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Abstract 

During heavy rains, open channels are prone to being overrun with 
storm water. Since the velocity of a flowing fluid increases with   
depth, sudden overflows may cause velocities to exceed certain limits. 
This damages the channel by scouring. On the other hand, siltation of 
suspended matter occurs in sluggish flow. Channel dimensions and 
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shapes must minimize cost and maximize discharge in normal seasons, 
while regulating the discharge to minimize velocity fluctuations   
during overflow. Depending on the designer’s objectives, channel 
design involves numerous parameters, including the characteristics     
of construction materials and earthwork. Traditional methods such     
as Lagrange multipliers, sequential quadratic programming (SQP), 
differential evolution algorithm (DEA), genetic algorithms, ant-colony 
optimization, and lately, meta-heuristic algorithms are often used       
to minimize a cost function subject to channel cross-section. In this 
paper, using only the mathematical hydraulic efficiency criterion 
(other factors assumed optimum), a direct integro-differential 
technique is applied to determine the optimum triangular channel 
design that additionally minimizes velocity fluctuations during 
excessive discharge. The triangular channel is treated as a special case 
of a trapezoidal channel. 

1. Introduction 

In open channel flow, one surface of the flow is exposed to the 
atmosphere. Partially full closed pipes are often categorized as open 
channels. This flow differs from full bore flow in various aspects especially 
in that the flow cross-section for open channels is not determined entirely by 
the solid boundaries, but is free to change without restraint, depending on 
other parameters of the flow. The free surface is usually subjected to constant 
atmospheric pressure and therefore, the flow is caused by the component of 
the weight of the liquid. This brings about a drop in the piezometric pressure, 

,gzp ρ+  but not a drop in the pressure at the free surface. Wahome [4] gives 

a synoptic comparison of the two flows. 

The commonest examples of natural channel flow are rivers and streams, 
while irrigation canals, flumes and spillways are artificial open channels. 

In practical channel hydrodynamics where conservation of resources      
is of prime importance, it is crucial to interrogate the issue of the most 
hydraulically optimum shape. This means the channel shape which allows 
maximum discharge for a fixed area, surface roughness and bed slope. 
Common open channel formulae, including those of Chézy and Manning 
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predict that for uniform flow with a given bed gradient, roughness and   
cross-sectional area, the mean velocity and discharge, Q - parameters which 
influence channel efficiency - all depend on the hydraulic mean depth m, 
Massey and Smith [10]. m is defined as the ratio of the flow area A to the 
wetted perimeter P. This implies the hydraulic efficacy of a channel will      
be predicated on the channel-shape. Maximizing m, which is equivalent to 
minimizing the wetted perimeter, will therefore maximize the discharge. Cost 
of lining material will also be minimized. 

Among the common channel designs, the semicircular shape has been 
found to possess the maximum hydraulic mean depth, Doughlas et al. [8]. 
However, the consideration of other factors, such as angle of repose for  
loose granular banking material, cost of excavation and relative ease of 
construction make the semicircular shapes applicable only to small channels, 
leaving the trapezoidal shape more preferable in practice, Massey and Smith 
[10]. Notably, rectangular and triangular channels are special cases of the 
trapezoidal channel. Hameed [1] has studied triangular canals with round 
bottoms and found them more efficient than circular channels. 

On the hypothesis that different triangular bases give different 
efficiencies, it becomes important to determine the most economical triangle, 
that is, the one giving the maximum discharge for a given amount of 
excavation, based on dimensional ratios and side slopes. 

In this paper, the dimensional characteristics of the most economical 
triangular cross-section with minimum velocity fluctuations (to minimize 
scouring or siltation, Stephenson [15] and Chow [12]) are derived 
progressively. It is assumed that the fluid flow is steady, inviscid, 
incompressible and irrotational. Surface tension and viscosity are neglected. 
It is further assumed that the mathematical hydraulic efficiency is the only 
consideration, and that the triangular shape is an inverted right pyramid. The 
condition for the turning points, and hence the optimal dimensions, are 
obtained by maximizing the hydraulic mean depth function using integro-
differential calculus. 
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2. Mathematical Formulation 

The most economical (or efficient) section of a channel is defined as one 
which gives the maximum discharge for a given amount of excavation, 
Rajput [6]. The general expression for the mean velocity in an open channel 
flow is 

baSkmV =  (2.1) 

with m, S and k being the hydraulic mean depth, channel slope and flow 
resistance factor, respectively, and a and b are the so called hydraulic 
components. Based on the continuity equation, the discharge Q may be 
expressed as product of the flow area and average velocity, so that 

.baSAkmQ =  (2.2) 

Equation (2.2) is the general form of several uniform flow equations for open 
channels, among them the Chézy and Manning equations, and clearly shows 
that with the slope and surface roughness held constant, flow discharge 
maximizes with the hydraulic mean depth m. We optimize the efficiency of 
the channel by optimizing m. 

2.1. The triangle as a special trapezium 

We consider the triangular cross-section of flow as a special case of 
trapezoidal cross-section (see Figure 1). In Figure 1, AOFC represents the 
symmetric trapezoidal cross-section of the open channel. We use an 
integration approach to determine the area of the cross-section of the flow 
(this method is versatile for other non-regular shapes, when need arises). We 
take the origin to be at O to have 

( )∫ ∫
η ζ+θ

θ−π
=

0

cot

cot
Area

y

y
dxdyA  (2.3) 

with 

( ) ζ+θ≤≤θ−π cotcot yxy  (2.4) 
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between the opposite banks of the channel. Since ( ) ,cotcot θ−=θ−π  the 

area evaluates to 

.A θη+ζη= cot2  (2.5) 

 

Figure 1. Triangle as a trapezium with no base. 

