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ABSTRACT   

This study investigates the use of Sentinel-2A (S2A) and Landsat-8 (L8) OLI for monitoring of turbidity in reservoir 

waters. Using observed in situ data from 18 sampling stations for Chebara Reservoir in Kenya, the study developed an 

empirical multivariate regression model for turbidity estimation from atmospherically corrected, band adjusted and 

spectral resolution standardized S2A and L8 bands. Best results for turbidity estimation were obtained from the 

regression of in situ data with B2 (blue) and B3 (green) bands as [Rrs(B2/B3)^2+Rrs((B2/B3)] for S2A and 

[Rrs((B3/B2)] for L8. Both S2A and L8 retrieved turbidity with high and nearly equal accuracy of R^2 > 0.75 from the 

visible and NIR bands, with nearly similar RMSE of 0.5 NTU and NMAE% being higher for S2A by more than 30% as 

compared to L8’s average NMAE% of 15%. The study shows that for both S2A and L8 sensors, and the proposed 

empirical regression algorithm suffices in the rapid and cost-effective quantification of turbidity inland reservoir waters. 

Using spatial interpolation for the visualization of the correlation between the predicted and observed turbidity, the L8 

results were found to be more significant than the turbidity estimations using S2A bands.  

Keywords: reservoir water quality; turbidity; Sentinel-2A/MSI; Landsat-8/OLI; Signal-to-Noise Ratio (SNR); Top of 

Atmosphere (TOA) reflectance; empirical multivariate regression modelling 

1. INTRODUCTION  

To monitor the water quality in reservoirs, the conventional water quality assessments through sampling and laboratory 

measurement is often employed. This conventional approach is however costly, prone to human and equipment errors, 

labor-intensive, time-consuming, and are not able to adequately assess the entire water body
1
. To overcome the 

limitations in in-situ water quality monitoring methods, there is need for regular near-real-time, inexpensive, automated 

and non-invasive approaches, with adequate spatial-temporal coverages
2,1

. Several studies have investigated the use of 

different satellite sensors for the assessment of water quality. Particularly the Landsat sensors have been widely used in 

the estimation of different water quality parameters (WQP)
2
. For specific case studies and for the retrieval of water 

quality parameters (WQP), the previous studies have developed different correlational algorithms that are based on 

empirical models, semi-analytical models and matrix inversion models. Because of the drawbacks in semi-analytical and 

matrix inversion methods, empirical algorithms are often used for the retrieval and estimation water quality 

parameters
3,2

. 

 

In this study, the effectiveness of Sentinel-2A/MSI (S2A) and Landsat-8/OLI (L8) satellite sensors are demonstrated for 

the estimation of turbidity in a large reservoir (case-2 water body). Arguably, the medium-spatial resolutions satellite 

sensors, Landsat-8 OLI and Sentinel-2A MSI are capable of promoting more precise mapping of bio-optically active 

water quality parameters in recent times
4
. However, because of their differences in the spectral and spatial samplings, it 

is important to evaluate how well they are suited for the retrieval of water quality parameters. The current study has two 

objectives: (1) to identify the most suitable spectral bands (position and bandwidth) from the Sentinel-2A/MSI and 

Landsat-8/OLI sensors for accurate retrieval and estimations of turbidity, and (2) develop, test and validate empirical 

multivariate regression model algorithms for the estimation of the turbidity in case-2 waters. 

2. DATA AND METHODS 
2.1 Study area 

The case study reservoir is the Chebara dam in Uasin Gishu County in Keny and is located between longitudes 35° 29' 

45.6"E and 35° 30' 7.2"E, and latitude of 0° 52' 55.2"S and 0° 53' 56.4"S. The dam was constructed in the 1990s to 

supply water to Eldoret Town situated 31 km away. The 2.1 km long dam has a capacity of 6.24 million cubic meters 

and is served by River Moiben and other small rivers and streams within the Chebara basin (Figure 1). Most of the rivers 
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and streams flowing into the dam are permanent. Sparsely settled, agriculture is the main economic activity within the 

basin, with the rest of the land-cover being forest, grass and shrubs (Figure 1(a) and Figure 1(b)). The sampling stations 

were selected as shown in Figure 1, with the location and concentration of the sampling stations being based on the depth 

variations of the dam. 18 spatially distribute sampling stations were selected, 10 for the calibration of empirical 

regression algorithm, 5 for validation and 3 for off-season algorithm validation.  

 

Figure 1. Chebara Basin, land-use and land-cover and the sampling points. 

 

Table 1. Spectral and spatial samplings of the visible, NIR and SWIR bands in Landsat-8 OLI and Sentinel-2A MSI. 

