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This study presents a comparative evaluation of three real-time imaging-based approaches for the prediction of optically active
water constituents as chlorophyll-a (Chl-a), turbidity, suspended particulate matter (SPM), and reservoir water colour. The
imaging models comprise of Landsat ETM+-visible and NIR (VNIR) data and EyeOnWater and HydroColor Smartphone
sensor apps. To estimate the selected water quality parameters (WQP) from Landsat ETM+-VNIR, predictive models based on
empirical relationships were developed. From the in situ measurements and the Landsat regression models, the results from the
remote reflectances of ETM+ green, blue, and NIR independently yielded the best fits for the respective predictions of Chl-a,
turbidity, and SPM. The concentration of Chl-a was derived from the Landsat ETM+ and HydroColor with respective Pearson
correlation coefficients r of 0.8977 and 0.8310. The degree of turbidity was determined from Landsat, EyeOnWater, and
HydroColor with respective r values of 0.9628, 0.819, and 0.8405. From the same models, the retrieved SPM was regressed with
the laboratory measurements with r value results of 0.6808, 0.7315, and 0.8637, respectively, from Landsat ETM+, EyeOnWater,
and HydroColor. The empirical study results showed that the imaging models can be effectively applied in the estimation of the

physical WQP.

1. Introduction

For sustainable water supplies, there is a need for the contin-
uous monitoring of the quality of existing and available water
resources. The reason for this is that the quality of surface
water is continuously deteriorating, due in part to the grow-
ing population and related activities such as increasing
urbanization and industrial and agricultural growth. As such,
inland water bodies, especially lakes and reservoirs, are con-
fronted with increasing water demand and are consequently
facing extensive anthropogenic inputs of nutrients and sedi-
ments [1]. In order to address this phenomenon, it is becom-
ing imperative that water quality assessment, planning, and
management should be carried out. In this process of water
resource sustainable management, routine and accurate
water quality monitoring plays a significant role [2, 3].

The conventional water quality assessment via in situ
sampling and laboratory measurement methods comprise
of the analysis of physical, chemical, and biological properties
and indicators. However, the in situ water sampling and the
subsequent measurements of water quality parameters
(WQP) are only able to represent point-based estimates of
the quality of water conditions in time and space, and there-
fore, obtaining spatial-temporal variations of water quality
indices in large water bodies is almost impossible due mostly
to cost limitations [4]. Besides being time-consuming, labor-
intensive, and costly, some of the significant limitations asso-
ciated with conventional methods for water quality assess-
ment also includes the inability to monitor, forecast, and
manage the entire water body due to the water surface extent
and its topographic characteristics and the lack of spatial-
temporal data. Secondly is the fact that both the errors
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associated with field sampling and laboratory measurement
may actually contribute to inaccuracy and low precision
of the in situ data analysis results. In order to overcome
these limitations, there is need for fast, inexpensive, sim-
ple, automated, and noninvasive technology in operational
and productive aquatic environmental monitoring [5]. Mea-
surements and observations taken with such tools should
provide essential information with respect to biogeophysical
water quality aspects [5], in a fashion that is routinely avail-
able and economical, and with adequate spatial coverage
and spatial resolution.

The reflectance of surface water bodies like reservoir and
lakes is directly related to the particulate and dissolved mate-
rial in the water column. This implies that the intrinsic colour
of natural waters is determined by the spectral characteristics
and the concentrations of dissolved and suspended coloured
compounds. As such, information regarding the water qual-
ity status, in terms of the light or transparency and colour,
is important in understanding and determining the condi-
tion and changes in the aquatic environments. Significantly,
there are three main components that alter the colour and
influence the transparency of water bodies [6]: (i) coloured
dissolved organic matter, (ii) sediment load (total suspended
material), and (iii) gross biological activity generally esti-
mated through the chlorophyll concentration.

The apparent colour of natural waters is an aspect of the
aquatic environment that can easily be detected and is an
essential complementary optical water quality indicator. It
has been indicated that the apparent colour of water or the
obtained optical measurements are directly proportional to
these water quality variables (e.g., [2, 7]). The primary
colour-producing agents include the optically active constit-
uents such as inorganic suspended particulate material
(SPM or mineral solids), particulate organic matter (POM
or phytoplankton chlorophyll-a concentration (Chl-a) which
is the most abundant pigment), and coloured dissolved
organic matter (CDOM), also called gelbstoff. The concen-
tration of suspended particulate matter has a large influence
on the reflectance of a water body, and the magnitude of
the backscattering coefficient will have a direct nonlinear
effect on the reflectance. Therefrom, the physical, chemical,
and biological properties and indicators of water can be
derived directly and or indirectly.

On the other hand, the presence of chlorophyll-a (Chl-a),
an optically active water constituent, indicates the trophic
state of a water body, since it acts as the link between nutrient
concentration, particularly phosphorus, and algal produc-
tion. Chl-a reflects green, because it absorbs most energy
from wavelengths of violet-blue and orange-red light, whose
reflectance causes chlorophyll to appear green. Several stud-
ies have demonstrated that an increase in Chl-a concentra-
tion results in a decrease in the spectral response at short
wavelengths, particularly in the blue band (e.g., [8, 9]). While
turbidity is an optical property of water which scatters and
absorbs the light rather than transmit it in straight lines, sus-
pended sediments are responsible for most of the scattering,
whereas the absorption is controlled by the presence of
Chl-a and coloured dissolved or particulate matter [10].
As water turbidity is mainly the result of the presence of
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suspended matter, turbidity measurement is often used to
calculate fluvial suspended sediment concentrations and
is commonly regarded as the opposite of clarity [11].

By using remote sensing, the optically active water con-
stituents can be detected based on their interaction with light
and the subsequent change in the energy of the incident radi-
ation as reflected from the water body [4]. The principle of
the detection of water quality parameters using imaging is
based on the fact that pollutants in water scatter and absorb
the incoming solar radiation, and the quality of water can
be correlated with the optical characteristics of the water col-
umns, such as colour and transparency [12]. This means that
optical data can provide an alternative means for obtaining
relatively low-cost and simultaneous information on surface
water quality conditions [13, 14]. Despite the ability of
remote sensing to be used for the assessment of water quality
with the desired advantages of being timely and cost-effec-
tive, the technique in itself may not be sufficiently precise
and must be benchmarked with the traditional sampling
methods and field surveys. That is, for a better insight, an
integrated use of remote sensing, in situ measurements, and
computer water quality modelling is likely to result into a
more robust knowledge of the water quality in a given surface
water system [2].

