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The properties of a finite heavy nucleus in which the number of neutrons N is not equal to the number of protons Z, 

N > Z, have been studied. It is assumed that the core of the nucleus is composed of proton-neutron pairs and the excess 

neutrons constitute the surface region of the nucleus. The interaction between a neutron and a proton constituting the 

neutron-proton pair is assumed to be harmonic. The unpaired neutrons in the surface region are assumed to interact with the 

neutron–proton pairs in the core of the nucleus anharmonically. Many body perturbation theory has been used to calculate 

the total energy of the nucleus, and thereby, we have calculated the binding energy per nucleon, called the binding fraction, 

the specific heat and the transition temperature. Speculation, as to how the alpha, beta and gamma radiations are emitted by 

a heavy nucleus, is also presented. 
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1 Introduction 

 Since pairing lies at the heart of nuclear physics 

and the quantum-many body problem, it is necessary 

to understand the role of pairing phenomena in 

nuclear matter and finite nuclei. The presence of 

neutron superfluidity
1
 in the crust and inner part of a 

neutron star is now well established. The star is 

assumed to be made up of: (i) an outer crust of bare 

nuclei arranged in lattice with a relativistic electron 

bath; (ii) an inner crust in which a similar Coulomb 

lattice of neutron-rich nuclei is embedded in Fermi 

seas of neutrons and relativistic electrons; (iii) a 

quantum fluid interior in which neutron, proton and 

electron fluids co-exist and finally (iv) a core region 

of uncertain constitution and phase. 

 The outer part of the star is assumed to be of low-

density and neutron superfluidity is expected mainly 

in the attraction singlet 
1
S0 channel. However, for 

densities higher than the saturation density ρ0, the 

pairing effect is quenched due to the strong repulsive 

short range component of this interaction, and 

consequently, the nuclei in the crust dissolve into a 

quantum liquid of neutrons and protons in beta 

equilibrium.It is also possible that when the nucleons 

are in a superfluid state in one or another region of the 

star, suppression factors of the form exp (−∆F/KT) 

appear in the expression for emissivity, where ∆F is 

the average measure of the energy gap at the Fermi 

surface. The pairing has a major effect on the star’s 

thermal evolution through the suppression of neutrino 

emission process and the modification of specific 

heats. 

 The pairing studies of infinite nuclear matter have 

already been described. Now, the pairing correlations 

in heavy finite nuclei by using the extensively 

available spectroscopic data, have been studied. It is 

well established that the nuclear force between two 

neutrons, two protons and a neutron and a proton, is 

the same. This yields the idea of charge symmetry of 

nuclear forces and the electric force between the 

protons is relatively weak. Simplified models of the 

nucleon-nucleon interaction, such as the seniority 

model
2
, predict a pair

3
 condensate in these systems. 

 

 In nuclei with N=Z, neutrons and protons occupy 

the same shell-model orbitals. Consequently, the large 

spatial overlaps between neutron and proton single-

particle wave functions are expected to enhance 

neutron-proton (np) correlations resulting in  

np-pairing. On the other hand, most of our knowledge 

about nuclear pairing comes from nuclei with a 

sizable neutron excess (N>Z) where the isotopic spin 

T=1 neutron-proton (nm) and proton-proton (pp) 

pairing dominates. The objective of our study is to 

find out as to what role np-pairing can play in 

determining the properties of nuclear systems. The 

possibility of a transition from the BCS pairing to a 

Bose-Einstein condensation in asymmetric nuclear 

matter at low densities can also throw some light on 

the role of np-pairing. An analysis by Lombardo and 

Schuck
4
 of triplet 

3
S1 pairing in low density 
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symmetric and asymmetric nuclear matter indicates 

that such a transition is possible. As the system is 

diluted, the BCS state with large overlapping Cooper 

pairs evolves smoothly into a Bose-Einstein 

condensation of tightly bound deutrons or neutron-

proton pairs. A neutron excess in this low density 

system does not affect these deutrons due to large 

spatial separation of the deutrons and neutrons; or the 

unpaired neutrons in the neutron excess system may 

weakly affect the deutrons; or we can say that the 

unpaired neutrons may perturb the np-pairs. With all 

the experimental and theoretical work available so far, 

it is still not possible to definitely say whether strong 

neutron proton pairing exists in finite nuclei. On the 

other hand, we simply cannot discard the existence of 

np-pairing and the role it plays in nuclear theory. 
 It is well known that it is via the nuclear shell 
model that we can analyze pairing correlations in 
finite nuclei. This is done by appropriately defining 
model spaces and effective interactions. As an example, 
consider the chain of tin isotopes from 

100
Sn to 

132
Sn 

then define the valence-space or model-space degrees 
of freedom. We could however, have chosen

100
Sn as a 

closed shell core. In this case, neutron particles from 
101

Sn to 
132

Sn define the model space. 

