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ABSTRACT

The adaptive immune system, made up of a network of cells, tissues and organs,
protect the body against infections and maintain overall health.Immunological
research has identified two types of cell interactions: thymus(T) and bone marrow(B)
derived cell interaction to explain immune responsiveness. Adaptive immune
responses are highly specific to pathogens that induce them. Cell Mediated Immunity
defend against intracellular pathogens such as viruses, intracellular bacteria and
protozoa.The T cell function lies in the heart of an efficient cytotoxic response.The
cells activation is highly regulated and is important to ensure that activation occurs in
the right context to prevent development of harmful conditions. With some key
processes of the immune system still poorly understood, construction of mathematical
models of the immune responses provide the researchers and clinicians powerful tool
for the simulation of immune system in order to increase its efficiency in the struggle
against pathogens.The purpose of this study was to establish the interplay between the
immune responses and viral pathogens.The study offers an innovative, analytical and
methodological approach in elucidating key processes of the immune responses.The
primary objectives ware: to develop a mathematical model that simulates immune
system responses to viral pathogens, analyze the stability of the model in order to get
some important ideas about the proliferation of the pathogen and to estimate the range
of parameter combinations required to mount an immune response. To achieve this a
mathematical model containing five variables: purely susceptible host cells, virus
infected cells, free virions, antibody responses and cytotoxic T lymphocyte (CTL)
response was formulated using differential equations. The simulations and analysis
was done using Matlab & Mathematica softwares, available experimental data on
Hepatitis C Virus is used to validate the analytical results. Stability analysis was
carried out using the Routh -Hurwitz method and the theory of next generation matrix
was used to determine the basic reproductive ratio as R0 =

βλκ

αδω
. Threshold values of

parameters that influence immune responsiveness were also determined using the
same method. Three possible outcomes in the activation of immune responses were
considered: CTL response is established & antibody response fail, antibody response
is established & CTL response fail and both CTL & antibody responses become
established. Critical bounds are established to determine the threshold requirement
for establishment or failure of either CTL or antibody. Analytical results have shown
that when antibody response is established and CTL response fail this will represent
stable equilibrium while when both CTL and antibody responses are established it
will represent an unstable equilibrium. The numerical simulations results showed that
dominant CTL establishment is likely to clear a viral pathogen while dominant
antibody response alone may not clear the pathogen. In the case that the virus is not
cleared, viral evolution was considered, to examine how virus variation affects viral
and host survival and to understand viral disease. It was found that that CTL-induced
pathology is observed if the rate of viral replication is fast relative to the CTL
responsiveness of the host and CTL activation at this stage is not beneficial to the host
but can actually be harmful. In conclusion it is important for CTL and antibody
responses mount at the right time and strength to reduce the chances of antigenic
escape. It is recommended that the model be adopted as a tool to simulate different
treatment protocols before administering them patients.
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CHAPTER ONE

INTRODUCTION

1.1 Background

Infections are disorders caused by pathogenic agents such as bacteria, virus, fungi and

protozoa.These are the major causes of morbidity and mortality mostly in low income

nations and among children and the aged.This has elicited synergistic union of

scientists in different disciplines to carry out research with the aim of understanding

the spread of these infection causing pathogens in populations and also within the

host. This would greatly help in the prevention and treatment of these infectious

pathogens. The immune system is spread throughout the body and comprise of

organs, tissues, cells and proteins that help the body fight these infectious agents and

maintain the overall integrity of hosts health. Human beings are always at risk

invasion by these infectious agents and have therefore evolved a system to eliminate

these infective agents in the body, that is the immune system defense. The immune

system is essential for the survival of the host with over 15% of genes in human

genome being associated to immune function Saxena et al. (2007). Generally

everyone’s immune system has unique qualities different from another but in all hosts

the immune system becomes stronger with age to some extent.This is partially

because by the time of adulthood one will have encountered more pathogens and

developed more immunity A distinguishing and unique feature of the immune system

is in its ability to differentiate an un offending pathogen like embryo in a mother and

an offending pathogen like a virus. It is also able to identify pathogens previously



2

encountered and those not previously encountered. This is a sophisticated process and

is carried out by a host of cells each specialized in their functions in conjunction with

biochemical substances such as enzymes and other proteins.

There are three distinct types of immunity in humans that are aimed at fighting

pathogens: innate,specific/ adaptive and passive immunity. Innate immunity is present

at birth, it is non specific and offers the first line of defense. It is activated when an

offending pathogen is encountered and recognized because of its specific molecular

pattern.It includes exterior barriers like the skin, mucous membrane and secretions.

The adaptive immune system has two main branches that fight infectious agents, the

Cell Mediated Immunity and the antibodies.

Cell mediated immunity are those specific immune responses in which antibody plays

only a minor or subsidiary role.This immunity mainly involves the lytic activity of

CTL to fight and eliminate intracellular pathogens

The CTL cells are produced in the bone marrow and matures in the thymus and are

maintained in naive in secondary lymphoid organs. Cell mediated immunity is

activated when a pathogen is presented by antigen presenting cells and identified as

offending. This process leads to an immune response characterized by three phases:

cellular expansion, contraction and memory cell generation, Papagno et al. (2004).

CTL cells mainly defend the host against virus in the intracellular phase and against

intracellular bacteria and protozoa. The CTL cells detect pathogen driven groove of

MHC class I as presented by the APCs, key among them the Dendritic cells.It has

also the ability to examine inside the cell to establish its status, whether it is damaged

or healthy.Normally cells can not examine what could be happening inside other cells.
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By this cell-cell examination MHC class I provides a way of detecting cell normally

allowing the immune system to expose the infected cells. Terry et al. (2012).

Passive immunity also called ’borrowed’ immunity happens when immunity is passed

from one source to another as it happens during breast feeding following birth or

when the mother passes antibodies to an unborn child through the placenta. This

immunity is short lived and is important in protection a new born in the early years.

This study elucidates how principles from mathematical modeling can break down the

complexity of immune system to smaller units that can be understood. Some of the

key questions that would arise in such a study would be;

1. To what extent can a mathematical model represent an understanding of the

immune systems?

2. What would be the measure of our supposed understanding of the key processes

of the immune system?

3. Is such understanding sufficient to describe how the immune system behaves?

These concerns are pertinent and key in guiding a useful mathematical model in

Biosciences. In response to the concerns careful attention must be given to the

interrelationship any good model should have with:clinical data, experimental and the

extent to which it estimates important parameters.This is the aim of theoretical

mathematical modeling.

However, it must be understood that technically mathematical model description and

explanations of a biological behaviour are not necessarily the explanations given by

Biosciences. Mathematical modeling and analysis is critical and must be used if any
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understanding will be converted from theoretical to predictive and quantitative

science. The aim of mathematical modeling is not to develop a model that

incorporates every aspect of the observed behaviour, if this was at all possible. If

every detail was to be incorporated the resulting model would be too complex to give

any meaning understanding of how crucial interactions within the system work.

Rather it is to develop a model that incorporates important and critical interactions

whose outcome cam be understood. Murray (2003).

1.2 Cells of the immune system

There are two major populations of cells in the blood composition. The red blood

cells and the white blood cells. The red blood cells have their main physiological

function of carrying oxygen to the tissues and organs. The white blood cells remove

potentially harmful substances from the body.In this population therefore are the cells

involved in immune defense.Several subpopulations have been identified which

include:

B lymphocytes, They recognize antigen, proliferate and produce antibodies specific

to antigens. They differentiate into plasma and memory. Plasma cells produce

antibodies and memory cells keep the antibodies in supply in case of a second

challenge with the same antigen.

Helper T cells These coordinate and amplify the immune responses. They

communicate with some cells to stimulate B cells to produce antibodies and stimulate

CTL to perform cytotoxic function. Cytotoxic T lymphocytes, these are the main

immunological effectors involved in the elimination of intracellular pathogen infected
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cells .

Immuno-regulatory T lymphocytes, which have the ability to down-regulate the

immune.

Antigen-presenting cells, these include macrophages and macrophage-related cells

and dendritic cells, their main function is to process the antigen and present it on the

cell surface where it can interact with appropriate effector cells.

Phagocytic cells, They perform their protective role by a process called phagocytosis,

that is ingesting the offending pathogen, damaged, dead or dying cells.

Natural killer (NK) They are part of the non specific immunity and defend the body

against tumor cells and virus. They recognize antibody-coated cells and mediate

ADCC.

Cytokines resulting in the expansion of CTL cells and the production of

antigen-specific, Class I restricted, CTL cells. The cytokines produced during this

stage of the response include IL-2, IFN -γ , IL-4 and/or IL-10.

1.3 Viruses

They are a bundle of genetic material (DNA or RNA) surrounded by a protein coat.It

is still debatable among the scientists whether viruses are alive at all since when t not

attached to an appropriate host cell it is of no effect.Unlike bacteria which perform all

the necessary functions to be considered living, such as eat, grow, make waste and

reproduce.Therefore when a virus is floating in the air or siting in the soil it is of no

effect. When the same cell comes into contact with a suitable host cell it becomes

active. Viruses do not eat but get their energy from the host cells they infect. They do
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not grow in the sense of size but it does reproduce but not without the help of a living

cell. They have various shapes and sizes,including multi-sided like diamond, others

are shaped as sticks, oval with spikes or tiny sausages.

Virus need the reproductive machinery of a suitable living host cell in order to

reproduce, but must first get inside the cell.This happens through a lock and key

process.The cell membrane which is made up of protein molecules have specifically

shaped receptors or landing sites where other molecules with matching shapes can

land and lock. The pneumonia virus latches is capable of latching on to the lung cell,

HCV latches on to the liver cell, HIV latches on to the human white blood cells.

1.4 The role of CMI in Host defense

Defense against extracellular pathogens such as protozoa extracellular bacteria fungi

and virus in the extracellular phase is mediated by the humoral branch of immune

system. CIM defends the body against intracellular pathogens most of which are

viruses. This is done by killing the pathogen infected cell, which in many cases

eliminate the pathogen as well. Viruses at the intracellular phase require the

reproductive machinery of the cell in order to replicate. So destruction of the infected

cell removes the virus source and this may lead to the resolution of the infection. CIM

works together with other cells to recognize and destroy the virus. T helper cells

recognize the antigen by MHC class II on APC such as dendritic cells and

macrophages. The T helper produces IL-2 and IFN-γ which stimulate the effector

cells. The effector cells in CMI are called Cytotoxic T- Lymphocytes(CTL). The

cytotoxic activity of the CTL depends on the specific antigen and also MHC. The
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process of resolution of any pathogen by the CTL is carried out by the various ways

given below:

1. Perforin,the CTL releases granules which when they come into contact with the

target cell will puncture the membrane or cause formation of pores. These pores

damage the cell membrane causing it to rapture, a process called lysis.

2. Granzymes,the granules may also release an enzyme into the target cell that

impairs its internal mechanism.

3. Cytokines, mainly the IFN-γ and TNF-α that induce metabolic changes in the

target cell prompting it to initiate its own death , a process known as apoptosis.

4. Fas and Fas Ligands, these are surface molecules expressed by activates

effector CTLs and they interact to induce apoptosis
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Figure 1.1: schematic representation of regulation and outcome of Th1andTh2
responses. Source: Eales, L. J. 1997

Figure 1.2: Schematic representation of the adaptive immunity consisting of B and
CTL: Source: author.
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1.5 General life cycle of a virus.

Though there are significant differences in the reproductive cycles of different virus,

the basic processes that any virus must complete can be divided into six steps are as

follows.

1. Attachment. This is the first encounter of the virus with the appropriate host

cells. Virus attach to specific receptor sites of the host cell.The specificity of this

interaction determines which hosts can be infected by the virus and also which

cells within the host will be infected.

2. Penetration- They penetrate by either enveloped or non enveloped

mechanism.For enveloped mechanism direct fusion or receptor mediated

endocytosis is used to penetrate the cell, while for non enveloped mechanism

receptor mediated endocytosis is used.

3. Viral un-coating. This process consists in the disorganization of the protective

protein layers to release the viral nucleic acid inside the cellular cytoplasm.

4. Viral expression and replication of genetic information.All virus rely on the

host translation machinery present in the host cell, ribosomes, for their protein

synthesis.

5. Virus assembly and maturation. On production of a new protein there is

assembly into new virions, After this the viral genome is inserted into the

capsid to form a necleocapsid.
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6. Exit/viral release that occur by lysis (rapturing the cell membrane) thus killing

the cell or by budding through the cell membrane without necessarily killing the

cell
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Figure 1.3: Schematic representation of the general life cycle of a DNA virus.Source:
author.
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Figure 1.4: Schematic representation of the general life cycle of RNA Virus Source:
author .
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1.6 Definition of Terms

Leucocyte/ Leukocyte: Cells of the immune system that protect the body against

contagious diseases and rid it of useless or toxic debris.

Neutrophils The most abundant Leucocyte in mammals, and the first to respond to

inflammation; targets bacteria and fungi.

Lymphocyte A leukocyte present in the lymph.They are of two types, large and small

lymphocytes Large are the Natural Killer cells and small are T and cells.

Dendritic cell A type of leucocyte that functions as antigen- presenting cell,

activating T lymphocytes.

Enzyme A protein substance produced by living cells capable of speeding up

chemical changes such as hydrolysis, oxidation or reduction but is is unaltered itself

in the process.

Cytokines these are proteins important in signaling cells of immune system.

Antibodies protein produced in response to antigen stimulation with the capability to

bind specifically the antigen.

Antigen a foreign molecule within the body that induces an immune response which

induces the formation of antibodies.

Phagocytic cells any of various organisms or specialized cells that engulf and ingest

other cells or particles.

Lysis rapture of the cell wall resulting in the dissolution of the cell.

Necrosis the death of most or all of the cells in an organ or tissue due to disease,
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injury, or failure of the blood supply.

Apoptosis programmed cell death aimed at eliminating abnormal or unwanted cells.

1.7 Statement of the Problem

The adaptive immune responses are highly specific to pathogens that induce them.

CMI is most effective in removing virus- infected cells and intracellular bacteria and

protozoa. The T cells function lies in the heart of an efficient Cytotoxic response. T

cells activation is highly regulated and is important to ensure that activation occurs in

the right context to prevent development of harmful conditions.

This study establishes the interplay between the cell mediated immune response to

viral pathogens.

1.8 Objectives Of The Study

1. Develop a Mathematical Model that simulates the Immune System response to

Viral pathogens.

2. Analyze the stability of the model with respect to perturbation.

3. Estimate the range of parameters combinations required to mount an immune

response.
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1.9 Justification of The Study

Mathematics and other fields in science have always benefited from each other. Each

interaction revitalizes and enhances the fields. For sustained, continued relevance and

health of the subject, mathematicians must become involved with biology just as it

has been involved and influenced physics and engineering.

The involvement of mathematics in biology is inevitable if at all there is hope to make

biology qualitative, quantitative and predictive science.

The sophistication of Bio-science interactions makes multidisciplinary approach

critical and essential. For a mathematician Biology offers an area of application for

biologist, mathematical modeling offers another research tool commensurate with

laboratory technique.

Well thought mathematical models have been critical in arousing counter intuitive

understanding on how the immune system interact with the pathogens. This gives rise

to interesting mathematical theories which form strong basis for designing

experiments as well as forming questions which may direct future research.

The synergistic union of mathematician and biosciences researchers is necessary to

bring the cost of health care down. Despite the government continuous increase in

health care budgetary allocation a big portion of the Kenyan population still shy off

from seeking medical care due to costs associated.

If the use of mathematical models stimulates experiments then the high cost of

experiments in terms of resources (human & capital) and time can be minimized and

this would considerably bring the cost of health care down.
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1.10 Significance of the study

Gaining knowledge of the immune response mechanism provides a key to

understanding disease processes and methods of effective medical treatment.

The adaptive immune system is astounding defense mechanism, it provides the means

to make quick, specific and protective responses against multiple potentially harmful

pathogenic microorganisms that inhabit the world today. Examples of severe

immunodeficiency diseases genetically determined diseases, like sickle cell disease

and in acquired immunodeficiency syndrome (AIDS), illustrates the critical role the

immune system plays in protection against microbial infection.

The results of this study can be used to determine the possibility of viral clearance by

the immune system responses only or whether intervention by treatment is necessary.

The results can also be used to predicted the outcome of the infection, whether it will

lead to chronicity or to CTL induced pathology. The optimal time for medical

intervention can also be deduced from the study. It can not be overemphasized that

some treatments that are becoming available to medics will become overwhelmingly

useless unless a tool is found to simulate particular treatment protocols before

applying them in practice. The models provides tools and platform through which

such simulations can be performed. The study offers an innovative, analytical and

methodological approach in elucidating key processes of the immune responses to

viral pathogens.
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1.11 Thesis outline.

Chapter one focuses on the background information of the immune system responses

and in particular introduction of T cell mediated immune responses, definitions,

problem statement objectives and justification of the study. These will be required for

understanding the subsequent chapters.

In chapter two the literature review is given, here the various methods and approaches

that have been used in modeling of biological systems and their outcomes are

explored. A brief introduction of Hepatitis C virus, the pathogen whose data is used

in numerical results is given.

Finally in this chapter is the research gap that this thesis seek to fill.

Chapter three presents the methodology employed to carry out the study.

Chapter four is divided into six sub-sections;

1. Analytical results

2. Simulated results.

3. Results and discussion

4. Limitation of the model

5. Experimental data on HCV

6. Model validation

In chapter five conclusion and recommendations are given.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The immune system works in a complex, interrelated and interconnected network,

This posses a challenge to experimental work in terms of resources that can carry

out and give the intended results that can explain the observed behavior. The in-vitro

experiments though providing useful insight on a few or several types of interactions

are performed outside the natural setting and context of the immune system.On the

other hand in-vivo experiments though done within the natural setting are unable to

give information of the contributions of each component of the immune system. The

information gap between the in-vitro and in-vivo experiments have given mathematical

modelers a fruitful area of application of mathematical modeling. In the recent past

many computational and mathematical models have been constructed to mimic and

describe the immune defense system processes and its key features. The complexity of

immune system has been recently investigated with the synergic union between high-

thought experiments and computational modeling.

