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Abstract 
Need to develop affordable housing is necessary because of the numerous homeless 

people living in the developing countries; the present work is an attempt to alleviate the 

housing problem facing populations of these countries.  

 

In the current investigations, a study programme illustrating the effect of various sisal, 

cement, cement-sisal and cassava proportions to the compressive strength, flexural 

strength, dry block density and porosity of compressed earth blocks (CEB) is outlined. 

A constant volume manual press has been used to fabricate earth blocks, at a fairly 

uniform pressure. The relationship of strength, block densities and porosity to 

reinforcement levels has been determined.  

 

A considerable increase in strength with increasing sisal fibres, cassava powder, 

cement as well as cement-fibre content within certain limits is observed. Results show 

that sisal fibre content outside these stated limits are detrimental to the strength 

characteristics of compressed soil blocks. The critical sisal fibre volume for soil-sisal 

mix has been established. Compression and flexural strength at optimal fibre content 

are comparable to those of soil blocks stabilized by the already well studied 

conventional binders as cement; besides, these results are not recorded in literature 

yet. Dry block densities and porosity reflect closely on the fibre, cement, cement-fibre 

and cassava content. Light optical microscopy (LOM) and scanning electron 

microscopy (SEM) analysis have been used to verify the block morphology.  

 

Compressed earth blocks manufactured from a limited addition of cassava powder to 

the soil, show improved strength. Indeed the ideal strength is above one recommended 

by various CEB standards. Past researchers have not documented any research 

related to cassava as a building material. Water vapour transmission properties of the 

earth blocks have been determined; values show that the earth blocks may provide 

better indoor air quality than conventional building materials like concrete. A simple 

method by which strength of earth blocks could be determined in the absence of 

laboratory facilities in the rural villages of Kenya and related regions has also been 

developed. 
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Use of traditional hydraulic stabilizers like cement can significantly improve the strength 

of compressed blocks. These additives are, however, costly; a negative factor 

especially for the poor rural communities of the developing nations. This research has 

shown that the commercial binders can be replaced by cheap material, thus, sisal 

vegetable fibres and cassava powder. Besides, a new building material, thus 

compressed earth blocks stabilised with cassava powder has been developed. 

 

It should however, be mentioned that the roof construction should be done in such way 

that rain does not directly pound the compressed earth blocks when applied for building 

of walls. 

 

Kurzfassung 
Die Entwicklung bezahlbarer Wohnbauten ist ein wichtiger Aspekt für die Verbesserung 

der Situation der zahlreichen obdachlosen Menschen, die in den Entwicklungsländern 

leben. Einen Beitrag zur Lösung dieses Problems stellt daher das Ziel der vorliegenden 

Dissertation dar. 

 

In der vorliegender Forschungsarbeit sollen die Auswirkungen verschiedener Anteile 

von Sisal, Zement, Zement-Sisal und Cassava auf die Druckfestigkeit, Biegefestigkeit, 

Trockenblockdichte und Porosität von komprimierten Erdblöcken (KEB) dargestellt 

werden. Zur Herstellung der Erdblöcke wurde ein Handpresse verwendet, die mit 

gleich bleibendenm Druck betrieben wurde. An den so hergestellten KEB wurden die 

Verhältnis von Festigkeit, Blockdichte und Porosität zu den Verstärkungsniveaus 

ermittelt.  

 

Mit steigendem Sisalfaser-, Cassavapulver-, Zement- sowie Zement-Faser-Gehalt wird 

innerhalb bestimmter Grenzen eine erhebliche Festigkeitserhöhung beobachtet. Die 

Ergebnisse zeigen, dass ein Faseranteil außerhalb dieser angegebenen Grenzen für 

die Festigkeitseigenschaften der komprimierten Erdblöcke nachteilig ist. Die kritische 

Menge an Sisalfasern für die Erd-Sisal-Mischung wurde bestimmt. Druck- und 

Biegefestigkeit sind bei einem optimalen Faseranteil mit der von Erdblöcken 

vergleichbar, die mittels der bereits umfassend studierten, herkömmlichen Binder, wie 

zum Beispiel Zement, stabilisiert wurden; außerdem wurden die vorliegenden 
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Ergebnisse bisher noch nicht in der Literatur erfasst. Trockenblockdichte und Porosität 

spiegeln deutlich den Faser-, Zement-, Zement-Faser- und Cassavagehalt wieder. Es 

werden Analysen durch lichtoptische Mikroskopie (LOM) und 

Rasterelektronenmikroskopie (REM) vorgenommen, um die Blockmorphologie zu 

verifizieren. 

 

Komprimierte Erdblöcke, hergestellt mit einem begrenzten Zusatz von Cassavapulver 

zur Erde, weisen eine verbesserte Festigkeit auf. Die ideale Festigkeit liegt faktisch 

über den Werten, die in verschiedenen KEB-Standards empfohlen wurden. Bisherige 

Forscher haben keinerlei Forschungsarbeiten in Bezug auf Cassava als Baumaterial 

dokumentiert. Die Eigenschaften der Wasserdampfdurchlässigkeit der gefertigten 

Blöcke wurden bestimmt. Die Werte zeigen, dass die Erdblöcke für eine bessere 

Innenraumluftqualität sorgen können als herkömmliche Baumaterialien, wie zum 

Beispiel Beton. Es wurde ebenfalls eine einfache Methode entwickelt, anhand welcher 

die Festigkeit der Erdblöcke auch ohne Laboreinrichtung in den ländlichen Siedlungen 

von Kenia bestimmt werden könnte. Die Baumaterialen müssen konstruktiv vor 

unmittelbarer Regenwirkung geschützt werden. 

 

Der Einsatz traditioneller hydraulischer Stabilisatoren, wie zum Beispiel Zement, kann 

die Festigkeit der komprimierten Blöcke erheblich verbessern. Solche Zusätze sind 

jedoch teuer; ein negativer Faktor, insbesondere für die armen ländlichen Gemeinden 

in den Entwicklungsländern. Die vorliegende Forschungsarbeit hat gezeigt, dass die 

kommerziellen Binder durch kostengünstigere Materialen ersetzt werden können, 

nämlich Sisalpflanzenfasern und Cassavapulver. Ein weiteres Ergebniss der Arbeit ist 

die Entwicklung eines neuen Baumaterials - mit Cassavapulver stabilisierte und 

komprimierte Erdblöcke. Allerdings, müssen auch diese Baumaterialen konstruktiv vor 

unmittelbarer Regeneinwirkung geschützt werden. 
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1.0 Introduction 
The urgent need to develop suitable and affordable housing is born as a consequence of the 

fact that over one billion people in the world, most of who live in the developing nations, are 

either homeless or live in very poor housing (BASIN news, 2001).  

 

Earth building is the most common method of making cheap accommodation since soil is 

readily available almost anywhere on the planet. Earth also called soil (Minke, 2000) and 

scientifically referred to as loam, is a mixture of clay, silt, sand, and sometimes larger 

aggregates like gravel and sand. To give an idea of how big the earth building field is, it is 

observed that, one third of the world�s population live in a home of unbaked earth (Walker, 

1998). Roughly 50% of the population of developing countries, the majority of rural 

populations, and at least 20% of urban and suburban populations live in earth homes 

(Houben and Guillaud, 1994). Unbaked earth homes in many developing nations are 

basically mud houses constructed by use of soil (earth). The application of earth for building 

of homes in different forms is well known. (Hujbers, 1987) classifies such methods as 

follows:  

 

• Daub - moist mud placed between a framework of posts and poles 

• Cob - the cob procedure consists of stacking earth balls on top of one another and 

lightly tamping them with hands or feet to form monolithic walls 

• Rammed earth - continuous walls formed by ramming moist mud between movable 

wooden shuttering  

• Adobe blocks - made by placing wet mud in forms and allowing to dry  

• Compressed earth blocks (CEB) or pressed earth blocks (PEB) - made by 

compressing moist soil in a press.  

 

The technique of adobe, rammed earth and compressed earth block are currently the most 

widespread and have to some extend been developed fairly high scientific levels. The CEB 

constructions have been developed as an improvement to the other methods. Past workers 

have shown however, that such structures still face great instability and hence durability 

problems; the alleviation of this problem is a major concern of the present work. 

 

This study proposes the use of available local raw materials to improve and develop new 

vegetable fibre earth building materials as a means to positively impact on the shelter 

conditions of the resource poor countries of the developing world. It is hypothesised that a 

composite of earth reinforced with vegetable fibre or/and cassava as a binder component 

could produce a low-cost and durable wall material for housing. The more expensive cement 
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which is traditionally added to soil for binding (stabilising) purposes could hence, in part or in 

whole be replaced and a new building material developed.  

 

 

2.0 Statement of the Problem   
2.1 Background to the Research 
The genesis of this research work is the experience the author has had on the ground in a 

village in Kenya where he was born. The walls of mud houses made from wet soils or earth 

are unable to withstand harsh rainy seasons. Figure 2.1 shows the kind of cracks that appear 

on the walls due to extreme shrinkage. Cracks appear because the soil particles are not held 

together with sufficient bonding strength. Given that moisture from rainfall is the main cause 

of cracking and other durability problems associated with compressed earth blocks, it was 

important to investigate the possibility of stabilising the soil with cheap, easily available and 

renewable raw materials.  

 

Past researchers, as will be surveyed in section 2.5, have shown that use of traditional 

hydraulic stabilizers like cement or lime or waterproofing agents like bitumen do significantly 

improve the strength of compressed earth blocks (CEB). These additives are, however, 

accompanied by increase in costs of material; this is not sustainable especially for the poor 

rural communities of the developing nations. It is the aim of the present investigation to show 

that these traditional binders can be replaced by environmentally friendly and sustainable 

alternatives i.e. sisal vegetable fibres and cassava powder. Figure 2.2 depicts this stated 

idea. 

 

 

Aims and Objectives 
The main purpose of this research study was to replace the relatively expensive cement as 

stabiliser of compressed earth blocks (CEB) through ingredients which are renewable 

resources in nature. A strength and therefore durability testing method, in the absence of 

laboratory facilities in the rural areas, was to be established; this was to be accomplished by 

determining a conversion function between standard laboratory tests and the proposed 

simple testing method i.e. loading strength was to be correlated with compressive strength; 

this is illustrated in figure 2.3. Of equal importance was to investigate properties of the 

prepared soil blocks and recommend specifications accordingly. 
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The prime objectives were to: 

• Synthesize vegetable fibre earth wall material for housing  

• Synthesize cassava stabilised earth wall material for housing 

• Prove the sufficient durability of the products  

• Prove the water transmission properties  

• Prove the mechanical strength 

• Develop an on-sight appropriate and easy-to-use testing criteria of strength. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Main house section Cracked wall 

Kitchen in a village

Main house in a village 

Cracked wall

Figure 2.1 Pictorial illustration of the research background 
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Figure 2.2 Proposed material for manufacture of compresses earth blocks 
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Hypotheses  

• Indigenous raw materials, thus, soil, vegetable fibre and cassava powder found in 

abundance in the developing nations can be used to develop a cost-effective building 

material composite for housing construction 

 

• Sisal vegetable fibres can be used to reinforce compressed soil blocks leading to 

increased strength and reduced shrinkage consequently improving the durability 

 

• Cassava powder can replace cement as stabilizing or reinforcing agent in preparation 

of compressed earth blocks (CEB) 

 

• It is possible to develop a simple on-sight testing method - suitable for rural areas 

(without laboratory) - for the building material�s strength and therefore durability 

based on a conversion factor (function). 

 
 
2.2 Motivation for the Present Study  
The subject of this study falls under what is now considered in many circles as Appropriate 

Technology. The term refers to application of techniques that best fit a particular people, 

community or society; this is, in part pegged to economic conditions, availability of raw 

materials, cultural orientation and geo-climatic environmental conditions. With respect to 

building materials, (Mathey, 1983), considers appropriate technology, as the application of 

techniques appropriate to the user, society and nature.  

 

Appropriate construction reflects therefore to the concept of �Ecological Building�. Other 

schools of thought put appropriate technology at par with �Alternative Technology�, a term 

used to describe some compromise situation between the very high technologies of the 

developed societies and the low technologies associated with the poor economies (Spence, 

1982). Principal characteristics of intermediate technologies are that they are cheap, small in 

scale and use relatively simple production methods from locally available raw materials. 

Appropriate or alternative technologies are therefore seen to be in harmony with nature, and 

have as a prime orientation, to provide sustainable solutions to issues related to human 

development.  

 

The need to provide more housing for the worlds poor societies can not be overemphasised. 

Shelter is, after all, a basic requirement of human being. As concerns the developing nations, 

it is already recognised that the huge housing requirement cannot be met with industrially 
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produced building materials (Minke, 2000). Indeed, 25% of the world�s population does not 

have any fixed abode, while 50% of the urban population live in slums (Kerali, 2001). In spite 

of the many effort such as �Global strategy for housing by the year 2000� declaration by the 

UN, the shelter issue remains a major problem, and hence the need to look at possible 

solutions including scientific research.  

 

It is most likely that the majority of the people in the developing world will, out of necessity, 

continue to live in mud (earth) houses, consequently, ways of improving on this traditionally 

built mud houses are a subject of concern to many researchers. Compressed earth block 

(CEB) construction is one of the most widely used technologies in building with earth and has 

been adopted as the improvement to rammed mud houses. The key future of the technology 

is the compression of the soil in a mould with the help of a press at a compaction effort of 2-4 

MN/m2 (Mukerji, 1994).  

 

Although soil (earth) has been used as a building material for thousands of years, 

unprotected structures seldom withstand wet climates for long periods of time. Relatively new 

materials such as cement have meant that blocks can be made which will last for centuries, 

but they are too expensive for most people in developing countries. Traditionally built mud 

houses or ones constructed from compressed earth blocks made only of unfired earth have 

become a cheaper option. Attempts by past workers to improve strength of compressed 

earth blocks are discussed in section 2.3.  

 

From the above discussion, it can be said that properties of soil as a building material should 

therefore be further studied. It is the intention of this work is to further contribute to the 

scientific knowledge of soil as a building material, and in particular strive to improve the 

strength and dimensional stability of compressed soil blocks. This should be possible by 

introducing sisal as well as cassava powder to the soil structure and thus replace cement or 

other hydraulic binders stabilising agents. An extra gain should be seen in terms of the 

income local population would benefit from plantation of these components. 
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2.3 State-of-the-Art  
2.3.1 Stabilised Compressed Earth Blocks (CEB )  
In accordance to (Compressed Earth Blocks, Standards, Series Technologies Nr. 11, 

CRATerre-EAG Basin, 1998), compressed earth blocks (CEB) are masonry elements, which 

are small in size and have regular verified characteristics obtained by the static or dynamic 

compression of earth in a mould in a humid state followed by immediate demoulding. Section 

3.4 provides some insight on the use of earth presses. Compressed earth blocks are 

principally made of raw earth and owe their cohesion to the clay fraction within the earth. If 

any additive is added to the CEB in order to improve or enhance particular characteristics, 

then the CEB are referred to as stabilised compressed earth blocks. Additives are 

stabilisation products intended to neutralise the sensitivity of CEB to water. Additives may 

also be used to modify other characteristics such as colour or shrinkage cracks. It should be 

noted that some literature refer to stabilised compressed earth blocks as stabilised soil 

blocks (SSB), Stabibloc, Terracrete, soilcrete, pressed soil blocks (PSB) or Geocrete. 

 

As discussed in the previous section, mud houses made only from earth face durability 

problems. Several possible solutions have been forwarded by past researchers in bid to add 

strength and add durability to the earth raw material, even in less arid conditions, thus: 

 

• By using stabilizers that improve certain characteristics of soil 

• By appropriate architecture, i.e. earth building made with suitable design 

• By using bonding mortar to improve the structure 

• By applying plaster and renders on the building surface. 

 

The idea to use renders, paints or plasters on the external surface can protect the CEB or 

housing walls from external attack, but these are expensive materials and hence not suitable 

for a developing society, additionally, expansion rates between soil blocks and 

renders/plasters mortars are different resulting in to peeling. The use of appropriate 

architecture (Montgomery, 2002) is also hindered due to costs and skills required.  

 

Application of stabilizers as a remedy to the soil instability problem or for improvement of the 

durability of compressed earth blocks appear, from literature survey, to be fairly widespread 

and most successful way of improving strength to soil. Many types of stabilizing agents are 

known (Stulz, 1988; Mukerji, 1994; Minke, 2000), although not much research appears to be 

available, the most tried ones are: cement, lime, gypsum and bitumen (mineral products), 

animal products, manufactured products and natural fibres (e.g. plant fibres). Earth blocks 

stabilized with 3 � 12 % mass of cement seem to be the most common (Gooding, 1993). As 
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(Spence, 1983) correctly points out, the potential of soil as a building material has been 

considerably underestimated, the reason being, that the enormous variety of naturally 

occurring soils has made specification for any particular set of properties difficult and that 

many soils in untreated state lack strength and dimensional stability.  

 

Indeed, past workers have given certain amount of light on the issue of earth construction. 

(Fitzmaurice, 1958) was first to point out that the population is more demanding of their 

building materials and that stabilisation of soils normally with asphalt or cement is necessary 

to maintain the materials integrity when exposed to moisture. Most of the work has since 

then focussed on the durability of the cement-stabilised compressed earth blocks (CEB) also 

referred to in some literature as compressed soil blocks (CSB). Durability of a soil block 

structure or element can be understood as its ability to withstand or resist weathering i.e. 

resistance to erosion of material by rain, wind or other environmental agents (Ngowi, 1997). 

The basics of soil stabilisation are well covered by (Houben and Guillaud, 1994; Murkerji, 

1994; Norton, 1997 and Minke, 2000) who describe the idea behind earth construction, soil 

stabilization, and characteristics of earth as a building material. 

 

After Fitzmaurice forwarding the importance of CEB stabilisation, most workers have tended 

to develop and examine parameters that provide information on the CEB durability. 

Compressive strength seems, from past research, to be the yardstick for measuring 

durability. According to (Heathcote, 1991) blocks with a minimum dry compressive strength 

of 2 MPa are acceptable by most codes (Australian code, New Mexico building code and 

UNESCO, CRATerre). Heathcote mentions soil type (clay quantity), cement content 

(generally in the range of 5 � 10 %) and density of the compacted soil as the main factors 

controlling strength. It is suggested that the stabilisation mechanism lies in the cement 

forming a skeleton of hydrates throughout the voids. A proposed correlation between density 

and cement content for estimating compressive strength can however, at best only be 

approximate and can not substitute the physical testing of materials given the inherent 

variability in material. Although the author finds no sense in using the wet (saturated) 

compressive strength, he proposes in a later investigation (Heathcote, 1995), in spite of the 

large data scatter, that the ratio of wet to dry strength of 0.33 � 0.55 to be a suitable criterion 

for durability evaluation of stabilised CEB. More contradictions occur as (Walker, 1998) finds 

blocks with a wet/dry strength ratio as low as 0.24 to provide adequate erosion resistance. 

 

Earlier, (Heathcote, 1994) shows that a minimum cement content exists (0.75 %) below 

which strength is independent of cement quantity present; he tests samples with 0 � 3.5 % 

cement content. By establishing that suitable blocks may be manufactured from soil with 
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cement content as low as 0.75 %, the author contradicts other workers whose results show a 

value of between 5 � 12 % to be best suitable; for instance, (Walker, 1995) reports that 

blocks made with less than 5 % cement are often too friable to be handled. Later from survey 

of several works, (Walker, 1996) recognises that the clay content of the soil should be 

between 5 - 20 %, a cement content of 4 - 10 % and soil plasticity index of 2.5 - 30 %; see 

section 4.1.1 for definition of plasticity index. 

 

Investigations by (Kerali, 2001, 2000) point out at the behaviour of blocks in terms of 

compressive strength, water absorption, and microstructure with respect to composition, 

processing methods and exposure conditions; the variables being soil type, cement content, 

compacting pressure, curing conditions and water/(soil + cement) ratio. The source 

concludes that the CEB stability can be significantly raised if: inter-granular bonding between 

particles is improved, voids are reduced and block water absorption is lowered. It maintains 

that moisture (from rain, rising damp and vapour condensation) provides the most serous 

factor influencing the deterioration of CEB. Results of Kerali are in agreement with those of 

(Walker, 1997, 1998, 2001) and (Heathcote, 1995, 2000), both who perform erosion tests on 

earth blocks and find erosion resistance to improve with increase in cement content, block 

density, surface area to volume ratio and reduction in clay content. A shortcoming of the 

erosion tests is that a sample passing one type of erosion test may fail another, and some 

are open to operator bias; a unified approach is still none existent. Erosion is also dependent 

on the sample geometry. Attempts by the authors to simulate impact of falling rain (spray 

tests) provide only approximations as they fail to take care of the difference in wind and 

spray velocity, raindrop size and spray drop size as well as angle of attack by rain and effect 

of wetting and drying in the field. Wide ranging field data should be taken as attempt to close 

this gap. 

 

In another similar study, (Ozkan, 1995) attempts to improve strength and water absorption of 

blocks stabilised not only by cement but also by lime, bitumen and gypsum, and observes 

that gypsum and bitumen blocks fail the erosion test; cement & lime addition increase 

strength and reduce water absorption. Related experiments are performed by (Ngowi, 1997) 

The source notes the low durability of earth walls in some villages in Botswana (Africa) and 

attempts to alleviate this problem by stabilising the soils with cement, lime, bitumen and cow 

dung separately. As in the case of Ozkan, the bitumen as well as the cow dung stabilised 

blocks failed the water absorption test. Increase in lime content improved strength but, 

surprisingly unlike Ozkan, increased the water absorption of the blocks. 
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(Walker, 1997) investigates the suitability of mortars to the production of CEB, i.e. the effect 

of soil composition and cement content to the characteristics of CEB (compressive strength, 

drying shrinkage, wetting and drying durability, water absorption and mortar consistency). 

The source establishes that compressive strength, drying shrinkage and durability improve 

with increase in cement content but is inhibited by increase of clay content in the soil. Water 

absorption and retention rise with increase of clay. 

 

The block compaction as a parameter influencing the durability of earth blocks is also 

documented. Moisture content and compaction delay as factors affecting quasi-static 

compression of cement stabilised soil blocks are examined by (Gooding, 1993). The source 

attempts to establish a relationship between compaction pressure, cement content and 

compressive strength, and records better strength with increasing pressure, a fact that 

provides an improved water protective measure to the blocks. The same author (Gooding, 

2000) looks at compressive strength as related to dynamic compaction. The following 

variables are considered: water content, compaction energy, mixing delay and compaction 

method. He underlines that this compaction method provides better block densification than 

static compaction at equivalent applied pressure. (Montgomery, 2002) investigates, in a 

Ph.D. thesis, the process, production and performance of dynamically compacted cement-

stabilized soil blocks as against those compacted by static means. Observing that moisture is 

the most critical variable, the author establishes that dynamic compaction provides the 

blocks with a 3 - 5 MPa 7-day wet compressive strength, what is 40% higher than the 

compacted by quasi-static method. 

 

Another durability factor recorded in literature is the flexural bond strength. (Walker, 1995) 

investigates soil characteristics and cement content on dry density, compressive strength, 

flexural strength, durability and drying shrinkage. The source produces an empirical 

relationship equation 2.1 between flexural strength and compressive strength. A large scatter 

in the data is however, reported and hence eq. 2.1 may not be a substitute for direct testing. 

 

 Strength nCompressio*
6
1

= Strength Flexural       (2.1) 

 

(Rao, 1996) looks at the effect of mortar composition, strength and moisture to the flexural 

bond strength of the CEB. The source notes, as was the case with Walker, an increase in the 

flexural bond strength with rise in the CEB cement content and compressive strength; and 

establishes an optimum CEB moisture content above which the flexural bond strength falls 

off sharply. It asserts that flexural bond strength is a good measure of the blocks durability. 

(Walker, 1999) considers the flexural bond strength (using bond wrench method) as an 
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indicator of CEB durability. Flexural bond strength (< 0.1 MPa) is noted to be a function of 

CEB compressive strength, clay and moisture content. The same author (Walker, 2001) 

attempts to examine the durability of CEB by use of the pullout tests, i.e. asses bond of steel 

rebars embedded in rammed earth. The pullout bond resistance is shown to be a function of 

compressive strength, bar type and bar length. Steel bar reinforcement is likely to be an 

expensive undertaking in poor economies, besides, steel may promote the corrosion 

phenomena. 

 

The influence of steam curing is hardly available in literature. The effect of steam curing at 

80° C as well as lime content on the wet strength (saturated strength) of lime (and fly ash) 

stabilised blocks is from (Reddy, 2002) evaluated. The source observes increase of strength 

with increasing steam curing period (6 - 12 hours), lime content (6 - 14% mass) and lime & 

fly ash content (0 - 50% mass). Pozzolanic reactions between clay minerals and lime or fly 

ash are speculated to be responsible for strength gain. 

 

 

2.3.2 Natural Fibre Reinforced Compressed Earth Blocks  
The use of natural fibres as a building material poses a special challenge to science and 

technology. Their use can, whilst alleviating the housing problem, assist (Swamy 1990) to 

save energy, conserve scarce resources and protect the environment. 

 

Although research data is not quite abundant, some workers have documented the issue of 

using natural fibres as stabilising or reinforcing agent in earth construction. In discussion on 

kinds of stabilizers (Stulz, 1988) recognises straw (wheat, rye, barley, etc) and plant fibres 

(sisal, hemp, elephant grass, coir and bagasse) as an important category of stabilizers but 

provides no much scientific findings. Accordingly, such fibres check cracking in soils with 

high clay contents and increase insulating properties, adding however, that excessive use 

should be avoided due to possibility of increased water absorption. (Rigassi, 1995) observes 

that fibres create an omni-directional fibres network which improves tensile and shearing 

strength and reduce shrinkage. The author states further, without forwarding research data, 

that although fibres are commonly used to reinforce adobe, they are incompatible with CEB 

compression process as they render the mix elastic. (Minke, 2000) agrees with Rigassi and 

notes that adding fibres such as animal or human hair, coir, sisal, agave, bamboo and straw 

may help to reduce shrinkage ratio; the reason being that the relative clay content is reduced 

and some of the water is absorbed by the fibre pores. Additionally, appearance of cracks is 

reduced as the mixture binding force is raised by the fibres. The author presents a study on 
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linear shrinkage as a function of fibre (coir, flax straw and rye straw) type and amount but 

avails no further scientific results. Tests with sisal are also not available. 

 

In work entitled seismic strength of CEB, (Vergas, 1986) observes increase in compression 

strength of CEB on addition of 0.5-8,0% by weight, 100 mm long straw and explains this by 

the sewing action of the CEB-mortar interface from straw fibres, i.e. controls micro-cracking 

produced by drying shrinkage. (Filho, 1990) reinforces adobe with sisal and coconut fibres; 

the investigation brings to surface the problem of high water absorption rates of the fibres-a 

phenomenon that may be detrimental to the blocks on drying. The author tries to circumvent 

this by application of water-repellent agents. However, addition of 4% sisal improves the 

brittle behaviour of the adobe blocks.  

 

(Olivier, 1995) performs so far the most comprehensive study of sisal reinforced earth blocks, 

and claims that the weak point is the interface between earth mortar and earth blocks. The 

source attempts to improve the interface by reinforcing the compressed earth blocks as well 

as the earth mortar with sisal fibres and describes, quantifies and evaluates the advantage of 

sisal use. An increase in cohesion (improved compressive & tensile strength) is observed. 

Plasticizer addition increases shear stress and reduces amount of water to be used. In a 

more recent related study, (Eko et. al., 2001), reinforces soils with a mixture of cement and 

sugarcane bagasse vegetable fibres. The study uses 5 to 10% cement by weight and 5 to 

15% bagasse fibres by volume. An improvement in the 28-day unconfined compressive 

strength with increasing cement content up to a maximum of about 5MPa is recorded. The 

increase in fibres volume is, however, found to be detrimental to strength development. 

 

 

2.3.3 Cassava Stabilised Compressed Earth Blocks  
The possibility of using powder from Cassava (Manioc) as either a reinforcing agent or a 

stabiliser for earth blocks is not recorded in literature. (Minke, 2000) reports that the 

compressive and bending strength of earth can be improved by addition of starch and 

cellulose, and that, these additives reduce the binding force and increase the shrinkage level. 

