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Abstract

The today’s competitive advantage of ready-made garment industry depends on the ability

to improve the efficiency and effectiveness of resource utilization. Ready-made garment

industry has long historically adopted fewer technological and process advancement as

compared to automotive, electronics and semiconductor industries. Simulation modeling of

garment assembly line has attracted a number of researchers as one way for insightful anal-

ysis of the system behaviour and improving its performance. However, most of simulation

studies have considered ill-defined experimental design which cannot fully explore the

assembly line design alternatives and does not uncover the interaction effects of the input

variables. Simulation metamodeling is an approach to assembly line design which has

recently been of interest to researchers. However, its application in garment assembly line

design has never been well explored. In this paper, simulation metamodeling of trouser

assembly line with 72 operations was demonstrated. The linear regression metamodel tech-

nique with resolution-V design was used. The effects of five factors: bundle size, job release

policy, task assignment pattern, machine number and helper number on throughput of the

trouser assembly line were studied. An increase of the production throughput by 28.63%

was achieved for the best factors’ setting of the metamodel.

Introduction

The disruptive transformation in industrial sectors is being experienced in garment and textile

manufacturing more rapidly than most sectors [1]. This is because garment and textile indus-

tries are among the oldest sectors that have received very little technological advancement. For

this reason, they are experiencing disruptive technological leapfrogging and enormous compe-

tition in the business environment in the era of industry 4.0 [2]. The disruptive transformation

in textile and garment industry is well-known today as Fashion 4.0 or Apparel 4.0 [1]. In fact,

most countries are currently revitalizing and retrofitting all their manufacturing sectors

including garment industry in order to harness the sustainable competitiveness [3]. Therefore,

for the garment industry to remain competitive, it must be able to satisfy customers’ demand

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0239410 September 21, 2020 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bongomin O, Mwasiagi JI, Nganyi EO,

Nibikora I (2020) Simulation metamodeling

approach to complex design of garment assembly

lines. PLoS ONE 15(9): e0239410. https://doi.org/

10.1371/journal.pone.0239410

Editor: Ziqiang Zeng, Sichuan University, CHINA

Received: May 7, 2020

Accepted: September 5, 2020

Published: September 21, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0239410

Copyright: © 2020 Bongomin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

from Mendeley (dx.doi.org/10.17632/

t5w96kh5w7).

Funding: The author OB received funding (Credit

No. 5798-KE) from Africa Center of Excellence II in

Phytochemicals, Textiles and Renewable Energy

http://orcid.org/0000-0002-0430-2722
https://doi.org/10.1371/journal.pone.0239410
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239410&domain=pdf&date_stamp=2020-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239410&domain=pdf&date_stamp=2020-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239410&domain=pdf&date_stamp=2020-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239410&domain=pdf&date_stamp=2020-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239410&domain=pdf&date_stamp=2020-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239410&domain=pdf&date_stamp=2020-09-21
https://doi.org/10.1371/journal.pone.0239410
https://doi.org/10.1371/journal.pone.0239410
https://doi.org/10.1371/journal.pone.0239410
http://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.17632/t5w96kh5w7
https://dx.doi.org/10.17632/t5w96kh5w7


by improving the line efficiency and productivity by adopting advanced assembly line design

techniques such as simulation, metamodeling and optimization [4].

Simulation is one of the key disruptive technologies that has remained emblematic of indus-

try 4.0 although it is an old technology [5, 6]. It has been majorly applied in the analysis of

complex systems to give extensive insights into systems’ behaviour. In assembly line design,

simulation modeling has been used to generate design alternatives and to enable tactical and

strategic management of the stochastic nature of assembly or production systems [7]. Simula-

tion models are basically classified as continuous, discrete event, discrete/continuous (hybrid),

and Morte Carlo simulations [8]. The choice of simulation models is often based on functional

characteristics of the system and the objectives of the study. Discrete event simulation repre-

sents only the points in time at which the state of the system changes. This means that the sys-

tem is modelled as a series of events, that is, instants in time when a state change occurs [9,

10]. Discrete event simulation has been used extensively in garment manufacturing and other

manual or semi-automatic production systems such as footwear, electronics and automotive

assembly lines [11]. For instance, Guner & Unal [12] investigated the application of computer

simulation for the design of a manufacturing process for T-shirt production in a virtual-reality

environment. Recent studies have demonstrated the feasibility and suitability of using discrete

event simulation technique for assembly line design in garment industry [13, 14].

