+ 15 * * *
BBAAA u+m +1t5 |pt+m,+15+ 18 U+T, +T14+ A5 * *
AABBB U+m +1, |(p+m,+14+ U+m, +15+ 1, * *

4.3.5.2 Robustness for Missing Data in treatment Effects for D,
The contrasts d,q, d3g, d3; and ds, , identified from Table 4.3.7 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

E(dys) = 1E(Yy1 — Yi3) = 5 [ (my — 1m3) —A4]

E(d3o) = iE(Ym —Y) = i [(ry — m3) — 4]

E(dsq1) = iE(—Ym — Y3, + 2Y33) = i [ (=7, — 1y + 213) =275 + 274 + Ap]
E(dsz) = iE(qu + Yy — 2Y43) = i[(ﬂl + 1y — 2m3) +21, — 215 — A4]

A linear combination of (ds, + d3; + d3o — dy9) forms unbiased estimate of treatment

effects,
ThUS,TA —Tp = d32 + d31 + d30 - d29. (4310)

From (4.3.10), the maximum number of subjects that can be lost and the design remains

connected is 10, whence the break down number DM=10.
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4.3.6 Robustness for Missing Data for D,

Table 4.3.8: Expectation for Design D,4 with only two complete periods for all

subjects
SEQ P1 P2 P3 P4 Ps
BABAA Uu+m +15 |putmn,+1tt+ 1R * * *
ABABB u+m +1, |(U+my+tptiy * * *
BA ABA Uu+m +15 |putmn,+1t+ R * * *
ABBAB u+m +1, |(U+my+tptiy * * *

4.3.6.1 Robustness for Missing Data in Carry-over Effects for D54
The contrasts ds3, ds4, dss and dse , identified from Table 4.3.8 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(ds3) = %E(Yn +Y,) = % [2u+(my + 1) + 75 + 74 +25]

E(dss) = 5E(Ypr + Yo2) =5 [200+ (my +75) + Ta + T + 44

E(dss) = %E(Y31 +Ys;) = % [2u+(my+ 1)+ 15 +74 +25]

E(dse) = %E(qu +Yy) = %[2 p+(my+my) + 14+ 715 +24,]

A linear combination of (ds¢ + d34 — d35 — d31) forms unbiased estimate for carry-

over effects,

ThUS, /1A - /13 = d36 + d34 - d35 - d31 (4311)
From (4.3.11), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

4.3.6.2 Robustness for Missing Data in Treatment Effects for D,y
The contrasts dus, d4e, dsyand dug , identified from Table 4.3.9 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

1 1
dys = 5(—)’11 —Yp) = 2 [(—my —mp) —1p— 14 —A3]
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1 1
dye = 5(—Y21 —Y3;) = > [(=my — 1) — T4 —Tp — A4l
1 1
dyy; = 5(_Y31 +Y3;) = 2 [(—my +7m3) — 15 + T4 +45]

1 1
dyg = 5(Y41 —Yy) = 5[(771 —13) + 74— Tp — Al
A linear combination of (d,s + d4; + dug — d4e). forms unbiased estimate of treatment

effects,
ThUS, Ty — T = d45 + d4_7 + d4-8 - d4-6 (4312)

From (4.3.12), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for treatment effects.

4.3.7 Robustness for Missing Data for D5,

Table 4.3.9: Expectation for Design D,, with only two complete periods for all

subjects
SEQ P1 P2 P3 Pa | Ps
BAAAB U+m +15 | p+mn,+14+ 5 * * *
ABBBA Uu+m+t, | p+m,+1ptiy * * *
ABBAA u+m+t, | p+m+1ptiy * * *
BAABB Uu+m +1g | p+mn,+14+ 5 * * *

4.3.7.1 Robustness for Missing Data in Carry-over Effects for D,,
The contrasts d,q, dso, ds; and ds, , identified from Table 4.3.9 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

1 1

E(d4o) = EE(Yll +Y,) = > [2u+(my +m)+ 15 + 74 +Ag]
1 1

E(dso) = EE(Y21 +Yy) = ) [2u+(my + 1) + 14+ 15+ A4]
1 1

E(ds1) = EE(Y31 +Y3,) = > [2u+(my+mp) + 14+ 75 +A4]

1 1
E(ds;) = EE(Y41 +Yy) = ;[2 p+(my +my) + 15 + 74 + 5]
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A linear combination of (dso + ds; + d49 — ds,) forms unbiased estimate of carry-

over effects,
ThUS, /1A - /13 = d50 + d51 - d49 - d52 . (4313)

From (4.3.13), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

4.3.7.2 Robustness for Missing Data in Treatment Effects for D,
The contrasts dg3, ds,, dss and dsg , identified from Table 4.3.10 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

E(ds3) = %E(—Yn +Yp) = % [(-my + 1) —15+74 +25]

E(dss) = %E(Ym — V) = % [(Ty —72) + T4 —Tp — A4l

E(dss) =5 E(Ysy +Ys2) =5 [ (1 +70) + T4 + 75 +A4]

E(dse) = %E(—YM —Yy2) = %[(—7'[1 —1y) —Tp—T4 — 4]

A linear combination of (ds3 + dgy + dss + ds) forms unbiased estimate of treatment

effects,
ThUS, Ty —Tgp = d53 + d54 + d55 + d56 . (4314)

From (4.3.14), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for treatment effects.