In situ methods, including sampling and field measure-
ments, have for so long been the standard techniques applied
in the determination of water quality variables, whereby var-
ious tests have been carried out for the estimation of different
variables, in different case studies using different methodol-
ogy. Despite being the traditional approach for water quality
testing, the laboratory methods cannot give the real-time spa-
tial overview that is necessary for the global assessment and
monitoring of water quality [9]. In this study, by relaying
on the conventional water quality testing, the primary focus
is on the analysis of the regression between the laboratory
results and the results from the three imaging models, so as
to determine their applicability in reservoir water quality esti-
mation and prediction. For further analysis, a correlation of
the distribution of the measured WQP using laboratory mea-
surements and the three remote sensing models are spatially
analyzed using Kriging.

In the use of remote sensing for the retrieval of water
quality characteristics, the Landsat sensors, namely, multi-
spectral scanner (MSS), thematic mapper (TM), enhanced
thematic mapper (ETM+), and operational land imager
(OLI) have been fairly used to estimate most of the important
water quality parameters, such as chlorophyll-a, Secchi disk
depth, total phosphorus, total suspended matter, turbidity,
dissolved oxygen, biochemical oxygen demand, and chemical
oxygen demand, as summarized in a review by [2]. Nonethe-
less, the use of Landsat data has the following limitations: (a)
the repeat cycle of 16 days imposes major limitations on
intraseasonal monitoring, especially in areas characterized
by frequent cloud cover, and (b) the water quality parameter
characteristics must be related to the inherent optical prop-
erty (IOP) that can be measured by the satellite sensor [15].

By using Landsat data, several algorithms have been
developed for the retrieval of WQP values from remotely
sensed imagery. These algorithms are based on either
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empirical models, semianalytical models, or matrix inversion
models. The semianalytical models require both empirical
and bio-optical data, and the above and in-water upwelling
radiance, in order to describe relationships between water
constituents and water surface reflectance. The matrix inver-
sion models are based on a similar modelling scheme but also
require prior knowledge of the water constituents, such as
absorption coefficients or absorption slopes [16]. Because of
the lack of these specific parameters, the matrix inversion
models tend to be complex and impossible to calibrate. As
such, empirical algorithms are more frequently used; how-
ever, with the following drawbacks, (i) they require a large
sample size and (ii) they are very sensitive to local environ-
mental conditions and, therefore, not applicable to other sites
without additional field data. This means that the WQP esti-
mation models and results obtained in specific geographic
regions are not easily transferable to other case studies.

While there are extensive applications of remote sensing-
based models to the case I waters, that is, open ocean waters,
in-depth studies on inland freshwater bodies are complicated
by the fact that remote sensing measurements of freshwater
resources are far more complex, thus making it difficult to
develop operational freshwater remote sensing algorithms.
Secondly, it is not possible to use existing algorithmic models
for accurate water quality estimation. Despite the algorithms
having been validated in specific case studies, the localized
characteristics of each area makes it necessary to reevaluate
and revalidate the existing algorithms for their possible appli-
cations in other WQP prediction case studies.

To test the use of smartphones as fast, cost-effective,
accurate, and simple to use techniques for WQP estimation,
this study extends the use of remote sensing-based WQP
retrieval to the utility of the EyeOnWater and HydroColor
Smartphone sensor apps, which are designed to model and
derive optically active water quality parameters. The apps
operate on the principles of remote sensing reflectance and
provide the potentially desirable low-cost and easy-to-use
approach of monitoring the marine and or aquatic environ-
ments. While both smartphone apps use the RGB channels
of the images acquired by the phone camera, they are based
on different transfer functions in the colour space to estimate
the water quality variables. Specifically, the EyeOnWater
Colour app or water transparency is based on the Forel-Ule
colour index (FUI) system and converts the RGB channels
of the smartphone water surface image into the xyz chro-
maticity coordinates which is used to index the colour of
the water in terms of the FUIL The HydroColor app on
the other hand uses the same RGB channels of the smart-
phone taken of the reference gray card, sky, and water surface
and converts this to the remote sensing reflectance R, (RGB).
A summarized comparison between the EyeOnWater and
HydroColor apps, including the advantages and disadvan-
tages, is as presented in Table 1.

In this study, we showcase the results and usefulness of
the smartphone apps in retrieving the apparent colour of
water, Chl-g, turbidity, and SPM over a water reservoir, in
comparison with the Landsat ETM+-VNIR reflectance data.
The evaluation and validation of the results with laboratory
experiments are carried out using empirical correlational

analysis, and in order to infer the distribution and variability
of the measured water quality elements, Kriging is used to
map and compare the spatial distributions of the selected
WQP on the Kesses Dam, as a case study.

2. Literature Review

Water quality monitoring in freshwater bodies incorporating
the use of sensor-based approaches, directly or indirectly, has
become a major component in several water quality mon-
itoring projects. As such, different studies have been con-
ducted to establish the effectiveness of using remotely
sensed water colour data in order to retrieve water quality
variables. In the review by [2] on the water quality param-
eter estimations using remote sensing, it is observed that
multispectral and hyperspectral data sources have been
used to derive the biovolume concentrations, water turbid-
ity, and suspended particulate matter content from various
water bodies. In this section of the study, a review is pre-
sented on the use of remote sensing techniques in deriving
water quality parameters, considering the utility of Landsat
and the smartphone apps.