The wetted perimeter in the channel is 

.csc2 θη+ζ=P  (2.6) 

The hydraulic mean depth m which we need to maximize is 

.csc2csc2
cot2

θη+ζ
=

θ+ζ
θη+ζη== A

P
Am  (2.7) 

When the channel shape is triangular, we have the wetted perimeter as 

[ ] ,csc2csc2lim
0

θη=θη+ζ=
→ζ

P  (2.8) 

area as 

θη=θη+ζη=
→ζ

cotcotlim 22
0

A  (2.9) 

and hydraulic mean depth m as 
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θ





θ

=
θη

=
θ+ζ
θη+ζη==

→ζ csccot2
csc2csc2

cotlim
2

0 A
AA

P
Am  (2.10) 

by (2.8). 

2.1.1. Optimum channel slope 

With area A constant, we minimize the denominator in (2.10) (equivalent 
to maximizing m) by differentiating w.r.t. θ, that is, we set 

.0
cot

csc0
cot

csc2csccot2 =





θ
θ

θ∂
∂⇒=





θ
θ

θ∂
∂=




 θ





θθ∂

∂ AA  (2.11) 

By setting ,
cot

csc I=
θ
θ  we have ,tancotcot

csc 2
2

I=θ+θ=
θ
θ  which we 

differentiate on both the sides to have ( ) .2seccsc 22
θ

=θ+θ− d
dII  We want 

θd
dI  which is .

cot
csc

seccsc 22

θ
θ

θ+θ−  Equation (2.11) now reduces to 

.0seccsc 22 =θ+θ−  (2.12) 

This means 

.4sincos π=θ⇒θ=θ  (2.13) 

We have shown that the most economical triangular channel needs to have its 
sloping sides making an angle of 45° with the vertical (or horizontal) axis. 
Instead of using the second derivative test, we view from the graph below 
(Figure 2) that the turning point we have calculated above occurs at a 
maximum value of hydraulic radius m (i.e., minimum wetted perimeter P). 

The graph clearly peaks at .78539816.04
c=π=θ  
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Figure 2. Economy of a triangular open channel at various angles, expressed 
in terms of hydraulic mean depth ( ).100area =Am  

2.1.2. Optimum channel width, height and area 

In view of Figure 1 and equations (2.8) and (2.9), we derive the 
following relationships between the hydraulic mean radius and the most 
economical dimensions of the triangular channel: 

⇒η=
θη
θη=

22csc2
cot2

m  optimum channel depth, .m22=η  (2.14) 

Best channel width ×= 2  optimum channel depth m.24=  (2.15) 

Slanting side ×= 2  optimum channel depth .m4=  (2.16) 

2.2. Minimum velocity fluctuation design 

Having established the relative dimensions of the most economical 
triangular channel, we now wish to construct the section above the free 
surface of the fluid in such a way that an overflow will not cause a change in 
velocity. See Figure 3: 
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Figure 3. Least velocity fluctuation section of the channel. 

Since the velocity is influenced only by the hydraulic mean depth 

,P
Am =  we can suppress velocity fluctuations by keeping m constant, thus, 

[ ] 22222
222

2 dyxmdydx
dydx

xdy
dP
dAm =+⇒

+
==  (2.17) 

which simplifies to 

∫ +



=

−
=⇒

−
=



 − .cosh 1

22

2

22

22
km

xmdx
mx

my
mx

m
dx
dy  (2.18) 

In view of equations (2.14), (2.16) and (2.15), BC  in Figure 3 has length 
2m. Since this constant velocity section starts just above the optimized 
triangle, we substitute the coordinates ( )0,2m  into equation (2.18) to find 

the value of k as .2cosh 1−−= mk  Therefore, the channel walls of the 
minimum fluctuation section should bear the relationship 

.2coshcosh 11 −− −



= mm

xmy  (2.19) 
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2.3. Comparison of efficiencies of regular trapezoidal channel sections 
with different slant angles θ 

It has been shown above that the triangular cross-section is a special case 
of the trapezoidal one. It would be of interest to compare the efficiencies for 

other trapezoidal sections, with slant angles computed as ,2
n
π  where n is the 

number of sides of the regular polygon of whose the channel section is a 
part. With 100=A  and 50=η  (note that these have base, unlike the 

triangle), the efficiencies for 103 ≤≤ n  have been computed below, and the 
corresponding graph for 50≤n  provided as well. 

Table 1. Efficiency values for the first 8 polygons with 100=A  and 50=η  

Polygon’s sides n Slope θ (rad) Wetted perimeter P Efficiency P
1  

 

3 2.094395333 146.3375981 0.006833514 

4 1.5707965 102.0000087 0.009803921 

5 1.2566372 90.90024054 0.011001071 

6 1.047197667 88.60254038 0.011286358 

7 0.897598 90.03112933 0.011107269 

8 0.78539825 93.42135265 0.010704191 

9 0.698131778 97.9846981 0.010205675 

10 0.6283186 103.3110595 0.009679506 
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Figure 4. Relative efficiencies for n-sided trapezoidal channels. 

This graph peaks at 6=n  which reveals that the regular hexagon is the 
most efficient c-sectional design. Interesting information also emerges, for 
instance, that a 7-sided (heptagonal) cross-section at 0.011107269 is more 
efficient than a 5-sided (pentagonal) one at 0.011001071. 

3. Conclusion 

For a triangular section, open channel flow with fluid depth η and 
hydraulic mean depth m, the optimum conditions for maximum discharge, 
and constant velocity during overflow are summarized below: 

Table 2. Summary of optimal values for triangular base channel 

Depth η Slope θ (deg) Slant side Channel width 
 

m22  45  4m m24  

It was also found that the equation of the constant velocity section is 

.2coshcosh 11 −− −



= mm

xmy  
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