The source does not specify the starch type neither does it provide any research support. 

Cassava powder as stabilizing agent for soil (cassava-soil mortar) is, however, already used 

by individuals in some villages in Kenya and Uganda. 
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2.4 Justification of the Present Study  

Compaction of a suitable soil-stabiliser mixture can provide a relatively cheap raw building 

material. Stabilised blocks offer a wide range of advantages. They maximise use of local 

materials, low levels of energy required for production, simple production and construction 

methods and good thermal and acoustic properties. Their application is however, hindered 

by lack of test procedures and performance criteria. Requirements for, among others, 

compressive strength, tensile and flexural strength, durability, drying shrinkage, dimensional 

tolerances, dry density and water absorption may differ from region to region and should 

therefore be tested and documented appropriately. 

 

Sections 1 and 2 above show on one hand the need to improve the housing situation of the 

poor countries, and on the other hand, the role earth construction plays; they expose the 

inadequate research in this area. Several questions are as a consequence left open. Lack of 

standard performance criteria and adequate guidelines for CEB production are quite 

apparent from the above sections. Most of the estimations and correlations can only be 

approximate and may apply to a particular soil. Measurements should be taken in each study 

case to assign any specifications. Rain patterns, intensity, drop angle and temperature 

changes-important for laboratory and field correlations-may for instance, not be the same for 

Australia and Kenya. Not much effort has been put in the direction of developing new 

building materials. CEB parameters considered seem to reoccur, one worker after the other, 

without much strive to create new ones or harmonise them. It is imperative that effort be put 

in both the direction of improving the existing materials as well as developing new ones; 

(Griffin, 1995) agrees with this view. Literature in general supports this opinion as it 

recognises that earth material forms a good case for a scientific study. 

 

Natural fibres thus, sisal as well as cassava are abundantly found in the developing nations. 

They are cheap and could provide not only the required raw material for shelter, but also 

some income for the people. No research is recorded, documenting use of cassava as a 

binding component for soil although the very low income villagers are putting it in use; it was 

imperative to have a study carried out. This was the goal of the present research. 
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3.0 Soil, Natural Fibres and Cassava Powder as Building Materials 
     

3.1 Soil as a Building Material   
3.1.1 Soil Composition 
This section consists of a brief overview of soil and its composition. Soil is a loose material of 

varying thickness, which supports vegetation and bears humanity and its structures (Houben 

and Guillaud, 1994). Soil is the result of underlying parent rock under the influence of a range 

of physical, chemical and biological processes related to bio-climatic conditions and to 

animal and plant life. The present project limits itself to aspects of soil directly relevant to 

application of soil in manufacture of soil (earth) blocks for housing walls. 

 

Depending on the parent rock and climatic conditions, soil appears in infinity of forms 

possessing an endless variety of characteristics. It is therefore imperative to determine the 

properties of soil before applying it as a construction material. Chapter 4, section 4.1.1 

examines these properties relevant to the present dissertation and how they were 

determined. 

 

Soil is made up of several substances, thus gaseous, liquid and solid substances. The 

gaseous constituents, which include nitrogen, oxygen and carbon dioxide, fill up the voids 

within the soil and are considered of negligible relevance to the present research. The liquid 

ones are water soluble organic acids and mineral compounds; they are also assumed to be 

of insignificance value to this work, for they are unlikely to affect the quality of compressed 

earth blocks. The solid fraction of the soil is made up of two parts; organic matter which 

occur as a result of decomposition of plant and animal matter and mineral constituents 

resulting from dissociation of parent rock. Organic matter is of low mechanical strength and 

may negatively affect the quality of soil if found in high concentrations. The influence of the 

organic matter, found normally in the surface horizon of the soil, on the quality of soil blocks 

is discussed in section 4.1.1.4 under the loss on ignition parameter. The mineral component 

represents the greater part of the soil; they are mainly stones (pebbles), gravel, sands, silts 

and clay. These components contain silicas (quartz), silicates (mica, feldspar) and limestone. 

 

 

Depending on the predominant part, the soil texture can be divided into  

• Organic soils 

• Gravel soils � are fragments of the parent rock and consist of particles in the range 

from 2 to 20mm; the relevant characteristic of gravel to CEB is that it limits the 

capillarity and shrinkage of soil 
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• Sandy soils - consist of particles in the range from 0.06 to 2mm; made up mainly of 

silica or quartz, low water absorption of sand surfaces limits swell and shrinkage. 

They are inactive chemically, clean sand particles do not exhibit cohesive attributes, 

and being non-absorbent, they are little influenced by changes in moisture content 

• Silty soils- consist of particles in the range from 0.002 to 0.06mm; similar to sand 

particles only smaller; Silt provides stability to the soil by increasing internal friction 

and possess a limited amount of cohesion due to inter-particle water films operating 

on a higher specific surface 

• Clayey soils- consist of particles smaller than 0.002mm; these are hydrated alumino-

silicates with high susceptibility to swelling and shrinkage. The importance attached 

to this colloidal fraction is associated with the electrical charges which the particles 

carry on their surface. 

 

 

3.1.2 Clay Mineral Composition 
A brief overview of the clay composition and structure is given in this section. The importance 

of clay component lies in the fact that clay particles are responsible for cohesive character of 

soil and that cohesiveness is of prime importance to the strength characteristics of CEB. Clay 

particles are only visible under microscope; each particle is coated by a film of water, held by 

surface tension. It is this water which binds particles together (Norton, 1997).  

 

(Ogunye, 1997) states that the atomic structure of clay minerals consists of two fundamental 

building blocks i.e. tetrahedral of silica and octahedral of alumina, see figure 3.1b. The 

{[SiO4]4-} tetrahedron, has one silicon atom equidistant from oxygen or hydroxyls. A silica 

tetrahedron sheet is formed from a series of tetrahedral which are arranged in a sheet-like 

hexagonal structure so that the oxygen atoms at the basal corners of the tetrahedral are in a 

common plane, with each shared between two in a tetrahedral. These sheets have a 

chemical make-up which varies according to the type of clay, degree of hydration and 

spacing; the spacing between the sheets is between 7 and 20 Angström (Houben and 

Guillaud, 1994).  

 

In general some sheets are made of silica (atoms of silicon surrounded by oxygen atoms) 

and others are made of alumina (aluminium atoms surrounded by oxygen atoms and OH 

group). In some cases, the base is made of Si and Mg or Si and Fe, and not just Si or Al. 

Thus the silica tetrahedron sheet may be viewed as a layer of oxygen in the base and a layer 

of hydroxyls at the tips of the tetrahedral. In the octahedral unit the atoms of aluminium, iron 

or magnesium are equidistant from six oxygen or hydroxyls. Different clay mineral groups are 
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formed as a result of the bonding together of two or more molecular sheets, see figure 3.1a. 

The three main clay minerals are kaolinites, illites and montmorillonites. The soils used for 

this investigation are found, as would be seen in section 4.1.1.5, however it deemed 

necessary to briefly look at the other two main soil minerals for purpose of comparison. 

 

 

Kaolinite  
It is principally formed as an alteration product of feldspar and muscovite as a result of 

weathering under acidic conditions and it is non-expansive in nature. Kaolinite is mainly 

found in considerably weathered, well-drained soils and is common in the tropics. It is 

composed of a single silica tetrahedral sheet and a single alumina sheet combined in a unit 

which forms a repeat layer with the general formula n[Al2Si2O5(OH)], see figure 3.1b and 

figure 3.1c. The distance between sheets is constant at 7 Angström and the thickness of the 

crystal is between 0.005 and 2µm, see figure 3.1d. The charges within the structure are 

balanced, i.e. there are no charges on the lattices due to substitutions within the lattice. 

Kaolinites are considered to be the most stable clays from the engineering point of view, 

(Ogunye, F. O, 1997).  

 

The hydrogen bonds between the elemental sheets are sufficiently strong to prevent water 

molecules and other ions from penetrating, hence the lattice is considered to be non-

expanding lattice the effective surface area to which the water molecules can be attracted is 

restricted to the outer faces. It is for this reason that the plasticity, cohesion and shrinkage 

and swelling properties of kaolinite are low compared with other silicate clays. The theoretical 

composition is 46.54% for SiO2, 39.50% for Al2O3, and 13.96% for H2O. Very limited 

substations of iron and/or titanium for aluminium occur, and such substations are restricted to 

poorly crystalline kaolinite. The type of mineral composition is significant to soil when used as 

a building material; this is related to shrinkage levels experienced by earth blocks, see 

section 6.5. 

 

Ilite (mica clay) 
Ilite develops due to the weathering of feldspars, mica, and ferro-magnesium silicates. The 

process of its formation is favoured by an alkaline environment; illite are non-expansive 

lattices. It has a 3-layer structure, see figure 3.1e, mainly aluminous octahedral layer 

between two mainly silicaceous tetrahedral layers. Mg or Fe ions may replace Al ions in the 

aluminous layer, and Al ions may substitute Si in silica layer. The distance between sheets is 

10 Angström and the thickness of the crystal is between 0.005 and 0.05µm. 
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Figure 3.1a Clay molecules   Figure 3.1b Silica and Alumina 

 

 

 

 

Figure 3.1c Layer arrangement   Figure 3.1d Kaolinite 

 

 

 

 

Figure 3.1e Illite     Figure 3.1f Montmorillonite 
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Montmorillonite 
Montmorillonite forms when basic igneous rocks, in badly drained areas, are weathered. An 

alkaline environment favours formation of montmorillonite minerals. They have expansive 

lattices, i.e. it has swelling ability in a moist environment and notable cation exchange 

properties. The weak bonding between the layers accounts for why montmorillonite can 

readily absorb water into the interlayer spaces in its sheet structure. The structure of 

montmorillonite is similar to that of illite, see figure 3.if, but substitution takes place in the 

octahedral alumina layer, thus, Al ions may be replaced by Mg, Fe, Mn Ni etc. The distance 

between the sheets ranges from 14 to 20 Angström. Thickness of the crystal layers lies 

between 0.001 and 0.12 µm.  

 

 

Advantages of Soil as a Building Material 
The advantages of soil (earth) as building material (Stulz, 1988) can be given as follows: 

 

• availability in large quantities 

• low or no cost 

• easy workability i.e. no special equipment is required 

• suitable for construction of most parts of a building 

• fire resistance 

• high thermal capacity i.e. maintains moisture balance, 

• low processing energy input (1% of a produced equivalent cement concrete unit) 

• unlimited reusability of the non-stabilized soil 

• sustainable resource (unlimited resource used in its natural state). 

 

A traditionally built mud (earth) house or the use of compressed earth blocks made only of 

unfired earth, displays (Stulz, 1988) however, certain weakness due to: 

 

• Extensive water absorption 

• Poor resistance to abrasion and impact 

• Low tensile strength 

• Low acceptability amongst some social groups. 
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3.2 Natural Fibres as Building Materials   
3.2.1 Classification of Fibres   
According to (Nilsson, 1975) fibres are generally classified as natural and synthetic (man-

made). Natural fibres, which are of more interest to this study, can be further split up in to 

vegetable, animal or mineral fibres. Sisal, whose scientific name is agave sisalana, belongs 

to the vegetable sub-group known as leaf fibres. Further categorization of fibres is illustrated 

in figure 3.2. (Nilsson, 1975) provides a comprehensive discussion on the type and uses of 

fibres; this dissertation, however, limits itself to sisal vegetable fibres. 

 

 

 

Fibres 

Natural Fibres Man-Made Fibres

Figure 3.2 Fibre family tree (Nilsson, 1975) 

 

 

3.2.2 Sisal Vegetable Fibres 
Sisal vegetable fibres are the focus of the present study, in that they are used as reinforcing 

agent for the compressed soil blocks. Attempts are therefore made in this section to provide 

some information about sisal. It is the most important of the group of hard fibres, which 

includes New Zealand flax and Manila Hemp (Yayock et. al, 1988). Sisal is essentially a plant 

of the tropics and subtropics and production benefits from temperatures above 25°C and 

plenty of sunshine. Sisal is essentially a commercial crop hardly ever grown by small-scale 

farmers except as hedges. This crop requires large scale production to justify the use of 

expensive machinery required. The greatest demand for sisal is (Rehm et. al., 1991) for the 

long fibres (>90cm long) used for ropes and binder twine. Approximately 25% of the fibres 

are shorter (flume tow and tow fibre), and these are used for padding, mats and stair carpet, 

also for paper and building panels; sisal is also used to make ropes, sacks and bags of 

various types as well as marine cordage. 

 

Vegetable 
Fibres 

Animal Fibres Mineral Fibres 

Bast Fibres Leaf Fibres Seed and Fruit Fibres Wool and Hair Fibres Silk Asbestos 

Sisal Fibres 
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World Production 
According to (Rehm et. al., 1991) sisal occupies 6th place among fibre plants, representing 

2% of the world's production of plant fibres (plant fibres provide 65% of the world's fibres). 

The world's largest producers are Brazil 52% (199,000t), Mexico (12%), Kenya 10% 

(40,000t), Tanzania 9% (28,000t) and Madagascar 5% (20,000t). There are significant 

exports only from Brazil (65,000t), Kenya (31,000t), Tanzania (18,000t) and Madagascar 

(9,000t). 

 

 

Origin and Cultivation 
As per details given by (www.nnfcc.co.uk/crops/info/sisal.htm) sisal originated from Yucatana 

Peninsula in Mexico, grows best in a hot climate and may be grown in the humid and sub-

humid lowland tropics. It is a perennial succulent which, with good growing conditions forms 

an inflorescence after 6 - 9 years after having produced 200 - 250 leaves, and then dies. 

Leaves average 120cm in length and are arranged spirally around the thick stem. The leaves 

are 75% schlerenchyma bundles. The root system is shallow but extends up to 3.5m from 

the stem. As a cactus, Agave plants survive and produce a marketable product in infertile 

arid regions which in many cases would otherwise be unproductive. Because it is a labour 

intensive crop it offers at least stability for a large rural population. A sisal plantation is shown 

in figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.3 A plantation of sisal vegetable (Rea Vipingo) 
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50 leaves, each weighing up to 1 kg may be cut per plant per year. The ripest lower leaves 

are cut first and this continues periodically over the next four years. On average, over the first 

4 years, two cuttings are made annually. In following years only one cut is made per year, 

until the flower stalks begin to develop.  

 

Propagation of sisal is by means of bulbils which appear on the flower stalk, or by suckers 

growing around the base of the plant. A sisal plant produce up to 4000 bulbils compared with 

less than a quarter of this number of suckers, hence bulbils are preferred for propagation 

(Yayock et. al., 1988). Only large bulbils should be selected for planting. Bulbils are first 

planted into nursery beds at spacing of 25-30 cm apart in rows 50 cm apart. The bulbils are 

allowed to grow to about 40 cm or until they are about 9-12 months old, after which they are 

transplanted to the field. At this time the bulbils have good roots (Yayock et. al, 1988). The 

growth of bulbils is improved by mulching sisal nurseries with grass, paper or polythene. 

Mulching with partially rotted sisal gives best results (Webster et. al., 1980). Transplanting 

takes place preferably at the beginning of the rainy season. A recommended planting pattern 

in the field is a series of double rows 60 cm apart with a 2.5 m alley between pair of rows. 

Plant spacing is at 75 cm, giving a population of about 25000 plants per hectare. 

Alternatively plant can be spaced 1 m apart in 3 m rows (Yayock et. al, 1988). The crop 

should be kept weed-free and annual legumes such as beans may be cultivated between 

rows to suppress weed growth and limit erosion.  

 

 

Harvesting and Processing 
A process of decortication is used to extract the fibre from the leaf tissues. Leaves are 

crushed and beaten by a rotating wheel set with blunt knives, so that only fibres remain. All 

other parts of the leaf are washed away by water. Decorticated fibres are washed before 

drying in the sun or by hot air. Proper drying is important as fibre quality depends largely on 

moisture content. Artificial drying has been found to result in generally better grades of fibre 

than sun drying. Dry fibres are machine combed and sorted into various grades, largely on 

the basis of the previous in-field separation of leaves into size groups (Yayock et. al., 1988). 

After the fibre extraction 95 - 96% of the leaves' weight still remains, this is used as fertiliser, 

or the dried pulp as a fuel for methane production. 
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Sisal Fibres as a Soil Stabiliser 
The use of sisal vegetable fibres in reinforcing compressed earth blocks as per the 

investigations of past researchers has been briefly described in section 2.3.2. The use of 

sisal is however, not well documented. Research appears to focus more on straw. (Houbon 

et.al., 1994) states that straw can be regarded as a structural reinforcement agent and that it 

allows an increase in compressive strength of at least 15% compared to non-reinforced 

materials. Fibre reinforced soil blocks can withstand high stresses, thus, whereas non-

reinforced blocks crack in bits, fibre-reinforced blocks stay in one piece. The most important 

property of fibres in earth blocks is that facilitate improvement in tensile strength. The role of 

fibres in compressed earth blocks according to this source is as follows: 

 

• Hinder cracking upon drying by distributing tension arising from shrinkage of clay 

throughout the bulk of the material 

• Accelerate drying because they improve drainage of moisture 

• lighten the material, reducing the bulk density and improving insulating properties, 

• Increase tensile strength 

 

(Filho et.al., 1990) has investigated the mechanical properties of sisal fibres relevant to 

application of sisal as reinforcement agent. With the use of 500mm long sisal fibre, the 

source finds a tensile strength of 470 N/mm2 and stress at failure of 1.6 %. The source uses 

a tensile testing machine with a maximum capacity of 200N; the load applied at a speed of 

1mm/sec. These results are similar to the one forwarded by (Mukerji. K, Satyanaryama, K.G., 

1984), who report a tensile strength of 560 N/mm2 and stress at failure of 4.2 %. A range of 

330 � 820 is N/mm2 and 1.0 � 5.8% strain is reported by (Mawenya, A.S., in Appropriate 

Building Materials for Low Cost Housing, African Region, Proceedings of a Symposium, Ed. 

Spon, F.N., Vol. I, Nairobi, Kenya 7-14 Nov. 1983). 

 

These results confirm the fact that sisal vegetable fibres are in possession of properties that 

would significantly enhance the durability properties of compressed earth blocks. The choice 

of sisal fibres as a reinforcement agent in the present project is based on the knowledge 

stated in this and in the past two sections. 
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3.3 Cassava Powder 
3.3.1 Cassava Plant Origin and Cultivation 
Cassava (English speaking Africa, Thailand, Sri Lanka), is also known as manioc (French-

speaking Africa), manioca, yucca (Latin America), mandioca or aipim (Brazil), tapioca (India, 

Malaysia), kaspe (Indonesia), manihot, mandica and sweet potato tree. It is an important 

food crop in the tropics where it is grown for its starchy, tuberous roots, figure 3.4. The roots 

which are the most valuable portions of the plant grow in clusters of 4 � 8 at the stem base. 

The number of tuberous roots and their dimensions vary greatly among the different 

varieties. The roots may reach a size of 30-120 cm long and 4-15 cm in diameter, and a 

weight of 1-8 kg or more.  
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Figure 3.4 Cassava plant 

 

 

According to (http://www.fao.org/docrep/X5032E/x5032E01.htm#Acknowledgments) the 

cassava plant, flowering shoots shown in figure 3.4 and 3.5, is a perennial that grows under 

cultivation to a height of about 2.4m. The large, palmate leaves ordinarily have 5 - 7 lobes 

borne on a long slender petiole. They grow only toward the end of the branches. As the plant 

grows, the main stem forks, usually into three branches which then divide similarly.  

 

The roots or tubers radiate from the stem just below the surface of the ground. Feeder roots 

growing vertically from the stem and from the storage roots penetrate the soil to a depth of 
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50-100 cm. Male and female flowers arranged in loose plumes are produced on the same 

plant. The triangular-shaped fruit contains three seeds which are viable and can be used for 

the propagation of the plant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Cassava plantation 
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Figure 3.6 Composition of cassava flour 

 

 

The peel consists of an outer and an inner part, the former comprising a layer of cork cells 

and the phellogen. The cork layer, generally dark-coloured, can be removed by brushing in 

 24



water, as is done in the washers of large factories. The inner part of the peel contains the 

phelloderm and the phloem, which separates the peel from the body of the root. The texture 

of the transition layer makes it easy to loosen the whole peel from the central part, thus 

facilitating the peeling of the roots. The outer layer varies between 0.5 and 2 percent of the 

weight of the whole root, whereas the inner part of the peel accounts for about 8-15 percent.  

Generally in ripe roots this is about 2-3 mm thick. Starch content of the peel is only about half 

that of the core. Composition of cassava flour (powder) is presented in figure 3.6. 

 

 

Origin and Cultivation 
Cassava was unknown to the Old World before the discovery of America, 

(http://www.fao.org/docrep/X5032E/x5032E01.htm#Acknowledgments). There is 

archaeological evidence of two major centres of origin for this crop, one in Mexico and 

Central America and the other in north eastern Brazil. The first Portuguese settlers found the 

native Indians in Brazil growing the cassava plant. It is believed that cassava was introduced 

to the western coast of Africa in about the sixteenth century by slave merchants. The 

Portuguese brought it later to their stations around the mouth of the Congo River, and it then 

spread to other areas. Cassava cultivation increased after 1850 in the east African territories 

as a result of the efforts of Europeans and Arabs who were pushing into the interior and who 

recognized its value as a safeguard against the frequent periods of famine. In the Far East, 

cassava was not known as a food plant until 1835. In about 1850 it was transported directly 

from Brazil to Java and Singapore. During the period 1919-41 about 98 percent of all 

cassava flour was produced in Java, but during the Second World War Brazil increased and 

improved its production. Now grown throughout the tropical world, cassava is second only to 

the sweet potato as the most important starchy root crop of the tropics. The cassava plant 

has been classified botanically as Manihot utilissima Pohl 

 

Because it grows easily, has large yields and is little affected by diseases and pests the 

areas under cassava cultivation are increasing rapidly. The plant is grown for its edible 

tubers, which serve as a staple food in many tropical countries and are also the source of an 

important starch. In parts of the Far East during the Second World War many people 

survived on cassava roots, and in Africa it was a principal food source for workers in mining 

and industrial centres. 

 

It is now grown widely as a food crop or for industrial purposes. In many regions of the 

tropics cassava occupies much the same position as white potatoes do in some parts of the 

temperate zones as the principal carbohydrate of the daily diet. The industrial utilization of 
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cassava roots is expanding every year. In the early decades of this century, cassava was 

held responsible for the rapid exhaustion of forest clearings, but later experiments in many 

parts of the tropics showed that it is not a soil-depleting crop.  

 

Since the Second World War, a more balanced appraisal of the crop has developed. More 

scientists, agriculturists and sociologists have become aware of its importance in developing 

countries, where it is most commonly produced. In many countries emphasis is being placed 

on research for the improvement of production and utilization of cassava crops. However the 

use of cassava powder in building industry is undocumented; investigations carried out in this 

work show that this is possible, see section 6.4. 

 

 

Cassava Powder as a Soil Stabiliser 
The use of cassava as a stabilisor for soil blocks is unrecorded in literature. The only 

similarity that appears to exist is the use of casein (middle fraction of the protides of milk). 

(Schneider et al., 1996) suggests that the improved water proof ability of soil blocks made 

with casein may simply be, because the its proteins fill up the pores in the clay matrix thus 

stopping the movement of water by capillary action and reducing the ability of clay to swell. 

No concrete research findings are catalogued in the available literature. 

 

The choice of cassava powder as a possible stabilising in this dissertation is based on the 

observation that the powder mixed up with water produces a sticky product. It is then 

assumed that this sticky product could be used as a binder for soil particles, section 6.4 

provides further details. 

 

 

3.4 Earth Stabilization for Production of Compressed Earth Blocks 
A Historical Perceptive 

According (Rigassi, 1995) the compressed earth block (CEB) is the modern descended of 

the moulded earth block, more commonly known as the adobe block. The idea of compacting 

earth to improve quality and performance of moulded earth blocks is, however, far from new, 

and it was with wooden tamps that the first CEB were produced. This process is still used in 

many developing countries. The first machine for compressing earth may have appeared in 

the 18th centaury. In France, Francois Cointeraux, invented �new pise� (rammed earth) and 

designed the �crecise� a device derived from a wine press. It was not until the beginning of 

20th centaury that the first mechanical presses, using heavy lids forced down into moulds 

were designed. However, the turning point in the use of presses and in the way CEB were 
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used for building came only with effect from 1952, following the invention of the famous 

CINVA-RAM press designed by engineer Raul Ramirez at CIVA centre in Bogoto Columbia. 

Later there appeared new generation of manual, mechanical and motor-driven presses 

leading to the emergence today of a genuine market for the production and application of the 

compressed earth block. Production technology and application of CEB in construction has 

since continued to improve. Research centres have developed sophisticated body of 

knowledge making this technology today the equal of competing construction technologies.  

 

In spite of all these developments and although earth is the oldest building material and soil 

constructions exist in almost all developing countries much research is still needed to 

improve soil technologies due to instability in wet conditions (low cost technologies in Kenya, 

1996). It is the purpose of this doctoral research project, as already mentioned, to provide 

solid scientific contribution to the body of knowledge associated with the use of earth as a 

building material. 

 

 

Stabilization Methods Definition and Objective 
Stabilization, according to (Product information, GATE, 1994), is a technical process, the 

object of which is to neutralize or at least restrict the detrimental behavior of the clay present 

and thus reduce the natural sensitivity of the soil to water, which leads to a loss of strength 

and cohesion. According to (Kenya standard specification for soil blocks, 1990), stabilisation 

is done for the purpose to improve the natural durability and strength of a soil by the addition 

of other materials. (Rigassi, 1995) records that the goal of stabilisation of soil is to lend it 

properties which are irreversible in the face of physical constrains. (Houbon, 1994) notes that 

stabilization of soil implies the modification of the properties of a soil-water-air system in 

order to obtain lasting properties which are compatible with a particular application. (Norton, 

1997) states that the purpose of stabilization is to permanently improve a soil, either by 

increasing its strength or by reducing the variations in cohesion and size caused by changes 

in moisture content, by reducing the erosive effect of water on the surface, or by 

combinations of these. 

 

Various groups of stabilizers can be classified according to the way they act on clay plates, 

described in section 3.1.2. A simplified classification of additives is shown in the table 3.1 

(Mukerji, 1991) below. It should be mentioned that no single method of stabilization 

precludes the use of another; on the contrary, the most durable earth blocks result from a 

rational use of several stabilization methods.  
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Table 3.1 Stabilization methods 

STABILIZATION METHODS 

Stabilizer Nature Process Means Principle 

Without Stabilizer Mechanical

Minerals 
Compaction 

Creation of a dense 
material, blocking pores 

and capillarity 
Inert 
Stabilizer

Fibers 
Physical 

Reinforcing 
Creation of isotropic 
matrix, opposing any 

movement 

Formation of an inert 
matrix, opposing any 

movement 
Cementation

Formation of stable 
chemical bonds between 

clay crystals 

Water 
Proofing 

Coating of soil particles 
with an impermeable film 

and filling pores and ducts 

With 
Stabilizer 

Physico-
Chemical 
Stabilizer

Bonding 
and  
Water 
Repellent 

Chemical 

Water 
Repelling 

Maximum elimination of 
water absorption and 

adsorption 

 

 

This dissertation focuses mainly on the application of natural fibres (i.e., sisal vegetable 

fibres) which are categorized, as observed from table 3.1, to be inert in nature. Their way of 

stabilization is physical through reinforcement. The principle by which they improve the 

durability of compressed earth blocks is by creating isotropic matrix with the soil particles. 

The type of stabilization or reinforcing agent applied in the present dissertation is the 

cassava powder; it is assumed that this is a physio-chemical type of stabilizer which uses the 

principle of cementing soil particles.  

 

Other types of physio-chemical stabilizer are cement, lime, bitumen etc. These have been 

well researched on as indicated in section 1.2 and well documented by (Mukerji, 1991; 

minke, 2000; Norton, 1997; Houben 1994); it is not the intention of this dissertation to 

duplicate these research findings, but rather confine to areas that are less documented in 

literature. 
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4.0 Experimental Material and Equipment 
The scope of this chapter limits itself to description of materials and equipment used to 

produce the specimen block samples. Various tests have been carried out on 

experimental materials, thus clay, cassava and sisal in order to determine their physical 

properties. Although section 6.0 is dedicated to discussion of the bulk of results from 

the present study, section 4 provides some results of the basic but useful properties of 

the material characterisation. Attempts have also been made to provide some 

information about the equipment that was most fundamental for the success of this 

work. 