Unfortunately, simulation modeling of a garment assembly line is a very complex task

because it comprises of many hard-to-predict variables which have to be considered. In addi-

tion, software for complex assembly line design is computationally intensive (for example

Arena, Simul8, Anylogic, and Enterprise dynamics) [15], and most scenarios-based simula-

tions are typically performed with complex “black box” models with many variable design

parameters in which the users normally have no clear understanding of the underlying equa-

tions and how the inputs interact with each other [16, 17]. This makes computer simulation

very tedious and impractical to run thousands of simulations for thorough design space explo-

ration, sensitivity analysis and optimization. This computational limitation of simulation

modeling can be overcome by incorporating metamodels [16, 18, 19].

Metamodels, commonly known as surrogate models, response surfaces, approximate mod-

els or emulators are used to approximate the input-output behavior of simulation models [20].

The term indicates a mathematical approximation that models the behavior of another model

[18, 21]. They have been used in several fields of research to contravene runtime issues with

analyzing and experimentation of computational demanding simulation models [22]. For

instance, regression techniques of metamodeling have been used to estimate relationships

between model inputs and outputs based on results of a probabilistic sensitivity analysis [21–

23]. More specifically, metamodels build a closed-form mathematical expression to approxi-

mate the input and output relationship implied by the simulation model based on simulation

experimental runs at selected design points in advance [24, 25]. This can be easily evaluated in

a spreadsheet environment “on demand” to answer what-if questions without the need to run

lengthy simulations [26]. In optimization, the main advantages of metamodel include improv-

ing the efficiency of optimization, supporting parallel computation, covering sensitivity analy-

sis of input variables and gaining better insights into the problem, and handling both discrete

and continuous variables [19].

The most commonly used approaches for metamodel construction are statistic-based and

machine-learning. The former solely depends on the data received from the simulation experi-

ments which includes linear (polynomial) regression, support vector regression, multivariate

adaptive regression spline, Gaussian process regression (kriging), and radial basis function

[19, 27–31]. The latter is based on neural networking, rule learning, and fuzzy logic [16, 18, 32,

33]. For example, Haefner et al. [34] applied machine learning approach based on artificial
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neural network for developing metamodel to be used for tooth root stress analysis of micro-

gear. Morin et al. [35] used machine learning to generate metamodels for sawing simulation in

wood industry. Altogether, metamodels transform the implicitly stochastic response of the

simulation as an explicit deterministic functional form [24, 27, 29]. Kleijnen & Sargent [36]

suggested ten (10) steps for developing the linear regression (including polynomial) metamo-

dels for random simulation. The three main steps include: choosing a functional form for the

metamodeling function based on the study goal, designing and executing the experiments to

fit the metamodel, and model learning/fitting the metamodel and validating the quality of its

fit [26, 37]. Designing and execution of simulation experiments is one of the fundamental

steps in regression metamodeling [38]. A fractional factorial design (e.g. Resolution-V design)

is very suitable for designing simulation experiments [39]. It is basically generated from a full

factorial experiment by choosing an alias structure. It overcomes the limitation of the full fac-

torial design by screening some factors, and focusing on the main factors [40]. Moreover, it

has the ability to separate main effects and low-order interactions [38]. In addition to the clas-

sical design of experiments including factorial and central composite designs, the space filling

design approaches (Latin hypercube sampling and orthogonal array) have also been used for

simulation experiment designs [19, 41].

Metamodels have got many real-world application areas. For example, metamodeling has

already been applied in health economics [22]. It has also found a potential application in agri-

culture such as statistical modeling of maize [42]. Further, it has been employed in the analysis

of building structures [31], in cyber-physical systems [43] and grid system low carbon energy

technology [30]. Despite the numerous applications of metamodeling, its application for design-

ing assembly line has not been explored. However, two types of ill-designed experiments have

been used by the previous studies. The first type occurs when the analysts perform scenario-ori-

ented experiments, where putting the focus on pre-selected interesting combinations or a trial-

and-error approach which is time consuming but does not address the fundamental questions

[44]. The second one occurs when the researchers or analysts start with a baseline-scenario and

vary one factor at a time while in practice, the factors are likely to interact. Therefore, if there

are factor interactions, varying one factor at a time will never uncover them [45]. Previous stud-

ies indicated that most simulation experiments have been ill-defined for garment assembly line

design [7, 14]. Therefore, simulation metamodeling was proposed in the present study as a tech-

nique to attain an inexpensive evaluation of garment assembly line design and investigate the

effect of factors on throughput which contribute to improvement of decision making at opera-

tional and tactical production planning. This paper demonstrates the applicability and suitabil-

ity of designing a complex garment assembly line using simulation metamodeling.

Methodology

The empirical data to support the simulation modeling was collected from Southern Range

Nyanza Limited (NYTIL) garment manufacturing facility (Jinja, Uganda) with the objective of

improving the throughput of trouser assembly line. Industrial engineering tools: time study,

process mapping, fishbone diagram, brainstorming and observations were used to obtain the

empirical data. The study was conducted in four phases including identification of input vari-

ables, conceptual modeling, simulation model development and metamodeling as schematized

in Fig 1. The methodology phases of the study are described in the penultimate subsections.

