ACADEMIA

Accelerating the world's research.

Performance of Neural Network
Algorithms during the prediction of
yarn elongation

Josphat Igadwa

Related papers Download a PDF Pack of the best related papers &'

https://www.academia.edu/9185877/Performance_of_Neural_Network_Algorithms_during_the_prediction_of_yarn_elongation?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page

Fibers and Polymers 2008, Vol.9, No.1, 80-86

Performance of Neural Network Algorithms during
the Prediction of Yarn Breaking Elongation

Josphat Igadwa Mwasiagi*, XiuBao Huang, and XinHou Wang

College of Textiles, Donghua University, Shanghai, 200051, China
(Received July 18, 2007; Revised November 21, 2007; Accepted November 21, 2007)

Abstract: Yarn breaking elongation is one of the most important yarn quality characteristics, since it affects the manufacture
and usability of woven and knitted fabrics. One of the methods used to predict the breaking elongation of ring spun yarn is
artificial neural network (NN). The design of an NN involves the choice of several parameters which include the network
architecture, number of hidden layers, number of neurons in the hidden layers, training, learning and transfer functions. This
paper endeavors to study the performance of NN as the design factors are varied during the prediction of cotton ring spun
yarn breaking elongation. A study of the relative importance of the input parameters was also undertaken. The results indi-
cated that there is a significant difference in the types of transfer and training functions used. Of the two transfer functions
used, purelin performed far much better than logsig function. Among the five training functions, the best training functions in
terms of performance was Levenberg-Marquardt. The study of the relative importance of input factors revealed that yarn
twist, yarn count, fiber elongation, length, length uniformity and spindle speed, were the six most influential factors.

Keywords: Yarn breaking elongation, Artificial neural networks, Cotton fiber, Ring spinning

Introduction

Yarn breaking elongation is one of the most important
yarn quality characteristics, which is defined as the percentage
increase in length when the yarn breaks due to a tensile force
applied along the main yarn axis [1]. Several researchers [2-5]
have reported that yarn breaking elongation affect the
manufacture, quality and usability of knitted and woven
fabrics, with higher elongation giving better results. One area
of the study of yarn breaking elongation is the prediction of
yarn breaking elongation for cotton ring spun yarn. According
to Majumdar and Majumdar [6] yarn breaking prediction
Artificial neural networks (NN) models, are more efficient
than mathematical and statistical models. The design of an
NN model involves the selection of several parameters,
which include the network architecture, number of hidden
layers, number of neurons in the hidden layers, training,
learning and transfer functions [7,8]. Other factors such as
improving generalization methods and data pre and post
processing must also be considered in the design process
since they improve the performance of the NN. While there
are many possible designs of an NN, the success of the
design process can be judged based on the performance of
the NN. The purpose of this research work is to study the
performance of an NN prediction model and hence propose
an optimum NN model for the prediction of yarn breaking
elongation. The optimum model can also be used to study
the effect of input factors on yarn breaking elongation.

Factors Affecting Yarn Breaking Elongation

The machine factors which affect the breaking elongation

*Corresponding author: igadwa@yahoo.com

80

for ring spun yarns include spindle speed, traveler mass,
machine draft, yarn count and twist [9,10]. Considering the
effect of fiber properties on yarn breaking elongation,
Douglas [11] reported that the most important factors which
affect yarn breaking elongation are fiber elongation and
length. Other factors which influence yam breaking elongation
are fiber micronaire, strength, color and trash content. According
to Majumdar and Majumdar the impact of fiber length on
yarn breaking elongation is listed well behind fiber elongation,
length Uniformity index, yellowness, yarn count, reflectance,
fiber strength and micronaire. While the effect of different
fiber parameters and machine factors on yarn breaking
elongation keep on varying from author to author [12-14], it
is worthy noting that previous researchers [1,9,10,12-14]
have used at most eight inputs for the reported yarn breaking
elongation prediction models. This could have limited the
study of the factors affecting yarn breaking elongation. For a
more comprehensive understanding of the factors which
affect yarn breaking elongation we selected the following 19
factors as inputs to the NN;

e Machine factors: spindle speed, ring diameter, traveler

weight and ring spinning draft

e Fiber properties: micronaire, maturity, spinning con-

sistency index, length, length uniformity, short fiber
index, strength, elongation, reflectance, yellowness,
trash cent, trash area and trash grade

e Yarn factors: count and twist.