 There is an indication that spectra of the chain of 

tin isotopes point to a link between superfluidity in 

infinite star matter and the spectra of finite nuclei. 

This link is provided especially by the 
1
S0 partial 

wave of the nucleon-nucleon interaction. There could 

also exist proton and neutron BCS-like pairs. Such 

pair correlations are quite strong and reflect the well-

known coherence in the ground states of even-even 

nuclei. But the proton BCS-like pairing fields are not 

constant within an isotopic chain, or the proton pair 

matrix elements are not constant within the isotope 

chain and such a behaviour is mainly caused by 

isoscalar neutron-proton pairing, showing that there 

are important proton-neutron correlations present in 

the ground state The shell closure at N=28 is 

manifested in the neutron BCS-like pairing. On the 

other hand, the proton and neutron occupation 

numbers show a much smoother behaviour with 

increasing A. However, in the nuclear shell model , 

the isotope 
132

Sn could be chosen to have a closed-

shell-core of 
100

Sn and neutron particles from 
101

Sn to 
132

Sn define model space. We shall use this concept to 

propose a nuclear model for a finite heavy nucleus. 

 For a heavy nucleus whose mass number is A and is 

composed of Z protons and N neutrons such that 

N>Z, we shall assume that this nucleus has a core 

composed of Z neutron-proton pairs and this core is 

surrounded by the unpaired neutrons whose number is 

(N−Z).These neutrons stay in the surface region. 

Now, the core will have 2Z particles, and hence, the 

radius RC of the core can be written as: 
 

( )
1/3

C 0 2ZR R=  

 

where 15

0 1.3 10R ≈ ×  m. …(1) 

The radius R of the nucleus is: 
 

( )
1/3

0R R A=   …(2)  
 

Hence, the thickness of the surface region RS will be: 
 

RS=R−RC  …(3)  
 

 In the calculation
5
 on proton-neutron interactions 

and the new atomic masses, it is assumed that the core 

is not significantly altered and δVPN which is the 

interaction of the last proton(s) with the last 

neutron(s) by construction, largely cancels out the 

interaction of the last nucleon with the core. 

 In our opinion, the above method of looking at the 

possible interaction in a nucleus is an 

oversimplification of the exact problem. Under no 

circumstances, it can be assumed that the interaction 

between the nucleons in the surface region can be 

treated in isolation without disturbing the core. Since 

the np-interaction plays an important role in 

determining the properties of finite nuclei, especially 

the binding energy B, we have assumed that the core 

of the nucleus is composed of np-pairs such that the 

neutron and proton interacts with each other 

harmonically, and the unpaired neutrons in the surface 

region interact with the np-pairs such that the 

interaction leads to anharmonicity in the np-interaction. 

Thus, to calculate the energy o f the system, we shall 

write the perturbed Hamiltonian H as: 
 

0 VΗ = Η +   …(4)  
 

where 
 

2
2

0

1

2 2

p
kx

m
Η = +   …(5)  

 

is the unperturbed Hamiltonian, V is the perturbing 

potential that causes anharmonicity in the harmonic 

interactions of the np-pairs and k is the force constant 

for harmonic interaction. This part of the Hamiltonian 

(V) can be written as: 
 

3 4
V x x= β + γ   …(6) 
 

where β and γ are the constants of perturbation. 
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 The methods of second quantization and many-

body perturbation theory will be used to calculate the 

total energy En of the nucleus. 

Knowing Enwe can calculate the specific heat C by 

the equation, 
 

nE
C

T

∂
=

∂
  …(7) 

 

The transition temperature Tc will be given as: 
 

CT=T

0
C

T

∂ 
= 

∂ 
 …(8) 

 

It should be clearly understood that our model will be 

valid for heavy finite nuclei in which N>Z. 