In order to develop and evaluate the relationships
between hyperspectral remote sensing and lake water quality
parameters chlorophyll, turbidity, and N and P species in a
large manmade reservoir in Missouri (Mark Twain Lake),
[18] analyzed the sampled data using a field spectrometer.
From their study, it was concluded that the hyperspectral
method was accurate in determining the turbidity and
SPM in the reservoir, with strong correlations of R*>0.7.
Zhang et al. [19] also estimated the chlorophyll-a and SPM
concentrations in a turbid lake (Taihu Lake, China) using 3-
colour spectrophotometry and gravimetric methods. The
results were sufficient and proved that the use of optical
measurement techniques is more efficient than nonoptical
measurement techniques, as the spectrophotometric method
produced better results with R* of 0.75. In determining the
concentration of chlorophyll-a in reservoirs, [20] evalu-
ated the performances of spectrophotometry, FluoroProbe,
and high-pressure liquid chromatography (HPLC). The
conclusion from the study was that spectroscopy was
the more accurate method since it yielded higher and more
realistic results.

In terms of using Landsat data, [21] estimated the chloro-
phyll-a concentration and tropic states of the Nalban Lake of
East Kolkata, India, using Landsat OLI images and laboratory
measurements. The prediction model developed by applying
regression analysis between the band ratios yielded R* of
0.78. Zheng et al. [22] presented a long-term multitemporal
Landsat-based monitoring of total suspended matter concen-
tration pattern change in the wet season for Lake Dongting in
China to determine the SPM variations. Based on the in situ
measurements, an algorithm was developed based on the
near-infrared (NIR) band to estimate total suspended matter
(TSM) distribution. The study showed a sufficient correlation
between NIR band reflectance values and TSM estimates
from the field measurements. And to estimate the total sus-
pended solids and chlorophyll-a, [23] developed Landsat
OLI-based water quality parameter retrieval algorithms and
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TaBLE 1: Comparisons between EyeOnWater and HydroColor apps [17].

EyeOnWater

HydroColor

(a) Required image(s)

Water surface image

Gray card, sky, and water surface images

(b) Reference material

Digitalized FU colour comparator scale as reference material. The
user can add information on modern FU scale and Secchi disc
measurements

No reference material is required

(c) RGB transfer function

From sRGB of water surface image to xyz chromaticity coordinates

From sRGB of gray card, sky, and water surface images to RGB

(d) Colour space conditions

XYZ colour space; not dependent on the device used. Also, the
resulting chromaticity coordinates do not depend on the illumination
condition of which the image was taken

RGB colour space; dependent on the device used. This is because it is

influenced by the specific spectral response function of the capturing

device. Also, it depends on the illumination condition of which the
image was taken

(e) Estimated water quality variables

Water surface colour translated to FUI

Water turbidity (0-80 NTU), SPM (g/m3), and backscattering
coefficient in the red (m™)

(f) Advantages

It is only the upwelling light from the water surface that carries any
useful information on the water body. By this, it only requires an
image of the water surface which would be easier for citizen
monitoring

In deriving the RGB using the three images, error incurred from each
image as a result of the smartphone cancels out. Thus, the phone
camera needs no calibration

(g) Disadvantages

The weather conditions of the location are given as parameter values
to be selected by the user concerning the location and not of the
pertaining condition of the location. This can result in an optimistic
estimate of water quality variables without correcting sun-sky glint
effects on the water surface image

Does not take into account the weather conditions such as the wind
which can affect the resulting output. It is cuambersome for citizens
who would like to take random measurements without the
availability of a gray card

correlated the results for nine (9) stations with laboratory
experiments. The results showed that the regression model
for estimating TSS produced high accuracy with a coefficient
of determination of R?, normalized mean absolute error
(NMAE), and root mean square error (RMSE) of 0.709,
9.67%, and 1.705 g-m™>, respectively, while that for chloro-
phyll-a produced R? of 0.579, NMAE of 10.40%, and RMSE
of 51.946 mg-m .

Further, [24] established a relationship between
laboratory-derived water quality data and the pixel reflec-
tance values from Landsat ETM satellite data for the estima-
tion of chlorophyll-a, suspended solid matter, Secchi disk,
and total phosphate maps for the Omerli Dam with sufficient
accuracy. Torbick and Corbiere [25] carried out a multiscale-
based mapping assessment of Lake Champlain for chloro-
phyll-a and phycocyanin retrieval, and by using empirical
band ratio regressions, they determined the Chl-a concentra-
tions with R* and RMSE ranging from 0.76-0.88 and 0.42-
1.51, respectively. Waxter [26] used in situ measurements
from the Tenmile Lakes Basin to calibrate reflectance values
from the Landsat TM. The results showed a good linear
correlation between turbidity and radiance, which were
inversely related in algal dominated areas. In another study,
[27] summarized the previous studies on the use of Landsat
TM/ETM+ for Chl-a determination and estimated the chlo-
rophyll concentration in a freshwater Lake Jordan using

Landsat OLI imagery. They examined the relationship
between the reflectance value of an individual OLI band
and the in situ Chl-a concentration in order to identify the
bands sensitive to chlorophyll-a. By developing two optical
band-based linear equations, the relationship between the
ratio-based spectral index and Chl-a concentration from
different stations was derived, and the spatial distribution
of Chl-a was also mapped. They reported a significant cor-
relation between the spectral index from Landsat OLI
imagery and Chl-a in Jordan Lake, for different months of
the year. Further, [28] recently used the SmartFluo app,
which is based on stimulated fluorescence of water constitu-
ents, to measure the fluorescence of chlorophyll-a. In com-
parison with the laboratory experiments, SmartFluo showed
a linear correlation of R? = 0.98 to the chlorophyll-a concen-
trations as measured using a benchtop laboratory fluorome-
ter (LS 55, PerkinElmer).

Na et al. [29] estimated and mapped the water turbidity
based on Landsat imagery for Lake Paldang, Korea. Based
on the field measurements and the principal component
analysis (PCA), the PC bands were found to be suitable
in estimating the turbidity, with R? of 0.6319 on regression
with the in situ data. The study emphasized on the neces-
sity to monitor continuously the in situ data as well as the
reflectance features so as to accurately determine the envi-
ronmental factors of water quality. Olet [30] examined the
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correlation in water quality in Roxo reservoir using Landsat
images and in situ measurements, for chlorophyll-a and
SPM measurements. An image-based correction was imple-
mented using in situ water leaving reflectance (WLR) and a
model developed to estimate the two WQP, whereby SPM
was inferred from the chlorophyll-a model. Chlorophyll-a
was derived with R? of 0.295 and RMSE of 0.603 ug-L ™", while
SPM concentration ranged from 9 mg-m~> to 34 mg-m > with
an R* =0.5 and RMSE = 0.145mg - m~>.