The selected 19 factors are by far more than any set of
inputs used by the previous researchers and will give a
deeper understanding of the effect of different factors on
yarn breaking elongation for ring spun cotton yarn.

Performance of Neural Network Algorithms

b 1h1 2
LE®) 2 2%
I, —» - L2, —P

Figure 1. The architecture of a feedforward network.

Artificial Neural Network

Artificial neural network commonly referred to as neural
networks (NN) is basically an information processing algorithm
that is inspired by the way biological nervous systems, such
as the brain, process information. NN are applicable in
virtually every situation in which a relationship between the
inputs and outputs exists. NN can be classified based on
their attributes [7,8] such as: topology, applications, connec-
tion types, and learning methods. The basic unit of an NN is
the neuron which can be described as an information
processing unit with four basic components (Figure 1) namely
weights (TW, ,), summing device (Z), bias (b'), and activation
function (F;). Several neurons can be combined to form a
layer. Similarly several layers can be combined to form a
network. Information passes from one layer to another until
the network produces an output.

Feedforward Network

The feedforward neural network is one of the simplest
types of NN devised. In this NN, the information moves
only in one direction, forward, from the input nodes, through
the hidden nodes (if any) and to the output nodes [15]. There
are no cycles or loops in the network. A feedforward NN
will have one or more hidden layers of neurons followed by
an output layer. Figure 1 shows the architecture of a feedforward
network with one hidden layer which receives a set of inputs
(P") together with the weights (IW,,) and biases (b") and
plrocesses it using the activation function F, to give an output
a (k).

The outputs from the hidden layer are fed to the output
layer together with another set of weights (LW, ;) and biases
(b which are then processed according to the activation
function F, to give an output a’(k). The final output of the
network is compared with the targeted output in what is
normally referred to as a training process. The activation
functions (F; and F,) can be any of the differentiable transfer
function such as tansig, logsig or purelin [7].

Elman Network

The Elman network is a type of a recurrent feed forward
neural network, with a feedback connection from the output
of the hidden layer neurons to the input of the network as
shown in Figure 2. This feedback path allows Elman networks
to learn how to recognize and generated temporal patterns,
as well as spatial patterns [15,16]. The Elman network

Fibers and Polymers 2008, Vol.9, No.l 81

2 a'(k)

i
O
ER el

a(k-1)

Figure 2. The architecture of Elman network.

which was originally designed to learn time-varying patterns
or temporal sequences has proven to be useful for the design
of algorithms used in the control of manufacturing processes.

Backpropagation Training Algorithms

The training process in an NN involves adjusting the weights
and biases so as to minimize the network’s performance
function. For training algorithms which use the gradient of
the performance function to determine how to adjust the
weights, the gradient can be determined by using a technique
called backpropagation (BP), which involves performing
computations backwards through the network. The simplest
implementation of BP learning which has been adequately
explained by several authors [7,8,15-17] updates the network
weights and biases in the direction in which the performance
function decreases most rapidly (the negative of the gradient).
An iteration of the algorithm can be written as:

Xiv1 = X— 48y

where X, is a vector of current weights and biases, g, is the
current gradient, and ¢ is the learning rate. At the end of the
iteration, the outputs of the network are compared with the
targeted values and the difference between the two is referred
to as the error of the network. In BP algorithm, if the error of
the algorithm is not within accepted pre-set values, the output
is propagated back through the network and is re-trained
with a different set of weights and biases. This is the process
by which the algorithm is named. This process is repeated
until the pre-set error is achieved. Standard BP algorithms
suffer from many drawbacks, such as slow rate of convergence
and are therefore unsuitable for practical problems.