 

 

4.1 Experimental Material  
Earth, sisal fibres, cement and cassava powder are the raw materials that have been 

used for this study. Earth or soil, considered suitable for manufacturing compressed 

earth blocks, has been taken from Bautzen near Görlitz in Germany. Portland cement, 

type CEM I 32.5R, was manufactured in the Czech Republic. Sisal vegetable fibres 

used to reinforce the earth blocks and cassava powder required for stabilisation of the 

blocks originated however, from Kenya. The other material used to moist the above 

stated materials was tap water. These raw materials used for preparation of samples 

as well as the variables in the raw mix are shown in Tab. 4.1 and figure 4.1. 
 

 

Tab. 4.1 Raw materials for sample preparation 

Experimental material   
Item Type Effect/Means Process 

Sisal Natural fibres Reinforcement Physical 

Cassava Starch Bonding Chemical 

Portland Cement Mineral  Cementation Chemical 

Soil  Clayey material Compaction Mechanical 

 

 

Indeed, soils differ from country to country and even region to region. In fact it is for this 

reason that no universal standards for soil as a building material exist. It is important to 
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note, however, that although these differences in soil type exist, this has not hindered 

scientific work to advance data on soil as construction element to be generated by 

various workers. The decision to use soils originating from Germany and not Kenya 

was based not only on the on the economic factor but also because preliminary 

investigations on texture of various soil samples from different sites showed that the 

Salzenforst-Bautzen soils (from �Sand und Kiesgrube Schneider) were close to those 

found in the western region of Kenya from where the author hails. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Experimental material 
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Figure 4.1 Experimental material 

 

 

4.1.1 Earth Preparation and Characterization 
Full blocks were fabricated using soil collected from the town of Bautzen in Germany. 

In order to obtain initial uniform moisture content, the soil was stored in the open at a 

room temperature of 22 °C at a relative humidity of 65 � 70% for five months before 

being broken down and passed through a 2 mm sieve. Several past researchers have 

recommended the ideal sieve size; (Webb & Lockwood, 1987) prefer 5-6 mm sieve; 

(Houbon and Guillaud, 1994) recommend 10-15 mm. 

 

The procedure applied in preparation of soil prior to block manufacture is shown in the 

scheme in figure 4.2. After drying, the soil is crushed and passed through a sieve of 2 
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mm, figure 4.3. The soil has been, through crushing and sieving, prepared with 

particular care, in order to ensure that the stabilizer or reinforcing agent could be 

uniformly distributed throughout the material.  

 

 

 

Soil Collection 

Drying 

Crushing 

Sieving 

Soil Characterization 

Block Making 

Figure 4.2 Soil preparation flow chart 

 

 

In order that the stored soil can dry out more evenly, it was thinly spread over 

polythene paper and regularly raged through, thus turned over several times. The 

change in colour at different layers helps to determine to which extend the soil has 

dried out. Dark complexion shows presence of moisture. The process of regular raging 
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also provided the means by which impurities in the soil, e.g. papers leaves, polythene 

and non-soil stone boulders, shown in figure 4.4, were separated and eliminated from 

soil. 
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Figure 4.3 Sieving an earth sample
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sample were determined before block making process commenced, thus, particle size 

distribution, plasticity index (Atterbergs limits), optimal moisture content, organic 

matter, chemical composition and mineralogical composition. These are depicted in 

figure 4.5.  
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Figure 4.5 Soil characterization tests 

 

 

4.1.1.1  Particle Size Distribution 

The particle size distribution was established by sedimentation using the German 

industrial standards (DIN 18 123); results are illustrated in table 4.2. The results 

indicate that the clay proportion (20%) is within the recommended limits required for 

production of compressed soil bricks. The clay presence is important in the sense that, 

clay is responsible for the bonding effect amongst the soil particles. The soil also 

contains sufficient amounts of course fraction, i.e. 20% sand by proportion, this amount 

is sufficient to limit shrinkage of blocks when drying out, (Minke, 2000), refer also to 

section 6.5. 

 

The Kenya standards recommend that the soil grains should be less than 6mm in size 

while the silt and clay content should exceed 10%. (Walker, 1996) states that clay 

contents of between 5% and 20% are considered suitable for earth block production. 
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Table 4.2 Atterberg limits, sedimentation results, loss on ignition and optimum 

moisture content of soil sample 

S. No.  Item 

1 Grading 
Quantity, % 

 Gravel Fraction 

Coarse Sand Fraction (0.6 � 2 mm) 

Medium Sand Fraction (0.2 � 0.6 mm) 

Fine Sand Fraction (0.06 � 0.2 mm) 

Coarse Silt Fraction (0.02 � 0.06 mm) 

Medium Silt Fraction (0.006 � 0.02 mm) 

Fine Silt Fraction (0.002 � 0.006 mm) 

Clay Fraction (≤ 0.002 mm) 

0.0 

0.0 

2.0 

18.0 

32.0 

22.0 

6.0 

20.0 

2 Atterberg Limits  

 Liquid Limit (LL) 

Plastic Limit (PL) 

Plasticity Index (PI) 

28.9% 

18.3% 

10.6% 

3 Optimum Moisture Content (OMC), % 14.0% 

4 Los on Ignition (LOI), % 2.138% 

 

 

4.1.1.2  Atterberg Limits (Plasticity Index) 
The consistency of clay in the soil relative to its moisture content varies according to its 

mineral and chemical composition (Norton, 1997). This consistency which can be 

weakly referred to as plasticity, refers to the ability of soil to submit to deformation 

without elastic failure characterized by cracking or disintegration. The range of 

consistency or plasticity is expressed through the so called Atterberg limits (Minke, 

2000). The liquid limit (LL) defines the water content on the boundary between the 

liquid and plastic stage. The plastic limit (PL) is the water content as a percentage at 

the boundary of the plastic and semi-solid state. At LL, soil starts to manifest a certain 

resistance to shearing; at PL, the soils stops being plastic and becomes brittle. The 

plasticity index (PI) is the difference between LL and PL. PI determines the range of 

plastic behaviour of the soil. The greater PI becomes, the greater the swell when soil is 

moistened and its shrinkage when it dries. For the present work, the soil�s sample 

Atterberg limits were determined according to (DIN 18 122). The obtained PI of 10.6% 
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indicates, according to (Voth, 1978), that the soil sample lies within the range or 

category of silty and clayey type, table 4.3. (Rigasi, 1995) suggests PI of 5 to 25 and LL 

of 20 to 50; that would imply according to this standard that the soils used in this 

project are silty in nature. 

 

 

Table 4.3  Plasticity index of soils (after Voth, 1978) 

Type of soil LL, % PL % PI = LL - PL 

Sandy 10 � 23 5 � 20 5 

Silty 15 � 35 10 � 25 5 � 15 

Clayey 28 � 150 20 � 50 15 � 95 

Bentonite 40 8 32 

 

 

4.1.1.3  Optimal Moisture Content 
The optimum moisture content is said to be that water content in the soil with which a 

maximum dry density can be obtained at a given amount of compacting energy 

(Norton, 1997). If the moisture content is too high the soil may swell and the pressure 

of the compacting equipment will be dissipated by the water trapped between particles 

(Rigassi, 1995). If on the other hand, the moisture content is too low, the particles will 

be insufficiently lubricated and it will not be possible to compact the soil to its minimum 

volume. Optimum moisture content, also referred to as optimum water content, was 

determined in this project by use of the procedure as provided in (DIN 18 127). In this 

particular case a value of 14.0% was established. The compaction, with a proctor 

hammer, was performed on samples with varying water contents and the densities 

established. A Proctor curve, passing through these various densities, depicts the 

optimum water content at its maximum.  

 

(Minke, 2000) notes that OMC does not necessarily lead to maximum compressive 

strength since other factors like the soil workability and binding force (dependent on 

clay content) are more decisive. The source suggests that the so called OMC be taken 

as minimum water content in practice. For the present work, the obtained OMC content 

formed a basis upon which several pre-experiments were performed with water levels 

above OMC; results of the pre-experiments helped to establish that 17% water content 
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provided the best compressive strength; this value has also obtained or used by other 

researchers as would be shown in section 2.5. 

 

 

4.1.1.4  Loss on Ignition (LOI) 
Soils with great LOI value are unlikely to be suitable for compressed block production. 

Large number of organic particles would prevent the clay part, which is responsible for 

cohesion, from direct contact with other soil parts. The Kenya standard specifications 

for soil blocks recommend that the loss on ignition should be less than 12%; (Houben, 

1989; Walker, 1995) suggest that amounts exceeding 4% would already affect soil 

characteristics. This source reports that organic matter is likely to trigger acidic 

reactions in the soil leading to corrosive attack of other minerals in the soil. The organic 

component in the soil was assessed according to (DIN 18 128). A value of 2.138% was 

obtained for the soil sample; accordingly with reference to LOI, this soil was suitable for 

block making. 

 

 

4.1.1.5  Chemical Analysis of Soil 
By application of Roentgen diffractometry (X-Ray fluorescence analysis) method 

(Philipps-Diffractometer PW1050 equipment) it was possible to establish that the soil 

sample contains the following 3-layer clay minerals: Mica, swelling clay minerals 

(Montmorillonite) and Chloride, table 4.4. The clay mineral present is therefore 

predominantly montmorillonite. The non-clay minerals present are Silica and Feldspar.  

 

 

Table 4.4 Mineral composition of sample soil 

Bautzen Soil S. No. 

 Non-Clay Minerals Clay Minerals 

1 Mineral 

Type 

Silica Feldspar Chloride Montmorillonite 

 

Mica 

 

2 Mineral 

Content, % 

51 16 8 8 16 
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Chemical composition of sample soil sample is shown in table 4.5. As expected, quartz 

represents the highest fraction of the soil sample, i.e. almost 70%. The Kenya 

standards suggest that the combined amount of alumina oxide silica oxide and iron 

oxide should be greater than 75%; the soils applied for the present work contained 

92.94% hence these soils were seen to be suitable for block production. 

 

 

Table 4.5 Chemical composition of sample soil 

S.No. Type and Quantity of Element, % 

1 Na2O MgO Al2O3 SiO2 SO3 K2O CaO TiO2 Fe2O3

2 0.84 0.87 13.37 69.93 -0.17 3.69 0.72 1.11 9.64 

 

 

4.1.2 Sisal Fibres 
Sisal vegetable fibres were imported from Kenya. The initial length of sisal fibres, 

shown in figure 4.6, varied from 0.9 � 1.2 m. In order that the moisture content reflects 

that of the soil sample, the fibres were kept in the open space in laboratory just as was 

the soil sample. In this way the initial moisture content of sisal and soil were expected 

to be the same. 

 

 

Figure 4.6 Sisal vegetable leaves and fibres  
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Sisal Fibres Dimensions and Density 

Sisal vegetable fibres were cut to an average length of 3 � 10 mm. Choice of these 

length was based on pre-experiments, results (not part of this write-up) had shown that 

fibre length of over 15 mm caused balling and therefore difficulty in attaining uniform 

fibre distribution within the soil. The thickness of the sisal fibres as determined by a 

scanner from IST Ltd Switzerland, with a resolution of 2400 [dpi], is shown in table 4.6. 

The density of sisal fibres was, on the other hand, determined with the help of a 

pycnometer, and found to be 1.30g/cm3. 

 

 

Table 4.6 Measurement limits of sisal thickness 

 Dimensions, µm Median, µ m ± 

Thickness, µm 128.38 122.19 73.41 

 

 

4.1.3 Cassava Powder Characterization 
Particle size, Chemical analysis and Density 

Particle size of cassava powder was determined by scanning a sample with a scanner 

from IST Ltd Switzerland at a resolution of 2400 [dpi]. It was found to lie between 1 µm 

and 50 µm. By use of X-Ray fluorescent analysis (Spectrace 5000), the chemical 

composition of cassava powder was established; results are presented in table 4.7 and 

figure 4.7. As expected, the cassava powder is basically a starch with a carbohydrate 

content of 98.48%. 

 

 

Table 4.7: Chemical composition of cassava powder 

Others  
Element Na Mg Al Si P S Cl K Ca 

Carbohydrates

Content, 
% 

0.50 0.05 0.05 0.07 0.11 0.05 0.05 0.88 0.06 98.48 
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Carbohydrates Others
 

Figure 4.7 Chemical composition of cassava powder 

 

 

Scanning electron microscopic analysis was used to study the cassava powder internal 

structure. The micrograph of the sample, shown in figure 4.8, confirms the presence 

overwhelmingly of starch (carbohydrates) molecules in the cassava powder. The 

density of cassava powder was, on the other hand, determined after 20 Ton 

compaction and was found to be 1.32 g/cm3. 

 

 

20µmCarbohydrates molecules100µm 
 

 

 

 

 

 

 

 

 

 

Figure 4.8 SEM image of cassava powder sample 
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4.2 Experimental Equipment   
This section contains a brief description of the important equipment used in the present 

work. This included, among others, the soil crushing apparatus, block making press, 

block cutting equipment and the apparatus for mechanical strength determination. 

 

 

4.2.1 Soil Crushing Machine 
The purpose of crushing the soil was to reduce the agglomerates to a particular size 

suitable for block manufacture. Past research has shown that soil particles of smaller 

size (less than 10 mm) provide better bonding during block making. (Houben 1994) 

notes that the finer element must not be allowed to form nodules with a size of more 

than 10mm; the presence of 50% nodules with a size of greater than 5mm could cut 

the compressive strength by half. The wet soils collected from an open site were mainly 

bound together by the initial natural drying process in the laboratory hall. After this 

initial dying period, the soils were held together in lumps of approximately between 10 

to 100 mm in diameter. Such lumps would not be conducive for mixing with other 

ingredients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fgure 4.9 Soil crushing process 
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The soil grinding apparatus are shown in figure 4.9. Below the rotating knives mounted 

on a hub was a sieve 2 mm in size. The undersize had therefore a maximum diameter 

of about 2 mm. The crushed soils were then spread over a polythene sheet and 

allowed to undergo the secondary drying process for a period of 4 weeks. 

 

 

4.2.2 Block Making Press 
A manually operated constant volume press borrowed from �artifact gGmbH� of 

Glücksburg, Germany, shown in figure 4.10, was used for fabrication of compressed 

earth blocks. Although it was not possible to measure exactly the compaction pressure, 

numerous past researchers have indicated that such a single acting ram press is 

capable of developing pressures of between 2 � 4 MN/m2. The press used in this 

investigation produces full blocks with nominal dimensions of 230 mm (length) 110 mm 

(width) and 90 mm (height).  

 

The �Balram� block press made entirely of steel consists of a double mould box with 

mould cover (lid) on to which a toggle locking lever is rolled. This is connected via a 

yoke to a piston below the mould box, which has a moveable base plate fixed to a 

piston. The soil mix is filled in the moulds with the lever arm in the horizontal position. 

The mould lid is then closed and secured by the lever toggle. When the lever arm is 

pushed down, the piston moves upwards, thus, compressing the soil between the base 

plate and the lid. In order to eject the compressed earth block, the lever is released to 

horizontal position, the lid opened and the lever arm pushed downwards. The whole 

unit is mounted to a metal base board so that stability is provided during the operation 

process. 
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Piston
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Figure 4.10  �Balram� Block press �artefact gGmbH Glücksburg� 
 

 

4.2.3 Block Cutting Equipment 
The equipment available for testing of both compressive and tensile strength, required 

prisms of the size 160 mm (length) 40 mm (width) and 40 mm (height). These smaller 

scale blocks were obtained by mechanically cutting the full blocks in a diamond coated 

rotary power saw. Because of the diamond coat, it was possible to cut through the full 

bricks of size 230 mm (length) 110 mm (width) and 60 mm (height) with high precision 

and without the risk of breakages, see figure 4.11.  

 

The power saw operating at a speed of between 1000 � 3000 rotations per minute 

produced cut surfaces that were that appeared well leveled straight. Such surfaces are 

required for better results; especially in determination of compressive and flexural 

strength where the measuring equipment is surface sensitive. The rotary power saw 

model �WOCO-TOP 300-A2�, shown in figure 4.11, is manufactured by Conrad 

Apparatebau GmbH. Sample of compressed soil blocks and the cut samples are 

illustrated in figure 4.12, with the dimensions shown 4.13 and 4.14. 
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Figure 4.11   Block cutting equipment 

�Conrad Apparatebau GmbH� 

Full block Smaller cut samples

Rotary power saw 

Figure 4.12 Full and cut blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

90-60mm 

110mm
230mm 

40mm 

160mm

40mm

Figure 4.14 Cut blocks Figure 4.13 Full blocks  

 
 
4.2.4 Flexural and Compression Testing Apparatus  
For determination of compressive strength, each specimen was loaded in a 

TONIVERSAL-TONITECHNIK hydraulic press at a rate of 1.5 N/mm2/s. the cut blocks 

were placed centrally between the lower and upper sides to provide for uniform 

distribution of the of the compressive force. The flexural strength was conducted by 

uniaxial point loading on TONIVERSAL-TONITECHNIK hydraulic press at a rate of 

0.05 kN/s 
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4.2.4 Water Vapour Transmission Properties Equipment  
This apparatus are, for ease of understanding, described in section 6.7 

 

 

4.2.5 Theoretical Block Density Equipment 
For easy flow of experimental write-up, the method used to determine the theoretical 

block density is discussed in section 6.1.2.2 
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5.0 Experimental Procedure 
 

5.1 Production of Stabilized Earth Blocks   

5.1.1 Preparation Methods 
Preparation towards block production, after the input materials have been treated as 

per chapter 4, involved mixing the dry ingredients, addition of water to sufficient 

workability, block pressing or compaction and curing of the freshly manufactured 

compressed blocks. These are crucial steps towards producing blocks which, on one 

hand, would have comparable parameters and on the other hand, would possess 

acceptable durability criterion. A great experimental error would occur if these steps are 

not executed with care, in other words, they should be processed as uniformly as 

possible. The preparation was done in such a way that the methods were consistent 

with the Kenya standard specification for soil blocks. Past investigations do not 

particularly the record the ideal way of mixing soil and sisal vegetable fibres. Pre-

experiments were therefore done, as part of this work, for the purpose of finding out the 

best method to perform this action; results of pre-experiments are not included in this 

write up. 

 

 

5.1.2 Mixing 
Mixing of cassava, cement, sisal or sisal-cement in soil was done manually by hand on 

a wheelborough in a dry state. Proportioning of soil to the stabilizers as well as water 

was done by weight and not by volume. The soil-stabilizer mix was to be as 

homogeneous as it was possible in order to attain uniform or comparable results; the 

mixing (dry mixing) was therefore, thoroughly done before wet mixing with water to 

sufficient workability. Addition of about 3% water above the optimum moisture content 

provided a composition that would gain adequate block density on drying. In all cases, 

17% water was used. In the case where both cement and sisal were used (see section 

5.2), cement was first added to the soil by spreading over evenly and mixed thoroughly. 

Sisal fibres were then spread over the soil-cement mixture and diligently mixed 

through, the same applied for cassava powder, figure 5.1. 

 

Addition of water to the dry ingredients was done using a spray and not poured over 

the soil. The spray produces droplets of water across the whole surface resulting in a 
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uniform moisture distribution. Care was taken to break up any lumps formed. In order 

to ensure uniform distribution of input elements within the mix, only amounts or 

quantities sufficient to fill up the double mould were mixed in each batch. Mixing of 

huge amounts is more difficult and could be a source of experimental error. 

 

 

Figure 5.1 Soil-fibre manual mixing 

 

 

About 14 minutes were required to mix about 8 kg of soil and the respective stabilizing 

or reinforcement ingredients. The period between wet mixing and pressing was made 

as short and as equal for all batches as possible. This is because the wet mixture starts 

to dry up, resulting in moisture content that would be insufficient for producing blocks 

with ideal density. In case of cement presence, this is additionally necessary because 

the hydration of cement commences almost immediately. Mixing of ingredients is 

followed by the filling of the mould. 
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5.1.3 Pressing 
The three stages towards pressing were as follows: mould filling, moulding 

(compaction) and demoulding. Pressing also known as compaction or compression, is 

an operation which consists in compressing the material in a confined space known as 

a mould using a static or dynamic mode (Compressed Earth Blocks, Standards, Series 

Technologies Nr. 11, CRATerre-EAG Basin, 1998). Oil was used to clean up the mould 

in every instance before filling. This ensured that the compacted block could easily be 

removed without the danger of surface pilling. Oil had no other observed effect to the 

block. Immediately the soil composite and ingredients were thoroughly mixed and 

water added to appropriate consistency, the mould was filled, the lid appropriately 

closed and blocks compacted by banging the press lever 10 times. The compression 

mode, in this particular case, was pressure transmitted by displacing the base plate 

onto the bed face also known as the lid, see diagram of the press in section 4.2.2. 

 

Filling of the moulds is a short but significant step. The mould was filled in two layers. 

After each layer, the corners were pressed using fingers. This ensures that the bottom 

or lower corners are stable. The filling of the mould was done in such a way that equal 

amounts of the mix by volume were used; this was achieved by having the mix filled in 

all cases up to the upper brim of the mould. That meant effectively filling the last layer 

such that it stands above the height of the mould sides and then scrapping off up to the 

mould height. Blocks produced from same compositions were generally of equal 

density and dimensions; refer to appendix A. Figure 5.2 illustrates the filling and 

compaction procedure as undertaken in this investigation. 

 

 

 
Figure 5.2  Block pressing process 
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The initial dimensions (length and width) of the blocks remained constant, In other 

words, these dimensions corresponded to those of the mould. The block height differed 

slightly in each case, these was due to the practical inability to keep the compression 

pressure exactly the same. The blocks were labeled appropriately as indicated later in 

table 5.1. 

 

As expected, the compression ratio (see details in section 6.5) would differ depending 

on which ingredients had been added to the soil, apart from the pressure exerted 

during compaction. The pressure was therefore kept as constant as possible. Where 

cement was used as the stabilizer, compaction ratio would be lower than the situation 

where sisal fibres, a combination of cement-sisal or cassava have been used as 

reinforcing agents. This would be, understandably, because of the different pore 

system or quantity occasioned by the respective reinforcing or stabilizer type. 

 

 

5.1.4 Curing 
Great care was taken in removing (demoulding) the still wet blocks in order to avoid 

breakage; particularly to the block edges. The weights of the wet blocks (also known as 

green blocks) were constantly taken to be sure that no great variations occur. The 

heights were also occasionally taken as a way to monitor and evaluate the block 

manufacturing process, see section 6.5 on compression ratio. 

 

The sisal as well as the cassava reinforced compressed blocks were extracted from the 

press and air dried in the open in the laboratory for a period of 28 days before being 

tested. The temperatures in the laboratory were about 22°C. The cement and sisal-

cement blocks were cured under polythene sheeting for 14 days and moistened daily to 

allow for complete hydration of cement then left in the open to dry for another 14 days 

before testing for mechanical strength. With the green blocks covered by a polythene 

paper, moisture (and therefore relative humidity of about 100%) required for cement 

hydration was kept continuously present.  
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5.2 Experimental Design   
5.2.1 Block Making Programme 
This chapter provides a description of the experimental design for the tests carried out 

in the laboratory. It is already well established that in the final analysis, a block made 

only of unfired earth still displays certain weaknesses due to the following factors: its 

excessive water absorption, its poor resistant to abrasion and impact, its low tensile 

strength, see section 3.1.4  

 

Therefore and as already stated earlier in section 2, the idea behind this present work 

was to manufacture compressed soil blocks reinforced or stabilized so that the 

mechanical strength would meet the recommended standards as would be illustrated in 

section 6, and consequently, such that the manufactured blocks would be suitable for 

house construction. Figure 5.3 shows the input combinations for the produced blocks. 

 

 

 

4 = 

3 = 

2 = a+b 

 
Sisal 

c 
 

Cassava 
d 

 
Soil 
a 

 
Cement 

b 

a+d

1 = 

5 = 

a 

a+c 

a+b+c 

Figure 5.3 Block making combination 

 

 

 49



 

The procedure undertaken in the earth block making exercise is illustrated in figure 5.4. 

The following types of compressed earth blocks were prepared in this study: 

• Unreinforced compressed earth blocks 

• Sisal-reinforced compressed earth blocks 

• Cement-stablised compressed earth blocks 

• Sisal-cement reinforced compressed earth blocks 

• Cassava stabilized compressed earth blocks. 

 

Durability criteria and therefore practical performance of the pressed blocks is 

influenced by the production input variables. For the purpose of this study, the following 

input variables were used: 

• stabiliser type 

• stabiser amount 

• reinforcement type 

• reinforcement amount 

 

Like it is usual, some variables had to be fixed while varying others. The type soil used 

in this dissertation was a fixed input variable hence all the block specimens were 

manufactured using soil of the same kind. Curing conditions and compaction pressure 

were the two process variables that were kept as constant as it could have been 

practicable. It would be understandable; however, that the pressure applied in the 

process of manual pressing will slightly differ from one case to another. In order to 

minimize the number of experiments but at the same time obtain prime characteristics 

and relationships, the experimental design was done with great care. 

 

Addition of sisal, cement or sisal-cement to soil was done in ratios by weight of dry soil. 

In the first batch, pressed soil blocks were made without cement stabilisation or sisal 

reinforcement. In the second batch, compressed bricks were made by reinforcing the 

soil with 0.25, 0.5, 0.75, 1.0 and 1.25% sisal fibres; choice of these limits are discussed 

later in this section. Portland cement in the following proportions: 5%, 9% and 12% was 

used for stabilisation in the third batch; choice of the cement quantities was based on 

literature survey outlined in section 2.5. The fourth batch involved the use of both sisal 

and cement as shown by item 5 in table 5.1. In the final case, the blocks were made 

after the soil had been stabilised with 1.5%, 2.5%, 4%, 5% and 7% cassava powder. 
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Choice of cassava quantities was initially based on trial and error, given that use of 

cassava as an earth block stabiliser is unrecorded in literature. 

 

The summary of the sample fabrication compositions are shown in table 5.1. In total 24 

mixtures were used. For every mixture, 8 full blocks were fabricated. Each of the 8 full 

blocks is then cut into 2 smaller size samples. From these full blocks, 512 smaller 

specimens were derived or obtained, table 5.1. For each test, 8 samples were used 

and a mean value computed. 

 

Mixing of cement, sisal or sisal-cement in soil was done by hand on a wheelborough in 

a dry state. The mixing was thoroughly done before water was added to sufficient 

workability. Addition of about 3% water above the optimum moisture content provided a 

composition that would gain adequate block density on drying see description earlier in 

section 5.1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 51



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sisal Fibres 

Cassava Cement 

Earth 

Manual Block Press 

Compressed Earth Blocks 
(CEB) 

Sisal-Cement 
Stabilised CEB 

 

Cassava 
Stabilised CEB 

Unstabilised 
CEB 

Sisal 
Reinforced  

CEB 

Cement 
Stabilised CEB

 

Characterisation  
of CEB Properties 

3 

2 

1

5 

4

Fig. 5.4: Block making scheme 
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Mixing sisal in soil requires special care. Chopped sisal fibres tend to ball up if their 

volume content and length exceed certain critical limits. Based on this knowledge, 

several sisal amounts were added to the soil and preliminary experiments run with the 

purpose to establish this critical limit. Amounts exceeding 1.25 wt. % resulted in balling. 

Similarly fibre length above 20mm also resulted in balling. 

