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Because of the complicated shorelines, inaccessibility and vast spread of some

lakes, information on changing shorelines is difficult to acquire. A new water

index (WI) has been applied to quantify changes in five saline and non-saline Rift

Valley lakes in Kenya using Landsat Thematic Mapper (TM) and Enhanced

Thematic Mapper (ETM + ) data. The WI is based on a logical combination of

the Tasseled Cap Wetness (TCW) index and the Normalized Difference Water

Index (NDWI). Using regression analysis with estimated shoreline coordinates,

the WI detected the shorelines with an accuracy of 98.4%, which was 22.3%

higher than the TCW, and 43.2% more accurate than the NDWI. Change

detection was derived using image differencing followed by density slicing and

unsupervised classification. The saline lakes (Bogoria, Nakuru and Elementaita)

changed more with respect to the ratio of the change in the original surface areas

than the non-saline lakes (Baringo and Naivasha).

1. Introduction

The delineation and extraction of coastline or shoreline of rivers and lakes is an

important task that has application in different fields such as lake/coastline erosion

monitoring, lake/coastal-zone management, watershed definition, flood prediction

and evaluation of water resources. This task is difficult, time-consuming, and

sometimes impossible for a huge region such as an entire country or continent, when

using traditional ground survey techniques. This is because water bodies can be very

large, have very complex shorelines, may be fast moving as in floods, tides and

storm surges, or may be inaccessible. In addition, automatic and replicable

techniques are required to update coastline/shoreline maps, evaluate the spatial and

temporal evolutions and sensitivities of alterations due to natural and anthropic

events (Bagli and Soille 2003).

Following the increase in the availability of satellite images, the development of

tools for geographic data analysis (Geographic Information Systems (GIS)

platforms) and image processing techniques, numerous research studies have

attempted to extract and delineate water bodies from these images (Smith 1997). The

extraction of features such as coastlines and water bodies directly from satellite
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images overcomes the problem of matching available coastline/shoreline datasets

with the image dataset studied. However, because of projection system biases, the

matching of a shoreline coming from a different dataset with the available images

may turn out to be a very time-consuming, if not impossible, task. Beyond manual

digitization, several techniques have been reported in the literature for the derivation

of the coastline position from satellite images (Bagli and Soille 2003). The most

common are density slice using single or multiple bands and multispectral

classification, both supervised and unsupervised (e.g. ISODATA-unsupervised

classification, principal components analysis (PCA), Tasseled Cap Wetness (TCW),

Normalized Difference Water Index (NDWI), maximum-likelihood supervised

classification).

In recent years, satellite remote sensing data have been used in automatic or semi-

automatic shoreline extraction and mapping (Di et al. 2003). Braud and Feng (1998)

evaluated threshold level slicing and multispectral image classification techniques for

detection and delineation of the Louisiana shoreline from 30-m resolution Landsat

Thematic Mapper (TM) imagery. They found that thresholding TM band 5 was the

most reliable methodology. Jupp et al. (1985) analysed the histogram of Landsat TM

band 7 and segmented water pixels by thresholding. Moller-Jensen (1990) performed

the thresholding in TM bands 4 and 5 and then recognized water pixels using

experience-based rules. McFeeters (1996) detected water bodies using the NDWI.

Synthetic aperture radar (SAR) imagery has also been used to extract shorelines for

various geographic locations (Niedermeier et al. 2000, Schwäbisch et al. 2001).

Frazier and Page (2000) have reviewed several approaches used by different

authors to delineate water bodies from Landsat TM and Multispectral Scanner

(MSS) classification. They found that simple density slicing of the TM band 5 (mid-

infrared) successfully detected lake/pond wetland areas, achieving a classification

accuracy of 96.9%, in the Wagga Wagga region of Australia, but failed to extract

small water bodies adequately. Simple density slicing of Landsat TM bands 4 and 7

give a good water classification result but with low accuracy with respect to band 5.

Zhu (2001) used a neural network classifier on multitemporal Landsat images to

classify the changes of coastline in different periods. Di et al. (2003) investigated a

novel approach for automatic extraction of shorelines from high-resolution

IKONOS satellite imagery using a mean shift segmentation algorithm as a first

step, and then a local refinement process.

Most of these approaches are highly reliant on (a) human expertise and local area

knowledge and (b) accurate radiometric and geometric correction for shoreline

mapping and water bodies change derivation. Detection of water bodies per se is not

the difficult task. The problem is the accurate or exact delineation of the water body

shoreline (the ‘true’ land–water interface) at a certain time. ‘True’ here means the

lake edge not influenced by wind flows, water currents, dune juxtapositions or

shadows, among other factors that may influence the true edge information

extraction and change detection procedure. Furthermore, there has been no robust

documentation on the broadband Landsat reflectance especially for lake shoreline

mapping and change detection. Most of the work so far has concentrated on water

quality, for example turbidity aspects (Fraser 1998).

In general, supervised classification techniques, based on spectral signature

analysis, lead to good results in delineating and extracting large water boundaries

from remote sensed data, but these methods meet some problems if the aim is to

perform a rapid and reproducible (reliable) extraction of shorelines that is valid for a
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huge area such as a mosaic of Landsat images covering a locality, country or even a

continent.

In the case of disasters such as flooding, the delivery of geospatial data and

information is expected in much shorter time periods. In such scenarios three main

rapid mapping requirements are expected to be dealt with: (a) recognition of

features, (b) extraction of features, and (c) change detection, including correction to

existing features. All require extensive human involvement, and they are time-

consuming operations. Considering the continuous dwindling resources (human,

budgets) and the vast size of shorelines, there is a need to implement rapid mapping

approaches to reduce both the production time and the cost involved. These

approaches require not only revisiting the current processes or techniques used but

also, and most importantly, the implementation of a higher level of automation in

the mapping operations.

In principle, the use of spectral sensors should solve the problem of representativity in

in situ point-to-point measurements. Statistical spatial measures describing landscape

characteristics and water bodies have not been widely adapted to remote sensing data

and to collecting data and information on the state of the water environment.

