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ABSTRACT 

 A crossover design is a repeated measurements design such that each experimental unit 

receives different treatments during the different time periods. A cross-over design with 

𝑡 treatments, 𝑝 periods, and 𝑠 sequences is denoted by C (𝑡, 𝑝, 𝑠). In a majority of 

bioequivalence studies, design and analysis of lower order cross-over designs are 

normally associated with erroneous results. Higher order crossover designs are 

desirable in the analysis of crossover designs to eliminate carryover effects. The 

purpose of the study was to design and analyze two treatments in five periods crossover 

designs. The specific objectives of the study were to: Estimate treatments and residual 

effects of the designs; evaluate the design’s optimality criteria; evaluate the design’s 

robustness for missing data; and compare the Bayesian and the 𝑡- test analysis methods 

on treatments and carryover effects. The treatments and residual estimates were 

obtained using the Best Linear Unbiased Estimation (BLUE) method while the 

optimality criteria of the designs were determined by the variances of the treatments 

and carry-over effects, where the designs with minimum variance were considered to 

be optimum. In addition, the covariance of the two effects was used to evaluate the 

optimality of designs which estimate treatment effects in the presence of carry-over 

effects. Break down numbers were used to rank the designs according to their 

robustness against missing data. In the Bayesian method of analysis, the posterior 

quantities were obtained for the mean intervals of treatments and carry-over effects and 

the highest posterior density (HPD) graphs were plotted and interpreted using 

conditional probability statements. For validation purposes, the 𝑡-tests were performed 

and their results were compared with the Bayesian results. The C(2,5,2) in this study 

comprised of  fifteen designs (𝐷1 − 𝐷15) while the C(2,5,4) comprised of twelve 

designs(𝐷16 − 𝐷27) . The findings of the study indicated that a majority of the designs  

considered gave estimates for treatments and carry-over effects . Additionally, two 

designs were optimal in estimating treatment effects for C (2× 5 × 2) cross-over 

designs.  Moreover, one design was found to be optimal and robust for missing data for 

C (2× 5 × 4), and it was hence used in the analysis of a hypothetical example. From 

the Bayesian analysis, the probability of significant treatment difference in the presence 

of carryover effects was 1, while from the 𝑡-test, the calculated 𝑡 −value of 11.73 was 

greater than the two sided tabulated value at 5% level of significance. The two analysis 

methods implied significant differences in the treatment effects. Finally, the mean 

subject profiles for a majority of periods and their respective sequences implied a direct 

treatment effect in favor of treatment B. In conclusion, it was established that variance-

balance plays a major role in determining a suitable design. This is due to the fact that 

the optimal and robust for missing data in the study was more variance-balanced as 

compared to the other designs whose optimality and robustness for missing data were 

relatively lower. The study recommends that the optimal and robust for missing data 

design in this study be applied in bioequivalence experiments in assessment of efficacy 

of new treatments against standard ones. For further research the BLUE method should 

be used in estimation of effects for designs with more than two treatments. 
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction  

This chapter covers the background to the study, statement of the problem, study 

objectives, significance of the study, justification and the scope of the study. 

1.2 Background information 

1.2.1 Cross-Over Designs    

A cross over study is a longitudinal study in which subjects receive a sequence of 

different treatments. The designs are common in many scientific disciplines such as 

pharmacy, agriculture and engineering where treatments are normally assessed on their 

effectiveness. 

A  Crossover design which compares two treatments over two periods C(2,2,2), has 

held a dominant position in the application of crossover designs to the extent that in the 

majority of articles and texts, it is referred to as the cross-over design (Reed, 2012). 

Critiques of C (2, 2, 2) with sequence AB and BA are well known. The most serious of 

these is that the carryover effect is confounded with sequence by period effects leading 

to erroneous analyses (Reed, 2011). Statisticians have been critical of the use of 

crossover designs whose carryover effects are not equal for clinical trials because in 

such a case the estimate of the treatment difference is biased (Hills & Armitage, 1979).  

To overcome the problems experienced in lower order designs, higher order crossover 

designs may be used (Hills & Armitage, 1979). The first strategy is to extend the 

number of sequences such as Balaam’s C (2, 2, 4) design (Balaam, 1968). Secondly, 

the classical C (2, 2, 2) design should be extended by adding a third period, fourth 

period or more and repeating the treatments in a particular order. Mathews (1987); 

Laska, Meisner, & Kushner, (1983) and  Reed (2012) developed a method of obtaining 

unbiased estimates for treatment and carry-over effects using BLUE. This was an 
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alternative to the Ordinary Least Squares (OLS) method which occasionally gave 

biased estimates. In this study, unbiased estimates for C (2, 5) designs were obtained 

using BLUE method, the sequences and periods of the designs were increased to satisfy 

in part the two strategies outlined above. 

1.2.1.1 Average treatment effects  

The average treatment effects (ATE) is a measure used to compare treatments or 

interventions in randomized experiments, evaluation of policy interventions, and 

medical trials. The ATE measures the difference in mean outcomes between units 

assigned to the treatment and the units assigned to the control or standard treatment. 

In a randomized trial, the average treatment effect can be estimated from a sample using 

a comparison in mean outcomes for treated and untreated units. Both observational 

studies and experimental study designs with random assignment may enable one to 

estimate an ATE in a variety of ways. 

1.2.1.2 Washout period  

A washout period is a period of time during a bioequivalence study when a participant 

is taken off a study drug or other medication in order to eliminate the effects of the 

treatment. It basically means a period of time a patient is not being actively treated 

while awaiting for a new treatment to begin. 

1.2.1.3 Carry-over effect  

The presence of the effect of one period at the start of the subsequent period is referred 

to as the carry-over effect. Carry-over effects normally affect the results obtained when 

assessing the treatment efficacy in bioequivalence studies. The presence of carry-over 

effects depends on; the design, the setting, the treatment and the response. Carry-over 

effects can arise in a number of ways: for example, pharmacological carry-over occurs 
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when the active ingredients of a drug given in one period are still present in the 

following period; psychological carry-over might occur if a drug produces an 

unpleasant response that might lead to a downgrading of the perceived response. 

1.2.2 Optimality Criteria  

The world is facing depletion of resources and search for optimal utilization measures 

are inevitable in all fields of human endeavor. Since the resources are scarce, we need 

to produce and perform maximally by utilizing optimum cross-over designs in 

bioequivalence studies and related experiments.  

The alphabetical optimality criteria such as; A-criterion, D-criterion, T-criterion and E-

criterion are normally applied in determining the optimality criteria for crossover 

designs. However, this is limited to cross-over designs with three or more treatments. 

For two treatments cross-over designs, the criterion usually adopted is that a crossover 

design is optimal if it provides minimum variance unbiased estimates of the treatments 

and carryover effects. 

1.2.3 Robustness for Missing Data  

In most crossover experiments where human behavior or animal responses are involved 

such as clinical trials, there is a strong possibility of recording missing values 

(Godolphin & Godolphin, 2019).  Subjects may drop out of the study due to illness, 

drug toxicity, vacations and many other unpredictable events leading to missing data 

and significant difficulties in statistical analysis (Godolphin & Godolphin, 2015). Data 

may be missing due to random process independent of the experiment and its effects, a 

process dependent on the experiment or because the design is purposely incomplete 

(Mathews & Hernderson, 2013). In studies which use a crossover design, a specific 

pattern of dropout behavior can result in a disconnected design in which some and 
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occasionally all contrasts in treatment direct, treatment carryover and period effects will 

not be estimable (Godolphin & Godolphin, 2015). Such a situation has the potential to 

compromise the experiment severely, and could result in substantial loss of information 

about the aims of the study as well as incurring unwarranted excess monetary and time 

costs from a repeated experiment (Godolphin & Godolphin, 2019). The current study 

explores the methods used to limit the impact of missing data. And the methods are 

illustrated by assessing five period in two and four sequence cross-over designs. 

1.2.3.1 Breakdown Numbers  

A design is said to be disconnected if the experimenter is unable to estimate both the 

treatment effects and carryover effects due to missing data. Different designs can loose 

different number of observations before they become disconnected. A breakdown 

number is the maximum number of observations that can be lost before a design can be 

disconnected. Designs with higher breakdown numbers are regarded as more robust for 

missing data compared to designs with relatively lower breakdown numbers and are 

highly recommended for bioequivalence studies where missing data is expected. 

1.2.3.2 Perpetually Connected Designs. 

A perpetually connected design is designed in such a way that, provided that all subjects 

have completed the first two periods of study, the design will not be replaced by a 

disconnected eventual design due to missing data, irrespective of the type of drop-out 

behavior that may occur (Godolphin & Godolphin, 2019). 

Perpetually connected designs are the most robust for missing data and are highly 

recommended for bioequivalence studies (Godolphin & Godolphin, 2015). In the event 

that more than one design is perpetually connected, the variances for treatments 

estimates can be used to determine the designs robustness for missing data. 
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1.2.4 Bayesian Method of Analysis  

Crossover designs are mostly applied in clinical trials in assessment of the efficacy of 

new therapies as compared to standard therapies that are existing for the purpose of 

introducing them to the market. Phase three failure rates for investigational drugs are 

disappointingly high and costly. It is estimated that at least 50% of failures are 

attributable to some measure of efficacy (Hay et al, 2014). In early drug development, 

robust success criteria aid in making informed decisions on whether drug has sufficient 

efficacy and differentiation to other products to proceed to phase 3 development and to 

deliver benefit to patients. The phase two trial is typically the first time an 

investigational drug is tested in the target patient population to establish efficacy. In 

such settings, either a traditional approach using classical statistical methods or a 

Bayesian approach may be used to analyze the study. In a classical trial design, the null 

hypothesis may be rejected in favor of the alternative hypothesis once a pre-specified 

significance level is met. In contrast, Bayesian approaches focus on how the trial may 

change our opinion about the treatment effect using probability distributions 

(Spiegelhalter, Abrams, & Myles, 2004). First a prior belief about the treatment effect 

may be presented through a probability distribution. Then the trial is conducted, and 

based on the observed data; the prior belief is updated to represent the posterior belief 

and the updated probability distribution representing the final opinion of the treatment 

effect. Prior beliefs can be informative when based on results from previous studies, or 

non-informative when little prior knowledge exists and you wish to allow the current 

trial data to drive the posterior belief regarding the treatment effect. Bayesian 

approaches to the design and analysis of phase 2 trials are increasingly being advocated 

and implemented (Sambucin, 2020).This framework can facilitate more intuitive 

success criteria and can easily quantify probabilities of interest, such as the probability 
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of the drug being at least as efficacious as certain clinically relevant threshold. The 

Bayesian analysis can also naturally accommodate adaptive trial design such as interim 

analysis to stop the trial for futility and adding or dropping dose levels (Lin & Lee, 

2020). This study applied the Bayesian approximation method to analyze the two 

treatment five period C (2, 5) crossover designs with the aim of assessing the efficacy 

of two treatments.  

1.2.4.1 Posterior Probability Density   

A posterior probability in Bayesian statistics is the revised or updated probability of an 

event occurring after taking into consideration new information. The posterior 

probability is calculated by updating the prior probability using the Bayes theorem. 

1.3 Statement of the Problem 

In a majority of bioequivalence studies, design and analysis of lower order cross-over 

designs are normally associated with erroneous analysis. Additionally, the drop-out 

behavior problem in cross-over designs results in disconnected designs in which some 

and occasionally all contrasts in treatment direct and treatment carry-over effects are 

not estimable resulting in; loss of parameter contrasts precision  in effects of interest, 

and  incurring unwarranted excess monetary and time costs from repeated experiments 

(Godolphin & Godolphin, 2019). Moreover, the classical hypothesis testing techniques 

are inappropriate for cross-over designs and have resulted in biased and erroneous 

conclusions (Fleiss, 1989). Higher order cross-over designs like the C (2, 5) designs in 

this study are desirable in the analysis of cross-over designs since they eliminate the 

effects of carry-over and periods by sequence interaction effects, and are optimal and 

robust for missing data. They are also relatively free from analysis errors when 

compared to lower order cross-over designs.  
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1.4 Justification  

The Kenyan nation has identified; affordable health care, food security, and 

manufacturing   as part of the fourth president’s big four agenda for the nation. Cross-

over trials are expected to play a central role in achieving this development goals where 

the newly developed treatments are compared with the standard existing treatments in 

the market in establishing their effectiveness and safety. Higher order cross-over 

designs like the C (2, 5) in this study will be applicable in industrial, pharmaceutical, 

and agricultural experiments where the assessment for effectiveness for two treatments 

in five periods is a requirement.  

1.5 Objectives of the Study 

1.5.1 General Objective  

The general objective of this study was to design and analyze two-treatment five-period 

crossover designs. 

1.5.2 Specific Objectives  

The specific objectives are to; 

1. Estimate treatments and residual effects of the designs using BLUE  method  

2. Compare the Optimality criteria for C (2, 5) cross-over designs  

3. Assess the Robustness for the C (2, 5) cross-over designs against missing data 

4.  Compare the Bayesian test and 𝑡 −test analysis methods on the treatments and 

carry-over effects. 

1.6 Significance of the Study 

The five period cross-over design will allow treatment effects to be estimated even in 

the presence of carry-over effects, provide unbiased estimates for intra subject 

variability and drawing inference on the carry-over effect.  Additionally, the optimality 
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criteria will guide the experimenters on the right designs to apply in estimating 

particular contrasts effects. Moreover, the  robustness for missing data  will enable 

experimenters choose designs which are more robust thus avoiding loss of information 

about the aims of the study as well as incurring excess monetary and time costs from 

repeated experiment. The Bayesian analysis will enable treatment effects to be tested 

with or without the carry-over effects, unlike the classical methods where the presence 

of carry-over effects is tested first and if the carry-over effects are present, only the first 

period is considered with 10 % significance level. This is because the Bayesian methods 

has the potential to produce more efficient and informative statistical analyses than 

those based on traditional approaches.  

1.7: Scope of the Study  

The purpose of this study was to extend the work done by Mathews (1994) and Reed 

(2012) in three and four periods respectively, to five periods cross-over designs. The 

study specifically focused on the development of fifteen new C (2, 5,2 ) cross-over 

designs. Some pairs of C (2, 5,2 ) were combined to form C (2,5,4 ) cross-over designs. 

The treatment effects and carry-over effects for all the designs were obtained using 

BLUE method and the variance of all the designs were evaluated. Further, the designs 

robustness against missing data was assessed and the most optimal and robust design 

was used in the analysis of a hypothetical example. 
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CHAPTER TWO: LITERATURE REVIEW 

2.0 Introduction   

The literature review of this study is divided into four components; cross-over designs 

with carry-over effects, optimality criteria for cross-over designs, robustness for 

Missing data and the analysis of cross-over designs. 

2.1 Crossover Designs with Carry-Over Effects  

Cross-over designs with carry-over effects were mainly developed to counter changes 

in design patterns. (Balaam, 1968). The general linear model presented by this classic 

paper was not explicitly analyzed but from the data analysis they performed, it led to a 

general liner model with error terms assumed to be identically and normally distributed 

with equal correlation. In order to address these critical assumptions, Grizzle in the year 

1965 developed the concept of analysis of cross-over designs with residual effect. The 

analysis included the assumption of a mixed model in the analysis of two period, two 

treatment two sequence cross-over designs under which the subject effects and error 

terms are random effects (Grizzle, 1965). 

Researchers frequently used designs that had two treatments and two periods in the 

analysis of cross-over experiments (Reed, 2011). It was later discovered that these 

designs lack the structure to test for carry-over effects and also produce biased direct 

treatment effects under the presence of carry-over effects (Hills & Armitage, 1979). In 

practice, these designs are not usually recommended despite the suggestions of possible 

solutions to it (Fleiss, 1989). 

To overcome the problems in the C (2, 2, 2) design, higher order cross-over designs are 

recommended (Hills & Armitage, 1979). Two strategies have been recommended. The 

first one is the extension of the number of sequences such as Balaam’s C (2, 2,  4) 
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design (Balaam, 1968). Secondly, the extension of the classic design through an 

addition of the third period, fourth period or more and the repetition of the treatments 

in a certain order. Lucas (1957) introduced the extra period design by repeating the 

treatment in the last period of the design, an idea that originated from Yates (1947). The 

extra period design allows the residual and the direct treatment effects to be orthogonal 

to sequences.  In contrast, considering these designs, the subject effects and the direct 

treatment effects are not orthogonal to each other and the degree of non-orthogonality 

is not great  (Lucas, 1957).  In using these designs, much more attention is put on 

increasing efficiency when measuring cumulative and residual effects as compared to 

loosing efficiency on direct treatment effects. Lucas’s work was extended by Patterson 

in the year 1959 to wide class of extra – period cross-over designs. Atkinson (1966) 

described and generalized the idea of tied-double change-over designs. The importance 

of designs is realized when the estimates of both direct and residual effects tend to give 

equal estimated variances for both effects when the number of periods increases. 

Kushner and Federer (1981) presented a class of two treatment cross-over designs and 

set up a general model for use with virtually any kind of cross-over designs. 

Additionally, they compared the efficiency and effect of complete random designs with 

extra period designs and demonstrated that complete random designs will be no better 

than the three or four period cross-over alternatives in the presence of residual effects 

or period by treatment interactions. 

Alternatively, Reed (2011) introduced a two period design in place of a randomized 

two treatment design. Reed used the Grizzle (1965) approach to extend the classic 

AB/BA through the addition of a third period in which he realized that the method of 

adding an extra period was much less costly and that carry-over effects were measured 

with a higher precision.  The three period designs are more efficient since they can be 
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conducted in the presence of carry-over effects and have much more statistical power 

as compared to the classic design (Reed, 2011). The food and drug authority (FDA) 

proposed a four period design with four sequences as the most suitable in 

Bioequivalence studies with two treatments if the carry-over effects are expected 

(F.D.A, 2001). In this regard, Reed (2012) considered four period cross-over designs in 

two and four sequences and estimated both the treatment and residual effects using the 

methods by Mathews (1987) and Kushner, (1997a). In order to realize efficiency in cost 

and statistical power, thorough investigation has been carried out to determine higher 

order two treatment designs (Godolphin & Godolphin, 2019). The current study 

endeavors to make a contribution by designing and analyzing new higher order for C 

(2,5) designs in two and four sequences. 

2.2 Optimality Criteria for Cross-Over Designs 

Research in the literature of cross-over designs was mainly concentrated in dealing with 

continuous response variables (Jankar, Mondal, & Yang, 2020). There has been an 

extensive study to determine the problems associated with optimal cross-over designs 

for continuous responses. For this reason, Bose and Dey in the year 2009 gave examples 

of practical cases where the responses are discrete in nature such as binary responses 

(Jones and Kenward, 2014 & Senn, 2001). 

As all the effects are fixed for linear models, the fisher information matrix is 

independent of model parameters (Kim, 2020; Stufken, 1991). Various optimality 

criteria such as A-, D-, and E- optimality criterion depend on this information matrix 

(Pukeilsheim, 1993). The literature contains numerous results that rhymes with the 

optimality of cross-over designs for linear models. Hedeyat and Afsarinejad (1978), 

Cheng and Wu (1980) and Kurnest (1984) studied the optimality of balanced uniform 

designs (Lui, 2016).  Cheng and Wu (1980) formulated theorems for optimality of 
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designs which are neither balanced nor strongly balanced. Dey et al (1983) were among 

the first ones to provide results for optimality of designs when p ≤ 𝑡 considering 

arbitrary p and 𝑡 with both p ≤ 𝑡 and p ≥ 𝑡 . Kushner (1997) obtained conditions for 

universal optimality through approximate theory. The current study obtained the 

optimality criteria for the new C (2× 5) Cross-over design using the variance of 

treatment and carry-over estimates as suggested by  (Jones & Kenward, 2014). 

2.3 Robustness for Missing Data  

The problem of missing data is still a concern since it has not been fully addressed in 

the literature provided from the analysis of cross-over designs. The occurrence of 

missing data poses a challenge in the inter-subject analysis steps suggested by Balaam 

(1968) since the subject must be dropped out from the analysis even if only one 

observation from the subject is missing and the missing values might be replaced by 

estimates which are very difficult to obtain. Lucas (1957) and Balaam (1968) suggested 

that missing values can be estimated by the replacement method which minimizes the 

error sum of squares during analysis. A second approach is the use of a multivariate 

model used in the analysis of incomplete multivariate data. Traditionally, the case wise 

deletion method was used to solve the missing data problem in which if there was at 

least one missing data point, all data from the same subject was deleted. This was the 

case in the early days of multivariate analysis. The application of case-wise deletion to 

cross-over designs implies the deletion of all data from any subject for which any one 

observation is missing. Another method to deal with missing values was known as 

pairwise deletion introduced by Glasser (1964) by using all available data in the 𝑗𝑡ℎ 

variable to estimate its mean and variance. Further, he suggested that using all available 

data in the 𝑗𝑡ℎ𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 of the same subject must be dropped out from the analysis even 

if only one observation from the subject is missing and the missing values might be 
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replaced by estimates which are very difficult to obtain. There has been little literature 

information on how robust various cross-over designs are to data that becomes 

unavailable during the course of the experiment. In higher order cross-over studies, this 

issue is heightened further as the number of experimental and associated washout 

periods are increased which can lead to trials with lengthy follow-up studies (Godolphin 

& Godolphin, 2019). The  most notable effects of the missing data in any experimental 

analysis conducted by a researcher is the loss of precision in the estimation of 

parameters related to both the direct treatment and residual effects and a disconnected 

design from which essential assumptions are difficult to visualize. (Godolphin & 

Godolphin, 2015). The consideration of robustness properties of cross-over designs 

with regard to subject dropout appears to be confined to the class of planned designs 

which are uniformly balanced repeated measurements, (Majumdar, Dean, & Lewis, 

2008; Godolphin & Godolphin, 2015; Godolphin & Godolphin, 2019). The current 

study seeks to assess the two treatments, five periods’ designs against missing data. In 

particular, some C (2, 5,4) cross-over designs are examined and ranked by breakdown 

numbers and minimum variance, thus enabling the identification of a good design 

which is robust against missing observations caused by subject dropout. 

2.4. Analysis of Cross-over Designs  

Box (1954a) considered the problem of the effects of inequality of variance and of 

correlation between errors in two way analysis of variance, he found the sum of squares 

for treatment effects is not stochastically independent of that error. Additionally, he 

noted that there were difficulties in testing hypothesis using dependent data. To test the 

treatment effects, he developed a conservative F-test used in the analysis of cross-over 

designs. Through his work, a univariate model was developed which was used as a 

theoretical basis for testing multivariate data in cross-over designs, although there is no 
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direct connection with cross-over design analysis his work gives the theoretical 

foundation of hypothesis testing in cross-over design analysis (Trawinski & Bargmann, 

1964). 

In order to address the problem encountered in the estimation of residual and direct 

effects in the two treatment designs, Grizzle (1965) developed a linear model to this 

effect. In his model, it is difficult to estimate period effects in the presence of residual 

effects. The residual effects are also completely confounded with sequence effects. In 

addition, if residual effects are simultaneously present in the model, there’s loss of 

efficiency in the estimation of treatment effects since it is only based on first period 

data.  For hypothesis testing, he found that the subjects – within sequence mean square 

is proper term for testing the inequality for residual effects. He also found that there is 

no appropriate error term to test the significance of treatments effects in the presence 

of residual effects. The early development by Grizzle (1965) took into consideration 

the use of first period data to estimate treatment effects. This was later corrected by 

(Grizzle, 1974), who noted that data from both periods should be used to estimate the 

treatment effects. In contrast, Balaam (1968) presented an interesting analysis 

procedure. He performed both intra and inter experimental subject analysis by using 

raw data and taking the sum difference of observations from the same subject 

respectively.  From the experimental intra-subject analysis, he noted that the method is 

more efficient than the inter subject analysis since by performing sums and differences 

on the observations, it eliminates between subject variability. However, his model is 

different from Grizzle’s by including period by treatment interaction effects and 

eliminating residual effects. 

The analysis of variance for C (2, 2, 2) cross-over design was given by Grizzle (1965), 

who proposed a preliminary test for  the residual or carry-over effects from a drug 
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administration in the first period. The significance of the preliminary test-statistic at 

0.05, 0.01 or 0.001 significance level is carried out in order to make a correct decision. 

A carry-over effect is ignored if the test statistic is not significant and the ANOVA test 

is used to test the hypothesis of no difference. The recommended method to be used in 

the analysis of cross-over designs is the confidence interval approach rather than the 

hypothesis testing approach (Westlake, 1972, 1973& Metzler, 1974). For this reason, 

the authors argue that more focus should be put on testing how significant the difference 

is rather than just testing the difference (Grizzle, 1974). A biologically meaningful 

measure of Bioequivalence is the posterior probability that the difference in information 

means is less than a specified fraction such as 20% of the standard (Grizzle, 1974). In 

support of this assumption, a proposed Bayesian Formulation was illustrated by taking 

data from three different drugs and their appropriate posterior probabilities determined 

to help in decision making on whether the carry-over effects are present or not. Taking 

evidence from the existing literature, little has been done on analysis of higher order 

cross-over designs using Bayesian approach. The current study weighs in by analyzing 

the most robust C (2, 5 ,4) using the Bayesian approximation method. 
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CHAPTER THREE: METHODOLOGY 

3.0 Introduction  

In this chapter, the methods used  to achieve all the specific objectives are given; the 

methods include estimation of the direct treatments and treatments carry-over effects 

using BLUE method, Optimality criteria for the C(2, 5) Cross-over designs , 

Robustness of the designs against missing data and analysis of a hypothetical example 

based on Bayesian methods. 

3.1 Estimation of the direct treatments and treatments carry-over effects for C 

(2, 𝟓)  cross-over designs using BLUE.  

3.1.1 The Five period cross-over designs  

In higher order five period cross-over designs with two treatments, thirty two possible 

treatments sequences can result; AAAAA, BAAAA, ABAAA, AABAA, AAABA, 

AAAAB, BBAAA, BABAA, BAABA, BAAAB, ABBAA, ABABA, ABAAB, 

AABBA, AABAB, AAABB and their duals. 

For a cross-over trial, the number of treatments, periods and sequences will be denoted 

by, t, p , s respectively. So, for example, in a trial in which each subject received two 

treatments A and B, in one of the thirty two sequences ABABA: it is given by;  t =

2, p = 5  &   s = 32.  In general, the response observed on the  kth subject in period j 

of sequence group i  is denoted by  𝐲𝐢𝐣𝐤 . 

To represent the sums of observations, the dot notation is useful, for example: 

y
ij.=∑ yijk

𝑛𝑖
k=1

, yi..=∑ yij.
p
j=1

 , y...=∑ yi…
s
i=1

                                                                                         (3.1.1) 

In a similar way, the corresponding mean values will be denoted, respectively, as 

y
ij.

=
1

𝑛𝑖
∑ yijk,

𝑛𝑖
k=1   y

i..
=

1

p𝑛𝑖
∑ yij.,

p
j=1 y

…
=

1

p ∑ 𝑛𝑖
 ∑ yi…

s
i=1                                             (3.1.2) 
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To construct a statistical model, it is assumed that yijk is the observed value of a random 

variable. For a continuous outcome, the observed value of yijk can be represented by a 

linear model written as; 

yijk =  μ + πj + τd[i,j] + 𝛌𝐝[𝐢,𝐣−𝟏] + sik + eijk,                                                                    (3.1.3) 

Where the terms in the model are, 

𝛍, an intercept; 

𝛑𝐣, an intercept associated with period j, j = 1, … , p; 

𝛕𝐝[𝐢,𝐣], a direct treatment effect associated with the treatment applied in period j of 

sequence i, d[i, j] = 1, … , t; 

𝐬𝐢𝐤, an effect associated with the kth subject on sequence i, i = 1, … , s, k = 1, … , ni; 

𝐞𝐢𝐣𝐤, a random error term with zero mean and variance σ2, and  

𝛌𝐝[𝐢,𝐣−𝟏] , a simple first order carry-over effect that is affecting the outcome in the 

subsequent period only.  

Additional terms such as second order carry-over and direct treatment by –period 

interaction effects can be added to this model, but such terms are rarely of much interest 

in practice. 
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3.1.2 The Best Linear Unbiased Estimation Method (BLUE) 

Consider the estimation of contrasts among direct and residual treatment effects under 

(3.1.3), 

 Let  

�̂�=(τA − τB),                                                                                                         (3.1.4) 

and                                                                                                                            

�̂�0=(λA − λB),                                                                                                                          (3.1.5) 

The best linear unbiased estimators of μ and μ0 can be written as linear combinations 

of cell means for example; 

�̂�=∑ ∑ aijyij
                                                                                                                              (3.1.6) 

and 

�̂�0=∑ ∑ bijyij
.                                                                                                                            (3.1.7) 

Note that estimability of μ and μ0 ensures that; 

∑ aij = 0
p
i=1 ,                                                                                                                              (3.1.8) 

and 

∑ bij = 0
p
i=1 , for j = 1, . . . , s,                                                                                                    (3.1.9) 

Where 𝑝 represents the number of periods and 𝑠 represents the number of sequences. 

