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In this paper, an analytic mode! for mapping land cover change that uses a novel multiresolution anal-
ysis in concert with image differencing to identify environmental change/no-change areas is
presented. The method adaptively chooses thresholds to segment targets from background, by using
multiscale decomposition of the image difference. Changes due to atmospheric influences are auto-
matically suppressed and resolution heterogeneity problems minimized. Examples that demonstrate
the efficiency of the technique on medium spatial resolution Landsat multitemporal imagery are
presented. Empirical evaluation supports the suitability of this technique for fast identification of
changed scenes. As opposed to the traditional change detection methods, we directly detect land
cover changes rather than simply pixels. This is evident from the less-pixelated appearance of the
change maps. The technique is recommended for regional/local environmental vulnerability and risk
assessment as well for automated updating of GIS databases.

Keywords: Remote sensing; Automated environmental change detection; Wavelet transforms;
Multiresolution analysis

1. Introduction

The natural environment is constantly placed under significant pressure arising from the
increasing demands of economic and population growth. Management of the environment
requires constant knowledge of the resulting changes and their effects on land-use/land-cover
(LULC). However, the existence and/or extent of the LULC change cannot be adequately
analyzed and understood using traditional methods and techniques in environmental science
and physical geography. '

Frequently used change detection methods can be divided into enhancement and post-
classification techniques [1,2]. These methods have their own’ merits and demerits. For
instance post-classification comparison provides direct information on nature of land cover
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changes, which are less dependent on the image coregistration and temporal normalization.
However, they are often strongly dependent on the accuracy of the classifiers employed in
the process. Enhancement techniques are often more accurate in the detection of areas
exhibiting spectral change. However, the results may not necessarily be consistent with true
land cover change, and they often need further analysis in order to extract information on
the nature of the change. Enhancement techniques also require more accurate image coreg-
istration and temporal normalization. One other problem with most of these procedures is
that they are time consuming and rely heavily on human recognition, implying they are not
reproducible. ‘

The traditional techniques do not answer the following questions with regards to change
detection and modeling for environmental monitoring and management in a timely and effec-
tive manner:

(1) has any change occurred — change/no-change detection within a timeframe;
(2) where has the change occurred — spatial extent of the change;
(3) what kind of change has occurred — categorization of change.

From remote sensing data, LULC change detection and analysis faces additional challenges,
with regards to environmental change monitoring: (1) every imagery source has its own
geometric, spatial, temporal and spectral characteristics; (2) noise is often visualized as
change and is non-linear for every data; and (3) data amounts used in change detection are
often voluminous. The problems and limitations associated with single-date land cover infor-
mation extraction are compounded when attempting to produce land use change information
using multitemporal data.

We can adequately conclude that automated prodgction of spatially-detailed and themati-
cally accurate land use and land cover information from satellite image data continues to be a
challenge for the remote sensing research and application community.

Here, we propose an approach that tries to extract LULC change based on image transfor-
mation and multiresolution analysis as an unsupervised rapid LULC change detection tech-
nique. The proposed strategy determines changes via image differencing from the first
principal component transformed (PCT) images. Resulting change images are decomposed
using wavelet transform algorithm into different texture (spatial) scales. Temporal changes
are detected while no-change is suppressed. We are able to effectively visualize the areas of
change in the first, second and third scales from the Landsat ETM+ (2001), Landsat TM
(1986) and Landsat MSS (1976) imagery. The results are promising for rapid change moni-
toring and as a strategy for environmental database updating processes.

2. Data preparation

2.1. Experimental data and study site

During the past 30 years, the Lake Nakuru basin has been transformed from sparsely popu-
lated and densely forested expanse into a region that is heavily settled, extensively cultivated
and rapidly urbanizing. A key driver has been substantial increase in human population,
resulting from both past and continuing high fertility and extensive in-migration.

The data used in this study and study site are presented in table 1 and figure 1, respectively.
The geometric correction of the datasets was performed using image-to-image registration in
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Table 1. Experimental data.

Date of
Tast Site Data Size Resolution (m)} Acquisition
Landsat ETM+ 1024 x 1024 30 3Apr2001
Lake Nakuru Basin Landsat TM 1024 x 1024 30 283an}986
Landsat MSS 512x 512 60 25Jan1976
i1 50, 600 (TCPO) 1 Sheet - 1997 revised
1:250,000 (VEG) # 1976 #

ENVI 3.6 Software. The reference image being the Landsat ETM+ since it has better geomet-
ric calibration than the other Landsat data.