In this paper, we propose a new, simple, fast and accurate methodology based on

a combination of the two indices TCW and NDWI for shoreline delineation and

change mapping. The methodology is applied to five lakes within one Landsat scene

(path 169, row 060) covering part of the Kenyan portion of the East African Rift

Valley. This combined formulation is called the water index (WI). Based on Landsat

TM and Landsat Enhanced Thematic Mapper (ETM + ) imagery, dated 1986 and

2001, respectively, the new approach was investigated and calibrated using Lake

Nakuru as the test lake, and the concept extended to the scene containing five lakes.

By combining the two indices, the problems of fuzzy shoreline and errors in lake

extent (surface area) and change detection are minimized. Simple differencing and

density slicing were used to derive the change information. The methodology has the

advantage of avoiding extensive thresholding as reported in previous studies. The

results are very promising following extensive empirical, ground measurements and

statistical comparisons.

2. Study area and data

The study area outlined in figure 1 contains five of the lakes within the East African

Rift Valley, namely Lakes Baringo, Bogoria, Nakuru, Elementaita and Naivasha.

This are extends from N 00u369, E 36u019 to S 00u479, E 36u239. Three of the lakes

(Bogoria, Nakuru and Elementaita) are saline; the other two are non-saline. The

data used in this study were taken from 28 January 1986 for Landsat TM and 3

April 2001 for Landsat ETM + . This is a Landsat scene (path 169, row 060) and

contains the five lakes investigated in this study.

3. Methodology

3.1 Geometric and radiometric data correction

Geometric correction is a methodology for rectifying the common areas test data to

the same or required projection system, for producing spatially correct land cover

information. The study data were geometrically rectified to the Universal Transverse

Mercator (UTM) map projection system, zone 37 East, using 120 ground control

points (GCPs) evenly distributed within the 2001 Landsat ETM + scene. A 1997
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topographic map of the study area, at a scale of 1 : 50 000, was used to geometrically

rectify the Landsat 7 (ETM + ) data to an accuracy of about half a pixel (15 m).

The geometrically corrected ETM + data were used to rectify the Landsat 5 (TM)

image by the image-to-image registration method. A first-degree polynomial

equation was used in the image transformation. A nearest-neighbour resampling

method was used to resample the TM to the same spatial resolution as ETM +
(30 m630 m) to allow for pixel-to-pixel comparison and to avoid altering the

original pixel values of the images. To normalize these datasets for change detection

(i.e. remove unnecessary artefacts or noise), pseudo-invariant (i.e. temporally

unchanged) features on the ground and image were used to normalize across the

images concurrently. A Differential Global Positioning System (DGPS) was used to

collect positional (XY) data in 2000/2001 for the assessment of the shoreline and

true location of the checkpoints, for validation of the ETM + -derived shoreline. This

time frame was chosen because the shoreline does vary sometimes based on

seasonal-climatic changes.

Based on local knowledge of the lake, apart from seasonal-climatic induced

changes, the level and hence the surface area change regularly on the relatively

flatter western side because of daily wind speed variations as well as lake currents.

Consistent and redundant DGPS observations are therefore essential for obtaining

proximate lake edge information, especially before proceeding with the change

detection exercise. The shallow edges of the lake represent the dynamic edge region,

Figure 1. Location map of study area within landsat data coverage (path 169, row 060).
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which may be unreliable for true long-term change detection. For this study, DGPS

measurements were taken before the season changed from the dry (December 2000

to February 2001) to the wet season (March 2001 onwards). This was to establish

the proximate true edge for comparison with the satellite overpass information and

for the subsequent change detection. Only the overlapping points (i.e. with the same

coordinates) with accuracies within the 30 m spatial resolution of the Landsat test

data were used in the validation process. Similar limitations with regard to reliable

GPS measurements were reported by Fraser (1998).

3.2 Tasseled Cap Wetness (TCW)

The concept of tasseled cap transformation is a useful tool for compressing spectral

data into a few bands associated with physical scene characteristics (Crist and

Cicone 1984). It was originally constructed for understanding the phenomena of

crop development in spectral space (Kauth and Thomas 1976). The tasseled cap

transformation in remote sensing is the conversion of the readings in a set of

channels into composite values through weighted sums of separate channel readings.

The tasseled cap transformation of Landsat TM and ETM + consists of six

multispectral features, all of which could be potentially differentiated in terms of

stability and change in a multitemporal data set. Three of the six tasseled cap

transform bands are often used: band 1 (brightness, measure of soil), band 2

(greenness, measure of vegetation) and band 3 (wetness, interrelationship of soil and

canopy moisture). These first three features usually account for the most variation in

a single-date image (Crist 1985, Crist and Kauth 1986, Cohen et al. 2001, Collins

and Woodcock 2001). The TCW for Landsat satellite imagery is calculated with the

following coefficients (equation (1)):

TCW~0:1509 r1ð Þz0:1973 r2ð Þz0:3279 r3ð Þz0:3406 r4ð Þ{0:7112 r5ð Þ{0:4572 r7ð Þ ð1Þ

where (ri) corresponds to the respective Landsat TM and ETM + bands.

3.3 Normalized difference water index (NDWI)

The concept of the NDWI in the delineation of open water features was first

introduced by McFeeters (1996). In this study we propose to estimate the NDWI by

evaluating different NDWIs based on the different spectral bands of TM and

ETM + (equations (2)–(6)). NDWI1 is based on the mid-infrared (MIR) and

shortwave infrared (SWIR) bands 5 and 7. NDWI2 is based on the near-infrared

(NIR) band 4 and visible (green) band 2. NDWI3 is computed from the NIR band 4

and MIR band 5. NDWI4 is calculated based on the MIR band 5 and visible (green)

band 2. NDWI5 is based on the SWIR band 7 and visible (green) band 2.