In order to obtain the unbiased estimates given in (3.14) and (3.15), the conditions given 

in (3.1.6), (3.1.7) (3.18) and (3.19) must be satisfied. 

3.2 Optimality Criteria for C (2× 𝟓)Cross-Over Designs  

According to (Laska, Meisner, & Kushner, 1983), the precision of a design is measured 

in terms of the covariance matrix, Vd, of the BLUEs of the parameters or contrasts of 

interest. When there are many parameters, a choice must be made as to a criterion for 

V i.e. some function of V. The well-known classical optimality criteria include; D-
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optimality, A-optimality and T-optimality criteria. For two treatments, the criterion 

usually adopted in the literature is that a cross-over design is optimal if it provides 

minimum variance unbiased estimators of treatment effects and carry-over effects 

(Jones & Kenward, 2014, p. 106). 

The variances of (3.1.6) and (3.1.7) can be written as; 

var(�̂�)=[s ∑ ∑  
aij

2

N
 ]σ2,                                                                                                          (3.2.1) 

and 

var(�̂�0)=[s∑ ∑
bij

2

N
]σ2,                                                                                                         (3.2.2) 

The variances given in (3.2.1) and (3.2.2) are used to obtain the efficiency in estimating 

both the direct treatment effects and the carryover effects respectively. 

Consider the estimation of contrasts among direct and among carryover effects, the 

cumulative treatment effects are defined as the sum of the direct and the carry-over 

effects and can be given by; 

(τA − τB)C = (τA − τB) + (λA − λB).                                                                                (3.2.3) 

Recall, 

var(a + b) = var(a) + 2cov(ab) + var(b).                                                                         (3.2.4) 

This implies that, 

cov(ab) =
1

2
(var(a + b)) − (var(a) + var(b))                                                                   (3.2.5) 

Substituting (τA − τB) and (λA − λB) (3.2.3) to 𝑎 and 𝑏 (3.2.5) gives 
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cov((τA − τB)(λA − λB)  ) =
1

2
[var((τA − τB)  + (λA − λB) )] − [var(τA − τB) +

var(λA − λB )]]                                                                                                                      (3.2.6)                                                                                                                                                                                                                                                                                                       

The current study evaluates the variances of the treatment and treatment carry-over 

effects for the five period cross-over designs as given in (3.2.1) and (3.2.2) .The 

covariance of treatments and carry-over effects given in (3.2.6) will aid in evaluating 

the optimality for designs which estimate treatment effects in the presence of carry-over 

effects. 

3.3 Robustness of the (2× 𝟓) Cross-Over Designs against Missing Data. 

A useful measure when planning an experiment to reduce or even prevent the possibility 

of a disconnected eventual design is the concept of minimum number of observations 

that a planned design is required to lose for the corresponding eventual design to be 

disconnected. This is referred in what follows as breakdown number of the planned 

design. Planned designs with a high breakdown number are advantageous on grounds 

of robustness to missing data. 

3.3.1 Robustness of a design (𝐃) 

For a given design (D), there are many possible eventual designs (De) which could 

occur. We first consider the robustness concept of breakdown number which was 

discussed by (Godolphin & Godolphin, 2019) . 

3.3.2 Robustness Using Break down Numbers  

The break down number (MD) of a planned design is the minimum number of missing 

observations that result in one disconnected   𝐷𝑒. 

This definition implies that there is at least one De which is disconnected; this design 

will consist of MD fewer measurements than could be available from D. Furthermore, 
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there will usually be several other disconnected eventual designs which have MD or 

more observations missing when compared with the planned design. When D has break 

down number MD, then no De will be disconnected if fewer than MD observations are 

lost during the experiment. This D is robust to the unavailability of observations due to 

subject dropout if MD is relatively high.  

If D1 and D2 are cross-over designs with the same dimension, then D1 is said to be more 

robust than D2 when their break down numbers satisfy  MD1 > MD2. It follows that if 

many designs are under consideration, then the design D with the maximum break down 

number is more robust than the competing design and should be preferred in terms of 

robustness. When several designs have the same high break down number, then 

variance considerations should apply to these designs.  Evidently a preliminary step is 

to aim to identify those designs that possess the largest break down numbers. All the 

five period two treatment designs for four sequences were evaluated and ranked 

according to their breakdown numbers. 

3.3.3 Robustness for Perpetually Connected Designs  

A planned design is perpetually connected if all subjects complete the first two periods 

and the 𝐷𝑒 is connected irrespective of subject dropout behavior in succeeding periods. 

Thus D is perpetually connected if there is no De which is disconnected, conditional on 

no dropout in the first two periods of study. 

The break down number of a perpetually connected design D will be denoted by MD 

= ∞ 

If several designs are perpetually connected, their robustness should be evaluated using 

their variances where the design with the minimum variance is taken as the most robust. 
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3.4 Data analysis based on the Bayesian method for C (2, 𝟓) cross over designs  

In crossover designs, the group sequences differ substantially, not only in their means 

but also in their variances as well. The group sequences are assumed to be normally 

distributed. The study assumed a non- informative reference prior where the means and 

variances in the priors are approximately independent and locally uniform. This is 

because there is no prior information about the likelihood to rely on. In such a case the 

posterior distributions are the same as the likelihood distributions. The Behrens fisher 

approximation Bayesian approach was the most ideal technique to analyze the five 

period cross-over designs .The most robust C (2, 5, 4) cross –over design is considered 

for analysis. 

3.4.1 Determination of Variance for the C (2, 𝟓, 𝟐)Cross-Over Design  

Let : the kth subject in group1 have  k = 1,2, … , n1 ; the kth subject in group2 have  

k = 1,2, … , n2; the kth subject in group3 have k = 1,2, … , n3, and the kth subject in 

group 4 have k = 1,2, … , n4. 

Assuming that s11
2  is the variance of the first group and s21

2  is the variance of the second 

group, the pooled variance for the first two groups is given by, 

s1
2= 

(n1−1)s11
2 +(n2−1)s21

2

(n1+n2−2)
                                                                                                           (3.4.1) 

Similarly, assuming that s31
2  is the variance of the third group and s41

2  is the variance of 

the fourth group, the pooled variance for the two groups is given by, 

s2
2= 

(n3−1)s31
2 +(n4−1)s41

2

(n3+n4−2)
                                                                                                            (3.4.2) 
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3.4.2 Determination of Variance for the C (2, 𝟓, 𝟒)Cross-Over Design  

Let 

 (τA − τB)1= 
1

k
 (d11 − d21)                                                                                                   (3.4.3) 

and 

 (τA − τB)2= 
1

m
 (d31 − d41)                                                                                                (3.4.4) 

Where; d11, d21, d31& d41 are treatment contrasts for groups 1, 2, 3 and 4 respectively? 

The variances of these estimators are.  

V(τA − τB)1= 
s1

2

k2 [
1

n1
+

1

n2
]                                                                                                      (3.4.5) 

V(τA − τB)2= 
s2

2

m2 [
1

n3
+

1

n4
]                                                                                                     (3.4.6)   

Note that n1, n2, n3, &n4 are the sample sizes for groups 1, 2, 3&4 respectively. 

A combined estimator of  (τA − τB)W can be obtained by taking a weighted average of 

the two estimators where the weights are taken to be inversely proportional to the 

variances of the estimators. That is,       

 W1 =
1

V(τA−τB)1
   ,                                                                                                                  (3.4.7)     

and                                                                                                

W2 =
1

V(τA−τB)2
                                                                                                                      (3.4.8)  

Using (3.4.1), (3.4.2), (3.4.7) and (3.4.8), the combined estimator for treatment effects 

is given by, 
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 (τA − τB)W  = 
W1(τA−τB)1+W2(τA−τB)2

W1+W2
                                                                                (3.4.9)   

Thus the variance of (3.4.9) which forms the combined variance estimator is given by,   

  V(τA − τB)W =(
W1

W1+W2
)2 V(τA − τB)1 + (

W2

W1+W2
)2 V(τA − τB)2                   (3.4.10)  

The same procedure can be used to obtain (λA − λB)W  and V(λA − λB)W  . 

3.4.3 The Bayesian Method  

We employ an approximation proposed by Patil (1964), who fits a scaled t distribution 

to the distribution t. 

It is shown by Patil that 𝑡  is approximately distributed as  𝑡(δi, a2 (
s1

2

n1
+

s2
2

n2
) , b)  for 

𝑖 = 1,2 

Where, 

δ1 =  [λA − λB]W  ,                                                                                                              (3.4.11) 

 δ2 =  [τA − τB]W ,                                                                                                              (3.4.12)                                                                                                                                                                                                                                                                                                           

a = √(
b−2

b
) f1 ,                                                                                                                     (3.4.13) 

b = 4 +
f1
2

f2
 ,                                                                                                                           (3.4.14) 

f1 = (
v2

v2−2
) cos2θ + (

v1

v1−2
) sin2θ,                                                                                       (3.4.15) 

f2 =
v1

2

(v2−2)2(v2−4)
 cos4∅ +

v2
2

(v2−2)2(v2−4)
 sin4∅,                                                   (3.4.16) 

Where  

cos2∅ = 

s2
2

n2

(
s1

2

n1
  +   

s2
2

n2
)

    ,                                                                                                            (3.4.17) 
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v1 & v2 , are the degrees of freedom given by n1 − 2 and n2 − 2 respectively 

where n1 = n11 + n21, and n2 = n31 + n41. 

From (3.3.17)  sin 2∅ = 1 − cos2∅ .                                                                                    (3.4.18) 

To this degree of approximation, the difference of the mean values  

  [τA − τB]W and [λA − λB   ]W are distributed a posterior as; 

  𝑡 [(τA − τB)W , a2 (
s1

2

n1
  +    

s2
2

n2
) , b]  &  𝑡 [(λA − λB)W, a2 (

s1
2

n1
  +   

s2
2

n2
) , b]        (3.4.19) 

The (1- ∝) H.P.D intervals are given by; 

(τA − τB)W  ± ( a) (
s1

2

n1
+  

s2
2

n2
)

1

2 tα

2
 (b,95%)                                                                      (3.4.20) 

 For treatment effects and 

(λA − λB)W  ±  𝑡α

2
 (a)(

s1
2

n1
+ 

s2
2

n2
)

1

2 tα

2
 (b,95%)                                                                  (3.4.21) 

For carry-over effects. 

3.4.4 Interpretation of the Bayesian Approximation Method 

The strategy was to use a non-informative prior to produce the posterior distribution 

which was used to obtain the highest posterior density (H.P.D) interval and to test the 

null hypotheses as given in (Patil, 1964).  

 Different values of(τA − τB)W, (λA − λB)W and  (τA − τB)W/ (λA − λB)W were 

tested and a directional hypothesis tests and a probabilistic statements regarding the 

parameter estimates were given and the whole posterior distribution was used. The null 

hypothesis of  H0: (λA − λB)W = 0,  H0: (τA − τB)W = 0, and  H0: (τA − τB)W/ 

(λA − λB)W = 0, were tested at 𝛂=5%.  
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If in the 95 % HPD interval, the probability of the effects of interest greater than zero 

was 1 or relatively higher than 0.2, the null hypothesis was rejected. Otherwise the null 

hypothesis was not rejected.  

3.4.5 Student’s 𝒕-test  

The 𝑡 − test was used to validate the results obtained by the Bayesian method of 

analysis. 

From (3.4.9), (3.4.10), (3.4.11) and (3.4.12), the calculated 𝑡 values for treatment 

effects and carry-over effects are given by, 

𝑡c= 
(τA−τB)W

√V(τA−τB)W
  ,                                                                                                             (3.4.22) 

and  

𝑡c= 
(λA−λB)W

√V(λA−λB)W
   .                                                                                                           (3.4.23)                     

A simple approximation to the degrees of freedom of the estimated variance of the 

combined estimator was obtained using the result given by Satterthwaite (1946). 

 Let, 

a1  = 
W1

W1+W2
   ,                                                                                                                (3.4.24) 

a2  = 
W2

W1+W2
   ,                                                                                                                (3.4.25) 

V1 = Var(τA − τB)1 ,                                                                                                     (3.4.26) 

V2 = Var(τA − τB)2 ,                                                                                                      (3.4.27) 

And  

VW = Var(τA − τB)W  .                                                                                                   (3.4.28) 
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Similarly, let  f1 , f2 and fw be the degrees of freedom respectively, of the estimates of 

V1, V2&VW 

Then fw =
(a1V1+a2V2)2

(a1V1)2

f1
+

(a2V2)2

f2

    .                                                                                            (3.4.30) 

By comparing the tabulated value at fw degrees of freedom in (3.4.30) with the 

calculated value from (3.4.22) and (3.4.23), the null hypothesis is rejected if the 

calculated value is greater than the tabulated value at 95% confidence interval. 

3.4.6 Plotting the Data   

3.4.6.1 Subject Profiles Plot  

The objective of cross-over trial is to focus attention on within- individual treatment 

differences. A good plot for displaying these differences is the subject profiles plot. In 

this case, subject profiles graphs were plotted for each group to represent the change in 

each individual’s response over two treatments periods. For each value of 𝑘, the pairs 

of points (𝑦11𝑘 , 𝑦12𝑘, 𝑦13𝑘, 𝑦14𝑘, 𝑦15𝑘), (𝑦21𝑘, 𝑦22𝑘, 𝑦23𝑘, 𝑦24𝑘, 𝑦25𝑘),  

and  

(𝑦31𝑘, 𝑦32𝑘, 𝑦33𝑘, 𝑦34𝑘, 𝑦35𝑘), (𝑦41𝑘, 𝑦42𝑘, 𝑦43𝑘, 𝑦44𝑘, 𝑦45𝑘) , were plotted. 

This plot helped to identify the general trend and ascertain the effectiveness of treatment 

B (the new treatment) with regard to treatment A (the standard treatment).  

3.4.6.2 Group by Periods Plot   

In this case, the graphs that compared the average values over each group for each 

period were plotted. The eight group by period’s 

means  �̅�1𝑖., �̅�1𝑗., �̅�2𝑖., �̅�2𝑗., �̅�3𝑖., �̅�3𝑗., �̅�4𝑖., &�̅�4𝑗.   for 𝑖 𝑎𝑛𝑑 𝑗 = 1,2,3,4 𝑎𝑛𝑑 5  

respectively, against their corresponding period labels were plotted and joined. On the 

graph, the means were labeled in terms of the group and treatments they represented 



  28 
 

i.e. as 1A, 1B; and 2B, 2A for the first two groups respectively. In this regard, 1A was 

joined with 2A and 2B with 1B and the same procedure was applied for the 3rd and 4th 

groups respectively .This plot was used to ascertain presence of treatment by period 

interaction.  
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

4.0 Introduction 

In this chapter, the direct treatments and treatments carry-over effects for (2× 5) cross-

over designs are presented using (BLUE), Their optimality criteria and robustness for 

missing data are established and the treatment effects and carry-over effects for the 

optimum and most robust design  are analyzed using the Bayesian approximation 

method. 

4.1 Estimation of the direct treatments and treatments carry-over effects for (2×

𝟓)  cross-over designs using Best Linear Unbiased Estimation method (BLUE).  

In higher order five period cross-over designs with two treatments, thirty two possible 

treatments sequences can result to ; AAAAA, BAAAA, ABAAA, AABAA, AAABA, 

AAAAB, BBAAA, BABAA,BAABA, BAAAB, ABBAA, ABABA, ABAAB, 

AABBA, AABAB, AAABB, and their duals. A combination of particular group 

sequences with their respective duals gives  

C (2, 5, 2) cross over designs. Similarly, combinations of pairs of C (2, 5, 2) gives C (2, 

5, 4) crossover designs. The following are the C (2, 5. 2) designs that were obtained;  

4.1.1 Five Period Two Treatments Design for Sequence BAAAA and its Dual 

(Design 1) 

The design is represented as given in Table 4.1.1 below.  

Table 4.1.1: C (2× 𝟓 × 𝟐) Design 1 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA B A A A A 

ABBBB A B B B B 

 

Substituting model (3.1.3) to Table (4.1.1) gives; 
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Table 4.1.2: Expected Values for C (2× 𝟓 × 𝟐) Design 1 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA+ λA 

μ + π4

+ τA + λA 

μ + π5

+ τA + λA 

ABBBB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB+ λB 

μ + π4

+ τB + λB 

μ + π5

+ τB + λB 

 

4.1.1.1 Direct Treatments Estimate for Design 1 using (BLUE) 

The contrasts C1 and C2 , identified from table 4.1.2 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by;  

E(C1) = E(Y11 + Y12 − Y13 + Y14 + Y15) = 3 μ + (π1 + π2 − π3 + π4 + π5) +2 τA 

+τB + (λA + λB) 

E(C2) = E(Y21 + Y22 − Y23 + Y24 + Y25) = 3μ + (π1 + π2 − π3 + π4 + π5) + 2 τB 

+τA + (λA + λB) 

 The treatments difference is obtained by finding difference between the two contrasts. 

Thus, 

τA − τB= C1 − C2   .                                                                                                            (4.1.1) 

4.1.2 Five Period Two Treatments Design for Sequence ABAAA and its Dual 

(Design 2) 

The design is represented as given in Table 4.1.3 below, 

Table 4.1.3: C (2× 𝟓 × 𝟐) Design 2 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABAAA A B A A A 

BABBB B A B B B 

 

Substituting model (3.1.3) to Table (4.1.3) gives; 
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Table 4.1.4: Expected values for C (2× 𝟓 × 𝟐) Design 2 

SEQ  𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABAAA μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA+ λB 

μ + π4

+ τA + λA 

μ + π5

+ τA + λA 

BABBB μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB+ λA 

μ + π4

+ τB + λB 

μ + π5

+ τB + λB 

 

4.1.2.1: Direct Treatments Estimate for Design 2 using (BLUE) 

The contrasts C3 and C4 , identified from Table 4.1.4 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C3) = E(Y11 + Y12 + Y13 − Y14 + Y15) = 3 μ + (π1 + π2 + π3 − π4 + π5) +2 τA 

+τB + (λA + λB) 

E(C4) = E(Y21 + Y22 + Y23 − Y24 + Y25) = 3μ + (π1 + π2 + π3 − π4 + π5) + 2 τB 

+τA + (λA + λB), 

From (3.1.4) the treatment difference is obtained by finding difference between the two 

contrasts. 

Thus, 

τA − τB= C3 − C4                                                                                                                  (4.1.2) 

4.1.3 Five Period Two Treatments Design for Sequence AABAA and its Dual 

(Design 3) 

The design is represented as given in Table 4.1.5 below. 

Table 4.1.5: C (2× 𝟓 × 𝟐) Design 3 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAA A A B A A 

BBABB B B A B B 
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Substituting model (3.1.3) to table (4.1.5) gives; 

Table 4.1.6: Expected values for C (2× 𝟓 × 𝟐) Design 3 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAA 

 

μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB+ λA 

μ + π4

+ τA + λB 

μ + π5

+ τA + λA 

BBABB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA+ λB 

μ + π4

+ τB + λA 

μ + π5

+ τB + λB 

 

4.1.3.1 Direct Treatments Estimate for Design 3 using (BLUE) 

The contrasts C5 and  C6 , identified from Table 4.1.6 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C5) = E(Y11 − Y12 + Y13 + Y14 + Y15) = 3 μ + (π1 − π2 + π3 + π4 + π5) +2 τA 

+τB + (λA + λB) 

E(C6) = E(Y21 − Y22 + Y23 + Y24 + Y25) = 3μ + (π1 − π2 + π3 + π4 + π5) + 2 τB 

+τA + (λA + λB 

 From (3.1.4), the treatment difference is obtained by finding difference between the 

two contrasts. 

Thus, 

τA − τB = C5 − C6                                                                                                                  (4.1.3) 

4.1.4 Five Period Two Treatments Design for Sequence AAABA and its Dual 

(Design 4) 

The design is represented as given in Table 4.1.7 below. 

 Table 4.1.7: C (2× 𝟓 × 𝟐) Design 4 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAABA A A A B A 

BBBAB B B B A B 
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Substituting model (3.1.3) to Table (4.1.7) gives; 

Table 4.1.8:  Expected values for C (2× 𝟓 × 𝟐) Design 4 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAABA 

 

μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA+ λA 

μ + π4

+ τB + λA 

μ + π5

+ τA + λB 

BBBAB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τB+ λB 

μ + π4

+ τA + λB 

μ + π5

+ τB + λA 

 

4.1.4.1: Direct Treatments Estimate for Design 4 using (BLUE) 

The contrasts C7 and C8 , identified from Table 4.1.8 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C7) = E(Y11 − Y12 + Y13 + Y14 + Y15) = 3 μ + (π1 − π2 + π3 + π4 + π5) + (2τA 

+τB)+(λA + λB) 

E(C8) = E(Y21 − Y22 + Y23 + Y24 + Y25) = 3 μ + (π1 − π2 + π3 + π4 + π5) + (2τB 

+τA)+(λA + λB) 

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB= C7 − C8                                                                                                                    (4.1.4) 

4.1.5 Five Period Two Treatments Design for Sequence AAAAB and its Dual 

(Design 5) 

The design is represented as given in Table 4.1.9 below. 

Table 4.1.9: C (2× 𝟓 × 𝟐) Design 5 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB A A A A B 

BBBBA B B B B A 
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Substituting model (3.1.3) to table (4.1.9) gives; 

Table 4.1.10: Expected values for C (2× 𝟓 × 𝟐) Design 5 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB 

 

μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA+ λA 

μ + π4

+ τA + λA 

μ + π5

+ τB + λA 

BBBBA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τB+ λB 

μ + π4

+ τB + λB 

μ + π5

+ τA + λB 

 

4.1.5.1 Direct Treatments Estimate for Design 5 using (BLUE) 

The contrasts C9andC10 , identified from Table 4.1.10 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C9) = E(−Y11 + Y12 − Y13 + Y14 − Y15)= −μ − (π1 − π2 + π3 − π4 + π5) − τB, 

E(C10) = E(−Y21 + Y22 − Y23 + Y24 − Y25)=−μ − (π1 − π2 + π3 − π4 + π5) − τA , 

Thus (3.1.4) is obtained by finding difference between the two contrasts, 

τA − τB = C9 − C10                                                                                                               (4.1.5) 

4.1.6 Five Period Two Treatments of Sequence BBAAA and its Dual (Design 6) 

The design is represented as given in Table 4.1.11 below. 

Table 4.1.11: C (2× 𝟓 × 𝟐) Design 6 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BBAAA 

 

B B A A A 

AABBB A A B B B 

 

Substituting model (3.1.3) to table (4.1.11) gives; 
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Table 4.1.12: Expected values for C (2× 𝟓 × 𝟐) Design 6 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BBAAA 

 

μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA+ λB 

μ + π4

+ τA + λA 

μ + π5

+ τA + λA 

AABBB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB+ λA 

μ + π4

+ τB + λB 

μ + π5

+ τB + λB 

 

4.1.6.1 Direct Treatments Estimate for Design 6 using (BLUE) 

The contrasts C11 and  C12 , identified from Table 4.1.12 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E (C11) = E(Y11 − Y12 + Y13 − Y14 + Y15)= μ + (π1 − π2 + π3 − π4 + π5) + τA 

E(C12) = E(Y21 − Y22 + Y23 − Y24 + Y25)=μ + (π1 − π2 + π3 − π4 + π5) + τB  

Thus (3.1.4) is obtained by finding difference between the two contrasts given by, 

τA − τB =  C11 − C12                                                                                                              (4.1.6) 

4.1.6.2 Carryover Treatments Effects Estimate for Design 6 using (BLUE) 

The contrasts C13 and  C14 , identified from Table 4.1.12 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C13) =  
1

5
E(Y11 − Y12 − 2Y13 + Y14 + Y15) =

1

5
[ (π1 − π2 − 2π3 + π4 + π5) + 

2λA − 3λB] 

E(C14) =  
1

5
E(Y21 − Y22 − 2Y23 + Y24 + Y25)=

1

5
 [(π1 − π2 − 2π3 + π4 + π5) − 

3λA + 2λB] 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts, 

Thus, λA − λB = C13 − C14                                                                                                     (4.1.7) 
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4.1.7 Five Period Two Treatments Design for Sequence BABAA and its Dual 

(Design 7) 

The design is represented as given in Table 4.1.13 below. 

Table 4.1.13: C (2× 𝟓 × 𝟐) Design 7 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BABAA 

 

B A B A A 

ABABB A B A B B 

 

Substituting model (3.1.3) to Table (4.1.13) gives; 

Table 4.1.14: Expected values for C (2× 𝟓 × 𝟐) Design 7 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

B A B A A 

 

μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB+ λA 

μ + π4

+ τA + λB 

μ + π5

+ τA + λA 

A B A B B μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA+ λB 

μ + π4

+ τB + λA 

μ + π5

+ τB + λB 

 

4.1.7.1 Direct Treatments Estimate for Design 7 using (BLUE) 

The contrasts C15and C16 , identified from Table 4.1.14 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C15) = E(Y11 − Y12 − Y13 + Y14 + Y15) =  μ + (π1 − π2 − π3 + π4 + π5) + τA  

E(C16) = E(Y21 − Y22 − Y23 + Y24 + Y25) = μ + (π1 − π2 − π3 + π4 + π5) + τB  

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB= C15 − C16                                                                                                               (4.1.8) 
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4.1.7.2: Carryover Treatments Effects Estimate for Design 7 using (BLUE) 

The contrasts C17 and C18 , identified from Table 4.1.14 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C17) =  E(Y11 − 2Y12 − Y13 + Y14 + Y15) =(π1 − 2π2 − π3 + π4 + π5) − λB 

E(C18) =  E(Y21 − 2Y22 − Y23 + Y24 + Y25)= (π1 − 2π2 − π3 + π4 + π5) −λA 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts, 

Thus, 

λA − λB= C17 − C18                                                                                                              (4.1.9) 

4.1.8 Five Period Two Treatments Design for Sequence BAABA and its Dual 

(Design 8) 

The design is represented as given in Table 4.1.15 below. 

Table 4.1.15: C (2× 𝟓 × 𝟐) Design 8 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAABA 

 

B A A B A 

ABBAB A B B A B 

 

Substituting model (3.1.3) to Table (4.1.15) gives; 

Table 4.1.16: Expected values for C (2× 𝟓 × 𝟐) Design 8 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAABA 

 

μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA+ λA 

μ + π4

+ τB + λA 

μ + π5

+ τA + λB 

ABBAB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB+ λB 

μ + π4

+ τA + λB 

μ + π5

+ τB + λA 
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4.1.8.1 Direct Treatments Estimate for Design 8 using (BLUE) 

The contrasts C19andC20 , identified from Table 4.1.16 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C19) =
1

3
E(Y11 − Y12 + Y13 − Y14 + Y15) =

1

3
 [ μ + (π1 − π2 + π3 − π4 + π5) + 

3τA ] 

E(C20) =
1

3
E(Y21 − Y22 + Y23 − Y24 + Y25) = 

1

3
[μ + (π1 − π2 + π3 − π4 + π5) + 

3τB ] 

From (3.1.5), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB = C19 − C20                                                                                                             (4.1.10) 

4.1.8.2 Carryover Treatments Effects Estimate for Design 8 using (BLUE) 

The contrasts C21 and C22 , identified from Table 4.1.16 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C21) =  E(Y11 + Y12 + Y13 − Y14 − Y15) = μ +(π1 + π2 + π3 − π4 − 2π5) − λB 

E(C22) =  E(Y21 + Y22 + Y23 − Y24 − Y25)= μ +(π1 + π2 + π3 − π4 − 2π5) −λA 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts, 

Thus, 

λA − λB= C21 − C22                                                                                                            (4.1.11) 
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4.1.9 Five Period Two Treatments Design for Sequence BAABA and its Dual 

(Design 9) 

The design is represented as given in Table 4.1.17 below. 