 

Table 5.1 Sample fabrication compositions 

S. No. Mix Composition, Wt % Specimen 
Name 

Number of 
Specimens 

1 Earth Sisal Cement Cassava   
2 100 0 0 0 SC-0 16 

3  
100 

0.25 
0.5 

0.75 
1.0 

1.25 

0 0 

SC-0.25  
SC-0.5 
SC-0.75  
SC-1.0  
SC-1.25 

16  
16  
16  
16  
16 

4 100 
0 
0 
0 

5 
9 

12 
0 

CeC-5 
CeC-9 
CeC-12 

16  
16  
16  

100 

0.25 
0.5 

0.75 
1.0 

1.25 

5 0 

C-SC-5-0.25  
C-SC-5-0.5  
C-SC-5-0.75 
C-SC-5-1.0 
C-SC-5-1.25 

16  
16  
16  
16  
16 

100 

0.25 
0.5 

0.75 
1.0 

1.25 

9 0 

C-SC-9-0.25  
C-SC-9-0.5  
C-SC-9-0.75 
C-SC-9-1.0 
C-SC-9-1.25 

16  
16  
16  
16  
16 

5 

100 

0.25 
0.5 

0.75 
1.0 

1.25 

12 0 

C-SC-12-0.25  
C-SC-12-0.5  
C-SC-12-0.75 
C-SC-12-1.0 
C-SC-12-1.25 

16  
16  
16  
16  
16 

6 100 0 0 

1.5 
2.5 
4 
5 
7 

10 
15 
20 

CaC-1.5 
CaC-2.5 
CaC-4 
CaC-5 
CaC-7 
CaC-10 
CaC-15 
CaC-20 

16  
16  
16  
16  
16  
16  
16  
16  

7 Total Number of Specimens 512 
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6.0 Discussion of Experimental Results    
As mentioned earlier, compressive strength is the single most important factor 

controlling durability. Literature survey points out however, that investigations so far 

carried out in the area of compressed earth blocks are inconsistent and lack 

comparability or perhaps reproducibility. This is as a result of non-existent universally 

acceptable standards. (Walker, 2004) mentions that regional, national and international 

standards vary considerably in their approaches to testing and specifications for 

strength performance of pressed earth blocks. Every country apparently has its own 

norms and specifications, besides soil compositions differ from one region to another. 

This background has, among others, provided the stimulus for the experimental study 

reported in this work. Earth blocks are often characterized in terms of their compressive 

strength. According to (Minke, 2000) compressive strength depends on the quantity 

and type of clay, grain size distribution of silt, sand and larger aggregates as well as 

the method of preparation and compaction. 

 

Investigations in to properties of compressed earth blocks have been carried out by 

many researchers. Such properties are also numerous and it would not serve good 

purpose to examine all of them. The properties or parameters investigated in the 

present work were precisely chosen, such that as much well coordinated information as 

possible would be exposed. 

 

In order to gain knowledge on physical properties of compressed earth blocks, various 

tests have been carried out. The results are to help understand the suitability of these 

blocks as building materials. Besides, the results would be the basis upon which a 

decision is to be made as to whether this dissertation has been able to reach its goal. 

The goal being, among others, to establish if the material compositions proposed in 

section 5.2.1 are capable of being used to manufacture building materials referred to 

here as compressed earth blocks.  

 

Tests taken, as displayed in figure 6.1, included: compressive strength, flexural 

strength, dry block density, compression ratio and linear shrinkage. Optical and 

scanning microscopic analyses were also undertaken to help understand the effect of 

microscopic structure to strength values. Results of the microscopic study were 

supportive in correlating the physical behaviour of the soil blocks i.e. compressive and 
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flexural strength and the block morphology. Water vapour transmission properties were 

also studied through water vapour permeability measurements. The results provided 

information on thermal and moisture transfer capabilities of the pressed earth blocks. 
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6.1 Sisal Reinforced Compressed Earth Blocks (SC)   
Table 6.1a depicts the sample composition of mixtures used to manufacture and 

characterize sisal reinforced compressed earth blocks, abbreviated as SC. Clay is 

reinforced with 0%, 0.25%, 0.5%, 0.75%, 1.0% and 1.25% amounts of sisal vegetable 

fibres. For each composition, 4 blocks were prepared to measure compressive and 

flexural strength and an average value was computed. 

 

 

Table 6.1a Mix composition of sisal reinforced blocks 

Specimen 
Reference 

SC-0 SC-0.25 SC-0.50 SC-0.75 SC-1-0 SC-1.25

Amount of 
Sisal Used, % 

0 0.25 0.50 0.75 1 1.25 

 

 

6.1.1 Sisal Content and Dry Compressive and Flexural Strength 
Research in this area suggests that durability of compressed blocks is, arguably, 

determined primarily by the compressive strength. It is already established in literature 

that durability of compressed earth blocks improves with increase in strength (Stulz, 

1988). Consequently compressive strength was a prime parameter in the present work. 

According to the (Kenya Bureau of Standards, Kenya Specification for Stabilised Soil 

Blocks, UNCHS,1989), the 28-day dry block density should be not less than 3.0 

N/mm2. On the other hand, (DIN 18 954) reports that the permissible compressive 

strength of earth building elements is between 3 and 5 N/mm2. (Schneider et al., 1996) 

provides results of between 2 � 7 N/mm2. 

 

Compressive and flexural strength were measured on prisms of dimension 160 mm 

(length) 40 mm (width) and 40 mm (height) according to (DIN EN 196 part 1). For 

determination of compressive strength, each specimen was loaded in a TONIVERSAL-

TONITECHNIK hydraulic press, described in section 4.2.2, continuously at a steady 

rate of 1.5 N/mm2/s up to failure. The flexural strength was conducted by uniaxial point 

loading on TONIVERSAL-TONITECHNIK hydraulic press continuously at a rate of 0.05 

kN/s up to failure. 
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The results of 28-day mean dry compressive and flexural strength, on variation of sisal 

content, are illustrated in figure 6.2a and tabulated in appendix A, B and C. Although 

several other workers argue that the wet compressive strength would be a better 

criterion to evaluate the durability of blocks, this work is rather based on the dry 

strength values. The reason being that in practical application, the blocks are not 

immersed in water but rather, are in a fairly dry state. (Walker 2004) reports that under 

service conditions, earth blocks will necessarily remain dry and therefore determining 

the dry strength values would be the more logical approach. 
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Figure 6.2a Strength as a function of sisal content 

 

 

Results show a clear increase in both compressive and flexural strength with 

increasing sisal levels from 0.25% to 1.0%. Flexural strength values ranged between 

0.85 N/mm2 and 1.63 N/mm2. The optimal value of 1.63 N/mm2 at 0.75% sisal content 

suggests a 64.3% increase in flexural strength - compared to the non-reinforced 

blocks, figure 6.2b. Compressive strength values ranged between 4.16 N/mm2 and 

9.14 N/mm2. Optimal strength of 9.14 N/mm2 is also attained at 0.75% sisal content. 

This is a 90.5% improvement as compared to the non-reinforced (plain) sample. Such 

high values are not yet catalogued in literature. This insight should provide a platform 

for new way forward in working with earthen building materials. 
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Strength increase would have been due to creation of isotropic matrix between the clay 

structure and the fibre network; such a matrix would oppose movement of particles and 

create stability mainly because fibres appear to distribute tension throughout the bulk of 

material. In other words, the presence of omni-directional fibres would improve tensile 

and compressive strength. Considered at the level of a potential crack, (Houben and 

Guillaud 1994) explain that the fibre opposes formation of a crack in step with the 

increase in the stress.  

 

The addition of fibres beyond 1.0% content leads to decrease in strength. Greater 

amounts of sisal (more than 1.0%) may have led to appearance of micro-fractures at 

sisal-soil interfaces, such that compressive strength fell to 4.16 N/mm2 at 1.25% sisal 

content. It is also possible, according to (Minke, 2000), that addition of fibres to earth 

may lead to decrease in relative clay content. Over-large quantity reduces density too 

much while the number of contact points between fibre and soil, which are responsible 

for transmitting stress, becomes too low so the strength of the block is reduced 

(Houben and Guillaud, 1994). Table 6.1b and figure 6.2b summarises the deviation of 

strength values of sisal reinforced blocks from the plain (non-reinforced) earth block. A 

negative deviation is seen in the case of 0.25% and 1.25% reinforced blocks for 

reasons explained above. 

 

 

Table 6.1b Strength values and percentage change 

Change in Strength Block 
Type 

Stabiliser Type  
and Content Compressive 

Strength,  
N/mm2

Change in 
Strength*,  
% 

Flexural  
Strength, 
N/mm2

Change in 
Strength*, 
% 

Plain Block 4.798 - 0.992 - 

0.25% Sisal 4.181 -12.8 0.751 -24.3 

0.5% Sisal 6.076 +26.6 1.035 +4.3 

0.75% Sisal 9.14 +90.5 1.63 +64.3 

1.0% Sisal 8.868 +84.8 1.473 +48.5 

SC 

1.25% Sisal 4.161 -13.3 0.850 -14.3 

*+ implies % improvement in strength in comparison to the non-reinforced earth block 

 - implies % drop in strength in comparison to the non-reinforced earth block. 
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Figure 6.2b Deviation in Compressive and flexural strength from that of plain block 

 

 

The slight drop in both compressive and flexural strength for non-reinforced blocks as 

compared to blocks reinforced with 0.25% sisal may have been a testing or 

experimental error. On the other hand, it may be that the amount of fibres was not 

significant enough to impart sufficient friction in the matrix.  

 

It is further observed that the flexural strength lies in the range of 16.6% to 20.7% of 

the compressive strength. Other investigators ((Walker, 1995) point out that the flexural 

strength is normally 1/5 to 1/10 of the compressive strength. Results obtained in the 

current work show that for all the specimens tested, compressive strength is 4.84 to 

6.02 times flexural strength values, see table in appendix A1 and figure 6.2c below. 

Based on this, it can be stated that requirements of compressive to flexural strength 

ratio are satisfied by combining soil and sisal fibres in the manner described earlier in 

this section. 
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Figure 6.2c Strength and ratio of compressive to flexural strength 

 

 

All the mix proportions undertaken here except that where soil is reinforced with 1.25% 

sisal, produce earth blocks with strength values above the minimum recommended by 

other past researchers, see section 2.3, and are therefore by this requirement suitable 

to be used for construction of housing walls in low-rise buildings. 

 

Possible sources of error are discussed at the end of section 6.1.2.1 

 

 

6.1.2 Dry Block Density and Porosity 
6.1.2.1 Practical Dry Block Density 
Another important durability parameter measured on the manufactured bricks is the 

practical dry block density (ρp). This density is known to be the ratio of measured block 

mass to volume i.e. ρp = m/v. The mass was taken after the block is dried in a 

ventilated oven for 16 hours at a temperature of 105°C in accordance to the Kenyan 

standards. The drying process was undertaken in order to ascertain that all block 

samples had uniform moisture content at testing time. Volume remained basically 

constant since the blocks had been cut precisely, as explained in section 4.2.3, to be of 

the dimensions 40mm x 40mm x 160mm.  
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Results of the influence of sisal levels to dry practical block density are outlined in 

figures 6.3a with the greater details presented in appendix D. the figure shows that the 

values of practical dry block density lie between 1738 kg/m3 (for the 1.25% sisal 

reinforced blocks) and 1895 kg/m3 (for the 0.75% sisal reinforced blocks). 

 

The density of the sisal reinforced blocks hence increase with increasing sisal levels 

(between 0.25% and 1.0% sisal content) and thereafter drop at 1.25% sisal content. 

Density enhancement or reduction can be attributed to the same factors that influenced 

growth in compressive and flexural strength as discussed in the preceding section.  
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Figure 6.3a Practical dry block density as a function of sisal content 

 

 

For all the tested samples, the relative deviation in density (with respect to the density 

of the non-reinforced earth compressed block) against variation of sisal fibre levels is 

presented in table 6.2 and outlined in figure 6.3b. The negative deviation is witnessed 

for only the 1.25% sisal reinforced blocks, the reasons being the same as divulged in 

section 6.1.1. 
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Table 6.2 Improvement in density in comparison to plain earth block 

Block 
Type 

Stabiliser Type  
and Content 

Practical 
Density, kg/m3

Change in Practical 
Density*, % 

Plain Block 1792.97 - 

0.25% Sisal 1800.78 +0.44 

0.5% Sisal 1857.42 +3.6 

0.75% Sisal 1895.51 +5.7 

1.0% Sisal 1883.79 +5.1 

SC 

1.25% Sisal 1738.28 -3.1 

*+ implies % improvement in density in comparison to the non-reinforced earth block 

 - implies % drop in density in comparison to the non-reinforced earth block. 
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Figure 6.3b Change in practical dry block density 

 

 

Given that Kenyan standards, among others, state that the 28-day block density should 

not be less than 1800 kg/m3, it is logical to conclude that the blocks manufactured by 

reinforcing soil with 0.25%, 0.75%, and 1.0% sisal fibres are suitable for wall 

construction. Indeed the obtained density is indicative of sufficient integrity for general 

wall fixing of up to two-storied houses. 
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A better understanding of the earth block behaviour is witnessed in observing the 

correlation between practical dry block density and compressive strength, displayed in 

figure 6.3c. Density trends exhibit similar tendency as strength characteristics and can 

be described by the power equation i.e. 6.1. Indeed, compressive strength is a function 

of dry block density. As expected the lowest values of 1738 kg/m3 corresponds to the 

lowest compressive strength of 4.16 N/mm2 (1.25% sisal content) and the highest value 

of 1895 kg/m3 corresponds to the ideal compressive strength of 9.14 N/mm2 (0.75% 

sisal  
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Figure 6.3c Compressive strength as a function of practical dry block density 

 

 

55.95-x034.0=y         (6.1) 

 

Where: 

Strength eCompressiv=y  

densityblockacticalPr=x  

 

Change in density relative to improvement in strength is shown in table 6.3 (only for 

ideal blocks � 0.75% sisal reinforced bricks). Although the increase in density in 

comparison to the non-reinforced (plain) blocks represents only 5.6%, the improvement 
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in compressive strength is as high as 90.5%, while flexural strength improves by 

64.3%. This strong correlation is supported by the power equation (6.1).  

 

For all sisal reinforced specimens, deviation of density and strength from values 

obtained for non-reinforced blocks is depicted in figure 6.4. The fact that compressive 

strength for blocks reinforced with 0.25% sisal dropped by 12.8% yet the practical dry 

block density improved by 0.44% would, appear to confirm the speculation made in 

section 6.1.1, that an experimental error is likely to have been made during testing of 

this block type for compressive and flexural strength.  

 

 

Table 6.3 Improvement in density verses strength for the ideal case 

S.No. Sisal 
Content, % 

Density, 
kg/m3

Improvement 
in Density, % 

Compressive 
Strength, 
N/mm2

Improvement in 
Compressive 
Strength, % 

1 0.0 1792.97 4.798 

2 0.75 1895.51 
5.6 

9.14 
90.5 

 Sisal 
Content, % 

Density, 
kg/m3

Improvement 
in Density, % 

Flexural 
Strength, 
N/mm2

Improvement in 
Flexural 
Strength, % 

1 0.0 1792.97 0.992 

2 0.75 1895.51 
5.6 

1.63 
64.3 

 

 

Possible Sources of Error 
It is possible that during strength testing, it may have happened that the hydraulic press 

would have run at a rate slightly higher than 1.5 N/mm2/s described earlier in section 

4.2.4. This would bring the block to rapture earlier than expected. Another cause of 

error, which could apply to other specimens (apart from 0.25% reinforced blocks), 

would be the placement of blocks on the TONIVERSAL-TONITECHNIK hydraulic press 

such that the blocks were not always in the exact centre (for uniform distribution of 

load). The handling of blocks after measuring the density could also be a source of 

error; a block that receives some prior shock due to mishandling (e.g falling down) 

could develop some micro-fractures. Such micro-fractures would lead to reduction in 

 64



the load required to determine strength. It is also possible that sisal fibres were not as 

uniformly distributed within the soil as it was with other mix compositions. 
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Figure 6.4 Change in strength as a reflection of change in density 

 

 

Trends seen in figure 6.4 would appear to confirm that compressive and flexural 

strength are generally a function of block density. Block density is very much 

dependent on the magnitude of the compaction force; the latter should therefore be 

kept as high as possible during the manufacture of earth bricks. Moisture content also 

plays an important role, as already mentioned in section 4.1.1.3. The blocks should 

therefore be tested in the condition where they are believed to be most dry. 

 

 

6.1.2.2 Theoretical (True) Block Density 
Theoretical density of a material is defined as that pure density of system of particles 

without voids or air pores. An Ultrapycnometer (model No. UPY � 14T) manufactured 

by Quantachrome Corporation USA was applied in the present work to determine the 

true density of the samples. It is specifically designed to measure the exact volume and 

density ρt of solid objects by employing Archimedes� principle of fluid displacement and 

Boyle�s law to determine the volume. An inert gas, Helium, of small atomic dimensions 
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ensures penetration of all pores, appendix E shows the detailed theoretical background 

applied in determination of true block density.  

 

The experimental correlation between theoretical density and sisal levels is outlined in 

figure 6.5. The best fit shows a strong linear correlation (R2 =0.9793), represented in 

equation 6.2. As it would appear to be expected, higher sisal contents are associated 

with lower true densities. Measurement of true density is, unlike the case of practical 

density, undertaken on loose sisal mix, i.e. not in compacted (compressed form). 

Naturally, inclusion of larger amounts of fibres in to soil would result in introduction of 

more voids or air spaces; this translates in to growth in volume, as a result of which the 

theoretical density decreases, see equation 10 in appendix E. Additionally, sisal fibres 

are by themselves voluminous. 

 

2.2661+ContentSisal6.642-=ρt     (6.2) 

 

Where: 

densitylTheoretica= ρt  

contentSisal= x  
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Figure 6.5 Theoretical dry block density as a function of sisal content 
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With regard to density, compressed earth blocks are, according to catalogued 

literature, evaluated only with respect to practical density. Evaluation of compressed 

earth blocks in terms of theoretical density concept is not yet recorded in literature. 

These investigations have shown therefore that earth blocks can, like other 

conventional building materials, be evaluated in terms of theoretical density. 

 

Equation 6.2 would also suggest that in the absence equipment needed for 

determination of compression or flexural strength, it would be possible to use 

theoretical density values in equation 6.1, with consideration of equation 6.3 and 6.4, to 

evaluate strength values. 

 

 

Deviation of Practical from Theoretical Density 
Deviation of sample practical densities from theoretical (true) densities is depicted in 

table 6.4, figure 6.6a and figure 6.6b. The difference in theoretical and practical density, 

observed in table 6.4 and figures 6.6a and 6.6b lie between 745.29 (0.75% sisal 

reinforced block) and 890.42 29 (1.25% sisal reinforced block). A mean value is 

computed to be 816.45 with a standard deviation of 63. In all the cases examined, the 

theoretical density is higher than the corresponding practical density. 

 

 

Table 6.4 Difference in theoretical from practical density 

S.No. Sisal 
Content,
% 

True 
Density, ρt 
kg/m3

Practical 
Density, ρp 
kg/m3

*Porosity,
% 

Difference 
in Density, 
kg/m3

Difference 
in Density, 
% 

1 0.0 2663.7 1792.97 32.69 870.73 48.56 

2 0.25 2653.5 1800.78 32.14 852.72 47.35 

3 0.5 2645.2 1857.42 29.78 787.78 42.41 

4 0.75 2640.8 1895.51 28.22 745.29 39.32 

5 1.0 2635.6 1883.79 28.53 751.81 39.91 

6 1.25 2628.7 1738.28 33.87 890.42 51.22 

* refer to equation 6.3 

 

 67



1500
1700
1900
2100
2300
2500
2700
2900

0 0,25 0,5 0,75 1 1,25
Sisal Content, Wt. %

Bl
oc

k 
De

ns
ity

, 
kg

/m
3

Theoretical Density, kg/m3 Practical Density, kg/m3
 

Figure 6.6a Comparison between theoretical and practical density 

 

 

The practical density of compressed blocks with 1.25% sisal content yield greatest 

deviation from true density (51.22%) and has consequently the lowest compressive 

and flexural strength values; the opposite is true for specimen from 0.75% sisal which 

produce the ideal strength as discussed in section 6.1.1; in this case, the practical 

density deviates from the true density by 39.32%. These deviations are reflective of the 

obtained compressive and flexural strength values, discussed earlier in section 6.1.1. It 

is seen that theoretical density is about 1.5 times greater than the practical density 
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Figure 6.6b Comparison between theoretical and practical density 
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6.1.2.3 Porosity and Sisal Content 
Porosity is defined as the volume of voids in a solid material expressed as a 

percentage of the total volume. Values of porosity obtained for sisal reinforced blocks 

are illustrated in table 6.4. Figure 6.7 shows the relationship between sisal levels and 

the computed porosity values. Porosity was determined by establishing the difference 

between true (theoretical) density and practical density. After true and practical density 

of the compressed blocks was determined, porosity of the samples was computed by 

the use of equation 6.3. 

 

 

100×))ρρ(-1(=P tp        (6.3) 

 

Where: 

Porosity = P  

densitylTheoretica= ρt  

densityPractical= ρp  
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Figure 6.7 Block porosity as a function of sisal content 
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Porosity values lie between 28.22% (for 0.75% sisal reinforced bricks) and 33.87% (for 

1.25% sisal reinforced bricks). It is observed that addition of certain amounts of fibres 

(up to 1.0%) to earth results in a like hood of reduction of voids; this would provide the 

possibility of reduction in porosity, reduced porosity would on the hand be the cause of 

increased compressive and flexural strength. As discussed in section 6.1.1, this may 

have been due to creation of isotropic matrix between the clay structure and the fibre 

network, while large amounts sisal fibres may have led to appearance of micro-

fractures at sisal-soil interfaces. This opinion is supported by micrographs of the earth 

block structure presented later in section 6.1.3 

 

 

6.1.2.4 Porosity and Strength 
Compressive and flexural strength display a negative correlation to porosity, as 

illustrated by figure 6.8a and 6.8b (data extracted from in table 6.5).  

 

The correlation between compressive strength and porosity is described by best fit 

shown in equation 6.4, thus  

3.34+x91.0-=y         (6.4) 

 

Where: 

Strength eCompressiv=y  

Porosity=x  

 

On the other hand, the correlation between flexural strength and porosity is illustrated 

by a best fit expressed here in equation 6.5, thus 

14.5+0.13x-=y         (6.5) 

 

Where: 

Strength Flexural=y  

Porosity=x  

 

Table 6.5 Density, porosity and strength values 
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S.No. Sisal 
Content,
% 

Practical 
Density, ρp 
kg/m3

Porosity, 
% 

Compressive 
Strength,  
N/mm2

Flexural  
Strength, 
N/mm2

1 0.0 1792.97 32.69 4.798 0.992 

2 0.25 1800.78 32.14 4.181 0.751 

3 0.5 1857.42 29.78 6.076 1.035 

4 0.75 1895.51 28.22 9.14 1.63 

5 1.0 1883.79 28.53 8.868 1.473 

6 1.25 1738.28 33.87 4.161 0.850 
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Figure 6.8a Compressive strength as a function of block porosity 

 

 

It is instructive that both these are power equations. This suggests a strong (negative) 

correlation between strength and corresponding porosity values. It can be deduced, 

from this results, that strength is likely to be a function of earth block porosity. This 

hypothesis is supported strongly by the micrographs of the earth block structure 

presented later in section 6.1.3; where pores are evident in the structure of blocks 

reinforced with 1.25% and apparently absent from the 0.25%, 0.75% and 1.0% 

reinforced compressed blocks. 

 71



y = -0,1302x + 5,1415
R2 = 0,7581

0
0,2

0,4
0,6

0,8
1

1,2
1,4

1,6
1,8

27 29 31 33 35
Porosity, %

Fl
ex

ur
al

 S
tre

ng
th

, 
N/

m
m

2

 
Figure 6.8ba Flexural strength as a function of block porosity 

 

 

Change in Porosity against relative Change in Compressive Strength 
Change in porosity relative to change in compressive strength is illustrated in table 6.6 

and presented in figures 6.9a and 6.9b.  

 

 

Table 6.6 Relative change in porosity against change in compressive strength 

S.No. Sisal 
Content, % 

Porosity, 
% 

Change in 
*Porosity, 
% 

Compressive 
Strength, 
N/mm2

Change in 
**Compressive 
Strength, % 

1 0.25 32.14 4.14 

2 0.5 29.78 
+7,3 

6.07 
+46,6 

3 0.5 29.78 6.07 

4 0.75 28.22 
+5,2 

9.14 
+50,6 

5 0.75 28.22 9.14 

6 1.0 28.53 
-1,1 

8.87 
-3 

7 1.0 28.53 8.87 

8 1.25 33.87 
-18,7 

4.16 
-53 

* The negative (-) sign symbolises increase in porosity; the positive means reduction 

** The negative (-) sign symbolises reduction in compressive strength; (+) → increase 
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Figure 6.9a Relative change in porosity against change in compressive strength 
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Figure 6.9b Relative change in porosity against change in compressive strength 

 

7311.7+x)Ln(359.18=y       (6.6) 

 

Where: 

%strength,ecompressivinChange=y  

%porosity,inChange=x  

 73



Observation of these figures would appear to suggest that a small change in porosity 

could have a tremendous effect seems to have on compressive strength; this is 

supported by equation 6.6. A reduction in porosity of only 7.3% (0.25% to 0.5% sisal 

content) delivers a 46.6% improvement in compressive strength. On the other hand an 

increase in porosity of 18.7% (1.0% to 1.25% sisal content) delivers a drop in 

compressive strength of 53%.  

 

The relative change in porosity against relative change in compressive strength is 

described by a logarithmic equation, equation 6.6. This would appear to propose that 

the role played by porosity on the structural properties of compressed blocks may be 

quite significant. Particular care should therefore be taken in material preparation 

phase, i.e., introducing sisal ingredients in to the soil. Although the sisal fibres are 

randomly distributed in the soil, this distribution should be as uniform as it can possibly 

be. During the pressing of the bricks in the mould, sufficient force should be used to 

effectively compact the blocks; in this case the compression ratio (see description later 

in section 6.5) should be used as a monitoring tool. Relatively higher compression 

ratios would mean relatively inadequate compaction pressure; consequently an 

occurrence of relatively greater number of pores could be possible. 

 

 

6.1.2.5 Porosity and Practical Block Density 
The correlation between porosity and dry block density was examined; results are 

shown in figure 6.10 and outlined earlier in table 6.5. Porosity is observed to be 

negatively correlated to the practical dry block density. Increase in porosity is 

accompanied by a decrease in dry block density; the relationship is described by 

equation 6.7. This linear relationship with R2 = 0.9814 suggests a strong correlation 

between porosity and block density. 

 

75.100+x0382.0-=y        (6.7) 

 

Where: 

Porosity=y  

densityblockPractical= x  
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y = -0,0382x + 100,75
R2 = 0,9814
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Figure 6.10 Block porosity as a function of practical density 

 

 

Indeed, higher dry block densities are an illustration of relatively lower pore presence. 

As expected, large amounts of pores have the tendency to negatively affect on block 

density and therefore strength as explained in preceding sections. Reasons given in 

the sections 6.1.2.3 and 6.1.2.4 are therefore also applicable for this observed 

tendency. Among other past researchers, (Houben and Guillaud, 1994) report that soils 

with dry block density of between 1600 and 1800kg/m3 have porosity of less than 40%; 

this observation would appear to be consistent with the results obtained in the present 

investigation.  