From the literature review, it is evident that several stud-
ies continue to be conducted in order to develop algorithms
or models for monitoring water quality in different types of
inland water bodies, especially lakes, from Landsat MSS,
TM, ETM+, and OLI sensor data. Other satellite data have
also been used including SPOT HVR, MODIS, NOAA-
AVHRR, MERIS, IRS-1C, Hyperion, IKONOS, and Quick-
Bird, as summarized in [31]. This observed increased in the
use of remote sensing techniques for extracting water quality
information is because of the effectiveness of remote sensing
than the direct field measurements in terms of cost, speed,
and spatial-temporal coverage.

The EyeOnWater (http://eyeonwater.org), which is based
on the EU-FP7 project CITCLOPS, is a system developed for
the retrieval and use of data on natural-water colour, trans-
parency, and fluorescence, by using low-cost sensors com-
bined with contextual information, in order to estimate the
optically active water constituents. With the EyeOnWater
app, it is envisaged that water managers and consumers can
be able to acquire water quality data by imaging the water
surface, and through online mobile application interface,
the water quality parameters can be obtained. In using Eye-
OnWater for water quality assessment, [17], in comparison
with the HydroColor app, estimated the retrieval of turbidity,
SPM, colour, and chlorophyll for a case study of three lakes
in the Netherlands. The study showed that the correlation
of smartphone images and the RAMSES hyperspectral radi-
ometer was accurate with R?>=0.65. The study recom-
mended the use of EyeOnWater as an easy and efficient
application for water quality monitoring, for the case study
of the lakes in the Netherlands. Busch et al. [32, 33] also
compared ocean colour satellite measurements with the Eye-
OnWater app local colour observations, with in situ labora-
tory and field tests in the determination of the water colour,
transparency, chlorophyll-a fluorescence, and phytoplank-
ton dynamics, respectively. Their results showed accuracies
of more than 90% and also demonstrated the effectiveness
of colour-based low-cost sensors for citizen-based contribu-
tions in filling observational gaps and increasing environ-
mental stewardship among the public in monitoring their
environments [28, 32, 34].

In testing the validity of EyeOnWater, two case studies
in Spain and Germany were used to investigate on the
retrieval of water colour, turbidity, SPM, and chlorophyll.
By digitizing the colours of the Forel-Ule scale to establish
the colour of natural waters through smartphone imaging
by the use of high-quality-illumination filters and a frame
made of white Plexiglas, the creation of a colour comparison
tool for recording not only the colour in terms of the FU sys-
tem but also the chlorophyll concentration, turbidity, and

suspended particulate materials was developed. Wernand
et al. [7] used the FU datasets, which forms the basis of Eye-
OnWater colour-based water quality assessment, to estimate
the global changes occurring in the ocean in relation to the
Chl-a, CDOM, and SPM concentrations, for the case study
of the Dutch Wadden Sea conservation area.

Bardaji and Piera [35] presented a review on the first
crowdsourcing technologies to estimate water transparency
based on a sensor attached to low-cost moorings attached
to buoys, which integrated different modules such as light
sensors, microprocessors, and communication modules for
the measurement of water colour, transparency, and fluores-
cence. The review led to adoption of quasidigital optical sen-
sors which convert light (irradiance) measurements into a
frequency signal. With the simple conversion, it is possible
to directly estimate the light intensity without the need of
analog-to-digital-converter devices in determining water
quality parameters.

For water colour monitoring, [36] introduced the FUME
algorithm that converts the MERIS satellite reflection data to
FU scale by transforming a number of MERIS images into
the FU colour scale images and comparing the in situ
observed FU numbers, with the modelled FU numbers from
in situ radiometric measurements. The FUME algorithm
converts the normalized water leaving reflectance from nine
MERIS bands into a discrete FU number to monitor water
colour. In a related study, [37] estimated SPM by derivation
of a single band algorithm by parameterizing Gordon’s
approximation of the irradiative transfer model with mea-
surements of inherent optical properties. This led to develop-
ment of the POWERS algorithm for estimating near-surface
SPM concentrations. Davies-Colley and Smith [38] used the
Compact Airborne Spectrographic Imager (CASI) hyper-
spectral imagery for water colour mapping and established
a colour matching function as a simple standard way to mon-
itor the colour of aquatic systems. It was established that the
standard RGB values are converted to the XYZ CIE colour
system using the conversion matrices found in [39]. In sum-
mary, it is evident that previous studies have contributed to
the development of alternative tools for analyzing water qual-
ity parameters in order to supplement laboratory measure-
ments. Notably, however, most studies have not applied the
smartphone apps in the comprehensive assessment of water
quality parameters, with the objective of retrieving and asses-
sing the water colour, Chl-g, turbidity, and SPM of produc-
tive inland water bodies like reservoirs and/or lakes.

The HydroColor smartphone app [40] was built with the
objective of crowdsourcing water quality data. The iPhone-
based app uses three images—gray card, water, and sky
images [41]—to derive the reflectance of natural water bod-
ies. From the reflectance values, the app automatically gener-
ates the turbidity and SPM levels in the water; however, the
colour and chlorophyll parameters have to be computed
using a suitable conversion algorithm. Objectively, by aggre-
gating data from the public over large spatial and temporal
scales, the HydroColor app can determine the typical turbid-
ity or chlorophyll values for different environments. The
interactive online database can then be used by experts or
the general public to help monitor for changes, such as


http://eyeonwater.org

increased occurrence of algal blooms or erosion leading to
higher suspended sediment.