Table 4.1.17: C (2× 𝟓 × 𝟐) Design (9) 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAB 

 

B A A A B 

ABBBA A B B B A 

 

Substituting model (3.1.3) to table (4.1.17) gives; 

Table 4.1.18: Expected values for C (2× 𝟓 × 𝟐) Design (9) 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAB 

 

μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA+ λA 

μ + π4

+ τA + λA 

μ + π5

+ τB + λA 

ABBBA μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB+ λB 

μ + π4

+ τB + λB 

μ + π5

+ τA + λB 

 

4.1.9.1 Direct Treatments Estimate for Design 9 using (BLUE) 

The contrasts C23andC24 , identified from Table 19 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C23) = E(−Y11 − Y12 − Y13 + Y14 − Y15)= − μ + (−π1 − π2 − π3 + π4 − π5) − 

(2τB + τA) −(λA + λB) 

E(C24) = E(−Y21 − Y22 − Y23 + Y24 − Y25)= −μ + (−π1 − π2 − π3 + π4 − π5) − 

(2τA + τB) −(λA + λB) 

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB = C23 − C24                                                                                                             (4.1.12) 
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4.1.9.2 Carryover Treatments Effects Estimate for Design 9 using (BLUE) 

The contrasts C25andC26 , identified from Table 4.1.18 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C25) =  
1

3
E[(Y11 − 2Y12 + Y13 + Y14 − Y15)] = 

1

3
[2μ +(π1 − 2π2 + π3 + π4 −

π5)− 2λB + λA] 

E(C26) =
1

3
 E[(Y21 − 2Y22 + Y23 + Y24 − Y25)]= 

1

3
[2μ +(π1 − 2π2 + π3 + π4 − π5) 

−2λA + λB] 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts, 

Thus, 

λA − λB= C25 − C26                                                                                                              (4.1.13) 

4.1.10 Five Period Two Treatments Design for Sequence ABBAA and its Dual 

(Design10) 

The design is represented as given in Table 4.1.19 below. 

Table 4.1.19: C (2× 𝟓 × 𝟐) Design 10 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABBAA A B B A A 

BAABB B A A B B 

Substituting model (3.1.3) to Table (4.1.19) gives; 

Table 4.1.20: Expected values for C (2× 𝟓 × 𝟐), Design 10 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABBAA 

 

μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB+ λB 

μ + π4

+ τA + λB 

μ + π5

+ τA + λA 

BAABB μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA+ λA 

μ + π4

+ τB + λA 

μ + π5

+ τB + λB 
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4.1.10.1 Direct Treatments Estimate for Design10 using (BLUE) 

The contrasts C27and C28 , identified from Table 4.1.20 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C27) = E(Y11 − Y12 + Y13 − Y14 + Y15)= μ + (π1 − π2 + π3 − π4 + π5) + (τA)  

E(C28) = E(Y21 − Y22 + Y23 − Y24 + Y25)= μ + (π1 − π2 + π3 − π4 + π5) + (τB)  

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB= C27 − C28                                                                                                          (4.1.14) 

4.1.10.2: Carryover Treatments Effects Estimate for Design 10 using (BLUE) 

The contrasts C29 and C30 , identified from Table 4.1.20 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C29) =  
1

3
E[(Y11 + Y12 + Y13 − 2Y14 + Y15)] = 

1

3
[2μ +(π1 + π2 − π3 − 2π4 + π5)  

− λB + 2λA] 

E(C30) =
1

3
 E[(Y21 + Y22 + Y23 − 2Y24 + Y25)]= 

1

3
[2μ +(π1 + π2 − π3 − 2π4 + π5) 

−λA + 2λB] 

From (3.1.5), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

λA − λB = C29 − C30                                                                                                           (4.1.15) 
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4.1.11 Five Period Two Treatments Design for Sequence ABABA and its Dual 

(Design11) 

The design is represented as given in Table 4.1.21 below. 

Table 4.1.21: C (2× 𝟓 × 𝟐) Design 11 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABABA A B A B A 

BABAB B A B A B 

  

Substituting model (3.1.3) to Table (4.1.21) gives; 

Table 4.1.22: Expected values for C (2× 𝟓 × 𝟐) Design 11 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

A B A B A 

 

μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA+ λB 

μ + π4

+ τB + λA 

μ + π5

+ τA + λB 

B A B A B μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB+ λA 

μ + π4

+ τA + λB 

μ + π5

+ τB + λA 

 

4.1.11.1 Direct Treatments Estimate for Design11 using (BLUE) 

The contrasts C31and C32 , identified from Table 4.1.22 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C31) = E(Y11 + Y12 + Y13 + Y14 + Y15)= 5μ + (π1 + π2 + π3 + π4 + π5) + 

(3τA+2τB) + 2(λA + λB) 

E(C32) = E(Y21 + Y22 + Y23 + Y24 + Y25)= 5μ + (π1 + π2 + π3 + π4 + π5) + 

(2τA+3τB) + 2(λA + λB) 

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB = C31 − C32                                                                                                            (4.1.16) 
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4.1.11.2 Carryover Treatments Effects Estimate for Design 11 using (BLUE) 

The contrasts C33 and C34 , identified from Table 4.1.22 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C33) =  E(Y11 + 2Y12 + Y13 + Y14 + Y15) = 6μ +(π1 + 2π2 + π3 + π4 + π5) + 

(3τA+3τB) + (3λA + 2λB) 

E(C34) =  E(Y21 + 2Y22 + Y23 + Y24 + Y25)= 6μ +(π1 + 2π2 + π3 + π4 + π5) + 

(3τA+3τB) + (2λA + 3λB) 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts, 

Thus, 

λA − λB= C33 − C34                                                                                                           (4.1.17)  

4.1.12: Five Period Two Treatments of Sequence ABABA and its Dual (Design12) 

The design is represented as given in Table 4.1.23 below. 

Table 4.1.23: C (2× 𝟓 × 𝟐) Design 12 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABAAB A B A A B 

BABBA B A B B A 

 

Substituting model (3.1.3) to table (4.1.23) gives; 

 Table 4.1.24: Expected values for (2× 𝟓 × 𝟐) Design 12 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABAAB 

 

μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA+ λB 

μ + π4 + τA

+ λA 

μ + π5 + τB

+ λA 

BABBA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB+ λA 

μ + π4 + τB

+ λB 

μ + π5 + τA

+ λB 
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4.1.12.1 Direct Treatments Estimate for Design12 using (BLUE) 

The contrasts C1andC2 , identified from Table 4.1.24 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C35) = E(−Y11 − Y12 − Y13 + Y14 − Y15) = −3μ + (−π1 − π2 − π3 + π4 − π5) − 

(τA+2τB) − (λA + λB) 

E(C36) = E(−Y21 − Y22 − Y23 + Y24 − Y25) = −3μ + (−π1 − π2 − π3 + π4 − π5) − 

(2τA+τB) − (λA + λB) 

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB= C35 − C36                                                                                                             (4.1.18) 

4.1.12.2 Carryover Treatments Effects Estimate for Design 12 using (BLUE) 

The contrasts C37andC38 , identified from Table 4.1.24 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C37) =  
1

3
E(−Y11 + Y12 − Y13 + 2Y14 − Y15) =

1

3
[ (−π1 + π2 − π3 +

2π4−π5)+2λA − λB ] 

E(C38) =  
1

3
E(−Y21 + Y22 − Y23 + 2Y24 − Y25) =

1

3
[ (−π1 + π2 − π3 + 2π4 − π5) 

+2λB − λA] 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts. Thus, 

λA − λB= C37 − C38                                                                                                             (4.1.19) 
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4.1.13 Five Period Two Treatments Design for Sequence AABBA and its Dual 

(Design13) 

The design is represented as given in Table 4.1.25 below. 

Table 4.1.25: C (2× 𝟓 × 𝟐) Design 13 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABBA A A B B A 

BBAAB B B A A B 

 

Substituting model (3.1.3) to Table (4.1.25) gives; 

Table 4.1.26: Expected values for (2× 𝟓 × 𝟐) Design 13 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABBA 

 

μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB+ λA 

μ + π4

+ τB + λB 

μ + π5

+ τA + λB 

BBAAB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA+ λB 

μ + π4

+ τA + λA 

μ + π5

+ τB + λA 

 

4.1.13.1 Direct Treatments Estimate for Design13 using (BLUE) 

The contrasts C39andC40 , identified from table 4.1.26 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C39) = E(Y11 − Y12 + Y13 − Y14 + Y15)= μ + (π1 − π2 + π3 − π4 + π5) + (τA)  

E(C40) = E(Y21 − Y22 + Y23 − Y24 + Y25)= μ + (π1 − π2 + π3 − π4 + π5) + (τB)  

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts, 

Thus, 

τA − τB= C39 − C40                                                                                                         (4.1.20) 
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4.1.13.2 Carryover Treatments Effects Estimate for Design 13 using (BLUE) 

The contrasts C41and C42 , identified from Table 4.1.26 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C41) =  E(−Y11 + 2Y12 − Y13 + Y14 − Y15) = (−π1 + 2π2 − π3 + π4 − π5) + λA 

E(C42) =  E(−Y21 + 2Y22 − Y23 + Y24 − Y25)= (−π1 + 2π2 − π3 + π4 − π5) +λB 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts. Thus, 

λA − λB = C41 − C42                                                                                                           (4.1.21) 

4.1.14 Five Period Two Treatments Design for Sequence AABAB and its Dual 

(Design14) 

The design is represented as given in Table 4.1.27 below. 

Table 4.1.27: C (2× 𝟓 × 𝟐) Design 14 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAB A A B A B 

BBABA B B A B A 

 

Substituting model (3.1.3) to Table (4.1.27) gives; 

Table 4.1.28: Expected values for C (2× 𝟓 × 𝟐) Design 14 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

A A B A B 

 

μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB+ λA 

μ + π4

+ τA + λB 

μ + π5

+ τB + λA 

B B A B A μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA+ λB 

μ + π4

+ τB + λA 

μ + π5

+ τA + λB 

 

4.1.14.1 Direct Treatments Estimate for Design14 using (BLUE) 

The contrasts C43andC44 , identified from Table 4.1.28 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 
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E(C43) = E(−Y11 + Y12 − Y13 − Y14 − Y15)=−3μ + (−π1 + π2 − π3 − π4 − π5) − 

(2τB + τA) − (λA + λB) 

E(C44) = E(−Y21 + Y22 − Y23 − Y24 − Y25)= −3μ + (−π1 + π2 − π3 − π4 − π5) − 

(2τA + τB) − (λA + λB) 

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts. Thus, 

τA − τB= C43 − C44                                                                                                              (4.1.22) 

4.1.14.2: Carryover Treatments Effects Estimate for Design 14 using (BLUE) 

The contrasts C45 and C46 , identified from Table 4.1.28 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 

E(C45) =
1

3
 E(−Y11 + 2Y12 + Y13 − Y14 − Y15) = 

1

3
[(−π1 + 2π2 + π3 − π4 − π5) +2 

λA − λB] 

E(C46) =
1

3
 E(−Y21 + 2Y22 + Y23 − Y24 − Y25)=

1

3
 [(−π1 + 2π2 + π3 − π4 − π5) 

+2λB − λA] 

From (3.1.4), the carryover difference is obtained by finding difference between the 

two contrasts. Thus, 

λA − λB= C45 − C46                                                                                                             (4.1.23) 

4.1.15 Five Period Two Treatments Design for Sequence ABABA and its Dual 

(Design15) 

The design is represented as given in Table 4.1.29. 
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Table 4.1.29: C (2× 𝟓 × 𝟐) Design 15 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAABB A A B A B 

BBABA B B A B A 

 

Substituting model (3.1.3) to table (4.1.29) gives; 

Table 4.1.30: Expected Values for C (2× 𝟓 × 𝟐) Design 15 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAABB 

 

μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA+ λA 

μ + π4

+ τB + λA 

μ + π5

+ τB + λB 

BBBAA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τB+ λB 

μ + π4

+ τA + λB 

μ + π5

+ τA + λA 

 

4.1.15.1 Direct Treatments Estimate for Design15 using (BLUE) 

The contrasts C47andC48 , identified from Table 4.1.30 in such a way that (3.1.6), and 

(3.1.8) are satisfied are given by; 

E(C47) =
1

3
E[(Y11 + Y12 + Y13 − Y14 + Y15)] = 

1

3
 [3μ + (π1 + π2 + π3 − π4 + π5) 

+3τA + (λA + λB)] 

E(C48) =
1

3
E[(Y21 + Y22 + Y23 − Y24 + Y25)] = 

1

3
[3μ + (π1 + π2 + π3 − π4 +

π5)+3τB + (λA + λB)] 

From (3.1.4), the treatment difference is obtained by finding difference between the two 

contrasts. Thus, 

τA − τB= C47 − C48                                                                                                             (4.1.24) 

4.1.15.2 Carryover Treatments Effects Estimate for Design 15 using (BLUE) 

The contrasts C49andC50 , identified from Table 4.1.30 in such a way that (3.1.7), and 

(3.1.9) are satisfied are given by; 
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E(C49) =
1

3
 E(−Y11 − Y12 + 2Y13 + Y14 − Y15) = 

1

3
[(−π1 − π2 + 2π3 + π4 − π5) +2 

λA − λB] 

E(C50) =
1

3
 E(−Y21 − Y22 + 2Y23 + Y24 − Y25)=

1

3
 [(−π1 − π2 + 2π3 + π4 − π5) 

+2λB − λA] 

From (3.1.5), the carryover difference is obtained by finding difference between the 

two contrasts. Thus, 

λA − λB= C49 − C50                                                                                                            (4.1.25) 

4.1.16: Five Periods, Two Treatments, and four sequence design  (𝐃𝟏 + 𝐃𝟐) 

The design is represented as given in Table 4.1.31 below. 

Table 4.1.31: C (2× 𝟓 × 𝟒) Design 16 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA B A A A A 

ABBBB A B B B B 

ABAAA A B A A A 

BABBB B A B B B 

 

Substituting model (3.1.3) to table (4.1.31) gives; 

Table 4.1.32: Expected values for C (2× 𝟓 × 𝟒) Design 16 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA+ λA 

μ + π4

+ τA + λA 

μ + π5

+ τA + λA 

ABBBB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB+ λB 

μ + π4

+ τB + λB 

μ + π5

+ τB + λB 

ABAAA μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA+ λB 

μ + π4

+ τA + λA 

μ + π5

+ τA + λA 

BABBB μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB+ λA 

μ + π4

+ τB + λB 

μ + π5

+ τB + λB 
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4.1.16.1: Direct Treatments Estimate for Design16 using (BLUE) 

The contrasts d1, d2, d3and d4 , identified from table 4.1.32 in such a way that (3.1.6), 

and (3.1.8) are satisfied are given by; 

E(d1) =
1

2
E(Y11 − Y12 − Y13 + Y14 + Y15) =

1

2
[3 μ + (π1 − π2 − π3 + π4 + π5) 

+(τB)+(λA − λB)] 

E(d2) =
1

2
E(Y21 − Y22 − Y23 + Y24 + Y25) =

1

2
 [3μ + (π1 − π2 − π3 + π4 + π5)  

+(τA )+ (λB − λA)] 

E(d3) =
1

2
E(Y31 + Y32 − Y33+Y34 − Y35) =

1

2
[3 μ + (π1 + π2 − π3 + π4 − π5) 

+(τB)+(λA − λB)] 

E(d4) =
1

2
E(Y41 + Y42 − Y43 + Y44 − Y45) =

1

2
[3μ + (π1 + π2 − π3 + π4 − π5) +(τA 

) + (λB − λA)] 

Thus (3.1.4) is obtained by finding the sum of the four contrasts, 

τA − τB = (d1 + d2 + d3 + d4)                                                                                        (4.1.26) 

4.1.16.1 Carryover Treatments Estimate for Design16 using (BLUE) 

The contrasts d5, d6, d7and d8 , identified from table 4.1.32 in such a way that (3.1.7), 

and (3.1.9) are satisfied are given by; 

E(d5) =
1

4
E(Y11 − Y12 − Y13 + Y14 + Y15) =

1

4
[ μ + (π1 − π2 − π3 + π4 + π5) +τB 

+(λA − λB)] 

E(d6) =
1

4
E(Y21 − Y22 − Y23 + Y24 + Y25) =

1

4
 [μ + (π1 − π2 − π3 + π4 + π5)  +τA 

+ (λB − λA)] 
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E(d7) =
1

4
E(Y31 + Y32 + Y33 − Y34 − Y35) =

1

4
[ μ + (π1 + π2 + π3 − π4 − π5) +τB 

+(λB − λA)] 

E(d8) =
1

4
E(Y41 + Y42 + Y43 − Y44 − Y45) =

1

4
 [μ + (π1 + π2 + π3 − π4 − π5) +τA + 

(λA − λB)] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d5 − d6 − d7 + d8)                                                                                           (4.1.27) 

4.1.17 Five Periods, Two Treatments, and four sequence design  (𝐃𝟏 + 𝐃𝟑) 

The design is represented as given in Table 4.1.33 below. 

Table 4.1.33: C (2× 𝟓 × 𝟒) Design 17 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA  B A A A A 

ABBBB A B B B B 

AABAA A A B A A 

BBABB B B A B B 

 

Substituting model (3.1.3) to Table (4.1.33) gives; 

Table 4.1.34: Expected values for C (2× 𝟓 × 𝟒) Design 17 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA+ λA 

μ + π4

+ τA + λA 

μ + π5

+ τA + λA 

ABBBB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB+ λB 

μ + π4

+ τB + λB 

μ + π5

+ τB + λB 

A ABAA μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB+ λA 

μ + π4

+ τA + λB 

μ + π5

+ τA + λA 

BBABB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA+ λB 

μ + π4

+ τB + λA 

μ + π5

+ τB + λB 
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4.1.17.1 Direct Treatments Estimate for Design17 using (BLUE) 

The contrasts d9, d10, d11and d12 , identified from Table 4.1.34 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d9) =
1

2
E(Y11 + Y12 − Y13 + Y14 + Y15) =

1

2
[ 3 μ + (π1 + π2 − π3 + π4 + π5) +2 

τA +τB +(λA + λB)]  

E(d10) =
1

2
E(Y21 + Y22 − Y23 + Y24 + Y25) =

1

2
 [3μ + (π1 + π2 − π3 + π4 + π5) + 2 

τB +τA + (λA + λB)] 

E(d11) =
1

2
E(Y31 − Y32 + Y33 + Y34 + Y35) =

1

2
[ 3 μ + (π1 − π2 + π3 + π4 + π5) +2 

τA +τB +(λA + λB)] 

E(d12) =
1

2
E(Y41 − Y42 + Y43 + Y44 + Y45) =

1

2
 [3μ + (π1 − π2 + π3 + π4 + π5) + 2 

τB +τA + (λA + λB)] 

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d9 − d10) + (d11 − d12)                                                                                (4.1.28) 

4.1.17.2 Carryover Treatments Estimate for Design17 using (BLUE) 

The contrasts d13, d14, d15and d16 , identified from Table 4.1.34 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d13) =
1

4
E(Y11 − Y12 − Y13 − Y14 + Y15) =

1

4
[ 2 μ + (π1 − π2 − π3 − π4 + π5)  

+(2 τA −τB) +(3λA − λB)] 

E(d14) =
1

4
E(Y21 − Y22 − Y23 − Y24 + Y25) =

1

4
 [2μ + (π1 − π2 − π3 − π4 + π5) 

+( 2 τB −τA) + (3λB − λA)] 
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E(d15) =
1

4
E(Y31 + Y32 − Y33 − Y34 − Y35) =

1

4
[ 2 μ + (π1 + π2 − π3 − π4 − π5)  

−(τB) −(λB + λA)] 

E(d16) =
1

4
E(Y41 + Y42 − Y43 − Y44 − Y45) =

1

4
 [2μ + (π1 + π2 − π3 − π4 − π5)  

−(τA) −  (λA + λB)] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d13 − d14 − 3d15 + 3d16)                                                                              (4.1.29) 

4.1.18 Five Periods, Two Treatments, and four sequence design  (𝐃𝟏 + 𝐃𝟒) 

The design is represented as given in Table 4.1.35 below. 

Table 4.1.35: C (2× 𝟓 × 𝟒) Design 18 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA  B A A A A 

ABBBB A B B B B 

AAABA A A A B A 

BBBAB B B B A B 

 

Substituting model (3.1.3) to Table (4.1.35) gives; 

Table 4.1.36: Expected values for C (2× 𝟓 × 𝟒) Design 18 

 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA + λA 

μ + π4 +

τA + λA 

μ + π5 +

τA + λA 

ABBBB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB + λB 

μ + π4 +

τB + λB 

μ + π5 +

τB + λB 

A AABA μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

BBBAB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π2 +

τB + λB 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 
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4.1.18.1 Direct Treatments Estimate for Design18 using (BLUE) 

The contrasts d17, d18, d19and d20 , identified from Table 4.1.36 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d17) =
1

2
E(Y11 + Y12 − Y13 + Y14 + Y15) =

1

2
[ 3 μ + (π1 + π2 − π3 + π4 + π5) +2 

τA +τB +(λA + λB)], 

E(d18) =
1

2
E(Y21 + Y22 − Y23 + Y24 + Y25) =

1

2
[3μ + (π1 + π2 − π3 + π4 + π5) + 2 

τB +τA + (λA + λB)], 

E(d19) =
1

2
E(Y31 − Y32 + Y33 + Y34 + Y35) =

1

2
[ 3 μ + (π1 − π2 + π3 + π4 + π5) +2 

τA +τB +(λA + λB)], 

E(d20) =
1

2
E(Y41 − Y42 + Y43 + Y44 + Y45) =

1

2
 [3μ + (π1 − π2 + π3 + π4 + π5) + 2 

τB +τA + (λA + λB)]. 

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d17 − d18) + (d19 − d20)                                                                               (4.1.30) 

4.1.18.2 Carryover Treatments Estimate for Design18 using (BLUE) 

The contrasts d21, d22, d23and d24 , identified from Table 4.1.36 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d21) =
1

4
E(Y11 − Y12 − Y13 − Y14 + Y15) =

1

4
[ 2 μ + (π1 − π2 − π3 − π4 + π5)  

+(2 τA −τB) +(3λA − λB)] 

E(d22) =
1

4
E(Y21 − Y22 − Y23 − Y24 + Y25) =

1

4
 [2μ + (π1 − π2 − π3 − π4 + π5) 

+( 2 τB −τA) + (3λB − λA)] 
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E(d23) =
1

4
E(Y31 + Y32 − Y33 − Y34 − Y35) =

1

4
[ 2 μ + (π1 + π2 − π3 − π4 − π5)  

−(τB) −(λB + λA)] 

E(d24) =
1

4
E(Y41 + Y42 − Y43 − Y44 − Y45) =

1

4
 [2μ + (π1 + π2 − π3 − π4 − π5)  

−(τA) −  (λA + λB)] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB= (d21 − d22 − 3d23 + 324)                                                                                  (4.1.31) 

4.1.19: Five Periods, Two Treatments, and four sequence design  (𝐃𝟑 + 𝐃𝟒) 

The design is represented as given in Table 4.1.37 below. 

Table 4.1.37: C (2× 𝟓 × 𝟒) Design 19 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAA  A A B A A 

BBABB B B A B B 

AAABA A A A B A 

BBBAB B B B A B 

 

Substituting model (3.1.3) to Table (4.1.37) gives; 

Table 4.1.38: Expected values for C (2× 𝟓 × 𝟒) Design 19 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAA μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB + λA 

μ + π4 +

τA + λB 

μ + π5 +

τA + λA 

BBABB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA + λB 

μ + π4 +

τB + λA 

μ + π5 +

τB + λB 

A AABA μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

BBBAB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π2 +

τB + λB 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 

 

4.1.19.1 Direct Treatments Estimate for Design19 using (BLUE) 

The contrasts d21, d22, d23and d24 , identified from Table 4.1.38 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 
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E(d21) =
1

2
E(Y11 − Y12 + Y13 + Y14 + Y15) =

1

2
 [3 μ + (π1 − π2 + π3 + π4 + π5) +2 

τA +τB +(λA + λB)] 

E(d22) =
1

2
E(Y21 − Y22 + Y23 + Y24 + Y25) =

1

2
 [3μ + (π1 − π2 + π3 + π4 + π5) + 2 

τB +τA + (λA + λB)] 

E(d23) =
1

2
E(Y31 − Y32 + Y33 + Y34 + Y35) =

1

2
 [3 μ + (π1 − π2 + π3 + π4 + π5) + 

(2τA +τB)+(λA + λB)] 

E(d24) =
1

2
E(Y41 − Y42 + Y43 + Y44 + Y45) =

1

2
[3 μ + (π1 − π2 + π3 + π4 + π5) + 

(2τB +τA)+(λA + λB)] 

Thus (3.1.4) is obtained by finding the sum of the differences of the four contrasts given 

by, 

τA − τB = (d21 − d22) + (d23 − d24)                                                                              (4.1.32) 

4.1.19.2 Carryover Treatments Estimate for Design18 using (BLUE) 

The contrasts d25, d26, d27and d28 , identified from Table 4.1.38 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d25) =
1

4
E(Y11 − Y12 + Y13 + Y14 − Y15) =

1

4
 [ μ + (π1 − π2 + π3 + π4 − π5) 

+(τB)  +(λB − λA)], 

E(d26) =
1

4
E(Y21 − Y22 + Y23 + Y24 − Y25) = 

1

4
[μ + (π1 − π2 + π3 + π4 − π5) + 

(τA) + (λA − λB)], 

E(d27) =
1

4
E(Y31 − Y32 + Y33 + Y34 − Y35) =   

1

4
[ μ + (π1 − π2 + π3 + π4 − π5) + 

(τB)+(λA − λB)], 
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E(d28) =
1

4
E(Y41 − Y42 + Y43 + Y44 − Y45) =

1

4
[ μ + (π1 − π2 + π3 + π4 − π5) + 

(τA)+(λB − λA)], 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d26 − d25) + (d27 − d28)                                                                                 (4.1.33) 

4.1.20 Five Periods, Two Treatments, and four sequence design  (𝐃𝟓 + 𝐃𝟔) 

The design is represented as given in Table 4.1.39 below. 

Table 4.1.39: C (2× 𝟓 × 𝟒) Design 20 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB  A A A A B 

BBBBA B B B B A 

BBAAA B B A A A 

AABBB A A B B B 

 

Substituting model (3.1.3) to Table (4.1.39) gives; 

Table 4.1.40: Expected values for C (2× 𝟓 × 𝟒) Design 20 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

BBBBA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τB + λB 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

BBAAA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA + λB 

μ + π4 +

τA + λA 

μ + π5 +

τA + λA 

AABBB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π2 +

τB + λA 

μ + π4 +

τB + λB 

μ + π5 +

τB + λB 

 

4.1.20.1: Direct Treatments Estimate for Design 20 using (BLUE) 

The contrasts d29, d30, d31and d32 , identified from Table 4.1.40 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d29) =
1

2
E(−Y11 + Y12 − Y13 + Y14 − Y15)= −μ − (π1 − π2 + π3 − π4 + π5) − τB 
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E(d30) =
1

2
E(−Y21 + Y22 − Y23 + Y24 − Y25)=−μ − (π1 − π2 + π3 − π4 + π5) − τA  

E(d31) =
1

2
E(Y31 − Y32 + Y33 − Y34 + Y35)= μ + (π1 − π2 + π3 − π4 + π5) + τA 

E(d32) =
1

2
E(Y41 − Y42 + Y43 − Y44 + Y45)=μ + (π1 − π2 + π3 − π4 + π5) + τB  

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d29 − d30) + (d31 − d32)                                                                             (4.1.34) 

4.1.20.2: Carryover Treatments Estimate for Design20 using (BLUE) 

The contrasts d33, d34, d35and d37 , identified from Table 4.1.40 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d33) =
1

4
E(Y11 − Y12 + Y13 + Y14 − Y15) = 

1

4
[ 3μ + (π1 − π2 + π3 + π4 − π5) 

 + (2τA − τB)  ], 

E(d34) =
1

4
E(Y21 − Y22 + Y23 + Y24 − Y25) = 

1

4
[3μ + (π1 − π2 + π3 + π4 − π5)  + 

 (2τB − τA) ], 

E(d35) =
1

4
E(Y31 + Y32 − Y33 + Y34 + Y35) =  

1

4
 [4 μ + (π1 + π2 − π3 + π4 + π5)  + 

 (τA + 2τB)+2(λA + λB)], 

E(d36) =
1

4
E(Y41 + Y42 − Y43 + Y44 + Y45) =

1

4
[ 4μ + (π1 + π2 − π3 + π4 + π5) + 

 (2τA + τB)+2(λB + λA)], 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d33 − d34) − (d35 + d36)                                                                                 (4.1.35) 
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4.1.21: Five Periods, Two Treatments, and four sequence design  (𝐃𝟕 + 𝐃𝟖) 

The design is represented as given in Table 4.1.41 below. 