Identification of input variables

The input variables that influence the throughput of the garment sewing line were identified

by brainstorming four categories of people in garment production department namely;
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operators, quality personnel, maintenance personnel and line supervisors. The brainstorming

was conducted on an individual basis during their free time to avoid interrupting production.

All their ideas were collected and categorized using fishbone diagram based on the Big four

major category of causes (4M) in a manufacturing system: Manpower, Method, Material and

Machine as depicted in Fig 2.

Conceptual modeling

To this end, all processes involved in trouser assembly line were summarized using the concep-

tual model. It is a series of logical relationships relative to the components and structure of

trouser assembly line. The conceptual modeling involved mapping all the processes or tasks

associated with making trousers. In order to capture all trouser assembly line processes, the

assembly line was broken down into 10 preparation sections and main body assembly section.

The preparation sections (subassembly processes) included adjustable, knee flap, knee pocket,

hip flap, back, front, big loop, small loop, back patch, and side pocket and flybox preparation

(Fig 3). Where 1–72 represent the tasks performed by the machine operators or helpers and a-

q are the trouser parts to be assembled. Validation of the conceptual model was done through

comparison between process mapping and the real-world trouser assembly line. The

Fig 1. Methodology approach for this study.

https://doi.org/10.1371/journal.pone.0239410.g001
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conceptual model of the trouser assembly line was verified by the line supervisors and workers

in another department.

Simulation model development

Modeling of processing times. The processing times data is the heart of Arena simulation

modeling and was obtained using continuous stopwatch time study combined with observa-

tions method [46]. The time study was conducted at three intervals of different production sea-

sons each with 20 measurements per task. Therefore, a total of 60 measurements per task were

obtained for analyses so as to capture most variabilities in the processing times. The observed

task times for a part (cut piece) in a bundle was multiplied by the total number of cut pieces in

a bundle to estimate the bundle processing times. For example, the processing times for bundle

size 25 (number of cut pieces in a bundle). Arena input analyzer was used to analyze these pro-

cessing times so as to obtain the candidate probability distributions and the fitted probability

distribution. The examples of the fitted processing time probability distribution for some of

the tasks: knee patch attach and buttonhole on left flybox are given in Fig 4. The fitting of the

processing times was done for all tasks involved in the trouser assembly line. The fitted pro-

cessing time probability distribution for each task was then used in building discrete event

simulation model. The processing time distribution of different garment bundle sizes 10, 25

and 40 are presented in S1, S2 and S3 Tables, respectively.

Computer model construction. The computer model of the trouser assembly line was

constructed using Arena simulation environment. Two categories (32 and 64 bits) of the

Arena simulation software (academic license version 16, Rockwell Automation Inc., USA)

were obtained. The 32 bits Arena software was chosen and installed on a low processing speed

Lenovo V110 notebook computer with 64 bits, 2.00 GHz Intel Core i3 CPU and 4.00 GB

RAM. The computer modeling of preparatory sections of trouser assembly line including front

and back were done separately and then combined using Arena Match modules to form one

complex trouser assembly line model. The four trouser assembly line models included main

body assembly (MBA), front (FP), back (BP) and big loop (BLP) as shown in Fig 5. The project

bar is the most important user interface of Arena simulation environment for building

Fig 2. The fishbone (cause-and-effect) diagram.

https://doi.org/10.1371/journal.pone.0239410.g002
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Fig 3. Conceptual model of trouser assembly line. a- left flybox, b- leg front, c- knee patch, d- right flybox, f- leg back, g- back patch, h- hip pocket, i- hip

flap, j- knee pocket, k- knee flap, l- big loop, m- small loop, n- waist band, o- company tags and size label, p- bottom leg rope, q- adjustable rope.

https://doi.org/10.1371/journal.pone.0239410.g003
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simulation model. Therefore, three elements from the Arena project bar including basic pro-

cess, advanced process and transfer were used. For further understanding of the simulation

model of the trouser assembly line, the constructed Arena simulation model (base model) is

deposited at https://doi.org/10.17632/T5W96KH5W7.1 [47].

