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Abstract 
The study aimed at the detection of catechol using GC-MS and ESI-MS. Catechol is an excellent 
starting material for oxidative polymerization since it contains the very reactive two hydroxyl 
groups in ortho-position, like other polyphenols in nature. Polymerization of catechol is known to 
happen under oxidative conditions or by use of a catalyst. Catechol was silylated with BSTFA-
TMCS shortly before being analyzed by GC-MS. 
The results obtained indicate that catechol polymerizes immediately on its own under ambient 
conditions (without oxygen saturation or pH adjustment) forming a dimer and trimer. Results from 
ESI-MS confirm the formation of dimers and trimers. The combination of these two techniques led 
to the proposal of plausible molecular structures. These structures are characterized by the presence 
of ether- and hydroxyl functional groups. Effect of two solvents; water and methanol was 
investigated whereby water yielded less mass fragments in the GC-MS analysis as compared to 
methanol. The results obtained are of great importance since catechol is a key reagent in most of the 
syntheses. Since polyphenols are present in the environment, it could be playing a vital role in 
dissolution, transport and complexation of metals. 
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1. Introduction 
Catechol, C6H6O2 has been widely used as the starting molecule for the synthesis of fulvic/humic 
acid-like compounds, FALC/HALC (Dubey et al., 1998; Sanchez-Cortes et al., 2001; Aktas et al., 
2003; Jung et al., 2005; Smejkalova et al., 2006). It is an excellent starting material for oxidative 
polymerization since it contains the very reactive two hydroxyl groups in ortho-position, like other 
polyphenols in nature (Sanchez-Cortes et al., 2001). Polymerization of catechol is known to happen 
under oxidative conditions or by use of a catalyst. Some studies have been reported about the 
detection of catechol by Gas chromatography-mass spectrometry (GC-MS) and/or Electrospray 
ionisation mass spectrometry (ESI-MS) (Šmejkalova et al., 2006; Lourenço et al., 2006; 
Moldoveanu and Kiser, 2007). However, in all these studies, silylation was undertaken while 
dissolution was in other solvents (methanol, pyridine, dichloromethane) but not in water.  
Electrospray ionisation mass spectrometry (ESI-MS) and Gas chromatography-mass spectrometry 
(GC-MS) are among the most reliable analytical methods. ESI-MS as a method has a lot of 
advantages as it takes place at atmospheric pressure, ionizes a wide range of polar, hydrophilic 
molecules with both acidic and basic functional groups, and can be operated in the positive or 
negative ion mode. Since the samples for ESI are prepared in water or made up in a mixture of 
water and/or simple, low-molecular-weight organic solvents that evaporate during ESI, solvent-
generated ions do not interfere with the mass spectral information generated for the substances 
being analyzed (Gaskell, 1997). 
GC-MS has the synergistic combination of two powerful analytical techniques; the chromatograph 
that separates the components of a mixture as a function of time, and the mass spectrometer which 
provides information that aids in the structural identification of each component. In order to have 
high-resolution GC for the analysis of catechol, the sample must be derivatized. There are several 
reagents that can be used for derivatization, though silylation is the most widely used derivatization 
procedure for sample analysis by GC (Quintana et al., 2004; Zhang and Zuo, 2005; Šmejkalova et 
al., 2006).  
In this method, active hydrogen is replaced by an alkylsilyl group. Use of BSTFA-TMCS (99/1) 
(v/v) as silylation reagent is advantageous because of its fast reactivity with compounds containing 
hydroxyl groups, its high volatility resulting in non co-elution of early eluting peaks, low thermal 
degradation and good solubility in common organic solvents of the derivatized compounds. As a 
result, GC separation is improved and detection is enhanced. The molecular formula of BSTFA is 
CF3C=NSi(CH3)3OSi(CH3)3, and for TMCS it is ClSi(CH3)3. However, certain functional groups 
can form some unexpected derivatives from silylation reagents and their by-products. Little (1999) 
reported artefacts in trimethylsilyl derivatization reactions. The mechanism of BSTFA-TMCS 
silylation is as shown in Figure 1. 
The aim of this present paper was to show the immediate polymerization of catechol whether in 
milli-Q water or methanol at ambient conditions, through detection by GC-MS and ESI-MS. The 
findings got reveal detection of more molecular ions as than has been reported in literature. The 
effect of water as a dissolving solvent (instead of methanol) for catechol was also tested. The results 
show that polymerization of catechol takes place without any form of catalysis and is spontaneous. 
 