Faster training algorithms have been designed and they
fall into two classes, namely the heuristic techniques and the
numerical optimization techniques. Examples of heuristic
techniques are variable learning rate and resilient backpro-
pagation training algorithms. Variable learning rate training
algorithms were designed to improve the performance of the
NN by using an adaptive learning rate which attempts to
keep the learning step size as large as possible while keeping
learning stable. This is done by choosing a learning rate that
is responsive to the complexity of the error at any point
during the training of the NN. Resilient Backpropagation
(rbp) training algorithms on the other hand were designed to
eliminate the harmful effects of the magnitudes of the partial
derivatives and as such, rbp algorithms use the sign of the

82 Fibers and Polymers 2008, Vol.9, No.1

derivative to determine the direction of the weight update.
The magnitude of the derivative has no effect on the weight
update.

The numerical optimization techniques can be subdivided
into three categories; conjugate gradient, quasi-Newton, and
Levenberg-Marquardt algorithms. Examples of conjugate
gradient algorithms are Fletcher-Reeves Update, Polak-
Ribiere Update, Powell-Beale Restarts, and Scaled Conjugate
Gradient. As was previously mentioned, the basic BP algorithm
adjusts the weights in the steepest descent direction (negative of
the gradient), which is the direction in which the performance
function is decreasing most rapidly. Although the function
decreases most rapidly along the negative of the gradient,
this does not necessarily produce the fastest convergence. In
the conjugate gradient algorithms, a search is performed
along the conjugate direction which produces faster con-
vergence than steepest descent directions. The conjugate
gradient Polak-Ribiere (P-R) Update training algorithm, like
other conjugate gradient algorithms, start out by searching in
the steepest descent direction (negative of the gradient) on
the first iteration as shown below, where p, is the initial
search and g, is the gradient of the learning function.

Po="8o

A line search is then performed to determine the optimal
distance to move along the current search direction:

Xep1 =X+ oy B

The next search direction is determined so that it is
conjugated to previous search directions. The general
procedure for determining the new search direction is to
combine the new steepest descent direction with the
previous search direction:

Pr ==&+ Bl

The various versions of conjugate gradient are distinguished
by the manner in which the constant £, is computed. For the
P-R update algorithm, £, is computed as:

T
_ A 18
b=~
8r-18k-1

This is the ratio of the norm squared of the current gradient
(gy) to the norm squared of the previous gradient (g;_,).
Newton’s method is an alternative to the conjugate gradient
methods for fast optimization, but it requires the calculation
of the second derivatives (Hessian matrix) of the performance
index, hence it is complex and expensive to compute for
feedforward neural networks. The Quasi-Newton (or secant)
methods do not calculate the second derivate, but updates an
approximate Hessian matrix at the algorithm iteration which

Josphat Igadwa Mwasiagi et al.

in effect, reduces the computational requirement for the
algorithm. Levenberg-Marquardt (/ma) backpropagation is
another algorithm that uses a simplified version of Newton's
method of training, and like the Quasi-Newton methods, the
Ima algorithm was designed to approach second-order training
without having to compute the Hessian matrix. Since the
performance function of a feedforward network has the form
of the sum of squares, the Hessian matrix can be approximated
as:

H=J"J
and the gradient can be computed as:
g=Je

where J is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights and biases,
and e is a vector of network errors. Each term in the matrix
has the form:

The simplest approach to compute the derivates is to use
the approximation:

J Ae;
Y Aw,
where Ae; represents the change in the output error due to the
small perturbation of the weight Aw;. After the Jacobian
matrix is computed the weight updates can be performed and

the performance of the algorithm computed as in the standard
BP algorithms.

Learning and Transfer Functions

Apart from the training algorithms, learning and transfer
functions are other important parameters to be considered
during the design of an NN algorithm. In backpropagation
training algorithms two weight and bias learning functions
are used. These are gradient descent and gradient descent
with momentum. The gradient descent method calculates the
weight change Aw from the weight (or bias) learning rate /r
and the gradient descent g7 as follows [15]:

Aw = lrxgW

while gradient descent with momentum calculates the
weight change according to the following equation:

Aw = mex Aw,,,,

+(1—-mc)xlrxgW

where mc is the momentum constant and the previous
weight change Aw,,,, is stored and read from the learning
state. The behavior of an NN depends on both the weight

Performance of Neural Network Algorithms

and the input-output function (transfer function) that is
specified for the units. The transfer functions can be classified
into three main groups [7]: linear (or ramp), threshold (or
hard limit), and sigmoid. For linear functions, the output is
proportional to the total weighted input. For threshold functions
the output is set at one of the two levels depending on
whether the total input is greater than or less than some
threshold value. For sigmoid function, the output varies
continuously but not linearly as the input changes.