Whiting [42] used the HydroColor app to retrieve the
turbidity in the Union River. With TSS of 13 mg-L™", turbid-
ity of 6.5 NTU, and R? of 0.7183, the study concluded that
HydroColor was suitable for estimating and predicting the
turbidity and TSM. In the use of sensor-based models in
studying turbid waters in Barga (Netherlands), [43] used
the HydroColor app to detect fluctuations in water changes.
The study recorded R* of 0.547 and RMSE = 4.7 NTU, and
the app was also recommended as suitable for the measure-
ment of turbidity and SPM; however, the results were influ-
enced by cloud cover and sample size, as was also observed
by [29]. In a comparative study, [44] compared the utility
of the iOcean RGB sensor and HydroColor apps for turbidity
and water colour monitoring. While a correlation was impos-
sible in colour measurements as HydroColor gave discrete
data on colour, a logarithmic correlation with R* of 0.68
was achieved using the HydroColor app. Mahama [17]
carried out a comparative assessment on the utility of Hydro-
Color and EyeOnWater apps for the measurement of tur-
bidity, SPM, colour, and chlorophyll in comparison with
laboratory measurements and hyperspectral imagery. The
results, respectively, showed that from the EyeOnWater and
HydroColor apps, the SPM was estimated with R* values
of 0.79 and 0.90, while turbidity was determined with cor-
relation coefficients R* of 0.73 and 0.63. For a comparative
evaluation, the HydroColor app is tested for the estimation
of water quality parameters at the spatial scale of a reser-
voir and in comparison with the Landsat ETM+ and the
EyeOnWater app.

From the literature review, it is evident that several
models have been used to retrieve water quality from remote
sensing data. The models, as already been stated, comprise of
empirical, semiempirical, and analytical models, which have
been applied in order to estimate and produce quantitative
water quality maps using different sensors [45]. The most
often used empirical models are based on the development
of bivariate and or multiple regressions between the sensor
data and measured water quality parameters, whereby the
digital numbers or radiance values at the sensor as well as
their band combinations are correlated with the laboratory
measurements of water quality parameters usually collected
in coincidence of the sensor time of acquisition or overpass
[46]. The semiempirical approaches are often used when
the spectral characteristics of the parameters of interest are
known. The spectral characteristics are then included in the
statistical analysis by focusing on well-chosen spectral areas
and appropriate wavebands used as correlates [47]. In the
analytical modelling, the water quality parameters are related
to the inherent optical properties by using specific inherent
optical properties (SIOPs). The IOPs of the water column
are then related to the apparent optical properties (AOPs)
and hence to the top of atmosphere (TOA) radiance, such
as that described by the radiative transfer theory [48, 49].

Despite the need for integrated assessment of water qual-
ity variables in determining the health of water bodies, most
studies have focused on the retrieval of a single water quality
parameter and for specific case studies. Since relationships
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between reflectance and water quality will vary across ecor-
egions, reservoir taxonomy, and seasons which are impacted
by local environmental conditions including weather events,
it is difficult to develop universal predictive models to
extract water quality parameters from remote sensing data.
For that reason, these relationships must be developed inde-
pendently for each region of interest. Further, due to the
subjectivity of previous studies to specific ecoregions and
water quality parameters, the current study develops an
empirical approach for retrieving remotely sensed reflec-
tance values from Landsat ETM+-VNIR imagery based on
water sample point locations for water quality monitoring
of Kesses Dam in Kenya.

3. Methodology

3.1. Case Study and Sampling. As already mentioned, the case
study for the comparative evaluation of the three sensor-
based models is Kesses Dam in Uasin Gishu County, Kenya.
The reservoir, located at longitude 35°20'E and latitude 0°16'
N, is fed by two inlet rivers and one outlet river (Table 2).
Built in 1958, the dam is one of the 75 small reservoirs within
the county. With an initial capacity of approximately 2.4 mil-
lion cubic meters, the volume has reduced to about 1.8 mil-
lion. The dam is the main drinking water source for the
surrounding community including Moi University and the
growing neighbouring urban and rural populations [50].
Over the years, the use of the reservoir’s water has diversified
to include domestic drinking, irrigation, recreation, and fish-
ing. Despite the significance and overdependence on the
dam’s water, there is hardly any monitoring carried out on
its water quality.

Waters drained from the agricultural areas are the main
source of pollution within the watershed, and there is emi-
nent presence of algal blooms which may be a reflection of
increased nutrient transport within the basin. Additionally,
domestic sewage and soil erosion have resulted into increased
turbidity and siltation of the reservoir and to the overall loss
of water quality in the water body. Nonetheless, monitoring
public waters can be complicated due to the fact that field
sampling campaigns are labor- and time-intensive and often
require additional laboratory costs for sample analysis. To
monitor such dams, remote sensing models, especially the
smartphone-based models, can be cost-effectively employed
in the field for public or crowdsourcing of dam water quality.

To monitor the water quality in the case study dam,
twelve (12) evenly distributed and coordinated water quality
sampling stations were set up within Kesses Dam, as illus-
trated in Table 2. Water samples were collected at 0.45m
depths, in order to determine concentrations of Chl-a and
SPM, turbidity, and water colour following the standard lab-
oratory protocols. The timing of the field campaign for in situ
sampling and the Landsat satellite overpass schedule were
prefixed, such that the sampling was carried out on the
26th of March 2017, which was concurrent with the date of
imagery acquisition from Landsat ETM+. As reported in
[51], synchronization of the sampling and the satellite image
acquisition to within +1day of the satellite image is recom-
mended for best calibration results. The dry season period
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TaBLE 2: Google map-based location of the case study of Kesses Dam and the coordinates of the sampling stations.

Case study dam and the sampling stations (P)

Location coordinates of the sampling stations
Station ID (Pi) Easting (m) Northing (m)

P1 759505.00 31612.00
P2 759740.00 31468.00
P3 760000.00 31415.00
P4 760271.00 31427.00
P5 760582.00 31427.00
P6 760412.00 31290.00
pP7 759804.00 31236.00
P8 760183.00 30252.00
P9 760123.00 30486.00
P10 759852.00 30578.00
P11 759479.00 31447.00
P12 759323.00 31681.00

was chosen because during this time the composition of res-
ervoir water is relatively stable, and the images are cloud-free.
To reduce the errors in sample site locations, and to correlate
the reflectance and water quality parameters, an average
spectral reflectance of 2 x 2 pixels neighbourhood configura-
tion was used as suggested by [52]. The neighbourhood-
based analysis also minimizes the probable errors in GPS
measurements during sampling.