NDWI1~
r7{r5

r7zr5

ð2Þ

NDWI2~
r4{r2

r4zr2

ð3Þ

NDWI3~
r5{r4

r5zr4

ð4Þ
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NDWI4~
r5{r2

r5zr2

ð5Þ

NDWI5~
r7{r2

r7zr2

ð6Þ

The existing NDWI (e.g. McFeeters 1996) is based on evaluation of the spectral

signature in the near- and mid-infrared portions of the electromagnetic spectrum. In

this range the water bodies absorb almost all incident radiant flux while the land

surface reflects significant amounts of near- and mid-infrared energy. However, the

shallow water–land interface presents mixed reflectance depending on the type of

suspended solid particles in the shallow end of the lake, how deep they are around

the lake edge and the mobility of the water mass. This index has been used mainly

within the scope of water quality parameters assessment (Fraser 1998) and not in

fluctuations in lake size over long time intervals. The reliability of this NDWI for

lake size mapping and change detection is thus not robustly established in the

literature. This suggests that further consideration of the visible and shortwave

infrared wavelengths may be necessary to determine the true lake edge. The

rationale for testing these different spectral domains is that preliminary assessments

showed that all the indices, equations (2)–(6), have the potential to detect the

presence of open water bodies. However, for exact delineation of the shoreline, it is

not clear which of the indices is most accurate or reliable, or whether multiple

NDWI indices might be more suitable. In general, mapping of open water bodies

such as lakes is not difficult. The challenge is in the optimal determination of the

actual shoreline (true land–water interface), which is fuzzy in most cases.

Thresholding, although widely used, may not be suitable where rapid edge detection

is required.

3.4 Methodology for test case using Lake Nakuru

We first illustrate the performance of each of the NDWI and TCW by comparing

results from ETM + data for Lake Nakuru, for different portions of the lake with

interesting features/characteristics. Lake Nakuru was chosen for the test because it is

the most fluctuating lake in size, with a more complex shoreline structure. In

addition, the authors have a good physical knowledge of the lake. Extensive

fieldwork was used in this part of the study to verify what was observed on the

image or to select the desired portions of the lake.

The results of the TCW and the five NDWIs are presented in figures 2(a) and

2(b)–2(f ), respectively. TCW results (figure 2(a)) delineate the lake outline very well,

but include the sewage plants. The sewage plants are reflecting like the water body

on the northwestern side of the lake. Comparing the entire scene, the water body is

well delineated with bright pixels. A visual comparison of NDWI results shows that

NDWI3 and NDWI4 present a nearly similar output. The difference is that a buffer

is formed around the lake in the case of NDWI4 and a precise demarcation of the

shoreline is demonstrated by NDWI3. With NDWI1, not only is the shoreline

imprecisely outlined but also the lake pixels as a whole are not properly aggregated.

A similar buffer as in NDWI4 is observed in NDWI2 and NDWI5. The problem in

the latter two results is that they retain a lot of noise in the form of non-water

information, which may make any further analysis of the scenes difficult as

compared to NDWI3 and NDWI4. Although NDWI3 retained some noise within the
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lake, it presented much clearer or non-fuzzy edge information representing the true

edge of the lake boundary compared to the rest of the NDWIs. As is demonstrated

in the following sections, a combinational approach of the optimal or most

informative NDWI and TCW, based on a set of rules, eliminates the noise within the

NDWI3. This is one of the advantages of the approach presented in this study.

The mixed pixels within the scene representing non-water are indicators of

the degree of the wetness of the scene features as detected by the respective indices.

The brightest pixels depict 100% wetness, that is water only, while the darkest pixels

(a) (b)

(e) ( f )

(c) (d )

Figure 2. Results of (a) TCW and (b–f ) NDWI1–5 for Lake Nakuru.
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depict 0% wetness, meaning no water or a very low water content. This method is

important in its ability to suppress the non-water pixels completely or as much as

possible, while accurately enhancing the lake water body and the shoreline.

Natural lake currents, wind motions/directions and dune juxtaposition influence

the shallow edges, also referred to here as ‘unreliable edges’. The shallow edges thus

keep fluctuating irregularly (Fraser 1998). Depending on the index, the shallow

edges form a dynamic or non-stationary buffer zone around the true edges. For

example, from the results presented in figure 2, it is apparent that all the indices

except NDWI3 present a buffer zone around the shallow edge of the lake. The

problem is that for a wider scene, the values of some of these buffer zone digital

numbers (DNs) are similar to those of other shallow water marshes within the scene,

which could be smaller than the lake. Thus the problem of accurate edge arises. In

this study, only the extraction of the ‘true-edge’ was considered and the DGPS

measurements were based on this true ‘true-edge’, or fairly stationary edge.

3.5 Comparison of test case TCW and NDWI results

To evaluate the significance of the results, we empirically analysed the results of the

NDWIs independently and then compare them with TCW. We selected unique

sections of the lakeshore: (i) point of river entry into lake (A); (ii) most irregular,

complicated shoreline portions of the lake (B); (iii) long narrow strip of the lake–

mountain (cliff) edge (C); and (iv) where there is widespread water plants and algal

bloom (like A and C) in the lake. In figure 3(a) (false colour composite of ETM +
bands 4, 5 and 7), sections A, B and C of the lake are marked out. The rationale for

comparing the indices is to determine the optimal indices that are informative

enough to depict the ‘true-edge’ information. This provides for redundancy where

there is overlap in information content, resulting in enhancement and more accurate

detection and isolation of the feature of interest.

3.5.1 River–lake confluence (portion A). In figure 3(b), the significant point of

assessment is the point of entry of a river into the lake and the subsequent sediment

deposits, algal bloom and general lake surface instability around this part. This

phenomenon is also observable in other similar portions of the lake. This implies

that the reflectance here will be different from that of the lake, even though it is lake-

water. The objective is to identify which of the NDWIs best estimates such a portion

of the lake (circled region as in figure 3(b), zoom section of portion A) by accurately

defining the shoreline and including the red tone area as part of the lake.

The results for NDWI1 were not assessed further because, as observed from the

results in figure 2(b), it is not possible to extract the lake accurately, leaving the

shoreline alone. The rest of the NDWI results for portion A are shown in

figures 3(c)–3(f ).

All the NDWI results present different shorelines. This is the problem when a user

decides to use a specific NDWI before comparing with other alternatives.