Several attempts have been made by different researchers to model different aspects of

the immune system, innate and adaptive. Among the various approaches adopted to

model the immune system are discussed below.
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2.2 Ordinary Differential Equations,ODEs

This approach has extensively been used in modeling cancer tumor cells humoral

responses, Natural killer responses,T cell dynamics and cells of immunological

memory.The major advantage of this approach is that it is simpler relative to other

approaches and computationally feasible, meaning that it allows for incorporation of

several aspects of the immune system before the model can become computationally

unfeasible. This approach has been used by Kim et al. (2009) to describe the role of

Natural killer cells in surveillance and subsequent trigger of the T cells. In another

model by Fouchet and Regoes (2008) considers the interactions of the T cells, APCs

to describe the concept of self and non- self discrimination.In the model T cells

differentiate to effector, T regulatory or memory cells. The model shows how the feed

back control mechanism is important in causing the immune responses to commit to

immunogenic or tolerogenic. Kim et al. (2009),also constructed ODE model of

Influenza virus, that incorporated APCs, B cell memory , Treg dynamics and T cell

responses.The immune environment considered in the model are the lungs and lymph

nodes. Using the model it was demonstrated that antiviral therapy was optimal if

administered with two days of exposure.

2.3 Delay Differential Equations,DDEs

While ODEs systems are finite dimensional systems DDEs are infinite dimensional.

They require more computation capacity although they are similar in structure to

ODEs.They are referred to as DDEs because they capture time delays observed in
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most biological systems in response to a stimuli. The approach was used by Colijn

and Mackey (2005)in the study of neutrophils population and the negative feedback

involved in stabilizing neutrophils population. It was noted that long time delays

could cause the neutrophils population to oscillate from abnormally high to

abnormally low level. In another model by Kim et al. (2009) the natural regulation of

T cell is studied. The model captures five subpopulations of the immune system cells:

Treg cells, CD8+T cells, CD+4 T cells, APCs and antigen.The time delays considered

include, time of cell division, time of simulation of CD+8 T cells to full activation and

time lag after stimulation of CD+4 cells.

2.4 Partial Differential Equations(PDE)

In this approach more details are captured relative to ODEs and DDEs. The approach

is useful in age- structured and spatio- temporal models. Age-structured models deal

with aspects that are affected by development level in a programmed manner, like

maturity and cell division. These types of models are important when the spatial

distribution of an infection in the organ of the host is important. The other modeling

techniques assumes the concept of homogeneous mixing ie the infection is uniformly

spread within the organ.Here the infection is thought to be spread in a planar region

and considered according to its position with respect to fixed coordinates. With this

more details and complexity is achieve in the other approaches.These models are

popular in age-structured and spatio-temporal models. The age-structured model

developed by Wherry et al. (2003) captured the the programmed proliferation of

cytotoxic T lymphocyte.It was shown that there are times of expansion followed by
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relative stabilization then contraction and finally re-stabilization.Using the model the

effects of varying the scheduled program was studied and it was shown that T cell

responses are governed by intracellular programs that will execute irrespective of

wide rande of antigen stimulation. The age- structured models provide us with

sufficiently good tool for studying interactions between internal and external

regulatory mechanisms. On spatio-temporal model Onsum and Rao studied the

migration of neutrophils to the sight of infection by chemotaxis. Chemotaxis is the

directed movement of a chemical from a lower concentration to a higher

concentration.Simulations were done on how chemotaxis influences chemical

signaling to allow movement of neutrophils Onsum and Rao (2007)

2.5 Agent Based Modeling,ABM

Unlike differential equations models which deal with collective population of cells,

ABM deal with discrete and distinguishable agents such as isolated molecules or

specific group of individual cells. An example of this approach is by Catron et al.

who constructed a model to simulate interactions of dendritic and T cell interactions

in the lymph node.The study was to estimate the frequency of T- dendritic cell

interactions and the duration of full stimulation of the T cell Souers et al. (2013)

Another application of this approach is by Deutsch et al. (2005) who studied the

competition for access to the binding sites on APCs. It was shown that T cell

competition is dependent on antigen expression by APCs. Using the model it can be

deuced that intracellular competition indirectly provides a means of T cell regulation.

Another model is by DeCaprio et al. (1988) designed to study B cell migration to the
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Lymph nodes. The model assumes random movement of B cells towards a

chemoattractant. The model was able to resolve the paradox obtained in two-photon

imaging data that B cells migration is initially chemotactical and then latter random.

the model showed that chemotaxis must remain active throughout the B cell

migration.

The advantage associated with this approach is that its able to account for the

probabilistic uncertainty and stochasticity observed in biological interactions.

However it has computational complexity as the main disadvantage.

2.6 Stochastic Differential Equations

This approach is a hybrid of differential equations and ABM.The formulation is

similar to differential equations in that consider population collectively rather than

unique individual groups but the variables involved are assumed to have random

values. This approach is appropriate when aspects of noise, randomness and sporadic

events are to be considered. These models have been extensively used in other

disciplines like chemistry, physics and finance but they are yet to find extensive

application in immunology. Figge et al.(2014 used this approach to model a genetic

disorder that hindered B cell from producing immunoglobulin. The model was used

to simulate exhaustion of immunoglobulin by natural means, and antigen

consumption.The replenishment of B cells by therapy was also considered and found

to be effective if administered at low levels at frequencies spread from one week to

several weeks DeCaprio et al. (1988)
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2.7 Hybrid Models

In this approach more than one modeling methods are incorporated to model one

phenomena. The models discussed here incorporated ODE and stochastic approached

in a single model. Ahmed et al. (2011),formulated a model to study the Hantavirus

infection in rodents and in humans (the virus responsible for Hantavirus Pulmonary

sydrome,HPS ans also haemorrhagic fever with renal sydrome,HFRS). The goal of

the model and analyses thereafter was to demonstrate how competition dynamics

between the antibodies and cytotoxic T-lymphocytes (CTLs) play out to eradicate the

Hantavirus both in humans and rodents.It was demonstrated through formulation and

analysis of systems of ordinary differential equations that the antibodies and CTL

compete with each other to eradicate the virus.

Another mathematical model by de Pillis et al. (2005) studies tumor-immune system

responses. The analysis provides framework in which to address specific questions

relating to tumor-immune system interaction. The major focus of the model was the

role played by natural killer cells,CTL in tumor surveillance with the aim of

understanding dynamics of tumor rejection. Data from chromium release assays as

well as in vivo tumor growth data ware used. Simulations of tumor growth using

different levels of immune stimulating ligands, effector cells, and tumor challenge

reproduced data from the published studies revealed that the variable to which the

model is most sensitive is specific to patients. The variable sensitivity analysis

suggested that the model can predict which patients may positively respond to

treatment and those that may not. Gowal et al. (2007).
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Crauste et al. (2015), developed a mathematical model describing the evolution of

CD8 T cell counts and pathogen amount during an immune response. This model is

characterized by nine parameters.The ability of the model to fit experimental data and

to produce a CD8 T cell population mainly composed of memory cells at the end of

the response, critical parameters were identified an valuable insights relating to

influenza virus deduced. Among the parameters, two were related to the effector T

cell mediated control and pathogen death. The parameter associated with memory

cell death is shown to play insignificant role during the main phases of the CTL cell

response, yet it becomes critical when predicting the outcome of a re-challenger of

the infection several months after the initial infection.

Terry et al. (2012), developed a nonlinear mathematical model to describe the T CD8

immune response to a primary infection using three nonlinear ordinary differential

equations and one nonlinear age-structured partial differential equation, to describe

the evolution of CD8 T cell count and pathogen density.

2.8 The HCV infection belief overview

This introduction is considered necessary here because the data on the HCV is used to

validate the model and the analytical results obtained in this study. This is the disease

of the liver caused by the HCV.It is thought to be the major predisposing agent of liver

cancer. The virus was the first virus to be identified by the methods of molecular

biology in 1989, away from virological methods, using the blood plasma obtained

from patients and chimpanzees that exhibited hepatitis non -A and non -B. It was

discovered that most of those who suffered from hepatitis non-A, non-B ,alcoholic
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liver cirrhosis or autoimmune hepatitis were actually hepatitis C patients. Alter et al.

(1989). HCV can range from acute illness that may last a few weeks to chronic illness

that may be life long.The major route in to the human system is through the

contaminated blood , especially during blood transfusion,sharing needles and also

during tattooing. Among the symptoms include but not limited to fatigue, nausea, loss

of appetite,yellowing of the eyes and the skin.Though these are indicators medical

tests must always be done to certain of rule out HCV infection The classification of

this virus had tremendous effect on the medical intervention, therapy and prevention

of liver cancer Hayashi and Takehara (2006). With more studies and understanding of

the disease it was seen that HCV is a major predisposing factor of Hepatocellular

carcinoma (HCC).

Unlike in the recent past few years when chronic HCV infection was incurable, now it

is treatable albeit the treatment may take a long time with some severity of side

effects. Available treatment therapies are by the use of antiviral medication The

patients who clear the virus naturally are 30%. The bigger percent 70%, do not clear

the virus by their immune system naturally and enter in a phase of persistence and

chronicity. In this latter phase, medical intervention is necessary. Most of the patients

in this latter phase of chronic hepatitis and develop cirrhosis in 20 to 30 years.Liver

cirrhosis is a high predisposing factor of developing HCC , estimated at annual rate of

8%, while patients without liver cirrhosis do so at an annual rate of only 0.5%. In

Japan it is estimated that about one million people suffer from HCV infection. World

wide about 1.7 billion are infected with the virus. No data has been found for Africa

but it is estimated be higher than in these developed countries .HCV infection poses a
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serious challenge to the public health and economies because of the high cost of

treatment and high mortality of those that develop HCC Vlad et al. (2004)

Since HCV replication is non-cytolytic, cell-mediated immune (CMI) responses to

viral antigens are considered responsible for the clearance of virus from infected cells

and also for the liver damage experienced in transient and persistent infections. This

is presumed to occur via a direct, cytolytic effect of viral antigen-specific cytotoxic T

lymphocytes (CTLs) on infected hepatocytes, or via the non-cytopathic action of

inflammatory cytokines. In addition, neutralizing antibodies have been shown to

prevent infection by blocking the ability of virus particles to bind to receptors on

target cells Wodarz (2003).

2.9 Research Gap

Despite the extensive research and experiments that has been carried out by various

multi-disciplinary agencies in the areas of Miro-Biology, Cell Biology, Clinical

Immunology, and other areas of medical practice and health care, there still remains

many aspects of a biological system that are scantly understood and whose behavior

has not been explained.

In adaptive immune system for example it still remains unclear under what

immunological factors combination would influence one branch of immune system

(Humoral or Cell Mediated) to respond to an intracellular pathogen and the other one

fail or when both will respond. A mathematical structure that mimics a functional

immune system responses becomes an imperative tool to investigate and analyze their

factors and there influence on the system. This would shed light and insight to other
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researchers in their struggle to unravel the complexity of the immune system. The

work presented here examine the immune system and its possible behaviors when a

viral pathogen is introduced. The approach is innovative, analytical and

methodological and has elucidated key processes of inter play between the immune

system and viral pathogen.
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CHAPTER THREE

METHODOLOGY

3.1 Mathematical Modeling in Biosciences

Mathematical models depict how incorporation of appropriate various elements in a

biological system can lead to improved understanding of either the disease or the

pathogen causing it. Models are used as predictive tools or a means of understanding

complex fundamental immunological or epidemiological processes. With some

simple models analytical results suffice to provide the required insight and

understanding of the process. However,for more complex models computer

simulations must be relied on to provide results.Intrinsic in every model is the aspect

of purpose. Good model is therefore intended to purposefully represent certain

aspects of reality. Another aspect that the model should capture is resources. In

models resources could mean available knowledge in a particular field, computer

application programs, time and so on.In models related to bio sciences a

mathematician heavily relies on the current knowledge available in the area of

interest. The third aspect resolution, this is the degree to which details are

incorporated in a model. If the purpose of the model requires only a low resolution,

then a low resolution model is acceptable even if resources would allow a higher

resolution model and hence better results.The better results would not be more useful.

For high resolution models, their low resolution state is still useful to get the ballpark

estimate and successfully refine the model until the desired resolution is attained or

resource limitation prevent one from moving further. The process of converting
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knowledge in biosciences into a mathematical model is probably the most important

step in the process of modeling. Since the problem that modelers need to solve is in

the real world it is important to exclude details which are irrelevant to the purpose or

which cannot be fixed together given the constrains. Therefore, using the concept of

Occam’s razor , that is excluding details that are irrelevant given the purpose or which

cannot be handled given the constrains, the reality is cut into manageable size but

with sensitivity to make sure that whatever is included is relevant to the purpose but

also it should not make the model too difficult to solve. To do this simplifying

assumptions are normally stated when reporting on the built model. The assumptions

and model testing should come in handy in defense if any model. Formulating a

mathematical model therefore should be able to take care of three important elements:

accuracy, transparency and flexibility. Accuracy this is the ability of the model to

reproduce to the desired extent the observed behavior and reliably predict the future

outcomes. A qualitative fit is normally sufficient to gain insight on some important

biological systems but it should also be useful in providing details of any future

control policy. Accuracy is improved with improved resolution but care should

always be taken not to compromise the computation power and mechanistic

understanding of vital interactions. With this the accuracy of the model is always

limited within acceptable range. Transparency relates to the understanding of how the

various model components interact and their influence on the dynamics of the system.

This can be achieved by sensitivity analysis of the components in the model.

Flexibility is a measure of how well the model can be suited to other situations.This is

important if the model will be useful in prediction future outcome in an ever changing
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environment.The trade -off between these three often conflicting elements is

important in the development of a model. Mathematical modeling is therefore a

fast-growing and well recognized area. For those interested in application of

mathematics in the field of biology this is a frontier application of mathematics.The

variety of models developed help to understand and explain some complex biological

phenomena. Application of mathematics will be inevitable in biology if there is hope

to make biology more qualitative. This complexity of the biological sciences makes

interdisciplinary involvement essential.

Biology give a mathematician a new branch of application while to the biologist

mathematical models offers other research tools commensurate with laboratory

techniques. A good model therefore should shows how a process works and then

predict what may follow if certain changes occur. However,it must be understood that

mathematical explanations of biological phenomena are not biological explanations.

The unifying aim of theoretical mathematical modeling and experimental

investigation in the biosciences sciences is to understand and explain underlying

biological processes that result in a particular observed phenomenon.

Mathematical models based on systems of ordinary differential equations (ODEs) are

the most common of these types of models.The primary advantage of ODE modeling

is that it has already been extensively applied in the study of reaction kinetics and

other physical phenomena. In addition, the mathematical analysis of these systems is

relatively simple compared to other types of models and their solutions can be

computationally simulated with great efficiency. That is to say, these models can be

made extremely complex, before becoming computationally unfeasible.
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3.2 Immune System Network

To model the immune system network some basic knowledge on how it functions is

important in order to understand the spread of the infectious pathogens qualitatively

and quantitatively. Immune system is governed and regulated by a complex

interrelated network of cells, cell products and molecules.This complexity of

networks makes it difficult to understand it fully experimentally. On one hand in vitro

experiments separate the immune cell from the natural context of large biological

network, potentially leading to non-physiological behavior. On the other hand, in vivo

observe the phenomenon in the physiological context but are incapable of resolving

the contribution of individual regulatory network.

This disjoint in immunological knowledge forms a fruitful ground for mathematical

modeling and scientific computation.

The immune system works by recognizing unusual molecules that are not usually

found in the body (i.e. they are non-self). These chemicals may be complex (in the

form of microorganisms) or simple (such as minor changes in molecules usually

present in the body-altered-self). This ability to discriminate between what are

sometimes very small differences in chemical structure is a property of the specific or

adaptive immune system and is dependent upon the activity of a particular group of

cells, the lymphocytes.

The immune system network is always in surveillance of the whole body in order to

detect any offending pathogen. Before the immune cells encounter a pathogen, they

are said to be naive. Upon encounter the naive cells produce IL-12 and other cells are



32

stimulated to produce cytokines that further influence the expansion of immune

network activities.This development leads to development of effector type-1 or

memory cells. These are the cells that eliminate the pathogen or kill the infected cells.

The effector cells will secrete cytokines interferon gamma-IFN-γ and tumour necrosis

factor-TNF that stimulate a range of cells leading to cell-mediated immunity (CMI).

Conversely, the presence of IL-10 will lead to the development of type-2 effector and

memory cells. The effector cells secrete IL-4, IL-5, IL-6 and IL-13 which influence

the humoral immune response and affect the class of antibody produced in response

to the antigen (Figure 1.1). Both T helper and T cytotoxic cells develop these

different cytokine secretion profiles.

Figure 3.1: A simplified diagrammatic representation of adaptive immune system.
Source Dasgupta D. and Nino, F. 2008
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3.3 Ordinary Differential Equations

These equations are important in mathematics, in the field of research and in

application in science and technology. The differential equation is of order n if this is

the order of the highest derivative in the equation.

DEFINITION 3.1: Let S ⊆ℜ ,V ⊆ℜK and α ⊆ℜ j be open subset and suppose that

f : S×V ×α → ℜk is continuously differentiable function. An ordinary differential

equation (ODE) is an equation of the form

ẋ = f (t,x,λ ) (3.1)

where dot denote differentiation with respect to the independent variable t(usually

measure of time) and dependent variable x is a parameter of state variable and λ is a

vector of parameters.

As convenient terminology, especially when one is concerned with the component of

a vector differential equation, the equation (3.1) is known as a system of differential

equations. Also if one is interested in changes with respect to parameters the

differential equation is called a family of differential equations.

As an example, consider the forced van der Pol oscillator,

ẋ1 = x2

ẋ2 = c(1− x1
2)x2−λ 2x1 + ccosλ t
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is a differential equation with S = ℜ ,x = (x1,x2) ∈V = ℜ2

α =
{
(a,b,λ ,λ ) : (c,d) ∈ℜ

2,λ > 0, λ > 0
}

and f : ℜ×ℜ2×α 7→ℜ2 defined in the components by

(t ,x1 ,x2 ,c ,d ,λ ,λ ) 7→
(
x2 ,d

(
1− x2

1
)

x2−λ
2x1 +acosλ t

)

A differential equation with one component of the derivative of the unknown function

X(t) that cannot be expressed as a linear (time varying or a constant) combination of

the components of X(t) plus a given function of time is called non- linear differential

equation. These equations can rarely be solved explicitly and therefore other

techniques must be used.