3.2. Retrieval of Water Quality Parameters

3.2.1. Landsat ETM+-VNIR Data.

(1) Radiance and Reflectance Determination. The Landsat
ETM+ is a near polar-orbiting sun-synchronous satellite,
with a 16-day repeat cycle, at an altitude of 705 km altitude
and swath-width of 185 km. Its payload is the ETM+ sensor,
which is a single nadir-pointing instrument, and provides
for an eight-band multispectral scanning radiometer which
detects spectrally filtered radiation in VNIR, SWIR, LWIR,
and panchromatic bands. From the literature review, it
was inferred that Landsat TM and ETM+ have been widely
used for water quality parameter derivation, due to their
wider and hence spectrally appropriate resolutions as com-
pared to other sensors [2, 53, 54].

In this study, only the VNIR ETM+ bands were used for
analysis and detection of the optically active water quality
parameters. This is because the long-wave bands provide lit-
tle or no information for water quality assessment [55-57].
The VNIR are in the spectral range where light passing
through the water body provides some information about
the optically active water constituents [58]. As depicted in
Figure 1(a), a comparison of the spectral resolutions of Land-
sat ETM+/TM with the Landsat OLI shows that in VNIR,
ETM+ has higher spectral resolution, implying that it can
detect the more optically active particles in water than the
OLI sensor. Further, in Figure 1(b), a comparison of the

spectral resolutions of ASTER, OLI, ETM+, and Sentinel-
2A shows that the spectral resolution of ETM+, which is sim-
ilar to that that of the TM sensor, is wider and more suitable
for the detection of WQP [2, 8, 59].

The estimation of water quality parameters from satellite
images is dependent on the accuracy of atmospheric correc-
tion and water quality parameter retrieval algorithms. How-
ever, most of previous studies as summarized in [46, 60]
either correlate the Landsat bands to the raw digital numbers,
radiance, spectral radiance, or reflectance, with or without
atmospheric correction of the data. This limits the possibili-
ties of finding a clue to a physically sound analysis, and most
of the algorithms proposed are only applicable to the one sin-
gle scene that has been investigated. By using the FLAASH
model, the Landsat ETM+-VNIR imagery is atmospherically
corrected [53, 60-62], whereby the digital numbers are first
converted to the spectral radiance units according to (1).

L,=M,"QCAL+A, (1)

Equation (1) can also be rewritten in terms of Eq. (2),
whereby the DN values are used to obtain the at sensor radi-
ance or top of atmosphere (TOA) reflectance L,.

Ly = {Emea = Eon | oA o 2
R A L, (2
where L is the spectral radiance at the sensor’s aperture at
TOA (Wm2Sr'um™), M p is the multiplicative scaling
factor or the data product “gain” in Wm™>Sr™" um™'/DN,
A, is the rescaled bias or the data product “offset” in
Wm2Sr ! um™, Ly, is the spectral radiance scaled to
QCAL,;, (Wm™Sr™' ym™), L, is the spectral radiance
scaled to QCAL,, (Wm?2Sr'um™), QCAL_,, is the
maximum DN (255), and QCAL is the quantized calibrated
pixel values in DN, specific to a sample site point.
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FIGURE 1: (a) Relative spectral responses of the spectral band differences between Landsat ETM+ (dotted curve) and Landsat OLI (solid
curve). (b) Comparisons of spectral resolutions of ASTER, TM, ETM+, and Sentinel-2A sensors. http://landsat.usgs.gov/tools_

spectralViewer.php.

While in (1) and (2) the DN is converted to the TOA
reflectance, this does not account for or minimize the atmo-
spheric effects. The haze effect is one of the most important
atmospheric effect parameters due to the scattering and
absorption of the radiation by molecules and aerosols [62].
Techniques for haze removal can be categorized into (i)
simple dark object subtraction (DOS) method and (ii) atmo-
spheric transmission model in combination with in situ field
measurements. By calculating the rescaling factors from the
minimum and maximum calibration values, the DOS and
sun angle corrections are applied by expanding (1) and (2),
to (3), (4), and (5) as in [60].

Lhaze = HLmin - Ll%’

(3)

where

(Lmax B Lmin)

HL ;
T (QCAL,,, — QCAL

=1 .

min

+DN , (4)

min min)
0.01 + ESUN, * cos ((90 — 65)7/180)*
&n .

(5)

1% —

L., and L are, respectively, the minimum and maxi-
mum spectral radiance values scaled to QCAL,,, and
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FiGure 2: DN and reflectance curves of four target surface features, before (a) and after (b) atmospheric correction.

QCAL,,,, by band, and for 8-bit imagery, the difference
between QCAL,;, and QCAL, . is 254; DN, ;, is the least
pixel value as converted to TOA reflectance HL,; ; ESUN;
is the solar spectral irradiance at TOA; @ =90 — 6 is the
solar zenith angle in degrees (90° sun elevation) and is calcu-
lated from the sun elevation included in the metadata; and d
is the Earth-sun normalized with respect to mean of 1.0 AU.

The satellite data should be made to be comparable with
the in situ spectral measurements by converting from radi-
ance to at-satellite reflectance, also called the remote sensing
reflectance R, = p,. The outcome L, ,,. is then the rescaled
and corrected DN, ;, value used to correct the rescaled image
values during their correction process according to (6), where
P, or R, is the unitless atmospherically corrected reflectance,
and is the final outcome of the difference between TOA
reflectance L, and the rescaled and corrected DN, ;. Equa-
tion (6) can also be rewritten in terms of the TOA reflectance
R (A) as shown in (7).

ﬂ(L/\ - Lhaze)d2

A = > (6)
ESUN; cos (7/1800)

3 ﬂ*L)’\*dZ )

™ EUS, * cos O

Figure 2 presents a comparison of four target features
before and after atmospheric correction of the multispectral

bands. As compared to other natural features like soil and
vegetation, the fraction of light reflected from water is
observed to be very low [63] and is only significant in the
VNIR bands [8]. This means that the determination of the
accurate and absolute radiometric correction of the sensor
is critical [64]. From the results in Figure 2, it is observed
that the DN curves of the test features are similar to the cor-
responding curves of the same features after atmospheric
correction, in terms of the spectral reflectance.