Comparing these results to the original image, figure 3(b), and field data, while

focusing on the portion of interest, we found that: (a) NDWI2 overestimated the

true shoreline; (b) NDWI3 estimated the shoreline in such a way that we had to

decide whether to include the pixels defining the confusing portion (A). In other

words, NDWI3 gave good results around this section, separating pure water and

impure water. However, these pixels are similar to others within the scene. Thus a

manual approach would have to be adapted to threshold out non-water pixels. This
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was not our desired objective, as we envisaged a more automated, rapid approach

with minimal error. (c) NDWI4 and NDWI5 underestimated the shoreline not only

by excluding the test portion but also by including non-water pixels (as bright pixels

with the same DNs) within the scene. Hence, for this portion of the study, we

concluded that NDWI3 gave the best result, as it accurately estimated the shoreline

and also took care of the presence of disturbances in this part of the lake, so that

further processing may yield better results.

The TCW results for this section are presented in figure 3(g). Comparing the

region of interest between the two indices (TCW and NDWI), it is clear that the

TCW recognized this confusing portion as part of the pure water. Only the results

from NDWI3 are comparable to those of TCW. The apparent difference is that

(a) (b)

( f ) (g)

(c) (e)(d )

Figure 3. (a) Location of test areas A–C in FCC and (c–f ) results of NDWI2–5 and (g) TCW
of (b) test area A of Lake Nakuru.
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NDWI gives a crisp definition of the shoreline as compared to the near-fuzzy

shoreline delineated by TCW. Thus, an improvement on the results of TCW also

requires further post-processing such as thresholding with density slicing. Inspecting

the two images, we found that they exhibited a similar flow pattern of the shoreline.

This is a good indicator of the reliability of shoreline definition from the two

methods.

3.5.2 Irregular and complicated shoreline (portion B). Portion B, representing a

complicated and very irregular shoreline, was analysed in order to depict the

suitability of the two approaches. In this section, a narrow extension of the lake into

land makes it difficult to map the shoreline due to mixed pixels caused by obscuring

(a) (b)

(c) (d )

(e) ( f )

Figure 4. (a) Location of test area B in FCC; (b–e) results of NDWI2–5 and (f ) TCW of
Lake Nakuru.
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of the very narrow shoreline by overhanging land, shadows and trees. Figure 4(a)

shows the original image-portion of section B. The NDWI results for NDWI2–5 are

presented respectively in figures 4(b)–4(e). The results of NDWI1 are omitted as they

are the poorest.

Figure 4(b) shows that NDWI2 underestimated the shoreline by defining a perfect

shoreline but excluding the lake extensions or protrusions (narrow penetrations into

land) as compared to the original image and field checks. NDWI3 estimated the

shoreline in a way that included the protrusions, mostly shallow water, with

different pixel values, such that it is up to the user to apply detailed thresholding to

define the true water pixels. This leaves the question of precise shoreline still open

and the arguments presented for portion A apply to portion B for NDWI3. NDWI3

gave nearly similar results as NDWI1 with evidence of varied degrees of

underestimation and overestimation of the shoreline. NDWI5 overestimated the

water body, including non-water pixels as water pixels. From this empirical

evaluation, NDWI3 gave the best NDWI result for this section of the lake, although

it underestimated the shoreline in most cases, but included the complicated portions.

The TCW results in figure 4(f ) delineate the detailed structure of the shoreline

and, as observed in scenario A, the precise boundary is not perfectly defined or

visible. Compared to NDWI3, TCW gave better results in estimating the

complicated shoreline. However, overall, TCW gave better results in this portion

than the NDWIs, as it approximated the narrow lake portions that encroached into

land very well.

3.5.3 Lake–mountain interface (portion C). In the third analysis, an edge strip was

analysed (portion C). The edge was taken along the steep mountain (land)–water

intercept (cliff) on the eastern side of the lake. This portion presents a sharp edge

and is a good indictor for shoreline estimation because of the sharp intercept

between water and land. However, shadow and other effects may prevent complete

distinction between the land and water. Figure 5(a) shows the original image. The

results for portion C are presented in figures 5(b)–5(e), respectively, for NDWI2–5.

The point of evaluation in scenario C is based on the ability to estimate the

shoreline. This seems to be achieved by all the NDWI results except for NDWI5,

which overestimated the true shoreline by including non-water pixels, as in the

adjacent mountain, as water pixels. NDWI2 and NDWI4 gave very similar results

with fuzzy shoreline characteristics. The best shoreline delineation among the

NDWIs was achieved by NDWI3.

The TCW results are presented in figure 5(f ). Comparing TCW results with the

NDWIs, TCW defined the mountain–water shoreline more accurately, although not

crisply. The shadow effects and other spectral interferences could have introduced

this. The TCW results are comparable to the NDWI3 results except that NDWI3

present a sharper shoreline estimation than TCW. NDWI3, however, slightly

underestimated some portions that were correctly defined by TCW, indicating that

the sharpness of the shoreline does not necessarily imply higher accuracy.

From all the above results, it is consistently observed that NDWI3 and TCW gave

the best results. Conclusively, the assessment of portions A, B and C indicate that

TCW gave the best results, followed by NDWI3. NDWI3 delineates the optimal

boundary with both slight under- and overestimation compared to TCW. TCW

includes all the water pixels with minimum errors of omission and commission. This

indicates that a combination of the two methods may result in better information for

a more robust delineation of the shoreline. This is the rationale of this research. The
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combination of these indices is termed the Water Index (WI), to avoid confusion

with other similar existing indices.

3.5.4 Reliable and unreliable edge information. The above results only considered
the edge information for the ‘true-edge’ for reliable change detection reasons.

However, the shallow edge information, that is all the water at a given instantaneous

time, can also be mapped by combining the buffer zone with the ‘true-edge’.

Note that if the shallow edges are to be included as part of the true lake edges,

then from the results in figures 3 and 4, NDWI2 and NDWI4 have to be compared

for the most informative or relevant NDWI. This is because by empirical evaluation,

these indices present the most informative shallow-edge buffer zone. Then the

combination of the suitable NDWI and TCW is made and the threshold for the
optimal number of pixels to include is applied. The result of this analysis is

demonstrated in §4.6.