In dealing with non-linear differential equations the matrix notation is sacrificed but

preserve the convenience of vector notations for systems. The notation

X′ = f(t ,X) (3.2)
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is a shorthand for the system of equations

x′1 = f(t ,x1 ,x2 ,x3... ,xn) = f1(t ,x)

x′2 = f(t ,x1 ,x2 ,x3... ,xn) = f2(t ,x)

x′3 = f(t ,x1 ,x2 ,x3... ,xn) = f3(t ,x)

.

·

.

x′n = f(t ,x1 ,x2 ,x3... ,xn) = fn(t ,x)

Where f is a vector whose entries are functions of the n+1 variables t ,x1 ,x2 ,x3... ,xn

DEFINITION 3.2: The system X′ = f(t ,X) is called autonomous if f is independent

of t.

It is always possible to rewrite a non- autonomous system in autonomous form by the

introduction of a spurious variable. For example, in the non-autonomous equation

X ′ = t2x− et

let x1 = t , x2 = x

x′1 = 1 , X ′ = x1
2x2− ex1
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In vector form this pair of equations is

X1 =

x1

x1

=

 1

x2
1x2− ex1

 (3.3)

In general

X1 = f (t,x),X =



x1

x2

x3

.

.

.

xn



, f =



f1

f2

f3

.

.

.

fn



(3.4)

the set

Y =



t

x1

x2

x3

.

.

.

xn



,F =



1

f1

f2

f 3

.

.

.

fn



,Y 1 =



1

x
′
1

x
′
2

x
′
3

.

.

.

x
′
n



=



1

f1

f2

f 3

.

.

.

fn



= F(Y) (3.5)

is autonomous. System of differential equations often occurs in the population

dynamics in which the dynamics are traced with respect to time. These equations will



37

also arise in naturally occurring situations

3.3.1 Fixed Points

DEFINITION 3.3: The point x∗ is called a critical point of x′ = f(x) if f(x∗) = 0

Such points are also called equilibrium points or fixed points.

THEOREM 3.1: The point x∗ is a critical point of x′= f(x) if and only if the constant

function x(t) = x∗ is a solution of x′ = f(x)

PROOF : If x(t) = x∗ is a solution of

x′ = f(x),
dx∗

dt
= 0 = f(x∗) (3.6)

which implies that x∗ is a critical point of x′ = f(x). Conversely, f(x∗) = 0 then since

dx∗

dt
= 0,X(t) = x∗

is a solution of X′ = f(x)
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3.3.2 The Jacobian Matrix

To study the variation of f(x) it is useful to introduce the Jacobian Matrix of f(x),

namely,

JF(x) =



∂ f1
∂x1

x∂ f1
∂x2

x∂ f1
∂x3

x...∂ f1
∂xn

x

∂ f2
∂x1

x∂ f2
∂x2

x∂ f2
∂x3

x...∂ f2
∂xn

x

∂ f3
∂x1

x∂ f3
∂x2

x∂ f3
∂x3

x...∂ f3
∂xn

x

.

.

.

∂ fn
∂x1

x∂ fn
∂x2

x∂ fn
∂x3

x...∂ fn
∂xn

x



(3.7)

In vector form J = ∂ f(X)
∂X

Note that the Jacobian Matrix depends on both f and x. Its components representing

the variation of each of the components of f with respect to each of the components of

x.

For a given f, Jf(x) is a function of x. If each of the partial derivatives

∂ fi
∂x j

, i = 1,2, ...n j = 1,2, ...n varies continuously for values of x near some fixed x0

then the Jacobian Matrix may be used to approximate the change in f(x), f(x)− f(x0),
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as follows:

f(x)− f(x0) = Jf(x)(x−x0)+E(x−x0) (3.8)

where the "error" term E(x− x0) is "small" compared to (x− x0) in the sense that

‖E(x−x0)‖
‖x−x0‖ → 0 as x→ x0.

This is expressed as

f(x)− f(x0)≈ Jf(x)(x−x0) (3.9)

3.3.3 Steady State Analysis

Stability of equilibrium/fixed points can be local or global. Local stability concerns

itself on the behaviour of the solution near the equilibrium point x∗.

Let J = ∂ f∗x
∂x where f∗ refers to fi(x1, x2, x3...xn) calculated at equilibrium i.e

fi(x∗1, x∗2, x∗3...x∗n) be the Jacobian matrix. The Eigenvalues ηi(i = 1,2,3...n) are

solutions of det(J−ηI) = 0 where I is the identity matrix. This will give rise to a

polynomial in η of degree n. This is called the characteristic polynomial which when

set to zero and solved give rise to Eigenvalues (η1,η2,,η3...ηn) .

The fixed point x∗ is considered to be locally stable if all the Eigenvalues of the

Jacobian matrix determined x∗ are negative. The equilibrium point is unstable if at

least one of the eigenvalues has a positive real part.

DEFINITION 3.4 A stable critical point is called asymptotically stable if there exists

δ0 > 0 such that ‖x0‖< δ0 implies that lim
t→+∞

x(t;xo) = 0

Unstable critical points are never asymptotically stable.
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However there may cases where characteristic equations which are analytically

infeasible in such cases Routh Hurwitz Stability Criterion will be used. Clark (1992) .

Using the characteristic equation a number of Hurwitz determinants is calculated in

order to eventually determine the stability of the system.The system’s characteristic

equation is defined as;

fn(S) = c0gn +b1gn−1 +b2gn−2 + ...+ cn−1g+ cn (3.10)

Now the number of determinants are n of nth order.

The chronological procedure for nth order characteristic equation is as given below:

First determinant : This is given by |c1| where c1 is the coefficient of gn−1 in the

characteristic equation.

Second determinant : Its value is determined as follows,

∣∣∣∣∣∣∣∣
c1 c3

c0 2

∣∣∣∣∣∣∣∣
Row one is made up of the first two odd coefficients and row two of the first even

coefficients of the characteristic equation.

Third determinant : Its value is given by,

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣∣∣∣∣∣
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Now the first row will consist the first three odd coefficients, second row first three

even coefficients and in the third row first element zero and rest of two elements are

given by the first two odd coefficients.

Fourth determinant: likewise it is calculated as given below,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7

c0 c2 c4 c6

0 c1 c3 c5

0 c0 c2 c4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Likewise the first row is the first four odd coefficients, row two the first four even

coefficients, row three the first element as zero & rest of three elements as first three

odd coefficients and fourth row the first element as zero & rest of three elements as

first three even coefficients.

By using a similar procedure the generalized determinant formation is given below.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 . . . c2n−1

c0 c2 c4 . . . c2n−2

0 c1 c2 . . . c2n−3

0 c0 c2 . . . c2n−4

. . . . . . .

. . . . . . .

0 0 0 0 0 0 c2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
So in order to establish the stability of the above system, calculation of each
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determinant is made. The necessary condition for the system to be stable is that the

value of each of the determinants should be greater than zero. Otherwise the system

will be unstable.

However the Modified Hurwitz Criterion of stability of the system gives the necessary

and sufficient condition for the stability of a system.

One: (Necessity condition): In this two conditions are given below:

1. In the characteristic equation there should not be any value of coefficient that is

less zero.

2. The characteristic equation should not have a zero as a coefficient.

Two :(Sufficiency for stability)The establishment is began by construction of Routh

Hurwitz array as explained below.

The first row of the array is given by the even terms of the characteristic equation when

arranged from the first even term to the last even term. Symbolically the first row is as

written below:

m0, m2 , m4, ...

Likewise the second row will consist of the odd coefficients of the first row of the

characteristic equation when they are arranged from the first to the last. Symbolically

it is as given below.

m1, m3 , m5, ..

The third row of the array is found as follows Now the elements of third row are

calculated as follows:
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Element one : Multiply m0 with m3 in other words,the element in the opposite diagonal

of the following column, it is then subtracted from the product m1 and m2 and then

divided by m1. Symbolically written as follows,

n1 =
m1m2−m0m3

m1
(3.11)

Element two: m0 is multiplied with m5, the element in the opposite diagonal of the

next column then subtracted from the product, m1 and m4 and finally divided by m1.

Symbolically written as follows;

n2 =
m1m4−m0m5

m1
(3.12)

In a similar manner all the elements of the third row are calculated.

The procedure for calculating the elements of fourth row is given below.

Element one : n1 is Multiplied with a3 and subtracted from the product of m3 and n2.

Symbolically written as

p1 =
n1m3−m1n2

m1
(3.13)

Element two : get the product of n1 with m5, then subtract this from the product of m1

and n3b, then divide by m1. Symbolically written as

p2 =
n1m5−m1n3

n1
(3.14)
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Similarly,

p3 =
n1m7−m1n4

n1
(3.15)

This procedure can be followed to generate all the elements of the fourth row, and

similarly all the elements of all the rows.

The system will be stable if all the elements of the first column are greater than zero.

If however anyone of them is negative the system will be unstable.

3.3.4 Basic Reproduction Number (R0)

The basic reproductive number R0 is defined as the expected number of secondary

infections arising from a single individual infected cell during its entire infectious

period, in a population of purely susceptible cells Diekmann et al. (1990) and Van den

Driessche and Watmough (2002). This number measures the potentiality for the virus

to spread within a population of cells. This concept is fundamental to the study of

immunity and within host pathogen dynamics since it serves as a threshold parameter

that predicts whether the pathogen will spread or not.

By the definition then if R0 < 1, means that each infected cell produces, on average,

less than one new infected cell, thus failing to replace itself, and therefore the

infection will be cleared from the population, or the viral materials will be cleared

from the individual. If, on the other hand, R0 > 1, then the number of infected cells

will increase with each generation and the infection will spread or the pathogen is

able to establish itself in the susceptible host.
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3.3.5 Computation of R0

This is computed using the next-generation matrix approach as outlined by Diekmann

et al. (1990) and Van den Driessche and Watmough (2002) .

Using this approach two viral replication classes of the model are considered Y and

V. f is defined as the matrix whose elements represents the rate of change of new

viral materials, or the rate of appearance of new viruses but does not include terms

which describe the transfer of infected cells from one compartment to another. Also

let the matrix h denote the rate of change of cell populations through other means,like

natural death i.e. the elements of h denotes the rate of transfer of individuals by other

means in epidemiology. Then the difference f −h gives the total rate of change of cell

populations in the two compartments.

The next generation matrix FH−1 is formed from evaluating the partial derivatives of

f and h at the fixed points (DFE), that is,

F =
∂ fi(x0)

∂x j
(3.16)

H =
∂hi(x0)

∂x j
(3.17)

The entries of FH−1 gives the rate at which infected cells produce new infective

viruses times the average length of time a cell spends in a single visit to the

compartment. R0 is given by the spectral radius (dominant eigenvalue) of the matrix

FH−1
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Using this approach, basic reproductive ratio defined as R0 = ρ(FH−1) is computed

3.3.6 Sensitivity Analysis

The aim of this is to find out the contribution of each parameter relative to R0 in the

persistence and spread of the pathogen. This quatity reveals parameters that may need

to be controlled in oder to control the pathogen or the disease. Sensitivity analysis is

carried out on all parameters by relating each parameter with the basic reproduction

number R0. The sensitivity for a parameter say α is given by the equation

Sα
R0 =

∂R0

∂α

α

R0
(3.18)

as given by Fiacco et al. (1983).

3.3.7 Numerical simulations

To make the analytical solutions clearer,an illustration with specific numerical example

is given, specifically using the Hepatitis C virus infection. The model developed here

with a complete list of parameters and their estimated values is used. The Runge Kutta

method of order 4 & 5 inbuilt in Matlab software is used to simulate different scenarios

in the repertoire of immune responses to HCV.

3.4 Intracellular Pathogens

Among the many pathogen types, viral pathogens live inside cells but can also have

and extracellular phase. The majority of those are viruses.Immune system responses
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against viral pathogens give a better representation of both humoral and cellular

responses during an infection. In the intracellular stage, these pathogens are relatively

well shielded from humoral immunity. During this phase, the microbial proteins are

processed and peptides presented in the context of Major Histocompatibility Complex

(MHC) molecules, thus promoting activation of T-lymphocytes. Ancient (but still

existent) as well as newly emerging diseases caused by intracellular bacteria that are

of paramount significance for humans are Mycobacterium tuberculosis,

Mycobacterium leprae, Salmonella enterica serovar Typhi, and Chlamydia

trachomatis, the etiologic agents of tuberculosis, leprosy, typhoid, and trachoma,

respectively, which, together, afflict more than 600 million people, Kaufmann et al.

(1993).

Intracellular parasites like nearly all protozoa are thought to be susceptible mainly to

cell-mediated immune effector mechanisms. Nevertheless, during their initial host

invasion as well as they transit to new cells they are potential targets for

antibody-mediated attack. Cell-mediated immunity against intracellular protozoa also

involves the CTL responses.

3.5 The Law of Mass Action

The law of mass action says that the rate of chemical reaction is proportional to the

product of concentrations of the reactants. This law has been used to model the

interactions between the immune system and the viral pathogens.
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3.6 Model Development

This model is motivated by the predator-prey model (Lotka-Volterra Model).

Naturally,species compete, evolve and disperse in order to seek resources to sustain

their struggle for their very existence. Depending on their specific settings of

applications, they can take the forms of resource-consumer, plant-herbivore,

parasite-host, pathogen-immune system, susceptible-infectious interactions, etc. This

will generally be loss-win, coexistence or competition interactions. When seemingly

competitive interactions are carefully examined, they are often in fact some forms of

predator-prey interaction in disguise.There is evidence of competition of the humoral

and CMI branches of immunity documented by Van den Driessche and Watmough

(2002). Facts accumulated in ecology can be harnessed, applied and extrapolated

beyond land mass ecosystems. Hence,here the immune system is considered as a

miniature of an ecosystem consisting of five possible variables: purely susceptible

host cells, virus infected host cells, free virus particles, antibodies responses and T

Cell Cytotoxic responses.

3.6.1 Model Assumptions

The specific biological assumptions taken into account when developing the model

equations are based on accepted knowledge of immune system function. The

assumptions are;

1. T and B lymphocytes, which are the precursors of the immunocompnent are

produced in the bone marrow.
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2. Cytotoxic T Lymphocyte (CTL) can kill infected cells or shut down virus

replication in the cell

3. Anti bodies will fight (neutralize) free virus released by infected cells.

4. Pathogen-specific CTL and antibody-specific responses are initiated once the

virus is present.

5. Immune responses will decay after some number of encounters with virus or

upon virus eradication.

6. The CTL response and antibody response are independent.

7. The immune system can recognize pathogens that have been encountered before

and those encountered for the first time.

8. The immune system is able to differentiate between self and non-self substances

that are non-offending from those that are offending.

9. viruses that attack the immune system are excluded

3.6.2 Model Flow Chart

Using the assumptions enumerated above from , a system as five coupled differential

equations is developed, where each equation gives the rate of change of the particular

cell population in terms of growth, death, cell-cell kill, cell recruitment, and cell

decay.

In the equations the five populations are denoted by;
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Figure 3.2: Schematic representation of virus clearance process.Source:Author

i) S(t) susceptible host cells at any time t.

ii) Y (t) infected host cells at any time t.

iii) V (t) free virus in the host at any time t.

iv) A(t) antibodies at any time t.

v)T (t) CTL at any time t.

Inputting the particular mathematical expressions for each growth,death and decay give

the system of equations given below.

.
S(t) = λ −ωS−βSV (3.19)
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.
Y (t) = βSV −δY −µY T (3.20)

.
V (t) = kY −αV −ρVA (3.21)

.
A(t) = εA+φVA− τA (3.22)

.
T (t) = υT +θY T −σT (3.23)

3.6.3 Model Description

In the model λ , is the rate at which purely susceptible host cells are produced in the

hosts body, these cells die naturally at the rate ωS the rate at which the virus infect

susceptible healthy cell is βSV , this term is derived using the law of mass action.

Infected cells die naturally and this rate of death is denoted by δY . Upon CTL

activation the rate of lytic activity is µY T .

Upon successful infection, the cells release virions at the rate kY, the free virions

decay at a rate αV . Upon the activation of the antibodies by the free virus, there is

neutralization of the virus at the rate ρVA.

The virus specific antibodies of immunological memory , if the immune system had

encountered the viral particle before, are lost at rate ε , the antibody responses against

the free virus are mounted at the rate φVA and will naturally decay at a rate τA.
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Virus specific CTL of immunological memory, if the viral particle had been

encountered before, is lost at the rate υ , CTL mount upon activation by the virus from

the infected cells at the rate θYT, and decay naturally when the stimulation is absent

at the rate σT.

εV and υT indicate that even in the absence of pathogen there is possibility of

typically small standing stock of both antibodies and CTL ready to fight an attack is

the immune system had encounters the pathogen before. Without this standing stock

immune response system would take longer to respond to pathogen. For primary

infections ε ≈ υ ∼= 0, The average duration of the antibodies and CTL memory cells

can be represented as E = 1
ε
, G = 1

υ
respectively.

Despite its simplicity, the model (3.19) to (3.23) cannot be solved explicitly. That is,

an exact analytical expression for the dynamics of S, Y, V, A and T through time is

unfeasible; instead the model has to be solved numerically. Nevertheless, it is

invaluable for highlighting very important qualitative immunological principles.

In the MATLAB environment, the mathematical model developed from equations

(3.19), (3.20), (3.21), (3.22) and (3.23) are used to perform simulations for Cell

Mediated Immune Response to HCV.

MATHEMATICA software has also been used to simplify and manipulate complex

Algebraic expressions arising from the analytical analysis. The existing experimental

data on HCV is used to justify the validity of the model and analytical results.
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CHAPTER FOUR

RESULTS

4.1 Analytical Results

This is the use of algebraic and / or numeric methods as the main technique for solving

a mathematical problem. Analytical results give a general description of system for

any value of parameters.