Materials and Methods

Materials

Cotton lint and carded ring spun yarn samples were
collected from textile factories in Kenya. For every yarn
sample collected, a sample of the corresponding cotton lint
mixture used to spin the yarn was also collected. Table 1
gives the details of the cotton and yarn samples collected.

Methods
An NN algorithm for predicting the yarn breaking elongation
was designed and its performance studied. The inputs of the
NN were ringframe processing parameters (spindle speed
(ss), ring diameter (di), traveler weight (tw) and spinning
draft (dt)), cotton fiber HVI characteristics, yarn twist (tp)
and yarn count (tx). Yarn breaking elongation was set as the
output of the network. The cotton fiber HVI characteristics
used as part of the input parameters were micronaire (mi),
maturity (mt), spinning consistency index (sc), fiber length
(le), length uniformity (uf), short fiber index (sf), strength
(st), elongation (ef), reflectance (rd), yellowness (+b), trash
cent (tc), trash area (ta) and trash grade (tg). Using the following
design factors the performance of an NN algorithm with one
hidden layer was studied:
e Network architecture: two types used - Elman and
feedforward networks
e Backpropagation training algorithms: five algorithms
were used - variable learning rate (v/r), Levenberg-
Marquardt (/ma), resilient backpropagation (rbp), Quasi-
Newton algorithm (gna) and Polak-Ribiere conjugate
gradient (prc)
e No. of neurons in the hidden layers: varied from 2 to 20
in steps of 2s

Table 1. Details of cotton lint and yarn samples

Cotton lint Mill code Yan No. of cops Spindle speed
Ne (tpm)
Voi AR B 30 20 11,000
Voi AR B 20 20 10,000
WT AR A 30 20 12,000
Kitui AR A 30 20 12,000
Kitui AR A 24 20 11,000
Kitui AR C 24 20 8,000

Fibers and Polymers 2008, Vol.9, No.1 83

o Learning functions: two functions were used - gradient
descent and gradient descent with momentum
e Transfer functions: two functions were used - logsig and
purelin functions
By using different combinations of the above factors a
total of 400 (2x2x2x5x10) performance algorithms were
designed. The main features of the algorithm involved data
acquisition, data pre-processing, network training and data
post processing. The acquired data (inputs and targets) were
normalized so that they had zero mean and unity variance.
The data was divided into training, validation, and test
subsets in the ratio of 4:1:1 respectively, as equally spaced
points. The performance of the NN was measured using
mean squared error (mse).

Results and Discussion

The Effect of the Factors on the Performance of the
Algorithms

The analysis of the performance of the 400 elongation
prediction algorithms yielded the result given in Table 2.
From the factors point of view, the performance of the
algorithms showed no significant difference as the network
architectures, weight/bias learning functions and number of
neurons in the hidden layer were changed since their respective
p-values are high (more than 0.05), and the F values are less
than the corresponding F;; values.

The type of training and transfer functions used indicated
a significant change in the performance of the algorithms (p-
value values more than 0.05 and F values more than the
corresponding F;; values). This implies that one out of the
two transfer functions used performed better than the other.
Similarly, at least one of the training functions out of the five
used performed better than the others. This calls for further
investigations.

The Influence of Transfer Functions on the Performance
of the Algorithms

To further investigate the impact of the transfer functions
on the performance of the algorithms, the purelin and logsig
algorithms were analyzed to establish the relationship if any
between the transfer functions and the performance of the
algorithms.

Table 2. Analysis of the performance of the 400 algorithms

Factors No. of F P-value Feit
factors
Network architectures 2 0.6834 0.4088 3.8649
Transfer function 2 4799.755 3.5x107* 3.8649
Learning functions 2 0.0896 0.7649 3.8649
BP training functions 5 3.5279 0.00762 2.3945
No. of neurons 10 0.4131 0.9281 1.9039

84 Fibers and Polymers 2008, Vol.9, No.1

Table 3. Analysis of the performance of the purelin algorithms

Josphat Igadwa Mwasiagi et al.