Fig 4. Fitted processing time probability distributions from Arena input analyzer.

https://doi.org/10.1371/journal.pone.0239410.g004

Fig 5. Arena simulation model of trouser assembly line.

https://doi.org/10.1371/journal.pone.0239410.g005
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Model verification and validation. The simulation model was verified using traces and

animation technique (S1 Fig). The simulation replication number (n = 10) was determined as

used by Kelton et al. [48]. Steady-state simulation with 2 days warm-up period was approxi-

mated according to Law [49]. Due to the complexity of the trouser assembly line simulation

model, a run length of one month (28 days of 8 hours daily production) was used. The simula-

tion runs were executed, and the line production throughput (μA = 496 pieces per day) with

half width (6.61) was achieved (S2 Fig). The hypothesized mean (μA) was used for comparison

with real-world system (trouser assembly line) throughput samples. The line production

throughput with sample size (N = 23) collected for a period of one month was used to validate

the operation of the trouser assembly line simulation model (S4 Table). One-sample-T hypoth-

esis test at 95% confidence interval (CI) was done using Minitab Statistical Software (version

18, Minitab Inc., USA). The null hypothesis (μ0) was accepted because μA lies within 95% CI

for real-world system average throughput (μR = 490 pieces per day) with the T-value (-0.2) and

P-value (0.842) as depicted in Fig 6.

Metamodeling

The metamodeling process was conducted according to Wallach [42], following the four steps

approach which included definition of experimental design, generation of training datasets,

model training/fitting and validation as schematized in Fig 7.

Definition of experimental design. The definition of the simulation experimental design

is the first step in metamodeling. The dependent variable (throughput) was determined to

meet the objective of the study. The independent variables (input factors) are very critical.

Thus, five factors were selected from the fishbone diagram. These factors were those defined

by the team that brainstormed. It was agreed by the team that these factors were the most sig-

nificant ones that contributes to production throughput of the garment assembly line. All the

factors were studied at two levels (i.e. low and high) as described below.

Factor A (Bundle size). This is the number of cut pieces of each part of the trouser (or any

other woven garment product) which are moved from one operator to another [50]. Different

bundle sizes were being used in garment manufacturing. Therefore, two levels:10 and 40 were

used in this study to determine their effect on the overall throughput of the production line.

Fig 6. Boxplot of real system throughput with H0 and 95%t-CI.

https://doi.org/10.1371/journal.pone.0239410.g006
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Factor B (Job release policy). This is the method of availing input materials into the produc-

tion line. The effect of its two levels (no policy and policy) on the throughput were studied. No

policy level meant the input materials are made available to the production line at a constant

rate i.e. everyday. While for policy level, the input materials are made available depending on

the work in progress (WIP) threshold of the bottleneck workstation.

Factor C (Task assignment pattern). This is the method of distributing workload to the

operators performing the same tasks in the workstations. The two levels studied were random

and equal task assignment pattern. With the random task assignment, the workload of opera-

tors performing similar tasks are randomly distributed while in equal task assignment pattern,

the workload of operators performing similar tasks are equally distributed.

Factor D (Machine number). In the present case, the machine number was considered as a

categorial factor because of the different machine types and several workstations involved in

the trouser assembly line. Therefore, the machine number to be varied was determined for the

bottleneck and idle workstations. Also, it was studied at two levels: increase and decrease. In

the case of increase level, three single needle lockstitch and one iron press machines were

added in the production line. In the decrease level, three single needle lockstitch and one but-

tonhole machines were removed from the production line.

Fig 7. Regression metamodeling approach.

https://doi.org/10.1371/journal.pone.0239410.g007
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Factor E (Helper number). Helpers are workers in the production line who are not attached

to any machine; they do not operate any machine but perform tasks such as bundle handling,

trimming, separating bundles, transporting bundles, matching part, and manual attaching of

rope to the trousers. Just like the machine number, the effect of increasing and decreasing

helper number in the production line was studied i.e. three helpers were added and three were

removed from the production line.

Hypothetically, there are main factors and their interactions that might influence the

throughput of the assembly line. Therefore, Resolution-V experimental design was used to test

this hypothesis. This is because resolution-V design has greater ability to allow all main effects

and two-way interactions to be fitted [38]. It was used to study the effect of the selected five

input factors on the response (throughput). The selection of the design method was based on

the hypothesis that three factors and higher order interactions are insignificant [38]. The reso-

lution-V design was developed using Minitab software (version 18, Minitab Inc., USA) with

the design specifications as shown in Table 1.

The resolution-V design confounds main factors effects with four-factors interactions and

two-factors interactions with three-factors interactions as represented in the alias structure.

This implies that the model for resolution-V design can contain all of the main effects and

two-factor interactions. While the three-factors and higher order interaction are rare, and so

they were safely ignored [38]. The experimental design in coded values is presented in Table 2.

Table 1. Experimental design specification.