4. Water Index (WI)

Following empirical analysis of the results, TCW gave better results than either of

the NDWIs. However, the problem of a clearly defined shoreline is persistent in

both the results; that is, crispness does not imply higher accuracy and fuzziness does

not necessarily mean lower accuracy. Striking a balance between these two

observations is a way forward to accurate shoreline detection from remote sensing

data. A new WI has been proposed that combines the TCW and NDWI3 to

accurately delineate the water body.

The logic to this approach is threefold. (1) The TCW by itself does not normalize
the wetness index coefficient. This implies that TCW may contain irrelevant pixels

despite being a weighted index, implying that the weights used in the TCW

(a) (b) (c) (e) ( f )(d )

Figure 5. (a) Location of test area C in FCC; (b–e) results of NDWI2–5 and (f ) TCW of
Lake Nakuru.
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computation for each band reflectance may not fully explain the land–water

interface separation; thus additional complementary information is essential. (2)

The NDWI introduces the normalization effect, by taking the ratio of the difference

to the sum, which can in turn be used to fix the boundary in some logical way

through comparison with and according to TCW. (3) The choice of band 5 and band

4 (NDWI3) among the NDWIs is supported by the fact that band 5 has the highest

weight even in the computation of TCW (equation (1)). This indicates that band 5 is
the most significant band in land–water interface separation. The proposed WI is

presented in equation (7) as a combination of equations (1) and (4). (Note that the

WI is computed in unsigned 8-bit mode.) Although these indices are not new, their

combinational approach as identified in this study is considered to be more useful

than if used independently as in previous studies (e.g. Frazier and Page 2000).

WI~f TCW+k, NDWI3ð Þ ð7Þ

where k is a constant that can be varied based on the rules and its choice depends on

the spatial resolution of the sensor and f denotes a function. A set of rules

established for the computation of WI are presented and illustrated in table 1. It is

worth clarifying that for the ‘true-edge’ information mapping, the rules presented in

table 1 are biased based on TCW for water identification and NDWI for masking

non-water pixels in the WI computation.

The results of WI based on Lake Nakuru are illustrated in figures 6(a) and 6(b) for

the Landsat TM and ETM + , respectively. The results show perfect shoreline

definition and water body isolation from the rest of the scenes. Figures 6(c) and 6(d )

for TM and ETM + showing the mountain–lake shoreline, which was fuzzily

represented before by the TCW and NDWI (figure 5), are now perfectly isolated. In

§4.1 the rationale for the combination is described. The WI results are then analysed

using geometric collocation assessment and scatter plot comparison of the fusion
between TCW and NDWI3.

4.1 Geometric collocation and combination rule

Taking a portion of each of the three results, NDWI3, TCW and WI, we demon-

strate the concept of the geometric collocation accuracy analysis by identifying and

following similar points on conjugate images. We extend this section to explain how

the combination of TCW and NDWI3 is achieved. Figure 7 shows the example with

cross-hair intersection and point #1 common to the three images.

At the cross-hair point (lower-left pixel) (figure 7(a–c)), the spectral reflectance is

the same, that is water in TCW and NDWI3, hence water in the WI. We call this rule

Table 1. Rule sets for the Water Index (WI) based on TCW and NDWI3.

TCW NDVI3 WI (rules) Notes/remarks

Rule 1 Yes Yes Yes Cross-hairs (figure 7(a–c))
Rule 2 Yes No Yes
Rule 3 No Yes Yes (if water DN5DNTCW¡1)

No (else)
Point #1 (figure 7(d–f ))

Rule 4 No No No Every point outside the
boundary defined as water
by TCW and NDWI3

TCW, Tasseled Cap Wetness; NDWI, Normalized Difference Water Index; DN, digital
number.
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1 or scenario 1. As TCW is a better estimator of the shoreline than NDWI3, we

model the new shoreline according to the following conditions or rules based on

empirical investigations and field verifications (table 1).

(a) (b)

(c) (d )

Figure 6. Results of WI from (a) TM data and (b) ETM data over Lake Nakuru. (c, d )
Eastern part of Lake Nakuru.
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The DN representing water is determined empirically and is denoted as

DNTCW¡1 for TCW and DNNDWI for NDWI3. Because of the fuzziness of the

shoreline determined by TCW, we empirically determined the (k5¡1) value to

correctly define the shoreline based on the neighbouring pixels to DNTCW. Note that

the (¡1) also represents a single pixel that is equivalent to 30 m630 m. This basic

threshold is brought in because of the observed lake water characteristics in the

narrow protrusions into the land. The set of rules that were automatically

implemented are summarized in table 1. The rationale for constructing table 1 is

self-explanatory in that water pixels are obtained if they are determined as water

pixels both in NDWI3 and in TCW and/or if they fall within a threshold set for

TCW water pixels.

By combining the common points based on the above set of rules, perfect

shoreline with exact geometric correction is defined with WI as the result. It is

evident from figure 7 that the WI results pose a 100% spectral separability from the

neighbouring and/or entire scene pixels. The analysis of the results shows that the WI

proposed in this study is more promising for lake delineation than the independent

methods previously used in other studies. This is a significant finding for any kind of

further spatial analysis of water systems, as physical mapping is the first step in any

water resource studies. Through on-screen control point comparison in image-to-

image mode, the fusion of the two shorelines was found to be perfect in accordance

with the rules in table 1. As already cited, the ‘mother’ indices are not new; however,

their combinational approach as identified in this study is considered to be more

(a) (b) (c)

(d ) (e) ( f )

Figure 7. Illustration of WI rule using NDWI and TCW. (a–c) Rule 1; (d–f ) rule 2.
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useful than if used independently as in previous studies (e.g. Frazier and Page 2000).

In other words, the combined results have more weight and accuracy for mapping

the lake water body.