4.1.1 Basic Reproduction Number

Without the establishment of the pathogen ;

Se0 =
λ

ω
, Ye0 = 0 , Ve0 = 0 , Ae0 = 0 , Te0 = 0 (4.1)

Using the method described in section 3.4.5 and the model described by equations

(3.19) through (3.23) the virus exists in two compartments only. That is equations

(3.20) and (3.21), either in the infected cell or as free virus. Hence letting,

f =

βSV

0

 (4.2)

h =

 δY

κY +αV

 (4.3)
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F =

0 βS

0 0

 (4.4)

H =

 δ 0

−κ α

 (4.5)

H−1 =


1
δ

0

κ

αδ

1
α

 (4.6)

the next generation matrix is ;

FH−1 =


βSκ

αδ

βS
α

0 0

 (4.7)

The Eigenvalues are  0

βSκ

αδ

 (4.8)

The basic reproductive ration is βSκ

αδ
at Se0 =

λ

ω
. Therefore

R0 =
βλκ

αδω
(4.9)

It is required that this quantity be greater than one for establishment of any infection.
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4.1.2 Immunity free equilibrium and its stability

Without any immune responses, both CTL and Antibody responses are not mounted.

This may correspond the full blown AIDS stage when the immune system is highly

compromised or any other infection that substantially impairs the CD4 T helper cells

and hence not able to respond to pathogen invasion. The model equations will then

involve equations (3.19) through (3.21). The system settles down to the following

equilibrium points;

Se1 =
αδ

βκ
, Ye1 =

βλκ−αδω

βδκ
,Ve1 =

βλκ−αδω

αβδ
,Ae1 = 0, Te1 = 0,

Ve1 =
κ

α
Ye1 (4.10)

In terms of the basic reproductive ratio the equilibrium points are

Se1 =
λ

ω

1
R0

, Ye1 =
αω

βκ
(R0−1) ,Ve1 =

ω

β
(R0−1) , Ae1 = 0 , Te1 = 0 (4.11)

From the system of model equations, if no immunity is mounted equations (3.22) and

(3.23), CTL killing rate term and antibody neutralizing term are redundant. The
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Jacobian of the resulting matrix is

J =


−ω−βVe1 0 −βSe1

βVe1 −δ βSe1

0 κ −α

 (4.12)

To obtain a polynomial of Eigenvalues subtract Λ from the diagonal elements of j and

work out the determinant of the Jacobian i.e. det |J−ΛI|= 0 where I is a 3×3 identity

matrix. The following characteristic equation is obtained

αδβ 2κ2(βλκ−αδω)−βκ(α +η)(δ +η)(βκ(βλκ−αδω)+βδκδ (η +ω))

βδκβκδ
= 0

(4.13)

The characteristic equation is not computationally feasible. Using Routh’s stability

criterion discussed in section 3.4.3

a0 =−1 (4.14)

a1 =
−αβδκδ +βκ(αδω−βλκ)−βδκδ (δ +ω)

βδκδ
(4.15)

a2 =−
α(βκ(βλκ−αδω)+βδκδ (δ +ω))+δ (−αδωβκ +ββλκκ +βδκδω)

βδκδ

(4.16)
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a3 =
αδβ 2κ2(βλκ−αδω)−αβκδ (−αδωβκ +ββλκκ +βδκδω)

βδκβκδ
(4.17)

This equilibrium is unstable since the coefficients of the characteristic polynomial are

not all positive as required in the Routh Criterion .

For the immune responses to develop the conditions

ε +φV (0) > τ and υ +θY (0) > σ must be met. With this, three possible cases arise

as discussed below. Only the first time encounter cases with the virus are considered.

4.1.3 Case 0ne: Strong CTL Only Immune Response

The CTL responses dominate strongly and drive the antibody responses to

extinction.In this scenario the strong CTL lowers the viral load below the threshold

requirement for the stimulation of the antibody responses. For the analysis of this

case therefore only equations (3.19), (3.20), (3.21) (without the neutralizing term by

antibodies) and (3.23) are considered. The following equilibrium points are obtained.

Se2 =
αλθ

αθω +βκ(σ −υ)
, Ye2 =

σ −υ

θ
,Ve2 = k

(
(σ −υ)

θ

)
,Ae2 = 0,

Te2 =
βλκ(σ −υ))

αωθ +βκ(σ −υ)
(4.18)
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The equations in Ve2 and Ye2 can be expressed as Ve2 = kYe2 and

Te2 =
βSe2Ve2−δYe2

µYe2

respectively.

This tells us that virus population is a function of the infected cells and CTL immune

response is a function of healthy & infected cells and free virus.

For primary infection ε ≈ υ ≈ 0, hence

Se2 =
αλθ

αθω +βκσ
, Ye2 =

σ

θ
, Ve2 =

κσ

θ
=

κ

α
Ye2 ,Ae2 = 0, (4.19)

Te2 =
βλκσ

αωθ +βκσ
=

βSe2Ve2−δYe2

µYe2
=

βκSe2−δ

µ
(4.20)

Therefore, the behavior of the system at equilibrium can be determined by the Jacobian

matrix of the system

J =



−ω−βVe2 0 −βSe2 0

βVe2 −δ −µTe2 0 −µYe2

0 κ −α 0

0 θTe2 0 θYe2−σ


(4.21)

The determinant det |J−ΛI|= 0 is given by

αδβ 2κ2(βλκ−αδω)−αβκδ (−αδωβκ +ββλκκ +βδκδω)

βδκβκδ
= 0 (4.22)
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Although an analytical solution to this equation is not feasible, one can use the criteria

in section 3.4.3

m0 = 1 (4.23)

m1 =
αθ(αθω +βκσ)+(αθω +βκσ)(βκσ +θω)+αλθβκθ

θ(αθω +βκσ)
(4.24)

m2 =
αθ(αθω +βκσ)+(αθω +βκσ)(βκσ +θω)+αλθβκθ

θ(αθω +βκσ)
(4.25)

m3 =
αθ(αθω +βκσ)+(αθω +βκσ)(βκσ +θω)+αλθβκθ

θ(αθω +βκσ)
(4.26)

m4 =
αθ(αθω +βκσ)+(αθω +βκσ)(βκσ +θω)+αλθβκθ

θ(αθω +βκσ)
(4.27)

This is a stable equilibrium by Routh Hurwitz stability criterion since all the

coefficients are positive.

4.1.4 Case Two: Strong Antibody Only Immune Response

The antibody response mount strongly, dominate and derive CTL responses to

extinction. The strong dominant antibody responses neutralizes the virus particle and

hence reducing the virus to levels that cannot stimulate CTL.
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The equilibrium of this state are as given below.

Se3 =
λφ

φω +β (τ− ε)
, Ye3 =

βλ (τ− ε)

δ (φω +β (τ− ε))
,Ve3 =

τ− ε

φ
, Ae3 =

βφκλ

δρ (φω +β (τ− ε))
− δ

ρ
, Te3 = 0 (4.28)

Equation in

Ae3 =
κYe3−αVe3

ρVe3

from which the alternative expression for

Ve3 =
κYe3

ρAe3−α

For primary infection ε ≈ υ ≈ 0 hence

Se3 =
λφ

φω +βτ
, Ye3 =

βλτ

δ (φω +βτ)
,Ve3 =

τ

φ
, Ae3 =

βφκλ

δρ (φω +βτ)
− δ

ρ
, Te3 = 0

The Jacobian matrix is

J =



−ω−βVe3 0 −βSe3 0

βVe3 −δ βSe3 0

0 κ −α−ρAe3 −ρVe3

0 0 φAe3 Ve3− τ


(4.29)
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The characteristic equation is

(−βτδρ(δφ +Λρ +ρτ)+βφκλρφ −δρφω(δφ +Λρ +ρτ))(βδρκλφφ(Λ+ω)

−(δ +Λ)(βτ +φ(Λ+ω))(αδρ(βτ +φω)+βτδρ(Λ−δ )+βφκλρ−

δδρφω +δρΛφω))

δρρτ(βτ +φω)(δ +Λ)(βτ +φ(Λ+ω))(βτδδρ−βφκλρ +δδρφω) = 0 (4.30)

Again the analytical solution of det(J−ΛI) = 0 is not feasible but as in the previous

case , the stability can be determined using Routh’s criteria.

m0 = 1 (4.31)

all the other coefficients are calculated in likewise manner and are positive hence

represents a stable equilibrium.
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4.1.5 Case Three: Strong CTL and Strong Antibody Immune

Responses

Both CTL and antibody responses mount strongly and simultaneously coexist. This

equilibrium is described by the following;

Se4 =
λφ

ωφ +β (τ− ε)
,Ye4 =

σ −υ

θ
,Ve4 =

τ− ε

φ
, Ae4 =

κφ (σ −υ)

θρ (τ− ε)
− α

ρ
,Te4 =

βλθ (τ− ε)

µ (σ −ν)(ωφ +β (τ− ε))
− δ

µ
(4.32)

For primary infection ε ≈ υ ≈ 0 hence,

Se4 =
λφ

ωφ +βτ
,Ye4 =

σ

θ
,Ve4 =

τ

φ
, Ae4 =

κφσ

θρτ
− α

ρ
,

Te4 =
βλθτ

µσ (ωϕ +βτ)
− δ

µ
(4.33)

The Jacobian is

J =



−ω−βVe4 0 −βSe4 0 0

βVe4 −δ −µTe4 βSe4 0 −µYe4

0 κ −α−ρ−ρAe4 −ρVe4 0

0 0 φAe4 φVe4− τ 0

0 θTe4 0 0 θYe4−σ


(4.34)
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And det(J−ΛI) = 0 is

(Λµµσφ(βτ +ωφ))(αβτµµσ +αµµσωφ +βλθτµρ−βτδ µσρ+

+βτΛµµσ −δ µσρωφ

+Λµµσωφ)+µµσρτφ(βτ +ωφ)(βλθτµ−βτδ µσ −δ µσωφ))

−Λµµδ (βτ +ωφ)(θ µµσρτφ
2(βτ +ωφ)2(βτ

+Λφ +ωφ)(βλθτµ−βτδ µσ −δ µσωφ)

(βλθτµ +βτΛµδ )

+(Λµδωφ)−Λµµσ(βτ +ωφ)(−θφ
2)(βτ +ωφ)(βτ+

Λφ +ωφ)(βλθτµ +βτΛµδ +Λµδωφ)

(αβτµµσ)+

+αµµσωφ +βλθτµρ−βτδ µσρ +βτΛµµσ −δ µσρωφ +Λµµσωφ

−κµµσφ(βτ +ωφ)−

ββτθΛλφ µδφ
2−ββτθλφ µδωφ

2−βθΛλφ µδωφφ
2−βθλφ µδ

(ωωφφ
2)θ µ

3
µδ

2
µσ

2
φ

3(βτ +ωφ)5 = 0 (4.35)
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The first coefficients is:

m0 =−1 (4.36)

Hence the equilibrium is unstable by Routh stability criteria.

4.1.6 Limiting Parameter combination for dominance of either

CTL, Antibody responses or both

Here the focus is to analytically examine the conditions that must be satisfied to

guarantee any of the three possible outcomes described above.

Using the method described in section 3.4.5 , separating immunological events from

non- immunological events in the model equations, where an immunological event is

any event involving either CTL or Antibody, the next generation matrix is constructed

to determine the limiting requirement for mounting either strong and dominant CTL

responses, strong and dominant antibody responses or simultaneously strong CTL and

antibody responses For CTL dominance let ,

f =



µYe2Te2

ρVe2Ae2

φVe2Ae2

θYe2Te2


(4.37)
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and

h =



βSe2Ve2−δYe2

κYe2−αVe2

τAe2

σTe2


(4.38)

F =



µTe2 0 0 µYe2

0 ρAe2 ρVe2 0

0 φAe2 φVe2 0

θTe2 0 0 θYe2


(4.39)

and

H =



−δ βSe2 0 0

κ −α 0 0

0 0 τ 0

0 0 0 σ


(4.40)

H−1 =



−α

αδ−βSe2κ

βS
−αδ+βSe2κ

0 0

κ

−αδ+βSe2κ

−δ

αδ−βSe2κ
0 0

0 0 1
τ

0

0 0 0 1
σ


(4.41)
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Substituting the equilibrium points and evaluating F.H−1 it is found

F.H−1 =



σ2

θ 2 αβλθσ2 0 µ

θ

0 0 κρσ

αθτ
0

0 0 κρφ

αθτ
0

σ2

θ µ

αλθβσ2

λ 2θ 2ωµ+αβκσθ µ
0 0


(4.42)

The Eigenvalues of the system are

E1 =



0

0

θ 2+σ2

θ 2

κρφ

αθτ


(4.43)

For CTL to dominate κρφ

αθτ
> 1 and hence

κρφ

αθ
> τ (4.44)

Similarly for Antibody responses to dominate the matrix F.H−1 is evaluated at

Se3 , Ye3,Ve3 ,Ae3 ,Te3 and Eigenvalues evaluated.
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This is found to be

E2 =



0

0

βλτθ

δσ(βτ+ωϕ)

βτδ 3ρ−βδρκλθ−βφκλδρ+δ 3ρφω+αδ 2ρ(βτ+φω)
δρ(−βκλθ+αδ (βι+φω))



(4.45)

Its is required that

βλτθ

δσ (βτ +ωφ)
> 1 (4.46)

and hence

βλτθ

δ (βτ +ωφ)
> σ (4.47)

Therefore whenever

κρφ

αθ
< τ (4.48)

and

βλτθ

δ (βτ +ωφ)
> σ (4.49)

the CTL responses will be strong ,dominant and Antibody responses will be extinct ,

whenever

κρφ

αθ
> τ&

βλτθ

δ (βτ +ωφ)
< σ (4.50)
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the CTL will fail and Antibody response will dominate, and whenever

κρφ

αθ
> τ&

βλτθ

δ (βτ +ωφ)
> σ (4.51)

both CTL and antibodies will simultaneously mount strongly.

4.1.7 VIRAL EVOLUTION

When the viral pathogen is not resolved by the host immune system, the virus may

undergo some genetic changes during its life time. These changes arise from the

adaptations, aimed at the survival of the virus within the host, in response to the

immune system or the environment. These changes leads to development of new viral

variants that can escape detection by the already activated antibody response. This is

an important aspect in disease progression especially in HCV. This relationship

between the immune system and viral pathogens can result in viral persistence and

chronicity. Most viral infections with non-cytopathic viruses are resolved by the lytic

activity of the CTL.

The lytic activity of CTL contributes to viral resolution by eliminating the source of

virus production, the cell. This is important for the clearance and resolution of

infection, however, also can have harmful effects on the host. This will happen when

significantly large number of cells are virus infected and CTL lytic activity is

stimulated. This lead to a substantial loss of cells resulting in tissue malfunctioning,

which may affect the ability of the tissue to regenerate the same cell types or long

time chronic conditions . This may lead pathology, and eventual death of the host.The
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physical harm, resulting from CTL lytic activity against infected cells the is known as

CTL-induced pathology. This happens when the CTL activity is un able to clear the

infection and therefore unsuccessful in keeping the high rate of virus replication at

low levels. Consequently the number of infected cells with different viral mutants will

keep growing. This diversification of the virus will gradually stimulate the initially

weak CTL and immune responses will shift from non lytic to lytic response. The

presence of ongoing CTL lytic activity that kill the infected cells result in many cells

dying, and the infected organ gradually get thinner and weaker in a way that is

unhealthy which can lead to its failure of its critical functions in the host. The model

constructed here now will capture the aspect of viral mutants that escape the antibody

responses.This is to further explore the course of disease progression when it is not

resolved by CTL.

The model make the following further assumptions together with those in section

3.7.1

1. i = 1, ...n virus are produced that are different from each other in their epitopes

only but otherwise identical in replication rate.

2. Vi and Yi(i = 1...n) are virus of strain i and cells infected by strain i respectively

3. The virus i of strain can prompt antibody response Ai that is specific for the

strain.

4. The CTL responses are considered cross reactive to recognize and respond to all

the variants equally.
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4.1.8 Model Flow Chart for Viral Evolution

Figure 4.1: Schematic representation of viral evolution. Source Author
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The following model is developed:

.

S(t) = λ −ω S−βS
n

∑
i=1

Vi (4.52)

.

Yi(t) = βSVi−δYi − µYiT (4.53)

.

Vi(t) = κYi−αVi−ρViAi (4.54)

.

Ai(t) = εA+φAiVi− τAi (4.55)

.

T (t) = νT +θT
n

∑
i=1

Yi−σT (4.56)

The following equilibrium describe the outcome of the infection with respect to the

number of mutants.

ε ≈ υ ≈ 0

Se5 =
λφ

φω +nβτ
, Ye5

i =
nβλτ

δ (φω +nβτ)
,Ve5

i =
τ

φ
, Ai

e5 =

βφκλ

δρ (φω +nβτ)
− α

ρ
, Te5 = 0 (4.57)
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J =



−ω−β
σ

θ
0 −βSe5 0

βVe5 −δ βS 0

0 κ −α−ρAe5 −ρVe5

0 0 φAe5 φVe5− τ


(4.58)

and det(J−ΛI) = 0

Λ−βδκλφφ(φ(βσ +θ(Λ+ω))−βθτ)− (βnτ−ωφ)(δ +Λ)(βσ +θ(Λ+ω))

δφ
2(α +Λ)−µτ

2 +βλτκτφ(nβτ +ωφ)+

τ
2(βnτ−ωφ)(δ +Λ)(βσ +θ(Λ+ω))(δ µτ−βλτκφ(nβτ +ωφ)) = 0 (4.59)

Using Routh-Harwitz stability criteria

a0 = 1 (4.60)

a1 = α +
βσ

θ
+δ − µτ2

φ 2 +
βλτκτ(nβτ +ωφ)

δφ
+ω (4.61)
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a4 =−
τ2(βσ +θω)(δ µτ−βλτκφ(nβτ +ωφ))

θφ 2 (4.62)

This equilibrium is stable if

δ µτ
3(βσ +θω)> βλτκτ

2
φ(nβτ +ωφ)(βσ +θω) (4.63)

When the CTL responses are weak the increase in antigenic mutants escalates the

antigenic drive promoting the expansion of the initially weak CTL. below expressions

describing this equilibrium .