Landsat-8 OLI Sentinel-2A MSI 

Band # and 

Spectral Range 

Spectral 

Resolution 

(nm) 

Band 

width 

(nm) 

Spatial 

Resolution 

(m) 

Band # and 

Spectral Range 

Spectral 

Resolution 

(nm) 

Band 

width (nm) 

Spatial 

Resolution 

(m) 

B1-Coastal aerosol 435–451 16 30 B1-Coastal aerosol 433–453 21 60 

B2-Blue 452–512 60 30 B2-Blue  458–523 66 10 

B3-Green 533–590 57 30 B3-Green  543–578 36 10 

B4-Red 636–673 37 30 B4-Red  650–680 31 10 

B5-NIR 851–879 28 30 B8-NIR  785–900 106 10 

B9-NIR Narrow  855–875 21 20 

B6-SWIR1 1566–1651 85 30 B11-SWIR 1  1566–1655 91 20 

B7-SWIR2 2107–2294 187 30 B12-SWIR 2 2100–2280 175 20 

2.2 Sentinel-2A MSI sensor  

The Sentinel-2 mission comprises of twin polar-orbiting satellites, Sentinel-2A and Sentinel-2B, which were respectively 

launched on 23 June, 2015 and 7 March, 2017. Each Sentinel-2 satellite carries a multispectral instrument (MSI), with 

swath width of approximately 290 km, spatial high resolutions in 10 m, 20 m and 60 m, with a revisit time of 10-days 

with one satellite and 5-days with two satellites at the equator. The Sentinel-MSI has 13 spectral bands (430 nm to 2320 

nm) in the visible, red-edge, near-infrared, and shortwave infrared regions of the spectrum (Table 1). With high-temporal 

resolution and 12-bit radiometric resolution, like the Landsat-8 sensor, the MSI sensor provides high radiometric 

dynamics for the observed areas of both the very dark e.g. water surfaces and the very bright areas e.g., ice and snow. 

For comparison with the Sentinel-2A MSI, only the similar spectral bands in Landsat-OLI are analyzed as presented in 

Table 1. For the Sentinel-2A, the level 1C is corrected for atmospheric errors using the Sentinel’s SNAP algorithm, 

resulting in the level 2A product of Sentinel-2 from the Sen2Cor processor, which includes scene classification and 

atmospheric correction. 

2.1 km 

Chebara Dam 
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2.3 Landsat-8 OLI  sensor 

The Landsat-8 mission carries the Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). OLI 

collects image data for nine shortwave bands with spatial sampling or resolution of 30-meters (bands 1-7) and the 

panchromatic band with pixel size of 15 meters (band 8) (Table 1). TIRS collects data for two long-wave thermal bands 

at 100 meters (band 9) every 16 days which are resampled to 30 meters to match OLI multispectral bands. The OLI 

sensor is compatible with the earlier Landsat sensors, and presents improved measurement capabilities. Compared to the 

Landsat-7/ETM+, the Landsat-8/OLI (Table 1) has improved radiometric resolution with reduced image noise and 

spectral heterogeneity. This is observed to be particularly significant in precise water surface extraction and water quality 

retrievals. This study utilized Landsat-OLI data acquired on the 22nd January 2019 and the Sentinel-2A satellite image 

acquired on 25th January 2019. The fieldwork was carried out during the dry season and coincided with the sensors 

acquisitions from 23th to 24
th

 January 2019.  

2.4 TOA reflectance derivation and Signal-to-Noise Ratio analysis  

To derive and compare the top of atmosphere (TOA) reflectance from the optical sensors, for Landsat-8 level-1 the 

digital numbers from each band (
8LB ) are converted to TOA reflectance using the Landsat-8 metadata scaling factors, 

and dividing by the cosine of the solar zenith angle. In addition, Landsat per-pixel solar and viewing angles were 

calculated using the Landsat 8 Angles Creation Tool provided by USGS (https://landsat.usgs.gov/solar-illumination-and-

sensor-viewing-anglecoefficient-file), and the angle coefficient file available with each Collection 1 L1TP file. For the 

Sentinel-2 MSI, the TOA reflectance and solar view geometry are stored in the metadata for every 5 km. Further, to 

understand the impact of noise in turbidity estimations, the sensor bands were compared in terms of the sgnal-to-noise 

ratios SNR spectral bandwidths using the area mean to standard deviation ( /SNR   ) ratio. 