Factors Level Base design Resolution Run Replicates Fraction Blocks Center point

5 (- /+) 5,16 V 16 1 ½ 1 1

Design generator; E = ABCD, Defining relation; I = ABCDE, Alias structure; I + ABCDE, A + BCDE, B + ACDE, C + ABDE, D + ABCE, E + ABCD, AB + CDE, AC

+ BDE, AD + BCE, AE + BCD, BC + ADE, BD + ACE, BE + ACD, CD + ABE, CE + ABD, DE + ABC.

https://doi.org/10.1371/journal.pone.0239410.t001

Table 2. Experimental design table.

Run Block A B C D E

1 1 + - - + +

2 1 - - + + +

3 1 - + - + +

4 1 + - + + -

5 1 + - - - -

6 1 + + + + +

7 1 - - + - -

8 1 - + + - +

9 1 + - + - +

10 1 + + + - -

11 1 + + - - +

12 1 - - - - +

13 1 - + + + -

14 1 - + - - -

15 1 - - - + -

16 1 + + - + -

A, B, C, D and E denote factors; − and + are levels (low and high)

https://doi.org/10.1371/journal.pone.0239410.t002
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Generation of training datasets or design scenarios. After designing the simulation

experiment using Minitab software, 16 runs or design points were the outcomes from the

design of the experiment. The number of runs represented different design scenarios for the

simulation model of the garment assembly line. Thus, 16 design scenarios (training datasets)

were generated. The simulation experiments were performed on each design scenario with the

same run length (1 month of 8 hours working days), warm-up period (2 days) and replication

number, n = 10.

To this end, the complex simulation model of the garment assembly line was used to per-

form 16 experimental runs. The base simulation model was altered depending on 16 design

points generated from the design of experiment. Therefore, 16 design scenarios were created

from the simulation experiments (https://doi.org/10.17632/T5W96KH5W7.1) [47]. Experi-

mental runs were performed on each design scenario while observing the mean throughput

(Table 3).

Model training/fitting and validation. Statistical-based approach was used to develop

linear regression metamodel for analyzing effects of factors on throughput of the garment

production line in order to answer the following questions: Which factors are important?

How do the factors influence the simulation response (throughput)? What are the possible

interaction effects between factors? The basis of this effect analysis is on the design matrix

as defined by the design of experiment (resolution-V design). This was accomplished by

statistical analysis of the 16 training datasets (design scenarios). Two-way Analysis of vari-

ance (ANOVA) was performed using Minitab statistical software (version 18, Minitab Inc,

USA). The fitted metamodel was checked to see if the fidelity is adequate for the intended

use. For this study, a simple significance check was used to validate the regression metamo-

del [21].

Table 3. The design scenarios (training dataset).

Design scenario Factors Average throughput (pieces per day)

A B C D E

1 40 No policy Random Increase Increase 609

2 10 No policy Equal Increase Increase 638

3 10 Policy Random Increase Increase 583

4 40 No policy Equal Increase Reduce 496

5 40 No policy Random Reduce Reduce 465

6 40 Policy Equal Increase Increase 607

7 10 No policy Equal Reduce Reduce 467

8 10 Policy Equal Reduce Increase 467

9 40 No policy Equal Reduce Increase 467

10 40 Policy Equal Reduce Reduce 467

11 40 Policy Random Reduce Increase 429

12 10 No policy Random Reduce Increase 467

13 10 Policy Equal Increase Reduce 496

14 10 Policy Random Reduce Reduce 439

15 10 No policy Random Increase Reduce 496

16 40 Policy Random Increase Reduce 496

A = Bundle size, B = Job release policy, C = Task assignment pattern, D = Machine number, E = Helper number.

https://doi.org/10.1371/journal.pone.0239410.t003

PLOS ONE Simulation metamodeling and assembly line design

PLOS ONE | https://doi.org/10.1371/journal.pone.0239410 September 21, 2020 11 / 22

https://doi.org/10.17632/T5W96KH5W7.1
https://doi.org/10.1371/journal.pone.0239410.t003
https://doi.org/10.1371/journal.pone.0239410


Results and discussion

Linear regression metamodel

The linear regression metamodel was analyzed using regression analysis in Minitab. Table 4

shows the factorial regression analysis of the response (throughput) versus factors: bundle size,

job release policy, task assignment pattern, machine number and helper number for the 16

training datasets.

The results showed that the model has 15 DF; five (5) DF for Linear model and 10 DF for

two-way interaction model. There was no DF for error for the designed model which implied

that the observed response (throughput) value is equal to the model predicted throughput.

This is because the average throughput from the simulation model has already been automati-

cally fitted for the entire run length and replication numbers. Unlike physical experiments,

computer experiments are deterministic hence there are no random errors for each replication

[21]. In addition, the regression analysis of resolution-V design is always incomplete because

the experiment is saturated, and all the available DF are consumed by the metamodel [38].