 

2 Theory-Energy of the System  

 The perturbed Hamiltonian of the assembly is given 

in Eq. (4), the unperturbed harmonic oscillator 

Hamiltonian is given by Eq. (5) and the perturbation 

is given by Eq. (6). The creation and annihilation 

operators are given as: 
 

1/2

1

22

m ip
a x

m

+    ∂ ω  
= ξ − = −     

∂ξ η ω    
  …(9) 

 

1/2

1

22

m ip
a x

m

   ∂ ω  
= ξ + = +     

∂ξ η ω    
  …(10) 

 

where m is the mass of the particle, ω is a measure of 

the harmonic oscillator frequency and p is the 

momentum. Using Eqs (9) and (10), we can write the 

displacement operator x as: 
 

( )
1/2

2
x a a

m

+η 
= + 

ω 
  …(11) 

 

The perturbation V  can be written using Eq. (11) as: 
 

( ) ( )
3/2 2

3 4

2 2
V a a a a

m m

+ +η η   
= β + + γ +   

ω ω   
 …(12) 

 

and the total Hamiltonian Η becomes: 
 

( )
Ζ

2
+ +

i i i i

i 1 i 1

1

2

A

a a a a
= =

Η = ε + ηω +∑ ∑   

 ( ) ( )
3/2 2

3 4

i i i i

i 1 i2 2i

a a a a
Ν−Ζ

+ +

=

    η η
 + β + + γ +   

µω µω    
∑  

  …(13) 

where εi are the single-particle energies; k=µω2  where 

n p

n p

m m

m m
µ =

+
  …(14) 

is the reduced mass of a neutron-proton pair. The first 

summation is the kinetic energy of the system, the 

second summation is the potential energy due to the 

neutron-proton pairs, while the third summation is the 

perturbation energy due to the interaction of the 

unpaired neutrons in the surface region with neutron-

proton pairs constituting the core of the heavy 

nucleus. It is this term that causes anharmonicity of 

the otherwise harmonic interaction of the neutron-

proton pair. 

 The eigenvalues and eigenfunctions of the 

unperturbed harmonic oscillator Hamiltonian, H0 are 

well known. 
 

0

0 nn nΗ = Ε   …(15)  

 

where 

( )
21/2

2
nn

1

!2
n e

n

ξ
− 

= Η ξ 
π 

)
  …(16)  

 

0 1
, 0,1,2,3,...

2
n n n

 
Ε = + ηω = 

 
  …(17)  

where nΗ
)

 are Hermite polynomials. 

When the system is perturbed, the eigenvalue problem 

that needs to be solved becomes: 
 

( ) ( )0 1

0 n nn n n′Η = Η + Η = Ε + Ε   …(18) 

 

where 
 

3 4
x x′Η = β + γ  …(19) 

 

 To solve Eq. (18), the following creation and 

annihilation harmonic oscillator operators are defined 

as: 
 

1/2 1/2

1 1 1 1
;

2 2
a x a x

x x

+∂ ∂   
= α + = α −   

α ∂ α ∂   
  …(20) 

 

where 

1/2

 µω
α =  

η 
  

 

These operators have the following properties: 
 

( ) ( )
1/2 1/2

1 1 ; 1 1a n n n a n n n
++ = + = + +   …(21) 

 

Using these operators, the displacement operator x 

becomes: 
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( )1/2

1

2
x a a

+= +
α

  …(22) 

 

and the perturbation becomes: 
 

( ) ( )
3 4

1/2 3 48 4
a a a a

+ +β γ
′Η = + + +

α α
  …(23) 

 

Now , the total energy to second order can be written 

as: 

 

n

0 0

1 1

2
n n n n n
 

′ ′ ′Ε = + ηω + Η + Η Η 
Ε − Η 

 

  …(24) 

which after lengthy calculations give: 

 
2

2

n 2 2

1 3 1

2 2 2
n n n

γη   
Ε = + ω + + +   

µ ω   
h  

  
2 2

2

3 4

15 11

2 30
n n

β η  
− + + 

µ ω  
  …(25) 

 

where 0,1,2,3,...n =  

Since the unperturbed energy 0

nΕ  is due to the 

neutron-proton pairs and the number of such pairs is 

equal to the proton number Z, which is also the 

number of harmonic oscillators, the unperturbed 

energy is given as 0

n .ΖΕ Similarly, since the 

perturbation is due to the (N−Z) unpaired neutrons, 

the energy due to perturbation will be given 

as ( ) n
′Ν − Ζ Ε . 