Table 5. Performance (mse) of purelin and logsig algorithms

No. of

Factors P-value | S
factors
Network architectures 2 0.8567 0.3558 3.889
Learning functions 2 1.5780 0.2105 3.889
BP training functions 5 607911 2.88x107° 2418
No. of neurons 10 3.1425 0.0015 1.9294

Training function Purelin Logsig
vir 0.1645 0.5637
Ima 0.0389 0.4887
rbp 0.0548 0.4685
qna 0.0530 0.4708
prc 0.0554 0.4722

Table 4. Analysis of the performance of the logsig algorithms

Factors No. of F P-value F it
factors
Network architectures 2 11.8440 0.0007 3.8889
Learning functions 2 0.0637 0.8009 3.8889
BP training functions 5 2932 4.32x1077 24180
No. of neurons 10 2.8112 0.0040 1.9294

The Performance of the Purelin Algorithms

In Table 3 the performance of the algorithms using purelin
training function showed no significant difference for the
type of network architecture and learning function. However, in
the same table it is clear that there is a significant difference
in the type of transfer function and number of neurons used.
This is the same kind of relationship which the performance
of the algorithm showed when compared with the combined
set of algorithms (those using purelin and logsig functions).
While the combined set of algorithms showed no significant
difference for the number of neurons in the hidden layer, the
purelin algorithms however showed a significant difference
in the performance of the algorithms as the number of neurons
in the hidden layer were varied.

The Performance of the Logsig Algorithms

The performance of the algorithms using logsig transfer
functions is given in Table 4, which indicate that there is no
significant difference for the type of learning functions used.
There is however a significant difference in the performance
of the algorithms as the type of architectures, training
functions and number of neurons in the hidden layer are
varied. The means of the mse values for all the algorithms
using Elman and feedforward architecture were 0.507 and
0.479, which are significantly different, indicating that Elman is
more sensitive to the type of the transfer function used in the
output layer when compared to the feedforward architecture.

Comparison of the Purelin and Logsig Algorithms as the
Training Functions are varied

Table 5 gives the performances (mse) of the purelin and
logsig algorithms as the training functions are varied. Purelin
as a transfer function performed far much better than logsig
for all the five training functions used. It can also be
concluded that vir performed significantly lower than the
other four training algorithms.

The Optimum Elongation Prediction Algorithm
Having established that vir training and logsig transfer
functions performed significantly lower than the other functions,
a study was conducted to establish how the remaining
algorithms compared with each other. In this study the
performance of the algorithms were monitored under the
following design conditions:
o Weight/bias learning function: 2 used-gradient descent
and gradient descent with momentum
e Transfer Function: one used - Purelin transfer function
e No. of neurons in the hidden layer varied from 2 to 20 in
steps of 2s
o Network architecture: 2 used - Elman and Feedforward
e BP training algorithms 4 used - /ma, rbp, gna and prc

A total of 160 (2x1x10x4x2) algorithms using purelin
transfer function were analyzed and the results (Table 6)
indicated that there is no significant difference for the type

Table 6. Analysis of the performance of the 160 algorithms with
purelin

Factors No. of F P-value Fesit
factors

Network architectures 2 1.4100 0.2368 3.901
Learning functions 2 0.1234 0.7259 3.601
BP training functions 4 2732 3.44x107" 2.664
No. of neurons 10 2195 2.12x107% 1.9428

ocoof -~ 77]

0.08 | 1

.
w 0.07 1
4]
E
g 006 | é 1
s _
2005 | ﬁ ﬁ ﬁ ﬁ ﬁ |
|
0.04 | 15 T 1
+ |
1 1 | |
0.03 -]]

10 12 14 16 18 2
No. of neurons

2 4 6 8

Figure 3. The performance of algorithms with different number of
neurons.

