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ABSTRACT

A challenge encountered with remote sensed (RS} data today is the determination of which RS data source gives the
most informative data for a three-image set for colour compositing or digital analysis. In this paper, in order to compare
the spectral contrast from Landsat TM and MOMS-2P (MODE B), for urban-suburban mapping, different procedures
for spectral contrast optimisation: colour composite display and principal component transformation (PCT) were tested.
The scene features/objects were classified using a hybrid maximum-likelihood classification approach.

For these two steps of image processing, the best results were obtained by respectively using selective PCT and
colour compositing for the Landsat TM and MOMS-2P data optimisation. Classification results analysed using the
statistical KAPPA and TAU coefficients of agreement indicate a slight improvement in the object/feature classification
from the lower medium-scale (MOMS-2P-18mx18m) in comparison to the upper medium-scale (Landsat TM-
30mx3om) data for the scene. These results are illustrated using divergence and scatterplots for class separability

analysis.

INTRODUCTION

Faced with the increasing availability of RS
data, the user has to choose the appropriate data
source for mapping as much information as
possible into a reduced sub-set of images for
digital analysis and/or colour compositing. A
user is often interested in the information that is
unique in each data source and spectral band as
compared to information that is common to all
the data sources and their bands. That is, what
new information does each sensor and its bands
contribute that is not contained in others?
Mapping this spectral difference or contrast and
understanding what causes the contrast can be
important in different applications. The urban-
suburban area presents a case study of
heterogeneous spectral responses. These areas
require detailed and concise spectral contrast
analysis for any meaningful feature/object
analysis to be done.

The objective of this paper is to illustrate the
utility of the medium-scale data sources for
urban-suburban  mapping. The  following
execution steps were taken: (1) multispectral
data optimisation, (2) training class evaluation,
(3) supervised maximum-likelihood
classification and (4) classification results
validation.

In this paper, (1) “information” is used in an
informal rather than formal sense. The definition
for information is taken as *“new information
indicates the apparent presence of previously

unavailable clues or insights into the
characteristics of the scene being viewed”. (2)
Medium-scale, in terms of spatial resolution, is
considered to range between 6-30m. Lower
medium-scale is 6-18m spatial resolution and
upper medium-scale is 20-30m spatial resolution.
Micro scale would be considered between 1-5m,
while macro-scale is considered above 30m. (3)
Features/objects are also referred to as land uses
where relevant.

TEST SITE AND DATA

The six reflective bands of the Landsat TM
and the four reflective bands of MOMS-2P
(MODE-B) (Table 1) were examined to assess
their utility for part of Cape Town City. Figure 1
shows the location of the study area. The area
under consideration lies between latitudes
33°457-33°56°S and longitudes 18°26-18°34"E.
Ancillary data included aerial photos, base maps
and ground reconnaissance.

Table 1: Landsat and MOMS-2P images
characteristics

777777 Landsat TM MOMS-2P
Sensor ™ MS/P
Date 1993-07-20 1996-10-13
Season Winter Spring
Resolution 30m 18m
Bands 6 4
Projection UTM-USGS -
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URBAN-SUBURBAN SPECTRAL RESPONSE

The fundamental premise of remote sensing is
that object/feature information is transmitted
through space via force fields, and in particular
via spatial, spectral and temporal variations of
these fields. Then to capture the sensed data, one
must measure those variations and relate them to
classes of material of interest.

The sensor material must measure the
variations, and then the analysis system must
provide for relating the measurements to the
classes of materials of interest in any particular
case and with acceptable accuracy. All sensors
focus on spectral variations for pragmatic
reasons, although spatial and temporal variations
have not been ignored.

The concept of how these variations are
represented mathematically and conceptually is
an important step in defining how the analysis
process should proceed. There have been thrée
principal ways in which multispectral data are
represented quantitatively and visually. These
are: (1) in image form, i.e. pixels displayed in
geometric relationship with one another, (2) as
spectra, i.e. variations within pixels as a function
of wavelength, and (3) in feature space, i.e.
pixels displayed as points (clusters) in a N-
dimensional space.