This resulted into no DF for residual error(s), and the adjusted mean square (Adj MS) of the

error was not defined for the metamodel giving R2 = 1. Further, the adjusted sums of squares

(Adj SS) was also not defined for the error. Hence there was no residual plots for this metamo-

del design. These results showed a biased approximation of the simulation model. Neverthe-

less, it indicated that the metamodel is a good approximation of the simulation model since

the mean square error (MSE) was equal to zero. The multiple linear regression metamodel is

Table 4. ANOVA results for the design scenarios.

Source DF Contribution (%) Adj SS Adj MS

Model 15 100.00 64529.8 4302.0

Linear 5 77.24 49845.3 9969.1

Bundle size 1 0.03 20.2 20.2

Job release policy 1 1.44 930.3 930.3

Task assignment pattern 1 1.44 930.2 930.2

Machine number 1 55.06 35532.2 35532.2

Helper number 1 19.27 12432.3 12432.3

2-Way Interactions 10 22.76 14684.5 1468.4

Bundle size�Job release policy 1 0.20 132.2 132.2

Bundle size�Task assignment pattern 1 0.20 132.2 132.2

Bundle size�Machine number 1 0.00 2.3 2.3

Bundle size�Helper number 1 0.47 306.2 306.2

Job release policy�Task assignment pattern 1 0.33 210.2 210.2

Job release policy�Machine number 1 0.00 2.2 2.2

Job release policy�Helper number 1 0.47 306.2 306.2

Task assignment pattern�Machine number 1 0.02 12.2 12.2

Task assignment pattern�Helper number 1 0.37 240.2 240.2

Machine number�Helper number 1 20.67 13340.3 13340.3

Error 0 � � �

Total 15 100.00

DF- Degrees of Freedom, AdjSS- Adjusted sums of squares, AdjMS- Adjusted mean square

https://doi.org/10.1371/journal.pone.0239410.t004
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presented in Eq 1. It is a first-order polynomial with 5 linear terms and two-way interactions.

Throughput ¼ 507:5 � 0:075A � 12:42Bþ 12:42Cþ 46:5Dþ 35:17Eþ 0:1917AB
� 0:1917ACþ 0:025AD � 0:2917AEþ 3:625BCþ 0:375BD � 4:375BE
� 0:875CDþ 3:875CEþ 28:88DE

ð1Þ

A simple significance check was used to validate the linear regression metamodel. The pres-

ence of significant factors validated the metamodel. The plots in Fig 8 indicate that there are

many terms (factors and their interactions) of near zero effect which were considered insignifi-

cant. This is because at 95% confidence interval (α = 0.05) and Lenth’s pseudo standard error

(PSE) = 9.75, it is assumed that variation in the smallest effects are due to random errors. How-

ever, the outliers (E, DE and D) were considered significant because they have a large effect on

the throughput. By applying Pareto analysis, insignificant terms were removed from the meta-

model. Fig 9 illustrates that only the effect of the terms: two main factors (D and E) and one

interaction (DE) exceeded the reference line at effect level (25.1) with Lenth’s PSE = 9.75.

These were retained in the regression metamodel while the terms having effects below the ref-

erence line were safely removed. In this respect, a new linear regression metamodel including

two inputs (D and E) with two-way interaction (DE) was obtained (Eq 2).

Throughput ¼ 507:5þ 46:5Dþ 35:17Eþ 28:88DE ð2Þ

The new linear regression metamodel presented could be adopted for predictions without

going through complex simulation experiments. However, it did not work in this study. This

is because of the different resource types and the large number of workstations involved in the

trouser assembly line system. It would be impractical merely feeding the machine numbers or

helper numbers into Eq 2 to determine the average throughput without undergoing the com-

plex simulation experiments. Using metamodel for prediction is suitable for single machine

Fig 8. Normal plot of the effects.

https://doi.org/10.1371/journal.pone.0239410.g008
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shop but becomes impractical for application in assembly line system (a series of different and

identical machines) [39]. For this reason, the best parameters’ setting (Table 5) with the highest

throughput was selected from the training dataset. A bundle size of 25 was adopted instead of

10, because varying bundle sizes had insignificant effect on the mean throughput (see explana-

tion under the main factors effect). Moreover, using bundle size of 10 produced high idle

times for the preparatory sections. Hence the normal bundle size of 25 was the most suitable

for the trouser assembly line design. The best parameter’s setting achieved an average through-

put of 638 pieces per day, resulting in a 28.63% increase in the production throughput of the

existing design (which has an average throughput of 490 pieces per day). This is in congruence

with Atan et al. [51] who reported that increasing resources in the bottleneck workstations

increases average throughput. This is because it reduces both cycle time and WIP. In spite of

the fact that the metamodel was not used for model prediction, the present study found it most

suitable for inference [30], and for initial solution (local optimal) for optimization process

[52]. The inference was drawn from the linear regression metamodel to analyze the factors’

effects on throughput. This is very useful for line production planning because being insightful

on the effect of factors can enhance decision making on which factors to consider so as to

improve production throughput and efficiency.