Performance of Neural Network Algorithms

0.100

—a—elma
—a—arbp
—s—eqna
= 8PIC
—o—fima
—a—Trbp

—o—Tfgna
—w—fprc

0.075

mse

0.050

0.025

2 4 B 8 10 12 14 16 18 20
No. of neurons

Figure 4. Performance of the best algorithms.

of network architecture and learning functions used.

The types of training functions and number of neurons in
the hidden layer showed a significant difference in the
performance of the algorithms. In Figure 3, the changes of
the performance for the algorithms as the number of neurons
in the hidden layer are varied indicated that after the first 8
neurons, the change in the performance of the other neurons
(10 to 20) was not significant. Therefore, 8 was considered
as the optimum number of neurons in the hidden layer.

A final comparison of the algorithms was done by con-
sidering the performance of the algorithms using gradient
decent with momentum as the learning function, and the
results are given in Figure 4, where letters e or f have been
prefixed before the BP training algorithms to denote that the
network architecture used is Elman or feedforward network
respectively. From Figure 4, /ma algorithms which used the
feedforward network architecture gave the best performance
for elongation prediction algorithm, and was therefore con-
sidered as the optimum NN algorithm for the prediction of
yarn breaking elongation.

The Relative Importance of Input Factors

The optimum NN algorithm was used to analyze the
relative importance of various input factors. We conducted
an input saliency test by eliminating one designated input
from the NN at a time. The increase in mse value when
compared to the mse of the optimum NN was considered as
a measure of the relative importance of the eliminated input.
The results of the above mentioned saliency test are given in
Figure 5.

The most important factors which affected the prediction
80
70 |
60
50 |
40 |
30 |
20 |
10 |

0
-10

% Change in mse

ta *b g ¢
Input factors

Figure 5. Relative importance of input factors.

Fibers and Polymers 2008, Vol.9, No.1 85

of yarn breaking elongation were yarn twist (tp), count (tx)
and fiber elongation (ef). Other important factors which
showed a strong influence on the prediction of yarn breaking
elongation were fiber length (le), length uniformity (uf) and
spindle speed (ss). This agrees with previous results obtained
using regression models [10]. Douglas [11] also reported
that fiber elongation and length are highly correlated with
yarn breaking strength for cotton ring spun yarn.

Cotton ring spun yarns are twisted to induce lateral forces
which act by means of friction to prevent fibers from slipping
over one another. The yarn twist causes the fibers to be
rotated so that they make an angle with the yarn axis. This
angle increases as the twist is increased. As discussed by
Lawrence [18], yarn breakage in short staple ring spun yarn
occurs either due to fiber slippage or fiber breakage. When
yarn breaks due to fiber slippage, the hitherto twisted fibers
have to be straightened. The straightening action has an
effect of increasing the effective length of the fiber which in
turn increases yarn length. This could be the reason yarn
twist showed a strong impact during the prediction of yarn
breaking elongation. Since yarn count is highly correlated
with yarn twist it therefore came as no surprise that yarn count
also showed a strong impact during the prediction of yarn
breaking elongation. As mentioned earlier when yarn breaks
due to fiber slippage, there is need for the straightening of
the twisted fibers before they can slip over one another. This
process of straightening the fibers is affected by other factors
which include fiber length, length uniformity, short fiber
index, traveler weight, ring spinning draft and Spinning
consistency index. A longer fiber with better length uniformity,
lower short fiber index and a higher spinning consistency
index will give a higher increase in length when stretched.
Proper combination of ringframe draft and traveler weight
will lead to a better utilization of fiber length which will in
turn lead to higher yarn breaking elongation.

When yarn breaks due to fiber breakage, the individual
fibers are first stretched before breaking. The process of
stretching the fiber as discussed above will be affected by
other machine parameters and fiber properties. When the
straightened fiber is further stretched until it breaks, the
change in its length is defined as fiber elongation. The change
in fiber length will cause a corresponding increase in yarn
length. This could be the reason fiber elongation showed a
strong impact during the prediction of yarn breaking elonga-
tion. It is noteworthy that trash grade, trash area, fiber
yellowness and ring diameter showed a negative impact on
the prediction of yarn breaking elongation. This finding calls
for further investigation.