In this paper the spectral-space representation
is used to illustrate the spectral variability or
response within the urban-suburban space.
Figure 2 shows land cover (water, soils and
vegetation) spectral response within the visible
(VIS), near-infrared (NIR) and mid-infrared
(MIR) parts of the spectrum. Figure 3 shows the
urban surface spectral plots in comparison to the
land cover.
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Figure 2:Land cover spectral reflectance
(after Bird, 1991)

From Figure 2 it is observed that all the land
cover features can be mapped in the VIS. Water
absorbs all the energy in the NIR and MIR. Dry
soil shows progressive increase imn reflectance
from the VIS and peaks at MIR with only slight
dips in between. Vegetation spectral reflectance

peaks-at the reflective infrared.

Figure 3 gives discrete spectral reflectance
values in digital numbers (DN) for the urban
land use, water and soil surfaces.

The soil and water curves are comparable to
those in Figure 2. The urban surface has much
variance in the blue part of the VIS and the MIR

spectral-reflectance comparison
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Figure 3: Land use-and cover spectral response
(modified from ERDAS Imagine, 1994)

parts of the spectrum. From the above spectral
illustrations, is it is possible to judge which
spectral bands are suitable for mapping specific
land use/land cover. However, for a scene with
both land use and land cover features/objects
coexisting, one may not easily determine the
most contrasting spectral bands from the
signatures alone.

DATA OPTIMISATION: SPECTRAL
CONTENT EXTRACTION

Table 2 shows the spectral resolutions of the
Landsat TM and MOMS-2P in terms of the
wavelengths.

Table 2: Test Data Spectral Wavelengths (um)

Landsat TM MOMS-2P

TM1: 0.450-0.560
VIS TM2Z: 0.520-0.600
TM3: 0.630-0.760

M-2P1: 0.440-0.505
M-2P2: 0.530-0.575
M-2P3: 0.645-0.680

NIR TM4: 0.760-0.900 M-2P4: 0.770-0.810

" MIR  TM5: 1.550-1.740 -

TM7: 2.080-2.350

From Table 2, it is observed that these two
sensors possess different spectral resolutions
with respect to their spectral positioning. The
subsequent sections report on the techniques
applied to map the urban-suburban information
from the two data sets.

COLOUR COMPOSITE DISPLAY-FCC

The six Landsat TM bands and the four
MOMS-2P bands provide 20 and 4 possible band
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Figure 1: Location map of the study area-Cape
Town sub-scene.

combinations for colour display respectively. To
get an optimal colour composite, the three bands
used must be individually informative and also
have to show minimal redundancy. Two ways to
determine the optimum band combination in this
study are the empirical and statistical
approaches.

Tables 3 and 4 shows the statistical details of
the Landsat TM and MOMS-2P for the test area.

From Table 3, standard deviations show that
in the VIS of the Landsat TM, TM1 has the
highest amount of variance. In the MIR, band
seven has less than half the variance of band 3.
The correlation coefficients (r) show that the VIS
bands and the MIR bands are highly correlated.

Table 4 (MOMS-2P) statistics show that band
4 (M-2P4) has most variance, followed by M-
2P1, M-2P2 and finally, M-2P3. The NIR band
(M-2P4) shows very low correlation with the
VIS bands. The MOMS-2P inter-band
correlations are lower compared to the TM
bands. This indicates lower information content
redundancy in the MOMS-2P compared to TM.

Empirical procedure for FCC

The three channels are selected from an a
priori knowledge of the spectral properties.

Figures 2 and 3 illustrate the spectral response.
This approach reduces the number of possible
band combinations. A visual examination based
on spectral parameters and luminosity contrast of
the different colour composites allows for the
determination of the most informative bands.

Table 5 and Table 6 show results of the visual
ranking (Vi Rank), of some of the informative
band combinations for the Landsat TM and
MOMS-2P data respectively.

For the Landsat TM, 13 combinations are
presented. In decreasing order, the most
discriminative sets are 5-4-1, 7-4-1, 7-4-3, then
5-4-3 followed by 7-4-2. Combination 5-4-1
gave the most contrasted colour composite
according to the empirical approach. This
observation is supported by the signatures
(Figures 2 and 3), the standard deviation and
correlation coefficient statistics (Tables 3 and 4).
Combinations not tested (e.g. 4-2-1, 5-2-1, 5-3-1,
7-3-1, 5-3-2, 5-2-1 and 7-3-2) are from the
signature and statistical logic, considered
unsuitable since they are highly correlated.