Se6 =
λφ

φω +nβτ
, Ye6

i =
σ

nθ
,Ve6

i =
τ

φ
,Ae6

i =
κφσ −nµτθ

nθρτ
,Te6 =

nβτ(λθ +δσ)−δθσω

µσ (ωφ −nβτ)
(4.64)

J =



−ω−nβ
τ

φ
0 −βSe6 0 0

βVe6 −δ −µTe6 βSe6 0 −µTe6

0 κ −α−ρAe6 −ρVe6 0

0 0 φAe6 φVe6− τ 0

0 θnTe6 0 0 0


(4.65)

then det(J−ΛI) = 0 is
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Λµσ(nβτ−ωφ)(ρτ(nβτ+φω)(−(nµτθ−κφσ))(φ(Λ+ω)+nβτ)(−µσωφ(δ ))+

+Λ+δθσωµ +nβτ(µσ(δ +Λ)−δσ µ−λθ µ)−Λβκλφ µσnθρτ(nβτ)−

−ωφ(βτ +φ(Λ+ω)+nβτ)− (nβτ +φω)(φ(Λ+ω)+nβτ)nθρτ(α +Λ)+

(ρ(κφσ −nµτθ))(−µσωφ(δ ))

+Λ+δθσωµ +nβτ(µσ(δ +Λ)−δσ µ−λθ µ)+θ µ(nβτ +φω)(δθσω)

−nβτ((δσ +λθ))2(φ(Λ+ω)+nβτ)(Λnθρτ(α+

Λ)−ρ(Λ+ τ)(nµτθ −κφσ)) = 0 (4.66)

a0 =−1 (4.67)

a1 =−µσnβτ
2nθρτ +nβτ(nθρτ(−µσ(αφ +δφ −ωφ +ωφ)+δσ µφ+

µσnθρτφ(nβτ−ωφ)

λθ µφ)+µσρφ(nµτθ −κφσ))+φ(nθρτ(µσωφ(α +δ +ω)−
µσnθρτφ(nβτ−ωφ)

δθσωµ)+µσρωφ(κφσ −nµτθ))

µσnθρτφ(nβτ−ωφ)
(4.68)

The coefficient of the polynomial are negative.

The characteristic equation fails to meet the necessary condition of stability by Routh
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and it is therefore an unstable equilibrium.

4.1.9 Sensitivity Analysis

Sensitivity analysis studies the effect of different parameters in the output of a system.

It has been used in many scientific fields to highlight important data, optimize the

design of a system, and rank the influence of various parameters on the system. The

primary goal of sensitivity analysis is to find out which modeling parameter has the

biggest impact on the system and what causes the effect.

Using the equation in section 3.4.6

Sλ
R0 =

∂R0

∂λ

λ

R0
= 1,Sω

R0 =
∂R0

∂ω

ω

R0
=−1 (4.69)

Sβ
R0 =

∂R0

∂β

β

R0
= 1,Sδ

R0 =
∂R0

∂δ

δ

R0
=−1,Sµ

R0 =
∂R0

∂ µ

µ

R0
= 0 (4.70)

Sκ
R0 =

∂R0

∂κ

κ

R0
= 1,Sα

R0 =
∂R0

∂α

α

R0
=−1,Sρ

R0 =
∂R0

∂ρ

ρ

R0
= 0 (4.71)

Sϕ
R0 =

∂R0

∂φ

φ

R0
= 0,Sτ

R0 =
∂R0

∂τ

τ

R0
= 0, (4.72)

Sθ
R0 =

∂R0

∂θ

θ

R0
= 0,Sσ

R0 =
∂R0

∂σ

σ

R0
= 0 (4.73)
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4.1.10 Limiting Parameter combination for CTL induced

pathology

As the virus population continues evolves away from the antibodies, virus load grow

and diversification of the antigenic drive increases. The number of cell initially remain

the same until a limiting threshold number is attained. This will correspond to absence

of pathology The dynamics will however when the limiting threshold is reached which

will indicate the setting in of pathology .This threshold is calculated as given below

Using F and H as defined and equilibrium points Se5 , Te5 ,Ve5 , Ae5 and Te5 it is found

H =



−δ
βλφ

nβτ+φω
0 0

κ −α 0 0

0 0 τ 0

0 0 0 σ


(4.74)

F =



0 0 0 nβλτµ

δ (βτ+φω)

0 ρ

(
βφκλ

δρ(nβτ+φω) −
α

ρ

)
ρτ

φ
0

0 φ

(
βφκλ

δρ(nβτ+φω) −
α

ρ

)
τ 0

0 0 0 nβλτθ

δ (βτ+φω)


(4.75)
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F.H−1 =



0 0 0 nβλτµ

nβτσ+δσϕω

κ(nβταδρ−βϕκλρ+δαρϕω)
δρ(nβταδ−βκλϕ+αδϕω)

δ (nβταδρ−βϕκλρ+δαρϕω)
δρ(nβταδ−βκλϕ+αδϕω)

ρ

ϕ
0

κϕ(nβταδρ−βϕκλρ+δαρϕω)
δρ2(nβταδ−βκλϕ+αδϕω)

δϕ(nβταδρ−βϕκλρ+δαρϕω)
δρ2(nβταδ−βκλϕ+αδϕω)

1 0

0 0 0 nβλτθ

nβτδσ+δσϕω


(4.76)

The Eigen values of the system are

E3 =



0

0

nβλτθ

nβτδσ+δσϕω

2nβταδ 2ρ−βδρκλϕ−βϕκλδρ+2αδ 2ρϕω

nβταδ−βκλϕ+αδϕω)



(4.77)

nβλτθ

nβτδσ +δσϕω
> 1 (4.78)

from which it follows

n >
δφσω

βτ(λθ −δσ)
= ψ (4.79)
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With weak CTL and strong antibody responses the virus replicates at a higher rate

that CTL responsiveness. This means that CTL induced pathology can set in when

the number of viral variants reaches a certain threshold. As more variants continue to

escape from the antibodies there will be a shift from antibody response dominance to

the expanded CTL responses. The antibodies prevent pathology while CTL promotes

it the level of pathology will continue to grow with diversification of mutants. When

CTL attains maximum dominance relative to antibodies Liver pathology is expected to

be at peak also . At this level viral evolution is expected to slow down because most

of the target cells will have been infected and any more new variants will have too few

cells to infect.

This maximum is calculated using the equilibrium points Se6 ,Ye6 ,Ve6 , Ae6 and Te6 as

illustrated below.

F =



σ

(
αλθβκσ

nθα(αθω+βκσ)
− δσ

nθ

)
nθ

0 0 µσ

nθ

0 0 κρσ

nθα
0

0 0 κσφ

nθα
0

θσ

(
αλθβκσ

nθα(αθω+βκσ)
− δσ

nθ

)
nθ µ

0 0 θσ

nθ


(4.80)

H =



−δ
αλθβ

αθω+βκσ
0 0

κ −α 0 0

0 0 τ 0

0 0 0 σ


(4.81)
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F−1H =



σ2

nθ
2

αλθβσ2

nθ
2
α(αθω+βκσ)

0 µ

nθ

0 0 κρσ

nθατ
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nθατ
0

θσ2

nθ
2
µ

αλθβθσ2

ααθωµnθ
2+αβκσ µnθ

2 0 θ

nθ


(4.82)

Whose Eigen values are

E4 =



0

0

θnθ+σ2

nθ
2

κσφ

αnθτ


(4.83)

and found to be

n >
φκσ

αθτ
= ζ (4.84)

4.2 Numerical Results

The model variables describe cell populations and therefore all of them are taken to be

non negative, that is

S(t)> 0,Y (t)≥ 0,V (t)≥ 0,A(t)≥ 0 & T (t)≥ 0

To make the analytical results discussed in section 4.1 clear, the model is used to

simulate the interactions between the Cell mediated and antibody immunity against a

viral pathogen. Data of HCV infection in human beings is used to simulate the

results. Complete list of parameters and their estimated values used for numerical
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simulations are given in Table 4.1. The majority of the values have been taken from

the data found in scholarly articles published in various journals and others have been

estimated. Much of these parameters were adopted from Kim et al. (2011) and

Ahmed et al. (2011).

These data do not depict a strict situation of the entire patients range but the

parameter range is within the plausible and realistic values.
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Table 4.1: Description of Variables

Item Parameter description Symbol Value source

1 Proliferation rate Healthy cells λ 1-10 Ahmed et al. (2011)

2 Rate of Natural Loss of healthy hepatic cells ω 0.1 Ahmed et al. (2011)

3 Rate at which Virus Infect Healthy cells β 0.01-0.03 Ahmed et al. (2011)

4 Death rate of infected hepatic cells δ 0.1-0.3 Wodarz et al. (2006)

5 Rate at which CTL eliminate Infected cells µ 1 Wodarz et al. (2006)

6 Proliferation rate of Virions from Infected cells κ 1-2.5 Wodarz et al. (2006)

7 Rate of Natural Loss of Virus α 1-5 Wodarz et al. (2006)

8 Rate at which Antibodies Eliminate Virus ρ 1-10 Wodarz et al. (2006)

9 Rate of activation of Antibodies φ 0.1-2.5 Kim et al. (2011)

10 Rate of natural Loss of the Antibodies τ 0.1-0.25 Kim et al. (2011)

11 Rate at which Virus Induce CTL Proliferation θ 0.01-4.5 Kim et al. (2011)

12 Rate of natural Loss of CTL population σ 0.1-0.2 Kim et al. (2011)

13 Threshold antibody response χ 0.1944-2.5 Calculated

14 Threshold CTL response η 0.2125-11.3 calculated

15 Minimum viral variants that induce pathology ψ 3.2 calculated

16 Maximum CTL dominance ξ 10 calculated
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4.2.1 Infection free Dynamics

The healthy target cell population is at the disease-free equilibrium value and the

number of infected cells is zero. The initial values are zeros, except for the supply of

healthy cell, representing a state at of no infection

Figure 4.2: Infection free state of the immune system
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The following parameters are used:

λ = 8, ω = 0.1, β = 0.0, δ = 0., µ = 0.0, κ = 0, α = 0.0, ρ = 0.0, ε = 0.00,

φ = 0, τ = 0.0, υ = 0.0, θ = 0, σ = 0.0

The initial conditions considered are

S(0) = 10, Y (0) = 0.0, V (0) = 0, A(0) = 0.0, T (0) = 0.0

4.2.2 Immunity Free dynamics

The disorders of the immune system lowers is effectiveness in eliminating infective

pathogens. These disorders could be due to immune over activity or deficiency.Over

activity causes the body to attach its own tissue leading to auto immune diseases

while Immune deficiency lowers the ability to defend the body against infectious

agents unduly making the body susceptible to infections. A case of immune

deficiency is depicted below when the body is attacked by a non-cytopathic virus

The values of parameters used are:

λ = 10, ω = 0.1, β = 0.01, δ = 0.1, µ = 0.0, κ = 1.0, α = 1.0, ρ =
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Figure 4.3: Immunity free state of the immune system

0.0, ε = 0.00, φ = 0, τ = 0.0,

υ = 0.0, θ = 0, σ = 0.0

The initial conditions considered are:

S(0) = 10, Y (0) = 0.5, V (0) = 0.5, A(0) = 0.0, T (0) = 0.0

This represents a high viral load meaning that the body is not able to defend itself

against. Since HCV is non-cytopathic and death of infected cells is almost the same
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as the death of un infected cells,in the acute infection no pathology is expected.This

would however be different for a highly cytopathic virus.

4.2.3 Competition dynamics

In the event that immune response will mount, either CMI or humoral, the following

conditions must be met; φV (0)> τ and θT (0)> σ .

This guarantees development of immune response but not dominance of any branch of

immunity. The initial values are small, representing a state at the initiation of infection,

but they are also chosen to be large enough so that there will be an immune responses,

either through the CTL or the antibodies, or both.

Three possible outcomes of this are expected and are observed in HCV infection. Each

case is discussed below.

4.2.3.1 Case One: Strong CTL only Immune response

Since the CTL performs antiviral activities, strong responses will cause viral load to

decrease and resolution of the virus. After the resolution, the stimulation of CTL

decay and settle at an elevated level compared to where it had begun and remains at

this level for a while in absence of exposure to the same virus.This is known as the

contraction phase. This is referred to as the immunological memory and is observed in

cellular and humoral immunity. This means that the remaining CTL can respond more

efficiently and with grater efficacy in the case of re-challenge by the same virus. Such

re-challenge is suppressed and resolved faster than in the first exposure.

The model approximates clearance of the virus between eighth and tenth month. This
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is supported by the work Grebely et al. (2012) that spontaneous viral clearance occurs

within twelve months , no case of spontaneous clearance is reported after this period.

Figure 4.4: CTL Dominant immune response .The lytic activity of CTL resolve the viral
infection. On decay it settles around heightened level in the long-term.
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Parameters are taken as follows:

λ = 10, ω = 0.1, β = 0.01, δ = 0.1, µ = 0.1, κ = 1, α = 1,

ρ = 0.1, ε = 0.0, φ = 1, τ = 0.25,

υ = 0.0, θ = 4.5 σ = 0.1

The initial conditions considered are

S(0) = 10, Y (0) = 0.1, V (0) = 0.5, A(0) = 1, T (0) = 0.1,

χ = 0.22 < 0.25,η = 11.13 > 0.1

Before the first exposure to the virus the host naive. to the infection.At the naive phase

the level of immune effector cells is generally low. After infection the naive cells are

stimulated to become effector cells to fight the virus, and subsequently settles in a

relatively heightened stable level than in the a host that had not encountered the virus.

These cells remains for a longer time after virus resolution.When the host is infected

again with the same virus their will be a standing stock of virus specific CTL with

greater efficacy ready to fight the virus. As a result the resolution is faster.(fig 4.5).
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Figure 4.5: Due to some standing stock OF immunological memory CTL specific to
the virus mounts faster and resolves the secondary infection

4.2.3.2 Case Two: Strong Antibody only Immune Response

Antibodies prevents the rate of virus spread by neutralizing the free virus in the

extracellular phase and without killing the infected cells. Antibodies contribute

significantly to non lytic activity . As a result the virus continue to proliferate despite

the antibody immunity, since the source of the virus (infected cells) still remains

active. In the case the CTL response is diminished and un sustained, the host does not

clear the virus leading to chronic infection and progression to cirrhosis in 5 - 10 % of
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individuals within 20 years Grebely et al. (2012).

Since neutralizing pathogens or changed cells is one of the most important tasks of

antibodies they attach directly to the surface of a virus and stop the virus from

attaching itself to a normal body cell and subsequently infecting it. These substances

can then no longer enter the host cells to damage them. The antibodies however have

no ability to control the virus once inside the cell. This is demonstrated by the

simulation results below (fig 4.6).

Figure 4.6: Antibody Dominant immune response
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The choice of parameters is as given below:

λ = 1, ω = 0.1, β = 0.03, δ = 0.1, µ = 1, κ = 1.5, α = 1.0,

ρ = 1.2, ε = 0.0, φ = 3.5, τ = 0.1, υ = 0.0, θ = 2.5, σ = 0.24

The initial conditions considered are

S(0) = 10, Y (0) = 0.1, V (0) = 0.1, A(0) = 0.1, T (0) = 0.1,χ = 2.5 > 0.1,

η = 0.2125 < 0.24

4.2.3.3 Case Three:Strong CTL and strong Antibody Responses

Both cellular and humoral immunities mount relatively strong leading to clearance of

the viral pathogen. It is worthy noting that when the host immune system mount both

cellular and humoral responses strongly the virus is cleared much earlier that when the

immune system mounts strong cellular immunity only.
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Figure 4.7: strong CTL and Antibody responses

The parameters are chosen as follows:

λ = 10, ω = 0.1, β = 0.01, δ = 0.1,

µ = 0.1, κ = 1, α = 1.0, ρ = 0.1, ε = 0.0, φ = 3.5, τ = 0.2,

υ = 0.0, θ = 3.5, σ = 0.2

The initial conditions considered are

S(0) = 10, Y (0) = 0.5, V (0) = 1, A(0) = 0.13, T (0) = 0.13,χ = 0.1944 > 0.1,



92

η = 1.2821 > 0.2

4.2.4 Viral Evolution in Chronic HCV

When the CTL response is weak and unable to clear the virus and the antibody

responses are strong, the virus will evolve to evade the antibody response.This

evolution causes production of new viral variant. In response to this evolution the

antibody responses will also expand to neutralize these new variants leading to a

repertoire of immune responses. According to Jirillo (2007) six major genotypes of

HCV have been identified.

When the condition,

n >
δφσω

βτ(λθ −δσ)
= ψ (4.85)

is satisfied the CTL response increase and elevate to dominance driving antibody

responses to near extinction.That is for the initially weak CTL responsiveness , the

accumulation of variants that have evaded antibody responses creates diversification

of antigens which gradually stimulate the CTL. Thompson et al. (1997).

Five variants are considered for this illustration. The outcome of viral evolution with

respect to the number of viral mutants that escape the antibodies is plotted below.

CTL-induced pathology is expected,the evolution will stop when substantially many

cells of the liver are infected. This is because there will be but just a few cells of the

liver that are purely susceptible and a gain the liver will be substantially damaged, Fig

4.9..
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Figure 4.8: With increased antigenic diversity the initially weak CTL gradually begin
to grow.

The initial conditions considered are

S(0) = 10, Y1(0) = 0.1,Y2(0) = 0.2,Y3(0) = 0.3,Y4(0) = 0.4,Y5(0) = 0.5, V1(0) = 0.1,

V2(0) = 0.1,V3(0) = 0.1,V4(0) = 0.1,V5(0) = 0.1, A1(0) = 0.1,A2(0) = 0.1,

A3(0) = 0.1,A4(0) = 0.1,A5(0) = 0.1, T (0) = 0.2 ,ψ = 3.2 < 5

The parameters used are :
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Figure 4.9: With the setting in of severe pathology the number of uninfected cells will
oscillate towards equilibrium and then start to decrease

λ = 1, ω = 0.1, β = 0.03, δ = 0.3 µ = 2, κ = 2.5, α = 1.0, ρ = 1,

ε = 0.0, φ = 2, τ = 0.1, υ = 0.0, θ = 0.1, σ = 0.2

The level of pathology is determined by the number of viral mutants.This gradual

escaped will eventually stimulate the CTL shifting the balance from humoral to CIM.