111

4.3.8 Robustness for Missing Data for D,3

Table 4.3.10: Expected values for Design D,3 with only two complete periods for

all subjects
SEQ P1 P2 P3 P4 Ps
ABABA U+m +1, | ptn,+15+4 * * *
BABAB U+m +15 |U+m,+14+ 5 * * *
ABAAB U+m +1, | ptn,+15+4 * * *
BABBA U+m +15 |U+m,+14+ 5 * * *

4.3.8.1 Robustness for Missing Data in Carry-over Effects for D,3
The contrasts ds;, dsg, dso and dg, , identified from Table 4.3.10 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;
E(dsy) = %E(Yn +Y,) = % [2u+(my + 1)+ 14 + 75 +44]

1 1

E(dsg) = EE(Y21 +Yy) = > [2u+(my +mp) + 15+ 14+ ]
1 1

E(dso) = EE(Y31 +Y3,) = > [2p+(m+m)+ 10+ 15 +A4]

1 1
E(deo) = EE(Y41 +Yy) = ;[2 pt(my+ 1) + 15+ 14+ Ag]
A linear combination of (ds; + dsg — dsg — dgo). forms unbiased estimate of carry-

over effects,
ThUS, /1A - /13 = d57 + d59 - d58 - d60 . (4315)

From (4.3.15), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

4.3.8.2 Robustness for Missing Data in Treatment Effects for D,3
The contrasts dg;, dg,, dg3 and d, , identified from Table 4.3.11 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;
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E(de1) = %E(—Yu +Y1p) = % [(—m1 + 1) — 14+ 75 +A44]

E(ds;) = %E(Yu —Y22) = % [(m1 —12) + 75 — T4 — 45]

E(des) = %E(—Ym —Y3) = % [ (-7 — 7)) — T4 — T —A4]

E(dey) = %E(Y‘u +Y,,)= %[(nl + 1) +1p + T4 + A5]

A linear combination of (dg4 + dg3 — dg, — dgq) forms unbiased estimate of treatment

effects,
ThUS, TA - TB = d59 _d60 - d58 - d57. (4316)

From (4.3.9), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for Treatment effects.

4.3.9 Robustness for Missing Data for D,y

Table 4.3.11: Expected values for Design D, with only two complete periods for
all subjects

SEQ P1 P2 Ps Pa Ps
AABBA UFT +Ty | U+T+T4+ A * * *
BBAAB Uu+m +1t5 |p+mn,+15+ 15 * * *
AABAB UFT +Ty | U+T+T4+ A, * * *
BBABA Uu+m +1t5 |p+mn,+15+ 15 * * *

4.3.9.1 Robustness for Missing Data in Carry-over Effects for D4
The contrasts dgs, dge, dg7 and dgg , identified from Table 4.3.11 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(des) = 3E(=Yis + Y1) =S [2p+ (-1 +75)  +2,]
E(des) = %E(—Ym +Y,,) = % [2u+ (—my +125) + 4]
E(de7) = 2 E(—Ya1 + Yap) =5 [2 p+ (—=1ry +113) +44]

1 1
E(deg) = EE(—Y41 +Y,,) = 2 [2 u+ (—my + 7m2)+Ag]
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A linear combination of (dgs + dg; — deg — dgg) forms unbiased estimate of carry-

over effects,

ThUS, AA - AB = d65 + d67 - d66 - d68' (4317)

From (4.3.17), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

Table 4.3.12: Expected values of Design D, with 10 Missing Observations.

SEQ P1 P2 P3 P4 P5

AABBA U+ U+m,+14 + * * *
+ 14 A4

BBAAB U+ my U+m,+15 + | u+m,+14+ A5 * *
+ 15 Ap

AABAB U+ my U+m,+14 | ut+m,+15+1, * *
+ 1y Ay

BBABA U+ u+m,+15 + * * *
+ 1p Ap

4.3.9.2 Robustness for Missing Data in Treatment Effects for D,
The contrasts dgo, d7¢, d1 and d-, , identified from Table 4.3.12 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(deo) = E(Y11 — Y1) =[(my — mp) —A4]
E(d;0) = E(=Y1 — Yop + 2Y53) = [Bu + (—my — mp + 2m3) =275 + 274 + Ap]
E(d;1) = E(Y31 + Y3, — 2Y33) = [Bu + (my + my — 2m3)+ 274 — 275 — A4]

E(dy;) = E(Yay — Yap) = [(my — ) —Ag]

A linear combination of (d,, + d,; + d;o — dg9). forms unbiased estimate of treatment

effects,

ThUS, Tg —Tg = d72 + d71 + d70 - d69' (4318)

From (4.3.18), the maximum number of subjects that can be lost and the design remains

connected is 10, whence the break down number, DM=10.
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4.3.10 Robustness for Missing Data for D5

Table 4.3.13: Expected values for Design D,5 with only two complete periods for
all subjects

SEQ P1 P2 Ps | Pa Ps
AABAB UFm+T, | U+m+T1+ 2y * * *
BBABA U+m+15 | p+mn,+15+ 15 * * *
AAABB U+m+t, | U+m+1+ Ay * * *
BBBAA U+m+15 | p+mn,+15+ 15 * * *

4.3.10.1 Robustness for Missing Data in Carry-over Effects for D,s
The contrasts d3,d-4, d75 and d¢ , identified from Table 4.3.13 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(dys) =5 E(—Yiy +Yip) =S [2p+ (-m + 1) +4]