Fig 9. Pareto chart of the effects.

https://doi.org/10.1371/journal.pone.0239410.g009

Table 5. The best parameters’ setting of the metamodel.

S/N Decision variables Setting

1 Bundle size 25

2 Job release policy No policy

3 Task assignment pattern Equal

4 Machine number Increase (1 iron press and 3 single needle lockstitch)

5 Helper number Increase (3 helpers)

https://doi.org/10.1371/journal.pone.0239410.t005
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The main factors effect

The main factors effect of the five factors (Bundle size, job release policy, task assignment pat-

tern, machine number and helper numbers) on the production throughput are shown in Fig

10 and interpreted as follows.

Bundle size effect plot. With all factors kept constant, the mean throughput decreased by

a very small value when the bundle size was changed from 10 to 40. Thus, if the same quantity

of input materials were kept constant for all levels of bundle sizes, a very small decrease would

be observed in the mean throughput when the bundle size of 40 is used. This is explained by

the longer time it takes for each preparation section to complete tasks on bundles while keep-

ing the main body assembly idle. This implies a longer warm up time for the production line

resulting into low throughput.

Job release policy effect plot. The plot connotes that if all other factors were kept con-

stant, changes in the level of job release policy would have a greater change in the mean

throughput when compared to that of the bundle size. A decrease in the mean throughput was

observed when the job release policy was changed from no policy to policy level. This is

because at no policy level, the quantity of input materials is kept constant in the production

line and every preparation section is capable of preparing enough parts for the main body

assembly section. As for the case of policy system which was based on the WIP threshold of

the bottleneck workstation, there is a lot variability in the throughput of the different sections

as they have to wait for the input materials and thus, affecting the productivity of the main

body assembly. This therefore reduces the overall throughput of the production line. For

instance, big loop preparation has to be done at a faster rate than other sub-assembly processes

because seven loops are required to be assembled on one trouser. For this reason, any delays in

the preparation process could cause starvation of the main body assembly as well as the

extreme workstations resulting into low throughput. In previous studies, job release policy

based on WIP threshold of the bottleneck workstation was observed to increase throughput

[53, 54]. In contrast, the present study achieved lower throughput. A plausible explanation is

that previous studies considered the assembly line problem which does involve parts prepara-

tion processes. Consequently, keeping WIP of one workstation does not starve the extreme

workstations, thus increasing the throughput. It should be emphasized that job release policy

based on WIP threshold of the bottleneck workstation does not work well on the assembly line

Fig 10. Main factors effect plot for throughput.

https://doi.org/10.1371/journal.pone.0239410.g010
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problem that requires part preparation process as it leads to starvation of the main body

assembly resulting into low throughput.

Task assignment pattern effect plot. There was a small increment in the average

throughput when random task assignment pattern was changed to equal task assignment.

With the random task assignment, there is unequal workload for operators performing similar

tasks in the workstation. Thus, the workstation cycle and idle times are increased, resulting

into low throughput. On the other hand, equal task assignment maintains the same workload

among operators, reducing the cycle and idle times which ultimately increases the overall

throughput. The present study is in complete agreement with the report of Kandemir & Hand-

ley [55] who reiterated that equal task assignment had higher production throughput and effi-

ciency due to equal workload of the operators and minimization of workstation idle time.

Machine number effect plot. The effect of machine numbers on the throughput was

found to be statistically significant at α = 0.05. This means that, the throughput increases when

machine number is increased in the workstation and vice versa. This is because increasing

machine number in the bottleneck workstation reduces cycle and parts waiting times as well as

the WIP.

Helper number effect plot. Similarly, helper number had a significant effect on the mean

throughput though its effect was smaller when compared to machine number. The work of

helpers in the production line normally influences the feeding of parts to the extreme worksta-

tions. When the number of helpers is increased, the extreme workstation is never starved of

materials due to reduction of helper’s workstation cycle time and WIP. Subsequently, a higher

throughput is realized. Contrastingly, decreasing the number of helper results in an increase in

their workstation cycle time, leading to starvation of the extreme workstations thus a lower

throughput.

The interaction effects

The interaction effect of the factors on the production throughput is illustrated in Fig 11. Each

plot represents the interaction between two factors. When the red and blue lines of the factor

levels are with considerably different slopes, it indicates that there is an interaction between

the two factors. In this respect, the interaction effects of the factors were interpreted as follows.