Table 4.1.41: C (2× 𝟓 × 𝟒) Design 21 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BABAA  B A B A A 

ABABB A B A B B 

BAABA B A A B A 

ABBAB A B B A B 

 

Substituting model (3.1.3) to Table (4.1.41) gives; 

Table 4.1.42: Expected values for C (2× 𝟓 × 𝟒) Design 21 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BABAA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB + λA 

μ + π4 +

τA + λB 

μ + π5 +

τA + λA 

ABABB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA + λB 

μ + π4 +

τB + λA 

μ + π5 +

τB + λB 

BA ABA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA + λA 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

ABBAB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π2 +

τB + λB 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 

4.1.21.1 Direct Treatments Estimate for Design 21 using (BLUE) 

The contrasts d37, d38, d39and d40 , identified from Table 4.1.42 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d37) =
1

4
E(Y11 − Y12 − Y13 + Y14 + Y15) =

1

4
 [ μ + (π1 − π2 − π3 + π4 + π5) + τA ] 

E(d38) =
1

4
E(Y21 − Y22 − Y23 + Y24 + Y25) =

1

4
 [μ + (π1 − π2 − π3 + π4 + π5) + τB ] 

E (d39) =
1

12
E(Y31 − Y32 + Y33 − Y34 + Y35) =

1

12
 [μ+ (π1 − π2 + π3 − π4 + π5) + 3τA ] 

E(d40) =
1

12
E(Y41 − Y42 + Y43 − Y44 + Y45) = 

1

12
[μ + (π1 − π2 + π3 − π4 + π5) + 3τB ] 

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 
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τA − τB = (d37 − d38) + (d39 − d40)                                                                              (4.1.36) 

4.1.21.2 Carryover Treatments Estimate for Design 21 using (BLUE) 

The contrasts d41, d42, d43and d44 , identified from table 4.1.42 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d41) =
1

2
E [(Y11 − 2Y12 − Y13 + Y14 + Y15)] =

1

2
[(π1 − 2π2 − π3 + π4 + π5) − λB] 

E(d42) =
1

2
E[ (Y21 − 2Y22 − Y23 + Y24 + Y25)]= 

1

2
 [(π1 − 2π2 − π3 + π4 + π5) −λA] 

E(d43) =
1

2
E[(Y31 + Y32 + Y33 − Y34 − Y35)] =

1

2
[ μ +(π1 + π2 + π3 − π4 − 2π5) − λB] 

E(d44) =
1

2
 E[(Y41 + Y42 + Y43 − Y44 − Y45)]= 

1

2
 [ μ +(π1 + π2 + π3 − π4 − 2π5) −λA] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d41 − d42) + (d43 − d44)                                                                                (4.1.37) 

4.1.22 Five Periods, Two Treatments, and four sequence design  (𝐃𝟗 + 𝐃𝟏𝟎) 

The design is represented as given in Table 4.1.43 below. 

Table 4.1.43: C (2× 𝟓 × 𝟒) Design 22 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAB  B A A A B 

ABBBA A B B B A 

ABBAA A B B A A 

BAABB B A A B B 

 

Substituting model (3.1.3) to Table (4.1.43) gives; 
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Table 4.1.44: Expected values of C (2× 𝟓 × 𝟒) Design 22 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAB μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τA + λA 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

ABBBA μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB + λB 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

ABBAA μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τB + λB 

μ + π4 +

τA + λB 

μ + π5 +

τA + λA 

BAABB μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π2 +

τA + λA 

μ + π4 +

τB + λA 

μ + π5 +

τB + λB 

 

4.1.22.1: Direct Treatments Estimate for Design 22 using (BLUE) 

The contrasts d45, d46, d47and d48 , identified from Table 4.1.44 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d45) =
1

2
E(−Y11 − Y12 − Y13 + Y14 − Y15)= 

1

2
 [ − μ + (−π1 − π2 − π3 + π4 − π5) 

− (2τB + τA) −(λA + λB)] 

E(d46) =
1

2
E(−Y21 − Y22 − Y23 + Y24 − Y25)= 

1

2
 [ −μ + (−π1 − π2 − π3 + π4 − π5) 

− (2τA + τB) −(λA + λB)] 

E(d47) =
1

2
E(Y31 − Y32 + Y33 − Y34 + Y35)= 

1

2
 [ μ + (π1 − π2 + π3 − π4 + π5) + 

(τA)] 

E(d48) =
1

2
E(Y41 − Y42 + Y43 − Y44 + Y45)= 

1

2
 [ μ + (π1 − π2 + π3 − π4 + π5) + 

(τB)]  

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d45 − d46) + (d47 − d48)                                                                              (4.1.38) 
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4.1.22.2: Carryover Treatments Estimate for Design 22 using (BLUE) 

The contrasts d49, d50, d51and d52 , identified from Table 4.1.44 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d49) =  
1

6
E[(Y11 − 2Y12 + Y13 + Y14 − Y15)] = 

1

6
[2μ +(π1 − 2π2 + π3 + π4 − π5) 

− 2λB + λA] 

E(d50) =
1

6
 E[(Y21 − 2Y22 + Y23 + Y24 − Y25)]= 

1

6
[2μ +(π1 − 2π2 + π3 + π4 − π5) 

−2λA + λB] 

E(d51) =  
1

6
E[(Y31 + Y32 + Y33 − 2Y34 + Y35)] = 

1

6
[2μ +(π1 + π2 − π3 − 2π4 + π5) 

 − λB + 2λA] 

E(d52) =
1

6
 E[(Y41 + Y42 + Y43 − 2Y44 + Y45)]= 

1

6
[2μ +(π1 + π2 − π3 − 2π4 + π5) 

−λA + 2λB] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d49 − d50) + (d51 − d52)                                                                                (4.1.39) 

4.1.23: Five Periods, Two Treatments, and four sequence design  (𝐃𝟏𝟏 + 𝐃𝟏𝟐) 

The design is represented as given in Table 4.1. 45 below. 

Table 4.1.45: C (2× 𝟓 × 𝟒) Design 23 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABABA A B A B A 

BABAB B A B A B 

ABAAB A B A A B 

BABBA B A B B A 

 

Substituting model (3.1.3) to Table (4.1.45) gives; 
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Table 4.1.46: Expected values for C (2× 𝟓 × 𝟒) Design 23 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABABA μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA + λB 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

BABAB μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π3 +

τB + λA 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 

ABAAB μ + π1

+ τA 

μ + π2 +

τB + λA 

μ + π3 +

τA + λB 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

BABBA μ + π1

+ τB 

μ + π2 +

τA + λB 

μ + π2 +

τB + λA 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

 

4.1.23.1: Direct Treatments Estimate for Design 23 using (BLUE) 

The contrasts d53, d54, d55and d56 , identified from table 4.1.46 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d53) =
1

2
E(Y11 + Y12 + Y13 + Y14 + Y15)= 

1

2
 [5μ + (π1 + π2 + π3 + π4 + π5) + 

(3τA+2τB) + 2(λA + λB)], 

E(d54) =
1

2
E(Y21 + Y22 + Y23 + Y24 + Y25)= 

1

2
 [5μ + (π1 + π2 + π3 + π4 + π5) + 

(2τA+3τB) + 2(λA + λB)], 

E(d55) =
1

2
E(−Y31 − Y32 − Y33 + Y34 − Y35) =

1

2
 [−3μ + (−π1 − π2 − π3 + π4 −

π5) − (τA+2τB) − (λA + λB)], 

E(d56) =
1

2
E(−Y41 − Y42 − Y43 + Y44 − Y45) =

1

2
 [−3μ + (−π1 − π2 − π3 + π4 −

π5) − (2τA+τB) − (λA + λB)], 

Thus (3.1.4) is obtained by finding the sum of the differences of the four contrasts as 

shown below, 

τA − τB = (d53 − d54) + (d55 − d56)                                                                             (4.1.40) 
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4.1.23.2: Carryover Treatments Estimate for Design 23 using (BLUE) 

The contrasts d57, d58, d59and d60 , identified from Table 4.1.46 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d57) =  
1

2
E(Y11 + 2Y12 + Y13 + Y14 + Y15) =

1

2
 [6μ +(π1 + 2π2 + π3 + π4 + π5) + 

(3τA+3τB) + (3λA + 2λB)] 

E(d58) =  
1

2
E(Y21 + 2Y22 + Y23 + Y24 + Y25)= 

1

2
 [6μ +(π1 + 2π2 + π3 + π4 + π5) + 

(3τA+3τB) + (2λA + 3λB)] 

E(d59) =  
1

6
E(−Y31 + Y32 − Y33 + 2Y34 − Y35) =

1

6
[ (−π1 + π2 − π3 +

2π4−π5)+2λA − λB ] 

E(d60) =  
1

6
E(−Y41 + Y42 − Y43 + 2Y44 − Y45) =

1

6
[ (−π1 + π2 − π3 + 2π4 − π5) 

+2λB − λA] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d57 − d58) + (d59 − d60)                                                                                (4.1.41) 

4.1.24: Five Periods, Two Treatments, and four sequence design  (𝐃𝟏𝟑 + 𝐃𝟏𝟒) 

The design is represented as given in Table 4.1.47 below. 

Table 4.1.47: C (2× 𝟓 × 𝟒) Design 24 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABBA A A B B A 

BBAAB B B A A B 

AABAB A A B A B 

BBABA B B A B A 

 

Substituting model (3.1.3) to Table (4.1.47) gives; 
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Table 4.1.48: Expected values for C (2× 𝟓 × 𝟒) Design 24 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABBA μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB + λA 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

BBAAB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA + λB 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

AABAB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB + λA 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 

BBABA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π2 +

τA + λB 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

 

4.1.24.1 Direct Treatments Estimate for Design 24 using (BLUE) 

The contrasts d61, d62, d63and d64 , identified from Table 4.1.48 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d61) =
1

2
E(Y11 − Y12 + Y13 − Y14 + Y15)= 

1

2
 [ μ + (π1 − π2 + π3 − π4 + π5) + (τA) ] 

E(d62) =
1

2
E(Y21 − Y22 + Y23 − Y24 + Y25)= 

1

2
 [μ + (π1 − π2 + π3 − π4 + π5) + (τB) ] 

E(d63) =
1

2
E(−Y11 + Y12 − Y13 − Y14 − Y15)=

1

2
[−3μ + (−π1 + π2 − π3 − π4 − π5) 

− (2τB + τA) − (λA + λB)] 

E(d64) =
1

2
E(−Y21 + Y22 − Y23 − Y24 − Y25)= 

1

2
 [−3μ + (−π1 + π2 − π3 − π4 − π5) 

− (2τA + τB) − (λA + λB)] 

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d61 − d62) + (d63 − d64)                                                                              (4.1.42) 

4.1.24.2: Carryover Treatments Estimate for Design 24 using (BLUE) 

The contrasts d65, d66, d67and d68 , identified from Table 4.1.48 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 
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E(d65) =
1

2
E (−Y11 + 2Y12 − Y13 + Y14 − Y15) =

1

2
[ (−π1 + 2π2 − π3 + π4 − π5) + λA] 

E(d66) =
1

2
 E(−Y21 + 2Y22 − Y23 + Y24 − Y25)= 

1

2
 [(−π1 + 2π2 − π3 + π4 − π5) +λB] 

E(d67) =
1

6
 E(−Y11 + 2Y12 + Y13 − Y14 − Y15) = 

1

6
[(−π1 + 2π2 + π3 − π4 − π5) +2 

λA − λB] 

E(d68) =
1

6
 E(−Y21 + 2Y22 + Y23 − Y24 − Y25)=

1

6
 [(−π1 + 2π2 + π3 − π4 − π5) 

+2λB − λA] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d65 − d66) + (d67 − d68)                                                                                (4.1.43) 

4.1.25 Five Periods, Two Treatments, and four sequence design  (𝐃𝟏𝟒 + 𝐃𝟏𝟓) 

The design is represented as given in Table 4.1.49 below. 

Table 4.1. 49: C (2× 𝟓 × 𝟒) Design 25 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAB A A B A B 

BBABA B B A B A 

AAABB A A A B B 

BBBAA B B B A A 

 

Substituting model (3.1.3) to Table (4.1.49) gives; 

Table 4.1.50: Expected values for C (2× 𝟓 × 𝟒) Design 25 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τB + λA 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 

BBABA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τA + λB 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

AAABB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τB + λA 

μ + π5 +

τB + λB 

BBBAA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π2 +

τB + λB 

μ + π4 +

τA + λB 

μ + π5 +

τA + λA 
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4.1.25.1 Direct Treatments Estimate for Design 25 using (BLUE) 

The contrasts d69, d70, d71and d72 , identified from Table 4.1.50 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 

E(d69) =
1

2
E(−Y11 + Y12 − Y13 − Y14 − Y15)=

1

2
[−3μ + (−π1 + π2 − π3 − π4 − π5) 

− (2τB + τA) − (λA + λB)] 

E(d70) =
1

2
E(−Y21 + Y22 − Y23 − Y24 − Y25)= 

1

2
 [−3μ + (−π1 + π2 − π3 − π4 − π5) 

− (2τA + τB) − (λA + λB)] 

E(d71) =
1

6
E[(Y31 + Y32 + Y33 − Y34 + Y35)]=

1

6
 [3μ + (π1 + π2 + π3 − π4 + π5) 

+3τA + (λA + λB)] 

E(d72) =
1

6
E[(Y41 + Y42 + Y43 − Y44 + Y45)]= 

1

6
[3μ + (π1 + π2 + π3 − π4 +

π5)+3τB + (λA + λB)] 

Thus (3.1.4) is obtained by finding the sum of the differences of the four contrasts as 

shown below, 

τA − τB = (d69 − d70) + (d71 − d72)                                                                              (4.1.44) 

4.1.25.2: Carryover Treatments Estimate for Design 25 using (BLUE) 

The contrasts d73, d74, d75and d76 , identified from Table 4.1.50 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d73) =
1

6
 E(−Y11 + 2Y12 + Y13 − Y14 − Y15) = 

1

6
[(−π1 + 2π2 + π3 − π4 − π5) +2 

λA − λB] 

E(d74) =
1

6
 E(−Y21 + 2Y22 + Y23 − Y24 − Y25)=

1

6
 [(−π1 + 2π2 + π3 − π4 − π5) 

+2λB − λA] 
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E(C75) =
1

6
 E(−Y31 − Y32 + 2Y33 + Y34 − Y35) = 

1

6
[(−π1 − π2 + 2π3 + π4 − π5) 

+2 λA − λB] 

E(C76) =
1

6
 E(−Y41 − Y42 + 2Y43 + Y44 − Y45)=

1

6
 [(−π1 − π2 + 2π3 + π4 − π5) 

+2λB − λA] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d73 − d74) + (d75 − d76)                                                                                 (4.1.45) 

4.1.26: Five Periods, Two Treatments, and four sequence design  (𝐃𝟒 + 𝐃𝟓) 

The design is represented as given in Table 4.1.51 below. 

Table 4.1.51: C (2× 𝟓 × 𝟒) Design 26 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAABA A A A B A 

BBBAB B B B A B 

AAAAB A A A A B 

BBBBA B B B B A 

 

Substituting model (3.1.3) to Table (4.1.51) gives; 

Table 4.1.52: Expected values for C (2× 𝟓 × 𝟒) Design 26 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAABA μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τB + λA 

μ + π5 +

τA + λB 

BBBAB μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τB + λB 

μ + π4 +

τA + λB 

μ + π5 +

τB + λA 

AAAAB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

BBBBA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π2 +

τB + λB 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

 

4.1.26.1: Direct Treatments Estimate for Design 26 using (BLUE) 

The contrasts d77, d78, d79and d80 , identified from Table 4.1.52 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 
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E(d77) = E(Y11 − Y12 + Y13 + Y14 − Y15) = [μ + (π1 − π2 + π3 + π4 − π5) + (τB) + 

(2λA − λB)] 

E(d78) = E(Y21 − Y22 + Y23 + Y24 − Y25) =  [μ + (π1 − π2 + π3 + π4 − π5) + (τA) + 

(2λB − λA)] 

E(d79) = 3E(Y31 + Y32 − 2Y33 + Y34 + Y35)] = 3[2μ + (π1 + π2 − 2π3 + π4 + π5) 

+(τA + τB)  +  (λA)] 

E(d80) = 3E(Y41 + Y42 − 2Y43 + Y44 + Y45)] = 3[2μ + (π1 + π2 − 2π3 + π4 +

π5)+(τB + τA)  +  (λB)] 

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d78 − d77) + (d79 − d80)                                                                              (4.1.46) 

4.1.26.2 Carryover Treatments Estimate for Design 26 using (BLUE) 

The contrasts d81, d82, d83and d84 , identified from Table 4.1.52 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d81) =
1

4
E(Y11 − Y12 − Y13 − Y14 + Y15) = 

1

4
[-μ + (π1 − π2 − π3 − π4 + π5) − 

(τB) + (λB − 3λA)] 

E(d82) =
1

4
E(Y21 − Y22 − Y23 − Y24 + Y25) =  

1

4
 [-μ + (π1 − π2 − π3 − π4 + π5) − 

(τA) + (λA − 3λB)] 

E(d83) =
1

4
E(Y31 − Y32 − Y33 + Y34 + Y35)] =  

1

4
 [μ + (π1 − π2 − π3 + π4 + π5) 

+(τB) ] 
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E(d84) =
1

4
E(Y41 − Y42 − Y43 + Y44 + Y45)] = 

1

4
 [μ + (π1 − π2 − π3 + π4 +

π5)+(τA) ] 

Thus (3.1.5) is obtained by finding difference between the four contrasts as shown 

below, 

λA − λB = (d84 + d82) − (d83 + d81)                                                                                (4.1.47) 

4.1.27: Five Periods, Two Treatments, and four sequence design  (𝐃𝟓 + 𝐃𝟓) 

The design is represented as given in Table 4.1.53 below. 

Table 4.1.53: C (2× 𝟓 × 𝟒) Design 27 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB A A A B A 

BBBBA B B B A B 

AAAAB A A A A B 

BBBBA B B B B A 

 

Substituting model (3.1.3) to Table (4.1.53) gives; 

Table 4.1.54:  Expected values for C (2× 𝟓 × 𝟒) Design 27 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

BBBBA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π3 +

τB + λB 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

AAAAB μ + π1

+ τA 

μ + π2 +

τA + λA 

μ + π3 +

τA + λA 

μ + π4 +

τA + λA 

μ + π5 +

τB + λA 

BBBBA μ + π1

+ τB 

μ + π2 +

τB + λB 

μ + π2 +

τB + λB 

μ + π4 +

τB + λB 

μ + π5 +

τA + λB 

 

4.1.27.1 Direct Treatments Estimate for Design 27 using (BLUE) 

The contrasts d85, d86, d87and d88 , identified from Table 4.1.54 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by 
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E(d85) =
1

3
E(Y11 + Y12 − 2Y13 + Y14 − 2Y15) = 

1

3
 [-μ + (π1 + π2 − 2π3 + π4 − 2π5) 

+(τA − 2τB) −  2(λA)] 

E(d86) =
1

3
E(Y21 + Y22 − 2Y23 + Y24 − 2Y25) =  

1

3
 [-μ + (π1 + π2 − 2π3 − π4 −

2π5)+(τB − 2τA) − 2 (λB)] 

E(d87) =
2

3
E(Y31 + Y32 − 2Y33 + Y34 + Y35)] = 

2

3
 [2μ + (π1 + π2 − 2π3 + π4 + π5) 

+(τA + τB)  +  (λA)] 

E(d88) =
2

3
E(Y41 + Y42 − 2Y43 + Y44 + Y45)] = 

2

3
 [2μ + (π1 + π2 − 2π3 + π4 +

π5)+(τB + τA)  +  (λB)] 

Thus (3.1.4) is obtained by finding the sum and differences of the four contrasts as 

shown below, 

τA − τB = (d85 − d86) + (d87 − d88)                                                                             (4.1.48) 

4.1.27.2: Carryover Treatments Estimate for Design 27 using (BLUE) 

The contrasts d89, d90, d91and d92 , identified from Table 4.1.54 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d89) =
1

2
E(Y11 − Y12 − Y13 − Y14 + Y15)=

1

2
[-μ + (π1 − π2 − π3 − π4 + π5) 

−2τA + τB −2 λA] 

E(d90) =
1

2
E(Y21 − Y22 − Y23 − Y24 + Y25)= 

1

2
 [-μ + (π1 − π2 − π3 − π4 + π5) −2 τB 

+τA − 2λB] 

E(d91) =
3

2
E(Y31 − Y32 − Y33 + Y34 + Y35)]= 

3

2
 [μ + (π1 − π2 − π3 + π4 + π5) 

+(τB) ] 
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E(d92) =
3

2
E(Y41 − Y42 − Y43 + Y44 + Y45)]= 

3

2
 [μ + (π1 − π2 − π3 + π4 +

π5)+(τA) ] 

Thus (3.1.5) is obtained by finding difference between the four contrasts, 

λA − λB=(d90 − d89) + (d91 − d92)                                                                              (4.1.49) 

4.1.28 Discussion  

The method gave best linear unbiased estimates for both treatments and carry-over 

effects for a majority of the five period cross-over designs. However, 

𝐷1, 𝐷2, 𝐷3, 𝐷4, &𝐷5 were found not to have unbiased estimates for carry-over effects. 

This is because in all the five designs, the first four periods received a similar treatment 

while the remaining one period for the five designs received alternative treatments. This 

implies that as we moved from one period to the other, the carry-over effects diminishes 

if the same treatment is assigned in two or more subsequent periods.  The fact that the 

carryover effects for (𝐷1 − 𝐷5) were not obtained implies that the designs can be 

effectively used to estimate the treatments effects even when the carryover effects are 

expected in the experiment. This is because the design by itself can eliminate the carry-

over effects. For the rest of the designs (𝐷6 − 𝐷27), the significance of carry-over 

effects difference needs to be evaluated and their contribution to treatment differences 

be established. 

4.2. Optimality criteria for C (2× 𝟓)Ccross-Over Designs  

4.2.1 Direct Treatments variance for C (2× 𝟓 × 𝟐) 

4.2.1.1 Design  𝐃𝟏 

From (4.1.1),  

 τA − τB = E[Y11 + Y12 − Y13 + Y14 + Y15 − Y21 − Y22 + Y23 − Y24 − Y25]    (4.2.1.1)          
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Applying (3.2.1) on (4.2.1.1) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                     (4.2.1.2) 

4.2.1.2 Design  𝐃𝟐 

From (4.1.2),  

   τA − τB = E[Y11 + Y12 + Y13 − Y14 + Y15 − Y21 − Y22 − Y23 + Y24 − Y25]  (4.2.1.3)          

Applying (3.2.1) on (4.2.1.3) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                      (4.2.1.4) 

4.2.1.3 Design  𝐃𝟑 

From (4.1.3),  

   τA − τB = E[Y11 − Y12 + Y13 + Y14 + Y15 − Y21 + Y22 − Y23 − Y24 − Y25]  (4.2.1.5)          

Applying (3.2.1) on (4.2.1.5) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                      (4.2.1.6) 

4.2.1.4 Design  𝐃𝟒 

From (4.1.4),  

   τA − τB = E[Y11 − Y12 + Y13 + Y14 + Y15 − Y21 + Y22 − Y23 − Y24 − Y25]  (4.2.1.7)          

Applying (3.2.1) on (4.2.1.7) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                       (4.2.1.8) 
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4.2.1.5 Design  𝐃𝟓 

From (4.1.5),  

  τA − τB = E[−Y11 + Y12 − Y13 + Y14 − Y15 + Y21 − Y22 + Y23 − Y24 + Y25]         (4.2.1.9)  

Applying (3.2.1) on (4.2.1.9) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                      (4.2.1.10)  

4.2.1.6 Design  𝐃𝟔 

From (4.1.6),  

   τA − τB = E[Y11 − Y12 + Y13 − Y14 + Y15 − Y21 + Y22 − Y23 + Y24 − Y25]           (4.2.1.11)          

Applying (3.2.1) on (4.2.1.11) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                     (4.2.1.12) 

4.2.1.7 Design  𝐃𝟕 

From (4.1.8),  

   τA − τB = E[Y11 − Y12 − Y13 + Y14 + Y15 − Y21 + Y22 + Y23 − Y24 − Y25]         (4.2.1.13)          

Applying (3.2.1) on (4.2.1.13) gives, 

var(τA − τB) = 10 
σ2

n
                                                                                                     (4.2.1.14) 

4.2.1.8 Design  𝐃𝟖 

From (4.1.10),  

   τA − τB =
1

3
E[Y11 − Y12 + Y13 − Y14 + Y15 − Y21 + Y22 − Y23 + Y24 − Y25]          (4.2.1.15)          

Applying (3.2.1) on (4.2.1.15) gives, 
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var(τA − τB) = 1.111  
σ2

n
                                                                                                 (4.2.1.16) 

4.2.1.9 Design  𝐃𝟗 

From (4.1.12),  

   τA − τB = E[−Y11 − Y12−Y13 + Y14 − Y15+Y21 + Y22 + Y23 − Y24 + Y25]       (4.2.1.17)         

Applying (3.2.1) on (4.2.1.17) gives, 

var(τA − τB) = 10  
σ2

n
                                                                                                      (4.2.1.18) 

4.2.1.10 Design  𝐃𝟏𝟎 

From (4.1.14),  

   τA − τB = E[Y11 − Y12+Y13 − Y14 + Y15−Y21 + Y22 − Y23 + Y24 − Y25]   (4.2.1.19)          

Applying (3.2.1) on (4.2.1.19) gives, 

var(τA − τB) = 10  
σ2

n
                                                                                                     (4.2.1.20) 

4.2.1.11 Design  𝐃𝟏𝟏 

From (4.1.16),   

   τA − τB = E[Y11 + Y12+Y13 + Y14 + Y15−Y21 − Y22 − Y23 − Y24 − Y25]    (4.2.1.21)          

Applying (3.2.1) on (4.2.1.21) gives, 

var(τA − τB) = 10  
σ2

n
                                                                                                     (4.2.1.22) 

4.2.1.12 Design  𝐃𝟏𝟐 

From (4.1.18),   

   τA − τB = E[−Y11 − Y12−Y13 + Y14 − Y15+Y21 + Y22 + Y23 − Y24 + Y25]      (4.2.1.23)          

Applying (3.2.1) on (4.2.1.23) gives, 
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var(τA − τB) = 10  
σ2

n
                                                                                                     (4.2.1.24) 

4.2.1.13 Design  𝐃𝟏𝟑 

From (4.1.20),  

   τA − τB = E[Y11 − Y12+Y13 − Y14 + Y15−Y21 + Y22 − Y23 + Y24 − Y25]   (4.2.1.25)          

Applying (3.2.1) on (4.2.1.25) gives, 

var(τA − τB) = 10  
σ2

n
                                                                                                  (4.2.1.26) 

4.2.1.14 Design  𝐃𝟏𝟒 

From (4.1.22),  

   τA − τB = E[−Y11 + Y12−Y13 − Y14 − Y15+Y21 − Y22 + Y23 + Y24 + Y25]     (4.2.1.27)          

Applying (3.2.1) on (4.2.1.27) gives, 

var(τA − τB) = 10  
σ2

n
                                                                                                  (4.2.1.28) 

4.2.1.15 Design  𝐃𝟏𝟓 

From (4.1.24),  

   τA − τB =
1

3
E[Y11 + Y12+Y13 − Y14 + Y15−Y21 − Y22 − Y23 + Y24 − Y25]       (4.2.1.29)          

Applying (3.2.1) on (4.2.1.29) gives, 

var(τA − τB) = 1.11  
σ2

n
                                                                                               (4.2.1.30) 
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4.2.2 Residuals variance for C (2× 𝟓 × 𝟐) 

4.2.2.1 Design  𝐃𝟔 

From (4.1.7),  

   λA − λB =
1

5
E[Y11 − Y12 − 2Y13 + Y14 + Y15 − Y21 + Y22 + 2Y23 − Y24 − Y25] (4.2.2.1)          

Applying (3.2.2) on (4.2.2.1) gives, 

var(λA − λB) = 0.64  
σ2

n
                                                                                                     (4.2.2.2) 

4.2.2.2 Design  𝐃𝟕 

From (4.1.9),  

   λA − λB = E[Y11 − 2Y12 − Y13 + Y14 + Y15 − Y21 + 2Y22 + Y23 − Y24 − Y25]  (4.2.2.3)          

Applying (3.2.2) on (4.2.2.3) gives, 

var(λA − λB) = 16  
σ2

n
                                                                                                         (4.2.2.4) 