1
E(dss) = EE(—Y21 +Yy5) = [2u+ (—my + ) + Ag]

N | =

1
E(dys) = 2E(—Ya1 + Ysp) =5 [2 pt+ (=111 +113) +4]
1 1
E(d76) = S E(=Ya +Ys2) =7 [2 p+ (—my + 73)+ 5]
A linear combination of (d,3 + d,5 — d,, — d;¢) forms unbiased estimate of carry-

over effects,
ThUS, AA - AB = d73 + d75 - d74 - d76 . (4.3.19)

From (4.3.19), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

4.3.10.2 Robustness for Missing Data in Treatment Effects for D5

Table 4.3.14: Expected values for Design D,5 with 10 observations missing

SEQ P1 P1 P1 P1 P1
AABAB U+my+1, | u+m,+t0tAy | p+ny+1p+y * *
BBABA U+T+1T5 |p+m,+15+A5 |U+n3+14+ 5 * *
AAABB U+T +T14 ([ p+T+T0+ Y * * *
BBBAA U+m+15 |p+my+15+ 18 * * *
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4.3.10.3 Robustness for Missing Data in Treatment Effects for D,5
The contrasts d,, dg, d79 and dg, , identified from Table 4.3.14 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

1 1
E(d;;) = ZE(Yn +Y, —2Y3) = Z[ (my + my — 2m3) +274 — 2T —A4]
1 1
E(dsg) = ZE(_Y21 =Yy +2Y53) = z [(—my — my + 2m3)—275 + 274 — 3]
1 1
E(d9) = ZE(Y31 —Y3) = 7 [ (my —mp) —44]

1 1
E(dgo) = ZE(YM —Yi) = Z [(Tty — 73)—25] .
A linear combination of (d,, + d,g — d79 — d,) forms unbiased estimate of treatment

effects,

ThUS, TA - TB = d77 + d78 - d79 - d80 (4320)
From (4.3.20), the maximum number of observations that can be lost and the design

remains connected is 10, whence the break down number DM=10.

4.3.11 Robustness for Missing Data for D,

Table 4.3.15: Expected values for Design D, with only two complete periods for

all subjects
SEQ Py P, Ps P, Ps
AAABA u+m+1, U+ T+ T4+ Ay * * *
BBBAB U+m + 15 U+m, +15+ A * * *
AAAAB U+ 1+ 1y P+T,+T0+ 1y * * *
BBBBA U+t +1p U+m, +15+ A5 * * *

4.3.11.1 Robustness for Missing Data in in carry-over Effects for D,
The contrasts dgq, dg,, dg; and dg, , identified from Table 4.3.15 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;
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E(dg,) = %E(Yn —Yp) = %[ (M —m3) =44 ]
E(dgy) = %E(Ym —Yy) = %[ (my —m3) —4g]
E(dgs3) = %E(Ysl —Y3;) = %[(771 —T3) — A4 ]

1 1
E(dgs) = EE(Y41 —Yi) = > [ (my —72) — g ]
A linear combination of (dg, + dg, — dg; — dg3) forms unbiased estimate of carry-

over effects,
Thus, A4 — g = (dgy + dgq — dg; — dg3) (4.3.21)

From (4.3.21), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

Table 4.3.16: Design D,¢ with 8 Missing Observations.

SEQ P; P, Py P, Py

AAABA UF T +Ty | pFTy+T0+ Y | p+m3+T4 +|u+m+15 +| *
A4 A4

BBBAB Uu+m +tg |p+n,+tp+tlg | u+ng+tg +|lut+tmytr +| %
Ap Ap

AAAAB UFT +Ty | U+T+T40+ * * *

BBBBA u+m +1g |p+mn,+1p+1p * * *

4.3.11.2 Robustness for Missing Data in Treatment Effects for D,
The contrasts dgs, dge, dg7 and dgg , identified from Table 4.3.16 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;

1
dgs = Z(Yn + VY, + Vi3 — Yi4) = [ 2u +(my +my + 3 —my) +314 — T+ A4 ]

DR

1
dge = Z(Y21 + Y5 + Vo3 — Y24) = [ 2u +(my + 1y + 3 —my) +315 — T4 + A ]

&R

1 1
dg; :Z(Y31 —Y3,) :Z[(ﬂ1 —13) — A ]
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1 1
dgg = Z(Y‘” —Y4) = Z[(Tﬁ —13) — g |
A linear combination of (dgs — dgg) + (dgy; — dgg) forms unbiased estimate of

treatment effects,
ThUS, TA - TB - (d85_ d86) + (d87 - dgg) (4322)

From (4.3.22), the maximum number of subjects that can be lost and the design remains

connected is 8, whence the break down number DM=8.