2. Experimentation 
2.1. Reagents and standards 
All chemicals were of analytical reagent grade and were used without any further purification. 
Catechol Reagent Plus (≥ 99 %) was supplied from Sigma Aldrich. For the dilutions, we used 
methanol of HPLC isocratic grade, supplied from VWR Prolabo, and ultra pure water purified with 
a Milli-Q

 
academic (18.2 MΩ.cm-1 Millipore S.A.S). For GC-MS analysis, we used a mixture of N, 
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O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) (99:1, v/v), 
supplied by Supelco in a chloroform solvent as the silylation reagent. The standard solution used 
was a 10 ppm n-alkanes (C8 to C40) in a chloroform solvent supplied from Accu Standard Inc. For 
ESI-MS, the calibration standard used was cluster of Li formiate. 10 mM LiOH (hydrated from 
Aldrich) were diluted in isopropanol:water (50:50, v:v) 
 
2.2. Gas chromatography-mass spectrometry (GC-MS) analysis 
2.2.1. Sample preparation and derivatization 
Each catechol sample was ground to fine powder and then put in clear vials. A solution of 
2.21 mg.mL-1 of catechol in methanol and a solution of 2.06 mg.mL-1 of catechol in Milli-Q water 
were prepared. 100 μL of the previous solutions were drawn and evaporated to dryness under 
nitrogen flux, followed by addition of 100 μL of BSTFA-TMCS (99:1, v/v). The vials were closed 
and slightly heated at 60 °C for 15 minutes. Once the derivatization process was complete, 1 μL of 
the reaction mixture was injected into the GC-MS system. Blanks and BSTFA-TMCS reagent 
samples were also analyzed using the same protocol to help in the interpretation of the spectral data. 
All the sample preparations and analyzes were performed in triplicate to ensure good reproducibility 
of the data. 

 
2.2.2. GC-MS analyses  
The measurements of samples (derivatized catechol, blanks and BSTFA-TMCS solutions) were 
conducted on a Hewlett Packard HP6890 series GC-MS instruments. 1 μL of the sample was 
injected using the splitless injection mode, which was held at 300°C and 1.6 bars, and a capillary 
column (J & W DB-5 capillary 60 m length x 250 μm i.d x 0.10 μm film thickness) was used for 
analytical separation. Helium was used as a carrier gas at a flow rate of 1 mL.min-1. The oven was 
temperature-programmed from 60 to 130°C at a rate of 15°C.min-1, then ramping from 130 to 
315°C at a rate of 3°C.min-1 and finally held there for 15 minutes. The mass spectrometer operated 
in a full scan mode in the range of m/z 50-550 and by electron impact ionisation energy of 70 eV. It 
was calibrated by using a manual tune which determined the relative abundances and the isotopic 
ratio of the main ions coming from the PFTBA (perfluorotributylamine) fragmentation: m/z = 69, 
219, 502. Before and after each series of analyses, the GC-MS instrument was calibrated by using a 
10 ppm n-alkanes (C8 to C40) standard solution in a chloroform (or in a dichloromethane) solvent. 
Blanks were analysed, followed the same path of analyses as sample from the sampling point to the 
injection point in the GC-MS, under the same conditions throughout. In order to know the ions 
resulting from the silylation reagent, a BSTFA-TMCS Supelco (99/1) (v/v) mixture in chloroform 
was analyzed: 50 L of BSTFA-TMCS (99-1) Supelco solution were diluted in 50 L of 
chloroform solution (CHCl3) and analyzed. Compounds were identified using the Standalone 
software. 
 
2.3. Electrospray ionization-mass spectrometry (ESI-MS) analysis 
Sample solutions were diluted in milli-Q water or in methanol with a 10-2 molarity. They were 
analyzed using a Bruker micrOTOF-Q equipped with an ESI source operating in negative mode, 
with a capillary voltage of 4.5 kV. Desolvation gas flow and temperature were set at 240 L.h-1 and 
at 190°C respectively. The acquisition range was 50–3000 Da. The sample was injected via a 
syringe pump with a flow rate of 180 L.h-1. ESI interface tuning and mass calibration were 
accomplished in negative modes by using cluster of LiFormiate.  
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3. Results and Discussion 
3.1. GC-MS analyses  
GC-MS analysis of intermediates/products was based on the detection limit of m/z 550.  
 