For the MOMS-2P, Table 6 shows the
empirical analysis results. In decreasing order, 4-
3-1, 4-3-2, 4-2-1 and 3-2-1 combinations are
obtained. According to the variance statistics (&),
band 4-2-1 would have been the most
informative, yet Vi Ranks it third. This may not
be directly justified, but the correlation between
M-2P1, M-2P2 and M-2P3 overrules the
variance reasoning. According to the correlation
coefficients, bands 4-3-1 are the most
informative. This implies that band M-2P2
contains the most redundant information in the
VIS and that is why 4-2-1 ranks third.

Statistical procedures for FCC

In order to save time in processing and
analysing multiband data, some authors propose
to use statistical procedures (Chavez et al., 1982;
Sheffield, 1985; Crippen, 1989).

Table 3: Standard deviation and correlation coefficients computed for the six Landsat TM bands

Bands T™1 T™M2 TM3 TM4 ™S ™7
and ¢ 13.762 6.166 9.533 17.674 19.380 8.081
T™1 1.00 0.90 0.84 0.44 0.53 0.55
™2 1.00 0.95 0.66 0.75 0.75
T™3 1.00 0.68 0.82 0.84
T™4 1.00 0.88 0.75
TM5 1.00 0.94
™7 1.00
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Table 4: Standard deviation and correlation coefficients computed for the four MOMS-2P bands

Bands M-2P1 M-2P2 M-2P3 M-2P4
and ¢ 35.01 31.95 22.81 58.60
M-2P1 1.000 0.878 0.515 0.007
M-2P2 1.000 0.756 0.010
M-2P3 1.000 0.016
M-2P4 1.000

These procedures are based on band variances
and correlations. The variance of the bands,
indicated by the standard deviation, is related to
the information content of the band and the
bands’ correlation coefficients are redundancy
indicators.

The Optimum Index Factor, OIF, developed
by Chavez et al., (1982), is computed for each
possible set of three bands according to equation
1. OIF is based on the band standard deviation
and the inter-band correlation coefficients.

(g +04 +i03)

OIF =
}r(1,2)| + ‘7(1,3)I * |r<2,3) i

(1)

Another statistical procedure, INDEX, proposed
by Crippen (1989), corresponds to the square
root of the determinant of the correlation matrix
as shown by equation 2.

INDEX = \fl + 21,0 505) — ’”12 - r22_3 - 7'1,23

2

2)

where O, is the standard deviation for channel i,

and 7 ; the correlation coefficient between the

channels i and j. The higher the OIF or the
INDEX, the more uncorrelated spectral
information is transformed into a contrast-rich
colour composite.

These two statistical procedures were
performed on the Landsat TM and MOMS-2P
data. Results are presented in Table 5 and 6
respectively.

From Table 5, results obtained by Chavez
(OIF) indicate that TM5-4-1 1is the most
informative and that TM7-4-1 and TM4-3-1 etc
in order, are also informative. Using Crippen’s
INDEX, TM7-4-1 is the most contrasting
combination followed by TM7-4-2 and TM5-4-1
etc. The two statistical methods give coinciding
results only for a few of the combinations (3-2-1,
5-4-2, 7-5-3). OIF and Vi Rank give similar
results supporting TMS5-4-1 to be the most
informative set. This is supported by the
correlation coefficients.

Table 6 gives the statistical approach (INDEX
and OIF) results for the MOMS-2P. OIF show 4-
3-2 to be the most informative, while the INDEX
gives 4-3-1 to be the most informative
combination. However from the correlation
coefficients analysis the INDEX and Vi Rank
results are correct, with 4-3-1 FCC being the
most informative triplet.

In conclusion, no one of the methods
described for colour composite display can be
considered adequate in reaching conclusive
decisions for choosing band combinations.
Combinations of the tests do give results that
may be used to tie up the theoretical logistics and
experimental observations. In this case, from
colour composite display, it is concluded that,
bands 5-4-1 of Landsat TM are the most
spectrally contrasting combination as derived
from the Vi Rank and OIF results. For the
MOMS-2P the INDEX and Vi Rank indicated
that 4-3-1 combinations is the most informative.
In summary, colour composite display analysis,
the use of both the empirical and statistical
techniques is found to be useful in deciding upon
the best FCC.