Thus, the total energy of the system becomes: 

 

( )
2

2

n 2 2

1 3 1

2 2 2
n n n

 γη   
Ε = Ζ + ηω + Ν − Ζ + +   

µ ω   
  

  
2 2

2

3 4

15 11

4 30
n n

β η  
− + + 

µ ω  
 …(26) 

 

3 Binding Fraction  

 The binding energy per nucleon or the binding 

fraction is derived by dividing Eq.(26) by A, that is: 
 

nf
Ε

=
Α

  …(27) 

 

4 Specific Heat and Transition Temperature  

 At the transition temperature, the probability 

amplitude Greens function, which according to 

quantum statistical mechanics is equivalent to the 

thermal activation factor exp
∆Ε 

− 
κΤ 

, where 

,∆Ε = ηω and κ is Boltzmann constant. The level 

density ρn is given as: 
 

n n

n

exp and ρ 1
∆Ε 

ρ = − = 
κΤ 

∑   …(28) 

 

Eq. (26) can ,thus, be written as: 
 

( )
2

2

n 2 2

1 3 1

2 2 2
n n n

 γη   
Ε = Ζ + ηω + Ν − Ζ + +   

µ ω   
 

  
2 2

2

3 4

15 11
exp

4 30
n n

β η ηω   
− + + −   µ ω κΤ   

  …(29) 

 

The specific heat is given by the following equation: 
 

nC
∂Ε

=
∂Τ

 …(30) 

 

and hence  
 

( )
2

2

2 2

3 1

2 2
C N Z n n

 γη  
= − + +  

µ ω  
  

  
2 2

2

3 4 2

15 11
exp

4 30
n n

β η ηω ηω   
− + + −   µ ω κΤ κΤ   

 …(31) 

 

 The transition temperature TC of the system is 

obtained from the condition that: 
 

C=Τ

0
C

Τ

∂ 
= 

∂Τ 
 …(32) 

 

Substituting Eq.(31) in Eq. (32) , we get: 
 

3 4

C C

2
0

− ηω
+ =

Τ κΤ
  …(33) 

 

or 

C
2

ηω
Τ =

κ
  …(34) 

 

 The value of TC given by Eq. 34) is in kelvin (K); 

in nuclear theory it is to be converted to MeV. 
 

5 Entropy 

 The expression relating entropy S to temperature T 

is: 
 

T
S or S

T T T

dQ dQ mCd
d d= = =∫ ∫ ∫   …(35) 
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where m= mass of nucleus = Zmp+Nmp 

Substituting Eq. 31) in Eq. (35) and integrating we 

get: 
 

( ) ( )
2

2

2 2

3 1
T N Z

2 2
S n n

 γη  
= − + +  

µ ω  
 

   
2 2

2 T T
3 4

15 11 1

4 30 T
n n e e

−ηω −ηω

κ κ
 β η κ 

− + + +  µ ω ηω   
 

 …(36) 

6 Numerical Calculations  

 Since βx
4

 and γx
4 must have the dimensions of 

energy ML
2T−2, the dimensions of β and γ should be 

ML
−1T−2 and  ML

−2T−2, respectively, since x  which is 

the displacement operator has the dimension of length 

L. Therefore, a parameter a0 which is assumed to be 

fundamental to the perturbation parameters β and γ 

has been introduced. This parameter a0 is defined as 

the bond length between the nucleons in the nucleus. 

The bond length is taken as: 
 

13 1/3

0 1.3 10a A
−= × cm.  …(37) 

 

 The perturbation parameters can, therefore, be 

defined as: 
 

3

0a

ηω
β =  and 

4

0a

ηω
γ =   …(38) 

 

Substituting these in Eq.(26), we get: 
 

( )
3

2

n 2 4

0

1 3 1

2 2 2
n n n

a

 η   
Ε = Ζ + ηω + Ν − Ζ + +   

µ ω   
  

  
4

2

3 2 6

0

15 11

4 30
n n

a

η  
− + +  

µ ω  
 …(39) 

 

where 0,1,2,3,....n =  

 The following values for different physical 

quantities have been used. 

