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Introduction
Yarn quality properties can be predicted by modelling selected inputs and outputs of 
the cotton spinning system. This approach is widely applied in the study of the fiber to 
yarn process, where yarn properties can be predicted using mathematical, statistical and 
artificial neural network (ANN) models just to mention a few. A study of the compari-
son of ANN and other models (mathematical and statistical) has also been undertaken, 
and reports indicated that the ANN models have comparatively higher prediction effi-
ciency (Guha et al. 2001; Ureyen and Gurkan 2008a, b; Majumdar and Majumdar 2004). 
The efficiency of the ANN algorithms has enabled the design of yarn quality predic-
tion models, which can be used in the spinning industry (Furferi and Gelli 2010). The 
increasing use of the ANN models in the textiles industry warrants more attention to 
ensure that necessary improvements are made. This is expected to improve the cotton 
spinning process. It is with the afore-mentioned reasons that the objectives of study-
ing the improvement of the ANN models used in the prediction of cotton yarn tensile 
strength (strength) were envisioned. This was done by comparing the working of Back-
propagation (BP) models with the Extreme Learning Machines (ELM) algorithm during 
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the prediction of yarn tensile strength. Further improvement of the ELM algorithms was 
undertaken to produce more efficient prediction models made from a hybrid of differen-
tial evolution (DE) and ELM algorithms christened DE-ELM algorithm.

Methods
Yarn quality prediction models

The design of ANN models suitable for the prediction of yarn quality properties could 
take a variety of forms. As explained by Cybenko (1989) an ANN model with one hidden 
layer is robust enough and can be used to design yarn properties prediction models. The 
three layers of the ANN model can be designed using a multi-layer perception (MLP). In 
this research work a one hidden layer MLP was designed and used for the prediction of 
yarn tensile properties. The architecture of an MLP as explained by several researchers 
(Ham and Kostanic 2003; Huang et al. 2006a), with one hidden layer consists of several 
elements which include, input to hidden layer weights, hidden layer biases, hidden layer 
transfer function, hidden layer to output layer weights, output layer biases and output 
layer transfer function. The training of the MLP used to predict yarn properties in this 
research work was initially implemented using BP based algorithms, namely Levenberg 
Marquart. The BP based algorithms select the initial weights and biases using a random 
process which is likely to search for the weights and biases in the local area of the vector 
space hence leading to the problem of local minima. The selected weights and biases are 
normally updated using an iterative process. The iterative process could however slow 
down the working of the algorithms.

Attempts taken to improve the efficiency and speed of the BP algorithms were reported 
by Huang et al. (2006a, b) who suggested that by randomly selecting the input weights 
and hidden layer biases the efficiency and speed of the ANN model can be improved. 
This is due to the fact that the weights and biases of an MLP need not be iteratively 
updated. If the output layer function is eliminated then the logarithm becomes a linear 
system, and hence the hidden layer to output layer weights can be analytically deter-
mined. The aforementioned modifications introduced a new training algorithm chris-
tened ELM. ELM has been tested by Huang et al. (2006a) in several fields which include 
medical and forestry studies and proved to be faster and more efficient than the BP algo-
rithm. Up to date there are no reports available in public domain for the study of the use 
of ELM in the cotton spinning process. This paper attempts to fill this void.

While ELM may be faster than BP algorithms there is still room for improvement. 
Given that ELM computes the output weights based on prefixed input weights and 
hidden layer biases, there is a possibility of a set of non-optimal or unnecessary input 
weights and hidden layer biases being selected. Furthermore the problem of local min-
ima which is common in BP algorithms may also exist in ELM, albeit to a lower degree. 
As suggested by Zhu et al. (2005) the problems experienced while using ELM as a net-
work training algorithm can be minimized by using the DE algorithm for the initial 
weights and biases selection process. This idea can be implemented by combining the 
DE and ELM algorithm to form a hybrid training algorithm. The hybrid algorithm will 
thereafter be referred to as DE-ELM for lack of a better name.