2.5 Empirical regression modelling for retrieval of water quality parameters 

Using empirical regression modelling, simulations are carried out to establish the multivariate correlations between the 

sensors bands reflectances and the measured in-situ water quality variables. The multivariate regression model for 

estimating the water quality parameters in the reservoir is developed by determining the quantitative relationships 

between the measured in situ water quality parameter and the and remote sensing reflectance from the satellite spectral 

data. The empirical models used comprised of the following model equations, linear: * ( )rsa R b  ; polynomial: 

2* ( ) * ( )rs rsa R b R c   ; logarithmic: 10*log ( )rsa R b  ; power: * ( )b

rsa R  and exponential: 
* ( )

*e rsb R
a


, where 

( )rsR  is the corresponding remote sensing reflectance for L8 (
8LB ) and S2A (

2S AB ) bands and a, b and c are the 

regression model constants. The models were evaluated using the following performance metrics:  
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3. RESULTS AND DISCUSSIONS 

3.1 Sentinel-2 MSI and Landsat-8 OLI TOA reflectance comparison 

In comparing the TOA and surface reflectance from the two sensors, the spatial subsets (A and B) for the selected water 

bodies are shown in Figure 2(a). In terms of the inter-band spectral responses for the selected water body areas, the 

scatterplots between the Landsat-OLI and Sentinel-2A spectral bands showed a high correlation of 2R > 0.876, for all the 
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seven homologue bands in Table 1. The regression plots in Figure 2(a) presents sample results from the correlations 

between the red and NIR bands from the spatial subset of the two water body scenes A and B. The red and NIR bands 

represent the reflectance in the visible and NIR, which are commonly used in water quality modelling
2,6,7,8

. The 

regression results indicate that the two sensors contain nearly similar spectral radiance information, despite the marginal 

difference in the SNR. Figure 2(a) shows that for the same scene water body, the sensors have a close cross-correlation 

in the red and NIR bands, which is also observed in the TOA reflectance plot in Figure 2(b) with the TOA from Landsat-

OLI wavelengths being slightly higher than from Sentinel-2A bands. The moderately higher TOA reflectance in Landsat-

OLI confirms the higher SNR. The results in Figure 4 show that the Landsat-OLI bands present a slightly higher TOA 

reflectance than the Sentinel-2A bands.  

  

  

      (a)       (b) 

Figure 2. (a) SNR on clear water bodies in the visible and NIR bands from Sentinel-2A MSI and Landsat-8 OLI. (b) Comparison 

between TOA reflectance from Landsat-8 OLI and Sentinel-2A MSI for clear water surfaces.  

3.2 Signal-to-Noise Ratio (SNR) on clear water bodies 
 

From the spatially uniform and clear water bodies, the Sentinel-2A and Landsat-OLI SNR radiometric performance were 

determined for the visible and NIR bands
5
. Figure 3 shows the SNR computed from the average of local window area 

from the ratio of the area mean to standard deviation ( /SNR   ). The SNR is determined using a 33 pixel-kernel on 

the mean TOA. The selected water body areas are outlined in Figure 2(a) corresponding to spatial areas A and B. 

 

  

Figure 3. The TOA reflectance correlation scatterplots from Landsat-OLI and Sentinel-2A reflectance in red and near-infrared for 

clear water surfaces (A and B).   

In the three visible bands blue (490 nm), green (560 nm) and red (665 nm), the Landsat-OLI bands exhibit SNR values 

of 23 times higher than the corresponding MSI bands. In the coastal aerosol bands (443 nm), MSI is at approximately 

30% higher than OLI in SNR. Theoretically therefore, it can be inferred that since SNR is proportional to the square root 

of the area of a pixel, then the aggregated 20 m  30 m spatial resolution of the MSI bands should be able offer similar or 

better radiometric quality in the visible bands as compared to the OLI bands for the clear water areas.  
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From the empirical multivariate regression modelling comparing the satellite reflectance data and the laboratory 

measured water quality factor, the study results show that the turbidity was estimated from the two sensors with the same 

accuracy of 
2 0.75R   (Figure 4).  For both the sensors, the visible bands (blue, green and red) are observed to be 

predominant in the retrieval of turbidity within the reservoir. In Figure 4, the best estimate of turbidity using Sentinel-2A 

is at 
2 0.8004R  , which is comparable to turbidity estimates using Landsat-OLI with 

2 0.8134R  . The models 

accurately predicted the concentrations of turbidity from both sensors as the RMSE and bias error measures were less 

than the minimum and average in situ turbidity. The turbidity estimation results are particularly important since turbidity 

is considered as one of the most significant water quality parameters
9
. For the assessment of the extraction of turbidity as 

the significant water quality parameter that relates directly to the underwater light penetration that affects productivity, 
9
showed from several band combinations that Landsat-OLI band 4 (red) has the best correlation with the in-situ 

measured turbidity with a coefficient of determination R
2
 of 0.84, and scatter index of 0.22 and RMSE of 0.28 NTU. 