3.1.1. Analysis of BSTFA-TMCS solution in a chloroform solvent 
Ions observed resulting from contaminants were identified in blank runs and were discarded in the 
interpretation of the chromatograms. The total ion chromatogram of the BSTFA-TMCS solution 
show seven peaks with the following retention time; 7.2, 7.8, 7.9, 8.4, 9.1, 10.6, and 20.2 minutes 
with molecular ion masses m/z = 187, 309, 336, 355, 369, and 443 (Figure 2a & b). This reagent 
solution yielded ions at m/z = 69 [CF3

+], 73 [Si+(CH3)3], 77 [Si+(CH3)2F], 100, 103, 135, 147 
[(CH3)2Si = O+Si(CH3)3], 207, 221, 251, 281, 295, 309, and 369 (Table 1). There are no reported 
mass spectra in the commercial database for BSTFA-TMCS reagent. Little (1999) listed the mass 
spectra of major ions for different trimethylsilyl derivatives. In the case of TMS derivative of 
disilicic acid, we have six fragments (m/z 73, 147, 207, 221, 281, and 295) in common as seen in 
Table 2. 
Several artefacts caused by the derivatization reagent were observed in the GC-MS chromatograms. 
This observation has earlier been noted by Little (1999). BSTFA used by itself does not generate 
artefacts with carboxylic acids, but it does with phenol. It cannot derivatize totally the phenol 
functional group hence producing artefacts. Incomplete silylation of compounds lead to multiple 
peaks hence affecting the determination of the number of components present in a sample. Little 
(1999) suggested that BSTFA should be used with DMF to have complete derivatization for phenol. 

 
3.1.2. Effect of solvent on the analysis of catechol 
3.1.2.1. Catechol diluted in methanol prior to silylation reaction 
Five molecular ions with m/z values of 187, 309, 336, 355, and 369 were observed to be common in 
both the samples of silylated catechol and BSTFA-TMCS solution, hence were not considered in 
interpreting the catechol spectra. The total ion chromatogram show two main peaks at the retention 
time 10 and 20 minutes. The later is due to BSTFA-TMCS, with the same mass spectrum as that 
observed in BSTFA-TMCS reagent. The former gives a mass spectrum which has two peaks at 
m/z = 73 and 254 whereby m/z = 73 is trimethylsilane, TMS [Si(CH3)3] while m/z  = 254 the 
molecular ion corresponding to the catechol monomer coupled with two TMS 
(bis(trimethylsilylated)catechol), see Figure 2e.  
Šmejkalova et al. (2006), Lourenço et al. (2006) and Moldoveanu and Kiser (2007) studied catechol 
using GC-MS and reported the molecular ion m/z 254 at the retention time of 10.20 (Lourenço et 
al., 2006) and 13.88 (Moldoveanu and Kiser, 2007) minutes. Šmejkalova et al. (2006) observed two 
ions specific of the silylation with m/z 73 and 147. Indeed, all derivatized substrates analysed by 
GC-MS yielded ions at m/z 50, 69, 73, 75, 77, 100 and 147 corresponding to CH3Cl+, CF3

+, 
Si+(CH3)3, HO+=Si(CH3)2, Si+H(CH3)2F, not resolved, and (CH3)2Si=O+Si(CH3) 3 fragments 
respectively. Moreover, they suggested that ions at m/z 136, 151, and 166 resulted from the 
molecular rearrangement within the fragmentation process. An observation of these fragments and 
other fragments was made in our samples. 
Finally, twelve ions for trimethylsilyl derivatives of catechol were identified, with m/z values of 
182, 240, 254, 314, 318, 328, 402, 420, 434, 476, 506, and 550 (Table 2). Their mass spectra and 
their respective structures suggested are shown in Figure 2c-i. Šmejkalova et al. (2006) reported the 
molecular masses of 434 and 506 Da corresponding to C-O and C-C dimers of catechol 
respectively. However, we suggest one other plausible structure for m/z 434 (Figure 2g). Lourenço 
et al. (2006) reported also the molecular ion with m/z 240, but did not suggest any structure. 
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Contrary to the sample preparation followed by Šmejkalova et al. (2006), our dried residues were 
not redissolved in pyridine, but directly silylated by adding BSTFA/TMCS. 

 
3.1.2.2. Catechol diluted in milli-Q water prior to silylation reaction 
In order to know if there was any reaction between catechol and methanol, a sample of catechol in 
water as a solvent was prepared. The same procedure as that of methanol was followed. The total 
ion chromatogram of the sample with water seems to be less noisy than that of methanol. It has six 
molecular ions with m/z values of 187, 205, 254, 258, 328, and 506. Molecular ions with m/z = 254, 
328, and 506 are in common with those of the methanol solvent. 
 