Page 3 of 9Mwasiagi  Fash Text  (2016) 3:23 

Designing and training of prediction models

Input factors and data pre‑processing

The cotton fiber-to-yarn process involves processing cotton lint through a set of 
machines to produce yarn. The manufactured yarn is expected to meet some quality 
standards so that it can be produced at optimum productivity and perform within set 
standards in the subsequent processes. The quality of cotton yarn can be evaluated using 
yarn quality properties which include yarn elongation, strength, work of rupture, hairi-
ness, unevenness etc. The aim of this research work was to study the prediction of yarn 
strength. While the selection of input factors was based on published works (Mwasiagi 
et al. 2008, 2012) (see Table 1), data pre-processing was also undertaken to ensure bet-
ter performance of the models. The cotton lint and yarn samples were collected from 
Kenyan factories, and the cotton and yarn samples tested according to testing standards, 
in fiber and yarn laboratory. After collection and testing of the samples the data used in 
this research work was prepared. The collected data consisted of 144 samples each made 
up of 19 input factors. The date was subdivided into three sets: training, validation and 
testing sets in the ratio of 4:1:1, respectively. This was done in a random manner. The use 
of validation data will ensure that the BP network minimizes overfitting.

To further ensure a high quality of the input data, the 19 input factors were pre-pro-
cessed using principal component analysis (PCA) as discussed by Chattopadhyay et al. 
(2001) and Bernstein et al. (1988). PCA was designed to come up with a new set of vari-
ables that have as little correlation with one another as possible. The level of correlation 
allowable can be determined based on the percentage confidence limit selected by the 
researcher. In this research work a 95 % confidence limit was selected which reduced the 

Table 1 Characteristics of the input factors

No. Input factors Input value PCA

Factor contribution 
(%)

Cumulative factor 
contribution (%)

Minimum Maximum Mean

1 Elongation (%) 3.98 8.84 6.13 10.15 10.2

2 Spindle speed (Rpm) 8000 12,000 10851 8.77 18.9

3 Ring diameter (mm) 42 50 43 8.7 27.6

4 Trash grade 1 4 2 8.53 36.2

5 SCI 108 187 157 7.87 44

6 Maturity 0.82 0.93 0.86 6.99 51

7 SFI (%) 5.9 9.7 7.39 6.96 58

8 Yellowness (+b) 8.9 12.3 10.69 6.81 64.8

9 Length (mm) 24.77 33.45 29.3 6.53 71.3

10 Micronaire 3.27 5.89 3.9 6.21 77.5

11 Length uniformity (%) 78.3 87.3 83.44 4.53 82.1

12 Twist (Tpi) 17.81 23.79 21.55 4.36 86.4

13 Strength (g/tex) 21.5 36.5 29.66 4.32 90.7

14 Count (tex) 19.41 31.56 23.59 2.86 93.6

15 Ringframe draft 20 30 25 2.17 95.8

16 Reflectance (Rd) 71 85 78 1.32 97.1

17 Trash area (%) 0.04 0.57 0.16 1.09 98.2

18 Trash count 1 36 12.36 0.93 99.1

19 Traveler weight (mg) 43 75 67 0.89 100
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data set to 14 inputs. As given in Table 1, the five inputs removed from the initial data 
set were ring frame draft, traveller weight, fibre reflectance, fibre trash weight and fibre 
trash area.

Data pre-processing undertaken in this research work also included data normaliza-
tion, which is a process of scaling the input factors in a data set so as to improve the 
accuracy of the subsequent numeric computations. One way to normalize the input fac-
tors is to subtract the mean of the input factor from each input factor unit and then 
divide the results with the standard deviation of the input factor (Demuth et al. 2005; 
MathWorks et al. 2004). Data normalization is necessary to ensure that the operation of 
the network is optimized. Long training times can be caused by the presence of an input 
vector whose length is much larger or smaller than the other input factors. By normal-
izing the data as described above all the values of the data will fall within a given range, 
and the impact of the input factors can be judged based on the pattern shown by the 
input factors but not on the numeric magnitude. Data normalization therefore has two 
main advantages: It reduces the scale of the network and ensures that input factors with 
large numeric values do not overshadow those with smaller numeric values. After the 
network has been trained, these vectors were transformed back to the original values by 
reversing the normalization process so that the outputs are presented as they were origi-
nally. This was done to ensure that the results can be interpreted with ease.