Table 5:01IF, INDEX and Vi Rank computed for Landsat TM data

Band OIF Rank INDEX Rank Vi Rank
combination

321 10.952 13 0.135 13 13

431 20.903 3 0.376 4 10

432 14.573 10 0.229 9 12

541 27.468 1 0401 3 1
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542 18.873 6 0.314 6 6
543 19.570 5 0.269 8 4
741 22711 2 0552 1 2
742 14.778 9 0.426 2 3
743 15.545 8 0.355 2 3
751 20.407 4 0.285 7 7
752 13.782 12 0.221 10 9
753 14.228 11 0.183 11 8
754 17.662 0 0.142 12 11
Table 6: OIF and INDEX computed for MOMS-2P data
Colour composite OIF Rank INDEX Rank Vi Rank
321 41.78 4 0.275 4 4
431 21643 2 0.857 1 1
432 233.38 1 0.654 2 2
421 126.68 4 0.479 3 3
PRINCIPAL COMPONENTS STANDARD PCT
PRANSFORMATION (PCT)

PCT is a statistical method that transforms a
multivariate data of intercorrelated variables into
a data set consisting of new mutually
uncorrelated variables, obtained by linear
combinations of the original ones called
principal components (PCs). The sum of the
variance of the generated PCs is equal to the total
variance of the initial variables. Each successive
PC depicts decreasing variance levels. This
capability to compress multiple spectral bands is
a useful data reduction technique that can be
used directly in feature/object extraction. This is
because differences between similar or different
materials may be more apparent in the PCs than
in the individual channels (Jensen, 1996; Yéson
et al., 1993; Jensen 1986; Faust, 1989).

The standard PCT is performed using all the
spectral bands of the sensor. For this study, the
six reflective bands of the TM and the four
MODE B of the MOMS-2P are the PCT input.

The band linear correlations are given in
Tables 3 and 4. Tables 7 and 8 give the eigen-
values and eigen-vectors of the Landsat TM and
MOMS-2P bands respectively.

Landsat TM Standard PCT

The standard PCT is performed using all the
six TM bands as input. The results presented in
Table 7 shows the eigen-values expressed as %
of variance and eigen-vectors [-1, +1]. It is
observed that the first three PCs explain more
than 98% of the total variance. PC1 receives

In addition, the method allows for the positive contributions from all the input
determination of the number of linearly channels, contributing about 80% of the
independent sources of variation within the data transformed  variance. PC2 has positive

set that can effectively summarise the data
without significant loss of information. A good
description of PCT can be found in Mather,
1986. PCT has been used for data enhancement
(Soha and Schwartz, 1978; Gillespie et al.,
1986), as a data compression technique (Chavez
and Kwarteng, 1989), to detect changes in land
cover (Byme et al., 1980; Richards, 1984) and as
a technique of merging multisensor data, e.g.
radar and/or multispectral images (Yésou et al.,
1993).

Two PCT procedures were tested: (1) standard
PCT and (2) selective PCT.

Table 7: Standard PCT applied to Landsat TM data

contributions from the VIS and negative from
the MIR and the NIR. PC3 contains mostly
information from the VIS (TM1 and TM2) and
TM4 (NIR). This constitutes less than 5% of the
transformed data. PC4, PC5 and PC6 in total
contribute less than 2% of the transformed
information. The spectral information contents
(PCs) are as illustrated in Figures 4-9.

Figure 4, PC1, contains detailed information
of the scene. No specific object/features are
outstandingly mapped in PC1 except for the land
walter inferface (coastal land).

PC1 P2 PC3 PC4 PC5 PC6
% of variance 80.7 12.7 49 0.8 0.5 0.4
input band
T™M1 +0.272 +0.577 +0.216 +0.654 +0.344 -0.034
T™2 +0.394 +0.411 +0.178 -0.177 -0.757 +0.200
T™M3 +0.424 +0.316 -0.127 -0.667 -0.460 -0.220
T™4 +0.439 -0.508 +0.675 -0.042 +0.185 +0.241
TMS +0.467 -0.330 -0.217 +0.217 -0.235 -0.711
TM7 +0.425 -0.180 -0.635 -0.635 +0.090 +0.588
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%

‘Standard PC2

Fig 6: TM Standard PC3

Fig 7: TM Standard PC4

PC2 (Figure 5) shows features that are well
enhanced, especially roads and river courses. It
also gives more structural information and
defines land use/land cover extents. PC3 (Figure
6) maps more clearly the recreational facilities
(e.g. golf course) compared to PC1 and PC2. It
does not show any clear discrimination between
other land use/land cover. The lower PCs
(Figures 7-9) hardly contain any spectral
information except for PC4 that maps the river
course and swampy (wet) land cover.

In conclusion, the six TM data are transformed
effectively into three PCs.