 

 

From the foregoing and particularly from observation of equations 6.1 to 6.7 it could be 

deduced as follows: 

 

There is a strong relationship between strength properties of compressed earth blocks 

and practical block density on one hand and to porosity on the other. This observation 

is recorded in equations 6.1, 6.4 and 6.5; that these are all power equations reinforces 

the strong association. Apparently, the correlation between compressive strength and 

porosity is slightly higher (R2 = 0.9158) than that between compressive strength and 

practical block density (R2 = 0.851) 
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Table 6.7 Summary of parameter comparison 

S.No. Property Variable R2 Equation 
Number 

Equation 
Type 

1 compressive 
strength 

Porosity 0.88 6.4  Linear 

2 compressive 
strength 

Practical 
block density 

0.83 6.1 Linear 

 

3 Flexural 
strength 

Porosity 0.77 6.5 Linear 

 

4 Practical 
block density 

Porosity 0.9814 6.7 Linear 

 

5 Theoretical 
block density 

Sisal content 0.9793 6.2 Linear 
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6.1.3 Surface and Internal Structure 
Light Optical Microscopy (LOM) 
Fractured surface of block samples were investigated by Light optical microscopy 

(LOM) imaging (Leica microscope) at a magnification factor of 500. Figure 6.11 to 6.15 

compare the block fractured surfaces for samples reinforced with between 0.25% to 

1.25% sisal levels.  
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Figure 6.11 Fractured surface of a 0.25% sisal reinforced block 
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Figure 6.12 Fractured surface of a 0.5% sisal reinforced block 
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Figure 6.13 Fractured surface of a 0.75% sisal reinforced block 
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Figure 6.14 Fractured surface of a 1.0% sisal reinforced block 

 

 

It is visible that the size or magnitude of cracks in the matrix increase with increasing 

fibre content. The cracks appear to occur more often with increasing sisal fibre levels. It 

is probable however, that the binding force between fibres and soil particles dominates 

up to the ideal mix of 0.75% sisal content; more addition of sisal would bring to 

situation where the cracks have an overwhelming effect, hence reduction of strength 

and density, and growth of porosity as already observed in previous sections. 
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Figure 6.15 Fractured surface of a 1.25% sisal reinforced block 

 

 

Additionally, the LOM images reveal that the fibres may not be homogeneously mixed 

up in the soil blocks, but rather randomly distributed. However, it is to be observed from 

these images that the fibres appear to be in an omni-directional nature. Apparently, the 

fibres form a matrix which increasingly binds the soil grains with increasing levels of 

sisal. The phenomena would appear to explain reduction in porosity (increase in 

density) with subsequent addition of fibres up to the critical volume 0.75%, as reported 

in section 6.1.2.5. 

 
 
Scanning Electron Microscopy (SEM) 
It was necessary to examine the internal structure of the earth blocks in order to gather 

some evidence of the effect of the morphology to the properties that have been 

discussed in the preceding sections.  

 

This for this, scanning electron microscopy (SEM) analysis with a magnification factor 

of 500 was made for a few selected samples; results are illustrated in figure 6.16 to 

6.18. The left side of figure 6.16 represents the non-reinforced sample; the sample 

seems denser than that reinforced with 0.25% sisal shown on the right side of figure 

6.16. It appears that few amounts of sisal present do not provide an ideal network with 

clay particles; this could be the reason why the blocks reinforced with 0.25% sisal have 

lower strength than the non-reinforced (plain) blocks, see figure 6.2a. 
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Figure 6.16 Micrograph of non-reinforced and 0.25% sisal reinforced CEB 

 

 

A different scenario becomes apparent when one relates the non-reinforced sample 

and that reinforced with 0.75% sisal, as in figure 6.17. The block morphology as 

revealed by this scanning electron micrograph testifies to the embedment of the fibres 

in the soil grains; this would explain the improved strength in the block with 0.75% sisal 

level.  
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Figure 6.17 Micrograph of non-reinforced and 0.75% sisal reinforced CEB 
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1.25% sisal content results in a block with porous nature consequently the poor 

strength characteristics associated with it. Indeed, in figure 6.18, a pore with an 

approximate diameter of 88.09 µm is to be vividly seen. This amount of sisal, it can be 

concluded, is above the critical volume. Although fewer pores are witnessed in the non-

reinforced sample, it would be clear that the binding force by only clay minerals is 

inferior to that where fibres are networked within the structure. Consideration of the 

analysis in section 6.1.1 and in this section supports the fact that the critical sisal fibre 

volume lie between 0.75% and 1.0 % by weight of dry soil. 
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Figure 6.18 Micrograph of 1.25% sisal reinforced CEB 

 

 

Observation of the fractured surface investigated by LOM imaging and the structure of 

samples investigated by SEM demonstrate that the amount of sisal added to the soil 

mix correlates to a high extend with the morphology of the block sample and hence to 

the obtained strength, density and porosity values. 
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6.2 Cement Stabilised Compressed Earth Blocks 
6.2.1 Compressive, Flexural Strength and Cement Content and  
Application of cement as a binder or stabiliser in compressed earth blocks is already 

well documented by past workers, as illustrated in section 2.3. It is therefore used in 

the present work more else as control experiment, to observe the influence of cement 

content to the strength characteristics for the selected soil sample and compare results 

with those of sisal reinforced blocks. Literature points out that cement when well mixed 

with soil and the blocks adequately cured after compaction, tends to increase the 

strength of the resultant soil blocks. Previous workers have shown that cement 

contents below 3% will not provide desired results (Rigassi, 1995) 

 

Table 6.8 depicts the sample composition of mixtures used to manufacture and 

characterise cement stabilized compressed earth blocks, abbreviated as CeC. Clay is 

reinforced with 5%, 9% and 12%, cement respectively. Addition of cement to soil, just 

as was the case of sisal fibres (section 6.1), was done in ratios by weight of dry soil. 

 

 

Table 6.8 Mix composition of cement stabilized blocks 

Specimen Reference CeC-0 CeC -5 CeC -9 CeC -12 

Amount of Cement Used, % 0 5 9 12 

 

 

A range of obtained experimental data is summarised in appendix A, F and G. A look a 

figure 6.19a below reveal, as would be expected and discussed in section 2.3, a linear 

increase in both 28-day dry compressive and flexural strength with increase in cement 

levels from 5% to 12%. The strong linear correlation is shown in equation 6.8 (R2 = 

0.9995) and equation 6.9 (R2 = 0.9705). 

 

It is not yet very clear why there occurred a slight drop in strength from the non-

stabilized blocks to those stabilized with 5% cement, figure 6.19b. Possibly, the use of 

such a low cement by-volume ratio may have required a lot of mixing time to get the 

cement distributed thoroughly within the soil; poor mixing may therefore have been the 

cause. 
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Figure 6.19a Compressive and flexural strength against cement levels 

 

 

1667.1+x3688.2=yc        (6.8) 

 

Where: 

strengtheCompressiv=y  

contentCement=x  

 

 

1873.0+x6265.0=yf        (6.9) 

 

Where: 

strengthFlexural=y  

contentCement=x  
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Figure 6.19b Compressive and flexural strength against cement content 

 

 

7182.3+x2938.0=y        (6.10) 

 

Where: 

strengtheCompressiv=y  

contentCement=x  

 

7374.0+x0909.0=y        (6.11) 

 

Where: 

strengthFlexural=y  

contentCement=x  
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Proposed Reasons for the Observed Strength Behaviour 
Strength increase would be as a result of increased bonding between cement paste 

and clay minerals. According to (Mukerji K., 1994) hydrated cement reacts in two 

different ways in a soil: Firstly, by conventional hardening of the cement through 

hydration and bonding with the sandy �skeleton� of the soil. Secondly, by undergoing a 

3-phase reaction with clay, thus: 

 

• Hydration triggers the formation of cement gels on the surface of the clay 

aggregates. The lime, which is released during the hydration of the cement, 

tends to react with the clay. The lime is quickly used up and the clay starts to 

change its character,  

• Hydration proceeds and encourages the clay aggregates to break down. The 

latter are deeply penetrated by cement gels,  

• The cement gels and the clay aggregates become intimately interlinked. 

Hydration continues, but more slowly. 

 

In effect, three combined structures are obtained, thus, an inert sandy matrix bound 

with clay, a matrix of stabilized clay and a matrix of non-stabilized soil.  

 

 

Products of hydration 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Micrograph of products of hydration 
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Table 6.9 attempts to show proportional increase in strength accompanying the change 

in cement content. Variation of cement from 5% to 9% (this represents an 80% 

increase in cement content), delivers an increase of 70% in compressive strength while 

an increase in cement content from 9% to 12% (this represents a 33% increase in 

cement content) delivers a 38% improvement in compressive strength.  

 

 

Table 6.9 Relative change in strength against change in cement levels 

S.No. Cement 
Content, 
% 

Increament in 
Cement Content, 
% 

Compressive 
Strength, 
N/mm2

Improvement in 
Compressive 
Strength, % 

5 3.50 1 

9 
80 

5.96 
70 

9 5.96 2 

12 
33 

8.24 
38 

 Cement 
Content, 
% 

Change in Cement 
Content, % 

Flexural 
Strength, 
N/mm2

Improvement in 
Flexural 
Strength, % 

5 0.75 3 

9 
80 

1.56 
108 

9 1.56 4 

12 
33 

2.00 
28.2 

 

 

There appear to be therefore, a more else direct proportionality between growth in 

strength and increase in cement content. This view is supported by the strong 

correlation shown in equations 6.8 and 6.9. It is worth noting that a strength value of 

5.96 N/mm2 (at 9% cement content) is already sufficient as per recommendations of 

Kenya standard specifications for compressed soil blocks, see section 6.1.2. It may be 

concluded therefore that blocks stabilized with 9% and 12% cement content meet the 

strength requirements needed for use in housing-wall construction in Kenya.  

 

A look at table 6.10 and figure 6.21, confirms as follows: compared to plain blocks, 

compressive strength increase by application of 9% cement, amounts to 24.3% (57.8% 
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growth of flexural strength) while inclusion of 12% cement brings about a 71.7% 

increase in compression strength (101% growth of flexural strength). 5% cement 

inclusion results in a drop of about 25% for both compressive and flexural strength. 

 
 

Table 6.10 Strength values and percentage change 

Change in Strength Block 
Type 

Stabiliser Type  
and Content Compressive 

Strength,  
N/mm2

Change in 
Strength*,  
% 

Flexural  
Strength, 
N/mm2

Change in 
Strength*, 
% 

Plain Block 4.798 - 0.992 - 

5% Cement 3.505 -26.9 0.750 -24.4 

9% Cement 5.965 +24.3 1.566 +57.8 
CeC 

12% Cement 8.24 +71.7 2.00 +101 

*+ implies % improvement in strength comparison to the non-reinforced earth block 

 - implies % drop in strength in comparison to the non-reinforced earth block. 
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Figure 6.21 Relative change in strength against change in cement levels 
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Ratio of Compressive to Flexural Strength 
Data extracted from table 6.11 and illustrated in figure 6.22 would appear to suggest 

that compressive strength is about 4 to 5 times its flexural counterpart and is within the 

limits recommended by other past workers, see section 2.5.1. Indeed the range 

obtained for cement stabilized blocks is consistent with the results obtained for the 

sisal-reinforced earth blocks, see section 6.1.1. It would be possible to suggest, in this 

background, that the ratio can be applied as a quality control tool. Based on this tool, 

experiments carried out in this work can be authenticated by evaluation of this ratio. 

 

 

Table 6.11 Strength and ratio of compressive to flexural strength 

S.No. Sample 
Name 

Flexural  
Strength, 
N/mm2

Compressive 
Strength,  
N/mm2

Ratio of Flexural to 
Compressive Strength 

    Gross Mean 

Cement Stabilised Compressed Earth Blocks 

1 CeC-0 0.992 4.79875 4.83745 4.196685 

2 CeC-5 0.75075 3.505 4.668665  

3 CeC-9 1.5665 5.965 3.807852  

4 CeC-12 2.00375 8.2425 4.113537  
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Figure 6.22 Strength and ratio of compressive to flexural strength 
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Comparison of Sisal and Cement stabilised Earth Blocks 
It is of significance that the results of cement stabilised compressed blocks be looked 

at, in the background of those obtained for sisal reinforced compressed blocks, section 

6.1.1. Tables 6.12a and 6.12b provide this summary, outlined further in figure 6.23. 

 

 

Table 6.12a Strength comparison of sisal reinforced and cement stabilised blocks 

S.No. Stabilizer Type and CEB 
Characteristic 

Stabilizer Amount and Value of 
Characteristic 

 

1.0 Cement Content, % 0 5 9 12 

1.1 Compressive Strength, N/mm2 4.798 3.50 5.96 8.24 

1.2 Flexural Strength, N/mm2 0.992 0.75 1.56 2.0 

 

2.0 Sisal Content, % 0 0.25 0.5 0.75 

2.1 Compressive Strength, N/mm2 4.798 4.18 6.08 9.14 

2.2 Flexural Strength, N/mm2 0.992 0.75 1.035 1.63 

 

 

 

Table 6.12b Summary of the ideal strength values 

Improvement in Strength for Ideal mix proportions Block 
Type 

Stabiliser Type 
and optimum 
Content 

Compressive 
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

Flexural  
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

SC 0.75% Sisal 9.14 +90.5  1.63 +64.3  

 

CeC 12% Cement 8.24 +71.7  2.00 +101  
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Figure 6.23 Comparison of sisal reinforced and cement stabilised blocks 

 

 

Important to note from table 6.12 and figure 6.23, would be that 9% cement content 

yields blocks with a compressive strength of 5.96 N/mm2 (flexural strength 1.56 N/mm2) 

and are fairly comparable to those with 0.5% sisal content which provide a 

compressive strength of 6.08 N/mm2 (flexural strength of 1.035 N/mm2). 

 

Blocks with 12% cement levels have compressive strength of 8.24 N/mm2 (flexural 

strength of 2 N/mm2) and are comparable to blocks with 0.75% sisal content which 

results into a compressive strength of 9.14 N/mm2 (flexural strength of 1.63 N/mm2).  

 

At this point in time, it is not clear why the flexural strength of cement stabilised bricks 

appear to be slightly higher than that of the sisal reinforced counterparts although the 

opposite is true for compressive strength parameter. 

 

From afore mentioned and based on strength values, it may be deduced that sisal 

vegetable fibres can replace the relatively expensive cement binder as stabilising agent 

for earth bricks. It may be stated further that sisal being a renewable natural resource 

available widely in Kenya, its use as reinforcing agent would cut costs of building 

considerably and therefore bring decent housing near to the rural population of Kenya. 
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On this basis one of the goals of this study as indicated in sections 1 and 2 can be said 

to have been achieved. 

 

 

6.2.2 Dry Block Density and Porosity 

 Practical Dry Block Density 
The practical dry block density, determined in the same way as described in section 

6.1.2, dropped on addition of 5% cement; from about 1800 kg/m3 to about 1690 kg/m3. 

The density then remained constant even on addition of further amounts of cement 

(9%, 12%) as displayed in figure 6.24 and the table in appendix A and H.  

 

The reason as to why the density drops in comparison to the non-reinforced blocks, 

and why it remains constant in spite of cement addition (from 5% to 12%) was not able 

to be established in the current study. 
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Figure 6.24 Dry block density as a function of cement content 

 

 

Table 6.13 and figure 6.25 shows that the decrease in density (in comparison to the 

plain earth block) is about 6% for all the 3 mix proportions. It is also somehow amazing 

and against past research findings that the lower densities (figure 6.26) provided better 
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compressive and flexural strength; no past worker, to the best of knowledge available, 

has recorded such findings.  

 

More advanced research in the type of bonding or reaction between montmorillonite 

minerals and products of cement hydration is recommended to be carried out; this 

should help to better understand the internal block structure and perhaps provide 

explanation to this phenomena. 

 

 

Table 6.13 Reduction in density in comparison to plain earth block 

Block 
Type 

Stabiliser Type  
and Content 

Practical 
Density, kg/m3

Change in Practical 
Density*, % 

Plain Block 1792.97 - 

CeC-5 1689.45 -5.8 

CeC-9 1686.52 -6.0 
CeC 

CeC-12 1689.45 -5.8 

- implies % drop in strength in comparison to the non-reinforced earth block. 
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Figure 6.25 Change in practical dry block density 
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Figure 6.26 Change in strength as a reflection of change in density 

 

 

Theoretical Density 
The theoretical density is determined in the same manner as described in section 

6.1.3.2. The values, depicted in table 6.14 and figure 6.27, are identical for the 3 

cement proportions, i.e., 2663.7, 2661.2, 2662.1 and 2658.6 kg/m3 (for 0, 5, 9 and 12% 

cement amounts respectively).  

 

 

Table 6.14 Difference in theoretical from practical density 

S.No. Cement 
Content, 
% 

True 
Density, 
kg/m3

Practical 
Density, 
kg/m3

Increase in 
Density, 
kg/m3

Change in 
Density,  
% 

Porosity, 
% 

1 0.0 2663.7 1792.97 870.73 48.56 32.69 

2 5.0 2661.2 1689.45 971.75 57.52 36.52 

3 9.0 2662.1 1686.52 975.58 57.85 36.65 

4 12.0 2658.6 1689.45 969.15 57.36 36.45 
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The percentage increase in true dry density compared to practical block density as 

illustrated in table 6.14 is an average of 57.5% for all the 3 cement contents; this 

appears to confirm the insignificance of cement with respect to density as a parameter. 

Such results are unrecorded in past investigations. Cement content, it could be 

concluded, has therefore no effect on both practical and theoretical density.  
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Figure 6.27 Comparison between theoretical and practical density 

 

 

The experimental correlation between theoretical density and cement levels is outlined 

in figure 6.28. The best fit shows a linear correlation (R2 =0.7238), represented in 

equation 6.12.  

 

 

7.2663+Content Cement3494.0-=ρt     (6.12) 

 

 

Just like the case was for sisal reinforced earth blocks the best fit is a near linear 

function. This would appear to suggest that the general relationship between 

theoretical density and stabilizer content for compressed earth blocks is linear in 

nature. Besides, the theoretical density is, as was the case of sisal reinforced blocks, 
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about 1.5 times greater than the practical density. The general practical applicability of 

equation 6.12 would be similar to deductions made in section 6.1.2.2, with respect to 

equation 6.2. 
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Figure 6.28 Theoretical dry block density as a function of cement content 

 

 

Porosity 
The porosity values established in the same way as described in section 6.1.3.3, i.e. by 

use of equation 6.3, were as follows: 32.69, 36.52, 36.65 and 36.45% for 0, 5, 9 and 

12% cement amounts respectively.  
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Figure 6.29 Porosity as a function of cement content 

 

 

As expected and discussed in section 6.1.3.3, the porosity of the earth blocks is 

inversely proportional to the practical dry block density. Comparison of figure 6.24 and 

6.29 would appear to confirm this view. On the other hand it is noted that the porosity 

of blocks stabilised by 5, 9 and 12% cement is basically the same (similar scenario with 

the practical dry block density in the preceding section).  

 

In the background of this information, it is not yet clear why the compressive strength of 

cement stabilised earth blocks increases on addition of cement from 5% to 12% 

although the porosity remains constant. The literature available does not document 

such results. It can, at this time however, be said that the amount of cement used in 

these investigations has no effect on the porosity nor on density. Remarks made above 

over behaviour of practical density with respect to further research would thus, appear 

to be applicable in this case too. 
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6.3 Cement-Sisal Stabilized Compressed Earth Blocks 
The combination of cement and sisal fibres for reinforcement or stabilization of soil is 

unrecorded in literature. The nearest similarity is the investigations where sisal has 

been used to reinforce concrete elements. Another similar investigation is carried out 

by (Eko et. al., 1994). The study considers the structural engineering properties of soil-

cement reinforced with sugarcane bagasse vegetable fibres. In the work, the influence 

of bagasse vegetable fibres and cement level on the compressive strength, flexural 

strength is studied; it is found that bagasse had a negative impact on the strength 

values of the reinforced blocks. (Osunade, et. al., 1992) reinforces concrete with 

elephant grass (also a vegetable fibre) and finds too, no strength improvement. 

 

 

6.3.1 Cement-Sisal Content and Compressive Strength 
Because two variables (sisal and cement) are considered in this particular case, it was 

necessary to plot two independent diagrams; one showing the effect of increasing sisal 

content and the other depicting the influence of increasing cement content on the 

compressive strength. 

 

Change in the 28-day dry compressive strength as a function of both cement and sisal 

stabilization is summarized in the table in appendix A and I and below in figure 6.30 

and 6.31. Observation of these diagrams gives in some clear tendencies worth 

illustration. 

 

In general, for each level of sisal content, i.e. 0.25%, 0.5%, 0.75%, 1.0% and 1.25%, 

the 28-day dry compressive strength increased with an increasing level of cement in a 

linear relationship, figure 6.30. This would be due to the increasing amount of C2S and 

C3S brought about by increasing level of cement. The increasing amount of C3S2H3 

which is derived from the hydration of C2S and C3S better tied fibres and soil particles 

together in the mixture, leading to an increase of strength. It may have been expected 

that a combination of both cement and fibres would provide greater strength than 

cement or fibres on their own.  
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Figure 6.30 Compressive strength as a function of cement content 

 

 

Results of the present investigations show however, that this is not the case. 

Compared with blocks reinforced with only sisal (section 6.1) or stabilised with only 

cement (section 6.2), it is noted that the compressive strength rises within a rather 

limited range of 2.37 N/mm2 to 6.75 N/mm2. As expected, the rate of increase is lower 

for 1.0% and 1.25% sisal levels, meaning therefore that higher amounts of sisal in 

combination with cement are relatively detrimental to compressive strength. 

 

It is catalogued by (Houben and Guillaud, 1994) that the fibre armature has its effect at 

the macroscopic level; fibres thus reinforce at the level of grain aggregations rather 

than at the level of individual grains. Cement stabilisation on the other hand, results in 

filling of voids with an insoluble binder which coats the grains and holds them in an 

inert matrix. 

 

 

The influence of sisal levels to strength characteristics in cement-sisal stabilised soil 

blocks is better illustrated by figure 6.31. Clearly, sisal content, in the presence of 

cement does not seem to have any effect on the strength characteristics of 

compressed earth blocks. Similar results are not yet recorded in the past findings; 
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indeed it is not yet clear why sisal, in the presence of cement, would not have any 

ffect on the strength parameters of compressed earth blocks.  
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igure 6.31 Compressive strength as a function of sisal content 

d each fibre may no longer 

ave been enough to provide sufficient friction. In this light, findings of other workers 

escribed briefly in section 6.1.1 may be seen to be right. 

d cement levels flexural strength are 

resented in appendix A and J and depicted in figure 6.32 and figure 6.33 below. Block 

density values are shown in appendix A and K. 

 

F

 

 

It would appear therefore that, improvement of compressive strength in cement-sisal 

stabilised blocks is due to cement and not sisal presence. Likely, in situations of high 

sisal content, the amount of soil-cement which surrounde

h

d

 

 

6.3.2 Sisal Content and Block Flexural Strength 
The results of the influence of both sisal an

p
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Figure 6.32 Flexural strength as a function of cement content 

 

 

The trends are similar to compressive strength tendencies. Indeed, the flexural strength 

lies in the range of 17.5% to 22% of the compressive strength. 

 

The flexural strength of fibre reinforced specimens was lower than that of non-

reinforced specimens at 5% and 9% cement level, the vegetable fibres were therefore 

detrimental to matrix quality for this test. At 12% cement level, the flexural strength is 

for all the 6 sisal fibre levels greater than the non-reinforced case, figure 6.32.  

 

At each level of sisal, there was an increase in flexural strength with an increasing level 

of cement; this would be due to C3S2H3 compounds brought about by the hydration of 

cement. In general, 0.5% sisal content provides the best flexural strength; likely, 

according to (Eko R., et al, 1994) because this fibre content and the amount of soil-

cement which surrounded each fibre might be the optimum combination of the two for 

the composite to provide both friction and shear strength. 

 

Observation of figure 6.33 would confirm what earlier stated in section 6.3.1, that 

improvement of strength in cement-sisal stabilised blocks is due to cement and not 

sisal presence. It is clear that the flexural strength for both 5% and 9% cement contents 

is lower than in the non-reinforced soil block. Stabilisation with 12% cement brings 
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about strength (up to 1.36 N/mm2) that is only slightly higher than in the non-reinforced 

case (0.992 N/mm2). 
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Figure 6.33 Flexural strength as a function of sisal content 

 

 

It is not very clear at this juncture why the sisal fibres on their own have a positive 

impact on the strength characteristics as discussed in section 6.1 and yet appear not to 

play the same role when in combination with cement. More research particularly on the 

microstructure of the cement-sisal-soil matrix is still required in order to establish an 

acceptable explanation. 

 

 

Ideal Case 

From the above observations, it is seen that the ideal combination among the sisal-

cement mixtures is that of 0.5% sisal alongside with 12% cement content (abbreviated 

as CSC-0.5-12). The strength values and improvement in this combination, among 

others, is presented in table 6.15 and outlined in figure 6.34. An improvement of 40.7% 

in compressive strength and 37.1% for flexural strength (in comparison to the plain 

block) is witnessed when soil is reinforced by 0.5% sisal and 12% cement. The 

proposed cause for this positive change, as well as for the reduction in strength for 
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other mix combinations has been described early in this section. Table in Appendix K2 

and figures in appendix K1 to K3 show the density relationships. 

 

 

Table 6.15 Strength values and percentage change 

Change in Strength Block 
Type 

Stabiliser Type  
and Content Compressive 

Strength,  
N/mm2

Change in 
Strength*,  
% 

Flexural  
Strength, 
N/mm2

Change in 
Strength*, 
% 

Plain Block 4.798 - 0.992 - 

0.5% Sisal  
and 5% Cement 

2.843 -40.7 0.583 -41.2 

0.5% Sisal  
and 9% Cement 

5.16 +7.5 0.934 -5.8 CSC 

0.5% Sisal  
and 12% Cement 

6.75 +40.7 1.36 +37.1 

*+ implies % improvement in strength in comparison to the non-reinforced earth block 

 - implies % drop in strength in comparison to the non-reinforced earth block. 
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6.34 Deviation in Compressive and flexural strength from that of plain block 
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It is further observed from table 6.16, figure 6.35 and appendix A1 that the compressive 

strength is 4.8 to 5.5 times higher than flexural strength for all the specimens tested. 

This is reflective of the results obtained in section 6.1.1 and 6.2.1. The proposal in 

section 6.2.1 that this ratio can be applied as a quality control tool can therefore be said 

to have been further reinforced. It can also be deduced that requirements of 

compressive to flexural strength ratio, for this cement-sisal blocks as a building 

material, have been satisfied. 

 

 

Table 6.16 Strength and ratio of compressive to flexural strength 

S.No. Sample 
Name 

Flexural  
Strength, 
N/mm2

Compressive 
Strength,  
N/mm2

Ratio of Flexural to 
Compressive Strength 

    Gross Mean 

Cement-Sisal reinforced compressed earth blocks 

1 CSC-0 0.992 4.79875 4.83745 5.125949 

2 CSC-5-0.5 0.58325 2.843125 4.874625  

3 CSC-9-0.5 0.9345 5.16 5.521669  

4 CSC-12-0.5 1.35525 6.75125 4.981553  
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6.35 Strength and ratio of compressive to flexural strength 
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Strength comparison in sisal, cement and cement-sisal reinforced blocks  

The data in table 6.17, table 6.18, figure 6.36a and figure 6.36b show comparison in 

strength for sisal reinforced (refer to section 6.1), cement stabilized (see section 6.2) 

and cement-sisal (see section 6.3) reinforced compressed earth blocks). 

 

 

Table 6.17 Strength comparison of SC, CeC and CSC 

S.No. Stabilizer Type and CEB 
Characteristic 

Stabilizer Amount and Value of 
Characteristic 

 

1.0 Sisal Content, % 0 0.25 0.5 0.75 

1.1 Compressive Strength, N/mm2 4.798 4.18 6.08 9.14 

1.2 Flexural Strength, N/mm2 0.992 0.75 1.035 1.63 

 

2.0 Cement Content, % 0 5 9 12 

2.1 Compressive Strength, N/mm2 4.798 3.50 5.96 8.24 

2.2 Flexural Strength, N/mm2 0.992 0.75 1.56 2.0 

      

3.0 Cement-Sisal, % 0 5-0.5 9-0.5 12-0.5 

3.1 Compressive Strength, N/mm2 4.798 2.843 5.16 6.75 

3.2 Flexural Strength, N/mm2 0.992 0.583 0.934 1.36 

 

 

Table 6.18 Summary of the ideal strength values 

Improvement in Strength for Ideal mix proportions Block 
Type 

Stabiliser Type 
and optimum 
Content 

Compressive 
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

Flexural  
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

SC 0.75% Sisal 9.14 +90.5  1.63 +64.3  

 

CeC 12% Cement 8.24 +71.7  2.00 +101  

 

CSC 0.5% Sisal  
and 12% Cement 

6.75 +40.7  1.36 +37.1  
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Figure 6.36a Strength comparison for CeC and CSC 
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Figure 6.36b Strength comparison for SC and CSC 

 

 

Comparison between the sisal reinforced blocks and cement stabilised ones has been 

carried out in section 6.2.1. It has already been established that the ideal sisal 

reinforced blocks (0.75% sisal content � with 90.5% improvement), from the point of 

view of strength, appear to be superior to the cement stabilised ones (12% cement 
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content � with 71.7% improvement). The deal cement-sisal reinforced blocks would 

seem in this consideration inferior to the previous two types (40.7% improvement).  