4.2.2.3 Design  𝐃𝟖 

From (4.1.11),  

   λA − λB = E[Y11 + Y12 + Y13 − Y14 − Y15 − Y21 − Y22 − Y23 + Y24 − Y25]      (4.2.2.5)          

Applying (3.2.2) on (4.2.2.5) gives, 

var(λA − λB) = 10  
σ2

n
                                                                                                        (4.2.2.6) 

4.2.2.4 Design  𝐃𝟗 

From (4.1.13),  

   λA − λB =
1

3
E[Y11 − 2Y12+Y13 + Y14 − Y15−Y21 + 2Y22 − Y23 − Y24 + Y25]     (4.2.2.7)          

Applying (3.2.2) on (4.2.2.7) gives, 
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var(λA − λB) = 1.78  
σ2

n
                                                                                                      (4.2.2.8) 

4.2.2.5 Design  𝐃𝟏𝟎 

From (4.1.15),  

   λA − λB =
1

3
E[Y11 + Y12+Y13 − 2Y14 + Y15−Y21 − Y22 − Y23 + 2Y24 − Y25]     (4.2.2.9)          

Applying (3.2.2) on (4.2.2.9) gives, 

var(λA − λB) = 1.78  
σ2

n
                                                                                                  (4.2.2.10) 

4.2.2.6 Design  𝐃𝟏𝟏 

From (4.1.17),   

   λA − λB = E[Y11 + 2Y12+Y13 + Y14 + Y15−Y21 − 2Y22 − Y23 − Y24 − Y25]     (4.2.2.11)          

Applying (3.2.2) on (4.2.2.11) gives, 

var(λA − λB) = 16  
σ2

n
                                                                                                      (4.2.2.12) 

4.2.2.7 Design  𝐃𝟏𝟐 

From (4.1.19),  

   λA − λB =
1

3
E[−Y11 + Y12−Y13 + 2Y14 − Y15+Y21 − Y22 + Y23 − 2Y24 + Y25]   (4.2.2.13)          

Applying (3.2.2) on (4.2.2.13) gives, 

var(λA − λB) = 1.78  
σ2

n
                                                                                                   (4.2.2.14)  

4.2.2.8 Design  𝐃𝟏𝟑 

From (4.1.21),  

   λA − λB = E[−Y11 + Y12−Y13 + Y14 − Y15+Y21 − Y22 + Y23−Y24 + Y25]        (4.2.2.15)          
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Applying (3.2.2) on (4.2.2.15) gives, 

var(λA − λB) = 16  
σ2

n
                                                                                                      (4.2.2.16) 

4.2.2.9 Design  𝐃𝟏𝟒 

From (4.1.23),  

   λA − λB =
1

3
E[−Y11 + 2Y12+Y13 − Y14 − Y15+Y21 − 2Y22 − Y23 + Y24 + Y25]   (4.2.2.17)          

Applying (3.2.2) on (4.2.2.17) gives, 

var(λA − λB) = 1.78  
σ2

n
                                                                                                   (4.2.2.18) 

4.2.2.10 Design  𝐃𝟏𝟓 

From (4.1.25),  

   λA − λB =
1

3
E[−Y11 − Y12+2Y13 + Y14 − Y15+Y21 + Y22 − 2Y23 − Y24 + Y25]    (4.2.2.19)          

Applying (3.2.2) on (4.2.2.19) gives, 

var(λA − λB) = 1.78  
σ2

n
                                                                                                 (4.2.2.20) 

4.2.3 Treatments and Residuals Covariance for C (2× 𝟓 × 𝟐) Cross-Over Designs  

4.2.3.1 Design  𝐃𝟔 

Summing (4.2.1.11) and (4.2.2.1) gives,  

   (τA − τB) + (λA − λB) =  
1

5
 E(6y11 − 6y12 + 3y13 − 4y14 + 6y15) −

1

5
 E(6y21 −

6y22 + 3y23 − 4y24 + 6y25)                                                                                        (4.2.3.1)  

   Applying (3.2.1) and (3.2.2) on (4.2.3.1) gives, 

     var[(τA − τB) + (λA − λB)] = 10.64
σ2

n
                                                                 (4.2.3.2)      
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Substituting (4.2.1.12), (4.2.2.2) and (4.2.3.2) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 5.32
σ2

n
  

4.2.3.2 Design  𝐃𝟕  

Summing (4.2.1.13) and (4.2.2.3) 

   (τA − τB) + (λA − λB) =   E(2y11 − 3y12 − 2y13 + 2y14 + 2y15) −  E(2y21 −

3y22 − 2y23 + 2y24 + 2y25)                                                                            (4.2.3.3)          

Applying (3.2.1) and (3.2.2) on (4.2.3.3) gives, 

     var[(τA − τB) + (λA − λB)] = 50 
σ2

n
                                                                      (4.2.3.4)      

Substituting (4.2.1.14), (4.2.2.4) and (4.2.3.4) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1 
σ2

n
                                                                         (4.2.3.5) 

4.2.3.3 Design  𝐃𝟖 

Summing (4.2.1.15) and (4.2.2.5) 

   (τA − τB) + (λA − λB) =
1

3
 E(4y11 + 2y12 + 4y13 − 4y14 − 2y15) −

1

3
 E(4y21 +

2y22 + 4y23 − 4y24 − 2y25)                                                                                                     (4.2.3.6)          

Applying (3.2.1) and (3.2.2) on (4.2.3.6) gives, 

     var[(τA − τB) + (λA − λB)] = 12.44 
σ2

n
                                                                 (4.2.3.7)      

Substituting (4.2.1.16), (4.2.2.6 and (4.2.3.7) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 4.89 
σ2

n
                                                                       (4.2.3.8) 
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4.2.3.4 Design  𝐃𝟗 

Summing (4.2.1.17) and (4.2.2.7) gives 

  (τA − τB) + (λA − λB) =
1

3
E (−2y11 − 5y12 − 2y13 + 4y14 − 4y15) −

1

3
E (−2y21 − 5y22 − 2y23 + 4y24 − 4y25)                                                                    (4.2.3.9) 

Applying (3.2.1) and (3.2.2) on (4.2.3.9) gives, 

     var[(τA − τB) + (λA − λB)] = 14.44 
σ2

n
                                                                  (4.2.3.10)      

Substituting (4.2.1.18), (4.2.2.8) and (4.2.3.10) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 4.56 
σ2

n
                                                                    (4.2.3.11)    

4.2.3.5 Design  𝐃𝟏𝟎 

Summing (4.2.1.19) and (4.2.2.9) gives 

  (τA − τB) + (λA − λB) =
1

3
 E(4y11 − 2y12 + 4y13 − 5y14 + 4y15) −

1

3
 E(4y21 −

2y22 + 4y23 − 5y24 + 4y25)                                                                                                     (4.2.3.12) 

Applying (3.2.1) and (3.2.2) on (4.2.3.12) gives, 

     var[(τA − τB) + (λA − λB)] = 17.11 
σ2

n
                                                                 (4.2.3.13)      

Substituting (4.2.1.20), (4.2.2.10) and (4.2.3.13) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 3.22 
σ2

n
                                                                     (4.2.3.14)     

4.2.3.6 Design  𝐃𝟏𝟏 

Summing (4.2.1.21) and (4.2.2.11) gives 



  82 
 

  (τA − τB) + (λA − λB) = E(2y11 + 3y12 + 2y13 + 2y14 + 2y15) −  E(2y21 +

3y22 + 2y23 + 2y24 + 2y25)                                                                           (4.2.3.15) 

Applying (3.2.1) and (3.2.2) on (4.2.3.15) gives, 

     var[(τA − τB) + (λA − λB)] = 50 
σ2

n
                                                                        (4.2.3.16)      

Substituting (4.2.1.22), (4.2.2.12) and (4.2.3.16) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1 
σ2

n
                                                                           (4.2.3.17)     

4.2.3.7 Design  𝐃𝟏𝟐 

Summing (4.2.1.23) and (4.2.2.13) gives 

  (τA − τB) + (λA − λB) =
1

3
E (−4y11 − 2y12 − 4y13 + 5y14 − 4y15) −

1

3
E (−4y21 − 2y22 − 4y23 + 5y24 − 4y25)                                                                (4.2.3.18) 

Applying (3.2.1) and (3.2.2) on (4.2.3.18) gives, 

  var[(τA − τB) + (λA − λB)] = 17.11 
σ2

n
                                                                      (4.2.3.19)      

Substituting (4.2.1.24), (4.2.2.14) and (4.2.3.19) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 3.22 
σ2

n
                                                                       (4.2.3.20)     

4.2.3.8 Design  𝐃𝟏𝟑 

Summing (4.2.1.25) and (4.2.2.15) gives 

  (τA − τB) + (λA − λB) =  E(y12 + y22  )                                                                      (4.2.3.21) 

Applying (3.2.1) and (3.2.2) on (4.2.3.21) gives, 

  var[(τA − τB) + (λA − λB)] = 2 
σ2

n
                                                                             (4.2.3.22)      
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Substituting (4.2.1.26), (4.2.2.16) and (4.2.3.22) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 25 
σ2

n
                                                                         (4.2.3.23)     

4.2.3.9 Design  𝐃𝟏𝟒 

Summing (4.2.1.27) and (4.2.2.17) gives 

  (τA − τB) + (λA − λB) =
1

3
 E(−4y11 + 5y12 − 2y13 − 4y14 − 4y15) −

1

3
 E(−4y21 + 5y22 − 2y23 − 4y24 − 4y25)                                                       (4.2.3.24) 

Applying (3.2.1) and (3.2.2) on (4.2.3.24) gives, 

  var[(τA − τB) + (λA − λB)] = 17.11 
σ2

n
                                                                      (4.2.3.25)      

Substituting (4.2.1.28), (4.2.2.18) and (4.2.3.25) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 3.22 
σ2

n
                                                                       (4.2.3.26)     

4.2.2.10 Design  𝐃𝟏𝟓 

Summing (4.2.1.29) and (4.2.2.19) gives 

  (τA − τB) + (λA − λB) = E(y13 + y23)                                                                          (4.2.3.27) 

Applying (3.2.1) and (3.2.2) on (4.2.3.27) gives, 

  var[(τA − τB) + (λA − λB)] = 2 
σ2

n
                                                                              (4.2.3.28)      

Substituting (4.2.1.30), (4.2.2.20) and (4.2.3.28) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1.89 
σ2

n
                                                                      (4.2.3.29)     
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4.2.4 Treatments effects variance for C (2× 𝟓 × 𝟒) Cross-Over Designs  

4.2.4.1 Design  𝐃𝟏𝟔 

From (4.1.26),  

   τA − τB =
1

2
E([Y11 − Y12 − Y13 + Y14 + Y15] + [Y21 − Y22 − Y23 + Y24 + Y25] +

[Y31 + Y32 − Y33 + Y34 − Y35] + [Y41 + Y42 − Y43 + Y44 − Y45])                   (4.2.4.1)          

Applying (3.2.1) on (4.2.4.1) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                            (4.2.4.2) 

4.2.4.2 Design  𝐃𝟏𝟕 

From (4.1.28),  

   τA − τB =
1

2
E([Y11 + Y12 − Y13 + Y14 + Y15] − [Y21 + Y22 − Y23 + Y24 + Y25] +

[Y31 − Y32 + Y33 + Y34 + Y35] − [Y41 − Y42 + Y43 + Y44 + Y45])                  (4.2.4.3)          

Applying (3.2.1) on (4.2.4.3) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                            (4.2.4.4) 

4.2.4.3 Design  𝐃𝟏𝟖 

From (4.1.30),  

   τA − τB =
1

2
E([Y11 + Y12 − Y13 + Y14 + Y15] − [Y21 + Y22 − Y23 + Y24 + Y25] +

[Y31 − Y32 + Y33 + Y34 + Y35] − [Y41 − Y42 + Y43 + Y44 + Y45])                   (4.2.4.5)          

Applying (3.2.1) on (4.2.4.5) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                            (4.2.4.6) 
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4.2.4.4 Design  𝐃𝟏𝟗 

From (4.1.32),  

  τA − τB =
1

2
E([Y11 − Y12 + Y13 + Y14 + Y15] − [Y21 − Y22 + Y23 + Y24 + Y25] +

[Y31 − Y32 + Y33 + Y34 + Y35] − [Y41 − Y42 + Y43 + Y44 + Y45])                       (4.2.4.7)          

Applying (3.2.1) on (4.2.4.7) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                             (4.2.4.8) 

4.2.4.5 Design  𝐃𝟐𝟎 

From (4.1.34),  

  τA − τB =
1

2
E([−Y11 + Y12 − Y13 + Y14 − Y15] − [−Y21 + Y22 − Y23 + Y24 −

Y25] + [Y31 − Y32 + Y33 − Y34 + Y35] − [Y41 − Y42 + Y43 − Y44 + Y45])         (4.2.4.9)          

Applying (3.2.1) on (4.2.4.9) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                         (4.2.4.10) 

4.2.4.6 Design  𝐃𝟐𝟏 

From (4.1.36),  

  τA − τB =
1

4
E[Y11 − Y12 − Y13 + Y14 + Y15] −

1

4
E[Y21 − Y22 − Y23 + Y24 + Y25] +

1

12
E[Y31 − Y32 + Y33 − Y34 + Y35] −

1

12
E[Y41 − Y42 + Y43 − Y44 + Y45]      (4.2.4.11)          

Applying (3.2.1) on (4.2.4.11) gives, 

var(τA − τB) = 0.6944 
σ2

n
                                                                                               (4.2.4.12) 
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4.2.4.7 Design  𝐃𝟐𝟐 

From (4.1.38),  

  τA − τB =
1

2
E[−Y11 − Y12 − Y13 + Y14 − Y15] −

1

2
E[−Y21 − Y22 − Y23 + Y24 − Y25] +

1

2
E[Y31 − Y32 + Y33 − Y34 + Y35] −

1

2
E[Y41 − Y42 + Y43 − Y44 + Y45]                (4.2.4.13)          

Applying (3.2.1) on (4.2.4.13) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                       (4.2.4.14) 

4.2.4.8 Design  𝐃𝟐𝟑 

From (4.1.40),  

  τA − τB =
1

2
E[Y11 + Y12 + Y13 + Y14 + Y15] −

1

2
E[Y21 + Y22 + Y23 + Y24 + Y25] +

1

2
E[−Y31 − Y32 − Y33 + Y34 − Y35] −

1

2
E[−Y41 − Y42 − Y43 + Y44 − Y45]                 (4.2.4.15)          

Applying (3.2.1) on (4.2.4.15) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                     (4.2.4.16) 

4.2.4.9 Design  𝐃𝟐𝟒 

From (4.1.42),  

  τA − τB =
1

2
E[−Y11 + 2Y12 − Y13 + Y14 − Y15] −

1

2
E[−Y21 + 2Y22 + Y23 − Y24 + Y25] +

1

2
E[−Y31 + Y32 − Y33 − Y34 − Y35] −

1

2
E[−Y41 + Y42 − Y43 − Y44 − Y45]            (4.2.4.17)          

Applying (3.2.1) on (4.2.4.17) gives, 

var(τA − τB) = 5 
σ2

n
                                                                                                  (4.2.4.18) 

4.2.4.10 Design  𝐃𝟐𝟓 

From (4.1.44),  
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  τA − τB =
1

2
E[−Y11 + Y12 − Y13 − Y14 − Y15] −

1

2
E[−Y21 + Y22 − Y23 − Y24 − Y25] +

1

6
E[Y31 + Y32 + Y33 − Y34 + Y35] −

1

6
E[Y41 + Y42 + Y43 − Y44 + Y45]                    (4.2.4.19)          

Applying (3.2.1) on (4.2.4.19) gives, 

var(τA − τB) = 2.78  
σ2

n
                                                                                             (4.2.4.20) 

4.2.4.11 Design  𝐃𝟐𝟔 

From (4.1.46),  

  τA − τB = E[Y11 − Y12 + Y13 + Y14 − Y15] − E[Y21 − Y22 + Y23 + Y24 − Y25] +

3E[Y31 + Y32 − 2Y33 + Y34 + Y35] − 3E[Y41 + Y42 − 2Y43 + Y44 + Y45]           (4.2.4.21)          

Applying (3.2.1) on (4.2.4.21) gives, 

var(τA − τB) = 154  
σ2

n
                                                                                              (4.2.4.22) 

4.2.4.12 Design  𝐃𝟐𝟕 

From (4.1.48),  

 τA − τB =
1

3
E[Y11 + Y12 − 2Y13 + Y14 − 2Y15] −

1

3
E(Y21 + Y22 − 2Y23 + Y24 − 2Y25) =

  +
2

3
E(Y31 + Y32 − 2Y33 + Y34 + Y35) −

2

3
E(Y41 + Y42 − 2Y43 + Y44 + Y45)       (4.2.4.23)          

Applying (3.2.1) on (4.2.4.23) gives, 

var(τA − τB) = 9.6  
σ2

n
                                                                                               (4.2.4.24) 

4.2.5 Carryover variance for C (2× 𝟓 × 𝟒)  

4.2.4.1 Design  𝐃𝟏𝟔 

From (4.1.27),  
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   λA − λB =
1

4
(E[Y11 − Y12 − Y13 + Y14 + Y15] + [Y21 − Y22 − Y23 + Y24 + Y25] +

[Y31 + Y32 + Y33 − Y34 − Y35] + [Y41 + Y42 + Y43 − Y44 − Y45])                    (4.2.5.1)          

Applying (3.2.2) on (4.2.5.1) gives, 

var(λA − λB) = 1.25 
σ2

n
                                                                                                   (4.2.5.2) 

4.2.4.2 Design  𝐃𝟏𝟕 

From (4.1.29),  

   λA − λB =
1

4
(E[Y11 − Y12 − Y13 − Y14 + Y15] − [Y21 − Y22 − Y23 − Y24 + Y25] +

[Y31 + Y32 − Y33 − Y34 − Y35] − [Y41 + Y42 − Y43 − Y44 − Y45])                    (4.2.5.3)          

Applying (3.2.2) on (4.2.5.2) gives, 

var(λA − λB) = 1.25 
σ2

n
                                                                                                  (4.2.5.4) 

4.2.4.3 Design  𝐃𝟏𝟖 

From (4.1.31),  

   λA − λB =
1

4
(E[Y11 − Y12 − Y13 − Y14 + Y15] − [Y21 − Y22 − Y23 − Y24 + Y25] +

[Y31 + Y32 − Y33 − Y34 − Y35] − [Y41 + Y42 − Y43 − Y44 − Y45])                    (4.2.5.5)          

Applying (3.2.2) on (4.2.5.5) gives, 

var(λA − λB) = 1.25 
σ2

n
                                                                                                  (4.2.5.6) 

 4.2.4.4 Design  𝐃𝟏𝟗  

From (4.1.33),  

     λA − λB =
1

4
(E[Y11 − Y12 + Y13 + Y14 − Y15] − [Y21 − Y22 + Y23 + Y24 − Y25] +

[Y31 − Y32 + Y33 + Y34 − Y35] − [Y41 − Y42 + Y43 + Y44 − Y45])                    (4.2.5.7)          
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Applying (3.2.2) on (4.2.5.7) gives, 

var(λA − λB) = 1.25 
σ2

n
                                                                                                     (4.2.5.8) 

4.2.4.5 Design  𝐃𝟐𝟎 

From (4.1.35),  

  λA − λB =
1

4
(E[Y11 − Y12 + Y13 + Y14 − Y15] − [Y21−Y22 + Y23 + Y24 − Y25] +

[Y31 + Y32 − Y33 + Y34 + Y35] − [Y41 + Y42 − Y43 + Y44 + Y45])                     (4.2.5.9)          

Applying (3.2.2) on (4.2.5.9) gives, 

var(λA − λB) = 1.25 
σ2

n
                                                                                                     (4.2.5.10) 

4.2.4.6 Design  𝐃𝟐𝟏 

From (4.1.37),  

  λA − λB =
1

2
(E[Y11 − 2Y12 − Y13 + Y14 + Y15] −

1

2
E[Y21 − 2Y22 − Y23 + Y24 + Y25] +

1

2
E[Y31 + Y32 + Y33 − Y34 − Y35] −

1

2
E[Y41 + Y42 + Y43 − Y44 − Y45])                (4.2.5.11)          

Applying (3.2.2) on (4.2.5.11) gives,  

var(λA − λB) = 6.5 
σ2

n
                                                                                                       (4.2.5.12)  

4.2.4.7 Design  𝐃𝟐𝟐 

From (4.1.39),  

  λA − λB =
1

6
(E[Y11 − 2Y12 + Y13 + Y14 − Y15] −

1

6
E[Y21 − 2Y22 + Y23 + Y24 − Y25] +

1

6
E[Y31 + Y32 + Y33 − 2Y34 + Y35] −

1

6
E[Y41 + Y42 + Y43 − 2Y44 + Y45])           (4.2.5.13)          

Applying (3.2.2) on (4.2.5.13) gives, 
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var(λA − λB) = 0.89 
σ2

n
                                                                                                    (4.2.5.14) 

4.2.4.8 Design  𝐃𝟐𝟑 

From (4.1.41),  

  λA − λB =
1

2
E[Y11 + 2Y12 + Y13 + Y14 + Y15] −

1

2
E[Y21 + 2Y22 + Y23 + Y24 + Y25] +

1

2
E[−Y31 + Y32 − Y33 + 2Y34 − Y35] −

1

2
E[−Y41 + Y42 − Y43 + 2Y44 − Y45]      (4.2.5.15)          

Applying (3.2.2) on (4.2.5.15) gives, 

var(λA − λB) = 4.44  
σ2

n
                                                                                             (4.2.5.16) 

4.2.4.9 Design  𝐃𝟐𝟒 

From (4.1.43),  

  λA − λB =
1

2
E[−Y11 + 2Y12 − Y13 + Y14 − Y15] −

1

2
E[−Y21 + 2Y22 − Y23 + Y24 −

Y25] +
1

6
E[−Y31 + 2Y32 + Y33 − Y34 − Y35] −

1

6
E[−Y41 + 2Y42 + Y43 − Y44 − Y45]         

(4.2.5.17)          

Applying (3.2.2) on (4.2.5.17) gives, 

var(λA − λB) = 1.56 
σ2

n
                                                                                               (4.2.5.18) 

4.2.4.10 Design  𝐃𝟐𝟓 

From (4.1.45),  

  λA − λB =
1

6
 E[−Y11 + 2Y12 + Y13 − Y14 − Y15] −

1

6
E[−Y21 + 2Y22 + Y23 − Y24 − Y25] +

1

6
E[−Y31 − Y32 + 2Y33 + Y34 − Y35] −

1

6
E[−Y41 − Y42 + 2Y43 + Y44 − Y45]            (4.2.5.19)          

Applying (3.2.2) on (4.2.5.19) gives, 
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var(λA − λB) = 0.87  
σ2

n
                                                                                               (4.2.5.20) 

4.2.4.11 Design  𝐃𝟐𝟔 

From (4.1.47),  

  λA − λB =
1

4
E[Y11 − Y12 − Y13 − Y14 + Y15] +

1

4
E(Y21 − Y22 − Y23 − Y24 + Y25) −

1

4
E(Y31 − Y32 − Y33 + Y34 + Y35) −

1

4
E(Y41 − Y42 − Y43 + Y44 + Y45)]                     (4.2.5.21)          

Applying (3.2.2) on (4.2.5.21) gives, 

var(λA − λB) = 1.25  
σ2

n
                                                                                                (4.2.5.22) 

4.2.4.12 Design  𝐃𝟐𝟕 

From (4.1.49),  

 λA − λB =
1

2
E(Y11 − Y12 − Y13 − Y14 + Y15) −

1

2
E(Y21 − Y22 − Y23 − Y24 + Y25)  +

3

2
E(Y31 − Y32 − Y33 + Y34 + Y35) −

3

2
E(Y41 − Y42 − Y43 + Y44 + Y45)                         (4.2.5.23)          

Applying (3.2.2) on (4.2.5.23) gives, 

var(λA − λB) = 25  
σ2

n
                                                                                                      (4.2.5.24) 

4.2.6 Treatments and Residuals Covariance for C (2× 𝟓 × 𝟒)  

4.2.6.1 Design  𝐃𝟏𝟔 

Summing (4.2.4.1) and (4.2.5.1) gives,  

   (τA − τB) + (λA − λB) =  
1

4
 E(3y11 − 3y12 − 3y13 + 3y14 + 3y15) 

+
1

4
 E(y21 − y22 − y23 + y24 + y25) +

1

4
 E(y31 − y32 − 3y33 + 3y24 − y25) +

1

4
 E(3y41 + 3y42 − y43 + y44 − 3y45)                                                                  (4.2.6.1)  

   Applying (3.2.1) and (3.2.2) on (4.2.6.1) gives, 
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     var[(τA − τB) + (λA − λB)] = 6.25
σ2

n
                                                                          (4.2.6.2)      

Substituting (4.2.4.2), (4.2.5.2) and (4.2.6.2) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] =3.125 
σ2

n
                                                                      

4.2.6.2 Design  𝐃𝟏𝟕  

Summing (4.2.4.3) and (4.2.5.3) 

   (τA − τB) + (λA − λB) =
1

4
 E(3y11 + y12 − 3y13 + y14 + 3y15) 

+
1

4
 E(−3y21 − y22 + 3y23 − y24 − 3y25) +

1

4
 E(−y31 − 5y32 + 5y33 + 5y34 +

5y25) +
1

4
 E(y41 + 5y42 − 5y43 − 5y44 − 5y45)                                              (4.2.6.3)          

Applying (3.2.1) and (3.2.2) on (4.2.6.3) gives, 

     var[(τA − τB) + (λA − λB)] = 16.25 
σ2

n
                                                                       (4.2.6.4)      

Substituting (4.2.4.4), (4.2.5.4) and (4.2.6.4) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1.875 
σ2

n
                                                                       (4.2.6.5) 

4.2.6.3 Design  𝐃𝟏𝟖 

Summing (4.2.4.5) and (4.2.5.5) 

   (τA − τB) + (λA − λB) =
1

4
 E(3y11 + y12 − 3y13 + y14 + 3y15) 

+
1

4
 E(−3y21 − y22 + 3y23 − y24 − 3y25) +

1

4
 E(−y31 − 5y32 + 5y33 + 5y34 +

5y35) +
1

4
 E(y41 + 5y42 − 5y43 − 5y44 − 5y45)                                              (4.2.6.6)          

Applying (3.2.1) and (3.2.2) on (4.2.6.6) gives, 
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     var[(τA − τB) + (λA − λB)] = 16.25 
σ2

n
                                                                     (4.2.6.7)      

Substituting (4.2.4.6), (4.2.5.6 and (4.2.6.7) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1.875 
σ2

n
                                                                      (4.2.6.8) 

4.2.6.4 Design  𝐃𝟏𝟗 

Summing (4.2.4.7) and (4.2.5.7) gives, 

  (τA − τB) + (λA − λB) =
1

4
 E(3y11 − 3y12 + 3y13 + 3y14 + y15) 

+
1

4
 E(−3y21 + 3y22 − 3y23 − 3y24 − y25) +

1

4
 E(3y31 − 3y32 + 3y33 + 3y24 +

y25) +
1

4
 E(−3y41 + 3y42 − 3y43 − 3y44 − y45)                                             (4.2.6.9) 

Applying (3.2.1) and (3.2.2) on (4.2.6.9) gives, 

     var[(τA − τB) + (λA − λB)] = 9.25 
σ2

n
                                                                      (4.2.6.10)      

Substituting (4.2.4.8), (4.2.5.8) and (4.2.6.10) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1.625 
σ2

n
                                                                     (4.2.6.11)     

4.2.6.5 Design  𝐃𝟐𝟎 

Summing (4.2.4.9) and (4.2.5.9) gives 

  (τA − τB) + (λA − λB) =
1

4
 E(−y11 + y12 − y13 + 3y14 − 3y15) 

+
1

4
 E(y21 − y22 + y23 − 3y24 + 3y25) +

1

4
 E(y31 − 3y32 + 3y33 − 3y34 + y35) +

1

4
 E(−3y41 + y42 − y43 + y44 − 3y45)                                                                           (4.2.6.12) 

Applying (3.2.1) and (3.2.2) on (4.2.6.12) gives, 
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     var[(τA − τB) + (λA − λB)] = 5.75 
σ2

n
                                                                     (4.2.6.13)      

Substituting (4.2.4.10), (4.2.5.10) and (4.2.6.13) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 3.375 
σ2

n
                                                                    (4.2.6.14)     