Conclusion
The design of yarn breaking elongation prediction algorithms

was studied where the inputs were four spinning process
parameters (spindle speed, ring diameter, traveler weight

86 Fibers and Polymers 2008, Vol.9, No.1

and spinning draft), HVI cotton characteristics, yarn twist
and count. The output of the network was yarn breaking
elongation. The performance of the algorithms was studied
under the following design conditions: network architecture
(two types), weight/bias learning functions (two types), transfer
functions (two types), backpropagation training functions
(five types) and the number of neurons in the hidden layer
(10 levels). The algorithms performance indicated that there
was a significant difference in the type of transfer and training
functions used. For the two transfer functions used, purelin
performed far much better than logsig function. Among the
five BP training functions, Variable learning rate showed
significantly lower performance while Levenberg-Marquardt
showed the best performance. The other three (resilient
backpropagation, Quasi-Newton and Polak-Ribiere conjugate
gradient Update) were in between. The best performing
algorithm for the prediction of yarn elongation had feedforward
network architecture, Levenberg-Marquardt training function,
purelin transfer function and 8 neurons in the hidden layer.
The study of the relative importance of input factors revealed
that yarn twist, yarn count, fiber elongation, length, length
uniformity and spindle speed, were the six most influential
factors.

Acknowledgement

The financial assistance received from China Scholarship
Council (CSC), Beijing and University Research Fund (URF),
Moi University, Eldoret is hereby acknowledged. We also
wish to thank all the textile firms which provided the cotton
lint and yarn samples used in this research work.

References

1. D.J. McCreight, R. W. Feil, J. H. Booterbaugh, and E. E.
Backe, “Short Staple Yarn Manufacturing”, pp.458-462,
Carolina Academic Press, Durham, North Carolina, 1997.

10.

11.
12.

13.

14.

15.

16.
17.

18.

Josphat Igadwa Mwasiagi et al.

. S. Doonmez and A. Marmarali, Text. Res. J., 74(12), 1049
(2004).

. R. D. Anandjiwala and B. C. Goswami, Text. Res. J.,
63(7), 392 (1993).

. S. Kovacevic, K. Hajdarovic, and A. M. Grancaric, 7ext.
Res. J., 70(7), 603 (2000).

. S. D. Kretzschmar, A. T. Ozguney, G. Ozcelik, and A.
Ozerdem, 7ext. Res. J., 77(4), 233 (2007).

. P.K. Majumdar and A. Majumdar, 7ext. Res. J., 74(7), 652
(2004).

. F. M. Ham and I. Kostanic, “Principles of Neurocomputing
for Science & Engineering”, pp.132-135, 222-226, China
Machine Press, Beijing, 2003.

. M. T. Hagan, H. B. Demuth, and M. Beale, “Neural
Network Design”, China Machine Press, Beijing, 2002.

. S. M. Ishtiaque, R. S. Rengasamy, and A. Ghosh, Indian J.

Fibre Text. Res., 29, 190 (2004).

E. Mustafa and U. H. Kadoglu, 7ext. Res. J., 76(5), 360

(2006).

K. Douglas, Uster News Bulletin, 38,23 (1991).

W. Zurek, 1. Frydrych, and S. Zakrzewski, Text. Res. J.,

57(8), 439 (1987).

L. A. Fiori, J. E. Sands, H. W. Little, and J. N. Grant, Text.

Res. J., 26(7), 553 (1956).

W. P. Virgin and H. Wakeham, 7ext. Res. J., 26(3), 177

(1956).

H. B. Demuth, M. Beale, and M. T. Hagan, “Neural

Network Toolbox, For Use with MATLAB”, User’s Guide

Version 4, The MathWorks Inc., Natick, 2005.

J. L. Elman, Cognitive Science, 14, 179 (1990).

E. Mizutani and J. S. R. Jang in “In Neuro-Fuzzy and Soft

Computing”, (J. S. R Jang, C. T. Sun, and E. Mizutani

Eds.), pp.129-172, Prentice Hall, Upper Saddle River,

1997.

C. A. Lawrence, “Fundamentals of Spun Yarn Technology”,

pp.359-406, CRC Press LLC, Florida, 2003.