Designing and training of prediction models

The architecture of the BP strength prediction model was designed using Cybenko theo-
rem (Cybenko 1989). Using the network design procedure reported by Mwasiagi et al. 
(2012), the final BP network had 14 inputs, one input layer, one hidden layer and one 
output (yarn strength). The ELM and DE-ELM were designed according to the reports of 
Huang et al. (2006a) and Zhu et al. (2005) respectively.

The BP yarn strength prediction models were trained using the Levenberg Marquart 
Backpropagation algorithm, which is one of the faster BP training algorithms used in 
training of prediction models (Hagan and Menhaj 1994; Demuth et al. 2005), until the 
set target error of 0.001 was attained. This is an arbitrary level that was selected for the 
purpose of comparing the three algorithms used in this research work. The performance 
of the strength prediction model, trained using the BP algorithm was monitored as the 
number of neurons was varied from 2 in steps of 1 until the set target error of 0.001 was 
attained.

To study the predictive power of the algorithm, three performance factors were con-
sidered. These were mean square error (mse), training time and correlation coefficient 
(R2). These are the factors commonly reported by many researchers (Cheng and Adams 
1995; Chattopadhyay et  al. 2004; Desai et  al. 2004; Majumdar and Majumdar 2004; 
Majumdar et al. 2005; Huang et al. 2006a; Ureyen and Gurkan 2008a, b; Mehment 2009). 
The ELM trained algorithms were trained in a similar manner like the LMBP algorithm, 
however the training algorithm used was ELM. Finally the yarn strength prediction 
model was trained using the DE-ELM algorithm. The performance of the DE-ELM yarn 
strength prediction models was monitored as the number of generations were varied 
from 1 to 10 in steps of 1. For every generation number the performance of the DE-ELM 
model was also monitored as the number of neurons were varied from 1 to 10.
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Results and discussions
Prediction of yarn strength using BP algorithms

The yarn strength prediction model, trained using the BP algorithms, was used to pre-
dict yarn strength using the 14 inputs as discussed earlier. The performance of the 
strength prediction model, trained using the BP algorithm as the number of neurons 
was varied from 2 in steps of 1 until the set target error of 0.001 was attained, is given in 
Table 2. The strength model was able to attain the set target error when the number of 
neurons in the hidden layer reached 10.

The BP trained strength model exhibited a typical network behavior whereby the mse 
showed a steady improvement as the number of neurons in the hidden layer increased. 
The mse reached the set target (0.001) when the number of hidden neurons was 10. The 
R2 value measured using the testing data was 0.917.

Prediction of yarn strength using ELM algorithm

The prediction of yarn strength using the ELM model was carried out in the same man-
ner like the BP trained model, and the results are given in Table 3.

The performance of the ELM strength prediction model improved rapidly especially 
when the number of neurons was varied from 2 to 15 in steps of 1. Thereafter the change 
in the mse value was relatively smaller, with the set target error of 0.001 being attained 
when the number of neurons was 41.

The time needed for network training kept on increasing as the number of neurons 
was increased. When the number of neurons was 41, and the set target error (0.001) had 

Table 2 Performance of strength model trained using BP algorithm

Neurons 2 3 4 5 6 7 8 9 10

mse 0.05200 0.02510 0.01450 0.00850 0.00648 0.00443 0.00240 0.00140 0.00083

Time(s) 1.281 1.287 1.291 1.297 1.312 1.344 1.375 1.39 1.438

Iteration 19 18 17 20 22 24 25 23 26

Table 3 Performance of ELM strength prediction model

No. of  
neurons

(mse)tr Time (s) No. of  
neurons

(mse)tr Time (s) No. of  
neurons

(mse)tr Time (s)