4.2.6.6 Design  𝐃𝟐𝟏 

Summing (4.2.4.11) and (4.2.5.11) gives 

  (τA − τB) + (λA − λB) =
1

4
 E(3y11 − 5y12 − 3y13 + 3y14 + 3y15) 

+
1

4
 E(−3y21 + 5y22 + 3y23 − 3y24 − 3y25) +

1

12
 E(7y31 + 5y32 + 7y33 − 7y34 −

5y35) +
1

12
 E(−7y41 − 5y42 − 7y43 + 7y44 + 5y45)                                       (4.2.6.15) 

Applying (3.2.1) and (3.2.2) on (4.2.6.15) gives, 

     var[(τA − τB) + (λA − λB)] = 10.36 
σ2

n
                                                                     (4.2.6.16)      

Substituting (4.2.4.12), (4.2.5.12) and (4.2.6.16) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 2.0138 
σ2

n
                                                                    (4.2.6.17)     

4.2.6.7 Design  𝐃𝟐𝟐 

Summing (4.2.4.13) and (4.2.5.13) gives 

  (τA − τB) + (λA − λB) =
1

6
 E(−2y11 − 5y12 − 2y13 + 4y14 − 4y15) 

+
1

6
 E(2y21 + 5y22 − 2y23 − 4y24 + 5y25) +

1

6
 E(4y31 − 2y32 + 4y33 − 5y34 +

4y35) +
1

6
 E(−4y41 + 2y42 − 4y43 + 5y44 − 4y45)                                        (4.2.6.18) 

Applying (3.2.1) and (3.2.2) on (4.2.6.18) gives, 
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  var[(τA − τB) + (λA − λB)] = 8.139 
σ2

n
                                                                        (4.2.6.19)      

Substituting (4.2.4.14), (4.2.5.14) and (4.2.6.19) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1.821 
σ2

n
                                                                      (4.2.6.20)     

4.2.6.8 Design  𝐃𝟐𝟑 

Summing (4.2.4.15) and (4.2.5.15) gives 

  (τA − τB) + (λA − λB) =  
1

2
 E(2y11 + 3y12 + 2y13 + 2y14 + 2y15) 

+
1

2
 E(−2y21 − 3y22 − 2y23 − 2y24 − 2y25) +

1

6
 E(−2y32) +

1

6
 E(−4y41 + 2y42 −

4y43 + 5y44 − 4y45)                                                                                                                    (4.2.6.21) 

Applying (3.2.1) and (3.2.2) on (4.2.6.21) gives, 

  var[(τA − τB) + (λA − λB)] = 3.638 
σ2

n
                                                                      (4.2.6.22)      

Substituting (4.2.4.16), (4.2.5.16) and (4.2.6.22) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 7.62 
σ2

n
                                                                      (4.2.6.23)     

 4.2.6.9 Design  𝐃𝟐𝟒 

Summing (4.2.4.17) and (4.2.5.17) gives 

  (τA − τB) + (λA − λB) =
1

2
 E(y12) −

1

2
 E(y2) +

1

6
 E(−4y31 + 5y32 − 2y33 −

4y34 − 4y35) +
1

6
 E(4y41 − 5y42 + 2y43 + 4y44 + 4y45)                             (4.2.6.24) 

Applying (3.2.1) and (3.2.2) on (4.2.6.24) gives, 

  var[(τA − τB) + (λA − λB)] = 4.77 
σ2

n
                                                                          (4.2.6.25)      

Substituting (4.2.4.18), (4.2.5.18) and (4.2.6.25) to (3.2.6) gives, 
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covar[(τA − τB) + (λA − λB)] = 4.1712 
σ2

n
                                     .                              (4.2.6.26)     

4.2.6.10 Design  𝐃𝟐𝟓 

Summing (4.2.4.19) and (4.2.5.19) gives 

  (τA − τB) + (λA − λB) =
1

6
 E(−4y11 + 5y12 − y13 − 4y14 − 4y15) 

+
1

6
 E(4y21 − 5y22 + 2y23 + 4y24 + 4y25) +

1

6
 E(3y33) −

1

6
 E(3y43)      (4.2.6.27) 

Applying (3.2.1) and (3.2.2) on (4.2.6.27) gives, 

  var[(τA − τB) + (λA − λB)] = 4.694 
σ2

n
                                                                        (4.2.6.28)      

Substituting (4.2.4.20), (4.2.5.20) and (4.2.6.28) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 1.30 
σ2

n
                                                                        (4.2.6.29)     

4.2.6.11 Design  𝐃𝟐𝟔 

Summing (4.2.4.21) and (4.2.5.21) gives 

  (τA − τB) + (λA − λB) =
1

4
 E(5y11 − 5y12 + 3y13 + 3y14 − 3y15) 

+
1

4
 E(−3y21 + 3y22 − 5y23 − 5y24 + 5y25) +

1

4
 E(11y31 + 13y32 − 23y33 +

11y34 + 11y35) +
1

4
 E(−13y41 − 11y42 + 25y43 − 13y44 − 13y45)             (4.2.6.30) 

Applying (3.2.1) and (3.2.2) on (4.2.6.30) gives, 

  var[(τA − τB) + (λA − λB)] = 155.25 
σ2

n
                                                                      (4.2.6.31)      

Substituting (4.2.4.22), (4.2.5.22) and (4.2.6.31) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 77.625 
σ2

n
                                                                    (4.2.6.32)     
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4.2.6.12 Design  𝐃𝟐𝟕 

Summing (4.2.4.23) and (4.2.5.23) gives 

  (τA − τB) + (λA − λB) =
1

6
 E(5y11 − y12 − 7y13 − y14 − y15) 

+
1

6
 E(−5y21 + y22 + 7y23 + y24 + y25) +

1

6
 E(13y31 − 5y32 − 17y33 + 13y34 +

13y35) +
1

6
 E(−13y41 + 5y42 + 17y43 − 13y44 − 13y45)                             (4.2.6.33) 

Applying (3.2.1) and (3.2.2) on (4.2.6.33) gives, 

  var[(τA − τB) + (λA − λB)] = 49.89 
σ2

n
                                                                     (4.2.6.34)      

Substituting (4.2.4.24), (4.2.5.24) and (4.2.6.34) to (3.2.6) gives, 

covar[(τA − τB) + (λA − λB)] = 9.66 
σ2

n
                                                                (4.2.6.35)     

Table 4.2.1: Summary of Variances and Covariance of C (2× 𝟓 × 𝟐) Designs in 

Multiples of  
𝝈𝟐

𝒏
 

 

 

Design  Treatment effects  

variance  

Carry-over effects  

variance  

Covariance of 

treatment and carry-

over effects 

D1 10.00 − − 

D2 10.00 − − 

D3 10.00 − − 

D4 10.00 − − 

D5 10.00 − − 

D6 10.00 0.64 5.32 

D7 10.00 16.00 1.00 

D8 1.11 10.00 4.89 

D9 10.00 1.78 4.56 

D10 10.00 0.64 3.22 

D11 10.00 16.00 1.00 

D12 10.00 1.78 3.22 

D13 10.00 16.00 25.00 

D14 10.00 1.78 3.22 

D15 1.11 1.78 1.89 
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Table 4.2.2: Summary of Variances and Covariance of C (2× 𝟓 × 𝟒) Designs in 

Multiples of  
𝝈𝟐

𝒏
 

Design Treatment effects  

variance 

Carry-over 

effects  variance 

Covariance of 

treatment and carry-

over effects 

D16 5.000 1.250 3.125 

D17 5.000 1.250 1.875 

D18 5.000 1.250 1.875 

D19 5.000 1.250 1.625 

D20 5.000 1.250 3.375 

D21 0.690 6.500 2.014 

D22 5.000 0.890 1.821 

D23 5.000 4.440 7.620 

D24 5.000 1.560 4.171 

D25 2.780 0.870 1.300 

D26 154.000 1.250 77.625 

D27 9.600 25.000 9.660 

4.2.7 Discussion  

In this section, the optimality criteria of the five period cross-over designs were 

evaluated. The significance of this section is to enable experimenters who would like 

to obtain efficient designs in estimating effects of interest make informed decisions 

when two or more competing designs are involved. In their book on design and analysis 

of cross-over designs, Jones and Kenward in the year 2015 asserts that the optimality 

for two treatments cross-over designs can be evaluated using their variances. In this 

regard, the C (2× 5× 2) designs were categorized into three groups depending on the 

estimates required. In estimating carry-over effects,𝐷6& 𝐷10 were the most optimum 

since they gave the least variance of 0.64 
𝜎2

𝑛
 whereas  𝐷7, 𝐷11& 𝐷13 were the least 

optimum with variance of 16
𝜎2

𝑛
.  𝐷9, 𝐷12, 𝐷14&𝐷15 Were found to be equally optimum 

with a variance of 1.78
𝜎2

𝑛
 while  𝐷8 had a variance of 10

𝜎2

𝑛
 . Additionally, the estimation 

of treatment effects prefers 𝐷8 & 𝐷15 due to the fact that they give minimum variance 

of 1.11
𝜎2

𝑛
 . All the other designs are equally optimum with a variance of 10

𝜎2

𝑛
. Moreover, 
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the estimation of treatment effects in the presence of carry-over effects requires the use 

of covariance to assess their optimality. In this regard,  𝐷7 & 𝐷11 were the most 

optimum with variance of 
𝜎2

𝑛
 whereas 𝐷13 was the least optimum with variance of 25

𝜎2

𝑛
 

. 𝐷10, 𝐷12, &𝐷14  were equally optimal with variance of 3.22
𝜎2

𝑛
 while  𝐷6, 𝐷8, 𝐷9&𝐷15 , 

had variances of 5.32
𝜎2

𝑛
, 4.89

𝜎2

𝑛
, 4.56

𝜎2

𝑛
&1.89

𝜎2

𝑛
 respectively. For the C (2× 5 × 4), 𝐷21 

was  optimum  for estimating  treatment effects with  a variance of  0.69
𝜎2

𝑛
  while  𝐷26 

was the least optimal with a variance of 154
𝜎2

𝑛
 . all the other designs were found to be 

equally optimal with a variance of  5 
𝜎2

𝑛
  except 𝐷25 & 𝐷27 whose variance was 2.7

𝜎2

𝑛
 

and, 9.6
𝜎2

𝑛
 respectively. With regards to carry-over effects, 𝐷25 & 𝐷22 were the most 

optimal with variances 0.87
𝜎2

𝑛
  and 0.89

𝜎2

𝑛
  respectively while 𝐷27 was the least optimal 

with variance of 25
𝜎2

𝑛
. 𝐷16, 𝐷17, 𝐷18, 𝐷19, 𝐷20, &𝐷26 , were found to be equally optimal 

with variance of 1.25
𝜎2

𝑛
 whereas 𝐷21, 𝐷23, &𝐷24 had optimal values of 6.5

𝜎2

𝑛
, 4.44

𝜎2

𝑛
 and 

1.56
𝜎2

𝑛
 respectively. For estimating treatments effects in the presence of carry-over 

effects, 𝐷25 was the most optimal with 1.3
𝜎2

𝑛
 while 𝐷26 was the least optimal with 

77.625
𝜎2

𝑛
 . 𝐷17 and 𝐷18 were found to be equally optimal with 1.875

𝜎2

𝑛
  whereas 

𝐷16, 𝐷19, 𝐷20, 𝐷21, 𝐷22, 𝐷23, 𝐷24&𝐷27 had optimal values of 3.125
𝜎2

𝑛
  ,1.625

𝜎2

𝑛
  ,3.375

𝜎2

𝑛
  

,2.014
𝜎2

𝑛
  ,1.821

𝜎2

𝑛
  ,7.620

𝜎2

𝑛
  ,4.171

𝜎2

𝑛
  &9.66

𝜎2

𝑛
   respectively. 
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4.3 Assessment of Robustness For The (2× 𝟓) Cross-Over Designs Against Missing 

Data. 

4.3.1 Robustness for Missing Data for 𝐃𝟏𝟔 

Table 4.3.1: Expected values for Design 𝑫𝟏𝟔 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 + τA + 

λB 

∗ ∗ ∗ 

ABBBB μ + π1

+ τA 

μ + π2 + τB + 

λA 

 
∗ 

∗ ∗ 

ABAAA μ + π1

+ τA 

μ + π2 + τB + 

λA 

∗ ∗ ∗ 

BABBB μ + π1

+ τB 

μ + π2 + τA + 

λB 

∗ ∗ ∗ 

 

4.3.1.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟏𝟔 

The contrasts a1, a2, a3 and a4 , identified from Table 4.3.1 in such a way that (3.1.7), 

and (3.1.9) are satisfied are given by; 

E(a1) =
1

2
E(Y11 + Y12) = 

1

2
[2 μ + (π1 + π2)] + ( τA +τB) + λB] 

E(a2) =
1

2
E(Y21 + Y22) =

1

2
[2μ + (π1 + π2) + ( τB +τA) + λA] 

E(a3) =
1

2
E(Y31 + Y32) = 

1

2
[2 μ + (π1 + π2) +( τA +τB) +λA] 

E (a4) =
1

2
E(Y41 + Y42) =

1

2
[ 2μ + (π1 + π2) + ( τB +τA) + λB] 

A linear combination of (a2 - a1) + (a3 − a4) forms unbiased estimate of carry-over 

effects, 

Thus, [ λA − λB] = (a2 - a1) + (a3 − a4)                                                               (4.3.1) 

From (4.2.1), the design remains connected for the first two periods in all sequences, 

whence the design is said to be perpetually connected for carry-over effects. 
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4.3.1.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟏𝟔 

The contrasts a5, a6, a7 and a8 , identified from Table 4.3.1 in such a way that (3.1.6), 

and (3.1.8) are satisfied are given by; 

E(a5) =
1

2
E(Y11 − Y12) =

1

2
 [ (π1 − π2)] + ( τA −τB) - λB] 

E(a6) =
1

2
E(Y21 − Y22) =

1

2
[ (π1 − π2) + ( τB −τA) - λA] 

E(a7) =
1

2
E(Y31 − Y32) =

1

2
 [ (π1 − π2) +( τA −τB) -λA] 

E(a8) =
1

2
E(Y41 − Y42) =

1

2
[  (π1 − π2) + ( τB −τA) - λB] 

A linear combination of (a5 - a6) + (a7 − a8) forms unbiased estimate for treatment 

effects, 

Thus, 

 [ τA − τB] = (a5 - a6) + (a7 − a8) .                                                                             (4.3.2) 

From (4.2.2), the design remains connected for the first two periods in all sequences, 

whence the design is said to be perpetually connected for Treatment effects. 

4.3.2 Robustness for Missing Data for 𝐃𝟏𝟕 

Table 4.3.2: Expected values of design 𝑫𝟏𝟕 with only two complete periods for all 

subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 + τA + 

λB 

∗ ∗ ∗ 

ABBBB μ + π1

+ τA 

μ + π2 + τB + 

λA 

∗             
           ∗  

∗ 

A ABAA μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

BBABB μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗             ∗  ∗ 
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4.3.2.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟏𝟕 

The contrasts d1, d2, d3 and d4 , identified from Table 4.3.2 in such a way that (3.1.7), 

and (3.1.9) are satisfied are given by; 

E(d1) =
1

2
E(Y11 + Y12) =

1

2
[2 μ + (π1 + π2) + ( τA + τB) +λB] 

E(d2) =
1

2
E(Y21 + Y22) =

1

2
 [2μ + (π1 + π2) +  (τB +τA) + λA] 

E(d3) =
1

2
E(−Y31 + Y32) =

1

2
[− (π1 + π2) + λA] 

E(d4) =
1

2
E(−Y41 + Y42) =

1

2
[(−π1 + π2) +  λB] 

A linear combination of (d2 - d1) + (d3 − d4) forms unbiased estimate of carry-over 

effects, 

Thus,[λA − λB] = (d2 - d1) + (d3 − d4)                                                                          (4.3.3) 

From (4.3.3), the design remains connected for the first two periods in all sequences, 

whence the design is said to be perpetually connected for carry-over effects. 

4.3.2.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟏𝟕 

The contrasts d5, d6, d7and d8 , identified from Table 4.3.2 in such a way that (3.1.6), 

and (3.1.8)are satisfied are given by; 

E(d5) =
1

2
E(Y11 + Y12) =

1

2
[2 μ + (π1 + π2) + ( τA + τB) +λB] 

E(d6) =
1

2
E(Y21 + Y22) =

1

2
 [2μ + (π1 + π2) +  (τB +τA) + λA] 

E(d7) =
1

2
E(Y31 + Y32) =

1

2
[ (π1 + π2) + 2τA + λA] 

E(d8) =
1

2
E(Y41 + Y42) =

1

2
[(π1 + π2) + 2τB +  λB] 

A linear combination of (d5 - d6) + (d7 − d8) forms unbiased estimate of treatment 

effects, 

Thus, [τA − τB] = (d5 - d6) + (d7 − d8)                                                                             (4.3.4) 
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From (4.3.4), the design remains connected for the first two periods in all sequences, 

whence the design is said to be perpetually connected for treatment effects. 

4.3.3 Robustness for Missing Data for 𝐃𝟏𝟖 

Table 4.3.3: Expected values for Design 𝑫𝟏𝟖 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAA μ + π1

+ τB 

μ + π2 + τA + 

λB 

∗ ∗ ∗ 

ABBBB μ + π1

+ τA 

μ + π2 + τB + 

λA 

∗ ∗ ∗ 

A AABA μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

BBBAB μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗             ∗  ∗ 

  

4.3.3.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟏𝟖 

The contrasts d9, d10, d11 and d12 , identified from Table 4.3.3 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d9) =
1

2
E(Y11 + Y12) =

1

2
[2 μ + (π1 + π2) + ( τA + τB) +λB] 

E(d10) =
1

2
E(Y21 + Y22) =

1

2
 [2μ + (π1 + π2) +  (τB +τA) + λA] 

E(d11) =
1

2
E(−Y31 + Y32) =

1

2
[ (−π1 + π2)+λA] 

E(d12) =
1

2
E(−Y41 + Y42) =

1

2
[(−π1 + π2)+ λB] 

A linear combination of (d10 - d9) + (d11 − d12) forms unbiased estimate of carry-

over effects, 

Thus, [ λA − λB] = (d10 - d9) + (d11 − d12)                                                                    (4.3.5) 

From (4.3.5), the design remains connected for the first two periods in all sequences, 

whence the design is said to be perpetually connected for carry-over effects. 
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4.3.3.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟏𝟖 

The contrasts d13, d14, d15 and d16 , identified from Table 4.3.4 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

E(d13) =
1

2
E(Y11 − Y12) =

1

2
[ (π1 − π2) + ( τA − τB) − λB] 

E(d14) =
1

2
E(−Y21 + Y22) =

1

2
 [(−π1 + π2) +  (−τB +τA) + λA] 

E(d15) =
1

2
E(Y31 − Y32) =

1

2
[ (π1 − π2) − λA] 

E(d16) =
1

2
E(Y41 − Y42) =

1

2
[(π1 − π2) − λB] 

A linear combination of (d13 + d14 + d15 − d16) forms unbiased estimate for treatment 

effects, 

Thus, [ τA − τB] = (d13 + d14 + d15 − d16).                                                                       (4.3.6) 

From (4.3.6), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for Treatment effects. 

4.3.4 Robustness for Missing Data for 𝐃𝟏𝟗 

Table 4.3.4: Expected values for Design 𝑫𝟏𝟗 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAA μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

BBABB μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗ ∗ ∗ 

A AABA μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

BBBAB μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗ ∗ ∗ 

 

4.3.4.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟏𝟗 

The contrasts d17, d18, d19 and d20 , identified from Table 4.3.4 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 
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E(d17) =
1

2
E(−Y11 + Y12) =

1

2
 [(−π1 + π2) +λA] 

E(d18) =
1

2
E(−Y21 + Y22) =

1

2
 [(−π1 + π2) + λB] 

E(d19) =
1

2
E(−Y31 + Y32) =

1

2
 [ (−π1 + π2) +λA] 

E(d20) =
1

2
E(−Y41 + Y42) =

1

2
[(−π1 + π2) +λB] 

A linear combination of (d17 + d19 − d18 − d20). forms unbiased estimate of carry-

over effects, 

Thus, [ λA − λB] = (d17 + d19 − d18 − d20).                                                                   (4.3.7) 

From (4.3.7), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

Table 4.3.5: Expected values for Design 𝑫𝟏𝟗 with 10 Observations missing  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAA μ + π1

+ τA 

μ + π2 + τA + 

λA 

μ + π2 + τB + 

λA 

∗ ∗ 

BBABB μ + π1

+ τB 

μ + π2 + τB + 

λB 

μ + π2 + τA + 

λB 

∗ ∗ 

A AABA μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

BBBAB μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗ ∗ ∗ 

 

4.3.4.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟏𝟗 

The contrasts d21, d22, d23 and d24 , identified from Table 4.3.5 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

E(d21) =
1

4
E(Y11 + Y12 − 2Y13) = 

1

4
[ (π1 + π2 − 2π3)+2τA − 2τB − λA] 

E(d22) =
1

4
E(−Y21 − Y22 + 2Y23) =

1

4
 [(−π1 − π2 + 2π3) −2τB + 2τA + λB] 

E(d23) =
1

4
E(Y31 − Y32) =

1

4
 [ (π1 − π2) −λA] 

E(d24) =
1

4
E(Y41 − Y42) =

1

4
[(π1 − π2) −λB] 
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A linear combination of (d21 + d22 + d24 − d23). forms unbiased estimate of treatment 

effects, 

Thus, [ τA − τB] = (d21 + d22 + d24 − d23)                                                                       (4.2.8) 

From (4.3.8), the maximum number of subjects that can be lost and the design remains 

connected is 10, whence the break down number DM=10. 

4.3.5 Robustness for Missing Data for 𝐃𝟐𝟎 

Table 4.3.6: Expected values for Design 𝑫𝟐𝟎 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

BBBBA μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗ ∗ ∗ 

BBAAA μ + π1

+ τB 

μ + π2 + τB + 

λB 

∗ ∗ ∗ 

AABBB μ + π1

+ τA 

μ + π2 + τA + 

λA 

∗ ∗ ∗ 

 

4.3.5.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟐𝟎 

The contrasts d25, d26, d27 and d28 , identified from Table 4.3.6 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

E(d25) =
1

2
E(−Y11 + Y12) =

1

2
 [ (π1 + π2) +λA] 

E(d26) =
1

2
E(−Y21 + Y22) =

1

2
 [(π1 + π2) + λB] 

E(d27) =
1

2
E(−Y31 + Y32) =

1

2
 [ (π1 + π2) +λA] 

E(d28) =
1

2
E(−Y41 + Y42) =

1

2
[(π1 + π2) +λB]  

A linear combination of (d25 + d27 − d26 − d28). forms unbiased estimate of carry-

over effects, 
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Thus,λA − λB = d25 + d27 −  d26 − d28                                                                             (4.3.9) 

From (4.3.9), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

Table 4.3.7: Expected values for Design 𝑫𝟐𝟎 with 10 Observations missing. 

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AAAAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBBA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

BBAAA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ 

AABBB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ 

 

4.3.5.2 Robustness for Missing Data in treatment Effects for 𝑫𝟐𝟎 

The contrasts 𝑑29, 𝑑30, 𝑑31 and 𝑑32 , identified from Table 4.3.7 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

𝐸(𝑑29) =
1

4
𝐸(𝑌11 − 𝑌12) =

1

4
 [ (𝜋1 − 𝜋2) −𝜆𝐴] 

𝐸(𝑑30) =
1

4
𝐸(𝑌21 − 𝑌22) =

1

4
 [(𝜋1 − 𝜋2) − 𝜆𝐵] 

𝐸(𝑑31) =
1

4
𝐸(−𝑌31 − 𝑌32 + 2𝑌33) =

1

4
 [ (−𝜋1 − 𝜋2 + 2𝜋3) −2𝜏𝐵 + 2𝜏𝐴 + 𝜆𝐵] 

𝐸(𝑑32) =
1

4
𝐸(𝑌41 + 𝑌42 − 2𝑌43) =

1

4
[(𝜋1 + 𝜋2 − 2𝜋3) +2𝜏𝐴 − 2𝜏𝐵 − 𝜆𝐴]  

A linear combination of (𝑑32 + 𝑑31 + 𝑑30 − 𝑑29) forms unbiased estimate of treatment 

effects, 

Thus,𝜏𝐴 − 𝜏𝐵 = 𝑑32 + 𝑑31 +  𝑑30 − 𝑑29.                                                                        (4.3.10) 

From (4.3.10), the maximum number of subjects that can be lost and the design remains 

connected is 10, whence the break down number 𝐷𝑀=10. 
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4.3.6 Robustness for Missing Data for 𝐃𝟐𝟏 

Table 4.3.8: Expectation for Design 𝑫𝟐𝟏 with only two complete periods for all 

subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BABAA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ ∗ 

ABABB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ ∗ 

BA ABA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ ∗ 

ABBAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ ∗ 

 

4.3.6.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟐𝟏 

The contrasts 𝑑33, 𝑑34, 𝑑35 and 𝑑36 , identified from Table 4.3.8 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑33) =
1

2
𝐸(𝑌11 + 𝑌12) =

1

2
 [2 𝜇 + (𝜋1 + 𝜋2)  + 𝜏𝐵 + 𝜏𝐴  +𝜆𝐵] 

𝐸(𝑑34) =
1

2
𝐸(𝑌21 + 𝑌22) =

1

2
 [2𝜇 + (𝜋1 + 𝜋2) + 𝜏𝐴 + 𝜏𝐵  + 𝜆𝐴] 

𝐸(𝑑35) =
1

2
𝐸(𝑌31 + 𝑌32) =

1

2
 [2 𝜇 + (𝜋1 + 𝜋2) + 𝜏𝐵 + 𝜏𝐴  +𝜆𝐵] 

𝐸(𝑑36) =
1

2
𝐸(𝑌41 + 𝑌42) =

1

2
[2 𝜇 + (𝜋1 + 𝜋2)  + 𝜏𝐴 + 𝜏𝐵  + 𝜆𝐴]  

A linear combination of (𝑑36 + 𝑑34 − 𝑑35 − 𝑑31) forms unbiased estimate for carry-

over effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = 𝑑36 + 𝑑34 −  𝑑35 − 𝑑31                                                                           (4.3.11) 

From (4.3.11), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

4.3.6.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟏 

The contrasts 𝑑45, 𝑑46, 𝑑47and 𝑑48 , identified from Table 4.3.9 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

𝑑45 =
1

2
(−𝑌11 − 𝑌12) =

1

2
 [ (−𝜋1 − 𝜋2)  − 𝜏𝐵 − 𝜏𝐴  −𝜆𝐵] 
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𝑑46 =
1

2
(−𝑌21 − 𝑌22) =

1

2
 [(−𝜋1 − 𝜋2) − 𝜏𝐴 − 𝜏𝐵  − 𝜆𝐴] 

𝑑47 =
1

2
(−𝑌31 + 𝑌32) =

1

2
 [(−𝜋1 + 𝜋2) − 𝜏𝐵 + 𝜏𝐴  +𝜆𝐵] 

𝑑48 =
1

2
(𝑌41 − 𝑌42) =

1

2
[ (𝜋1 − 𝜋2)  + 𝜏𝐴 − 𝜏𝐵 − 𝜆𝐴]  

A linear combination of (𝑑45 + 𝑑47 + 𝑑48 − 𝑑46). forms unbiased estimate of treatment 

effects, 

Thus, 𝜏𝐴 − 𝜏𝐵 = 𝑑45 + 𝑑47 +  𝑑48 − 𝑑46                                                                            (4.3.12) 

From (4.3.12), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for treatment effects. 