Since humoral responses hinder pathology and CTL promote it, the level of liver
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Figure 4.10: The overall number of infected cells decline due to the Cytotoxic activity
of CTL .

physical harm escalate with the increase of viral variants. When the number of the

variants reaches ascertain number, the CMI response will dominate antibody

responses when n > ϕκσ

αθτ
= ξ .

The dynamics of CMI can be explained as competition of interaction of CTL and

Antibody responses. This competition has been proved experimentally Wodarz

(2003) ) Coexistence of CTL and antibody responses is possible when their respective

relative response rates are close.
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4.3 Results and Discussion

4.3.1 Introduction

With the help of the mathematical model,a study of different developmental pathways

of the immune response to HCV and conditions in which each of them can explain

the biological data is carried out. Such a scheme is particularly appropriate for use

in human studies, where data is sparse and several sources of uncertainty and noise

have an influence on parameter values. In order to keep the model tractable, several

simplifying assumptions have been made as outlined in section 3.7.1

In an effort to keep the model simple, a five-phase deterministic model (Eq. (3.19) to

Eq. (3.23)) that describes the way immune system responds to viral pathogen stimulus

was developed. The model describes the immune system where the size of immune

responses is proportional to the number of pre-existing immune cells and viral load.

4.3.2 Results And Discussion

The mathematical model developed in section 3.7 is based on simplification of the

complex dynamics of the immune response to viral pathogens as diagrammed in the

model flow chart. The model is a system of five differential equations that describe

the dynamics of viral pathogen and its interaction with a target cell population as well

as the subsequent immune response to the pathogen. The Law of Mass Action or the

usual type of qualitative behavior observed in population interactions and chemical

reactions has been used to provide a basis for constructing the model equations.The
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model examines the ability of the immune cell and viral pathogens populations

growing from low numbers.

In the absence of any pathogen the immune system is always at equilibrium S = λ

ω
fig

4.2, there is neither the stimulation of CTL nor antibodies. This is the scenario where

the pathogen has not invaded or has suffered extinction and every cell in the

population is susceptible. The pathogen-free equilibrium is stable whenever R0 < 1.

This makes good sense because the pathogen cannot invade if each infected host cell

passes on the infection to fewer than one other host cell. In the immune free scenario,

the CTL response is extinct, and the virus replicates at high levels this could be an

indication of CTL exhaustion. CTL exhaustion implies that the lytic activity of CTL

is diminished and the virus can now replicate persistently unchecked and at elevated

rate. Exhaustion or functional impairment of the T cell compartment hampers T cell

immunity. Loss of functional capacity, like cytotoxicity, cytokine production and

proliferative capacity, is thought to reflect prolonged excessive immune inactivation

and to correlate with pathogen progression.

Immunodeficiency diseases and syndromes could cause inactivation of antibody

response caused by either by pathological conditions that affect the immune system or

by the administration of therapeutic compounds with immuno suppressive effects.

Because HCV is non-cytotoxic,the aggregate tissue cells is assumed to be unchanged

for a while, and no pathology will be observed, fig 4.3.

The CMI and antibody mediated responses require stimulation by antigen to

mount.They can therefore be considered to be in competition where the antigen is the

common resource. The outcome of this competition therefore depends on the
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interplay between these two branches. When CTL drive antibodies responses to

extinction , then the interplay is shifted towards lytic responses and the outcome is

possible resolution of the virus. The model estimates that the HCV will be cleared in

six to eight months, fig 4.4. the host is also likely to clear the infection in case of a

secondary re-challenge fig 4.5.

When antibodies drive CTL responses to extinction , then the interplay is shifted

towards non-lytic immunity, the result is persistent, chronic and possible viral

evolution despite the presence of an ongoing antibody response. Fig 4.6. The

dominance of antibody mediated branch of immunity in fighting a viral pathogen lead

to viral evolution that result in emergence of new viral mutants.

When CTL and antibody responses are both strong and become sufficiently

established,the two branches coexist and jointly fight the viral pathogen, the outcome

is virus clearance. The model suggests that it would take a shorter period to clear the

infection compared to when CTL respond to the virus only. It is estimated to take less

than four months ,fig 4.7.

Viral evolution is also considered and a discussion on its influence in changing the

immune and disease dynamics from disease free to liver pathology has been given.

Weak and unestablished CTL responses give way for the dominance of antibody

responses. As a result, there is persistent replication and new variants evolve that

escape the antibodies. Each new variant leads to generation of a specific antibody

response. The number of viral mutants increase with time. fig 4.8. The antibody

response equally diversify with respect to these new viral mutants by producing new

antibody responses specific to them . As the diversity of the viral mutants expand, the
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initially weak CTL response begin to expand. However, this late CTL expansion does

not significantly contribute to viral clearance .This will mark the genesis of liver

pathology.The CTL lytic activity against infected cell at this stage will now contribute

to tissue damage and the total number of liver cells is expected to decline which will

correspond to the wasting away leading to the eventual death of hosts Fig 4.9.

Among the many infections that exemplify competition dynamics between CMI and

humoral branches of immunity is HCV. Each branch is important in its own right in

determining the short term and long term outcome of the infection.

A mathematical model on immune responses with respect to HCV is critical in

understanding the experimental data of the infection. CTL-mediated clearance is

associated with the relative absence of strong antibody responses. Persistence and

chronicity are however associated with strong and dominant antibody responses. The

argument presented here is that CMI is responsible for viral clearance . On the other

hand, antibody responses are crucial for deciding the long term outcome of infection.

Antigenic escape from antibody responses allows the virus to persist. Continued

infection in the presence of an immune response creates a conducive survival tactic

for the virus to mutate and escape the antibody responses.

With the establishment of the infection, the model suggests that viral mutants are

responsible of shifting the balance from humoral to CMI.

The relative balance of humoral and CMI determines whether the HCV will be

cleared and whether persistence,chronicity and liver pathology will be observed.It is

suggested here that for chronic and persistent HCV patients the therapy should be

directed more to controlling of antigenic mutants and suppression of CTL rather than
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clearance of the virus. The central concept is that viral evolution is the major drive to

chronic infection.

If immune responses were to be suppressed,the competition between the various

mutants determine the outcome of evolution. Moreover, as the number of susceptible

cells will become factor in this scenario limiting, for example when the liver vastly

infected the rate of viral evolution may slow down or stop because of the reduced

number of susceptible target cell.Therefore, if viral evolution lead to liver pathology,

patients at advanced stages may exhibit a lower rate of viral diversification as

compared with those in less advanced stages.

The concept presented in this study of viral evolution is supported by Wodarz

(2003).This has also been observed in patients who have undergone liver transplants.

It is suggested in this model that new viral variants can always stimulate new antibody

responses that are specific to them. With this the virus will continue to mutate in order

to evade these specific antibody responses. With the infection progression, there will

come a time when the antibody responses are unable to cope with the viral

population. This lead to reduced rate of viral evolution , an observation common with

chronic HCV patients.

Elimination of virus infected cells by lysis in the main way CMI eradicates the viral

infection. A role of CMI in controlling of HCV replication is suggested by the

temporal correlation among the detection of CTLs, a rise in transaminase levels, and a

fall in viremia Grakoui et al. (2003).
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4.4 Model limitations

Despite the robustness of the model, its effectiveness in describing CMI immune

responses and how well it is able to predict HCV infection progression , there are a

few aspects of the immune system that can not be deduced from the model. They

include

1. The spatial distribution of the viral infection in the host’s organ can not be

determined.This distribution of infection is important in determining the

portion of the organ infected or not infected.

2. The delay aspects observed in most biological systems can not be deduced from

the model. There the effect of these delays therefore cannot be understood from

the model

4.5 Experimental Data on HCV Infection

Models are vital tools in helping us understand and interpret experimental data.

Several experiments on the role of the antibody and CTL responses in HCV infection

have been conducted using chimpanzee as a model animal as well as humans.

However most of the experimental work has remained a challenge mainly because of

ethical issues, lack of another suitable small animal model and partly because HCV

infection can be asymptomatic and those infected may be unaware until the late stages

of infection. This makes early monitoring of the infection difficult Grakoui et al.

(2003). However experiments have provided useful insights on how the immune
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system interact with HCV either to eliminate it from the body or to coexist together.

Experimental results have confirmed that CMI is critical in the resolution of HCV

while antibodies determine the long term outcome of the infection, if it is not

resolved, in humans and chimpanzees Experimentally both humans and chimpanzees

that cleared the infection were seen to have strong and sustained CTL responses that

lasted beyond the acute phase. The chimpanzees that cleared the infection were

observed to have undetectable antibody responses. This observation suggests to mean

that the two branches of immunity are in competition and CTL responses will have

driven the antibody responses to extinction Oniankitan et al. (2004).The results are in

agreement with the simulated results for strong CTL and weak antibody responses

HCV-specific antibodies have been found to be effective in blocking invitro infection

of target cells by HCV. However, humans and chimpanzees, naturally acquired

anti-HCV antibodies generated during this infection were found to be ineffective in

protecting secondary challenge and spread of HCV Scarselli et al. (2002).

Humans and chimpanzees that did not resolve the infection were observed to develop

strong and sustained antibody responses and diminished and sustained CTL

responses. This led to persistent and chronic infection. It has been shown that those

who resolved the infection did show viral evolution status in the virus population.

However, in both humans and chimpanzees those who did not resolve the infection

and developed persistent and chronic infection were observed to have antigenic

diversity in the virus population, which is and indicator of presence of viral mutant

that have escaped the antibody responses. Bartosch and Cosset (2006).Failure to clear

the infection lead to persistence and chronicity, a phenomena associated with weak
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CTL responses. Persistence lead to viral evolution. Experimentally it has been shown

that viral evolution is a consequence of viral persistence and it is not the viral

evolution that lead to persistence. This is what is assume in the model and results

confirmed by the simulations. Though strong antibody and weak CTL responses have

been identified as the suitable scenario for viral persistence, it does not mean that the

antibody responses are not important in HCV infection Bowen and Walker (2005).

According to ,CTL responses against HCV can be divided into three phases:

1. This is in the first few weeks after exposure and infection. The virus titers

escalate to high level CTL, HCV specific immune responses are activated.

However, among the most remarkable observations that came out of studies

investigating the kinetics of HCV infection in both chimpanzees and humans is

that these responses are not detected in the blood before 1-3 months after initial

infection Bowen and Walker (2005). The median time for the development of a

IF-γ response is 33 days. The reasons for this delay are not yet understood

2. The second phase is where there is transient acute infection lasting a few

weeks. Infected individuals may develop acute hepatitis irrespective of the

outcome of infection, whether the infection will be cleared or will be chronic.

These responses have been shown to peak between 180-360 days after initial

infection.

3. The last phase depends on the outcome of the disease.In about 30% of infected

individuals who resolve the infection their is retention a stock of HCV specific

CTL cells.In approximately 70% of HCV infections, infection becomes
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chronic. This phase is usually characterized by an absent or almost

undetectable HCV-specific CTL response.

Experimental studies have shown that antibody responses are responsible for

keeping the patient asymptomatic and escape from the antibodies is observed to

contribute to the shifting of the immune responses from antibody to CTL.

Therefore, the balance between these immune responses determine the ultimate

outcome of the infection Neumann-Haefelin and Thimme (2013). Other

experiments have quantified the rate of viral evolution in humans and

chimpanzees with severe liver disease. The rate of viral evolution and antigenic

diversity have shown that if the viral load is suppressed sufficiently by the

immune responses this would lower the rate of evolution. But this suppression

also allows the coexistence of various antigenic variants. If the immune

responses are sufficiently suppressed competition between the various viral

mutants determine the rate of viral evolution. For patients with mild liver

disease there was constant accumulation of amino acid changing substitutes and

a higher rate of viral evolution. Patients with severe liver disease were observed

to have lower viral replication rate. This is consistent with the theory presented

in this study that at maximum pathology the number of susceptible cells will be

few hampering further viral evolution. This was supported by the studies of

Neumann-Haefelin et al. (2005)who observed that virus diversity as well as

amino acids changing to silent substitutions was higher in humans and

chimpanzees with severe liver disease as well as patients who had liver

transplant as a result of severe liver disease .
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CMI has been investigated extensively in HCV infections. This has been facilitated

by the availability of MHC class I tetramers. Studies in infected chimpanzees and

humans using both functional methods of CTL identification and MHC class I

tetramers have demonstrated that increases in serum transaminase levels and

clearance of the virus during the acute phase are generally associated with the

emergence of a strong CTL response in the blood and the liver 1 to 3 months after

infection Neumann-Haefelin and Thimme (2013). According to Appay et al. (2002)

Up to 8% of the blood CD8+ T cells can be specific for a single HCV epitope at the

peak of the acute response.

In addition, recent studies using HCV pseudotyped particles indicate that neutralizing

anti-HCV antibodies occur far more commonly in persistently infected individuals

than in those who clear the virus,Meunier et al. (2005).

Experiments based on IFN-γ production have indicated that CTL activities were not

detected in the blood of chronically infected patients although CTL clones specific for

HCV can be derived from the liver of humans and chimpanzees in which the virus

persists and chronic Lanford et al. (2001). The presence of anti-HCV-specific CTLs

have been confirmed using MHC class I tetramers. This powerful immunological tool

has demonstrated that the liver contains a higher frequency of HCV-specific T cells

than the blood Neumann-Haefelin et al. (2005), with HCV-specific T cells enriched

within the liver up to 10- to 30-fold for CD8+ T cells, and 2-fold for CD4+ T cells

Neumann-Haefelin et al. (2005). Experiment by Bowen and Walker (2005) to

investigate the immune responses during HCV infection give similar results as the

results obtained by simulation.
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4.6 Model Validation

Using the experiment parameters giveN in table 4.1 ,the experimental results were

compared with the simulation results for a period of twelve months and the following

observations were made:

1. The two results show that the virus will initially grow exponentially before

reaching the peak in the fifth month,see fig 4.11.However the peak level of the

experimental data is slightly higher that the one obtained by simulation

2. There will be an exponential decay, which will not go to zero in twelve months,

after the peak.

3. The CTL/CD8+ levels will continue to rise for the twelve months, see fig 4.12.

4. The simulated results show that CTL level is slightly higher that the experiment

level
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Figure 4.11: The viral load grow exponentially before reaching the peak in the fifth
month.
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Figure 4.12: The comparison of immune responses between experimental results and
simulations.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

An introduction and discussion at length of the deterministic model, including the

case of viral evolution, description of the mechanisms involved in HCV infections in

humans has been presented. In addition to finding the equilibrium of the systems,

numerical simulations of the models are provided , where it was found that strong

CTL response and weak antibody response was likely to clear HCV between six to

eight months after infection. Strong antibody and weak CTL responses are however

not able to clear the HCV, which might lead to persistent and chronic infection. This

may later lead to liver pathology and any intervention by a strong CTL may be of

little help. Strong CTL at this period lead to massive killing of infected cells, which

are considered to be more than the healthy cells. Eventually the size and functions of

the organ are compromised and may lead to the death of the host.

In the normal and natural circumstances both the CTL and antibody responses are

likely to mount with sufficient strength, since a viral antigen has both extracellular

and intracellular phases. In such a scenario the model predict that HCV will be

cleared much earlier (before the fourth month of infection) as compared to when CTL

only response clears the infection This response better represents real-life natural

processes.

However, an important behavior of viral evolution is the emergence of new viral

mutants able to evade the antibodies and thought to highly contribute to drug
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resistance during treatments.While the antibody responses neutralize the free

virus,and hence contribute to low virus population, the virus is able to escape this

neutralization by mutation.The antibody respond to this by generating new specific

response to the mutant. However, as new antibody specificities are generated other

new viral mutants will continue to emerge. Consequently, there will be diversity of

the viral mutants. Therefore, while the antibody are able to adapt and respond to new

viral mutants, the virus population will still grow since there will be continuous

production of new variants not encountered before.

While the models are a good starting point, they still fall short of providing a

comprehensive explanation of why some individuals respond to viral infection by

CTL,Antibodies or both responses.

5.2 Conclusion

It is important for CTL and antibody responses mount at the right time and strength to

reduce the chances of antigenic escape In chapter four the deterministic mathematical

model that was used to simulate immune responses to viral pathogen was analyzed.

The model has been used to simulate different possible scenarios in HCV infection. It

is argued that the two branches of immune system are in completion and either of the

branch can derive the other one to extinction or may coexist together.

1. It has been shown that strong (dominant) CTL and weak antibody response is

able to clear the infection albeit not as fast as when both branches of immune

system mount strongly and become established.These results are confirmed in
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studies by Chang et al. 2001 that showed that in acute phase of the infection

both humans or chimpanzees who cleared the virus developed high and

sustained CTL responses.

Failure to clear the infection in the model is associated with strong (dominant)

antibody and weak CTL response. This is supported by Wodarz (2003), it was

observed that both humans and chimpanzees that were not able to clear the

infection had a characteristic low initial CTL response that was un sustained

and decayed during the acute phase of infection. Farci et al. (2000).

2. The steady state analysis that followed reveal qualitatively the nature of the

equilibrium points. It was observed that the system yielded computationally

infeasible characteristic polynomials in all possible immune system response

scenarios. The Eigen value method is therefore not recommended for this

analysis. Routh stability criterion is therefore used and found that ;

a) In the cases where no immune response is mounted the equilibrium is always

unstable

b) For dominant CTL response the equilibrium is always stable. c) For antibody

dominant response the equilibrium is always stable.

d) When both branches of immune system coexist and are both strong the

equilibrium is always unstable

e) For viral evolution, when the threshold for CTL induced pathology is not

achieved the stability condition is

δ µτ
3(βσ +θω)> βλτκτ

2
φ(nβτ +ωφ)(βσ +θω) (5.1)
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f) When the threshold of CTL induced pathology is reached, the equilibrium is

always unstable.