 

On the other hand, the 6.75 N/mm2 value of compressive strength is comparable with 

the strength of 0.5% sisal reinforced blocks (6.08 N/mm2) and that of 9% cement 

stabilized blocks (5.96N/mm2). Based on strength consideration, it would be appear 

that out of the three types of blocks, the sisal reinforced would be preferred for housing 

wall construction.  
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6.4 Cassava Stabilised Compressed Earth Blocks (CaC)  
The use of Cassava powder as a building material has no precedent; no past 

researcher has documented findings to this effect. Cassava plant (a root tuber) 

described in section 3.4, is grown and is readily available in developing countries. 

 

Table 6.19 depicts the sample composition of mixtures used to manufacture and 

characterize cassava stabilized compressed earth blocks, abbreviated as CaC. Clay or 

earth is reinforced with 0%, 1.5%, 2.5%, 4.0%, 5.0%, and 7.0% cassava powder. A 

wide range of mixture proportions has been selected due to the unavailability of prior 

knowledge. Like in all previous cases, addition of cassava powder to soil was done in 

ratios by weight of dry soil. For each mix composition described in section 5.2.1, 4 

blocks were prepared to measure compressive and flexural strength; a mean value 

from the 4 blocks was calculated and used for evaluation of the strength 

characteristics.  

 

 Table 6.19 Composition of cassava stabilized blocks 

Specimen 
Reference 

CaC- 
0 

CaC-
1.5 

CaC-
2.5 

CaC-
4.0 

CaC-
5.0 

CaC-
7.0 

Amount of 
Cassava 
Used, % 

0 1.5 2.5 4.0 5.0 7.0 

 

 

6.4.1 Cassava Content and Dry Compressive and Flexural Strength 
Compressive strength, as mentioned earlier, is the single most important determinant 

of durability for compressed blocks. It was necessary to establish this parameter for 

cassava-soil compositions, given that this matrix has not been investigated before. 

Details of the results for the established strength are contained in appendix A, L and M 

 

The correlation between compressive and flexural strength and cassava powder 

content is depicted in figure 6.37. Compressive strength lies between 7.3625 N/mm2 

(for 1.5% cassava content) and 4.298 N/mm2 (for 7% cassava content). The plain (i.e. 

non-stabilised) earth block has a compressive strength of 4.798 N/mm2.  
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Figure 6.37 Compressive and flexural strength as a function of cassava content 

 

 

The optimum compressive strength, witnessed by addition of 1.5% cassava, provides 

therefore a 53.5% improvement � compared with the plain earth block, table 6.20. 

Addition of larger amounts of cassava results in a significant drop in compressive 

strength. The lowest strength of 4.298 N/mm2 attained at 7% cassava content, is 

nevertheless only a slight drop (i.e. 10% decrease) with respect to the plain blocks; this 

value, on the other hand, is still above the minimum 28-day compressive strength of 3 

N/mm2 recommended by the Kenya Specification for Stabilised Soil Blocks.  

 

It is worth noting that in general, although the strength exhibited at 2.5%, 5% and 7% 

does not show significant difference from each other, it is still higher than that of the 

non-stabilised earth blocks, figure 6.37.  

 

 

Deviation in Strength of stabilized blocks from non-stabilized ones 
Table 6.20 and figure 6.38 summarises the deviation of strength values of cassava 

stabilized blocks from those of plain (non-reinforced) earth blocks. A negative deviation 

is seen only in the case of 7% cassava content; proposed causes for these deviations 

are found later in this section. 
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Table 6.20 Strength values and percentage change 

Change in Strength Block 
Type 

Stabiliser Type  
and Content Compressive 

Strength,  
N/mm2

Change in 
Strength,  
% 

Flexural  
Strength, 
N/mm2

Change in 
Strength, 
% 

Plain Block 4.798 - 0.992 - 

1.5% Cassava 7.362 +53.5 1.711 +72.5 

2.5% Cassava 5.593 +16.5 1.637 +65.0 

4% Cassava 5.576 +16.2 1.557 +57.0 

5% Cassava 5.565 +16.0 1.283 +29.3 

CaC 

7% Cassava 4.298 -10.4 0.945 -4.7 
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Figure 6.38 Deviation in Compressive and flexural strength from that of plain block 

 

 

The trend of flexural strength values is as expected similar to that of the compressive 

strength. The values range between 0.945 N/mm2 and 1.71155 N/mm2. The optimal 

value of 1.71155 N/mm2 at 1.5% cassava content suggests a 72.5% increase in flexural 

strength - compared to the non-reinforced blocks.  
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The lowest value of flexural strength of 0.945 N/mm2 corresponding to 7% cassava 

content is only slightly lower than that of non-stabilised block, i.e. 0.99 N/mm2 (4.5% 

drop). Possible causes in strength are contained here further below. 

 

 

Ratio of Compressive to Flexural Strength 
The compressive strength values are in the range of 3.4 to 4.8 times higher than 

flexural strength ones (see table 6. 21 and figure 6.39); this is in agreement with data 

established by several past researchers engaged in the study of compressed earth 

blocks as illustrated in previous sections. These values are also consistent with those 

found earlier in this work for sisal reinforced, cement stabilized and cement-sisal 

reinforced earth blocks, what in essence would suggest authentication of the 

investigations carried out here. 

 

 

Table 6.21 Strength and ratio of compressive to flexural strength 

S.No. Sample 
Name 

Flexural  
Strength, 
N/mm2

Compressive 
Strength,  
N/mm2

Ratio of Flexural to 
Compressive Strength 

    Gross Mean 

Cassava Stabilised Compressed Earth Blocks 

1 CaC-0 0.992 4.79875 4.83745 4.196685 

2 CaC-1.5 1.7115 7.3625 4.301782  

3 CaC-2.5 1.6375 5.59375 3.416031  

4 CaC-4 1.557333 5.576667 3.580908  

5 CaC-5 1.283 5.565 4.33749  

5 CaC-7 0.945333 4.298333 4.546897  
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Figure 6.39 Strength and ratio of compressive to flexural strength 

 

 

Possible Causes of Strength Behaviour 
Although it is at this moment not very clear why addition of certain amount of cassava 

has a positive effect to the strength characteristics of compressed earth blocks, it is 

quite possible that cassava powder which is basically starch as established in section 

4.1.3, could likely have developed polysaccharides molecules on contact with mixing 

water. The bonding of these molecules with soil in the moist state could have been 

responsible for improvement in compressive and flexural strength. In a fairly similar 

work, (Eko et. al., 2001), reinforces soils with sugarcane bagasse vegetable fibres. The 

sugar in the bagasse is found to have evolved to the form of polysaccharides; these 

molecules are established by the author to bind clay particles and increase the strength 

of earth blocks. The author records a maximum compressive strength of 5 N/mm2 

which is still lower that optimal strength of 7.3625 N/mm2 obtained in the present work.  

 

Diagram 6.40 depicts the micrograph of plain earth block and that stabilised by 1.5% 

cassava. The cassava powder is randomly but fairly well distributed within the structure 

of the earth block, hence the positive bonding effect. Addition of large amounts of 

cassava (above 7% by dry weight) clearly inhibits growth in strength; these phenomena 

could be as a result of reduced contact between clay particles; it would also mean that 
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bonding between polysaccharide molecules is weaker than that between 

polysaccharides and clay particles. 

 

It can therefore be stated that based on both compressive and flexural strength 

parameters obtained in the current work, the use of defined amounts of cassava 

powder as a stabilizer for compressed earth blocks has been established to be viable.  

 

 

 

Cassava particles 

Figure 6.40 Micrograph of a non-stabilised and 1.5% cassava stabilized block 

 

 

 

 

 

 

 

 

 

 

6.4.2 Theoretical and Practical Block Density 
Block density is another relevant parameter for earth brick makers and researchers. 

The density has direct effect on strength and therefore durability of earth bricks; indeed 

high densities are associated with lower porosities and consequently better strength as 

observed from evaluations carried out in section 6.1.  

 

Determination of practical dry block density as well as theoretical density was executed 

in the same manner as described earlier in section 6.1.2. Results of this investigation 

have been plotted in figure 6.41; details of the obtained data are also illustrated in the 

table in appendix A and N.  
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Figure 6.41 Dry block density as a function of cassava content 
 

 

Values of practical dry block density lie between 1781.25 kg/m3 for 1.5% cassava 

stabilised CEB and 1635.31 kg/m3 for 7% stabilised ones. This represents an 8% drop 

in density which delivers on the other hand a drop of 42% in compressive strength; an 

indication of the great influence density has on strength.  

 

Practical block density trends exhibit thus similar tendency as compressive and flexural 

strength characteristics; indeed, compressive strength is seen here to be a function of 

dry block density just as was the case with sisal reinforced earth blocks discussed in 

section 6.1.2.  

 

Variation of Density against Strength 
For all the tested samples, the relative deviation in practical density (with respect to the 

density of the non-reinforced earth compressed block) against variation of cassava 

powder levels is presented in table 6.22 and outlined in figure 6.42a. This change 

relative to both compressive and flexural strength is depicted in figure 6.42b. The 

negative deviation is witnessed for all the 5 block types. The idea that blocks stabilized 

by cassava powder (1.5%, 2.5%, 4% and 5%) have higher strength than those of non-

stabilized block although they are in possession of lower density is unconventional. It 

would imply that they exist other parameters whose influence upon block strength 
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would be more paramount. Likely, in the case of cassava stabilized blocks, unlike the 

sisal reinforced and cement stabilized ones, binding forces play greater role.  

 

 

Table 6.22 Change in density in comparison to plain earth block 

Block 
Type 

Stabiliser Type  
and Content 

Theoretical 
Density, 
kg/m3

Practical 
Density, 
kg/m3

Change in 
Practical 
Density*, % 

Plain Block 2663.7 1792.97 - 

1.5% Cassava 2644 1781.25 -0.65 

2.5% Cassava 2619.5 1765.62 -1.5 

4% Cassava 2595.2 1753.90 -2.2 

5% Cassava 2583.4 1740.23 -3.0 

CaC 

7.0% Cassava 2544.1 1635.31 -8.8 

Negative (-) implies % drop in density in comparison to the non-reinforced earth block. 
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Figure 6.42a Change in practical dry block density 
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Figure 6.42b Change in strength as a reflection of change in density 

 

 

Addition of more cassava powder has the effect of reducing the density. This would be 

expected, in that cassava powder which replaces soil in the mix has a lower density as 

soil. Reduction in density should also explain the fall in strength with increase in 

cassava levels. 

 

 

Theoretical Density 
The theoretical density ρt of cassava stabilised soil blocks, determined on the premises 

that the sample block is devoid of pores, provides a true reflection of the density 

phenomena. Figure 6.43a depicts the theoretical density of these blocks with change in 

cassava content. A near linear relationship, shown by equation 6.13, between density 

and cassava content has been established, the equation has R2 = 0.9845 which implies 

a strong linear correlation between the two variables.  

 

 

4.2665+ContentCassava123.17-=ρt    (6.13) 
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Figure 6.43a True or theoretical block density as a function of cassava content 

 

 

Deviation of Theoretical Density from Practical Density 
The densities, practical and theoretical, deviate from one another and as is to be 

expected the theoretical densities are higher than the corresponding practical ones, 

table 6.23 and figure 6.43b.  

 

 

Table 6.23 Difference in true and practical block density 

S.No. Cassava 
Content, % 

True 
Density, 
kg/m3

Practical 
Density, 
kg/m3

Change in 
Density, 
kg/m3

Change in 
Density, % 

1 0.0 2663.7 1792.97 870.73 48.56 

2 1.5 2644 1781.25 862.75 48.44 

3 2.5 2619.5 1765.62 853.88 48.36 

4 4.0 2595.2 1753.90 841.30 47.97 

5 5.0 2583.4 1740.23 843.17 48.45 

6 7.0 2544.1 1635.31 908.79 55.57 

7 10.0 2508.5 1649.90 858.60 52.04 
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Figure 6.43b Comparison between theoretical and practical density 

 

 

In all the cases, the deviation of 841.30 kg/m3 to 908.79 kg/m3 is recorded; a mean of 

862.745---and standard deviation of 22.81--- have been computed. The deviations 

recalculated in to percentage would mean that the theoretical density is higher than the 

respective practical density by 47.97% to 55.57%, with a standard deviation of 2.85 

 

Literature does not document any related past results for cassava stabilised earth 

bricks, it is hence not possible to make comparison in that context. It is instructive 

however, that the theoretical density value was found in the previous cases (sisal 

reinforced blocks � section 6.1.2.2 and cement stabilised blocks � section 6.2.2) to be 

1.5 times greater than the corresponding value. It is therefore logical to conclude as 

follows: 

• That theoretical density is in general about one and a half (1.5) times greater 

than the corresponding practical density, equation 6.14.  

 

DensitylTheoretica=5.1×DensityacticalPr   (6.14) 

 

• The correlation between theoretical density and stabilising agent is linear in 

nature. 
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The trends exhibited by porosity of the cassava stabilized blocks with respect to 

compressive strength, block density and cassava content, illustrated in appendix O, P 

and Q, confirm the tendencies discussed in the above section. Higher porosities 

translate in to lower densities and hence inhibit growth of compressive and flexural 

strength. This observation is similar to the one made in the discussion over sisal 

reinforced blocks in section 6.1.2.  

 

 

Comparison of Sisal to Cement stabilised Earth Blocks 
The data in table 6.24, table 6.25, figure 6.44a, figure 6.44b and figure 6.44c show 

comparison in strength for sisal reinforced (refer to section 6.1), cement stabilized (see 

section 6.2), cement-sisal (see section 6.3) and cassava stabilized reinforced 

compressed earth blocks. 

 

 

Table 6.24 Strength comparison for all block types 

Stabilizer Type and CEB 
Characteristic 

Stabilizer Amount and Value of Characteristic 

Sisal reinforced compressed Earth Blocks 

Sisal Content, % 0 0.25 0.5 0.75   

Compressive Strength, N/mm2 4.798 4.18 6.08 9.14   

Flexural Strength, N/mm2 0.992 0.75 1.035 1.63   

Cement Stabilized Compressed Earth Blocks 

Cement Content, % 0 5 9 12   

Compressive Strength, N/mm2 4.798 3.50 5.96 8.24   

Flexural Strength, N/mm2 0.992 0.75 1.56 2.0   

Cement-Sisal Compressed Earth Blocks 

Cement-Sisal Content, % 0 5-0.5 9-0.5 12-0.5   

Compressive Strength, N/mm2 4.798 2.843 5.16 6.75   

Flexural Strength, N/mm2 0.992 0.583 0.934 1.36   

Cassava Stabilized Compressed Earth Blocks 

Cassava Content, % 0 1.5 2.5 4 5 7 

Compressive Strength, N/mm2 4.798 7.362 5.593 5.576 5.565 4.298 

Flexural Strength, N/mm2 0.992 1.711 1.637 1.557 1.283 0.945 
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Table 6.25 Summary of the ideal strength values 

Improvement in Strength for Ideal mix proportions Block 
Type 

Stabiliser Type 
and optimum 
Content 

Compressive 
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

Flexural  
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

SC 0.75% Sisal 9.14 +90.5  1.63 +64.3  

 

CeC 12% Cement 8.24 +71.7  2.00 +101  

 

CSC 0.5% Sisal  
and 12% Cement 

6.75 +40.7  1.36 +37.1  

 

CaC 1.5% Cassava 7.3625 +53.5 1.71155 +72.5 
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Figure 6.44a Strength comparison for sisal reinforced and cassava stabilised CEB 
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Figure 6.44b Strength comparison for cement and cassava stabilised CEB 
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Figure 6.44c Strength comparison in cement-sisal and cassava stabilised CEB 
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Comparison between the sisal reinforced blocks, cement stabilised ones and cement-

sisal reinforced blocks has been carried out in section 6.3.2. It has already been 

established that the ideal sisal reinforced blocks (0.75% sisal content � with 90.5% 

improvement), from the point of view of strength, appear to be superior to the cement 

stabilised ones (12% cement content � with a 71.7% improvement) as well as to ideal 

cement-sisal reinforced blocks (0.5% sisal and 12%cement - with a 40.7% 

improvement).  

 

It can also be said, from the results of this section, that the ideal cassava stabilised 

blocks (1.5% cassava � with a 53.5% improvement in strength) are inferior to both sisal 

reinforced and cement stabilised. They are however, superior to the cement-sisal 

reinforced ones. 

 

On the other hand, it would be important to note that the compressive strength value of 

7.3625 N/mm2 (ideal cassava stabilised blocks) is comparable with the strength of 

0.75% sisal reinforced blocks (9.14 N/mm2) and that of 12% cement stabilized blocks 

(8.24 N/mm2).  

 

Strength exhibited at 2.5% (5.593 N/mm2), 5% (5.576 N/mm2) and 4% (5.565 N/mm2) 

cassava stabilization is slightly higher than the 9% cement stabilized blocks and 

comparable to the strength of 0.5% sisal reinforced blocks. Besides, these three block 

types have strength higher than the recommended minimum as discussed in earlier 

sections. Based on these results it may be concluded that the 1.5%, 2.5%, 4% and 5% 

cassava stabilized earth blocks can be recommended to be used for housing wall 

construction. 
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6.5 Linear Shrinkage and Compression Ratio 
Linear Shrinkage 

Shrinking of earth blocks when drying out is disadvantages, if they are to be used as 

building materials. According to (Minke, 2000), shrinkage depends on the type and 

quantity of clay; where by, montmorillonite clay has a much more effect on shrinkage 

than kaolinite and illite. This phenomena is related to the structure of these minerals, 

refer to section 3.1.3. In general, soils with relatively high amounts of sand fraction, 

experience less shrinkage or have shrinkage levels which are within recommended 

values. The linear shrinkage measurement on the blocks investigated in this work are 

presented in table 6.26 and outlined in figure 6.45a. 

 

 

Table 6.26 Linear Shrinkage 

S.No Type of CEB Original Length, 
mm 

Final 
Length, mm

Linear 
Shrinkage, % 

1 Plain 230 225 2.17% 

2 SC 230 227 1.3% 

3 CeC 230 229 0.434% 

4 CSC 230 229 0.434% 

5 CaC 230 226 1.74% 

 

 

It is observed that addition of sisal, cement-sisal or cassava powder to soils has the 

effect of reducing shrinkage. Shrinkage values for cement and cement-sisal stabilised 

soils are the lowest (0.434%), while the blocks reinforced with sisal and those stabilised 

by cassava powder experience almost the same amount of shrinkage (1.3% and 1.74% 

respectively).  

 

It is likely that the fibres ability to hold or bind soil particles more closely would deter the 

possibility of block contraction hence the lower levels of shrinkage observed. Cement, 

on the hand and as discussed in section 6.2 and 6.3, binds, through the products of 

hydration the clay particles together, consequently reducing the effects of shrinkage. 

The speculation earlier in this section that moist cassava powder is likely to have 

developed polysaccharides molecules that hold on clay particles, appears to supported 
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when one observes that the cassava stabilized blocks have lower shrinkage values 

than plain (non-reinforced) blocks. 
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Figure 6.45a Shrinkage comparison amongst the earth blocks 

 

 

According to (Houben, H., et al., 1994), montmorillonite soils experience shrinkage, 

with values in the range of 12 to 23% (soils used here were found to be of 

montmorillonite in nature, see section 4.1.1.1). On the other hand, (Walker, 2004) 

reports a maximum value of 3% for soils without cement and 1% for those stabilised 

with cement. (Kenya Bureau of Standards, Kenya Specification for Stabilised Soil 

Blocks, UNCHS, 1989) states that shrinkage cracks should not be more than 3 mm 

wide; observations of the blocks in this study revealed no visible cracks. It can be 

deduced from the aforesaid that the blocks investigated here are, with respect to 

shrinkage, suitable to be used as building materials. 

 

 

Comparison of Compression Ratio 
This is the ratio between the depth of the press mould before compression (90mm) and 

the depth at the end of compression (corresponds to height of the compressed earth 
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block). Compression ratios for the blocks investigated are presented in table 6.27 and 

figure 6.45b. 

 

 

Table 6.27 Compression Ratio 

S.No Type of CEB Original Height  Final Height Compression Ratio 

1 Non-reinforced 90 45 2 

2 SC 90 40 2.25 

3 CeC 90 43 2.09 

4 CSC 90 42 2.14 

5 CaC 90 43 2.09 

 

 

The height of the compressed block would differ from one composition to another. It will 

also depend among others, on the compression energy applied. It was useful to 

determine this parameter, for this ratio would inform us about the consistency of the 

compression force or input elements. For sisal reinforced compressed earth blocks, the 

compression ratio was established to be 2.09. The compression ratio of cement-sisal 

reinforced earth blocks was found to be very close to that of cement stabilised 

compressed earth blocks. The value of 2.14 was established in the present work. 
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Figure 6.45b Compression ratio comparison amongst the earth blocks 
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6.6 Determination of Water Vapour Transmission Properties 
Damage caused by uncontrolled moisture accumulation in building enclosures greatly 

concerns the construction sector. Moisture transfer in buildings affects energy 

efficiency, it also influences building�s durability and indoor air quality hence health and 

safety of the occupants. Moisture diffusivity in building materials is determined through 

water vapour permeability measurements; results of these measurements help to 

understand the concept of moisture transfer and therefore appropriate design of 

houses. The aim of this section is to investigate the water vapour permeability of 

compressed earth blocks that were manufactured as per section 5.2. 

 

Moisture flow through the wall of a building material, also referred to as water vapour 

permeability, is evaluated through the value of the so called �water vapour equivalent 

air layer thickness� (also known as the sd-value). A classification of the clay or earth 

blocks as �diffusion-open�, �diffusion-inhibitive� or �diffusion-impermeable� is only 

possible when this sd-value is known. The water vapour equivalent air layer thickness 

for the various earth blocks mentioned earlier in this work was therefore determined. 

According to DIN 4108-3 (07-2001), the sd-value describes or is defined as the 

thickness of a stile air layer, which has the same resistance to water vapour diffusion 

as the building component/material layer in consideration. It determines, in other 

words, the resistance against water vapour diffusion and is computed with the help of 

equation 6.5.1. 

 

d*µ=sd           (6.6.1) 

 

Where: 

µ = water vapour diffusion flow resistance coefficient 

d = Thickness of the earth block sample, in m 

 

The water vapour diffusion flow resistance coefficient (µ) is the factor by which the 

water vapour diffusion resistance of the examined material is higher than that of a stile 

air layer having the same thickness and at the same temperature.  
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According to DIN 4108-3 (07-2001), the limits of building materials can be, with 

respect to the sd-value, classified as follows: 

 

diffusion open layer:    sd ≤ 0.5 m 

diffusion inhibitive:   0.5 m < sd < 1500 m 

diffusion impermeable:   sd ≥ 1500 m 

 

Experimental  
Specimens tested for water vapour permeability measurements are shown in table 

6.13; the specimen reference names have been explained in section 5.2. Circular 

samples of 71 mm radius were drilled out from the full earth blocks and reduced to 

thickness of 6 mm by cutting through using a diamond coated rotary power saw 

described in section 4.2.3. The specimens are shown in figure 6.46. Overall, 3 

specimens of each mixture were made in this manner, as a result a total of 57 

samples were examined. 

 

Table 6.28 Mix compositions of tested specimens  

Specimen Reference 

SC SC-0 SC-0.25 SC-0.50 SC-0.75 SC-1-0 

CaC CaC-0 CaC-1.5 CaC-2.5 CaC-5.0 CaC-7.0 

CeC CeC-0 CeC-5 CeC-9 CeC-12 - 

C-SC C-SC-0 C-SC-0.5-5 C-SC-0.5-9 C-SC-0.5-12 - 

 

 

 

Figure 6.46 Original full blocks and drilled out earth sample 
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After the samples of earth block test materials were prepared as mentioned above, 

shown in the right side picture in figure 6.46, they were sealed into the mouths of 

impermeable �cups� containing a vapour pressure regulator; the vapour pressure 

regulator used in the present investigations was Calcium Chloride (CaCl2). The 

impermeable cups made of pure aluminium with a free testing zone of area A = 0.005 

m2 are shown in figure 6.47. Use of Calcium Chloride as vapour pressure regulator is 

recommended by (McLean et al., 1990) 

 

 
CaCl2 

 

 

 

 

 

 

 
Figure 6.47 Empty cup and one containing vapour pressure regulator 

 

 

The sealing of the samples in the mouth of the cup was done by use of wax. By 

pouring wax at the edge of the cup, after the sample had been mounted on the cup, it 

was made sure that the samples were sealed water vapour tight. An absorption space 

was as a result created beneath the cylindrical sample in the cup; figure 6.48 

illustrates this. 

 

Figure 6.48 Prepared samples (left) and cups with sealed test specimen 
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The sealed cups were weighed on analytical balance and then positioned in an 

environmental chamber at a constant temperature of 23 ± 1 °C, relative humidity of 

about 75%, and an air flow of approximately 0.02 m/s to 0.3 m/s.  

 

Beneath the sealed specimen in the cup, temperature was held at 23°C while relative 

humidity was 0 + 1%. With this arrangement (difference in relative humidity), a 

constant vapour pressure difference was maintained across the material; 

consequently a constant vapour flux g (equation 6.6.2) was generated leading to 

steady change in the weight of the cup. 

 

 

 

 

 

Figure 6.49a Sample weighing and specimens in the environmental chamber 
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Figure 6.49b Overall concept of the cup in an environmental chamber 

 

 

Subsequently, the cups were weighed, figure 6.49a, at regular intervals of about 48 

hours in order to determine the weight gain sustained by the cups. The results of 

change in weight with time for 3 samples of 0.75% sisal reinforced compressed earth 

blocks are illustrated in table 6.29 and plotted on graphs in figures 6.50 - sample I, 

6.51 - sample II and 6.52 - sample III.  

 

The graphs show a fairly steady change in weight; the change with time delivers an 

almost linear relationship with an R2 of 0.97-0.98. Similar results are obtained for all 

samples of other mix compositions presented earlier in table 6.28; these results are 

tabulated in appendix R, S, T and U. Computation of the sd-values, with the help of 

equations 6.6.2, 6.6.3, 6.6.4 and 6.6.5, has then been made based on this results. The 

values of the obtained sd-values for all the tested specimens are shown in table 6.30. 
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Table 6.29 Weights of the diffusion cup for blocks reinforced with 0.75% sisal 

  Specimen Reference and Weight. g Mean Weight. g 

S.No. Date SC-0.75-1 SC-0.75-2 SC-0.75-3  

1 05.01.06 344.067 346.803 343.836 344.902 

2 07.01.06 347.566 350.892 347.543 348.667 

3 09.01.06 350.701 354.492 350.872 352.0217 

4 11.01.06 353.140 357.646 353.460 354.7487 

5 13.01.06 355.768 360.568 356.259 357.5317 

6 15.01.06 358.239 363.369 358.807 360.1383 

7 17.01.06 360.456 365.712 361.228 362.4653 

8 19.01.06 362.675 368.260 363.596 364.8437 

9 21.01.06 364.711 370.880 365.801 367.1307 

10 23.01.06 366.990 373.741 368.207 369.646 

11 25.01.06 369.006 375.913 370.245 371.7213 

12 27.01.06 370.951 377.766 372.168 373.6283 

13 29.01.06 372.606 379.255 373.801 375.2207 

14 31.01.06 374.359 380.967 375.525 376.9503 

15 02.02.06 375.788 382.191 376.901 378.2933 

16 04.02.06 377.057 383.402 378.129 379.5293 

17 06.02.06 378.381 384.824 379.494 380.8997 

 

By consideration of only the initial and the final weight measurements from table 6.29, 

the following values illustrated in table 6.30 are extracted from table 6.29 and are 

required for computation of vapour flux g, in equation 2. 

 

Table 6.30 Values from weight measurements of the 3 samples for SC-0.75 
Weight, g Time interval between 

measurements 
Sample 

m1, g 
(05.01.06) 

m2, g 
(06.02.06) 

∆m21, 

g 

h s 

I 344.067 378.381 34.314 768 2764800 

II 346.803 384.824 38.021 768 2764800 

III 343.836 379.494 35.658 768 2764800 
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Figure 6.50 Change in weight with time for sample I 
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Figure 6.51 Change in weight with time for sample II 
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Figure 6.52 Change in weight with time for sample III 

 
 
Applied Equations 
As already stated earlier, computation of the sd-value is done by use of equation 1. 