As shown in Table I, three different sensors are used in this study. The datasets
adverse fluctuations with respect to: spatial, temporal and spectral characterization resuiting
from differences in the sensors, acquisition and phenological differences.

3. Methodology

We begin our approach with the simplest theory of change detection via pixel-to-pixel
subtraction, as opposed to the alternate popular method of first segmenting the two images

Figure 1. Location map of study site (Lake Nakuru Basin).
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Landsat ETM+ “ Landsat TM “ Landsat MSS II = Image differencing

I Geometric correction | Multiresolution texture
classification
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Figure 2. Conceptual framework for LULC change detection analytic model.

into regions and then comparing the derived objects to see what change has occurred. Since
there are temporal differences between the input image sets, it can be expected that there will
be intensity differences between the images, as well as some amount of misregistration. We
first detect pixel-level differences and then build those differences into potential change areas
automatically using multiresolution segmentation.

The general framework for our LULC change detection included first geometric correc-
tion, PCT, image differencing and finally texture based change extraction with wavelet trans-
formation. Figure 2 presents the conceptual framework adopted in this research.

3.1. Theoretical basis

Almost every change detection algorithm can be thought of as a statistical hypothesis test.
The decision as to whether or not a change has occurred at a given pixel x boils down to
choosing one of two competing hypothesis: the null hypothesis H, or the alternative hypothe-
sis H,, corresponding to the no-change and change decisions at pixel x, respectively. The
decision at pixel x generally involves evaluating a cost function (or test statistic) and select-
ing a suitable decision threshold. In many approaches, the test statistic is based on a simple
difference image [D = I, — I;]. Where D is the difference image between time 12 and ¢1
images. Deriving changed areas from this result has arguably been a daunting task. In this
study, we propose an alternative technique based on multiresolution analysis to determine the
change/no-change areas.

One of the features that play an important role in the representation of landscape is terrain
texture. It is also one of the most difficult features to describe and identify by a machine.
Texture classification may be roughly divided into two categories: structural and statistical.
Methods that can handle the more structured textures use structural models of texture, which
assume that textures are composed of texture primitives. Statistical features based on second-
order gray level statistics and gray level difference statistics have been studied extensively
since the recognition [3], who proposed several features based on the co-ocurrence matrix.
More recently, model-based approaches related to Markov Random Field (MRF) models,
have been investigated [4,5].

In general, natural phenomena do not have a simple mathematical representation and do not
even obey the restrictions imposed by several methods in order to be applicable. This fact has
stimulated the search for new tools to describe variability of the landscape. In this direction, it
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is worth mentioning fractal techniques [6], chaos theory and the rather new tool, here used,
wavelet transform. This paper focuses upon the application of wavelet transfor
image analysis and to assess landscape structure or variability for change fe extraction.

3.2. Principal components transformation (PCT)

ainate noise. This results in

etter discrimination of the actual temporal differences. The first PCT (PCI) images of the
test data sets were chosen for the subseguent analysis since they contain the largest (>%90% of
the original image information) percentage of the total variance and have the maximum
signal-to-noise ratio. PCT thus (1) excludes any outliers and (2) reduces redundancy due o
high correlation in the Landsat images. Figures 3 and 4 show the false color composites and
the associated firet PCT images for MSS, TM and ETM+ respectively. The PCT results were
scaled with mean brightness value of 127.5. This is termed here as intensity normalization or
tonal balancing 1o take into account temporal and phenclogical differences. The histogram
plots of the normalized PCT images are shown in figure 5.

PCT was adopted to minimize the band redundancies and elizy

3.3. Change detection

Image differencing is the simplest change detection approach. We let/,; : R - R¥and 7, : R
— R¥ be two images. That is, each image maps a pixel coordinate x € R! to an intensity or
color I(x) € R*. Typically, £ = / (for gray-scale images) or k = 3 (for RGB color images), but
other values are possible and [ = 2 (e.g. satellite/surveillance imagery}. Assuming that a typi-
cal change detection algorithm takes the images /; and /, as input and generates a binary
image B : R - [0,1] called a change mask that identifies changed regions in the two images
according to some generic rule for example: '

BlX (1 if pixel correspond to significant change from I, (x) io I, {x)
=<
! [0 otherwise

Difference images generated by subtracting image values of one date from those of a corre-
sponding layer from a second date highlight areas of changing land cover between two dates.