4.2 Assessment of WI results using a 2D scatter plot

Using a 2D scatter plot, we determined the possibility of extracting water bodies

from Lake Nakuru between 1986 and 2001 using the NDWI3, TCW and WI as

independent methods. From the scatter plots (figure 8), the following observations

were made: (a) using NDWI3, the separability of water bodies from other scene

features is very low as depicted by the close clustered points in the feature space. (b)

In the case of TCW, the Euclidian distance between the water pixels and other scene

pixels are fairly separable, more so compared to NDWI3. However, few non-water

pixels are very close to the determined water feature space. (c) WI clearly takes the

advantages posed by the ‘mother indices TCW and NDWI3’ and perfectly separates

the water pixels from the rest of the scene features. It exhibits a large Euclidean

distance of separability that curves out the water from the rest of the features. This is

the phenomenon that formulates the hypothesis of this study. Even though the 2D

scatter plot depends on the look-up scale table or stretch used, it may serve as a

useful indicator for separability to some degree.

4.3 Geometric accuracy assessment and comparison

To validate the accuracy with which the shoreline was delineated using the three

methods, NDWI3, TCW and WI, a 3-day DGPS coordinate mapping campaign

around Lake Nakuru shoreline was carried out by three groups. Although each

group had its extent determined, it was agreed to overlap each other’s area of

coverage such that redundancy in some of the measured points was used to assess

the accuracy of the measurements in general.

More than 200 points were collected and 167 of the points were established as

reliable for the geometric accuracy assessment. Of these points, 67% were located on

the more gentle western side of the lake. A linear regression plot was then generated

between the ground points and the test scene ETM + NDWI3, TCW and WI results.

The regression plots were generated by computing and comparing the absolute root

mean square errors (ARMSEs) between the point coordinates derived by DGPS

observations and those of the study results. Figure 9 shows the regression plots of (a)

NDWI3, (b) TCW and (c) WI upon the ground points.

The lowest regression (R50.55) was observed for NDWI3, followed by R50.74

for TCW and R50.98 for WI. Given that the DGPS observations were made during

the satellite overpass period close to 3 April 2001, the linear regression of the

shoreline observation from the satellite data and the ground observation shows that

there was a match between the DGPS measurements edge information and the

satellite-derived edge information. The best match of the regression fits was that

from the proposed approach of WI, followed by TCW and then NDWI3. These

results also counter confirm the 2D scatter plot observations.

4.4 Change detection using WI results

The second objective of this research was to estimate the surface area and hence

determine the change in the sizes of the five lakes between 1986 and 2001. For

change detection, the results of the WI were used (figure 6(a, b)). As the precise lake
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(a)

(b)

(c)

Figure 8. Two-dimensional feature space of the Lake water in NDWI using TM and ETM
data for (a) NDWI; (b) TCW; and (c) WI.
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boundary has been defined, the exercise of lake surface area change detection is now

straightforward. Thus, a direct image differencing was applied (equation (8))

between the two dates:

Figure 9. Linear regression of shoreline identified by DGPS with (a) NDWI; (b) TCW; and
(c) WI.
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DI~IWI86{IWI01 ð8Þ

where IWI86 and IWI01 are the water indices for the 1986 and 2001 images, and DI is

their difference.

The assumption in image differencing is that the unchanged pixels will have a zero

difference in DN value and as the two images were normalized, the same is expected

throughout the scene. The changed areas are highlighted in the DI image. Looking

at the results from figure 6(c) and 6(d ), it is clear that the change in shoreline will be

distinct from the rest of the scene features. This implies that there is no editing of the

change/no-change information, that is, the value representing lake water change will

be a single unique DN value. This DN value can be determined by either density

slicing or unsupervised classification; both techniques gave the same results for

identifying the changed pixels for the water body in the test scene of Lake Nakuru.

The change detection results for the Lake Nakuru test scene are presented in

figure 10(a). Within the test scene, the results were analysed for surface area change

accuracy. Some of the depicted changes are not associated with the lake itself, that is

errors of ‘omission’ and ‘commission’. Note that the omission and commission

errors are not used here from the classification results analysis point of view, but

rather in the inclusion and exclusion sense. Attempts using two counter-methods to

validate the true lake size were investigated. First, an automatic threshold based on

size was applied such that if the total size of a group of pixels at the examined date

was less than that of the estimated lake size, then they were eliminated from the

scene. This is straightforward as the lake is far larger than any other enclosed

features within this scene. To check the accuracy of this first approach, a constant

lake size was determined by iterative standard deviation selection, while performing

region growing within the lake in the original Lake Nakuru images (figure 6(a, b)).

The grown area is subtracted from the entire scene and the true lake size defined.

Both methods gave similar results. In figure 10(b), the true water pixels are

differentiated from the error pixels to estimate the true lake size and subsequently its

surface area change. The results were that the true change in Lake Nakuru was

estimated at 2.4858 km2. The same approach was applied to the five lakes

simultaneously and a summary of the results is presented in figure 11 and table 2,

and in §4.5.

Figure 11 shows the results for ETM-NDWI (b), ETM-TCW (c), ETM-WI (e)

and TM-WI (d ) with ETM False Colour Composite (FCC) over the study area.

Table 2 gives a summary of the corrected lake area data for the five lakes.

4.5 Brief assessment of lake-type change vector

Analysing the observed changes in terms of lake-type change vector (decrease/

increase), expressed as area percentages from figures 12 and 13, the following

observations were made:

(a) The saline lakes, Bogoria, Nakuru and Elementaita, although the smallest in

size of the five lakes compared, showed the least change vector (decrease in

size) of 4.80%, 6.58% and 11.61%, respectively. Lake Elementaita, however,

with an area of less than half the size of these saline lakes, had the highest

change vector. Lake Nakuru had a higher surface area change than Lake

Bogoria, although both are of nearly the same size.
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(b) The non-saline lakes, Baringo and Naivasha, the two largest of the five lakes,

exhibited the largest change vectors of 14.23% and 17.96%, respectively. Lake

Baringo, although slightly smaller than Lake Naivasha, depicted a changed

area that was less than that of Lake Baringo.

(c) Following from (a) and (b), from Lake Bogoria going south, the decrease in

the sizes of the lakes increases, as depicted by the change vectors.