3.2. ESI-MS analyses 
Catechol was diluted at 10-2M in milli-Q water. The peaks analyzed are some of those peaks whose 
m/z values were within the GC-MS mass range of detection (Table 3). For these analyzed peaks we 
have proposed structures. Several peaks were observed: the majority is due to some clusters with 
water, but we focus on peaks at m/z = 109, 217, and 325. The ESI-MS spectra of pure catechol 
confirmed detection of catechol as a monomer (m/z = 109) and the formation of dimers and trimers 
with m/z values; 217 and 325 respectively (Figure 3). The proposed structures have molecular 
weight, MW = 110 (catechol), 218 (dimer of polycatechol), and 326 (trimer of polycatechol) for 
ions at m/z = 109, 217, and 325 respectively. Some of the proposed structures are in agreement with 
what has been published by Šmejkalova et al. (2006). ESI-MS spectra indicated presence of 
oligomers whose structures we are still working on. 
 
4. Conclusions 
GC-MS and ESI-MS analytical techniques are important for analyzing small molecules with good 
precision. GC-MS provides reliable results when samples are silylated before analysis. Sample 
preparation is crucial in order to have good results. The combination of these two techniques led to 
the proposal of plausible molecular structures. These structures are characterized by the presence of 
ether-, ester-, and hydroxyl functional groups. Different solvents need to be used in order to have 
better interpretation of results obtained. Our study shows that catechol polymerization is 
spontaneous. The case of catechol polymerization with other reagents would be investigated in 
detail in our forthcoming paper. 
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FIGURES AND TABLES CAPTION 
 
Figure 1: Mechanism of silylation 
Figure 2: Some of the mass spectra for BSTFA-TMCS and catechol 
Figure 3: Mass spectra of pure catechol prepared in milli-Q water (Negative mode, 50-3000 Da) 
Figure 4: Mass spectra of pure catechol prepared in methanol (Negative mode, 50-3000 Da) 
 
 
Table 1: List of some major fragments and molecular ions found in the BSTFA-TMCS solutions 
Table 2:  List of the major fragments and molecular ions of catechol in comparison with literature 

data. 
Table 3:  Comparison of GC-MS and ESI-MS molecular ion data. 
 
 

Table 1: List of some major fragments and molecular ions found in the BSTFA-TMCS 
solutions 
 

Our study   Little (1999) 
Fragments 

m/z Ion Fragments m/z 

BSTFA-TMCS   
TMS derivative  of disilicic 
acid 

69 CF3
+  / 

73 (CH3)3Si+ (or TMS+) 73 

77 
(CH3)2FSi+ (or 

TMS+) / 
100 CF3C=O-N+H / 
103   / 
135   / 
147 (CH3)2Si=O+-TMS 147 
207   207 
221   221 
251   / 
281   281 
295   295 
309   / 

/   327 
/   341 

369   / 
/   399 
/   415 
/   529 
/   503 
/   591 
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Table 2: List of the major fragments and molecular ions of catechol in comparison with those 
in literature. 
 

This GC-MS study Smejkalova et al. , 2006 Lourenço et al. , 2006
in methanol in water

136 / 136 /
151 / 151 /
166 / 166 /

/ / 181 /
182 / / /

/ 187 / /
/ 205 / /

225 / / /
/ / 239 239

240 / / 240
/ 255 /

254 254 254 254
/ 258 / /

299 / / /
314 / / /
318 / / /
328 328 / /
402 / / /
420 / / /
434 / 434 /
476 / / /
506 506 506 /
550 / / /

in bold: molecular ion  
 
Table 3. Comparison of GC-MS and ESI-MS molecular ion data. 

 

GC-MS (m/z) ESI-MS (m/z) Molecular Weight (bond types) 
182 (mono-trimethylsilylated) 109 110 
240 109 110 
254 (di-trimethylsilylated) 109 110 
258 109 110 
434 (tri-trimethylsilylated) 215 - 217 218 (C-O-C) 
506 (tetra-trimethylsilylated) 215 218 (C-C) 
506 (mono-trimethylsilylated) 433 434 (both C-C & C-O-C) 
550 325 326 (both C-C & C-O-C) 

 
Figure 1: Mechanism of silylation 
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Figure 2: Some of the mass spectra for BSTFA-TMCS and catechol derivatives 
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Figure 3: MS spectra of the pure catechol diluted in Milli-Q water (Negative mode, 50-3000 Da) 
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Figure 4: MS spectra of the pure catechol diluted in methanol (Negative mode, 50-3000 Da) 

 
 

 
 