MOMS-2P (MODE-B) Standard PCT

Standard PCT gave the following results
(Table 8). From the results, the first three PCs
explain more than 99% of the total variance, with
the last PC, (PC4), representing less than 1% of

the total variance. Figures 10-13 shows the PCs.
PC1 (Figure 10} contains detailed information
of the scene accounting for about 80% of the

Table 8: Standard PCT applied to MOMS-2P (MODE-B)

: o o G i 3
Fig 8: TM Standard PC5 Fig 9: TM Standard PC6

EE

total variance. Most of the PC1 information is
from band 1 (VIS) and least from band 4 (NIR).
PC2 (Figure 11) contains about 15% of the
transformed data mostly from the VIS (band 1).

PC2 maps out regions of specific dense
vegetation type (deep green). PC3 (Figure 12),
with information content of about 1%
outstandingly maps out areas of concentrated
commercial and industrial land use leaving out,
for example, the residential land use! PC4
(Figure 13) with less than 1% of the total data
contains no specific information. However with a
lot of information from the NIR band, PC4
reflects good demarcation between land covers.

In conclusion, comparing the MOMS
and TM standard PCT analysis, despite spectral
differences, both of them map above 90% of the
total spectral variance in the first three PCs. For
specific applications using PCT only, MOMS may
be more useful for vegetation and industrial/com-
mercial mapping.

PC1 PC2 PC3 PC4
% variance §2.60 15.41 1.14 0.85
input band
M-2P1 +0.769 +0.622 -0.002 +0.150
M-2P2 +0.448 -0.448 +0.644 -0.430
M-2P3 +0.394 -0.419 -0.763 -0.430
M-2P4 +0.231 -0.487 +0.061 +0.840
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Fig 11: MOMS Standard PC2  Fig 12: MOMS Standard PC3

SELECTIVE PCT

Selective PCT implies that only subsets of the spectral domains,
i.e. VIS, MIR are used as input bands. The selection of the input
subset can be done in a number of ways. The method used in this
study involves grouping the bands according to their spectral cov-
erage, i.e. VIS or MIR. The objective of using selective PCT is to
try and minimise the problems of (1) mapping information of
interest in one of the unused channels, and (2) difficulties that may
i . beencountered in colour composite interpretation as might be expe-

Fig 13: MOMS Standard PC4 rienced in standard PCT (Chavez and Kwarteng, 1989).

Landsat TM Selective PCT

Selective PCT is applied to the TM-VIS and TM-MIR bands. The eigen-values and eigen-vectors for the
VIS and MIR PCTs are presented in Tables 9 and 10 respectively.

Landsat TM-VIS Selective PCT

The VIS-PC1 (Fig 14) contains about 90% of the transformed data. The spectral content containg
detailed scene data. The PCZ (Fig 15) contains about 8% of the data and roughly maps inland water body
(marsh/swamp), land water interface and industrial/commercial land use. PC2 has most of the input data
from band 3 of the VIS. PC3 (Fig 16) with less than 0.5% of the transformed of the data only has noise
contents from the VIS. '

Table 9: TM-VIS Standard PCT statistics Landsat TM-MIR SelectivePCT
of s gg; d g%ﬁ g(i Table 10 gives the statistical output for the
i;putv i ’ ' Landsat TM-MIR PCTs.
bands Table 10: TM-MIR Standard PCT statistics
™2 +0.353 -0.187 -0.917 % of var 98.60 1.40
T™3 +0.788 +0.587 +0.183 input bands
T™MS +0.371 +0.928
T™7 -0.928 +0.371

Figures 17 and 18 shows the PCs. The TM-MIR PC1 maps the general content within the scene with
good delineation of large structures, especially industrial/commercial land use. The second PCT
(containing less than 1.5% of the transformed variance)} roughly maps industrial, commercial and
residential land uses.

From the selective PCT, TM seems to be able to map specific land use and in this it is comparable to the
MOMS standard PCT. For example the TM-MIR seems suvitable for mapping built land use similarly to
TM-VIS PC2. :



MOMS-2P Selective PCT

In the case of the MOMS, only the VIS is

suitable for selective PCT. Table 11 shows that
PC1 (Fig 19) contains about 94% of the variance
as compared to PC2 (Fig 20) and PC3 (Fig 21)
which contain approximately 3% and 2.5% of
the total transformed data respectively.
Figure 20 roughly shows land use/cover
demarcation, but no  specific mapped
features/objects. This is because of the low
contributions from the input bands (Table 11).