However, in order to determine the value of µ in equation 6.6.1; equations 6.6.2, 6.6.3, 

6.6.4 and 6.6.5 are applied.  

 

Due to the difference in partial pressure in the chamber and the absorption area of the 

cup as mentioned earlier, a flow of moist air will penetrate through the earth block 

sample. The vapour flux g of this moist stream is determined by formula 6.6.2 as 

recommended by (DIN EN 1931) 

 

hm
kg in  2

21

tA
mg
∆⋅

∆
=  (6.6.2) 

 

Where by 

∆m21 =  Change in weight (initial and final weight) � tabulated in table 6.30 

A  = Surface area of the cylindrical earth block sample, m2
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∆t = Time interval between measurements, s 

 

∆m21=  (m2 � m1) (6.6.3) 

m2, m1 = weight of the sample, kg 

 

The value of vapour flux g is required for determination of the water vapour diffusion 

flow resistance coefficient µ as per equation 6.6.4 

 

))((1
a

21
ma s

g
pp

d
−

−
⋅⋅= λµ  (6.6.4) 

 

Where by: 

 

d  =  Sample thickness, m 

g  =  Vapour flux, kg/(m2s) 

λma = Moist stream conductivity (dependant on the air pressure and temperature) 

as per equation 6.6.5, kg/(msPa) 

p1, p2 =  Water vapour partial pressure on the upper side of the earth block sample, 

Pa 

sa  =  Thickness of air layer underneath the earth block sample in the diffusion 

shell, m 

 

The moist stream conductivity is, on other hand, calculated by use of equation 6.6.5 

 

81,10

D
ma )

273
(3600

083,0
T

p
p

TR
⋅⋅

⋅
=λ  (6.6.5) 

 

Where by: 

 

RD  =  Gas constant of the water vapour = 462 Nm/(kgK) 

T  =  Temperature in the chamber, K 

p  =  Air pressure in the chamber, hPa,  

p0  =  Atmospheric pressure = 1013.25 hPa 

 133



The value obtained in equation 6.6.5 is replaced in to equation 6.6.4 to obtain µ. 

Finally, the value of µ is substituted in to equation 6.6.1 and the sd-value of the 

compressed earth blocks is determined. Results are presented in table 6.31. 

 

 

Table 6.31 Results of sd-values for all specimens 
S.No Specimen Reference and sd-value 

SC SC-0 SC-0.25 SC-0.50 SC-0.75 SC-1-0 1 

sd-value, m 0.0790 0.1103 0.0949 0.1098 0.1002 

 

CaC CaC-0 CaC-1.5 CaC-2.5 CaC-5.0 CaC-7.0 2 

sd-value, m 0.0790 0.0979 0.1041 0.1038 0.1012 

 

CeC CeC-0 CeC-5 CeC-9 CeC-12 - 3 

sd-value, m 0.0790 - 0.1170 0.1258 - 

 

C-SC C-SC-0 C-SC-0.5-5 C-SC-0.5-9 C-SC-0.5-12 - 4 

sd-value, m 0.0790 0.1250 0.1247 0.1190 - 

 

 

Observation of table 6.31, informs that the sd-value for compressed earth blocks, 

whether reinforced or not, is basically the same, and lies between 0.079 � 0.1258 m. 

These results show that all the specimens tested can be classified to belong to 

�diffusion open layer� category since all the values lie in the range sd ≤ 0.5 m (DIN 

4108-3 (07-2001)). In practical understanding, it can be interpreted that earthen 

building materials have thermal capacities and water vapour transmission properties 

superior to those of counterpart materials e.g. concrete and fired bricks and should 

therefore be preferred for house construction since they provide improved energy 

efficiency and indoor air quality. 
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6.7 Development of Simple Field Testing Method for Earth Blocks 
One of the objectives of the current work, as earlier indicated in section 2.2, was to 

develop a simple method by which strength of earth blocks could be determined in the 

absence of laboratory facilities in the rural areas of Kenya. This has been 

accomplished by determining a conversion function between standard laboratory tests 

and a much simpler testing method i.e. total dead weight test. The overall procedure is 

described by the scheme in figure 6.53. Determination of compressive strength of sisal 

reinforced earth blocks catalogued and discussed in section 6.1, is only feasible where 

laboratory equipment is available. 

 

 
Figure 6.53 Conversion factor determination process 
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In the proposed procedure, compression strength experiments are substituted through 

the so called �total dead weight experiments�, which can be held in the absence of the 

normally expensive laboratory equipment. Results of the loading experiments are then 

correlated to compression strength ones through a computed conversion factor. 

 

Total dead weight experiments are done by subjecting an earth block sample to a load 

until the sample raptures as shown in figures 6.54 � 6.55. A bucket is attached to the 

soil block sample by a string tied on the middle of the block. Sand is then poured into 

the bucket; this is done in batches of about 0.5 kg at intervals of approximately 1 

minute up to the time the block sample collapses. The weight of the bucket and sand 

therein is taken and recorded. The process is repeated for all the 6 sisal � soil mix 

proportions illustrated in section 6.1. 

 

Figure 6.54 Preliminary total dead weight experiments 

 

 

 

 

 

 

 

 

 

 

Figure 6.55 total dead weight experiments 
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For each sisal-soil proportion, the weight required to bring the sample block to breaking 

or to rapture has been measured. Results for sisal-reinforced blocks are outlined in 

figure 6.56 and figure 6.57 as well as in table 6.32 and table 6.33. Change in the total 

dead weight with increase in sisal content is similar to change in compressive strength 

with increasing sisal levels, displayed in figure 6.56 and 6.57. This similarity in 

behaviour of the two trends provided the motivation to assume that a positive 

relationship between strength and total dead weight against sisal levels exists.  
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Figure 6.56 Total dead weight as a function of sisal content 
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Figure 6.57 Compressive strength as a function of sisal content 
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6.7.1 Conversion Factor Model 
A correlation is made between the compressive strength values denoted as y and the 

measurements of the total dead weight obtained at block rapture denoted as x. The 

correlation factor k1 has then been obtained for each mix composition using equation 

6.7.1. The correlation factor k1 is found to lie between 4.365357 and 5.747085; a mean 

value of k1 is computed to be 4.66 with a standard deviation of 0.546791. 

 

Χ=Κ×Υ 1          6.7.1 

 

Equation 6.7.2 gives the established conversion model. This model can be applied by 

local people in the villages to evaluate the compression strength of manufactured earth 

blocks in the absence of laboratory facilities that would otherwise directly measure 

compression strength. 

 

Χ=66.4×Υ          6.7.2 

 

From investigations of the present work, it can therefore be deduced that:  

WeightDeadTotal=66.4×StrengtheCompressiv  

 

 

Table 6.32 Results of the total dead weight against compression strength 

Specimen 
Reference 

Compressive 
Strength, (y) 
N/mm2

Ultimate 
Breaking 
Load,(x) Kg 

Conversion 
factor, (k1) 
K1 =x/y 

SC-0 4.798 22.205 4.627247 

SC-0.25 4.18 24.03 5.747085 

SC-0.50 6.08 26.525 4.365357 

SC-0.75 9.14 41.275 4.515247 

SC-1 8.87 37.81 4.263284 

SC-1.25 4.16 18.49 4.443376 
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A second correlation is made between the flexural strength values denoted as δ and 

the measurements of total dead weight obtained at block rapture denoted as β, table 

6.33. The correlation factor k2 is then obtained for each mix composition using equation 

6.7.3. The correlation factor k2 is found to lie between 21.75294118 and 32.04, a mean 

value of k is computed to be 25.4747 with a standard deviation of 3.65 

 

 

Table 6.33 Results of the total dead weight against flexural strength 

Specimen 
Reference 

Flexural  
Strength, δ
N/mm2

Ultimate 
Breaking 
Load,(β), Kg 

Conversion 
factor, (k2) 
K2 = β/δ 

SC-0 0.992 22.205 22.38407258 

SC-0.25 0.75 24.03 32.04 

SC-0.50 1.035 26.525 25.62801932 

SC-0.75 1.63 41.275 25.32208589 

SC-1 1.47 37.81 25.72108844 

SC-1.25 0.85 18.49 21.75294118 

 

 

β=k×δ 2           (6.7.3) 

 

Equation 6.7.4 hence gives the established conversion model with respect to the 

flexural strength, thus: 

β=47.25×δ          (6.7.4) 

 

It can therefore be deduced that:  

WeightDeadTotal=47.25×StrengthFlexural  

 

 

A more accurate interpretation of the model is given in figure 6.58b 
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Figure 6.58a Flexural strength against total dead weight 
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Figure 6.58b Compressive strength against total dead weight  

 

 

According to (Walker, 2004), who has done extensive research in the area of 

compressed earth blocks (see section on references), total dead weight tests are more 

reflective of the flexural (modulus of rapture) strength than to compressive strength; 

based on this, equation 6.7.4 would be more recommended for application as the 

conversion model. 
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7.0 Conclusions and Recommendations    
 

Influence of sisal vegetable fibres, cement, sisal-cement and cassava powder on the 

durability of compressed earth blocks were studied in this investigation. The main 

conclusions to be drawn from the experimental work reported in this dissertation can be 

summarised as follows: 

 

1. Tests carried out here have established that it is possible to reinforce earth 

blocks with sisal fibres, cassava, cement and a combination of sisal and 

cement. Mixing of the above mentioned ingredients with soil can be 

recommended as an efficient procedure for processing house construction 

bricks for rural Africa population; where (especially) sisal and cassava is readily 

available. It is noted hereby that amongst the mix compositions, the ideal 

strength values are outlined in figure 7.1. 
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Figure 7.1 Comparison in ideal strength for each block type 

 

 

Table 7.1 and figure 7.2 depict the percentage increase in strength for the ideal mix of 

different block types; this increase in strength is in comparison to the plain (non-

reinforced) earth blocks. 
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Table 7.1 Summary of the ideal strength values 

Improvement in Strength for Ideal mix proportions Block 
Type 

Stabiliser Type 
and optimum 
Content 

Compressive 
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

Flexural  
Strength, 
N/mm2

Percentage 
Improvement 
in Strength 

SC 0.75% Sisal 9.14 +90.5  1.63 +64.3  

 

CeC 12% Cement 8.24 +71.7  2.00 +101  

 

CSC 0.5% Sisal  
and 12% Cement 

6.75 +40.7  1.36 +37.1  

 

CaC 1.5% Cassava 7.3625 +53.5 1.71155 +72.5 
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Figure 7.2 Comparison in strength increase for each block type 

 

 

From table 7.1 and figure 7.2, it can be deduced as follows: 

• Optimum compressive strength is obtained by reinforcement of the soil sample 

with 0.75% sisal fibres by weight of soil. In this case the compressive strength 
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improves by 90.5% and flexural strength improves by 64.3% compared with the 

plain earth block, 

 

• amounts of sisal fibres exceeding 1.0% are detrimental to strength, 

 

• optimum compressive strength is obtained by stabilisation of the soil sample 

with 12% cement by weight of soil. In this case the compressive strength 

improves by 71.7% and flexural strength improves by 101%, 

 

• optimum compressive strength is obtained by stabilisation of the soil sample 

with 0.5 % sisal and 12% cement by weight of soil. In this case the compressive 

strength improves by 40.7% and flexural strength improves by 37.1%. 

 

 

Illustration of strength comparison between various types mix compositions 

investigated in the present work is summarized in figure 7.3 to figure 7.8. 
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Figure 7.3 Comparison of sisal reinforced and cement stabilised blocks 
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Figure 7.4 Comparison of sisal reinforced and cement-sisal stabilised blocks 
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Figure 7.5 Comparison of sisal reinforced and cassava stabilised blocks 
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Figure 7.6 Comparison of cement and cement-sisal stabilised blocks 
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Figure 7.7 Comparison of cement and cassava stabilised blocks 
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Figure 7.8 Comparison of cement-sisal and cassava stabilised blocks 

 

 

2. The present work has evaluated compressed earth blocks in terms of both practical 

block density and theoretical block density. For the first time therefore compressed 

earth blocks have been characterised with respect to theoretical density, unlike 

past workers who have seen this property only in terms of practical density. It is 

important to note that a relationship between two densities has been established, 

thus, theoretical density is in general about one and a half (1.5) times greater than 

the corresponding practical density, equation 7.2  

 

 

DensitylTheoretica=5.1×DensityacticalPr    (7.1) 

 

A strong linear correlation (R2 ≥ 0.98) between the stabilizers and the theoretical 

density has been established, equation 7.2, 7.3 and 7.4 

 

2.2661+ContentSisal6.642-=ρt     (7.2) 

 

7.2663+Content Cement3494.0-=ρt     (7.3) 
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4.2665+ContentCassava123.17-=ρt    (7.4) 

 

Unlike research results presented by past workers that base the evaluation of porosity 

of earthen building materials through density measurements, this project has been able 

to directly determine the porosity of samples prepared as per section 5.0  

 

3. The present work has developed a new earthen building material. The mixture 

of soil (earth) with cassava powder for the purpose of constructing walls for 

houses is not yet recorded in literature. Cassava powder is crushed from a root 

tuber which is available in plenty in the tropical countries. This material is to be 

classified as GreenEarth-1.5, figure 7.9. 

 

The material can replace the expensive cement which is traditionally used for 

soil stabilization. Addition of cassava powder in the range of 1.5% by weight of 

dry soil provides strength that is more than two times that recommended by 

many researchers mentioned in section 2.3.  

 

 

     
         

     
         

 GGrreeeennCCllaayy  --  00..7755  GGrreeeennEEaarrtthh  --  11..55  
 

 

 

 

 

 

 

 

4. Material obtained by reinforcement of the

with the effect that the compressive stre

classified as GreenClay-0.75, figure 7.10. 

 

Figure 7.10 SC classification  

and trade mark 
Figure 7.9 CaC classification  

and trade mark 
 soil sample with 0.75% sisal fibres 

ngth improves by 90.5% is hereby 
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5. This technical report proposes a method of indirectly evaluating strength and 

therefore durability characteristics of manufactured earth blocks in rural areas of 

Africa in absence of the normally expensive laboratory facilities; this method is 

discussed in section 6.7.  

 

The primary advantage of the proposed method, which entails loading earth 

block samples with a weight till rapture, is that it can easily be adapted at village 

level by people who have little scientific knowledge of compressed blocks. A 

conversion factor between this developed method and the conventional way of 

determining strength i.e. compressive and flexural strength has been 

established; the model is presented in equation 7.5 and 7.6 

 

 

WeightDeadTotal=47.25×StrengthFlexural   (7.5) 

 

 

WeightDeadTotal=66.4×StrengtheCompressiv  (7.6) 

 

 

6. Water vapour transmission performance of compressed earth blocks, prior 

unrecorded in literature, has been determined. As a result it is possible to 

discuss the fact that earthen building materials have better thermal capacities 

based on a value scientifically established. 

 

Although this research finding is intended to be consumed in Africa for rural population, 

it may be used anywhere in the world where natural fibres and cassava are to be found 

in plenty.  

 

It should however, be mentioned that the roof construction should be done in such way 

that rain does not directly pound the compressed earth blocks when applied for building 

of walls. 
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 Appendices    

 

Appendix A Strength and Density Interrelationship 
 

Table A.1 Strength values and percentage change 

Change in Strength Block 
Type 

Stabiliser Type  
and Content Compressive 

Strength,  
N/mm2

Change in 
Strength*,  
% 

Flexural  
Strength, 
N/mm2

Change in 
Strength*, 
% 

Plain Block 4.798 - 0.992 - 

0.25% Sisal 4.181 -12.8 0.751 -24.3 

0.5% Sisal 6.076 +26.6 1.035 +4.3 

0.75% Sisal 9.14 +90.5 1.63 +64.3 

1.0% Sisal 8.868 +84.8 1.473 +48.5 

SC 

1.25% Sisal 4.161 -13.3 0.850 -14.3 

5% Cement 3.505 -26.9 0.750 -24.4 

9% Cement 5.965 +24.3 1.566 +57.8 CeC 

12% Cement 8.24 +71.7 2.00 +101 

0.5% Sisal  
and 5% Cement 

2.843 -40.7 0.583 -41.2 

0.5% Sisal  
and 9% Cement 

5.16 +7.5 0.934 -5.8 
CSC 

0.5% Sisal  
and 12% Cement 

6.75 +40.7 1.36 +37.1 

1.5% Cassava 7.362 +53.5 1.711 +72.5 

2.5% Cassava 5.593 +16.5 1.637 +65.0 

4% Cassava 5.576 +16.2 1.557 +57.0 

5% Cassava 5.565 +16.0 1.283 +29.3 

CaC 

7.0% Cassava 4.298 -10.4 0.945 -4.7 

 

 

 

 

 

 159



Table A.2 Ratio of flexural to compressive strength 

S.No. Sample 
Name 

Flexural  
Strength, 
N/mm2

Compressive 
Strength,  
N/mm2

Ratio of Flexural to 
Compressive Strength 

    Gross Mean 

 Sisal stabilised compressed earth blocks  

1 SC-0 0.992 4.79875 4.83745 5,591126

2 SC-0.25 0.75125 4.18125 5.565724  

3 SC-0.5 1.035 6.07625 5.870773  

4 SC-0.75 1.63075 9.14125 5.60555  

5 SC-1.0 1.473 8.86875 6.020876  

6 SC-1.25 0.8505 4.16125 4.89271  

7 Cement stabilised compressed earth blocks  

8 CeC-0 0.992 4.79875 4.83745 4.196685

9 CeC-5 0.75075 3.505 4.668665  

10 CeC-9 1.5665 5.965 3.807852  

11 CeC-12 2.00375 8.2425 4.113537  

12 Cement-Sisal reinforced compressed earth blocks  

13 CSC-0 0.992 4.79875 4.83745 5.125949

14 CSC-5-0.5 0.58325 2.843125 4.874625  

15 CSC-9-0.5 0.9345 5.16 5.521669  

16 CSC-12-0.5 1.35525 6.75125 4.981553  

17 Cassava stabilised compressed earth blocks  

18 CaC-0 0.992 4.79875 4.83745 4.036621

19 CaC-1.5 1.7115 7.3625 4.301782  

20 CaC-2.5 1.6375 5.59375 3.416031  

21 CaC-4 1.557333 5.576667 3.580908  

22 CaC-5 1.283 5.565 4.33749  

23 CaC-7 0.945333 4.298333 4.546897  
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Table A.3 Comparison of practical and theoretical density 

     

Block 
Type 

Stabiliser Type  
and Content 

Theoretical 
Density, 
kg/m3

Practical 
Density, 
kg/m3

Change in 
Practical 
Density*, % 

Plain Block 2663.7 1792.97 - 

0.25% Sisal 2653.5 1800.78 +0.44 

0.5% Sisal 2645.2 1857.42 +3.6 

0.75% Sisal 2640.8 1895.51 +5.7 

1.0% Sisal 2635.6 1883.79 +5.1 

SC 

1.25% Sisal 2628.7 1738.28 -3.1 

5% Cement 2661.2 1689.45 -5.8 

9% Cement 2662.1 1686.52 -6.0 CeC 

12% Cement 2658.6 1689.45 -5.8 

0.5% Sisal  
and 5% Cement 

2650.5 1644.53 -8.3 

0.5% Sisal  
and 9% Cement 

2661.1 1640.63 -8.5 
CSC 

0.5% Sisal  
and 12% Cement 

2664.4 1674.32 -6.6 

1.5% Cassava 2644 1781.25 -0.65 

2.5% Cassava 2619.5 1765.62 -1.5 

4% Cassava 2595.2 1753.90 -2.2 

5% Cassava 2583.4 1740.23 -3.0 

CaC 

7.0% Cassava 2544.1 1635.31 -8.8 

*+ implies % improvement in density in comparison to the non-reinforced earth block 

 - implies % drop in density in comparison to the non-reinforced earth block. 
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Appendix B Sisal Stabilized Compressed Earth Blocks (SC): Compressive 
Strength  

Specimen 
Reference 

Ultimate Load, (F) 
kN 

Compressive Strength, 
N/mm2 

 Gross Gross Gross Gross Mean 
SC-0-0-1 7.68 5.57 4.8 3.48 
SC-0-0-2 7.01 8.38 4.38 5.24 
SC-0-0-3 7.97 7.74 4.98 4.84 
SC-0-0-4 8.59 8.49 5.37 5.3 

4.798 

      
SC-0.25-0-1 7.5 4.89 4.69 3.06 
SC-0.25-0-2 8.44 7.3 5.27 4.56 
SC-0.25-0-3 4.98 6.72 3.11 4.2 
SC-0.25-0-4 7.06 6.64 4.41 4.15 

4.18 

      
SC-0.50-0-1 9.59 8.99 6 5.62 
SC-0.50-0-2 8.93 7.92 5.58 4.95 
SC-0.50-0-3 10.37 10.48 6.48 6.55 
SC-0.50-0-4 10.26 10.9 6.62 6.81 

6.08 

      
SC-0.75-0-1 14.54 14.2 9.09 8.87 
SC-0.75-0-2 16.11 14.89 10.07 9.31 
SC-0.75-0-3 14.87 14.31 9.3 8.94 
SC-0.75-0-4 15.31 12.76 9.57 7.98 

9.14 

      
SC-1-0-1 14.74 14.04 9.21 8.78 
SC-1-0-2 14.4 13.2 9 8.25 
SC-1-0-3 15.53 12.5 9.7 7.81 
SC-1-0-4 14.78 14.33 9.24 8.96 

8.87 

      
SC-1.25-0-1 6.91 6.47 4.32 4.04 
SC-1.25-0-2 6.15 6.33 3.84 4 
SC-1.25-0-3 6.62 7.4 4.14 4.62 
SC-1.25-0-4 7.48 5.86 4.67 3.66 

4.16 
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Appendix C Sisal Stabilized Compressed Earth Blocks (SC): Flexural 
Strength  

Specimen 
Reference 

Dry Block 
Density,  
Kg/m3 

Ultimate 
Load, (F) 
kN 

Dry Flexural  
Strength, 
N/mm2 

  Gross Gross Mean 
SC-0-0-1 0.373 0.874 
SC-0-0-2 0.373 0.874 
SC-0-0-3 0.456 1.069 
SC-0-0-4 

1792.99 

0.491 1.151 

0.992 

     
SC-0.25-0-1 0.284 0.666 
SC-0.25-0-2 0.359 0.841 
SC-0.25-0-3 0.295 0.691 
SC-0.25-0-4 

1800.78 

0.345 0.807 

0.75 

     
SC-0.50-0-1 0.425 0.995 
SC-0.50-0-2 0.415 0.969 
SC-0.50-0-3 0.452 1.06 
SC-0.50-0-4 

1857.42 

0.476 1.116 

1.035 

     
SC-0.75-0-1 0.612 1.434 
SC-0.75-0-2 0.792 1.856 
SC-0.75-0-3 0.757 1.774 
SC-0.75-0-4 

1895.51 

0.622 1.459 

1.63 

     
SC-1-0-1 0.598 1.402 
SC-1-0-2 0.515 1.206 
SC-1-0-3 0.752 1.763 
SC-1-0-4 

1883.79 

0.649 1.521 

1.47 

     
SC-1.25-0-1 0.37 0.867 
SC-1.25-0-2 0.281 0.658 
SC-1.25-0-3 0.363 0.851 
SC-1.25-0-4 

1738.28 

0.438 1.026 

0.85 

 

 

 

 

 

 

 

 

 

 

 

 

 163



Appendix D Practical Dry Block Density of Sisal Reinforced Blocks 

Specimen 
Reference 

Mass of Dry 
Block,  
g 

Dry Block 
Volume, 
cm3*10-6

Dry Block 
Density,  
Kg/m3 

 Gross Mean   
SC-0-0-1 455 
SC-0-0-2 464 
SC-0-0-3 456 
SC-0-0-4 461 

459 256000 1792.97 

     
SC-0.25-0-1 455 
SC-0.25-0-2 472 
SC-0.25-0-3 452 
SC-0.25-0-4 465 

461 256000 1800.78 

     
SC-0.50-0-1 474 
SC-0.50-0-2 464 
SC-0.50-0-3 482 
SC-0.50-0-4 482 

475.5 256000 1857.42 

     
SC-0.75-0-1 494 
SC-0.75-0-2 490 
SC-0.75-0-3 474 
SC-0.75-0-4 483 

485.25 256000 1895.51 

     
SC-1-0-1 485 
SC-1-0-2 484 
SC-1-0-3 476 
SC-1-0-4 484 

482.25 256000 1883.79 

     
SC-1.25-0-1 447 
SC-1.25-0-2 435 
SC-1.25-0-3 452 
SC-1.25-0-4 446 

445 256000 1738.28 
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Appendix E Determination of True Block Density 
 

An ULTRAPYCNOMETER is specifically designed to measure the exact volume and 

density ρt of solid objects by employing Archimedes� principle of fluid displacement 

and Boyle�s law to determine the volume. An inert gas, Helium, of small atomic 

dimensions ensures penetration of all pores. The ULTRAPYCNOMETER contains 

an empty cell of volume Vc where a sample is sealed. By opening the solenoid 

valves to the sample cell, the system is brought to ambient pressure Pa after being 

purged with helium. The state of the system is then defined as 

 

aca TRnVP =       (1) 

 

Where n is the number of moles of gas occupying volume Vc at Pa, R is the gas 

constant and Ta is ambient temperature in Kelvin. When the solid sample of volume 

Vp is placed in the sample cell, equation (1) can be written as  

apca TRnVVP 1)( =−     (2) 

 

When pressurized to some pressure above ambient, the state of the system is given 

by 

apc TRnVVP 22 )( =−     (3) 

 

Where P2 indicates the pressure above ambient and n2 represents the total number 

of moles of gas contained in the sample cell. When the solenoid valve opens to 

connect the added volume VA to that of the cell, the pressure will fall to lower value 

P3 given by 

aAaApc TRnTRnVVVP +=+− 23 )(    (4) 

 

Where nA is the number of moles of gas contained in the added volume when at 

ambient pressure. The term PaVA can be used in place of nARTa in equation (4), 

yielding 

AaaApc VPTRnVVVP +=+− 23 )(     (5) 

 

Substituting P2 (Vc � Vp) from equation (3) for n2RTa changes equation (5) to 
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         AapcApc VPVVPVVVP +−=+− )()( 23    (6) 

or 

Aapc VPPVVPP )()()( 323 −=−−     (7) 

Then,   

           
23

3 )(
PP
VPP

VV Aa
pc −

−
=−     (8) 

 

Equation (8) is further reduced by adding and subtracting Pa from P3 and P2 in the 

denominator, giving 

 

a

a

A
c

aa

Aa
cp

PP
PP

VV
PPPP

VPP
VV

−
−

−
+=

−−−
−

−=

3

223

3

1)()(
)(

  (9) 

 

Since Pa is made to read zero, that is, all pressure measurements are relative to Pa 

which is zeroed prior to pressurizing, equation (9) becomes 

 

      
)(1 32 PP

VVV A
cp −
+=     (10) 

 

Equation (10) is the working equation employed by the ULTRAPYCNOMETER.  
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Appendix F Cement Stabilized Compressed Earth Blocks (CeC): 
Compressive Strength 

Specimen 
Reference 

Ultimate Load 
(F), kN 

Dry Compressive 
Strength,  
 MPa 

 Gross Gross Gross Gross Mean 
CeC-0-0-1 7.68 5.57 4.8 3.48 
CeC-0-0-2 7.01 8.38 4.38 5.24 
CeC-0-0-3 7.97 7.74 4.98 4.84 
CeC-0-0-4 8.59 8.49 5.37 5.3 

4.79 

      
CeC-5-0-1 5.44 6.43 3.4 4.02 
CeC-5-0-2 4.84 4.84 3.03 3.03 
CeC-5-0-3 6.4 7.17 4 4.48 
CeC-5-0-4 4.86 4.86 3.04 3.04 