3. Minimum parameter combinations for mounting immune responses is

established using the method of next generation matrix. It was seen that

whenever

κρφ

αθ
< τ (5.2)

and

βλτθ

δ (βτ +ωφ)
> σ (5.3)

CTL dominate and derive to extinction antibody responses, whenever

κρφ

αθ
> τ (5.4)

and

βλτθ

δ (βτ +ωφ)
< σ (5.5)

the antibody dominate and CTL will fail and, and whenever

κρφ

αθ
> τ (5.6)

and

βλτθ

δ (βτ +ωφ)
> σ (5.7)

both branches of the immune system will co-exist and mount strongly.
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This is confirmed by the simulations and whenever the established criterion is

violated the obtained simulations do not reflect the accepted knowledge of

immune system.

5.3 Recommendations

Nutrition contributes immensely to the immunity status of an organism. Immune

system, relative to its size, is one of most energy consuming systems in an organism

and hence sensitive to nutrients intake and consumption in the body. The T cell being

in the heart of an effective and efficient cellular mediated immune responses receives

nutrients from its environment and therefore the dynamics of nutrition status affects

its functions. The study makes the following recommendations.

1. The general public be made aware of the overall effect of proper diet and

nutrition in reducing increased health cost, morbidity, and mortality.

2. The model be adopted as a tool to simulate different treatment protocols before

administering the to patients.

3. Due to the unapparent and asymptomatic nature of persistent and chronic of

HCV infection more awareness to the general public and regular medical

checkups for all is recommended.

4. Continuous, collaborative and multi-disciplinary research in the human disease

is essential, for development of new molecular tools for dissecting the

intriguing bio-pathogenesis of chronic hepatitis C in man. Just as the progress
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on this disease to date has been phenomenal, so too will be the future progress

in furthering our understanding of HCV infection, replication, and molecular

biology, and in improving the treatment of hepatitis C.

5. For all infected patients, increased vigilance for signs of hepatotoxicity is

highly recommended since HCV infected patients are at high risk of

hepatocellular carcinoma (cancer of the liver cells).

5.4 Future work

1. For successful treatment of HCV immunological data show that boosting of

HCV specific immunity is necessary. It is recommended that treatment factor

be included in the model with different drug efficacies to determine whether

disease progression and chronicity can be prevented or delayed.

2. It is also essential that more flexible and robust infection models be continuously

developed that could capture stochastic aspects of the immune system.

3. Since HCV attacks the liver a spatial model can be developed to determine the

distribution of the infected cells with time.

4. The aspect of delay exhibited by most biological systems can be included in the

model to see the effects of this delays in pathogen progression.

5. The role of CMI in fighting intracellular bacteria and protozoa can be explored.
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APPENDIX

A Basic Reproductive ratio

\frac{-\mu \sigma \text{n$\beta \tau $}^2 \text{n$\theta \rho \tau $}+

\text{n$\beta \tau $} (\text{n$\theta \rho \tau $} (-\mu \sigma

(\alpha \phi +\delta \phi -\omega \phi +\omega \phi )+\delta

\sigma \mu \phi +\lambda \theta \mu \phi )+\mu \sigma

\rho \phi (\text{n$\mu \tau \theta $}-\kappa \phi \sigma

)+\phi (\text{n$\theta \rho \tau $} (\mu \sigma \omega

\phi (\alpha +\delta +\omega )-\delta \theta \sigma

\omega \mu )+\mu \sigma \rho \omega \phi (\kappa \phi

\sigma -\text{n$\mu \tau \theta\\ $}))}{\mu \sigma

\text{n$\theta \rho \tau $} \phi (\text{n$\beta \tau

$}-\omega \phi )}

B Stability of Immune Free Response

\frac{\kappa (\beta \lambda \kappa -\alpha \delta \omega )}{\beta

\delta \kappa \delta }\left( \begin{array}{ccc}

-\frac{\beta (\beta \lambda \kappa -\alpha \delta \omega )

\kappa }{\beta \delta \kappa \delta }-\omega & 0 & -\frac{\alpha

\delta \beta }{\beta \kappa } \\ \frac{\beta (\beta \lambda

\kappa -\alpha \delta \omega ) \kappa }{\beta \delta \kappa \delta
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} & -\delta & 0 \\ 0 & -\kappa & -\alpha \\

\end{array}

\right)

\frac{\alpha \alpha \delta \omega \beta \eta \kappa }{\beta

\delta \kappa \delta }+\frac{\alpha \alpha \delta \omega \beta

\kappa }{\beta \delta \kappa }-\frac{\alpha \beta \beta

\lambda \kappa \eta \kappa }{\beta \delta \kappa \delta

}-\frac{\alpha \beta \beta \lambda \kappa \kappa }{\beta

\delta \kappa }-\alpha \delta \eta -\alpha \delta \omega

-\alpha \eta ^2-\alpha \eta \omega -\frac{\alpha \delta \alpha

\delta \omega \beta ^2 \kappa ^2}{\beta \delta \kappa \beta

\kappa \delta }+\frac{\alpha \delta \beta ^2 \beta \lambda

\kappa \kappa ^2}{\beta \delta \kappa \beta \kappa \delta

}+\frac{\alpha \delta \omega \beta \eta ^2 \kappa }{\beta \delta

\kappa \delta }+\frac{\alpha \delta \omega \beta \eta \kappa

}{\beta \delta \kappa }-\frac{\beta \beta \lambda \kappa \eta

^2 \kappa }{\beta \delta \kappa \delta }-\frac{\beta \beta

\lambda \kappa \eta \kappa }{\beta \delta \kappa }-\delta

\eta ^2-\delta \eta \omega -\eta ^3-\eta ^2 \omega =0

\frac{-\alpha \beta \kappa (\delta +\eta ) (\beta \kappa

(\beta \lambda \kappa -\alpha \delta \omega )+\beta \delta \kappa

\delta (\eta +\omega ))+\beta \kappa (\alpha \delta \omega

-\beta \lambda \kappa ) (\beta \kappa \eta (\delta +\eta
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)-\alpha \delta \beta \kappa )-\beta \delta \kappa \beta

\kappa \delta \eta (\delta +\eta ) (\eta +\omega )}{\beta \delta

\kappa \beta \kappa \delta }=0

\text{Null}

(-1)

\left(\text{a0}=\text{Simplify}\left[\text{Coefficient}\left[K,\eta

^3\right]\right]\right)

\frac{(-\alpha \beta \delta \kappa \delta +\beta \kappa (\alpha

\delta \omega -\beta \lambda \kappa )-\beta \delta \kappa \delta

(\delta +\omega ))

\left(\text{a1}=\text{Simplify}\left[\text{Coefficient}\left[K,\eta

^2\right]\right]\right)}{\beta \delta \kappa \delta }

\frac{(-(\alpha (\beta \kappa (\beta \lambda \kappa -\alpha

\delta \omega )+\beta \delta \kappa \delta (\delta +\omega

))+\delta (-\alpha \delta \omega \beta \kappa +\beta \beta

\lambda \kappa \kappa +\beta \delta \kappa \delta \omega )))

\left(\text{a2}=\text{Simplify}\left[\text{Coefficient}\left[K,

\eta ^1\right]\right]\right)}{\beta \delta \kappa \delta }
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\frac{(\text{a3}=\text{Simplify}[\text{Coefficient}[K,\eta ,0]])

\left(\alpha \delta \beta ^2 \kappa ^2 (\beta \lambda \kappa

-\alpha \delta \omega )-\alpha \beta \kappa \delta (-\alpha

\delta \omega \beta \kappa +\beta \beta \lambda \kappa \kappa

+\beta \delta \kappa \delta \omega )\right)}{\beta \delta

\kappa \beta \kappa \delta }

\text{b1}=\text{Simplify}\left[\frac{\text{a1} \text{a2}-\text{a0}

\text{a3}}{\text{a1}}\right]

-\frac{\beta \delta \kappa \delta \left(\alpha \delta \beta ^2

\kappa ^2 (\beta \lambda \kappa -\alpha \delta \omega )-\alpha

\beta \kappa \delta (-\alpha \delta \omega \beta \kappa +\beta \beta \lambda \kappa \kappa +\beta \delta \kappa \delta \omega

)\right)+\beta \kappa (\alpha \beta \delta \kappa \delta +\beta

\kappa (\beta \lambda \kappa -\alpha \delta \omega )+\beta \delta

\kappa \delta (\delta +\omega )) (\alpha (\beta \kappa (\beta

\lambda \kappa -\alpha \delta \omega )+\beta \delta \kappa

\delta (\delta +\omega ))+\delta (-\alpha \delta \omega

\beta \kappa +\beta \beta \lambda \kappa \kappa +\beta

\delta \kappa \delta \omega ))}{\beta \delta \kappa \beta

\kappa \delta (\alpha \beta \delta \kappa \delta +\beta

\kappa (\beta \lambda \kappa -\alpha \delta \omega )+\beta \delta
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\kappa \delta (\delta +\omega ))}

\frac{\left(\text{c1}=\text{Simplify}\left[\frac{\text{a3}

\text{b1}-\text{a1} \text{b2}}{\text{b1}}\right]\right) \left(-\left(\beta \kappa (\alpha \beta \delta \kappa \delta

+\beta \kappa (\beta \lambda \kappa -\alpha \delta \omega )+\beta

\delta \kappa \delta (\delta +\omega )) \left(\text{b2} \beta

\delta \kappa \delta (\alpha \beta \delta \kappa \delta

+\beta \kappa (\beta \lambda \kappa -\alpha \delta \omega

)+\beta \delta \kappa \delta (\delta +\omega

))-\frac{\left(\alpha \delta \beta ^2 \kappa ^2 (\beta \lambda

\kappa -\alpha \delta \omega )-\alpha \beta \kappa \delta

(-\alpha \delta \omega \beta \kappa +\beta \beta \lambda

\kappa \kappa +\beta \delta \kappa \delta \omega )\right)

\left(\beta \delta \kappa \delta \left(\alpha \delta \beta ^2

\kappa ^2 (\beta \lambda \kappa -\alpha \delta \omega )-\alpha

\beta \kappa \delta (-\alpha \delta \omega \beta \kappa

+\beta \beta \lambda \kappa \kappa +\beta \delta \kappa

\delta \omega )\right)+\beta \kappa (\alpha \beta \delta \kappa

\delta +\beta \kappa (\beta \lambda \kappa -\alpha \delta

\omega )+\beta \delta \kappa \delta (\delta +\omega )) (\alpha

(\beta \kappa (\beta \lambda \kappa -\alpha \delta \omega

)+\beta \delta \kappa \delta (\delta +\omega ))+\delta

(-\alpha \delta
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\omega \beta \kappa +\beta \beta \lambda \kappa \kappa +\beta

\delta \kappa \delta \omega ))\right)}{\beta \kappa ^2 (\alpha

\beta \delta \kappa \delta +\beta \kappa (\beta \lambda \kappa

-\alpha \delta \omega )+\beta \delta \kappa \delta (\delta

+\omega ))}\right)\right)\right)}{\beta \delta \kappa \delta

\left(\beta \delta \kappa \delta \left(\alpha \delta \beta ^2

\kappa ^2 (\beta \lambda \kappa -\alpha \delta \omega )-\alpha

\beta \kappa \delta (-\alpha \delta \omega \beta \kappa

+\beta \beta \lambda \kappa \kappa +\beta \delta \kappa \delta

\omega )\right)+\beta \kappa (\alpha \beta \delta \kappa

\delta +\beta \kappa (\beta \lambda \kappa -\alpha \delta \omega

)+\beta \delta \kappa \delta (\delta +\omega )) (\alpha (\beta

\kappa (\beta \lambda \kappa -\alpha \delta \omega )+\beta

\delta \kappa \delta (\delta +\omega ))+\delta (-\alpha \delta

\omega \beta \kappa +\beta \beta \lambda \kappa \kappa +\beta

\delta \kappa \delta \omega ))\right)}

\text{Null} \text{Null} \text{Null} \text{Null} \text{Null}

\text{Null} \text{Null} \text{Null}



125

C Stability of CTL only Immune Response

\left(

\begin{array}{cccc}

-\Lambda -\omega -\frac{\beta \kappa \sigma }{\theta } & 0 &

-\frac{\alpha \lambda \theta \beta }{\alpha \theta \omega +\beta

\kappa \sigma } & 0 \\

\frac{\beta \kappa \sigma }{\theta } & -\frac{\alpha \lambda

\ \theta \beta \kappa }{\alpha \theta \omega +\beta \kappa \sigma

}-\Lambda & 0 & -\frac{\mu \sigma }{\theta } \\

0 & \kappa & -\alpha -\Lambda & 0 \\

0 & \frac{\left(\frac{\alpha \lambda \theta \beta \kappa }{\alpha

\theta \omega +\beta \kappa \sigma }-\delta \right) \theta }{\mu }

& 0 & -\Lambda \\

\end{array}

\right)

-\frac{\Lambda \left(-(\alpha +\Lambda ) (\Lambda (\alpha \theta

\omega +\beta \kappa \sigma )+\alpha \lambda \theta \beta \kappa )

\ (\beta \kappa \sigma +\theta (\Lambda +\omega ))-\alpha

\lambda \theta \beta ^2 \kappa ^2 \sigma \right)+\sigma (\alpha

\ +\Lambda ) (\delta (\alpha \theta \omega +\beta \kappa \sigma

)-\alpha \lambda \theta \beta \kappa ) (\beta \kappa \sigma
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+\theta (\Lambda +\omega ))}{\theta (\alpha \theta \omega

+\beta \kappa \sigma )};

\text{Null}\text{Null}\text{Null}\text{Null}

\left(\text{a0}=\text{Simplify}\left[\text{Coefficient}\left

[H,\Lambda ^4\right]\right]\right)

\frac{\left(\text{a1}=\text{Simplify}\left[\text{Coefficient}

\left[H,\Lambda ^3\right]\right]\right) (\alpha \theta (\alpha

\theta \omega +\beta \kappa \sigma )+(\alpha \theta \omega +\beta

\kappa \sigma ) (\beta \kappa \sigma +\theta \omega )+\alpha

\lambda \theta \beta \kappa \theta )}{\theta (\alpha \theta

\omega +\beta \kappa \sigma )}

\frac{\left(\text{a2}=\text{Simplify}\left[\text{Coefficient}

\left[H,\Lambda ^2\right]\right]\right) (\alpha ((\alpha \theta

\omega +\beta \kappa \sigma ) (\beta \kappa \sigma +\theta

\omega )+\alpha \lambda \theta \beta \kappa \theta )+\delta

\theta \sigma (-(\alpha \theta \omega +\beta \kappa \sigma

))+\alpha \lambda \theta \beta \kappa (\beta \kappa \sigma

+\theta (\sigma +\omega )))}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}
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\frac{\left(\text{a3}=\text{Simplify}\left[\text{Coefficient}

\left[H,\Lambda ^1\right]\right]\right) \left(\alpha (\alpha

\lambda \theta \beta \kappa (\beta \kappa \sigma +\theta

(\sigma +\omega ))-\delta \theta \sigma (\alpha \theta \omega

+\beta \kappa \sigma ))+\sigma \left(\alpha \lambda \theta

\left(\beta ^2 \kappa ^2+\beta \beta \kappa \kappa \sigma +

\beta \kappa \theta \omega \right)-\delta (\alpha \theta

\omega +\beta \kappa \sigma ) (\beta \kappa \sigma +\theta

\omega )\right)\right)}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}

\frac{(\text{a4}=\text{Cancel}[\text{Coefficient}[H,\Lambda ,0]])

\left(-\alpha \alpha \theta \omega \beta \delta \kappa

\sigma ^2-\alpha \alpha \theta \omega \delta \theta \sigma

\omega +\alpha \alpha \lambda \theta \beta \beta \kappa

\kappa \sigma ^2+\alpha \alpha \lambda \theta \beta \kappa

\theta \sigma \omega -\alpha \beta \beta \kappa \sigma \delta

\kappa \sigma ^2-\alpha \beta \kappa \sigma \delta \theta

\sigma \omega \right)}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}
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\frac{\alpha \sigma (\alpha \lambda \theta \beta \kappa -\delta

(\alpha \theta \omega +\beta \kappa \sigma )) (\beta \kappa

\sigma +\theta \omega )}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}

\frac{\alpha \sigma (\alpha \lambda \theta \beta \kappa -\delta

(\alpha \theta \omega +\beta \kappa \sigma )) (\beta \kappa

\sigma +\theta \omega )}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}

-\frac{\frac{\alpha \delta \beta ^2 \kappa ^2 (\beta \lambda \kappa

-\alpha \delta \omega )-\alpha \beta \kappa \delta (-\alpha

\delta \omega \beta \kappa +\beta \beta \lambda \kappa \kappa

+\beta \delta \kappa \delta \omega )}{\beta \kappa

}-\frac{(\alpha \beta \delta \kappa \delta +\beta \kappa

(\beta \lambda \kappa -\alpha \delta \omega )+\beta \delta

\kappa \delta (\delta +\omega )) (\alpha ((\alpha \theta \omega

+\beta \kappa \sigma ) (\beta \kappa \sigma +\theta \omega

)+\alpha \lambda \theta \beta \kappa \theta )+\delta \theta

\sigma (-(\alpha \theta \omega +\beta \kappa \sigma ))+\alpha

\lambda \theta \beta \kappa (\beta \kappa \sigma +\theta

(\sigma +\omega )))}{\theta (\alpha \theta \omega +\beta \kappa

\sigma )}}{\alpha \beta \delta \kappa \delta +\beta \kappa
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(\beta \lambda \kappa -\alpha \delta \omega )+\beta \delta \kappa