Fig 19: -2P-SelectiveVIS PC1

The same applies to PC3 (Fig 21), which only
shows more noise components of the VIS.

Table 11: MOMS-2P VIS selective PCT

PC1 PC2 PC3
90 of var 94.19 3.29 2.52
input bands
M-2P1 +0.418 -0.904 +0.080
M-2P2 +0.604 +0.211 -0.768
M-2P3 +0.678 -(.768 +0.635

Fig 20:-2P-Selective VIS PC2

g 16: TM-Selective VIS-PC3

Fig 21: -2P-Selective VIS PC3
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MULTISPECTRAL DATA OPTIMISATION
ANALYSIS

The next step is to determine which of the
methods (colour composite display and PCT)
gives the most informative three-band
combination for digital analysis. In this study the
consideration is for land use/land cover analysis.
Thus apart from appreciating the significance of
PCT for direct feature/object detection and
possibly extraction thereof, a colour composite
of the informative PCs from the selective and
standard PCTs is derived based on spectral
contrast. The decision is based on empirical and
histogram comparison and analysis of the bands
making up the composite. All the possible
informative composites were considered for the
analysis.

Based on this approach, the TM standard PCT
composite (PC1, PC2 and PC3) was compared
with the TM selective PCT composite (VIS-PCI,
TM4 and MIR-PC1), and the colour composite
display TMS5-4-1. The TM selective PCT
composite (Fig 22) gave the most contrasted
colour composite and is the original raw image.

The same procedure was applied to the
MOMS-2P FCC 4-3-1, MOMS-2P standard PCT
composite (PC1, PC2 and PC3) and selective
PCT composite of (VIS-PC1, VIS-PC3 and M-
2P4). The false colour composite 4-3-1 (Fig 23)
gave the most informative three-set combination
for the scene and is the original raw image.

In conclusion, the TM selective PCT and the
MOMS-2P false colour composite 4-3-1 were
compared for the scene landuse analysis.

CLASSIFICATION METHOD
TRAINING SAMPLE (DATA) ANALYSIS

A supervised training technique based on
areal extraction of spectral values, with spatial
and spectral constraints determined by the user
(ERDAS Imagine, 1994), was used to generate
the spectral signatures of the information classes.
Transformed divergence and scatter plot analyses
were implemented to statistically evaluate class
signature separability.

Transformed  divergence (TDij) is a

modification of the divergence measure (Dij ),

which provides prior probability of correct
classification. It can be computed from the
following formula (Swain and Davies, 1978):

1 ; .
By Err[(a —CH)CTi=CT NI+

1 !
;W[(C_li -C j)(;u,- _auj)(lui _)u‘j)T]

where i and j are the two classes being
compared, C, is the covariance matrix of class i,

U, is the mean vector of class i, #r is the trace

function of the matrix, ~ is the transposition

function, and 7D, = 2(1—6'%!8). According
to Richards (1986), the probability of a correct
classification (F,) is bounded by:

P
P, <1—§(1—5TDU)4

TD varies between 0 and 2000. A TD of zero
indicates that the classes are totally inseparable.
For TD greater than or equal to 1600, good
separability is expected (Richards 1986). A
separability listing containing the average and
minimum divergence for every class pair and
band combination is generated from Erdas
Imagine software.

TD for class separability measure results

Table 12 gives a summary of the TD analysis
of the training sample evaluation for the Landsat
TM and MOMS-2P.

Table 12: TD analysis summary

Landsat TM  MOMS-2P

Training sample 14 15
TD average 1961 1986
TD minimum 1030 1526

It is observed that fewer classes were
determined from the TM data compared to the
MOMS-2P. Despite more classes in MOMS-2P,
the TD values were higher in MOMS than in the
Landsat TM. This is an indication of higher
spectral separability in the MOMS-2P compared
to the TM with respect to multispectral analysis
for the urban-suburban scene. In both cases the
minimum TD is observed between the
industrial/commercial classes and the residential
(high/medium density) land use.

Scatterplot class separability results

Figures 24-26 illustrate the separability of the
14 training classes from TM (TM VIS-PC1, TM
4 and TM MIR-PC1 composite-Fig 22).
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These plots show that for this scene, there is low
spectral separability of the classes from TM.
This is also supported by TD results. Only TM
VIS-PC1 and TM MIR-PC1 (Fig 25) show fair
spectral separability compared to the other two.