4.3.12 Robustness for Missing Data for D,

Table 4.3.17: Expected values for Design D, with only two complete periods for

all subjects
SEQ Py P, Py Py Py
AAAAB UFT +Ty |+ T+T4+ A, * * *
BBBBA u+m +15 |u+m,+15+ 45 * * *
AAAAB U+m+14 ([ U+my+Tt+ Y * * *
BBBBA u+m+15 |ptm,+15+ A8 * * *

4.3.12.1 Robustness for Missing Data in in carry-over Effects for D,,
The contrasts dgq, dgg, dg; and do, , identified from Table 4.3.17 in such a way that

(3.1.7), and (3.1.9) are satisfied are given by;

E(dgo) = %E(Yn —Yi,) = %[ (M, —m2) =44 ]
E(doo) = 5 E (Y1 — Yp2) = 5[ (my — 13) —Ap]
E(dy1) = %E(Ym —Y3;) = %[(”1 —T3) — A4 ]

E(dgy) = %E(qu —Yy) = %[(m — 1) — 4]
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A linear combination of (dg, + dgy — dgg — do;) fOrms unbiased estimate of treatment

effects,

ThUS, /1A - /13 = (dgz + dgo - d89 - d91) (4323)

From (4.3.23), the design remains connected for the first two periods in all subjects,

whence the design is said to be perpetually connected for carry-over effects.

Table 4.3.18: Expected values for Design D, with 6 observations missing

SEQ P, P, P, P, Py
AAAAB u+ my u+m,+ u+m3+ U+ my+ U+ my+
+ 14 Tyt Ay Tyt Ay Tyt Ay T+ Ay
BBBBA U+ my U+ m, + U+ m3+ U+ 1y + U+ my+
+ 15 Tg + g Tp + Ap T4+ Ap T4+ Ag
AAAAB U+ my U+ m, + * * *
+ 74 Tyt Ay
BBBBA U+ my U+, + * * *
+ 1p Tg + Ap

4.3.12.2 Robustness for Missing Data in Treatment Effects for D,
The contrasts; dos, dgs, dos and do , identified from Table 4.3.18 in such a way that

(3.1.6), and (3.1.8) are satisfied are given by;
E(dy3) = %E(Yn + Y+ Y3+ Y, +Y5) = é[ Su +(my + 1y + 73 + 14 + TT5)
+41, + 15 + 41,]

1
E(d94) = EE(Y21 + Yo + Y3+ Yo+ st) =
+415 + 14 + 45 ]

W

[ S5u+(my + my + 3 + Wy + TT5)

E(dgs) = gE(Ym —Y3;) = g[(m —T3) — A4 ]

E(doe) = %E(an —Yy,) = g[ (my — 1) — 28]
A linear combination of (dgs — dg4) + (dos — dog) forms unbiased estimate of

treatment effects,
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Thus, 74 — 75 = (do3 — dgs) + (dgs — dog)] (4.3.24)

From (4.3.24), the maximum number of subjects that can be lost and the design remains

connected is 6, whence the break down number DM=6.

Table 4.3.19: Summary for Robustness against Missing Data for the Four
Sequence C (2x 5 x 2) Cross-Over Designs.

Design Carry-over Treatments Break  down | Breakdown
estimates estimates numbers  for | numbers  for
variance in < variance in o’ | carry-over treatment

n n | effects effects
Die 1.25 5 0 0
Dy 1.25 5 o )
Dig 1.25 5 o )
Diq 1.25 5 0 10
D, 1.25 5 o0 10
D,y 6.5 0.7 00 o0
D,, 0.9 5 o o
Dys 4.4 5 0 0
Dy, 1.5 5 o0 10
D,c 0.9 2.7 00 10
Dy 1.25 154 0 8
D, 25 9.6 o0 6

4.3.13 Discussion

From table (4.2.1), it is evident that all the C (2x 5 X 2) designs were perpetually
connected in estimating carry-over effects. In this case, the variances of the carry-over
effects were used to measure Robustness for missing data where the design with the
minimum variance was highly recommended. In this regard, D,, and D,z were the
most Robust, followed by D¢, D17, D15, D19, andD, respectively which were equally
robust. Designs; D,, , D,;,and D, respectively were the least desirable in this category

due to their relatively higher variances for estimating carry-over effects.

In treatment effects estimation; D,¢, D;7,D4g,D54,D,, and D,5; were perpetually

robust against missing data while D;q, D,g, D24, Dy5, Dy and Dy, , had breakdown
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numbers of; 10, 10, 10, 10, 6, and 8 respectively. For the perpetually connected
designs, D,; with variance of 0.7%2 was the most robust in that category and was highly

recommended for use in estimating treatment effects. However, it is interesting to note
that D,; which was the most robust for missing data in estimating treatment effects was

relatively lowly ranked in robustness for missing data in estimating carry-over effects.

It is also important to note that both D, and D,, have the lowest breakdown numbers
and both of them have relatively higher variances for treatment and carry-over effects.
Hence the two designs are not desirable in cross-over experiments and are not

recommended for use.

4.4 Data Analysis Based On the Bayesian Method

Table 4.4.1: Hypothetical experimental data for two treatments (A, B).