 Planck’s constant/2π =η is given as 1.054×10−27 

erg-s;The neutron-proton reduced mass µ is given as 

8.369×10−25g; Boltzmann’s constant κ is given as 

1.3807×10−16 erg/K;The angular frequency/2π = 

ω=6×1022S−1 

 

7 Variation of f with A, Z, N and ηηηη 

 Giving different values to A, Z and N for different 

heavy nuclei and using Eq. (39) for En, we get the 

value of f and these are presented in Table 1. The 

variation of binding fraction f with A is shown in  

Fig. 1. The graph shows that for medium heavy and 

heavy nuclei our value for f fit quite well with those 

obtained by the semi-empirical mass formula and also 

the experimental data6-8. Thus, the theory developed 

by us is able to predict the values for f that are known 

so far. Our theory clearly confirms that the binding 

energy per nucleon or the binding fraction f reduces 

with increase in mass number for heavy nuclei9. 

Figs 2 and 3 show the variation of the binding fraction  
 

Table 1 — Variation of binding fraction f with A, Z and N 

 

A Z N f (MeV) 
 

52 24 28 9.317 

70 31 39 8.769 

80 35 45 8.662 

101 44 57 8.622 

115 49 66 8.433 

33 55 78 8.184 

144 60 84 8.245 

150 62 88 8.179 

163 66 97 8.012 

175 71 104 8.027 

181 73 108 7.98 

190 76 114 7.914 

223 87 136 7.718 

227 89 138 7.756 

238 92 146 7.647 
 

 
 

Fig. 1 — Variation of binding fraction f with  with  

mass number A 

 

 
 

Fig. 2 — Variation of binding fraction f with neutron number N 



INDIAN J PURE & APPL PHYS, VOL 48, JANUARY 2010 

 

 

12 

f with the neutron number N and the proton number Z, 

respectively. 

 Further, we can define a neutron excess parameter 

η such that: 
 

N Z

A

−
η =  

 

 For different values of A, Z and N, we get the value 

of the neutron excess parameter η along with f, and 

these values are presented in Table 2. The variation of 

f with η is shown in Fig. 4. The variation of f with η is 

linear indicating that the heavy nuclei remain stable 

even when Z becomes large. 
 

8 Variation of C with En 

 Using Eq. (29) in Eq. (31), we get: 
 

n2

1

2
C n

 ηω  
= Ε − Ζ + ηω  κΤ   

  …(40) 

 

 Eq. (40) can now be used to calculate the variation 

of C with En. Eq. (40) shows that C varies directly as 

Z and it should be so since as Z increases, repulsive 

energy between the protons increases and this changes 

the total energy of the nucleus. The variations of C 

with En for the heavy nuclei (Tables 3 and 4) 161Dy 

and 163Dy are shown in Figs 5 and 6, respectively. 

Table 3 — Variation of specific heat C40,T with excitation energy 

E40,T for 161Dy 
 

C40,T E40,T 
 

0 1.30647×103 

3.4991×10−8 1.30647×103 

1.1413×10−5 1.30647×103 

1.7391×10−4 1.30647×103 

8.0573×10−4 1.30647×103 

2.0939×10−3 1.30647×103 

3.9485×10−3 1.30647×103 

6.1303×10−3 1.30648×103 

8.3942×10−3 1.30649×103 

0.0106 1.30650×103 

0.0125 1.30651×103 

0.0142 1.30652×103 

0.0156 1.30654×103 

0.0167 1.30655×103 

0.0176 1.30657×103 

0.0182 1.30659×103 
 

Table 4 — Variation of specific heat C50,T  with excitation energy 

E50,T for 163Dy 
 

C50,T E50,T 
 

0 1306.47 

3.682×10−8 1306.47 

1.201×10−5 1306.47 

1.83×10−4 1306.4701 

8.478×10−4 1306.4705 

2.203×10−3 1306.472 

4.155×10−3 1306.4751 

6.45×10−3 1306.4804 

8.833×10−3 1306.4881 

0.011 1306.4981 

0.013 1306.5102 

0.015 1306.5243 

0.016 1306.54 

0.018 1306.557 

0.018 1306.575 

0.019 1306.5938 
 

Table 2 — Variation of binding fraction f with the neutron excess 

parameter η 
 

A Z N η f (MeV) 
 