Figures 27-29 illustrates the 15-classes
separability ellipse plots from the MOMS-2P 4-
3-1-colour composite. The result show that in the
VIS (Fig 27, bandl-band3) not much urban-
suburban land use/land cover information can be
extracted. However, Figures 28 and 29 illustrate
positive contributions from the VIS and NIR of
the MOMS-2P data.

SPECTRAL INFORMATION CONTENT

In terms of spectral (band) information
content, it is evident that high spectral
separability measures are observed from land
cover (vegetation, soil and water types), as
opposed to land use (roads, rtesidential,
commercial, industrial, recreational facilities)
with high spectral overlaps, characterised by low
TD values and ellipsoid plots with greater
overlaps. From the above inter-class, inter-band
analysis, it can be concluded that MOMS-2P is
seen to be more informative for the urban-
suburban object/feature extraction than the TM
data.

MULTISPECTRAL LAND USE/LAND
COVER EXTRACTION

The land use/land cover was mapped based on
the above training classes. Mapping consisted of
several stages, cluster analysis and supervised
classification. Class labelling was performed
using maximum-likelihood classifier based on

= S

Figure 22: TM Selective PCT |

equal class a priori probabilities

The post-classification processing comprised
class merging and application of a 3x3-majority
filter to improve (smooth) the thematic map
readability by deleting small patches. Finally
accuracy assessment by matching ground
reference data with the labels of the classified
image were statistically analysed using the
KAPPA and TAU coefficients of agreement
(Cohen, 1960; Ma and Redmond, 1995).

CLASSIFICATION RESULTS

Figures 30 and 31 present the spatial
distributions of land use/land cover in the
Landsat TM and MOMS-2P data respectively.
The results show the 14 classes that were
mapped from the Landsat TM and the 15 classes
generated from MOMS-2P. Table 13 shows the
land use/land cover checklist for the classes that
were present and could be derived from the
scene. Important classes that were visually
observable but could not be spectrally extracted
e.g. roads, are also shown.

Remarkably, more types of vegetation were
detected in MOMS-2P than in Landsat TM. This
was largely due to the temporal differences. This
difference was verified by analysing the
normalised difference vegetation index (NDVI's)
and the NIR bands for vegetation mapping.
These ratio results identified and confirmed more
vegetation cover types in MOMS-2P than in TM
and were attributed to seasonal difference i.e.
spring growth between July (TM) and October
(for the MOMS data) as well as the narrow
spectral range of the MOMS-2P band 4 that is
sensitive for vegetation mapping.

Figure 23: MOMS-2P 4-3-1 FCC

(Original images are in RGB colour composite)
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Fre 24:
TM VIS-PC1 versus TM 4

-

Figure 27:
MOMS bandl versus band3

" Figure 25:
T™ VIS-PC1 versus MIR-PC1

' igu 28:
MOMS band1 versus band4

igure 26:
TM TM4 versus MIR-PC1

Figure 29:
MOMS band3 versus band4

Table 13: Land Use/Land Cover Classes from Landsat TM and MOMS-2P

Classes Landsat TM MOMS-2P Class characterisation
(Selective MODE-B:
PCT) 4-3-1

High density residential v 4 Mixed types of rooming, buildings. with closely spaced
storey (3-5 flats)

Medium density residential v v Medium plot mixed with small individual or common
open spaces and little vegetation cover (f any), 1-2
storeys, single row houses

Roads X X Main roads-termaced

Recreational facilities ¥ v Play grounds, golf and race courses, drive ins’

Industrial activities X X Large industrial sites or complexes

Commercial activities x X Commercial centers {ware houses and shopping centers)

Commercial/Industrial v v Areas characterized by mixed industrial and commercial
features and activities

Seawater body d v Qcean, sea waters

Inland_water body (rivers) v v River courses, lakes, dams

Swamp/marshes ¥ v Shallow waters-vegetated wet lands

Beach land v X Land that borders sea/ocean and the land

Steep slopes/shadowed areas v w Steep landscapes, mostly wet due to angle of orientation
from the sun

Vegetation types Y4 v (6) Any vegetated (natural or artificial) land cover

Other land cover v ¥ Unclassified (undefined) pixels

From Table 13 it is evident that from both the
lower and upper medium-scale  spatial
resolutions, it is not possible to separate
commercial, industrial, and roads via
multispectral classification. It is further observed
that, in consideration of the entire scene, beaches
(coastal land) are extractable from TM and not
MOMS-2P. With respect to vegetation, more
types were extractable from the MOMS-2P than

TM, as already explained above.