(2) Correlating Landsat ETM+-VNIR Bands and Water
Quality Parameters. As already stated, there are primarily
three categories of regression algorithms, namely, empirical
algorithms, theoretic algorithms, and their combinations,
which can be used in modelling and extraction of water
quality indictors from remote sensing data. Bivariate
and multiple regression techniques have been used in dif-
ferent studies to come up with the relating equation
models for WQP estimations [53]. To determine the suit-
able models in terms of correlation, stepwise bivariate lin-
ear regressions were used. This study used the empirical
algorithms to establish the bivariate correlations between
the Landsat ETM+-VNIR band reflectances and the in
situ water quality variables. The following remote sensing
independent reflectance bands and band combinations as
presented in Table 3 were considered for the statistical
analysis of the Landsat data in the estimation of the
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TaBLE 3: Summary of Landsat ETM+-band combinations for water
quality determination.

Landsat ETM+-VNIR bands and combinations
(i) Single ETM+-VNIR bands B1, B2, TM3, and B4
B1 and B2; Bl and B3
B1 and B4; B2 and B3
B2 and B4; B3 and B4
B1, B2, and B3
B1, B2, and B4
B2, B3, and B4
B1, B2, B3, and B4
B2/B1; B1/B3; B3/BI;
B4/B3; B4/B1; B3/B2; B4/B2
(B1/B3) + Bl
(B1/B4) + B1
(B1/B4) + B2
(B1/B3) + B2
(B1/B3) + B3
(B4/B1) + B4

(ii) Linear band combination

(iii) VNIR band ratios

(iv) Mixed NVIR band combinations

water quality parameters, using the empirical mathemati-
cal models.

The single bands, band ratios, and combinations of the
bands, as presented in Table 3, were used in the regression
analysis. In the optimization of the regression analysis
results, the appropriate regression method is selected based
on the results with a high R* value, between the predicted
model and the laboratory-measured WQP [57]. The fit of
the model was tested at the entry significance level p of 0.05
and the removal significance at a level of 0.10. Finally, the ¢
test at the confidence level of 95% was then used to accept
the determined regressive model.

The empirical models used in the regression of the in situ
measurements to the Landsat bands comprised of the follow-
ing generalized equations, where WQP is the water quality
parameter, R, (1) is the reflectance at the VNIR band, and
A, B, and C are the model constants.

(a) Linear: A*R (1) + B

(b) Polynomial: A*R (1)* + B*R (1) + C
(c) Logarithmic: A* log, R, (A) + B

(d) Power: A*RE (1)

(e) Exponential: Aeb*Rs(A)

To compare the algorithmic results from the current
study with prior case study results, the results from the
empirical models based on the band combinations and
regression analysis were compared with those from the fol-
lowing related WQP estimation algorithms, as expressed in
(8), (9), and (10), respectively, for Chl-a, SPM, and turbidity.
The chosen algorithms are for comparisons and are on the
basis of the same type of water body and also with reasonable
water quality parameter estimation results. Because they are
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developed for different environmental and climatic condi-
tions and factors, the equations are only used as indicators,
and scene-specific algorithms are developed.

(a) Chl-a and SPM estimation using the [23] algorithm

log R, log R,
Chl-a =4180.5 2| -6211.4 2
log Ry, log Ry,

+2540.2,
(8)
log R,
SPM = 32.42( & “Z> -12.719, (9)
log Ry,

where R, and R, are the calculated reflectance at

the various sampling stations for Landsat ETM+
bands 2 and 4.

(b) Turbidity prediction using the Waxter [26] algorithm

Turbidity = —0.0016B + 0.2504B, — 1.0014  (10)
where B, is the DN of Landsat ETM+ band 1.

3.2.2. EyeOnWater App. (1) WQP Derivation from EyeOn-
Water App. EyeOnWater, initially referred to as CITCLOPS,
is a low-cost and easy-to-use smartphone application tool,
developed for monitoring the quality of natural water bodies.
The app utilizes the FUT colour system. This means that in the
EyeOnWater system, the estimated water quality variable is
the water colour which is translated into FUI for WQP anal-
ysis. The following steps summarize the approach for EyeOn-
Water as detailed in [65, 66]. In order to automate the process
of converting the FU values to the actual WQP estimates
online, an extension app to the EyeOnWater app—called
the FU converter—was developed in this study, for the con-
version and computation of the user-determined FU values.

(i) Acquisition of standard RGB (sRGB) images using
an Android operating system (OS) smartphone
camera

(ii) Gamma expansion: carried out on the specular
reflection at water-air interface to return each
band’s DN to the linear level [67]

(iii) Conversion of sRGB image to the equivalent
tristimulus values in XYZ colour space using the
Pascale [68] conversion matrix M

(iv) Water illumination correction: to cater for the
variation in illumination caused by time of observa-
tion, local water weather condition, and water sur-
face roughness, the illuminations are standardized
using the cone response matrix [39].

(v) Conversion of XYZ tristimulus values to the
(x,y) chromaticity coordinates and the relation
to the FUI values, where x=X/(X+Y +Z) and
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FiGgure 3: Diagrammatic flowchart for water image processing using EyeOnWater app [6].

y=Y/(X+Y +2Z) defines the (x,y) chromaticity
coordinates

(vi) Conversion of the (x,y) chromaticity coordinates
to the corresponding chromaticity angles or water
angle:  a, =arctan (y; - y,, X; — x,,) modulus2,
where (y;, —y,) and (x; —x,,) are the chromaticity
coordinates derived from the image i with respect
to the origin or white point w [65]

(vii) Selection of the best subimage using the percentile
rule, which then reveals the true colour of the water
body at the time of exposure

(viii) Using the FUME algorithm as in Wernand et al. [7]
to convert the chromaticity angle of the subset
image to FU index

(ix) Transformation of the FU index into turbidity and
SPM water quality parameters using the [40] corre-
lation functions

(x) FU analyzer and convertor web application: design
and extend a new app to convert FU values obtained
from the EyeOnWater app as entered by a user, to
readily understandable water quality parameters
which include turbidity, chlorophyll, SPM, and the
corresponding water colour and significance

Figure 3 presents a structural diagram of the above
outlined processes as used to derive the xyz chromaticity
coordinates, hue colour angle «,, and FUI from the
smartphone images.