52 24 28 0.077 9.137 

70 31 39 0.114 8.769 

80 35 45 0.125 8.662 

101 44 57 0.129 8.622 

115 49 66 0.148 8.433 

133 55 78 0.173 8.184 

144 60 84 0.167 8.245 

150 62 88 0.173 8.179 

163 66 97 0.19 8.012 

175 71 104 0.189 8.027 

181 73 108 0.193 7.98 

190 76 114 0.2 7.914 

223 87 136 0.22 7.718 

227 89 138 0.216 7.756 

238 92 146 0.227 7.647 
 

 
 

Fig. 3 — Variation of binding fraction f with proton number Z 

 

 
 

Fig. 4 — Variation of binding fraction f with  neutron excess 

parameter η 
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Fig. 5 — Variation of the specific heat C4 with excitation energy 

E4 for 161Dy 
 

 
 

Fig. 6 — Variation of specific heat C5 with excitation energy  

E5 for 163Dy 
 

Table 5 — Specific heat for 161Dy (C40,T) and 163Dy (C50,T) with 

temperature T (T=1,2,3.........16 MeV) 
 

 T=40,T= C50,T= 
 

1 0 0 
2 3.499×10−8 3.682×10−8 
3 1.141×10−5 1.201×10−5 
4 1.739×10−4 1.83×10−4 
5 8.057×10−4 8.478×10−4 
6 2.094×10−3 2.203×10−3 
7 3.949×10−3 4.155×10−3 
8 6.13×10−3 6.45×10−3 
9 8.394×10−3 8.833×10−3 

10 0.011 0.011 
11 0.013 0.013 
12 0.014 0.015 
13 0.016 0.016 
14 0.017 0.018 
15 0.018 0.018 
16 0.018 0.019 

 

 Using Eq. (31), we have calculated the variation of 

C with T for the heavy nuclei 161Dy and 163Dy.  

Table 5 presents the variation of C with T for both the 

nuclei and Fig. 7 shows the variation of C with T for 

the same nuclei.The value of the transition 

temperature TCκ=(ηω)/2, and this turns out to be 

19.602 MeV. The specific heat curves are S-shaped 

and these results are similar to the ones obtained 

earlier1,10. 

 The S-shaped curve is interpreted as a fingerprint 
of a phase-transition-like behaviour in finite systems. 
Extensive studies of nuclear multi fragmentation for 
the last about two decades has been strongly 
stimulated by the idea that this process is related to a 
liquid-gas phase transition. The liquid-gas phase 
transition in nuclear matter11,12 and atomic nucleus3 
have been known since long. The values of C are 
positive and this is mainly due to the Coulomb 
interaction9. The values of TC vary11,13 between  
10-20 MeV and14,15 TC=18 MeV . 
 The results obtained by us strongly support that the 
magnitude of TC should be greater than 15 MeV.  
Fig. 7 shows that at any temperature the specific heat 
of 163Dy is more than that of 161Dy. The variation of f 
with η is linear indicating that the heavy nuclei 
remain stable even when Z becomes large. Thus , in a 
pure neutron system (a neutron star), the specific heat 
will be larger than the specific heat of a system 
composed of neutrons, protons and may be electrons. 
In 163Dy, there are two additional neutrons and these 
neutrons stay in the surface region and contribute to 
the perturbation of the core resulting in the increase of 
perturbation energy and hence increase of entropy of 
163Dy when compared to 161Dy which is shown in  
Figs 8-10. 

 
 

Fig.7 — Variation of specific heat C4 and C5 for 161Dy (solid 

line) and 163Dy (dotted line) respectively with temperature T 

 

 
 

Fig. 8 — Variation of entropy S for 161Dy (solid line) and 163Dy 

(dotted line), respectively against temperature T (MeV) 
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Fig. 9 — Variation of entropy S1 and S2 against excitation energy 

E4 for 161Dy (solid) and 163Dy (dotted) 

 

 
 

Fig. 10 — Variation of entropy S1 and S2 against excitation 

energy E5 for 161Dy (solid) and 163Dy (dotted) 

 

9 Variation of S with T  

 Using Eq. (36), we have calculated the variation of 

S with T for the heavy nuclei 161Dy and 163Dy. Table 6 

presents the variation of S with T for both the nuclei 

and Fig. 8 shows the variation of S with T for the 

same nuclei. 
 