Sequence | Period | Treatment | 1 2 3 4 5 6 7 8 Mean(y;) o?
2.4 7.1 1 8.0 2.3 2.9 6.4 |70 29 4.8750
4.1 7.6 | 9.7 18 2.7 56 | 55| 24 | 4.9250
19 | 05|06 |87 |157|53|37|98 | 57750
64 | 05128 3.8 9.5 54 |46 |58 | 4.8500
0.1 521 6.2 4.4 24 | 7512142 4.0125 10.1057
10 |30(69 |70 |59 |51]49]|24 | 45250
1.6 08|15 7.8 131 (24| 22|86 | 4.7500
15 0715 7.8 132 | 25| 22|87 4.7625
2.9 33120 75 8.2 25(51]94 5.1125
14 341 0.6 0.7 0.2 34130109 1.7000 11.6447
0.5 21111 0.5 0.6 1914209 1.4750
3.7 12|21 4.1 3.6 39128 |75 3.6125
7.2 3.7 1|48 6.8 6.3 5.8 | 39| 13.4 | 6.4875
2.3 51172 2.7 5.3 6.7 | 36| 1.2 4.2625
5.7 6.6 | 8.1 5.2 6.7 84| 74119 6.2500 7.6876
36 |43|60 |123|107|27|59|38 |6.1625
133 |36 |264 |86 |92 |15]|47|38 |59125
20 | 45138 1.8 13 15]36]| 15 2.5000
2.0 53|54 1.3 2.2 25|53 22 3.2750
4.7 14|29 2.0 3.2 24115 34 2.6875 8.7971

Q| B[ W[N] BRW N RO W N RO B W N
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In this section, data from a hypothetical example was used for data analysis. The

Bayesian analysis method was used and for validation purpose, the t-test was used.
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Sequence

P1

%)

3

|2

Ps

BABAA

E(Yll) =4.875

E(Y,,) =4.925

E(Y13) =5.775

E(Y14) =4.850

E(Y,5) =4.0125

ABABB

E(Y21) =4525

E(Yzz) =4.750

E(Y23) =4.763

E(Y24) =5.113

E(Y,5) =1.700

BAABA

E(Ysy) =1.475

ABBAB

E(Y41) =6.163

E(Y42) =5.913

E(Y43) =2.500

E(Y44) =3.275

E(Y,5) =2.688

The variances of the four groups from Table (4.4.1) are given by;

Substituting the variances sj;= 10.1057 s5,= 11.6447 s5,= 7.6876 sz;= 8.7971in table

(4.4.1) to (3.4.1) and (3.4.2) gives,

s2=10.8752 (4.3.1.1)
And
s2=8.24235 (4.3.1.2)

4.4.1 Bayesian Method for Treatment Effects test for Design D,

The hypothesis to be tested is;

Hp: [t4 —15]w =0

Hy: [ty —15]lw #0

Substituting (4.3.1.1) and (4.3.1.2) on (3.4.5) and (3.4.6) using the contrasts given in

4.1.72 gives,
2

V(t) = Tp)1= % [nil + i] =0.033985 (4.3.1.3)
2

V(T4 = 15)2= % [i + H =0.00286 (4.3.1.4)

From (4.1.72),
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1
[ta — T8]1= > (d37 — d3g) (4.3.1.5)

[ta — TB]ZZ% (d3g — dao) (4.3.1.6)
Substituting the values of Table 4.1.43 on the contrasts given in (4.1.36) gives
d3,=8.8125 & d35=1.55 (4.3.1.7)
dse = 6.337 d3,=2.163 (4.3.1.8)
Substituting (4.3.1.7) & (4.3.1.8) on (4.3.1.5) and (4.3.1.6) respectively gives,

(14 — Tp)1= 3.63125 (4.3.1.9)
(T4 — 15),=0.34783 (4.3.1.10)
Substituting (4.3.1.3) and (4.3.1.4) on (3.4.7) and (3.4.8) gives,

W, = 29.42474621 (4.3.1.11)
W, = 349.6503497 (4.3.1.12)

Substituting (4.3.1.9), (4.3.1.10), (4.3.1.11), & (4.3.1.12) on (3.4.9) and (3.4.10)

respectively gives,

(14 — T5)w= 0.602697235 (4.3.1.13)
V(t4 — 75)w=0.002637999729 (4.3.1.14)
Substituting (4.3.1.3) and (4.3.1.4) on (3.4.17) gives

cosg = 0.922377527 (4.3.1.15)

Substituting (4.3.15) on (3.4.18) gives
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sin = 0.077622472 (4.3.1.16)
Substituting (4.3.1.15) and (4.3.1.16) on (3.4.1.15) gives,
f,=1.0128205 (4.3.1.17)
Substituting (4.3.1.15) and (4.3.1.16) on (3.4.1.16) gives,
f,=0.01156468 (4.3.1.18)
Substituting (4.3.1.17) and (4.3.1.18) on (3.4.1.14) gives,

b =92.701 (4.3.1.19)
Substituting (4.3.1.17) and (4.3.1.19) to (3.4.13) gives
a=0.995474339 (4.3.1.20)

Substituting (4.3.1.3), (4.3.1.4), (4.3.1.13), (4.3.1.19) & (4.3.1.20) on (3.4.20) gives the

interval
(0.5607, 0.6453) (4.3.1.21)

The interval in (4.3.1.21) is represented in HPD graph as,
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UNCONDITIONAL POSTERIOR DENSITY

o O

Posterior Density
P =~ N N W
o O

o

o O

0.54 0.56 0.58 0.6 0.62 0.64 0.66
Treatment Effects

'
U1

Figure 4.1: HPD for treatment effects when carry-over effects are absent

Discussion: The null hypothesis of no significant difference in the treatment effects
was tested. From Figure 4.1, the p((ta —tg)/y) > 0 =1 . This implies that the
treatment effects were significant, thus, the null hypothesis was rejected and the

alternative hypothesis upheld.