Bundle size and job release policy effect plot. This interaction plot indicated that there is

very little interaction between bundle size and job release policy as the no policy and policy

lines took slightly different slopes. With the bundle size of 10, the average throughput

decreased by a large value when the job release policy was changed from no policy to policy

level. While with the bundle size of 40, the throughput decreased by a very small value and

almost did not change at all when the job release policy was changed from no policy to policy

level.

Bundle size and task assignment pattern effect plot. There was also an insignificant

effect of the interaction between bundle size and task assignment. Nonetheless, there was little

interaction effect as the slopes of random and equal lines are not parallel. This implies that

with the bundle size of 10, the mean throughput increased by a large value when task assign-

ment pattern changed from random to equal level. With the bundle size at 40, the mean

throughput increased by a very small value when the task assignment pattern changed from

random to equal level.

Bundle size and machine number effect plot. There was actually no interaction between

bundle size and the number of machines since there was no significant difference in the slopes

of the reduce and increase levels considered. This points out that there could not be any differ-

ences even if the alpha value were increased.
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Bundle size and helper number effect plot. The slope of the reduce and increase lines of

the two levels of the helper numbers differed slightly. The plot indicates that if the bundle size

is at 10, the mean throughput increases by a larger value when the helper number is changed

from reduce to increase level (helper number is increased). The reverse would be true if the

bundle size is at 40.

Job release policy and task assignment pattern effect plot. The slope of random and

equal lines of the two levels of task assignment pattern took slightly different directions. Con-

sequently, significant interactions can exist when the alpha value is increased. The plot con-

notes that, if the job release policy is at no policy, there is almost no change or a very small

increase in the throughput when the task assignment pattern changes from random to equal

level. But if the job release policy is set at policy level, the throughput increases by a bigger

value when the task assignment pattern changes from random to equal level.

Job release policy and machine number effect plot. There is likely to be no interaction

between job release policy and machine number at all even if the alpha value is further

increased because the slope of the reduce and increase levels of machine number are parallel.

Job release policy and helper number effect plot. There is an insignificant interaction

between job release policy and helper number at α = 0.05. Notwithstanding, the reduce and

increase levels of helper number took slightly different slopes. Thus, their interaction could be

significant when the alpha value is further increased at some point.

Fig 11. Interaction plot for throughput.

https://doi.org/10.1371/journal.pone.0239410.g011
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Task assignment pattern and machine number effect plot. There is no interaction

between task assignment and machine number as the slope of the reduce and increase levels of

machine number took the same direction.

Task assignment pattern and helper number effect plot. It can be observed from the

plot that the slope of the reduce and increase lines of helper number are parallel. The plot

therefore means that, if the task assignment pattern is at random level, the average throughput

insignificantly increases when the helper number is increased. However, if the task assignment

pattern is at equal level, the average throughput increases by a larger value when the helper

number is increased.

Machine number and helper number effect plot. There was a statistically significant

interaction between machine number and helper number at α = 0.05. It is observed that the

slope of the reduce and increase lines of helper number differed significantly. The plot means

that if the machine number is at reduce level, there is no change in the mean throughput when

the helper number is increased. The reverse is true when the machine number is at increase

level. It can be noted that increasing helper number when the machine number is at reduce

level does not change the average throughput because helpers perform simple tasks in the pro-

duction line and their tasks depends on the workstations with machines. Reducing helper

number contributes to high WIP and idle time in the workstations for the helpers but the

throughput remains constant because only the cycle time of the helpers is changed. However,

increasing the helper number when the machine number is at increase level increases through-

put because the cycle and idle times as well as the WIP of both the machine and the helper

workstations are reduced.

Conclusion

The present study demonstrated a garment assembly line design using simulation metamodel-

ing with 28.63% increase of the throughput achieved for the best setting of the metamodel.

However, the developed metamodel was a biased approximation of trouser assembly line sim-

ulation model with R2 = 1 and MSE = 0. This metamodel is not suitable for prediction but

rather for inference because of the complex nature of the assembly line which is composed of

many workstations with both identical and different machines. The metamodel was used to

give an insight of the relationship between factors (bundle size, job release policy, task assign-

ment pattern, machine number and helper number) and the throughput, identifying the most

influential factors and quantifying their impact on the throughput and detecting important

interactions. The job release policy based on the WIP threshold of the bottleneck workstation

is not suitable for improving the throughput of assembly line with parts preparation process

(sub-assembly process). In order to overcome the biasness of the metamodel, a further study

should use a space-filling experimental design such as Latin hypercube design or orthogonal

array. Further, profound metamodeling technique involving machine learning approach for

designing garment assembly line should be investigated.
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