3.50 

      
CeC-9-0-1 10.63 9.75 6.64 6.09 
CeC-9-0-2 8.64 8.33 5.4 5.21 
CeC-9-0-3 8.42 8.52 5.26 5.32 
CeC-9-0-4 11 11.08 6.88 6.92 

5.96 

      
CeC-12-0-1 8.54 10.44 5.34 6.53 
CeC-12-0-2 11.62 12.47 7.26 7.8 
CeC-12-0-3 15.68 15.07 9.8 9.42 
CeC-12-0-4 15.48 16.19 9.67 10.12 

8.24 

 

Appendix G Cement Stabilized Compressed Earth Blocks (CeC): Flexural 
Strength 

Specimen 
Reference 
 
 

Dry Block 
Density,  
Kg/m3 

Ultimate 
Load, (F) 
kN 

Flexural Strength,  
MPa 

   Gross Mean 
CeC-0-0-1 0.373 0.874 
CeC-0-0-2 0.373 0.874 
CeC-0-0-3 0.456 1.069 
CeC-0-0-4 

1792.97 

0.491 1.151 

0.99 

     
CeC-5-0-1 0.344 0.807 
CeC-5-0-2 0.237 0.556 
CeC-5-0-3 0.382 0.895 
CeC-5-0-4 

1689.45 

0.31 0.745 

0.75 

     
CeC-9-0-1 0.714 1.674 
CeC-9-0-2 0.551 1.292 
CeC-9-0-3 0.595 1.396 
CeC-9-0-4 

1686.52 

0.812 1.904 

1.56 

     
CeC-12-0-1 0.647 1.517 
CeC-12-0-2 0.753 1.764 
CeC-12-0-3 0.962 2.254 
CeC-12-0-4 

1689.45 

1.06 2.48 

2.00 
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Appendix H Cement Stabilized Compressed Earth Blocks (CeC): Dry Block 
Density 

Specimen 
Reference 

Mass of Dry Block, 
g 

Dry Block 
Volume, 
mm3 

Dry Block 
Density, 
Kg/m3 
 

 Gross Mean   
CeC-0-0-1 455 
CeC-0-0-2 464 
CeC-0-0-3 456 
CeC-0-0-4 461 

459 256000 1792.97 

     
CeC-5-0-1 437 
CeC-5-0-2 426 
CeC-5-0-3 431 
CeC-5-0-4 436 

432.5 256000 1689.45 

     
CeC-9-0-1 436 
CeC-9-0-2 428 
CeC-9-0-3 437 
CeC-9-0-4 426 

431.75 256000 1686.52 

     
CeC-12-0-1 460 
CeC-12-0-2 428 
CeC-12-0-3 424 
CeC-12-0-4 418 

432.5 256000 1689.45 
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Appendix I Cement-Sisal Stabilized Compressed Earth Blocks (C-SC): 
Compression Strength  

 

Specimen 
Reference 
 

Ultimate Load, 
(F) 
kN 

Compression Strength, 
MPa 

 Gross Gross Gross Gross Mean 
C-SC-0-0-1 7.68 5.57 4.8 3.48 
C-SC-0-0-2 7.01 8.38 4.38 5.24 
C-SC-0-0-3 7.97 7.74 4.98 4.84 
C-SC-0-0-4 8.59 8.49 5.37 5.3 

4.798 

      
C-SC-5-0.25-1 6.13 6.12 3.83 3.83 
C-SC-5-0.25-2 6.19 5.78 3.87 3.61 
C-SC-5-0.25-3 5.86 5.39 3.66 3.37 
C-SC-5-0.25-4 4.86 6.13 3.04 3.83 

3.60 

      
C-SC-9-0.25-1 7.45 6.8 4.66 4.25 
C-SC-9-0.25-2 7.73 7.63 4.83 4.77 
C-SC-9-0.25-3 7.47 7.17 4.67 4.48 
C-SC-9-0.25-4 8.06 7.36 5.06 4.06 

4.60 

      
C-SC-12-0.25-1 8.83 10.69 5.52 6.68 
C-SC-12-0.25-2 9.04 10.94 5.65 6.84 
C-SC-12-0.25-3 8.71 10.93 5.44 6.83 
C-SC-12-0.25-4 8.79 9.64 5.49 6.03 

6.06 

      
C-SC-5-1-1 4.28 4.91 2.675 3.07 
C-SC-5-1-2 4.32 4.72 2.7 2.95 
C-SC-5-1-3 4.3 3.85 2.69 2.41 
C-SC-5-1-4 4.75 5.25 2.97 3.28 

2.84 

      
C-SC-9-1-1 9 7.96 5.63 4.97 
C-SC-9-1-2 7.9 8.06 4.94 5.04 
C-SC-9-1-3 8.9 8.19 5.56 5.12 
C-SC-9-1-4 7.84 8.19 4.9 5.12 

5.16 

      
C-SC-12-1-1 10.64 9.76 6.65 6.1 
C-SC-12-1-2 10.24 8.69 6.4 5.43 
C-SC-12-1-3 13.05 10.72 8.15 6.7 
C-SC-12-1-4 10.68 12.66 6.67 7.91 

6.75 

      
C-SC-5-0.75-1 4.3 3.68 2.69 2.3 
C-SC-5-0.75-2 3.74 4.21 2.34 2.63 
C-SC-5-0.75-3 3.15 3.7 1.97 2.31 
C-SC-5-0.75-4 3.77 3.88 2.36 2.42 

2.37 

      
C-SC-9-0.75-1 7.35 6.86 4.6 4.29 
C-SC-9-0.75-2 7.87 8.6 4.92 5.38 
C-SC-9-0.75-3 7.15 5.8 4.47 3.63 
C-SC-9-0.75-4 7.29 6.83 4.56 4.27 

4.51 

      
C-SC-12-0.75-1 10.45 9.83 6.53 6.14 6.43 
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C-SC-12-0.75-2 9.65 10.94 6.03 6.84 
C-SC-12-0.75-3 11.18 10.22 6.98 6.39 
C-SC-12-0.75-4 10.47 9.63 6.54 6.02 

 

      
C-SC-5-1-1 4.13 3.48 2.58 2.18 
C-SC-5-1-2 3.78 4.26 2.36 2.66 
C-SC-5-1-3 5.26 4.73 3.29 2.96 
C-SC-5-1-4 3.43 4.21 2.14 2.63 

2.6 

      
C-SC-9-1-1 6.75 8.08 4.22 5.05 
C-SC-9-1-2 7.16 7.66 4.48 4.79 
C-SC-9-1-3 6.96 7.33 4.35 4.58 
C-SC-9-1-4 5.79 5.79 3.62 3.62 

4.33 

      
C-SC-12-1-1 9.39 10.23 5.87 6.4 
C-SC-12-1-2 10.14 10.79 6.34 6.74 
C-SC-12-1-3 10.17 9.64 6.35 6.02 
C-SC-12-1-4 7.37 9 4.61 5.63 

5.99 

      
C-SC-5-1.25-1 4.44 3.88 2.78 2.42 
C-SC-5-1.25-2 5.62 4.37 3.51 2.73 
C-SC-5-1.25-3 4.38 5.54 2.74 3.46 
C-SC-5-1.25-4 4.24 4.24 2.65 2.65 

2.86 

      
C-SC-9-1.25-1 7.67 6.44 4.79 4.02 
C-SC-9-1.25-2 8.21 7.59 5.13 4.74 
C-SC-9-1.25-3 7.75 7.52 4.84 4.7 
C-SC-9-1.25-4 8.16 7.19 5.1 4.49 

4.72 

      
C-SC-12-1.25-1 8.5 9.95 5.31 6.22 
C-SC-12-1.25-2 8.02 8.92 5.01 5.58 
C-SC-12-1.25-3 8.24 9.76 5.15 6.1 
C-SC-12-1.25-4 9.35 7.56 5.85 4.73 

5.49 
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Appendix J Cement-Sisal Stabilized Compressed Earth Blocks (C-SC): 
Flexural Strength 

 

 

Specimen 
Reference 
 

Dry 
Block 
Density,  
Kg/m3 

Ultimate 
Load, (F) 
kN 

Flexural Strength, 
MPa 

   Gross Mean 
C-SC-0-0-1 0.373 0.874 
C-SC-0-0-2 0.373 0.874 
C-SC-0-0-3 0.456 1.069 
C-SC-0-0-4 

1792.97 

0.491 1.151 

0.992 

     
C-SC-5-0.25-1 0.307 0.718 
C-SC-5-0.25-2 0.202 0.473 
C-SC-5-0.25-3 0.3 0.703 
C-SC-5-0.25-4 

1689.94 

0.262 0.615 

0.63 

     
C-SC-9-0.25-1 0.417 0.978 
C-SC-9-0.25-2 0.38 0.891 
C-SC-9-0.25-3 0.36 0.844 
C-SC-9-0.25-4 

1666.01 

0.46 1.078 

0.95 

     
C-SC-12-0.25-1 0.534 1.251 
C-SC-12-0.25-2 0.494 1.158 
C-SC-12-0.25-3 0.516 1.21 
C-SC-12-0.25-4 

1678.22 

0.557 1.306 

1.23 

     
C-SC-5-1-1 0.265 0.621 
C-SC-5-1-2 0.254 0.596 
C-SC-5-1-3 0.237 0.556 
C-SC-5-1-4 

1644.53 

0.239 0.56 

0.58 

     
C-SC-9-1-1 0.363 0.85 
C-SC-9-1-2 0.4 0.938 
C-SC-9-1-3 0.447 1.048 
C-SC-9-1-4 

1640.625 

0.385 0.902 

0.93 

     
C-SC-12-1-1 0.555 1.302 
C-SC-12-1-2 0.46 1.077 
C-SC-12-1-3 0.741 1.737 
C-SC-12-1-4 

1674.31 

0.557 1.305 

1.36 

     
C-SC-5-0.75-1 0.244 0.571 
C-SC-5-0.75-2 0.2 0.468 
C-SC-5-0.75-3 0.233 0.546 
C-SC-5-0.75-4 

1540.52 

0.211 0.495 

0.52 

     
C-SC-9-0.75-1 0.415 0.972 
C-SC-9-0.75-2 0.435 1.019 
C-SC-9-0.75-3 

1621.58 

0.357 0.836 

0.91 
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 C-SC-9-0.75-4 0.341 0.798  
     
C-SC-12-0.75-1 0.581 1.362 
C-SC-12-0.75-2 0.607 1.422 
C-SC-12-0.75-3 0.513 1.201 
C-SC-12-0.75-4 

1634.27 

0.526 1.233 

1.30 

     
C-SC-5-1-1 0.211 0.494 
C-SC-5-1-2 0.242 0.566 
C-SC-5-1-3 0.276 0.648 
C-SC-5-1-4 

1611.32 

0.18 0.423 

0.53 

     
C-SC-9-1-1 0.343 0.805 
C-SC-9-1-2 0.351 0.822 
C-SC-9-1-3 0.402 0.942 
C-SC-9-1-4 

1620.11 

0.321 0.751 

0.83 

     
C-SC-12-1-1 0.479 1.123 
C-SC-12-1-2 0.556 1.302 
C-SC-12-1-3 0.579 1.357 
C-SC-12-1-4 

1651.36 

0.47 1.101 

1.22 

     
C-SC-5-1.25-1 0.214 0.502 
C-SC-5-1.25-2 0.275 0.646 
C-SC-5-1.25-3 0.306 0.717 
C-SC-5-1.25-4 

1619.14 

0.239 0.56 

0.61 

     
C-SC-9-1.25-1 0.422 0.988 
C-SC-9-1.25-2 0.494 1.157 
C-SC-9-1.25-3 0.369 0.864 
C-SC-9-1.25-4 

1612.30 

0.437 1.023 

1.01 

     
C-SC-12-1.25-1 0.587 1.375 
C-SC-12-1.25-2 0.447 1.047 
C-SC-12-1.25-3 0.569 1.333 
C-SC-12-1.25-4 

1616.21 

0.397 0.93 

1.17 
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Appendix K Cement-Sisal Stabilized Compressed Earth Blocks (C-SC): 
 
Table K1 Cement-Sisal Stabilized Compressed Earth Blocks (C-SC): Dry 

Block Density  
 

Specimen 
Reference 
 
 

Mass of Dry 
Block, 
g 

Dry 
Block 
Volume, 
mm3 

Dry Block 
Density, 
Kg/m3 
 

 Gross Mean   
C-SC-0-0-1 455 
C-SC-0-0-2 464 
C-SC-0-0-3 456 
C-SC-0-0-4 461 

459 256000 1792.97 

     
C-SC-5-0.25-1 442 
C-SC-5-0.25-2 423.5 
C-SC-5-0.25-3 437 
C-SC-5-0.25-4 428 

432.625 256000 1689.94 

     
C-SC-9-0.25-1 428 
C-SC-9-0.25-2 431 
C-SC-9-0.25-3 420.5 
C-SC-9-0.25-4 426.5 

426.5 256000 1666.01 

     
C-SC-12-0.25-1 432.5 
C-SC-12-0.25-2 424.5 
C-SC-12-0.25-3 432 
C-SC-12-0.25-4 429.5 

429.625 256000 1678.22 

     
C-SC-5-0.5-1 419.5 
C-SC-5-0.5-2 411.5 
C-SC-5-0.5-3 422 
C-SC-5-0.5-4 431 

421 256000 1644.53 

     
C-SC-9-0.5-1 407.5 
C-SC-9-0.5-2 421 
C-SC-9-0.5-3 425 
C-SC-9-0.5-4 426.5 

420 256000 1640.625 

     
C-SC-12-0.5-1 432.5 
C-SC-12-0.5-2 430.5 
C-SC-12-0.5-3 422 
C-SC-12-0.5-4 429.5 

428.625 256000 1674.31 

     
C-SC-5-0.75-1 396 
C-SC-5-0.75-2 392 
C-SC-5-0.75-3 391.5 
C-SC-5-0.75-4 398 

394.375 256000 1540.52 

     
C-SC-9-0.75-1 415 415.125 256000 1621.58 
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C-SC-9-0.75-2 413 
C-SC-9-0.75-3 412.5 
C-SC-9-0.75-4 420 

   

     
C-SC-12-0.75-1 421 
C-SC-12-0.75-2 420 
C-SC-12-0.75-3 421.5 
C-SC-12-0.75-4 411 

418.375 256000 1634.27 

     
C-SC-5-1-1 412 
C-SC-5-1-2 414 
C-SC-5-1-3 407 
C-SC-5-1-4 417 

412.5 256000 1611.32 

     
C-SC-9-1-1 410 
C-SC-9-1-2 424 
C-SC-9-1-3 414 
C-SC-9-1-4 411 

414.75 256000 1620.11 

     
C-SC-12-1-1 420 
C-SC-12-1-2 419 
C-SC-12-1-3 425 
C-SC-12-1-4 427 

422.75 256000 1651.36 

     
C-SC-5-1.25-1 413 
C-SC-5-1.25-2 417 
C-SC-5-1.25-3 405 
C-SC-5-1.25-4 423 

414.5 256000 1619.14 

     
C-SC-9-1.25-1 422 
C-SC-9-1.25-2 417 
C-SC-9-1.25-3 418 
C-SC-9-1.25-4 394 

412.75 256000 1612.30 

     
C-SC-12-1.25-1 410 
C-SC-12-1.25-2 412 
C-SC-12-1.25-3 414 
C-SC-12-1.25-4 419 

413.75 256000 1616.21 
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Table K.2 Decrease in density in comparison to plain earth block 

Block 
Type 

Stabiliser Type  
and Content 

Practical 
Density, kg/m3

Change in Practical 
Density*, % 

Plain Block 1792.97 - 

0.5% Sisal  
and 5% Cement 

1644.53 -8,3 

0.5% Sisal  
and 9% Cement 

1640.63 -8,5 CSC 

0.5% Sisal  
and 12% Cement 

1674.32 -6.6 

*+ implies % improvement in density in comparison to the non-reinforced earth block 

 - implies % drop in density in comparison to the non-reinforced earth block. 
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Figure K.1 Change in practical dry block density 
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Figure K.2 Change in strength as a reflection of change in density 
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Figure K.3 Comparison between theoretical and practical density 
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Appendix L Cassava Stabilized Compressed Earth Blocks (CaC): 
Compressive Strength  

Specimen 
Reference 
 

Ultimate Load. (F), 
kN 

Dry Compressive Strength, 
MPa 

 Gross Gross Gross Gross Mean 
CaC-0-0-1 7.68 5.57 4.8 3.48 
CaC-0-0-2 7.01 8.38 4.38 5.24 
CaC-0-0-3 7.97 7.74 4.98 4.84 
CaC-0-0-4 8.59 8.49 5.37 5.3 

4.79 

      
CaC-1.5-0-1 11.49  7.18 7.20 
CaC-1.5-0-2 11.31  7.07 7.04 
CaC-1.5-0-3 11.16  7.97 8.00 
CaC-1.5-0-4 11.56  7.23 7.21 

7.3625 

      
CaC-2.5-0-1 8.47 11.65 5.3 7.28 
CaC-2.5-0-2 7.98 11 4.99 6.38 
CaC-2.5-0-3 7.81 8.97 4.88 5.6 
CaC-2.5-0-4 7.9 8.61 4.94 5.38 

5.593 

      
CaC-4-0-1 8.92 7.81 5.57 4.88 
CaC-4-0-2 9.74 9.47 6.09 5.92 
CaC-4-0-3 7.38 10.23 4.61 6.39 
CaC-4-0-4     

5.576 

      
CaC-5-0-1 9.16 8.82 5.72 5.51 
CaC-5-0-2 10.36 10.38 6.47 6.49 
CaC-5-0-3 7.95 8.39 4.97 5.25 
CaC-5-0-4 8.3 7.86 5.19 4.92 

5.56 

      
CaC-7-0-1 7.4 6.28 4.63 3.92 
CaC-7-0-2 7.12 6.84 4.45 4.28 
CaC-7-0-3 6.69 6.92 4.18 4.33 
CaC-7-0-4     

4.298 

      
CaC-10-0-1 6.01 6.09 3.75 3.8 
CaC-10-0-2 5.93 5.96 3.71 3.73 
CaC-10-0-3 6.13 6.69 3.83 4.18 
CaC-10-0-4 6.48 5.95 4.05 3.72 

3.84 

      
CaC-15-0-1 4.08 3.82 2.55 2.39 
CaC-15-0-2 4.18 3.98 2.61 2.49 
CaC-15-0-3 3.63  2.27  
CaC-15-0-4     

2.46 

      
CaC-20-0-1 2.61 2.65 1.63 1.66 
CaC-20-0-2 2.56 2.33 1.6 1.46 
CaC-20-0-3 2.3 2.57 1.44 1.61 
CaC-20-0-4 2.58 2.59 1.61 1.62 

1.57 
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Appendix M Cassava Stabilized Compressed Earth Blocks (CaC): Flexural 
Strength Test 

Specimen 
Reference 
 
 

Dry 
Block 
Density, 
g/mm3 

Ultimate 
Load, (F) 
kN 

Flexural Strength, 
MPa 
 

  Gross Gross Mean 
CaC-0-0-1 0.373 0.874 
CaC-0-0-2 0.373 0.874 
CaC-0-0-3 0.456 1.069 
CaC-0-0-4 

1792.97 

0.491 1.151 

0.99 

     
CaC-1.5-0-1 0.729 1.707 
CaC-1.5-0-2 0.729 1.716 
CaC-1.5-0-3   
CaC-1.5-0-4 

1781.25 

  

1.7115 

     
CaC-2.5-0-1 0.53 1.243 
CaC-2.5-0-2 0.815 1.91 
CaC-2.5-0-3 0.877 2.055 
CaC-2.5-0-4 

1765.625 

0.575 1.342 

1.6375 

     
CaC-4-0-1 0.56 1.312 
CaC-4-0-2 0.65 1.524 
CaC-4-0-3 0.783 1.836 
CaC-4-0-4 

1753.9 

  

1.557 

     
CaC-5-0-1 0.47 1.102 
CaC-5-0-2 0.454 1.064 
CaC-5-0-3 0.733 1.718 
CaC-5-0-4 

1740.23 

0.533 1.248 

1.28 

     
CaC-7-0-1 0.435 1.018 
CaC-7-0-2 0.388 0.91 
CaC-7-0-3 0.387 0.908 
CaC-7-0-4 

1635.31 

  

0.945 

     
CaC-10-0-1 0.326 0.763 
CaC-10-0-2 0.359 0.842 
CaC-10-0-3 0.34 0.797 
CaC-10-0-4 

1649.90 

0.351 0.823 

0.80 

     
CaC-15-0-1 0.275 0.645 
CaC-15-0-2 0.231 0.541 
CaC-15-0-3 0.236 0.554 
CaC-15-0-4 

1541.99 

0.235 0.551 

0.57 

     
CaC-20-0-1 0.2 0.468 
CaC-20-0-2 0.131 0.308 
CaC-20-0-3 0.148 0.348 
CaC-20-0-4 

1439.45 

0.089 0.209 

0.33 
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Appendix N Cassava Stabilized Compressed Earth Blocks (CaC): Dry Block 
Density 

Specimen 
Reference 

Mass of Dry 
Block, g 

Dry 
Block 
Volume, 
mm3 

Dry Block 
Density, 
Kg/m3 
 

 Gross Mean   
CaC-0-0-1 455 
CaC-0-0-2 464 
CaC-0-0-3 456 
CaC-0-0-4 461 

459 256000 1792.97 

     
CaC-1.5-0-1 458 
CaC-1.5-0-2 454 
CaC-1.5-0-3 451 
CaC-1.5-0-4 462 

456 256000 1781.25 

     
CaC-2.5-0-1 453 
CaC-2.5-0-2 451 
CaC-2.5-0-3 450 
CaC-2.5-0-4 454 

452 256000 1765.625 

     
CaC-4-0-1 449 
CaC-4-0-2 449 
CaC-4-0-3 451 
CaC-4-0-4 447 

449 256000 1753.9 

     
CaC-5-0-1 446 
CaC-5-0-2 439 
CaC-5-0-3 459 
CaC-5-0-4 438 

445.5 256000 1740.23 

     
CaC-7-0-1 433 
CaC-7-0-2 435 
CaC-7-0-3 440 
CaC-7-0-4 428 

434 256000 1635.31 

     
CaC-10-1 424 
CaC-10-2 419.5 
CaC-10-3 423.5 
CaC-10-4 422.5 

422.375 256000 1649.90 

     
CaC-15-0-1 396 
CaC-15-0-2 398.5 
CaC-15-0-3 395 
CaC-15-0-4 389.5 

394.75 256000 1541.99 

     
CaC-20-0-1 368.5 
CaC-20-0-2 371 
CaC-20-0-3 365 
CaC-20-0-4 369.5 

368.5 256000 1439.45 
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Appendix O Cassava Stabilized Compressed Earth Blocks (CaC): Porosity 
Cassava Content Relationship 
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Appendix P Cassava Stabilized Compressed Earth Blocks (CaC): Dry Block 

Porosity Relationship 
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Appendix Q Cassava Stabilized Compressed Earth Blocks (CaC): 
Compressive Strength Porosity Relationship 
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Appendix R Sisal Stabilized Compressed Earth Blocks (SC): Water Vapour 
Transmission 

Specimen Reference and Mean Weight. g S.No. Date 

SC-0.25 SC-0.5 SC-0.75 SC-1.0 

1 05.01.06 339.5095 342.8067 344.902 338.8857 

2 07.01.06 342.583 346.9863 348.667 343.3247 

3 09.01.06 346.119 350.685 352.0217 347.1053 

4 11.01.06 348.886 353.5957 354.7487 350.15 

5 13.01.06 351.771 356.681 357.5317 353.2567 

6 15.01.06 354.3975 359.4957 360.1383 356.1587 

7 17.01.06 356.8885 362.19 362.4653 358.8723 

8 19.01.06 359.436 364.832 364.8437 361.5563 

9 21.01.06 361.6965 367.316 367.1307 363.977 

10 23.01.06 363.9285 369.9617 369.646 366.386 

11 25.01.06 366.0215 372.3013 371.7213 368.4047 

12 27.01.06 367.9785 374.601 373.6283 370.2913 

13 29.01.06 319.605 376.5133 375.2207 371.9073 

14 31.01.06 371.375 378.5263 376.9503 373.6413 

15 02.02.06 372.765 380.2937 378.2933 375.1727 

16 04.02.06 373.9635 381.9697 379.5293 376.5097 

17 06.02.06 375.306 383.6667 380.8997 377.9487 

 

 

 

 

 

 

 

 

 

 

 

 

 

 182



Appendix S Cement Stabilized Compressed Earth Blocks (CeC): Water 
Vapour Transmission 

Specimen Reference and Mean Weight. g S.No. Date 

CeC-0 CeC-9 CeC-12 

1 05.01.06 354.9353 355.7073 348.898 

2 07.01.06 359.2463 358.826 351.7605 

3 09.01.06 363.2017 361.6847 354.3905 

4 11.01.06 366.352 363.9607 356.582 

5 13.01.06 369.5503 366.3613 358.866 

6 15.01.06 372.7457 368.618 361.014 

7 17.01.06 375.624 370.7557 363.0895 

8 19.01.06 378.4433 372.8183 365.122 

9 21.01.06 381.0357 374.7353 366.95 

10 23.01.06 383.7147 376.763 368.832 

11 25.01.06 386.3113 378.6357 370.549 

12 27.01.06 389.0843 380.5573 372.318 

13 29.01.06 391.618 382.2817 373.9535 

14 31.01.06 394.5643 384.295 375.8335 

15 02.02.06 397.2387 386.1757 377.5415 

16 04.02.06 399.8867 387.811 379.0925 

17 06.02.06 402.677 389.703 380.7405 
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Appendix T Cassava Stabilized Compressed Earth Blocks (CaC): Water 
Vapour Transmission 

Specimen Reference and Mean Weight. g S.No. Date 

CaC-1.5 CaC-2.5 CaC-5 CaC-7 

1 05.01.06 348.5625 350.475 348.3277 344.638 

2 07.01.06 352.517 354.249 352.0463 348.6717 

3 09.01.06 356.066 357.581 355.3957 352.2533 

4 11.01.06 358.847 360.24 358.0533 357.177 

5 13.01.06 361.8495 363.0805 360.9163 360.123 

6 15.01.06 364.658 365.706 363.5873 362.851 

7 17.01.06 367.277 368.1435 366.0743 363.4753 

8 19.01.06 369.8445 370.5265 368.5127 366.0097 

9 21.01.06 372.2015 372.7375 370.746 368.348 

10 23.01.06 374.6865 375.1175 373.087 370.7837 

11 25.01.06 377.013 376.329 375.2363 373.0063 

12 27.01.06 379.293 379.559 377.4233 375.1863 

13 29.01.06 381.2845 381.476 379.344 377.0293 

14 31.01.06 383.4065 383.5005 381.4007 378.9383 

15 02.02.06 385.1705 385.181 383.099 380.5197 

16 04.02.06 386.7155 386.655 384.613 381.877 

17 06.02.06 388.2975 388.148 386.19 383.2803 

 

 

 

 

 

 

 

 

 

 

 

 

 

 184



Appendix U Cement-Sisal Stabilized Compressed Earth Blocks (CSC): Water 
Vapour Transmission 

Specimen Reference and Mean Weight. g S.No. Date 

C-SC-0.5-5 C-SC-0.5-9 C-SC-0.5-12 

1 05.01.06 338.2363 343.9817 347.903 

2 07.01.06 341.9057 346.9703 350.939 

3 09.01.06 344.568 349.7593 353.798 

4 11.01.06 346.9263 352.0213 356.1047 

5 13.01.06 349.425 354.4037 358.5403 

6 15.01.06 351.706 356.6437 360.848 

7 17.01.06 353.857 358.7827 363.064 

8 19.01.06 355.947 360.8557 365.1933 

9 21.01.06 357.9 362.7257 367.1163 

10 23.01.06 359.9577 364.7023 369.1277 

11 25.01.06 361.832 366.5157 370.954 

12 27.01.06 363.6393 368.3493 372.8547 

13 29.01.06 365.1507 369.9913 374.5947 

14 31.01.06 366.7263 371.7987 376.5387 

15 02.02.06 368.0283 373.3417 378.2487 

16 04.02.06 369.1473 374.721 379.7763 

17 06.02.06 370.3113 376.1533 381.3913 
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