4.3.7 Robustness for Missing Data for 𝐃𝟐𝟐 

Table 4.3.9: Expectation for Design 𝑫𝟐𝟐 with only two complete periods for all 

subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BAAAB 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ ∗ 

ABBBA 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ ∗ 

ABBAA 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ ∗ 

BAABB 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.7.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟐𝟐 

The contrasts 𝑑49, 𝑑50, 𝑑51 and 𝑑52 , identified from Table 4.3.9 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑49) =
1

2
𝐸(𝑌11 + 𝑌12) =

1

2
 [2 𝜇 + (𝜋1 + 𝜋2)+ 𝜏𝐵 + 𝜏𝐴  +𝜆𝐵] 

𝐸(𝑑50) =
1

2
𝐸(𝑌21 + 𝑌22) =

1

2
 [2𝜇 + (𝜋1 + 𝜋2) + 𝜏𝐴 + 𝜏𝐵 +   𝜆𝐴] 

𝐸(𝑑51) =
1

2
𝐸(𝑌31 + 𝑌32) =

1

2
 [2 𝜇 + (𝜋1 + 𝜋2) + 𝜏𝐴 + 𝜏𝐵  +𝜆𝐴] 

𝐸(𝑑52) =
1

2
𝐸(𝑌41 + 𝑌42) =

1

2
[2 𝜇 + (𝜋1 + 𝜋2)  + 𝜏𝐵 + 𝜏𝐴 + 𝜆𝐵]  
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A linear combination of (𝑑50 + 𝑑51 + 𝑑49 − 𝑑52) forms unbiased estimate of carry-

over effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = 𝑑50 + 𝑑51 −  𝑑49 − 𝑑52 .                                                             (4.3.13) 

From (4.3.13), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

4.3.7.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟐 

The contrasts 𝑑53, 𝑑54, 𝑑55 and 𝑑56 , identified from Table 4.3.10 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

𝐸(𝑑53) =
1

2
𝐸(−𝑌11 + 𝑌12) =

1

2
 [ (−𝜋1 + 𝜋2)  − 𝜏𝐵 + 𝜏𝐴  +𝜆𝐵] 

𝐸(𝑑54) =
1

2
𝐸(𝑌21 − 𝑌22) =

1

2
 [(𝜋1 − 𝜋2) + 𝜏𝐴 − 𝜏𝐵 −   𝜆𝐴] 

𝐸(𝑑55) =
1

2
𝐸(𝑌31 + 𝑌32) =

1

2
 [ (𝜋1 + 𝜋2) + 𝜏𝐴 + 𝜏𝐵  +𝜆𝐴] 

𝐸(𝑑56) =
1

2
𝐸(−𝑌41 − 𝑌42) =

1

2
[(−𝜋1 − 𝜋2)  − 𝜏𝐵−𝜏𝐴 − 𝜆𝐵]  

A linear combination of (𝑑53 + 𝑑54 + 𝑑55 + 𝑑56) forms unbiased estimate of treatment 

effects, 

Thus, 𝜏𝐴 − 𝜏𝐵 = 𝑑53 + 𝑑54 +  𝑑55 + 𝑑56 .                                                                          (4.3.14) 

From (4.3.14), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for treatment effects. 
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4.3.8 Robustness for Missing Data for 𝐃𝟐𝟑 

Table 4.3.10: Expected values for Design 𝑫𝟐𝟑 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

ABABA 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ ∗ 

BABAB 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ ∗ 

ABAAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ ∗ 

BABBA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.8.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟐𝟑 

The contrasts 𝑑57, 𝑑58, 𝑑59 and 𝑑60 , identified from Table 4.3.10 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑57) =
1

2
𝐸(𝑌11 + 𝑌12) =

1

2
 [2 𝜇 + (𝜋1 + 𝜋2)+ 𝜏𝐴 + 𝜏𝐵  +𝜆𝐴] 

𝐸(𝑑58) =
1

2
𝐸(𝑌21 + 𝑌22) =

1

2
 [2𝜇 + (𝜋1 + 𝜋2) + 𝜏𝐵 + 𝜏𝐴 +   𝜆𝐵] 

𝐸(𝑑59) =
1

2
𝐸(𝑌31 + 𝑌32) =

1

2
 [2 𝜇 + (𝜋1 + 𝜋2) + 𝜏𝐴 + 𝜏𝐵  +𝜆𝐴] 

𝐸(𝑑60) =
1

2
𝐸(𝑌41 + 𝑌42) =

1

2
[2 𝜇 + (𝜋1 + 𝜋2)  + 𝜏𝐵 + 𝜏𝐴 + 𝜆𝐵]  

A linear combination of (𝑑57 + 𝑑59 − 𝑑58 − 𝑑60). forms unbiased estimate of carry-

over effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = 𝑑57 + 𝑑59 −  𝑑58 − 𝑑60 .                                                                  (4.3.15) 

From (4.3.15), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

4.3.8.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟑 

The contrasts 𝑑61, 𝑑62, 𝑑63 and 𝑑64 , identified from Table 4.3.11 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 
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𝐸(𝑑61) =
1

2
𝐸(−𝑌11 + 𝑌12) =

1

2
 [ (−𝜋1 + 𝜋2) − 𝜏𝐴 + 𝜏𝐵  +𝜆𝐴] 

𝐸(𝑑62) =
1

2
𝐸(𝑌21 − 𝑌22) =

1

2
 [(𝜋1 − 𝜋2) + 𝜏𝐵 − 𝜏𝐴 −   𝜆𝐵] 

𝐸(𝑑63) =
1

2
𝐸(−𝑌31 − 𝑌32) =

1

2
 [ (−𝜋1 − 𝜋2) − 𝜏𝐴 − 𝜏𝐵  −𝜆𝐴] 

𝐸(𝑑64) =
1

2
𝐸(𝑌41 + 𝑌42) =

1

2
[(𝜋1 + 𝜋2)  +𝜏𝐵 + 𝜏𝐴 + 𝜆𝐵]  

A linear combination of (𝑑64 + 𝑑63 − 𝑑62 − 𝑑61) forms unbiased estimate of treatment 

effects, 

Thus, 𝜏𝐴 − 𝜏𝐵 = 𝑑59 −𝑑60 −  𝑑58 − 𝑑57.                                                                     (4.3.16) 

From (4.3.9), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for Treatment effects. 

4.3.9 Robustness for Missing Data for 𝐃𝟐𝟒 

Table 4.3.11: Expected values for Design 𝑫𝟐𝟒 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABBA 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBAAB 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

AABAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBABA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.9.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟐𝟒 

The contrasts 𝑑65, 𝑑66, 𝑑67 and 𝑑68 , identified from Table 4.3.11 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑65) =
1

2
𝐸(−𝑌11 + 𝑌12) =

1

2
 [2 𝜇 + (−𝜋1 + 𝜋2)     +𝜆𝐴] 

𝐸(𝑑66) =
1

2
𝐸(−𝑌21 + 𝑌22) =

1

2
 [2𝜇 + (−𝜋1 + 𝜋2) +   𝜆𝐵] 

𝐸(𝑑67) =
1

2
𝐸(−𝑌31 + 𝑌32) =

1

2
 [2 𝜇 + (−𝜋1 + 𝜋2) +𝜆𝐴] 

𝐸(𝑑68) =
1

2
𝐸(−𝑌41 + 𝑌42) =

1

2
[2 𝜇 + (−𝜋1 + 𝜋2)+𝜆𝐵]  
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A linear combination of (𝑑65 + 𝑑67 − 𝑑66 − 𝑑68) forms unbiased estimate of carry-

over effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = 𝑑65 + 𝑑67 −  𝑑66 − 𝑑68.                                                                      (4.3.17) 

From (4.3.17), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

Table 4.3.12: Expected values of Design 𝑫𝟐𝟒 with 10 Missing Observations. 

SEQ P1 P2 P3 P4 P5 

AABBA 𝜇 + 𝜋1

+ 𝜏𝐴 

𝜇 + 𝜋2 + 𝜏𝐴 + 

𝜆𝐴 

∗ ∗ ∗ 

BBAAB 𝜇 + 𝜋1

+ 𝜏𝐵 

𝜇 + 𝜋2 + 𝜏𝐵 + 

𝜆𝐵 

𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ 

AABAB 𝜇 + 𝜋1

+ 𝜏𝐴 

𝜇 + 𝜋2 + 𝜏𝐴 + 

𝜆𝐴 

𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ 

BBABA 𝜇 + 𝜋1

+ 𝜏𝐵 

𝜇 + 𝜋2 + 𝜏𝐵 + 

𝜆𝐵 

∗ ∗ ∗ 

 

4.3.9.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟒 

The contrasts 𝑑69, 𝑑70, 𝑑71 and 𝑑72 , identified from Table 4.3.12 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑69) = 𝐸(𝑌11 − 𝑌12) = [ (𝜋1 − 𝜋2)   −𝜆𝐴] 

𝐸(𝑑70) = 𝐸(−𝑌21 − 𝑌22 + 2𝑌23) = [3𝜇 + (−𝜋1 − 𝜋2 + 2𝜋3) −2𝜏𝐵 + 2𝜏𝐴 +   𝜆𝐵] 

𝐸(𝑑71) = 𝐸(𝑌31 + 𝑌32 − 2𝑌33) = [3𝜇 + (𝜋1 + 𝜋2 − 2𝜋3)+ 2𝜏𝐴 − 2𝜏𝐵 − 𝜆𝐴] 

𝐸(𝑑72) = 𝐸(𝑌41 − 𝑌42) = [(𝜋1 − 𝜋2)−𝜆𝐵]  

A linear combination of (𝑑72 + 𝑑71 + 𝑑70 − 𝑑69). forms unbiased estimate of treatment 

effects, 

Thus, 𝜏𝐴 − 𝜏𝐵 = 𝑑72 + 𝑑71 +  𝑑70 − 𝑑69.                                                                       (4.3.18) 

From (4.3.18), the maximum number of subjects that can be lost and the design remains 

connected is 10, whence the break down number, 𝐷𝑀=10. 
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4.3.10 Robustness for Missing Data for 𝐃𝟐𝟓 

Table 4.3.13: Expected values for Design 𝑫𝟐𝟓 with only two complete periods for 

all subjects  

SEQ 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

AABAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBABA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

AAABB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBAA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.10.1 Robustness for Missing Data in Carry-over Effects for 𝑫𝟐𝟓 

The contrasts 𝑑73, 𝑑74, 𝑑75 and 𝑑76 , identified from Table 4.3.13 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑73) =
1

2
𝐸(−𝑌11 + 𝑌12) =

1

2
 [2 𝜇 + (−𝜋1 + 𝜋2)     +𝜆𝐴] 

𝐸(𝑑74) =
1

2
𝐸(−𝑌21 + 𝑌22) =

1

2
 [2𝜇 + (−𝜋1 + 𝜋2) +   𝜆𝐵] 

𝐸(𝑑75) =
1

2
𝐸(−𝑌31 + 𝑌32) =

1

2
 [2 𝜇 + (−𝜋1 + 𝜋2) +𝜆𝐴] 

𝐸(𝑑76) =
1

2
𝐸(−𝑌41 + 𝑌42) =

1

2
[2 𝜇 + (−𝜋1 + 𝜋2)+𝜆𝐵]  

A linear combination of (𝑑73 + 𝑑75 − 𝑑74 − 𝑑76) forms unbiased estimate of carry-

over effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = 𝑑73 + 𝑑75 −  𝑑74 − 𝑑76 .                                                                       (4.3.19) 

From (4.3.19), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

4.3.10.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟓 

Table 4.3.14: Expected values for Design 𝑫𝟐𝟓 with 10 observations missing  

SEQ 𝑝1 𝑝1 𝑝1 𝑝1 𝑝1 

AABAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 𝜇 + 𝜋3 + 𝜏𝐵 + 𝜆𝐴 ∗ ∗ 

BBABA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 𝜇 + 𝜋3 + 𝜏𝐴 + 𝜆𝐵 ∗ ∗ 

AAABB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBAA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 
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4.3.10.3 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟓 

The contrasts 𝑑77, 𝑑78, 𝑑79 and 𝑑80 , identified from Table 4.3.14 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

𝐸(𝑑77) =
1

4
𝐸(𝑌11 + 𝑌12 − 2𝑌13) = 

1

4
[ (𝜋1 + 𝜋2 − 2𝜋3)  +2𝜏𝐴 − 2𝜏𝐵   −𝜆𝐴] 

𝐸(𝑑78) =
1

4
𝐸(−𝑌21 − 𝑌22 + 2𝑌23) =

1

4
 [(−𝜋1 − 𝜋2 + 2𝜋3)−2𝜏𝐵 + 2𝜏𝐴 −  𝜆𝐵] 

𝐸(𝑑79) =
1

4
𝐸(𝑌31 − 𝑌32) =

1

4
 [ (𝜋1 − 𝜋2) −𝜆𝐴] 

𝐸(𝑑80) =
1

4
𝐸(𝑌41 − 𝑌42) =

1

4
[(π1 − 𝜋2)−𝜆𝐵] . 

A linear combination of (𝑑77 + 𝑑78 − 𝑑79 − 𝑑70) forms unbiased estimate of treatment 

effects, 

Thus,  𝜏𝐴 − 𝜏𝐵 = 𝑑77 + 𝑑78 −  𝑑79 − 𝑑80                                                                         (4.3.20) 

From (4.3.20), the maximum number of observations that can be lost and the design 

remains connected is 10, whence the break down number 𝐷𝑀=10. 

4.3.11 Robustness for Missing Data for 𝐃𝟐𝟔 

Table 4.3.15: Expected values for Design 𝑫𝟐𝟔 with only two complete periods for 

all subjects  

SEQ 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

AAABA 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBAB 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

AAAAB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBBA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.11.1 Robustness for Missing Data in in carry-over Effects for 𝑫𝟐𝟔 

The contrasts 𝑑81, 𝑑82, 𝑑83 and 𝑑84 , identified from Table 4.3.15 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 
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𝐸(𝑑81) =
1

2
𝐸(𝑌11 − 𝑌12) =

1

2
[ (𝜋1 − 𝜋2)  −𝜆𝐴  ] 

𝐸(𝑑82) =
1

2
𝐸(𝑌21 − 𝑌22) =

1

2
[ (𝜋1 − 𝜋2)  −𝜆𝐵 ] 

𝐸(𝑑83) =
1

2
𝐸(𝑌31 − 𝑌32) =

1

2
[ (𝜋1 − 𝜋2) − 𝜆𝐴 ]   

𝐸(𝑑84) =
1

2
𝐸(𝑌41 − 𝑌42) =

1

2
[ (𝜋1 − 𝜋2) − 𝜆𝐵 ] 

A linear combination of (𝑑82 + 𝑑84 − 𝑑81 − 𝑑83) forms unbiased estimate of carry-

over effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = (𝑑82 + 𝑑84 − 𝑑81 − 𝑑83)                                                                         (4.3.21) 

From (4.3.21), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

Table 4.3.16: Design 𝑫𝟐𝟔 with 8 Missing Observations.  

SEQ 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

AAABA 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 𝜇 + 𝜋3 + 𝜏𝐴 + 

𝜆𝐴 

𝜇 + 𝜋4 + 𝜏𝐵 + 

𝜆𝐴 

∗ 

BBBAB 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 𝜇 + 𝜋3 + 𝜏𝐵 + 

𝜆𝐵 

𝜇 + 𝜋4 + 𝜏𝐴 + 

𝜆𝐵 

∗ 

AAAAB 

 

𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBBA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.11.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟔 

The contrasts 𝑑85, 𝑑86, 𝑑87 and 𝑑88 , identified from Table 4.3.16 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

𝑑85 =
1

4
(𝑌11 + 𝑌12 + 𝑌13 − 𝑌14) =

1

4
[ 2𝜇 +(𝜋1 + 𝜋2 + 𝜋3 − 𝜋4)  +3𝜏𝐴 − 𝜏𝐵 + 𝜆𝐴 ] 

𝑑86 =
1

4
(𝑌21 + 𝑌22 + 𝑌23 − 𝑌24) =

1

4
[ 2𝜇 +(𝜋1 + 𝜋2 + 𝜋3 − 𝜋4)  +3𝜏𝐵 − 𝜏𝐴 + 𝜆𝐵 ] 

𝑑87 =
1

4
(𝑌31 − 𝑌32) =

1

4
[ (𝜋1 − 𝜋2) − 𝜆𝐴 ]   
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𝑑88 =
1

4
(𝑌41 − 𝑌42) =

1

4
[ (𝜋1 − 𝜋2) − 𝜆𝐵  ] 

A linear combination of (𝑑85 − 𝑑86) + (𝑑87 − 𝑑88) forms unbiased estimate of 

treatment effects, 

Thus, 𝜏𝐴 − 𝜏𝐵 = (𝑑85− 𝑑86) + (𝑑87 − 𝑑88)                                                                   (4.3.22) 

 From (4.3.22), the maximum number of subjects that can be lost and the design remains 

connected is 8, whence the break down number 𝐷𝑀=8. 

4.3.12 Robustness for Missing Data for 𝐃𝟐𝟕 

Table 4.3.17: Expected values for Design 𝑫𝟐𝟕 with only two complete periods for 

all subjects  

SEQ 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

AAAAB 

 
𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBBA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

AAAAB 

 
𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐴 ∗ ∗ ∗ 

BBBBA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐵 ∗ ∗ ∗ 

 

4.3.12.1 Robustness for Missing Data in in carry-over Effects for 𝑫𝟐𝟕 

The contrasts 𝑑89, 𝑑90, 𝑑91 and 𝑑92 , identified from Table 4.3.17 in such a way that 

(3.1.7), and (3.1.9) are satisfied are given by; 

𝐸(𝑑89) =
1

2
𝐸(𝑌11 − 𝑌12) =

1

2
[ (𝜋1 − 𝜋2)  −𝜆𝐴  ] 

𝐸(𝑑90) =
1

2
𝐸(𝑌21 − 𝑌22) =

1

2
[ (𝜋1 − 𝜋2)  −𝜆𝐵 ] 

𝐸(𝑑91) =
1

2
𝐸(𝑌31 − 𝑌32) =

1

2
[ (𝜋1 − 𝜋2) − 𝜆𝐴 ]   

𝐸(𝑑92) =
1

2
𝐸(𝑌41 − 𝑌42) =

1

2
[ (𝜋1 − 𝜋2) − 𝜆𝐵 ] 
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A linear combination of (𝑑92 + 𝑑90 − 𝑑89 − 𝑑91) forms unbiased estimate of treatment 

effects, 

Thus, 𝜆𝐴 − 𝜆𝐵 = (𝑑92 + 𝑑90 − 𝑑89 − 𝑑91)                                                                        (4.3.23) 

From (4.3.23), the design remains connected for the first two periods in all subjects, 

whence the design is said to be perpetually connected for carry-over effects. 

Table 4.3.18: Expected values for Design 𝑫𝟐𝟕 with 6 observations missing  

SEQ 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

AAAAB 

 
𝜇 + 𝜋1

+ 𝜏𝐴 

𝜇 + 𝜋2 +
𝜏𝐴 + 𝜆𝐴 

𝜇 + 𝜋3 +
𝜏𝐴 + 𝜆𝐴 

𝜇 + 𝜋4 +
𝜏𝐴 + 𝜆𝐴 

𝜇 + 𝜋4 +
𝜏𝐵 + 𝜆𝐴 

BBBBA 𝜇 + 𝜋1

+ 𝜏𝐵 

𝜇 + 𝜋2 +
𝜏𝐵 + 𝜆𝐵 

𝜇 + 𝜋3 +
𝜏𝐵 + 𝜆𝐵 

𝜇 + 𝜋4 +
𝜏𝐴 + 𝜆𝐵 

𝜇 + 𝜋4 +
𝜏𝐴 + 𝜆𝐵 

AAAAB 

 
𝜇 + 𝜋1

+ 𝜏𝐴 

𝜇 + 𝜋2 +
𝜏𝐴 + 𝜆𝐴 

∗ ∗ ∗ 

BBBBA 𝜇 + 𝜋1

+ 𝜏𝐵 

𝜇 + 𝜋2 +
𝜏𝐵 + 𝜆𝐵 

∗ ∗ ∗ 

  

4.3.12.2 Robustness for Missing Data in Treatment Effects for 𝑫𝟐𝟕 

The contrasts; 𝑑93, 𝑑94, 𝑑95 and 𝑑96 , identified from Table 4.3.18 in such a way that 

(3.1.6), and (3.1.8) are satisfied are given by; 

𝐸(𝑑93) =
1

3
𝐸(𝑌11 + 𝑌12 + 𝑌13 + 𝑌14 + 𝑌15) =

1

3
[ 5𝜇 +(𝜋1 + 𝜋2 + 𝜋3 + 𝜋4 + 𝜋5)  

+4𝜏𝐴 + 𝜏𝐵 + 4𝜆𝐴] 

𝐸(𝑑94) =
1

3
𝐸(𝑌21 + 𝑌22 + 𝑌23 + 𝑌24 + 𝑌25) =

1

3
[ 5𝜇 +(𝜋1 + 𝜋2 + 𝜋3 + 𝜋4 + 𝜋5)  

+4𝜏𝐵 + 𝜏𝐴 + 4𝜆𝐵 ] 

𝐸(𝑑95) =
4

3
𝐸(𝑌31 − 𝑌32) =

4

3
[ (𝜋1 − 𝜋2) − 𝜆𝐴 ]   

𝐸(𝑑96) =
4

3
𝐸(𝑌41 − 𝑌42) =

4

3
[ (𝜋1 − 𝜋2) − 𝜆B ] 

A linear combination of (𝑑93 − 𝑑94) + (𝑑95 − 𝑑96) forms unbiased estimate of 

treatment effects, 
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Thus, 𝜏𝐴 − 𝜏𝐵 = (𝑑93 − 𝑑94) + (𝑑95 − 𝑑96)]                                                                    (4.3.24) 

From (4.3.24), the maximum number of subjects that can be lost and the design remains 

connected is 6, whence the break down number 𝐷𝑀=6. 

Table 4.3.19: Summary for Robustness against Missing Data for the Four 

Sequence C (2× 𝟓 × 𝟐) Cross-Over Designs. 

 
 

4.3.13 Discussion 

From table (4.2.1), it is evident that all the C (2× 5 × 2) designs were perpetually 

connected in estimating carry-over effects. In this case, the variances of the carry-over 

effects were used to measure Robustness for missing data where the design with the 

minimum variance was highly recommended. In this regard, D22  and D25 were the 

most Robust, followed by D16, D17, D18, D19, andD20 respectively which were equally 

robust. Designs; D24 , D21,and D27 respectively were the least desirable in this category 

due to their relatively higher variances for estimating carry-over effects.   

In treatment effects estimation; D16, D17, D18, D21, D22  and  D23 were perpetually 

robust against missing data while  D19, D20, D24, D25, D26  and  D27 , had breakdown 

Design  Carry-over 

estimates 

variance in 
𝜎2

𝑛
 

Treatments 

estimates 

variance in 
𝜎2

𝑛
 

Break down 

numbers for 

carry-over 

effects 

Breakdown 

numbers for 

treatment 

effects 

𝐷16 1.25 5 ∞ ∞ 

𝐷17 1.25 5 ∞ ∞ 

𝐷18 1.25 5 ∞ ∞ 

𝐷19 1.25 5 ∞ 10 

𝐷20 1.25 5 ∞ 10 

𝐷21 6.5 0.7 ∞ ∞ 

𝐷22 0.9 5 ∞ ∞ 

𝐷23 4.4 5 ∞ ∞ 

𝐷24 1.5 5 ∞ 10 

𝐷25 0.9 2.7 ∞ 10 

𝐷26 1.25 154 ∞ 8 

𝐷27 25 9.6 ∞ 6 
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numbers of; 10, 10, 10, 10, 6, and 8 respectively. For the perpetually connected 

designs, D21 with variance of 0.7
σ2

n
  was the most robust in that category and was highly 

recommended for use in estimating treatment effects. However, it is interesting to note 

that D21 which was the most robust for missing data in estimating treatment effects was 

relatively lowly ranked in robustness for missing data in estimating carry-over effects.  

It is also important to note that both D26 and D27 have the lowest breakdown numbers 

and both of them have relatively higher variances for treatment and carry-over effects. 

Hence the two designs are not desirable in cross-over experiments and are not 

recommended for use. 

4.4 Data Analysis Based On the Bayesian Method   

Table 4.4.1: Hypothetical experimental data for two treatments (A, B). 

Sequence  Period  Treatment 1 2 3 4 5 6 7 8 Mean(𝜇𝑖) 𝜎2 

1 1 B 2.4 7.1 8.0 2.3 2.9 6.4 7.0 2.9 4.8750  

1 2 A 4.1 7.6 9.7 1.8 2.7 5.6 5.5 2.4 4.9250  

1 3 B 1.9 0.5 0.6 8.7 15.7 5.3 3.7 9.8 5.7750  

1 4 A 6.4 0.5 2.8 3.8 9.5 5.4 4.6 5.8 4.8500  

1 5 A 0.1 5.2 6.2 4.4 2.4 7.5 2.1 4.2 4.0125 10.1057 

2 1 A 1.0 3.0 6.9 7.0 5.9 5.1 4.9 2.4 4.5250  

2 2 B 1.6 0.8 1.5 7.8 13.1 2.4 2.2 8.6 4.7500  

2 3 A 1.5 0.7 1.5 7.8 13.2 2.5 2.2 8.7 4.7625  

2 4 B 2.9 3.3 2.0 7.5 8.2 2.5 5.1 9.4 5.1125  

2 5 B 1.4 3.4 0.6 0.7 0.2 3.4 3.0 0.9 1.7000 11.6447 

3 1 B 0.5 2.1 1.1 0.5 0.6 1.9 4.2 0.9 1.4750  

3 2 A 3.7 1.2 2.1 4.1 3.6 3.9 2.8 7.5 3.6125  

3 3 A 7.2 3.7 4.8 6.8 6.3 5.8 3.9 13.4 6.4875  

3 4 B 2.3 5.1 7.2 2.7 5.3 6.7 3.6 1.2 4.2625  

3 5 A 5.7 6.6 8.1 5.2 6.7 8.4 7.4 1.9 6.2500 7.6876 

4 1 A 3.6 4.3 6.0 12.3 10.7 2.7 5.9 3.8 6.1625  

4 2 B 13.3 3.6 2.64 8.6 9.2 1.5 4.7 3.8 5.9125  

4 3 B 2.0 4.5 3.8 1.8 1.3 1.5 3.6 1.5 2.5000  

4 4 A 2.0 5.3 5.4 1.3 2.2 2.5 5.3 2.2 3.2750  

4 5 B 4.7 1.4 2.9 2.0 3.2 2.4 1.5 3.4 2.6875 8.7971 

In this section, data from a hypothetical example was used for data analysis. The 

Bayesian analysis method was used and for validation purpose, the 𝑡-test was used. 
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Table 4.4.2: Expected values for design 𝑫𝟐𝟏 

Sequence 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

BABAA 𝐸(𝑌11) =4.875 𝐸(𝑌12) =4.925 𝐸(𝑌13) =5.775 𝐸(𝑌14) =4.850 𝐸(𝑌15) =4.0125 

ABABB 𝐸(𝑌21) =4.525 𝐸(𝑌22) =4.750 𝐸(𝑌23) =4.763 𝐸(𝑌24) =5.113 𝐸(𝑌25) =1.700 

BAABA 𝐸(𝑌31) =1.475 𝐸(𝑌32) =3.613 𝐸(𝑌33) =6.488 𝐸(𝑌34) =4.263 𝐸(𝑌35) =6.250 

ABBAB 𝐸(𝑌41) =6.163 𝐸(𝑌42) =5.913 𝐸(𝑌43) =2.500 𝐸(𝑌44) =3.275 𝐸(𝑌45) =2.688 

 

The variances of the four groups from Table (4.4.1) are given by; 

Substituting the variances 𝑠11
2 = 10.1057 𝑠21

2 = 11.6447 𝑠31
2 = 7.6876 𝑠41

2 = 8.7971in table 

(4.4.1) to (3.4.1) and (3.4.2) gives, 

𝑠1
2= 10.8752                                                                                                                     (4.3.1.1) 

And 

 𝑠2
2= 8.24235                                                                                                                   (4.3.1.2) 

4.4.1 Bayesian Method for Treatment Effects test for Design 𝐃𝟐𝟏  

The hypothesis to be tested is; 

𝐻𝑂: [𝜏𝐴 − 𝜏𝐵]𝑊 = 0 

𝐻1: [𝜏𝐴 − 𝜏𝐵]𝑊 ≠ 0 

Substituting (4.3.1.1) and (4.3.1.2) on (3.4.5) and (3.4.6) using the contrasts given in 

4.1.72 gives,  

V(𝜏𝐴 − 𝜏𝐵)1= 
𝑠1

2

𝑘2 [
1

𝑛11
+

1

𝑛21
]    = 0.033985                                                                        (4.3.1.3) 

V(𝜏𝐴 − 𝜏𝐵)2= 
𝑠2

2

𝑚2 [
1

𝑛31
+

1

𝑛41
] = 0.00286                                                                             (4.3.1.4)   

From (4.1.72), 
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 [𝜏𝐴 − 𝜏𝐵]1= 
1

2
(𝑑37 − 𝑑38)                                                                                                 (4.3.1.5) 

[𝜏𝐴 − 𝜏𝐵]2=
1

12
 (𝑑39 − 𝑑40)                                                                                                (4.3.1.6) 

Substituting the values of Table 4.1.43 on the contrasts given in (4.1.36) gives  

𝑑37=8.8125 & 𝑑38=1.55                                                                                                     (4.3.1.7) 

 𝑑39 = 6.337 𝑑37=2.163                                                                                                     (4.3.1.8) 

Substituting (4.3.1.7) & (4.3.1.8) on (4.3.1.5) and (4.3.1.6) respectively gives, 

(𝜏𝐴 − 𝜏𝐵)1= 3.63125                                                                                                         (4.3.1.9) 

(𝜏𝐴 − 𝜏𝐵)2= 0.34783                                                                                                         (4.3.1.10)  

Substituting (4.3.1.3) and (4.3.1.4) on (3.4.7) and (3.4.8) gives,                                                                                     

𝑊1 = 29.42474621                                                                                                          (4.3.1.11)                                                                                                    

𝑊2 = 349.6503497                                                                                                          (4.3.1.12)  

Substituting (4.3.1.9), (4.3.1.10), (4.3.1.11), & (4.3.1.12) on (3.4.9) and (3.4.10) 

respectively gives,  

(𝜏𝐴 − 𝜏𝐵)𝑤= 0.602697235                                                                                               (4.3.1.13) 

𝑉(𝜏𝐴 − 𝜏𝐵)𝑤= 0.002637999729                                                                                        (4.3.1.14) 

Substituting (4.3.1.3) and (4.3.1.4) on (3.4.17) gives  

𝑐𝑜𝑠𝜃
2 = 0.922377527                                                                                                          (4.3.1.15) 

Substituting (4.3.15) on (3.4.18) gives 
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𝑠𝑖𝑛𝜃
2 = 0.077622472                                                                                                          (4.3.1.16) 

Substituting (4.3.1.15) and (4.3.1.16) on (3.4.1.15) gives,  

𝑓1= 1.0128205                                                                                                                    (4.3.1.17) 

Substituting (4.3.1.15) and (4.3.1.16) on (3.4.1.16) gives,  

𝑓2= 0.01156468                                                                                                              (4.3.1.18)     

Substituting (4.3.1.17) and (4.3.1.18) on (3.4.1.14) gives,                                                                                                          

𝑏 = 92.701                                                                                                                     (4.3.1.19) 

Substituting (4.3.1.17) and (4.3.1.19) to (3.4.13) gives  

𝑎=0.995474339                                                                                                              (4.3.1.20) 

Substituting (4.3.1.3), (4.3.1.4), (4.3.1.13), (4.3.1.19) & (4.3.1.20) on (3.4.20) gives the 

interval 

(0.5607, 0.6453)                                                                                                             (4.3.1.21) 

The interval in (4.3.1.21) is represented in HPD graph as,  
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Figure 4.1: HPD for treatment effects when carry-over effects are absent 

Discussion: The null hypothesis of no significant difference in the treatment effects 

was tested. From Figure 4.1, the p((τA − τB)/y) > 0 = 1 . This implies that the 

treatment effects were significant, thus, the null hypothesis was rejected and the 

alternative hypothesis upheld.  