4.4.2 Bayesian Method for Carry-over Effects test for Design Dy,
The hypothesis to be tested is;

Hp: [A4 — Alw =0

Hy: [A4 — Ag]lw #0

Substituting (4.3.1.1) and (4.3.1.2) on (3.4.5) and (3.4.6) using the contrasts given in
(4.1.74) gives,

V(A — Ap),= Z—l [nil + i] =0.13594 (4.3.2.3)
2
V(A4 = 15)2= 2% i + ni = 0.103029375 (4.3.2.4)

From (4.1.74),

[Aa = 51175 (da1 — daz) (4.3.2.5)
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[Aa — AB]Z:% (dyz — dyq) (4.3.2.6)

Substituting the values of table 4.1.43 on the contrasts given in (4.1.37) gives
d,1=—0.94375 & dyg=—1.4625 (4.3.2.7)
dse = 0.528083 d5,=0.18025 (4.3.2.8)
Substituting (4.3.2.7) & (4.3.2.8) on (4.3.2.5) and (4.3.2.6) respectively gives,

[A4 — A5];=0.259375 (4.3.2.9)

[A4 — A],=0.17392 (4.3.2.10)
Substituting (4.3.2.3) and (4.3.2.4) on (3.4.7) and (3.4.8) gives,

W, = 7.356186553 (4.3.2.11)
W, = 9.705969778 (4.3.2.12)

Substituting (4.3.2.9), (4.3.2.10), (4.3.2.11), & (4.3.2.12) on (3.4.9) and (3.4.10)

respectively gives,

(A4 — 15),,=0.098936044 (4.3.2.13)
V(A4 — Ag),,= 0.03334042 (4.3.2.14)

Substituting (4.3.2.3) and (4.3.2.4) on (3.4.17) gives

cosf = 0.431140496 (4.3.2.15)
Substituting (4.3.2.15) on (3.4.18) gives,

sing = 0.568859504 (4.3.2.16)
Substituting (4.3.2.15) and (4.3.2.16) on (3.4.15) gives,

f,=1.0128205 (4.3.2.17)
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Substituting (4.3.2.15) and (4.3.2.16) on (3.4.2.16) gives,
f»=0.00725204 (4.3.2.18)
Substituting (4.3.2.17) and (4.3.2.18) on (3.4.14) gives,
b = 145.450 (4.3.2.19)
Substituting (4.3.2.17) and (4.3.2.19) on (3.4.13) gives
a=0.99945 (4.3.2.20)

Substituting (4.3.2.3), (4.3.2.4), (4.3.2.13), (4.3.2.19) & (4.3.2.20) on (3.4.20) gives the

interval,
(-0.008, 0.21) (4.3.2.21)
The interval in (4.3.2.21) is represented in HPD graph as,
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Figure 4.2: HPD for carry-over effects

Discussion: The null hypothesis of no significant difference in the carry-over effects
was tested. From Figure 4.2, the range of the carry-over effects included a zero value.
This implies that there was a likelihood for absence of carry-over effects.

However, p ((Ap —2Ag)/y) > 0=0.9633  implied that the carry-over effects
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difference was significant, thus, the null hypothesis was rejected. This implies that the

carryover effects were present.

4.4.3 Bayesian Method for treatment effects given Carry-over Effects test for
Design D,4

The hypothesis to be tested was;
Ho: (tg —t8)w/(Aa — Ag)w =0
Hy: (ta —t8)w/(da — Ap)w #0

Substituting (4.3.1) and (4.3.2) on (3.4.5) and (3.4.6) using the sum of the contrasts

givenin (4.1.72) and (4.1.74) gives,

V(T4 — 78) /(A4 — A5))1= Z_l = +21| =0.0169625 (4.3.3.3)

ni1 na1

V((ta = T5)/(a — A5))2= 2 [ + 1| = 0.00143096 (4.3.3.4)

m ey 7
From (4.1.74),

(ta = T8)/(Aa = A5)1= 5 (dz7—dsg) + 5 (dar—ds2) (4.3.3.5)
(ta = 75)/ (M — A)2= == (dag—dao) +5 (daz—das) (4.3.3.6)

Substituting the values of table 4.1.43 on the contrasts given in (4.1.36) and (4.1.37)

gives

Substituting (4.3.3.7) & (4.3.3.8) on (4.3.3.5) and (4.3.3.6) respectively gives,
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(14 — T5) /(Mg — Ag)1=-1.190625 (4.3.3.9)
(T4 — T5) /(Mg — Ag),= 12.99500 (4.3.3.10)
Substituting (4.3.3.3) and (4.3.3.4) on (3.4.7) and (3.4.8) gives,
W, = 58.95357406 (4.3.3.11)
W, = 698.8315536 (4.3.3.12)

Substituting (4.3.3.9), (4.3.3.10), (4.3.3.11), & (4.3.3.12) on (3.4.9) and (3.4.10)

respectively gives,

((ta — 15)/(A4 — 15)),,=11.89139785 (4.3.3.13)
V((t4 — 15)/(A4 — A5)),»=0.001319635294 (4.3.3.14)
Substituting (4.3.3.3) and (4.3.3.4) on (3.4.17) gives

cosi =0.077797 (4.3.3.15)
Substituting (4.3.3.15) on (3.4.18) gives

sing =0.922203 (4.3.3.16)
Substituting (4.3.3.15) and (4.3.3.16) on (3.4.3.15) gives,

f,=1.026315789 (4.3.3.17)
Substituting (4.3.3.15) and (4.3.3.16) on (3.4.3.16) gives,

f,=0.012191667 (4.3.3.18)
Substituting (4.3.3.17) and (4.3.3.18) on (3.4.3.14) gives,

b =904 (4.3.3.19)
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Substituting (4.3.3.17) and (4.3.3.19) on (3.4.13) gives

a=1.00180321 (4.3.3.20)

Substituting (4.3.3.3), (4.3.3.4), (4.3.3.13), (4.3.3.19) & (4.3.3.20) on (3.4.20) gives the

interval,

(11.86, 11.92) (4.3.3.21)

The interval in (4.3.3.21) is represented in HPD graph as,
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Figure 4.3: HPD for Treatment effects in the presence of Carry-over effects.