{a) ) {c)

Figure 3. Faise color composites (FCC} of the test site for: (a) Landsat MSS 321-FCC; (b) T 432-FCC; (¢)
ETM+432-FCC.
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(&) (b) {0
Figure 4. First principal component (PC1) images of: (a} Landsat MSS_PClL; (b} TM_PC1; (cj ETM+_PCl.

Difference images may be viewed a single layer at a time (gray-scale), or three difference
image layers can be viewed together, one in each color plane. However, empirical determina-
tion of change/no-change {threshold) must be applied. This makes image differencing based
decisions slow and biased for change quantification and/or qualification.

Figure 5 shows the change/no-change results of the difference images. It is not possible to
automatically view the changes, not unless we apply a threshold based on some experience.
This is often a time consuming and non-reproducible approach to change detection.

3.4. Texture classification

Image texture features contain information about the spatial distribution of image pixels.
There are many methods for the computation and extraction of texture features including
gray level statistics, iaws masks, fourier transform, etc. The shortcoming of these methods is
that they cannot analyze signals both in spatial and frequency domains simuitaneously.
Recent developments in spatial/frequency analysis such as the Gabor transform and Maliat
wavelet transform provide good multiresotution analytical tools that should help in effective
multiscale feature-texture analysis.

In §3.4.1 we briefly discuss the theory of scale-based decimated discrete wavelet transform
(DDWT) as used in multiresolution analysis for change detection intwo discrete time-intervais.

1Ax1GA " T Bk j taxil T "
Bl T axioer LR ]
$axiotE [ Lax i P E
T, o )

aax19 L o 3 a0t
50x103E o~ '
EXCSTRg ’ E
20x135% - R <

~ o s . ) T N
9 Ed T BG 200 % y 51 20 Z j 50 T R
Sgkc Vaius S 18‘4&; \;q;’u&e 200 =8 v bam Vaiue >
4 !
& {b) {c}

Figure 5. First PCT image histogram plots for: (a) MSS; (0) TM; {¢) ETM-+. The y-axes represent the frequency.
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Figure 6. First principal component (PCl) difference — change images: {2} {TM_PCI)-(MSS_PCi); (b}
(ETM+_PC1)-(MSS_PC1); (¢} (ETM+_PCL-(TM_PC1).

3.4.1. Multiresolution analysis {MRA) — Maliat 2-D discrete wavelet transform. The
MRA provides a hierarchical pyramid for interpreting the imuge in terms of structures
(details). After one resolution step in the decomposition process, the image containing the

structure information for scales that are greater than the current scale is called context image,
or smooth image. If the analysis is pursued, this context image will be in turn decomposed in
details and another context image. In the discrete case, the details and the context images are
obtained by filtering and sub-sampling of the original image.

The multiresolution wavelet transform decomposes a signal into coarser resolution repre-
sentation, which consists of the low frequency approximation and high @ Jequency detail
information. Let the convolution of two energy finite functions, F{x, y) € L? (Ry; where R is
the real numbers and L? is the set of all functions, the approximation of a 2D finite energy
function f{x,y) at resolution 2, where integer ; is a decomposition level, can be characterized
by the coefficient calculated by the following convolution:

Ay f = ((FOu0)X 8y (=00, (Y227 m)

where m, n are integers; ¢(x) is a 1D scaling function; and ¢,, (x) = 2/¢(27/ x). In general
the ¢(x) is a smoothing function whose Fourler transform is concentrated in low frequen-
cies. The difference between approximation information at two consecutive resolutions 2
and 271, which are characterized by Ajf and f;j’ /. respectively, can be captured by the
detail coefficients computed by the following convolutions:

] lf ( f{x V)x{b’)] 1‘\ 5)1/2; 1( V) (q_E j_l)nyz_{j;_l)m)(n,m)é;p
2/—' f={f{xyx Y- (= x\)‘;’)m (= Vﬁ(Z_E’ _i)r’ 27Uy )\n mieZ?
D'gj—i F={f(x,mx Wi g(_:f)ii‘/z.f—l (_:3,)‘}(2—(j—1)!€’ 2-U-b m}(n,meﬁ
where W(x) is a 1D-wavelet function and v,; (x) = 27w (2/ x). The wavelet Iunct;on wxyisa
band-pass filter. Az f can be perfectly reconstructed from A2, W F D oD 2, f and 9

which are the coniexi, vertical, horizontal and diagonal sub-images ;_7}, Figures 7 and 8 ﬂlas-
trates the multiresolution-based procedure.
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LPF downsample —>
) - by 2 along y AIH f
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Figure 7. The decomposition of an image A2 ; f into 4 sub-images.