Table 14 gives a summary of the KAPPA (K)
and TAU (T) coefficients of agreement as
computed for the classification results. Common
areas, from the scenes, were considered for the
assessment of the classification performance.
The reference data were obtained from aerial
photographs and true colour composites (bands
3-2-1) of the Landsat TM and MOMS-2P.
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CONCLUSIONS

A comparison of Landsat TM and MOMS-2P
data sets was conducted to evaluate the
capabilities and limitations of these two sensors
for the purpose of identifying and mapping
urban-suburban land use classes. Multiband
optimisation for selection of the most
informative band combination was performed
using colour composite and PCT approach.
Statistical, empirical and histogram techniques
were combined to evaluate the most informative
set. Transformed divergence and scatterplot
analysis were used to choose and consequently
determine the degree of training class
separability before classification. Classified
mixed pixels (mixels) smoothing was achieved
by using a 3x3-majority neighbourhood filter,
and finally accuracy report of the classified data
sets was produced using KAPPA and TAU
coefficients of agreement in order to quantify the
differences in mapping urban-suburban land use
classes from the MOMS-2P and Landsat TM.
The results can be summerised as follows:

(1) Selection of the most informative RS data
is indeed a difficult task especially in mapping
areas that are particularly heterogeneous. In these
areas it is observed that a simple use of sensor
statistics alone may not adequately or necessarily
(spectrally) represent a specific scene.

(2) Irrespective of the problem at hand, the
study recommends PCT analysis to RS users, as
a powerful approach for the unique mapping of
land use directly. This may lead to the advantage
of using PCT for change detection and mapping
of specific features. However, for multispectral
based classification, PCT method alone may not
be the appropriate and therefore other methods

Table 14: Summary of accuracy assessment results

like colour composite display become equally
useful. This means that a single optimisation
approach may not be adequate.,

(3) Eigenvector loadings in the PCT analysis
are useful in understanding the spectral-object
response, as depicted in the principal component
image.

(4) TD and scatterplot analysis for evaluating
the strength of training data also proved to be a
good  illustration  for  spectral  overlap
determination within the considered optimal data
sets. Both data sets proved to be better in
identification of natural land cover than the built-
up (land use). In particular MOMS-2P showed
greater achievement in mapping of vegetation
classes.

(5) Finally it is observed that more spectral
classes were extracted from the MOMS-2P with
about 2% (KAPPA/TAU results) higher
accuracy than from the Landsat TM for the same
scene. This implies that the lower-medium scale
data may be more informative compared to
upper-scale satellite data, irrespective of spectral
resolution. However, the study suggests that the
spectral resolution of MOMS may be inadequate
for the accuracy and specificity required for
urban  applications especially if computer-
assisted  processing is adopted.  Visual
interpretation may give better accuracy for the
urban land use than machine based digital image
processing. This study serves as a pilot
application of the MOMS system. It shows
positive contributions in the development of
higher spatial resolution satellite data. Further
research is being conducted to assess the
feasibility of merging the two data sets to
improve the mapping accuracy in urban-
suburban land use and land cover studies.

Data No. of Sample size Sample size KAPPA TAU
classes - correctly classified (K} (T)

Landsat TM 14 4044 3425 0.833 0.835

MOMS-2P 15 3394 2950 0.8594 0.860
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Urban-suburban land use/land cover raster data

Legend

Class._MNam=ss

high density residential
medium density residential
commfindustrial complexes
open/recreational spaces
inland_wvater body

sca_waier body

land_water interface/boaches

swamp/marshes

steep slopes/shadowed areas
vegetation_1

vagatation_Z

vegetation_3

vegatation_4

other_land cover
{mived use/bare soil cover}

Figure 30: Classified Land Use/Land Cover Data of Cape Town sub-scene
Data Source: Landsat TM-Selective PCT

Legend

Class_Mames

high density residential
mediurn density residential
cormm/industrisi complexes
open/recraational spaces
intand water body

s&a water body

SWamp /marsngs
steap slopes/shadovsed areas

vegetation_1
vegetation_2
vagatation_3
vegetation_4
vegatation_ B
vegetation_§&

other land covers
{mixed use/bare soil cover)

Figure 31: Classified Land Use/Land Cover Data of Cape Town sub-scene
Data Source: MOMS-2P (MODE-B) FCC 431
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