\delta (\delta +\omega )}

\text{Null}

\frac{\left(\text{b2}=\text{Simplify}\left[\frac{\text{a1}

\text{a4}-\text{a0} \text{a5}}{\text{a1}}\right]\right) (\alpha

\sigma (\alpha \lambda \theta \beta \kappa -\delta (\alpha

\theta \omega +\beta \kappa \sigma )) (\beta \kappa \sigma

+\theta \omega ))}{\theta (\alpha \theta \omega +\beta \kappa

\sigma )}

\text{Null} \left\{\text{TextData}[\text{Parallel$\grave{

}$Preferences$\grave{ }$Private$\grave{

}$b2}],\text{BoxData}\left[\text{FormBox}\left[\text

{InterpretationBox}\left[\text{GridBox}\left[\left(

\begin{array}{c}

\text{GridBox}\left[\left(

\begin{array}{c}

\text{RowBox}[\{\text{b2},=,\text{a4}\}] \\

\end{array}

\right),\text{BaselinePosition}\to



130

\{\text{Baseline},\{1,1\}\},\text{GridBoxAlignment}\to

\left\{\text{Columns}\to \left(

\begin{array}{c}

\text{Left} \\

\end{array}

\right),\text{ColumnsIndexed}\to \{\},\text{Rows}\to \left(

\begin{array}{c}

\text{Baseline} \\

\end{array}

\right),\text{RowsIndexed}\to \{\}\right\},\text{GridBoxItemSize}

\to \left\{\text{Columns}\to \left(

\begin{array}{c}

\text{Scaled}[0.999] \\

\end{array}

\right),\text{ColumnsIndexed}\to \{\},\text{Rows}\to \left(

\begin{array}{c}

1. \\

\end{array}

\right),\text{RowsIndexed}\to \{\}\right\}\right] \\

\end{array}

\right),\text{BaselinePosition}\to

\{\text{Baseline},\{1,1\}\},\text{GridBoxAlignment}\to

\left\{\text{Columns}\to \left(
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\begin{array}{c}

\text{Left} \\

\end{array}

\right),\text{ColumnsIndexed}\to \{\},\text{Rows}\to \left(

\begin{array}{c}

\text{Baseline} \\

\end{array}

\right),\text{RowsIndexed}\to

\{\}\right\}\right],\text{Null},\text{Editable}\to

\text{False}\right],\text{StandardForm}\right]\right]\right\}

\frac{\left(\text{c1}=\text{Simplify}\left[\frac{\text{a3}

\text{b1}-\text{a1} \text{b2}}{\text{b1}}\right]\right)

\left(-\left(\alpha \beta \kappa ^2 \sigma (\alpha \lambda

\theta \beta \kappa -\delta (\alpha \theta \omega +\beta \kappa

\sigma )) (\beta \kappa \sigma +\theta \omega ) (\alpha \beta

\delta \kappa \delta +\beta \kappa (\beta \lambda \kappa

-\alpha \delta \omega )+\beta \delta \kappa \delta (\delta

+\omega ))^2-\left(\alpha \delta \beta ^2 \kappa ^2 (\beta

\lambda \kappa -\alpha \delta \omega )-\alpha \beta \kappa

\delta (-\alpha \delta \omega \beta \kappa +\beta \beta

\lambda \kappa \kappa +\beta \delta \kappa \delta \omega

)\right) \left(\theta (\alpha \theta \omega +\beta \kappa

\sigma ) \left(\alpha \delta \beta ^2 \kappa ^2 (\beta
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\lambda \kappa -\alpha \delta \omega )-\alpha \beta

\kappa \delta (-\alpha \delta \omega \beta \kappa

+\beta \beta \lambda \kappa \kappa +\beta \delta

\kappa \delta \omega )\right)+\beta \kappa (\alpha

\beta \delta \kappa \delta +\beta \kappa (\beta

\lambda \kappa -\alpha \delta \omega )+\beta \delta \kappa

\delta (\delta +\omega )) (-\alpha ((\alpha \theta \omega

+\beta \kappa \sigma ) (\beta \kappa \sigma +\theta \omega

)+\alpha \lambda \theta \beta \kappa \theta )+\delta

\theta \sigma (\alpha \theta \omega +\beta \kappa \sigma

)-\alpha \lambda \theta \beta \kappa (\beta \kappa

\sigma +\theta (\sigma +\omega

)))\right)\right)\right)}{\beta \delta \kappa \beta

\kappa ^2 \delta \theta (\alpha \theta \omega +\beta

\kappa \sigma ) \left(\frac{\alpha \delta \beta ^2 \kappa ^2

(\beta \lambda \kappa -\alpha \delta \omega )-\alpha \beta

\kappa \delta (-\alpha \delta \omega \beta \kappa +\beta

\beta \lambda \kappa \kappa +\beta \delta \kappa \delta

\omega )}{\beta \kappa }-\frac{(\alpha \beta \delta \kappa

\delta +\beta \kappa (\beta \lambda \kappa -\alpha

\delta \omega )+\beta \delta \kappa \delta (\delta

+\omega )) (\alpha ((\alpha \theta \omega +\beta \kappa

\sigma ) (\beta \kappa \sigma +\theta \omega
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)+\alpha \lambda \theta \beta \kappa \theta )+\delta \theta

\sigma (-(\alpha \theta \omega +\beta \kappa \sigma ))+\alpha

\lambda \theta \beta \kappa (\beta \kappa \sigma +\theta

(\sigma +\omega )))}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}\right)}

\frac{\alpha \sigma (\alpha \lambda \theta \beta \kappa -\delta

(\alpha \theta \omega +\beta \kappa \sigma )) (\beta \kappa

\sigma +\theta \omega )}{\theta (\alpha \theta \omega +\beta

\kappa \sigma )}

D Weak CTL and Strong Antibody

function [Ddv_Div]=cmiwctlsa(I,D)

% IV,I, IVSOLVE-INDIPENDENT VARIABLE

% DV, D, DSOLVE-DEPENDENT VARIABLE

lambda=1; omega=0.1;beta=0.03;delta=0.1;mu=1.0; kappa=1.5;

alpha=1; rho=1.2;eta=0.00; phi=3.5; tau=0.1; nu=0.0;theta=2.5;

sigma=0.240;

x(1)=D(1); x(2)=D(2); x(3)=D(3);x(4)=D(4);x(5)=D(5);

Ddv_Div=[lambda-omega*x(1)-x(3)*beta*x(1);

beta*x(1)*x(3)-delta*x(2)-mu*x(2)*x(5);

kappa*x(2)-alpha*x(3)-rho*x(2)*x(4);

eta*x(4)+phi*x(3)*x(4)-tau*x(4);
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nu*x(5)+theta*x(2)*x(5)-sigma*x(5)]

end

domain=[0 20]

IC1=10;IC2=0.1;IC3=0.1; IC4=0.1;IC5=0.1;

IC=[IC1 IC2 IC3 IC4 IC5]

[IVsol,DVsol]=ode45(’cmiwctlsa’,domain,IC);

subplot(2,1,1)

plot(IVsol,DVsol(:,1),’--’)

grid on

hold on

plot(IVsol,DVsol(:,2),’r’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’y’)

grid on

xlabel(’Time (months)’)

ylabel(’infection level’)

title(’Failure to clear infection by antibodies only ’)

legend(’infected cells’,’free virus’)

hold on

subplot(2,1,2)

plot(IVsol,DVsol(:,3),’b’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’y’ )

legend(’Infected cells’,’Viral load (x 10^4)IU/L’)

hold on
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subplot(2,1,2)

plot(IVsol,DVsol(:,4),’y’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’y’)

hold on

grid on

subplot(2,1,3)

plot(IVsol,DVsol(:,5),’o’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’r’)

ylabel(’level of immune responses’)

xlabel(’Time (months)’)

title( ’ Dominant antibody response .’)

legend(’ Antibody Respone’,’CTL Response’)

E Strong CTL and Strong Antibody

function [Ddv_Div]=cmi(I,D)

% IV,I, IVSOLVE-INDIPENDENT VARIABLE

% DV, D, DSOLVE-DEPENDENT VARIABLE

lambda=10;omega=0.1;beta=0.01;delta=0.1;mu=0.1;kappa=2.5;alpha=1;

rho=0.1;eta=0.01; phi=3.5;tau=0.2; nu=0.01;theta=4.5;sigma=0.2;

x(1)=D(1); x(2)=D(2); x(3)=D(3); x(4)=D(4); x(5)=D(5);

Ddv_Div=[lambda-omega*x(1)-beta*x(1)*x(3);

beta*x(1)*x(3)-delta*x(2)-mu*x(2)*x(5);

kappa*x(2)-alpha*x(3)-rho*x(3)*x(4);
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eta*x(4)+phi*x(3)*x(4)-tau*x(4)

nu*x(5)+theta*x(2)*x(5)-sigma*x(5)]

end

domain=[0 20]

IC1=10;IC2=0.5;IC3=0.5;IC4=0.1;IC5=0.1;

IC=[IC1 IC2 IC3 IC4 IC5]

[IVsol,DVsol]=ode45(’cmiSCSA’,domain,IC);

subplot(5,1,1)

plot(IVsol,DVsol(:,1),’y’)

grid on

hold on

subplot(2,1,1)

plot(IVsol,DVsol(:,2),’r’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’y’)

grid on

xlabel(’Time (months)’)

ylabel(’Infection level’)

title(’Infected cells ’)

hold on

subplot(5,1,3)

plot(IVsol,DVsol(:,3),’b’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’y’)

xlabel(’Time (months)’)
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ylabel(’Infection level’)

title(’Clearace of infection by CTL & antibodies’)

legend(’infected cell’,’viral load (x10^4) IU/L’)

subplot(2,1,2)

plot(IVsol,DVsol(:,4),’y’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’y’)

hold on

grid on

subplot(5,1,5)

plot(IVsol,DVsol(:,5),’o’,’linewidth’,2,’markersize’,2,...

’markeredgecolor’,’g’,’markerfacecolor’,’r’)

ylabel(’ immune responses’)

xlabel(’Time (months)’)

title( ’Strong CTL response and strong Antibody response .’)

legend(’ Antibody Respone’,’CTL Response’)

F Liver Pathology with five virus strains

function [Ddv_Div]=forloopnopathology(I,D)

% IV,I, IVSOLVE-INDIPENDENT VARIABLE

% DV, D, DSOLVE-DEPENDENT VARIABLE

lambda=10;omega=0.1;beta=0.5;delta=0.1;mu=0.05;kappa=3.5;

alpha=0.2;rho=0.1;eta=0.00;phi=2.5;tau=0.1;nu=0.00;theta=0.1;
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sigma=0.2;

x(1)=D(1);x(2)=D(2);x(3)=D(3);x(4)=D(4);x(5)=D(5);x(6)=D(6);x(7)=D(7);

x(8)=D(8);x(9)=D(9);x(10)=D(10);x(11)=D(11);x(12)=D(12);x(13)=D(13);

x(14)=D(14);x(15)=D(15);x(16)=D(16);x(17)=D(17);

Ddv_Div=[lambda-omega*x(1)-beta*x(1)*(x(7)+x(8)+x(9)+x(10)+x(11));

beta*x(1)*x(2)-delta*x(2)-mu*x(2)*x(17);

beta*x(1)*x(3)-delta*x(3)-mu*x(3)*x(17);

beta*x(1)*x(4)-delta*x(4)-mu*x(4)*x(17);

beta*x(1)*x(5)-delta*x(5)-mu*x(5)*x(17);

beta*x(1)*x(6)-delta*x(6)-mu*x(6)*x(17);

kappa*x(2)-alpha*x(7)-rho*x(7)*x(12);

kappa*x(3)-alpha*x(8)-rho*x(8)*x(13);

kappa*x(4)-alpha*x(9)-rho*x(9)*x(14);

kappa*x(5)-alpha*x(10)-rho*x(10)*x(15);

kappa*x(6)-alpha*x(11)-rho*x(11)*x(16);

eta*x(12)+phi*x(7)*x(12)-tau*x(12);

eta*x(13)+phi*x(8)*x(13)-tau*x(13);

eta*x(14)+phi*x(9)*x(14)-tau*x(14);

eta*x(15)+phi*x(10)*x(15)-tau*x(15);

eta*x(16)+phi*x(11)*x(16)-tau*x(16);

nu*x(17)+theta*x(17)*(x(2)+x(3)+x(4)+x(5)+x(6))-sigma*x(17)]

end

domain=[0 240]
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IC1=10;

IC2=0.014;IC3=0.013;IC4=0.012;IC5=0.011;IC6=0.010;

IC7=0.14;IC8=0.13;IC9=0.12;IC10=0.11;IC11=0.10;

IC12=0.014;IC13=0.013;IC14=0.012;IC15=0.011;IC16=0.010;

IC17=0.002;

IC=[IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9 IC10 IC11 IC12 IC13...

IC14 IC15 IC16 IC17]

[IVsol,DVsol]=ode45(’forloopnopathology’,domain,IC);

subplot(5,1,1)

plot(IVsol,DVsol(:,1),’g’, ’linewidth’,1,’markersize’,2,’markeredgecolor’,...

’g’, ’markerfacecolor’,’y’)

grid on

title(’Decline of uninfected’)

hold on

xlabel(’time(months’)

ylabel(’level of uninfected cell’)

legend(’uninfected cell’)

subplot(3,1,1)

plot(IVsol,DVsol(:,2),’y’,’linewidth’,1,’markersize’,1)

grid on

xlabel(’Time (arbitrary units)’)

ylabel(’Infection level’)

title(’Infected cell dynamics in the face of a strong CTL
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and strong Antibody responses’)

hold on

subplot(3,1,1)

plot(IVsol,DVsol(:,3),’r’,’linewidth’,1,’markersize’,1)

hold on

grid on

ylabel(’level of immune response’)

xlabel(’Time (months)’)

title(’Anibody response’)

subplot(3,1,2)

plot(IVsol,DVsol(:,4),’b’,’linewidth’,1,’markersize’,1)

grid on

hold on

ylabel(’level of immune response’)

xlabel(’Time (months)’)

title( ’Anibody response ’)

hold on

plot(IVsol,DVsol(:,5),’*’,’linewidth’,1,’markersize’,1)

hold on

plot(IVsol,DVsol(:,6),’g’,’linewidth’,1,’markersize’,1)

xlabel(’time(months)’)

ylabel(’virus strains’)

legend(’cell infected by starin 1’,’cell infected by starin 2’,
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’cell infected by starin 3’,’cell infected by starin...

4’,’cell infected by starin 5’)

title (’Infection topology’)

hold on

plot(IVsol,DVsol(:,7),’r’,’linewidth’,1,’markersize’,1)

hold on

plot(IVsol,DVsol(:,8),’--’,’linewidth’,1,’markersize’,1)

hold on

subplot(3,1,3)

plot(IVsol,DVsol(:,9),’b’,’linewidth’,1)

ylabel(’level of immune response’)

hold on

xlabel(’Time (months)’)

title( ’CTL response for five strains ’)

plot(IVsol,DVsol(:,10),’g’,’linewidth’,1)

hold on

plot(IVsol,DVsol(:,11),’y’,’linewidth’,1)

grid on

xlabel(’time(months)’)

ylabel(’virus load’)

legend(’strain 1’,’strain 2’,’strain 3’,’strain 4’,’strain 5’)

plot(IVsol,DVsol(:,12),’r’,’linewidth’,1,’markersize’,1,...
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’markeredgecolor’,’r’,’markerfacecolor’,’r’)

hold on

plot(IVsol,DVsol(:,13),’--’,’linewidth’,1,’markersize’,1,...

’markeredgecolor’,’g’,’markerfacecolor’,’g’)

hold on

plot(IVsol,DVsol(:,14),’b’,’linewidth’,1,’markersize’,1,...

’markeredgecolor’,’b’,’markerfacecolor’,’b’)

hold on

plot(IVsol,DVsol(:,15),’g’,’linewidth’,1,’markersize’,1,...

’markeredgecolor’,’g’,’markerfacecolor’,’b’)

hold on

plot(IVsol,DVsol(:,16),’*’,’linewidth’,1,’markersize’,1,...

’markeredgecolor’,’g’,’markerfacecolor’,’r’)

plot(IVsol,DVsol(:,17),’y’,’linewidth’,1,’markersize’,1,...

’markeredgecolor’,’y’,’markerfacecolor’,’r’)

%hold on

title(’Antibody & CTL responses during pathology’)

ylabel(’relativve responses’)

xlabel(’time(months)’)

legend(’response wrt strain1’,’response wrt strain2’,...

’response wrt strain3’,’response wrt strain4’,...

’response wrt strain5’,’CTL response’)

grid on
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gtext(’x’)


	DECLARATION
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Background
	Cells of the immune system
	Viruses
	The role of CMI in Host defense
	General life cycle of a virus.
	Definition of Terms
	Statement of the Problem
	Objectives Of The Study
	Justification of The Study
	Significance of the study
	Thesis outline.

	LITERATURE REVIEW
	Introduction
	Ordinary Differential Equations,ODEs
	Delay Differential Equations,DDEs
	Partial Differential Equations(PDE)
	Agent Based Modeling,ABM 
	Stochastic Differential Equations 
	Hybrid Models
	The HCV infection belief overview
	Research Gap

	METHODOLOGY
	Mathematical Modeling in Biosciences
	Immune System Network
	Ordinary Differential Equations
	Fixed Points
	The Jacobian Matrix
	Steady State Analysis
	Basic Reproduction Number (R0)
	Computation of R0 
	Sensitivity Analysis
	 Numerical simulations

	Intracellular Pathogens
	The Law of Mass Action
	Model Development
	Model Assumptions
	Model Flow Chart
	Model Description


	RESULTS
	Analytical Results
	Basic Reproduction Number
	Immunity free equilibrium and its stability
	Case 0ne: Strong CTL Only Immune Response
	Case Two: Strong Antibody Only Immune Response
	Case Three: Strong CTL and Strong Antibody Immune Responses
	 Limiting Parameter combination for dominance of either CTL, Antibody responses or both 
	VIRAL EVOLUTION
	Model Flow Chart for Viral Evolution
	Sensitivity Analysis
	 Limiting Parameter combination for CTL induced pathology

	Numerical Results

	Table 4.1: Description of Variables
	Infection free Dynamics
	Immunity Free dynamics
	Competition dynamics
	Case One: Strong CTL only Immune response 
	Case Two: Strong Antibody only Immune Response
	Case Three:Strong CTL and strong Antibody Responses

	Viral Evolution in Chronic HCV

	Results and Discussion
	Introduction
	Results And Discussion

	Model limitations
	Experimental Data on HCV Infection
	Model Validation

	CONCLUSION AND RECOMMENDATIONS
	Introduction
	Conclusion 
	Recommendations
	Future work

	REFERENCES
	APPENDICES
	Basic Reproductive ratio
	Stability of Immune Free Response 
	Stability of CTL only Immune Response
	Weak CTL and Strong Antibody
	Strong CTL and Strong Antibody
	Liver Pathology with five virus strains