The L_P_F is the scaling function representing the low frequency components, while
H_P_F, which is the wavelet function, gives the high frequency components.

Mallat’s [7] experiment suggests that by using wavelet decomposition, statistics based
on first-order distribution of gray levels might be sufficient for preattentive perception
textural difference. To obtain features that reflect scale-dependent properties, a
gray-level feature is extracted from each scale separately and their texture energy
assessed. T

An appropriate quantity for analyzing object segmentation using this method is the texture
energy expressed as:

. 1 M N . )
El=— Di(m,n
y MN"%%( i (m,n))

where M, N = the size of given scope; Dj"-(m,n) = the element of sub-images from wave-
let transform; j = the direction of the wavelet transform and i = the depth of wavelet
transform. These wavelet energy signatures E; reflect the distribution of energy along
the frequency axis over scale and orientation, which may vary according specific feature
characteristics.

Azl-z f D;]-z f

. D, f
Dzzf-z S D;I-Z S

D f D, f

Figure 8. Example wavelet representation pyramid structure.
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Wavelet transform has a number of advantages over other transformation and multiresolu-
tion analysis methods. One is spatial discrimination and second is multiscale representation.
These advantages make it more adaptzble to scale-based-object change detect

4. Results and discussion

By applying the wavelet decomposition, we determine the change from no-change areas
automatically from the difference imagery, as explained in §4.2. The potential of the
proposed change detection scheme is demonstrated by analyzing different feature-regions of
the land cover types.

4.1. Object change segmentation using wavelet

Since the datasets have been acquired over large and diverse geographic regions character-
ized by three different Landsat sensors, true land cover changes due to, for example, defores-
tation and loss of vegetation are often compiicated by other coexisting adverse fluctuations.
These adverse fluctuations do not represent true land cover changes as explained in §2.1. We
argue that through resolution decomposition, it is possible to derive explicilly the changes
from insignificant changes.

Figures 9—11 show the level 1 results of the change decomposition sub-images in the verti-
cal, horizontal and diagonal features, using Mallat’s discrete 2D-wavelet transform. At indi-
vidual levels it is not obvious where there is change or no-change through independent
analysis.

Figure 12 shows the binary encoded histogram evaluation of the change pixels in the gray-
image (figure 6(a)) and in the wavelet-sub-images. The different peaks represent the change
pixels for different change land cover, which also correspond to the feature texture energy.

In order to extract the changed areas, we apply a high pass filter since the change informa-
tion is associated with the high frequency-signal component of the image as iliustrated in
figure 12 above. Figure 13 shows the change extraction processing flow. The suggested
clustering can be carried out with any unsupervised classification algorithm.

In order to analyze the classes further we constrain our analysis to allowable changes only
as shown in table 2.

(@) ) (©

Figure 9. (TM-MSS) level | change sub-image: (a) vertical; {b} horizontal; {¢) diagonal features.
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(&) (0) {©

Figure 10. (ETM+-MSS) level I chaage sub-image: (a) vertical; (b) horizontul; {c) diagonal features.

4.2. Change detection and analysis

In this section, we present resulis for changes between 1976-1986 and 1986-2001. To evalu-
ate some of the results of this research, we take a case of an expanding urban area (blue rect-
angle) for illustration. Figures 14 and 15 show snapshots of these features/areas in the 432
false color composite.

The red triangle indicates the urban change from 1976 to 1986. This is the same scene as
figure 14. At level 1, the blue reflecting pixels represent changes associated with urban
land use. These are mostly residential/concrete surfaces. Level 2 shows changes mostly
associated with vegetation, as green. Thus interpretation of the resulls of both levels is
essential for understanding the different levels of change. The rest of the levels do not
show significant information, due to the coarse spatial resolution. At each level, different
spectral clusters represent different class conversations while the O-gray values represent no
changes.

in Figures 16 and 17, we present the false color composites of change/no-change between
(TM and MSS), and (ETM+ and TM) respectively. Due to the immense amount of change
between (1976-2001), we do not present the results here. Most of the change areas are in blue
and these are mostly urbanization and agricultural activities.

(@) () ©

Figure 11. (ETM=+-TM) levei 1 change sub-image: {a) vertical; (b) horizontal; (¢} diagonal features.
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Figure 12. Change pixel histogram distribution if: (a) gray-image; (b) and wavelet sub-bands. The peaks in the
gray-scale image are split in the wave-let sub-bands.