Discussion: The null hypothesis of no significant difference in the treatment effects
given carry-over effects was tested. From Figure 4.3, p((ty — tg)/y) > 0= 1. This
implies that the treatment effects were significant, thus, the null hypothesis was

rejected.

4.4.4 t-test for treatment effects

The hypothesis to be tested was,

Ho: [ta — 15]w =0
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Hy: [ty —15]lw #0
Substituting (4.3.1.13) and (4.3.1.14) on (3.4.5.1) gives

tc, = 11.73442533 (4.4.4.1)

4.4.4.1 Degrees of Freedom for treatment effects

Let,
- W
a = (4.4.4.2)
_ W
ar = (4.4.4.3)

Substituting (4.3.1.11) and (4.3.1.12) on (4.4.4.2) and (4.4.4.3) respectively gives

a, =0.077622472 (4.4.4.4)
And
a, = 0.922377527 (4.4.45)

Substituting (4.4.4.4), (4.4.4.5), (4.3.1.3), and (4.3.1.4) on (3.4.5.8) with f; =f, =78

degrees of freedom gives.

Then £, = 156 (4.4.4.6)

Discussion: The null hypothesis of no significant difference in treatment effects was
tested, comparison of the tabulated value at 156 degrees of freedom in (4.4.4.6) with
the calculated value from (4.4.4.1), the calculated value is greater than the tabulated

value at 95% level of significance, hence the null hypothesis is rejected.
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4.4.5 t-test for carry-over effects

The hypothesis to be tested was,

Hp: (A4 —Ap)w =0

Hy: (A4 — Ag)w # 0

Substituting (4.3.2.13) and (4.3.2.14) on (3.4.5.2) gives

tc, = 0.541837436 (4.45.1)

4.4.5.1 Degrees of Freedom for carry-over effects

Let,
- W

a, = W, (4.4.5.2)
_ W

a, = Wws (4.4.5.3)

Substituting (4.3.2.11) and (4.3.2.12) on (4.4.5.2) and (4.4.5.3) respectively gives

a, =0.431140496 (4.4.5.4)
And
a, = 0.568859503 (4.4.5.5)

Substituting (4.4.5.4), (4.4.5.5), (4.3.2.3), and (4.3.2.4) on (3.4.5.8) with f; =f, =78

degrees of freedom gives

Then f,, = 155.4 (4.4.5.6)
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Discussion: By comparing the tabulated value at 155.4 degrees of freedom in (4.4.5.6)
with the calculated value from (4.4.5.1), the calculated value is less than the tabulated

value at 95% confidence level hence the null hypothesis is not rejected.4.4.6

4.4.6 Discussion
In this section, the Bayesian method was used to test the null hypothesis of; Hy: 74 —
T3 =0, 44 —Ag =0,and (74 — t5/A4 — A5) =0. The t —test was used to validate the

Bayesian method. The results indicate that the two methods gave similar conclusions.

4.4.7 Plotting Graphs

4.4.7.1 Subject Profiles Plots

Mean subject profiles period 1 and 2
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Figure 4.4: Mean subject profiles for periods 1 and 2 of the first two sequences

Discussion: From Figure 4.4 above, in the first group of sequence BA indicates that
treatment B is more effective compared to treatment A whereas in the second group of
sequence AB indicates that treatment A is more effective compared to treatment B.
Since each group favors a different treatment, periods 2 and 3 do not give conclusive

results.
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Mean subject profiles for periods 2 and 3
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Figure 4.5: Mean subject profiles for periods 2 and 3 of the first two sequences

Discussion: From Figure 4.5 above, in the first group of sequence AB indicates that
treatment A and B are almost equally effective whereas in the second group of sequence
BA indicates that treatment B is more effective compared to treatment A. from this
figure, it can be concluded that treatment B is more effective than treatment A in the

first two sequences of period 2 and 3.
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Figure 4.6: Mean subject profiles for periods 3 and 4 of the first two sequences
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Discussion: From Figure 4.6 above, the first group of sequence BA indicates that
treatment B is more effective than treatment A whereas the second group of sequence
AB indicates that treatment B is more effective compared to treatment A. from this
figure, it can be concluded that treatment B is more effective than treatment A in the

first two sequences of period 3 and 4 since treatment B is favored in both groups.

mean subject profiles period 1 and 2
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Figure 4.7: Mean subject profiles for periods 1 and 2 of the last two sequences

Discussion: From figure 4.7 above, in the first group of sequence BA indicates that
treatment A is more effective compared to treatment B whereas in the second group of
sequence AB indicates that treatment B is more effective compared to treatment A.
Since each group favors a different treatment, periods 1 and 2 of the last two sequences

do not give conclusive results.
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Figure 4.8: Mean subject profiles for periods 3 and 4 of the last two sequences