10
also recently demonstrated using multivariate regression model and gene-expression programming (GEP) that reservoir 

turbidity could be extracted with R
2 

of greater than 90%, using the combination of visible and NIR bands. While high 

accuracy has been observed in turbidity estimation, in all the studies, atmospheric correction was found to be a factor in 

the accuracy of the WQP modelling
3
. 

 

  
Figure 4. Left:  Laboratory measured Turbidity and Sentinel-2A band reflectance: RMSE = 0.3272NTU, MAE (Bias) = 

0.0691NTU and MAPE = 10.71%.  Right: Landsat band reflectance and in-situ Turbidity measurements. RMSE = 0.4024NTU, 

MAE (Bias) = 0.1475NTU and MAPE = 14.72 %.  

 

From the laboratory measurements, the turbidity the turbidity is observed to vary from 1.36 NTU to 7.42 NTU and 

averaging at 2.83 NTU, implying the reservoir is characterized by low turbid waters. The low turbidities could be 

attributed to low flows into the reservoir, especially during the dry period when the water samples were collected. With 

minimum inflow of sediment laden rainwater discharge and the slow velocities of the river water, the concentrations of 

sediments that would cause reservoir turbidity was low. Further, at a maximum depth of approximately 150 m, the 

reservoir depth enables the settlement of sediments at the bottom of the reservoir with minimal potential of re-suspension 

by water currents and waves. The higher degree of settling of sediments therefore leads to low turbidity in the reservoir. 

 

The validation of the developed regression models was carried out using the five (5) sampling stations (T2, T5, T7, T8, 

T13) in Figure 1. The validation results are presented in Table 2, including the statistics from the stations which were 

used in the model calibration. From the SD, CV and SE metrics, Landsat-OLI tended to underestimate the turbidity, 

while Sentinel-2A based models tended to overestimate the same WQP, thus predicting the parameters with a higher 

coefficient of variation.   

 
Table 2. Descriptive statistics of the laboratory measured and predicted water quality parameters. (SD = standard deviation; CV= 

coefficient of variation and SE = standard error). 
Water quality parameter and 

estimation and data source 

Sample 

(n) 
Min Max Median Average SD CV (%) SE 

Turbidity 

(NTU) 

In situ WQP 

measurements 
15 1.36    7.42 1.97 2.83 1.69 59.64 0.42 

Landsat-8 OLI 15 1.94    6.92 2.05 2.88 1.46 50.77 0.38 

Sentinel-2A MSI 15 1.23   26.25 2.48 4.99 6.51 130.52 1.68 

 

To understand the distribution of turbidity within the reservoir, Figure 5 presents the spatial interpolation results using 

ordinary Kriging. It is observed that the spatial deviations of the Sentinel-2A estimates indicated overestimated turbidity 

 

3.3 Estimation of turbidity concentration in reservoir waters 
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concentration, while Landsat-OLI estimations are closely correlated in spatial location and areal distribution with the 

laboratory measured turbidity. Notably, though the statistical analysis shows that both sensors detected the turbidity with 

accuracy of more than 75%. This implies for such estimations, the visualization of the distribution of the predicted 

phenomenon is significant in addition to the statistical measures of accuracy.  

 
        (a)              (b)                        (c) 

Figure 5. Spatial distribution of turbidity concentration from (a) in-situ sampling and laboratory measurements, and from the 

model predictions using (b) Landsat-8 OLI and (c) Sentinel-2A MSI for Chebara dam. 

 

4. CONCLUSIONS 

This study compared Landsat-8 OLI and Sentinel-2A MSI satellite sensors for the estimation of turbidity in an inland 

water reservoir. For clear water surfaces, Landsat-8 exhibited higher signal-to-noise ratio (SNR) in the visible bands, and 

a marginally higher water surface reflectance in the visible and NIR bands as compared to the corresponding Sentinel-2A 

bands. Using the visible and NIR bands with the empirical multivariate regression model, the presence of turbidity was 

retrieved from Sentinel-2A and turbidity with nearly equal accuracy of more than 75% as measured with R
2
. The 

statistical analysis results demonstrates the potentials of using both sensors in reservoir water turbidity retrieval, however 

the study recommends that further visualization analysis should be carried out to ascertain the actual spatial distribution 

of the predicted water quality parameter in comparison with the laboratory measurements.  
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