Change texture - Highpass
features fitter
Y
Clustering or
Change feature | i
‘dentification »> Layer thresholding

(optional step)

Figure 13. Change/no-change map generation. This phase separates the high frequency information.
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Table 2. Allowable change and no-change iand cover combinations. (- implics no change, eise possibie change.

From—To Urban Vegetation Agriculture Forest Bare

Urban -

Vegetation

Agriculture - -
Forest - -

Bare - -

It is imperative to mention that it is nearly impossible with methods like image-differenc-
ing, post-classification comparison to accurately identify change pixels based. This is as a
result of not only the radiometric and spatial differences but also it may be too complex 1o
derive an accurate the change decision.

etween 1986—2001, the results are shown in figure 17. Figure 17(a) shows the same
urban area as that depicted in figure 16. Again the blue pixels represent changed urban pixels.
Other changes within the urban area are represented with different tones. In figure 17(b),
major changes in part of Nakuru Town are shown with blue pixels. The white reflecting
pixels within the white square are changes due to the construction of sewer plant. In figure
17(c), mostly vegetation changes appearing as green pixels are shown especially around the
lake and within the town. While green represents more vegetation, pink are areas where vege-
tation has been replaced for urban development.

5. Conclusion

The dynamism of LULC is complex and it is suggested that it can best be understood through
hierarchical spatial-scale analysis. With the vast amount of remote sensing data, techniques
involving human recognition are not robust enough for fast multitemporal change analysis.
Through spatial-scale analysis, it is demonstrated that it is possible to discriminate change

@ (b}

Figure 14. Urban agglomeration between 19761986 test scene within rectangle.
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Figure 15. Urban agglomeration between 1986-2001 (snapshot). The circles indicate one of main urbaaization
change areas.

from no-change. With this approach, we are able to quickly pinpoint the main change areas.

Even though the changes are well discriminated, their quantification is not accuratel
o

possible at the resolutions of the resuiting scales.

5.1, Testing different wavelets

1t was found that with waveiets that are not symmetric such as Daubechies, Symlet, Coiflet,
some biorthogonal spline family wavelets may not be suitable for object/feature exiraction.
Given that in our case feature positions are very necéssary, these types of wavelets shift the
positions of features/objects, which makes further comparison impossible. Also, for these
other wavelets, during the decomposition, it is observed that the scaling function forces the

(b)

Figure 16. [TM-MSS] change/no-change at: (a} level 1: (b) level 2. Most of the blue pixels are urban converied
changes.
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(@) (b) ©

11

Figure 17. Wavelet transform composites Tor {1986-2001): {(a) level 1 showing the same urban area; (b) level
|showing ihe main changes in Nakuru town and the environs; {¢) levei 2 results of the same site as (b). The square
shows the sewer plant {(white reflecting pixels) location change.

approximation data to comply with its waveform. This implies that at large scales, the
approximation is highly distorted by scaling function. Mallat wavelet is thus considered the
most suitable for this task.

5.2. Land cover change detection and analysis

The test results are influenced by the complexity and spatial resolution of objects. 1t is worth
noting that the test area was selected to represent the most difficult situation. Although the
results do not separate the change objects explicitly, the strategy used in this research would
be more feasible with higher spatial resolutions, e.g. <15 m.

Conventional methods for change detection, such as image-differencing alone, muitidate
principal components transformation, multidate clustering or RGB-NDVI color composite
change detection, obviate the need for a high degree of a priori knowledge, but require
substantial @ posteriori interpretation. The method addressed in this research explicitly iden-
tify a priori and a posteriori the types and natures of land cover changes within the multi-
temporal remote sensing data. Our approach is a prototypical change detection system that:
(1) minimizes elaborate human recognition in the change detection process; (2) minimizes
noise from change detection process; and (3) automatically detects change/no-change
regions emphasizing different land cover at different resolutions or scales. We also argue
that as opposed to the traditional change detection, we are dealing with objects direcily
rather than simply pixels. This is evident {rom the less-pixelated appearance of the change
maps.

Some of the contributions to which this research can be extended include: rapid environ-
mental change priority and vulnerable zones identification, and automated GIS database
upgrading by selecting changed areas. Changed areas are rapidly identified by direct compos-
ite display avoiding any threshold definitions.

This study demonstrates the fact that land cover changes are dependent on the spatial and
temporal domains at which they are assessed. Shorter temporal domains with better spatial
resolutions are envisaged to yield better results. Our future research is to adopt a change
componentization system that implicitly extracts changes with respect to spatial and spectral
characteristics resulting from multiscale analysis.
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