10 Variation of S with En 

 Using Eq. (36) and Eq. (39), we have calculated the 

variation of S with En for the heavy nuclei 161Dy and 
163Dy. Tables 7 and 8 presents the variation of S with 

En for both the nuclei and Fig. 9 shows the variation 

of S with En for the same nuclei. 
 

11 Discussion 

 From the results, a large finite nucleus can be 

assumed to be composed of Z neutron-proton pairs 

that reside in the core of the nucleus and the unpaired 

neutrons can be assumed to reside in the surface 

region of nucleus. The np-pairs have harmonic 

interaction. When the unpaired neutrons in the surface  

Table 6 — Variation of entropy S with temperature T for 161Dy 

(S10,T) and 163Dy (S20,T), respectively for T =1,2,3,............16 MeV 
 

 T=S10,T= S20,T= 
 

1 0 0 

2 1.857×10−9 1.954×10−9 

3 9.304×10−7 9.79×10−7 

4 1.935×10−5 2.036×10−5 

5 1.146×10−4 1.206×10−4 

6 3.654×10−4 3.845×10−4 

7 8.216×10−4 8.645×10−4 

8 1.489×10−3 1.567×10−3 

9 2.342×10−3 2.464×10−3 

10 3.34×10−3 3.514×10−3 

11 4.439×10−3 4.671×10−3 

12 5.601×10−3 5.894×10−3 

13 6.793×10−3 7.148×10−3 

14 7.99×10−3 8.407×10−3 

15 9.172×10−3 9.651×10−3 

16 0.01 0.01 
 

Table 7 — Variation of entropy S10,T against excitation energy 

E40,T for 161Dy 
 

S10,T= E40,T= 
 

0 1306.47 

1.857×10−9 1306.47 

9.304×10−7 1306.47 

1.935×10−5 1306.47007 

1.146×10−4 1306.47051 

3.654×10−4 1306.4719 

8.216×10−4 1306.47489 

1.489×10−3 1306.47991 

2.342×10−3 1306.48717 

3.34×10−3 1306.49666 

4.439×10−3 1306.50821 

5.601×10−3 1306.52158 

6.793×10−3 1306.53648 

7.99×10−3 1306.55264 

9.172×10−3 1306.56978 

0.01 1306.58767 
 

Table 8 — Variation of entropy S20,T  against excitation energy 

E50,T for 163Dy 
 

S20,T= E50,T= 
 

0 1306.47 
1.954×10−9 1306.47 
9.79×10−7 1306.47 
2.036×10−5 1306.47007 
1.206×10−4 1306.47054 
3.845×10−4 1306.472 
8.645×10−4 1306.47514 
1.567×10−3 1306.48043 
2.464×10−3 1306.48807 
3.514×10−3 1306.49806 
4.671×10−3 1306.51021 
5.894×10−3 1306.52427 
7.148×10−3 1306.53995 
8.407×10−3 1306.55695 
9.651×10−3 1306.57499 

0.011 1306.59382 
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region interact with these np-pairs, it leads to 

anharmonicity in the np-pair interaction. The binding 

energy and the binding fraction values compare nicely 

with the experimental values known so far. Eq. (29) 

can be used to determine the energy level scheme for 

some heavy nuclei. The level scheme, thus, obtained 

can be compared with the corresponding level 

schemes known so far. We have chosen the nuclei 

66Dy161,163 only, but we could obtain the energy level 

scheme for any heavy nucleus. It could be interesting 

to design an experiment to ascertain whether the core 

of a heavy nucleus is really composed of np-pairs and 

whether the unpaired neutrons stay in the surface 

region of the nucleus, what may be the actual radius 

of the core and what may be the actual thickness of 

the surface region. May be a neutron beam or a 

deutron beam with specific energy could be used to 

collide with a nucleus to get some answer. 

 According to this model, two np-pairs come 

together to form an alpha particle that will pass 

through the surface region before leaving the nucleus. 

This alpha particle will collide with the neutrons in 

the surface region resulting in the following reaction, 

n→p+β. The β particle will be emitted from the 

nuclear surface region and the proton will combine 

with a neutron in the surface region to form an np-pair 

that will enter the core. The formation of the np-pair 

and its subsequent entry into the core will be 

accompanied by the emission of a gamma ray that 

will leave the surface of the nucleus. According to 

this model of the heavy nucleus, the explanation for 

the natural emission of alpha, beta and gamma 

radiation from a heavy nucleus is given in the present 

paper. 
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