2 0.102144 0.0156 16 0.004507 0.0210 30 0.002025 0.0267

3 0.094864 0.0159 17 0.003640 0.0215 31 0.001849 0.0273

4 0.066444 0.0160 18 0.003088 0.0217 32 0.001806 0.0275

5 0.053161 0.0163 19 0.002770 0.0221 33 0.001764 0.0278

6 0.038704 0.0167 20 0.002601 0.0228 34 0.001722 0.0283

7 0.032556 0.0171 21 0.002450 0.0231 35 0.001681 0.0285

8 0.029447 0.0178 22 0.002401 0.0237 36 0.001560 0.0290

9 0.019386 0.0183 23 0.002352 0.0239 37 0.001444 0.0296

10 0.014851 0.0189 24 0.002304 0.0240 38 0.001225 0.0297

11 0.010053 0.0192 25 0.002256 0.0246 39 0.001089 0.0303

12 0.008711 0.0196 26 0.002209 0.0251 40 0.001018 0.0305

13 0.007299 0.0199 27 0.002162 0.0255 41 0.000949 0.0311

14 0.006724 0.0201 28 0.002116 0.0261

15 0.005242 0.0208 29 0.002070 0.0263
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been attained the time needed for training was 0.0311 sec. This is much lower than the 
time of 1.438 needed by the BP trained algorithm. The much lower training time for the 
ELM models could be due to the saving of time that may be needed to iteratively update 
the weights and biases in the BP trained models. AS reported by Huang et al. (2006a), 
this is one of main advantages of the ELM trained models, when compared to the BP 
models.

The 41 neurons strength prediction model recorded an R2 value of 0.988, when 
exposed to the testing data. This is an improvement of 7.7 % when compared to the BP 
trained model, and it could be an indication of better generalization and ability to avoid 
local minima trap.

The ELM yarn strength prediction therefore recorded faster training time and better 
correlation coefficient (R2) but much higher neurons in the hidden layer when compared 
to the BP trained yarn strength model.

Prediction of yarn strength using DE‑ELM algorithm

Having established that the ELM model needed 41 neurons in the hidden layer to attain 
the set target error of 0.001, DE-ELM was used to train the yarn strength prediction 
model with an aim of reducing the number of neurons. In the DE-ELM hybrid train-
ing algorithm the initial selection of the weights and biases was done using the differ-
ential evolution algorithm which is a global search algorithm, and thereafter they were 
updated analytically using the ELM algorithm. Using the DE algorithm the number of 
generations (G) was increased from 1 to 10 in steps of 1 and the number of neurons was 
varied from 2 to 10 in steps of 1. The results of the above-mentioned experiments are 
given in Table 4.

The results of using DE-ELM to train the yarn prediction model as given in Table 4 
indicated that the set target mse value of 0.001 could be attained by all the neurons 
(2–10) experimented. The only difference could be seen in the number of generations 
needed. The 2 neurons algorithm need more generations (5), the 10 neurons model 
needed 3 generations while all the other neurons were in between. It is therefore clear 
that while the ELM model needed 41 neurons in the hidden layer to attain the set tar-
get mse value (0.001) the DE-ELM strength prediction model could attain the set tar-
get error with even 2 neurons in the hidden layer and 5 generations of the DE-ELM 

Table 4 Variations of (mse)tr for DE-ELM strength model

G Number of neurons in the hidden layer

10 9 8 7 6 5 4 3 2

1 0.003158 0.003481 0.003881 0.004720 0.007073 0.010100 0.018036 0.028866 0.034820

2 0.001552 0.001459 0.001936 0.001632 0.001521 0.005170 0.008855 0.010201 0.020192

3 0.000365 0.000410 0.000404 0.000640 0.000713 0.004330 0.004679 0.006529 0.010878

4 8.1 × 10−5 5.3 × 10−5 0.00025 0.00031 0.00015 0.000262 0.000515 0.003856 0.007500

5 5.8 × 10−6 6.1 × 10−7 6.6 × 10−5 1.2 × 10−5 1.4 × 10−6 1.9 × 10−5 2.4 × 10−5 0.000625 0.000339

6 4.4 × 10−11 4 × 10−9 4 × 10−8 6.9 × 10−7 3.2 × 10−8 6.8 × 10−8 1.6 × 10−6 2.9 × 10−5 2.8 × 10−5

7 3.1 × 10−14 4.5 × 10−11 1.2 × 10−13 1 × 10−11 2 × 10−11 4 × 10−10 2.5 × 10−7 2.3 × 10−6 1.4 × 10−6

8 3.9 × 10−18 1.7 × 10−16 2.2 × 10−20 4.8 × 10−13 1.7 × 10−14 8.8 × 10−11 3.1 × 10−9 4 × 10−7 1.6 × 10−8

9 7.8 × 10−26 7.8 × 10−22 4.9 × 10−21 9.6 × 10−17 2.6 × 10−16 7.8 × 10−14 1.7 × 10−12 1.6 × 10−9 2.6 × 10−9

10 1.2 × 10−30 4.4 × 10−26 2.8 × 10−23 4.8 × 10−20 4.6 × 10−17 1.9 × 10−15 1.6 × 10−13 1.0 × 10−12 2.8 × 10−10
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algorithms. This is much lower than the 10 neurons needed by the BP trained models. 
The use of the DE for the initial selection of the weights and biases seem to be able to 
drastically improve the performance of the ELM model.