4.4.2 Bayesian Method for Carry-over Effects test for Design 𝐃𝟐𝟏  

The hypothesis to be tested is; 

𝐻𝑂: [𝜆𝐴 − 𝜆𝐵]𝑊 = 0 

𝐻1: [𝜆𝐴 − 𝜆𝐵]𝑊 ≠ 0 

Substituting (4.3.1.1) and (4.3.1.2) on (3.4.5) and (3.4.6) using the contrasts given in 

(4.1.74) gives,  

V(𝜆𝐴 − 𝜆𝐵)1= 
𝑠1

2

𝑘2
[

1

𝑛11
+

1

𝑛21
]    = 0.13594                                                                   (4.3.2.3) 

V(𝜆𝐴 − 𝜆𝐵)2= 
𝑠2

2

𝑚2 [
1

𝑛31
+

1

𝑛41
] = 0.103029375                                                             (4.3.2.4)   

From (4.1.74), 

 [𝜆𝐴 − 𝜆𝐵]1= 
1

2
(𝑑41 − 𝑑42)                                                                                         (4.3.2.5) 
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[𝜆𝐴 − 𝜆𝐵]2=
1

2
 (𝑑43 − 𝑑44)                                                                                           (4.3.2.6) 

Substituting the values of table 4.1.43 on the contrasts given in (4.1.37) gives  

𝑑41=−0.94375 & 𝑑38=−1.4625                                                                                 (4.3.2.7) 

 𝑑39 = 0.528083 𝑑37= 0.18025                                                                                   (4.3.2.8) 

Substituting (4.3.2.7) & (4.3.2.8) on (4.3.2.5) and (4.3.2.6) respectively gives, 

[𝜆𝐴 − 𝜆𝐵]1= 0.259375                                                                                                    (4.3.2.9) 

[𝜆𝐴 − 𝜆𝐵]2= 0.17392                                                                                                      (4.3.2.10)  

Substituting (4.3.2.3) and (4.3.2.4) on (3.4.7) and (3.4.8) gives,                                                                                     

𝑊1 = 7.356186553                                                                                                       (4.3.2.11)                                                                                                    

𝑊2 = 9.705969778                                                                                                       (4.3.2.12)  

Substituting (4.3.2.9), (4.3.2.10), (4.3.2.11), & (4.3.2.12) on (3.4.9) and (3.4.10) 

respectively gives,  

(𝜆𝐴 − 𝜆𝐵)𝑤=0.098936044                                                                                              (4.3.2.13) 

𝑉(𝜆𝐴 − 𝜆𝐵)𝑤= 0.03334042                                                                                              (4.3.2.14) 

Substituting (4.3.2.3) and (4.3.2.4) on (3.4.17) gives  

𝑐𝑜𝑠𝜃
2 = 0.431140496                                                                                                        (4.3.2.15) 

Substituting (4.3.2.15) on (3.4.18) gives, 

𝑠𝑖𝑛𝜃
2 = 0.568859504                                                                                                         (4.3.2.16) 

Substituting (4.3.2.15) and (4.3.2.16) on (3.4.15) gives,  

𝑓1= 1.0128205                                                                                                                   (4.3.2.17) 



  126 
 

Substituting (4.3.2.15) and (4.3.2.16) on (3.4.2.16) gives,  

𝑓2= 0.00725204                                                                                                                (4.3.2.18)     

Substituting (4.3.2.17) and (4.3.2.18) on (3.4.14) gives,                                                                                                          

𝑏 = 145.450                                                                                                                      (4.3.2.19) 

Substituting (4.3.2.17) and (4.3.2.19) on (3.4.13) gives  

𝑎=0.99945                                                                                                                       (4.3.2.20) 

Substituting (4.3.2.3), (4.3.2.4), (4.3.2.13), (4.3.2.19) & (4.3.2.20) on (3.4.20) gives the 

interval, 

(-0.008, 0.21)                                                                                                                  (4.3.2.21) 

The interval in (4.3.2.21) is represented in HPD graph as,  

 

Figure 4.2: HPD for carry-over effects  

Discussion: The null hypothesis of no significant difference in the carry-over effects 

was tested. From Figure 4.2, the range of the carry-over effects included a zero value. 

This implies that there was a likelihood for absence of carry-over effects. 
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difference was significant, thus, the null hypothesis was rejected. This implies that the 

carryover effects were present. 

4.4.3 Bayesian Method for treatment effects given Carry-over Effects test for 

Design 𝐃𝟐𝟏  

The hypothesis to be tested was; 

𝐻𝑂: (𝜏𝐴 − 𝜏𝐵)𝑊/(𝜆𝐴 − 𝜆𝐵)𝑊 = 0 

𝐻1: (𝜏𝐴 − 𝜏𝐵)𝑊/(𝜆𝐴 − 𝜆𝐵)𝑊  ≠ 0 

Substituting (4.3.1) and (4.3.2) on (3.4.5) and (3.4.6) using the sum of the contrasts 

given in (4.1.72) and (4.1.74) gives,  

V((𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵))1= 
𝑠1

2

𝑘2 [
1

𝑛11
+

1

𝑛21
]    = 0.0169625                                               (4.3.3.3) 

V((𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵))2= 
𝑠2

2

𝑚2 [
1

𝑛31
+

1

𝑛41
] = 0.00143096                                  (4.3.3.4)   

From (4.1.74), 

 (𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵)1= 
1

2
(𝑑37−𝑑38) + 

1

2
(𝑑41−𝑑42)                                                      (4.3.3.5) 

(𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵)2= 
1

12
(𝑑39−𝑑40) + 

1

2
(𝑑43−𝑑44)                                          (4.3.3.6) 

Substituting the values of table 4.1.43 on the contrasts given in (4.1.36) and (4.1.37) 

gives  

𝑑41=−0.94375 & 𝑑38=−1.4625                                                                                        (4.3.3.7) 

 𝑑39 = 0.528083 𝑑37= 0.18025                                                                                         (4.3.3.8) 

Substituting (4.3.3.7) & (4.3.3.8) on (4.3.3.5) and (4.3.3.6) respectively gives, 
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(𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵)1= -1.190625                                                                                     (4.3.3.9) 

(𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵)2= 12.99500                                                                                      (4.3.3.10)  

Substituting (4.3.3.3) and (4.3.3.4) on (3.4.7) and (3.4.8) gives,                                                                                     

𝑊1 = 58.95357406                                                                                                          (4.3.3.11)                                                                                                    

𝑊2 = 698.8315536                                                                                                           (4.3.3.12)  

Substituting (4.3.3.9), (4.3.3.10), (4.3.3.11), & (4.3.3.12) on (3.4.9) and (3.4.10) 

respectively gives,  

((𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵))𝑤=11.89139785                                                                          (4.3.3.13) 

𝑉((𝜏𝐴 − 𝜏𝐵)/(𝜆𝐴 − 𝜆𝐵))𝑤= 0.001319635294                                                                   (4.3.3.14) 

Substituting (4.3.3.3) and (4.3.3.4) on (3.4.17) gives  

𝑐𝑜𝑠𝜃
2 = 0.077797                                                                                                               (4.3.3.15) 

Substituting (4.3.3.15) on (3.4.18) gives 

𝑠𝑖𝑛𝜃
2 = 0. 922203                                                                                                              (4.3.3.16) 

Substituting (4.3.3.15) and (4.3.3.16) on (3.4.3.15) gives,  

𝑓1= 1.026315789                                                                                                             (4.3.3.17) 

Substituting (4.3.3.15) and (4.3.3.16) on (3.4.3.16) gives,  

𝑓2= 0.012191667                                                                                                             (4.3.3.18)     

Substituting (4.3.3.17) and (4.3.3.18) on (3.4.3.14) gives,                                                                                                          

𝑏 = 90.4                                                                                                                           (4.3.3.19) 
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Substituting (4.3.3.17) and (4.3.3.19) on (3.4.13) gives  

𝑎=1.00180321                                                                                                                  (4.3.3.20) 

Substituting (4.3.3.3), (4.3.3.4), (4.3.3.13), (4.3.3.19) & (4.3.3.20) on (3.4.20) gives the 

interval, 

(11.86, 11.92)                                                                                                                   (4.3.3.21) 

The interval in (4.3.3.21) is represented in HPD graph as,  

 

Figure 4.3: HPD for Treatment effects in the presence of Carry-over effects. 

Discussion: The null hypothesis of no significant difference in the treatment effects 

given carry-over effects was tested. From Figure 4.3, p((τA − τB)/y) > 0 = 1 . This 

implies that the treatment effects were significant, thus, the null hypothesis was 
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𝐻1: [𝜏𝐴 − 𝜏𝐵]𝑊 ≠ 0                                   

Substituting (4.3.1.13) and (4.3.1.14) on (3.4.5.1) gives  

𝑡𝐶1 = 11.73442533                                                                                                              (4.4.4.1) 

4.4.4.1 Degrees of Freedom for treatment effects  

 Let, 

   𝑎1  = 
𝑊1

𝑊1+𝑊2
                                                                                                                      (4.4.4.2) 

𝑎2  = 
𝑊2

𝑊1+𝑊2
                                                                                                                          (4.4.4.3) 

Substituting (4.3.1.11) and (4.3.1.12) on (4.4.4.2) and (4.4.4.3) respectively gives  

𝑎1  =0.077622472                                                                                                               (4.4.4.4) 

And 

 𝑎2 = 0.922377527                                                                                                             (4.4.4.5) 

Substituting (4.4.4.4), (4.4.4.5), (4.3.1.3), and (4.3.1.4) on (3.4.5.8) with 𝑓1 =𝑓2  = 78   

degrees of freedom gives.                                                                          

Then 𝑓𝑤 = 156                                                                                                               (4.4.4.6) 

Discussion: The null hypothesis of no significant difference in treatment effects was 

tested, comparison of the  tabulated value at 156 degrees of freedom  in (4.4.4.6) with 

the calculated value from (4.4.4.1), the calculated value  is greater than the tabulated  

value at 95% level of significance, hence the null hypothesis is rejected. 
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4.4.5 𝒕-test for carry-over effects 

The hypothesis to be tested was, 

𝐻𝑂: (𝜆𝐴 − 𝜆𝐵)𝑊 = 0 

𝐻1: (𝜆𝐴 − 𝜆𝐵)𝑊 ≠ 0                                   

Substituting (4.3.2.13) and (4.3.2.14) on (3.4.5.2) gives 

𝑡𝐶2 = 0.541837436                                                                                                          (4.4.5.1)                                                                                       

4.4.5.1 Degrees of Freedom for carry-over effects 

Let, 

𝑎1  = 
𝑊1

𝑊1+𝑊2
                                                                                                                    (4.4.5.2) 

𝑎2  = 
𝑊2

𝑊1+𝑊2
                                                                                                                    (4.4.5.3) 

Substituting (4.3.2.11) and (4.3.2.12) on (4.4.5.2) and (4.4.5.3) respectively gives  

𝑎1  =0.431140496                                                                                                          (4.4.5.4) 

And 

 𝑎2 = 0.568859503                                                                                                         (4.4.5.5) 

Substituting (4.4.5.4), (4.4.5.5), (4.3.2.3), and (4.3.2.4) on (3.4.5.8) with 𝑓1 =𝑓2  = 78   

degrees of freedom gives                                                                           

Then 𝑓𝑤 = 155.4                                                                                                             (4.4.5.6) 
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Discussion: By comparing the tabulated value at 155.4 degrees of freedom in (4.4.5.6) 

with the calculated value from (4.4.5.1), the calculated value is less than the tabulated 

value at 95% confidence level hence the null hypothesis is not rejected.4.4.6 

4.4.6 Discussion  

In this section, the Bayesian method was used to test the null hypothesis of; 𝐻0: 𝜏𝐴 −

𝜏𝐵 = 0,  𝜆𝐴 − 𝜆𝐵 = 0, and ( 𝜏𝐴 − 𝜏𝐵/𝜆𝐴 − 𝜆𝐵) = 0. The 𝑡 −test was used to validate the 

Bayesian method. The results indicate that the two methods gave similar conclusions. 

4.4.7 Plotting Graphs  

4.4.7.1 Subject Profiles Plots  

 

Figure 4.4: Mean subject profiles for periods 1 and 2 of the first two sequences  

Discussion: From Figure 4.4 above, in the first group of sequence BA indicates that 

treatment B is more effective compared to treatment A whereas in the second group of 

sequence AB indicates that treatment A is more effective compared to treatment B. 

Since each group favors a different treatment, periods 2 and 3 do not give conclusive 

results.  
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Figure 4.5: Mean subject profiles for periods 2 and 3 of the first two sequences   

Discussion: From Figure 4.5 above, in the first group of sequence AB indicates that 

treatment A and B are almost equally effective whereas in the second group of sequence 

BA indicates that treatment B is more effective compared to treatment A. from this 

figure, it can be concluded that treatment B is more effective than treatment A in the 

first two sequences of period 2 and 3. 

 

Figure 4.6: Mean subject profiles for periods 3 and 4 of the first two sequences   
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Discussion: From Figure 4.6 above, the first group of sequence BA indicates that 

treatment B is more effective than treatment A whereas the second group of sequence 

AB indicates that treatment B is more effective compared to treatment A. from this 

figure, it can be concluded that treatment B is more effective than treatment A in the 

first two sequences of period 3 and 4 since treatment B is favored in both groups. 

 

 

Figure 4.7: Mean subject profiles for periods 1 and 2 of the last two sequences   

Discussion: From figure 4.7 above, in the first group of sequence BA indicates that 

treatment A is more effective compared to treatment B whereas in the second group of 

sequence AB indicates that treatment B is more effective compared to treatment A. 

Since each group favors a different treatment, periods 1 and 2 of the last two sequences 

do not give conclusive results.  
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Figure 4.8: Mean subject profiles for periods 3 and 4 of the last two sequences   

 

Discussion: From Figure 4.8 above, the first group of sequence AB indicates that 

treatment A is more effective compared to treatment B whereas in the second group of 

sequence BA indicates that treatment B is more effective compared to treatment A. 

Since each group favors a different treatment, periods 3 and 4 of the last two sequences 

do not give conclusive results.  

 

 

Figure 4.9: Mean subject profiles for periods 4 and 5 of the last two sequences   

Discussion: From Figure 4.9 above, the first group of sequence BA indicates that 

treatment B is more effective compared to treatment A whereas in the second group of 

sequence AB indicates that treatment A is more effective compared to treatment B. 
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Since each group favors a different treatment, periods 4 and 5 of the last two sequences 

do not give conclusive results.  

4.4.7.1.1 Discussion  

High between individual variability is evident as are the low mean values of some 

individuals in group 3. However, from figures 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 the general 

trend implies a direct treatment effect in favor of treatment B. 

4.4.7.2 Group by periods plots  

 

Figure 4.10: Group by periods plot for periods 1 and 2 of the first two sequences  

Discussion: From Figure 4.10, it is evident that the BB and AA intersects. This implies 

that there are interaction effects. 

 

4.875

4.75

4.525

4.925

4.2

4.4

4.6

4.8

5

1 2

m
ea

n

periods 

group by periods plot period 1 and 2

BB AA



  137 
 

 

Figure 4.11: Group by periods plot for periods 3 and 4 of the first two sequences 

   

Discussion: From Figure 4.11, it is evident that the BB and AA do not intersect. This 

implies that there are no interaction effects. 

 

 

Figure 4.12: Group by periods plot for periods 4 and 5 of the first two sequences 

   

Discussion: From Figure 4.12, it is evident that the BB and AA intersects. This implies 

that there are interaction effects. 
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Figure 4.13: Group by periods plot for periods 1 and 2 of the last two sequences   

Discussion: From Figure 4.13, it is evident that the BB and AA intersects. This implies 

that there are interaction effects. 

                         

Figure 4.14: Group by periods plot for periods 3 and 4 of the last two sequences   

Discussion: From Figure 4.14, it is evident that the BB and AA intersects. This implies 

that there are interaction effects. 
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Figure 4.15: Group by periods plot for periods 4 and 5 of the last two sequences 

Discussion:  From Figure 4.15, it is evident that the BB and AA intersects. This implies 

that there are interaction effects. 

4.4.7.2.1 Discussion  

A majority of the figures; 4.10, 4.12, 4.13, 4.14, and 4.15, indicate presence of treatment 

by period interaction effects. It can therefore be concluded that the periods interact with 

the treatment effects and should be taken into consideration when assessing the efficacy 

of treatments.  
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

5.0 Introduction  

This chapter presents the conclusion and recommendations of the study. 

5.1 Conclusions  

In this thesis, C (2× 5) cross-over designs were designed and analyzed. The objectives 

of the study were to: Estimate the direct treatments and carryover effects using BLUE 

method; evaluate the optimality criteria for the designs; evaluate the robustness for 

missing data for the designs and compare the Bayesian and the 𝑡 −test analysis methods 

on the treatments and carry-over effects. 

With regard to estimation of direct treatments and carry-over effects, the study 

established that the BLUE method gives both treatments and carry-over effects 

estimates for all the five period designs in two and four sequences except  

D1, D2, D3, D4&D5 whose carry-over effects were inestimable.  BLUE method is 

normally associated with unbiased estimates for both treatments and carryover effects. 

The fact that the carryover effects estimates for (𝐷1 − 𝐷5) were not obtained implies 

the designs can be effectively used to estimate treatment effects even when the 

carryover effects are expected in the experiment. 

With regard to optimality criteria, for the C (2× 5 × 2) designs, it was shown that; 

D6and D10  are optimum for estimating carry-over effects, D8 and D15 are optimum for 

estimating treatment effects and D7 &D11 are optimum in estimating treatment effects 

when the carry-over effects are present. For the C (2× 5 × 4) designs, D21 is optimum 

for estimating treatment effects while D22 and D25 are optimum for estimating carry-

over effects. In estimating treatment effects when the carry-over effects are present, D25  

is the most optimal and preferable. It is interesting to note that the optimum design 
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(𝐷21) was relatively strongly variance balanced with respect to the other designs. This 

implies that variance balance plays a role in determining the optimality criteria and by 

extension the efficiency of the designs. 

The assessment of C (2× 5 × 4) robustness for missing data gave D21 as the most 

Robust since it is perpetually connected and has minimum variance in estimating 

treatment effects. The result from this design and other C (2, 5) crossover designs with 

different breakdown numbers improve upon previous contributions in the literature that 

have been largely confined to cases in which dropout occurs only in the final periods 

of the study. The fact that the optimal design (𝐷21) is also most robust for missing data 

implies that there could be a positive relationship in the design’s optimality criteria and 

robustness for missing data. 

The results from the Bayesian analysis were similar to those from the 𝑡-test. This 

implies that the Bayesian method is equally as good as the other classical methods. This 

confirms the assertion by Jones and Kenward in the year 2014 that the Bayesian analysis 

is equally or more accurate when compared to other classical methods of analysis.  

5.2 Recommendations 

This study recommends that the most optimum and robust design in C (2, 5, 4) be 

applied in Bioequivalence experiments to assess the efficacy of new treatments against 

the existing standard treatments. For further research, the BLUE method should be used 

in estimation of direct and treatment effects for designs with three or more treatments. 

 

 

 

 

 



  142 
 

REFERENCES 

  

Atkinson, G. (1966). Designs for Sequences of Treatments with Carry-over Effects. 

Biometrics, 22, 292-309. 

Balaam, L. (1968). A Two Period Design with Two Factorial Experimental Units. 

Biometrics, 24, 61-73. 

Bose, M., & Dey, M. (2009). Optimal Cross-over designs. World Scientific. 

Box, G. (1954a). Some Theorems on Quadratic form Applied in the Study of Analysis 

of Covariance Problems. Ann.Math.Statist., 25, 290-302. 

Cheng, C., & Wu, C. (1980). Balanced Repeated Measurements Designs. The Annals 

of Statistics, 8(6), 1272-1283. 

Dey, N., Castleden, C., Ward, J., Cornhill, J., & McBurney, A. (1983). The Effects of 

Cimetidine on Tolbutamidekinetics. Br.j.Clin.Pharmacol, 16, 438-440. 

Fleiss, J. (1989). A critique of Recent Research on the Two Treatment Cross-over 

Designs. Controlled Clinical Trials, 10(3), 237-243. 

Glasser, M. (1964). Linear Regression Analysis with Missing Observations Among the 

Independent Variables. Journal of the American Statistical Association, 

59(307), 834-844. 

Godolphin, J., & Godolphin, E. (2015). The use of treatment concurences to asses 

robustness of binary block designs against the loss of whole blocks. Australian 

& Newzealand Journal of Statistics, 57(2), 255-259. 

Godolphin, P., & Godolphin, E. (2019). Robustness of Cross-over Trials Against 

Subject Drop Out. Examples of Perpetually Connected Designs. Statistical 

Methods in Medical Research, 28(3), 788-800. 

Grizzle, J. (1965). Two Period Change-over Design and its use in Clinical Trials. 

Biometrics, 487-480. 

Grizzle, J. (1974). Correction to Grizzle (1965). Biometrics, 30(4), 727. 

Hay, M., Thomas, D., Craighead, J., Economides, C., & Rosental, J. (2014). Clinical 

Development Success Rates for Investigational Drugs. Nature Biotechnology, 

32(1), 40-51. 

Hedeyat, A., & Afsarinejad, K. (1978). Repeated measurements designs II. The Annals 

of Statistics, 6(13), 619-628. 

Hills, M., & Armitage, P. (1979). Two period Cross-over Clinical Trial. British Journal 

of Clinical Phamacology, 8(1), 7. 

Hocking, R., & Smith, W. (1968). Estimating of Parameters In the Multivariate Normal 

Distribution With Missing Observations. JASA, 63, 159-173. 



  143 
 

Jankar, J., Mondal, A., & Yang, J. (2020). Optimal Cross-over Designs for Generalised 

Linear Models. Journal of Statistical Theory and Practice, 14(23), 23. 

Jones, B., & Kenward, M. (2014). Design and Analysis of Cross-over Trials. CRC 

Press. 

Kershner, R., & Federer, W. (1981). Two Treatments Cross-over Designs for 

Estimating A Variety of Effects. JASSA, 76, 612-619. 

Kim, S. (2020). Practical and Optimal Crossover Designs for Clinical Trials. University 

of Alberta. 

Kushner, H. (1997). Optimal Repeated Measurement Designs. Annals of Statistics, 25, 

2328. 

Kushner, H. (1997). Optimality and Efficiency of Two Treatment Repeated 

Measurements Designs. Biometrika, 84(2), 455-468. 

Laska, E., Meisner, M., & Kushner, H. (1983). Optimal Cross-over Designs in the 

Presence of Carry-over Effects. Biometrics, 39(1), 1089-1091. 

Lin, R., & Lee, J. (2020). Novel bayesian Adaptive Designs and their Applicastions in 

Cancer Clinical Trials. Computational and Methodological Statistics and 

Biostatistics, 395-426. 

Lucas, H. (1957). Extra Period Latin Square Change-over Designs. Journal of Dairy 

Science, 40(3), 225-239. 

Lui, K. (2016). Cross-over designs:Testing , estimation and sample size determination. 

John Wiley & Sons. 

Majumdar, D., Dean, A., & Lewis, S. (2008). Uniformly Balanced Repeated 

Measurements Designs in the Presence of Subject Dropout. Stat.Sinica, 18, 235-

253. 

Mathews, J. (1987). Optimal Cross-Over Designs for Comparison of Two Treatments 

in the Presence of Carry-Over Effects and Autocorrelated Errors. Biometrika, 

74, 311-320. 

Mathews, J. (1994). Multi-period cross-over Trials. Statistical Methods in Medical 

Reseach, 3(4), 383-405. 

Mathews, J., & Hernderson, R. (2013). Two period, To Treatment Cross-over Designs 

Subject to non-ignorable Missing Data. Biostatistics, 14(4), 626-638. 

Metzler, C. (1974). Bioavailability- A problem in Equivalence. Biometrics, , 309-317. 

Paterson, H. A. (1959). Extra period change-over designs. Biometrics, 115, 116-132. 

Patil, V. (1964). The Beherens Fisher Problem andits Bayesian Solution. Journal of the 

Indian Statistical Association,, 2(1), 21-31. 

Pukeilsheim, F. (1993). Optimal experimental design. New York: Wiley  



  144 
 

Reed III, J. (2011). Higher Order C( t,p,s) Cross-over Designs. journal of Applied 

Statistical Methods, 10(2), 27. 

Reed III, J. (2012). Four Period Cross-over Designs. Journal of Modern Applied 

Statistical Methods, 11(1), 25. 

Sambucin, V. (2020). Efficacy and Toxicity Monitoring Via Bayesian Predictive 

Probabilities in PhaseII Clinical Trials. Statistical Methods and Applications,, 

1-27. 

Satterthwaite, F. (1946). An Approximate Distribution of Estimatesof Variance 

Components. Biometrics Bulletin, 2(6), 110-114. 

Senn, S. (2001). Statistical issues in Bioequivalence. Statistics in Medicine, 20(3), 237-

243. 

Spiegelhalter, D., Abrams, K., & Myles, J. (2004). Bayesian Approaches to Clinical 

Trials and Evaluation. John Wiley &Sons, 13. 

Stufken, J. (1991). Some families of optimal and efficient repeated Measurements 

Designs. Journal of Statistical Planning and Inference, 27(1), 75-83. 

Trawinski, T., & Bargmann, R. (1964). Maximum Likelihood Estimation with 

Incomplete Multivariate Data. Ann. Math.Statist., 35, 647-657. 

Westlake, W. (1972). Use of Confidence Intervals in Analysis of Comparative 

Bioavailability Trials. Journal of Pharmaceutical Sciences, 61(8), 1340-1341. 

Westlake, W. (1973). The Design and Analysis of Comparative Blood Level Trials. 

Current Concepts in Pharmacetical Sciences, 149-179. 

Yates, F. (1947). Analysis of Data From all Possiple Reciprical Crosses between a set 

of Parental lines. 1(3), 287-301. 

 