(d) The lakes ranked in size, with respect to the 1986 statistics as the base, from

largest to smallest were Baringo, Naivasha, Nakuru, Bogoria and

Elementaita. However, comparing the individual lake size change ratios,

Figure 10. Change detection of (a) WI and (b) the results of accuracy from 1986–2001 over
Lake Nakuru.
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(a) (b)

(d ) (e)

(c)

Figure 11. Results of (b) ETM-NDWI; (c) ETM-TCW; (d ) TM-WI; and (e) ETM-WI with
ETM FCC over the study area.
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we observed the following order: Naivasha, Baringo, Elementaita, Nakuru

and Bogoria in an increasing fashion. We note here that the saline lakes

changed more with respect to their original surface areas than the non-saline

lakes.

4.6 Shallow lake edge mapping

The above results focused on change detection based on non-dynamic edge

information. To map the shallower dynamic edges of the lake, equation (7) was

modified to equation (8) as follows:

WIse~f TCWzx, NDWI2zyð Þ ð8Þ

where se means shallow-edge, and x and y refer to the DN values of the buffer zone

in TCW and the chosen NDWI, respectively. The values for x and y are flexible in

choice and range and depend upon a particular scene. In this case NDWI2 was
preferred to NDWI4, even though they do not present significantly different results,

probably because the band 2 that is common to these indices plays a significant role

in detecting the mixed water/suspended solids shallow edge. This is in part a

motivation for the rationale of testing the indices.

The results demonstrating the shallow water mapping for Lake Nakuru using

ETM + are presented in figure 14 for the western flat section of the lake with the

shallow edge. The same set of rules as in table 1 are applied except that in this case

Table 2. Corrected lake area data.

Year

Baringo Bogoria Nakuru Elementaita Naivasha

PC
Area
(km2) PC

Area
(km2) PC

Area
(km2) PC

Area
(km2) PC

Area
(km2)

1986 153 979 139 37 029 33.3261 42 000 37.8000 18 130 16.3170 152 545 137.2905
2001 132 074 119 35 253 31.7277 39 238 35.3142 16 026 14.4234 125 144 112.6296
DI 21 905 20 1776 1.5984 2762 2.4858 2104 1.8936 27 401 24.6609

PC, pixel count; DI5IWI862IWI01, as defined in equation (8).

Figure 12. WI-based surface area of lakes studied for 1986–2001.
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Figure 13. Change in water spread in 1986 and 2001 for (a) Lake Baringo; (b) Lake Borogia;
(c) Lake Nakuru; (d ) Lake Elementaita; (e) Lake Naivasha.
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(a) (b)

(c) (d )

(e) ( f )

Figure 14. Illustration of shallow edge information extraction showing the edge position for
TCW results for (a) before and (b) after WIse adjustments (c, e) Edge information from TCW:
(c) before and (e) after WIse adustments. (d, f ) depiction of edge position after WIse was
applied.
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the optimal NDWI is different and the thresholds were determined as x526 to 240

and y52. These thresholds depend strongly on the physical and chemical

characteristics of the scene at the time of measurement. Figure 14(a) and 14(b)

depicts the edge information as determined from TCW and the WIse, respectively

(cross-hair points). Note that the buffer for NDWI2 is constant (y52) round the

lake and hence can be straightforward to interpret. From figure 14(a) or 14(b),

it is evident that there is a very shallow edge (mixed bluish/dark (indigo)

pixels – unreliable edge), a shallow edge (bluish pixels – considered as the ‘true-

edge’ for change detection) and a deeper edge (dark pixels – pure water body) on

moving from the left to right across the water body. The common cross-lines in

figure 14(c) and 14(d ) shows the position of the edge in the TCW image and in the

WIse-derived image. In figure 14(e) and 14(f ), the adjusted edge to include the

shallow portions is presented. In this case of shallow edge mapping, the selection of

x and y values depends on which location the analyst considers as the appropriate

edge. The WIse results are only used for illustration of how and where shallow edges

can be mapped.

5. Discussion

5.1 Lake water body mapping and change detection

Referring to the literature review in the introduction, previous studies reported that

thresholding of band 5 and band 7 and together gave good results. In this study,

normalization of these bands (NDWI1) gave the worst results. This clearly indicates

that a combination of the two bands by normalization does not yield good results

for our case study. This implies that a combination of the SWIR bands is not

suitable if assessed or combined by normalization. However, if the weights of their

contributions are combined in TCW, their significance is realized (by introducing

the weights of 0.7112 and 0.4572, respectively, for bands 5 and 7). This indicates that

a direct combination of the two bands might give better results than their

normalization.

In order of performance magnitude, NDWI1 was ranked last, followed by

NDWI5, NDWI4, NDWI2 and finally NDWI3 in increasing order of performance.

This order of performance may be explained as follows. The ranking of NDWI3 in

first position implies that the MIR and NIR bands 5 and 4, respectively, are the

most significant for land–water identification with respect to normalization from the

entire visible, IR to SWIR optical portions of the electromagnetic spectrum. This

also implies that the Landsat visible and SWIR bands are not as significant as the

NIR and MIR bands. A similar argument explains the performance of NDWI2,

NDWI4 and NDWI5. Conclusively we observed that the MIR and NIR bands are

most suitable for this task, followed by NIR and the green band, then MIR and the

green band, the SWIR and the green band, and finally MIR and SWIR band

combinations.

To further explain the observation above, in the visible electromagnetic spectrum,

water, vegetation, shadow and land all have relatively high spectral reflectance. This

means separating water from the other predominant features within the visible

region may not be very feasible, and this was not tested in our study. In the NIR and

SWIR, water exhibits the lowest spectral reflectance compared to land and

vegetation. In the SWIR (bands 5 and 7), the spectral reflectance from water is

nearly zero, while land is at its peak of reflectance and vegetation also has a
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relatively high reflectance. The NIR and SWIR portions are thus the best to use in

separating water from vegetation and land as reported for the ‘true-edge’ detection.