The general trend of the DE-ELM model was such that the mse value improved as the 
number of neurons and generations were increased. In Table 5, a boundary between the 
models which did not attain the set target error (0.001) and those which attained the set 
target is shown. It is worth noting that the R2 values for the models are all higher (0.990 
and above) than the R2 value depicted by the BP trained models (R2 value of 0.917) and 
the ELM trained models (R2 value of 0.988).

The ability of the DE-ELM algorithm to reach the set mse target (0.001) while using 
fewer number of neurons in the hidden could be attributed to that fact that it was able 
to optimize the selection of the initial weights and biases. The better performance of 
the DE-ELM model needed more time when compared to the ELM model. However the 
time taken by the DE-ELM model is much lower when compared to the time needed by 
BP model.

In summary it is clear that the DE-ELM model inherited the advantages of the ELM 
models discussed earlier on. The only disadvantage is the higher training time, which 
could be due to the fact that the DE algorithm needs time to first select the weights and 
biases.

Comparison of BP, ELM and DE‑ELM strength prediction models

Three types of models have been designed and trained to predict yarn strength in this 
research work. The performance of the yarn strength prediction models can be com-
pared by using Table 6.

The ELM model needed many neurons in the hidden layer (41) to reach the set target 
error of 0.001. This is one of the disadvantages of the ELM algorithm as reported by Zhu 
et al. (2005). The ELM algorithm needed less time to train, when compared to the other 
models. The DE-ELM model gives very good performance with a reduced number of 
neurons and a higher R2 value. Its training speed is slower than that of the ELM model 
but still much faster than that of the BP model.

Table 5 Performance of strength prediction model with DE-ELM algorithm

Neuron 10 9 8 7 6 5 4 3 2

Generation 3 3 3 3 3 4 4 5 5

(mse)tr 0.00037 0.00041 0.00046 0.00064 0.000713 0.000262 0.000515 0.00063 0.000339

R-value 0.995 0.995 0.994 0.994 0.992 0.991 0.991 0.990 0.992

Time(s) 0.8681 0.8594 0.8394 0.7944 0.7825 0.7644 0.75 0.7263 0.7188

Table 6 Comparison of strength prediction models

Model Input factors No. of neurons No. of generations (mse)tr R‑value Iteration Time(s)

LM 14 10 N/A 0.00083 0.917 26 1.438

ELM 14 41 N/A 0.000949 0.988 N/A 0.0311

DE-ELM 14 2 5 0.000339 0.992 N/A 0.7188
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The predicted and measured values for the 2 neuron model with 5 generation are given 
in Fig. 1. The predicted strength values traced the measured values so closely such that 
the success rate was at 99.2 %. This implies that the error rate is <1 %. This could be a 
sign of very good network generalization.

Conclusions
Yarn strength prediction models using BP, ELM and DE-ELM models were designed and 
trained up to a mse of 0.001. The performance of the BP algorithms was compared to two 
non-BP algorithms namely ELM and DE-ELM during the prediction of yarn strength.

The BP trained model needed 10 neurons in the hidden layer and was the slow-
est among the three algorithms. The ELM models exhibited the shortest training time 
(0.0311  s) but needed 41 neurons in the hidden layer. The DE-ELM hybrid models 
needed 2 neurons in the hidden layer and 5 generations, and its training time (0.7188 s) 
was shorter than the BP model but much slower than the ELM model. The BP yarn 
strength prediction model needed 1.438  s to attain the set mse target of 0.001. The 
hybrid model (DE-ELM) gave the highest prediction efficiency (R2 of 0.992), while the 
BP and ELM models recorded R2 values of 0.917 and 0.988 respectively.
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