Discussion: From Figure 4.8 above, the first group of sequence AB indicates that
treatment A is more effective compared to treatment B whereas in the second group of
sequence BA indicates that treatment B is more effective compared to treatment A.
Since each group favors a different treatment, periods 3 and 4 of the last two sequences

do not give conclusive results.
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Figure 4.9: Mean subject profiles for periods 4 and 5 of the last two sequences
Discussion: From Figure 4.9 above, the first group of sequence BA indicates that
treatment B is more effective compared to treatment A whereas in the second group of

sequence AB indicates that treatment A is more effective compared to treatment B.
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Since each group favors a different treatment, periods 4 and 5 of the last two sequences
do not give conclusive results.

4.4.7.1.1 Discussion

High between individual variability is evident as are the low mean values of some
individuals in group 3. However, from figures 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 the general

trend implies a direct treatment effect in favor of treatment B.

4.4.7.2 Group by periods plots

group by periods plot period 1 and 2

48 44 5
c :
3 46
£ 4.

4.4

42

periods

s BB e AA

Figure 4.10: Group by periods plot for periods 1 and 2 of the first two sequences

Discussion: From Figure 4.10, it is evident that the BB and AA intersects. This implies

that there are interaction effects.
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Group by periods plot
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Figure 4.11: Group by periods plot for periods 3 and 4 of the first two sequences

Discussion: From Figure 4.11, it is evident that the BB and AA do not intersect. This

implies that there are no interaction effects.
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Figure 4.12: Group by periods plot for periods 4 and 5 of the first two sequences

Discussion: From Figure 4.12, it is evident that the BB and AA intersects. This implies

that there are interaction effects.
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group by periods plot period 1 and 2
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Figure 4.13: Group by periods plot for periods 1 and 2 of the last two sequences

Discussion: From Figure 4.13, it is evident that the BB and AA intersects. This implies

that there are interaction effects.
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Figure 4.14: Group by periods plot for periods 3 and 4 of the last two sequences

Discussion: From Figure 4.14, it is evident that the BB and AA intersects. This implies

that there are interaction effects.
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Figure 4.15: Group by periods plot for periods 4 and 5 of the last two sequences

Discussion: From Figure 4.15, it is evident that the BB and AA intersects. This implies

that there are interaction effects.

4.4.7.2.1 Discussion

A majority of the figures; 4.10, 4.12, 4.13, 4.14, and 4.15, indicate presence of treatment
by period interaction effects. It can therefore be concluded that the periods interact with
the treatment effects and should be taken into consideration when assessing the efficacy

of treatments.



140

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS
5.0 Introduction

This chapter presents the conclusion and recommendations of the study.

5.1 Conclusions

In this thesis, C (2x 5) cross-over designs were designed and analyzed. The objectives
of the study were to: Estimate the direct treatments and carryover effects using BLUE
method; evaluate the optimality criteria for the designs; evaluate the robustness for
missing data for the designs and compare the Bayesian and the t —test analysis methods

on the treatments and carry-over effects.

With regard to estimation of direct treatments and carry-over effects, the study
established that the BLUE method gives both treatments and carry-over effects
estimates for all the five period designs in two and four sequences except
D,,D,, D3, D,&Ds whose carry-over effects were inestimable. BLUE method is
normally associated with unbiased estimates for both treatments and carryover effects.
The fact that the carryover effects estimates for (D, — D<) were not obtained implies
the designs can be effectively used to estimate treatment effects even when the

carryover effects are expected in the experiment.

With regard to optimality criteria, for the C (2x 5 x 2) designs, it was shown that;
D¢and D, are optimum for estimating carry-over effects, Dg and D5 are optimum for
estimating treatment effects and D, &D,; are optimum in estimating treatment effects
when the carry-over effects are present. For the C (2x 5 x 4) designs, D, is optimum
for estimating treatment effects while D,, and D, are optimum for estimating carry-
over effects. In estimating treatment effects when the carry-over effects are present, D,

is the most optimal and preferable. It is interesting to note that the optimum design
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(D,,) was relatively strongly variance balanced with respect to the other designs. This
implies that variance balance plays a role in determining the optimality criteria and by

extension the efficiency of the designs.

The assessment of C (2x 5 x 4) robustness for missing data gave D,; as the most
Robust since it is perpetually connected and has minimum variance in estimating
treatment effects. The result from this design and other C (2, 5) crossover designs with
different breakdown numbers improve upon previous contributions in the literature that
have been largely confined to cases in which dropout occurs only in the final periods
of the study. The fact that the optimal design (D,) is also most robust for missing data
implies that there could be a positive relationship in the design’s optimality criteria and

robustness for missing data.

The results from the Bayesian analysis were similar to those from the t-test. This
implies that the Bayesian method is equally as good as the other classical methods. This
confirms the assertion by Jones and Kenward in the year 2014 that the Bayesian analysis

is equally or more accurate when compared to other classical methods of analysis.

5.2 Recommendations

This study recommends that the most optimum and robust design in C (2, 5, 4) be
applied in Bioequivalence experiments to assess the efficacy of new treatments against
the existing standard treatments. For further research, the BLUE method should be used

in estimation of direct and treatment effects for designs with three or more treatments.
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