From the water bodies detection and exact shoreline delineation, change detection

followed. All NDWIs gave very closely related results. Therefore, a redundant

reliable observation was necessary to counter-check the results; motivating the

comparison of the NDWIs to find out which one captures most accurately the edge

information. The results showed that inclusion of the visible region (band 2) was

suitable for mapping the shallow water regions more accurately, while for the ‘true’

lake edge, as in our interpretation, the infrared bands (5 and 4) were instrumental.

Band 7, although located in the MIR, was found not to be significant in either

shallow water body mapping or deep water edge delineation as observed in the

NDWI5 results.

The high regression by WI can be explained by the relatively higher spectral

separability compared with both TCW and NDWI3. WI showed that the shorelines

were detected with an accuracy of 98.4%. This is 22.33% higher than the TCW

results, and 43.19% more accurate than the NDWI3 results. The combinational

approach (WI) presented in this study is suitable in the sense that it not only

enhances the desired lake water body but also maps the shoreline more accurately

than the independent TCW and NDWI methods. The results of WI made the change

detection process a simple, fast and straightforward exercise for a wide area, that is

one scene of Landsat, with different lakes (saline and non-saline). This advantage

was brought about by the selection of suitable bands and the inclusion of weighted

transformation and normalization techniques together, leading to automatic

shoreline thresholding.

The results of the change vector analysis indicate that under natural conditions

(without human influences) the changes in the lake area may be dependent on the

salinity and non-salinity and may not necessarily depend on the size and location.

We note that the saline lakes changed more with respect to their original surface

areas than the non-saline lakes even though they were the smallest in size. This

observation requires a much more detailed ecological study and is not within the

scope of this study. Each lake has to be analysed in detail first before generalization

or making specific conclusions.

With the absence of MIR/SWIR bands in the new high-spatial resolution sensors,

such as QuickBird and IKONOS, the method proposed in this study may not work

directly. Thus alternative methods to address the uniqueness of these new datasets

(i.e. low-spatial resolution and high-spatial resolution) are being sought. Landsat

presents a good tool for water body mapping because of lower costs, higher

instantaneous field of view (IFOV), better spectral resolution and the fact that the

fluctuation of some shorelines are normally very high, such that its monitoring them

at, say, 1 m may not be suitable.

5.2 On the Rift Valley lakes and their dynamism

Many environmental risks to East African Rift Valley lakes arise within their

catchments and can be addressed by riparian states or lakes in the catchments

through appropriate basin management initiatives. However, other risks that arise

from atmospheric change can affect lakes over broad areas and will require regional

or even global action. There is now evidence that climate change, intensifying land

use (mobilizing nutrients) and toxic substances are increasingly affecting the

atmosphere over the lakes. The lakes are particularly sensitive to these changes
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because of their enormous surface areas, slow flushing rates and the importance of
direct rainfall in their water budgets. Their response times may be slow to yield a

detectable change, and unfortunately recovery times may also be slow.

It is possible for atmospheric effects to act antagonistically to impacts of

catchment change (e.g. evidence for lower productivity in different lakes despite

ongoing catchment degradation) but antagonistic effects may become synergistic in

the future (e.g. the positive effect that increasing atmospheric sulfur deposition

might have on mercury methylation). Improved understanding of the physical

dynamics of these lakes, and models to link their physical and biogeochemical

behaviour to regional, meso-scale climate models, will be necessary to guide lake
managers.

Each lake differs from the other with respect to limnology, catchment dynamics

and human impact. However, one thing in common to all the lakes is that they face

unprecedented differentiating pressures from a variety of human-related activities.

The crucial issues facing the lakes include rapid riparian population growth,

unsustainable exploitation of fisheries and other living resources (overexploitation),

pollution—microbiological and chemical, eutrophication, suspended soils arising

from deforested catchment areas, fresh-water shortage, global change, habitat and

community modification. The rapidly evolving ecological changes occurring in these
lakes threaten their survival as sites of great human heritage and may alter

permanently their ecosystem function and overall biodiversity.

Human activities are affecting the lakes directly or indirectly. Global climate

change resulting from greenhouse gases may have started to affect the lakes. It is

concluded that deterioration of the Rift Valley lakes has in general resulted from the

following major causes:

(1) Rapid population growth of the riparian communities with concomitant

rapid expansion of urban centres.

(2) Large demand of export markets for fisheries with no improvement in fish

handling capacities and technologies.

(3) Lack of compliance to and enforcement of legislations governing the fishery

industry and environmental pollution.

(4) Weak regional integration of legal and institutional implementing mechan-

isms or sustainable ecosystem management.

(5) Low level of community participation in ecosystem management due to lack

of education and public awareness of issues.

6. Conclusions

Automated shoreline data extraction from remote sensing multitemporal imagery is

difficult because of the effects of trees and shadows, shoreline structures, low water–

land contrast and other factors. The current study presents an approach for ‘true

lake edge’ information extraction and change detection from Landsat TM/ETM +
data series. The results of this work demonstrate that in the case of fast mapping of

changes in open water, such as lakes, a combination of TCW and NDWI3, called

the water index (WI), can be applied to multi-date data such as 30 m spatial
resolution Landsat 7 ETM + and Landsat 5 TM. Evaluation of the results through

rigorous empirical and statistical comparisons demonstrates that the shoreline

extracted is promising when applied in the simultaneous analysis of the differences
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in the surface areas of the five lakes within the Rift Valley between 1986 and 2001.

WI, upon regression analysis with the ground-estimated shoreline of Lake Nakuru,

detected the shorelines with an accuracy of 98.4%, which was 22.33% higher than the

TCW results, and 43.19% more accurate than the NDWI3 results. The results of the

change vector analysis indicate that the changes in lake area may be dependent on

the salinity and non-salinity and do not necessarily depend on the size and location.

We note that the saline lakes changed more with respect to their original surface

areas than the non-saline lakes. This requires more research and is not within the

scope of the current study. Further studies, including socio-economic and

biogeochemical analysis introducing 3D mapping of the lakes, with shorter intervals

of monitoring for spatial–temporal sensitivity and impact assessment, are being

considered.
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