The proposed FU analyzer and convertor program con-
sists of the user interface (front-end) and processing logic

(back-end component). The input into the MySQL database
server consists of the FU values and the corresponding chro-
maticity angles and the water colour values with the corre-
sponding significances. From the input, an asynchronous
Ajax request is made to the PHP script that processes the data
and returns results instantaneously. For the FU conversion
application, the following algorithms proposed by [40] were
used for the online estimation of turbidity, Chl-a, and SPM.

22.57 % &, (R)

Turbidity = ———*~ =, 11
Y = S 87—, (R) (1)
Chl-a =0.061 # ¢ 0666 FUL (12)
log,,SPM = 1.02 * log, ,turbidity — 0.04. (13)

The prototype for the extended online EyeOnWater FUI
analyzer and convertor is presented in Figure 4, where the
first screenshot (Figure 4(a)) is the analyzer and the second
is the convertor (Figure 4(b)).

(2) Validation ofx-Chromaticity Coordinates. As a valida-
tion step, the relationship between the x-chromaticity coor-
dinate and laboratory-measured turbidity and SPM are first
evaluated. As shown in Figure 5, a 5-degree polynomial cor-
relation fit of the measured turbidity and x-chromaticity gave
an RMSE of 4.89053 NTU and R* of 0.5659, while the SPM
correlation gave an RMSE of 5.8724mgm™ and R?> of
0.7175. These validation results show that it is viable to quan-
tify the water quality variables from the xyz chromaticity
coordinates. The results also imply that the app’s FUI can
be effectively related to the optical water quality variables.

In order to compare the user-observed water surface
images with the calculated FU results from EyeOnWater
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validation step.

app results, a correlational analysis was carried out such that
the water surface images were matched with the FU scale as
proposed in [36]. The results in Figure 6 indicate a good cor-
relation of a linear fit with a coefficient of determination of
R?>=0.645 and RMSE of 1.607. The validation results in
Figures 5 and 6 show that the EyeOnWater app is suited
for field measurements.

3.2.3. HydroColor App for Water Quality Data Estimation.
In using the HydroColor app, an iPhone OS camera is
used to acquire three images comprising of gray card,
sky, and water surfaces, so as to obtain the sRGB colours.
The iPhone camera is a traditional CMOS array covered
by a Bayer filter, and the filter provides three spectrally

wide-red, green, and blue colour channels. Using the three
images, the app calculates the remote sensing reflectance
in the red, green, and blue (RGB) colour channels of the
camera. Figure 7 shows sample images taken by an iPhone
camera on a clear day (Figure 7(a)) and on a cloudy day
(Figure 7(b)) from the same sampling point [40]. The
images in Figure 7 show that the environmental conditions
such as cloud cover and sunlight intensity will influence the
quality of the water colour.

A sample water image from the data analysis page of the
HydroColor app is clipped and uploaded to the colour Phy-
toBlog for water quality determination as depicted in
Figure 8. In minimizing the surface reflection of skylight in
the water image, HydroColor contains a sun model that uses
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FIGURE 7: Sample gray card, sky, and water surface images taken on
clear (a) and cloudy days (b) [40]. The rectangular area shows the
selected representative true water colour.

the iPhone GPS and internal compass to predict the loca-
tion of the sun in the sky. The compass is used to direct
users to the correct azimuth angle, and the internal gyroscope
directs users to the correct zenith angle [41]. The processing
stages of the HydroColor App in summary comprises of the
following steps:

(a) Colour image acquisition in terms of sSRGB compris-
ing of gray card, sky, and water surface colours

(b) Derivation of the relative radiances L = RGB/«,, of
the acquired imagery, where «, is the camera’s expo-

sure time

(c) Conversion of L, to the top of atmosphere reflec-
tance Rrs’ where Rrs = (Lwater+surface - PLsky)/(ﬂ/
Reyd * Leyq) [41]. The radiances L are measured;
R.q is the reflectance of the gray card (18%),
and p is the fraction of skylight reflected by the
surface (~0.028 at the azimuth and zenith angles
used for the images).

(d) Conversion of R, to estimate the water quality
parameters using the [40] algorithms as described
below.

In deriving the water quality variables using the Hydro-
Color app, the turbidity is first calculated and ranges between
0 and 80 NTU. The simplified model used by HydroColor to
estimate turbidity from the red band reflectance R (R) as
proposed by [40] is expressed as in (14).

22.57 * R((R)

Turbidity = ="~ ")
Y = 0,044 R (R)

(14)

From the turbidity estimates, the SPM is then obtained
by deriving the relationship between turbidity in Formazin
Turbidity Unit (FNU) and SPM, according to [40, 69], as
expressed in (15).

log,,SPM = 1.02 log,, (turbidity) — 0.04. (15)

In determining the chlorophyll concentration using the
HydroColor app, an adjusted ratio technique is first used,
where the reflectance in the red is subtracted to calculate
the Cchl-ratio as in (16) [40]. From the Cchl value, Chl-a is
computed according to the exponential empirical function
in (17).

Cchl = M, (16)
Rrs (G) - Rrs (R)
Chl-g = 3.09¢0-60Cch! (17)

3.3. Spatial Mapping of the Distribution of the Water Quality
Parameters. Within the reservoir surface water, detailed
knowledge on the actual distribution of the water quality
parameters is essential in interpreting and inferring accurate
predictions of water quality in the entire water body. How-
ever, it is impossible to measure these phenomena at every
point within a geographic area of the water body. By using
an appropriate interpolation method on properly sampled
data, the distribution and variability of water quality param-
eters can be accurately determined.

Although a variety of deterministic and geostatistical
interpolation methods can be used to estimate variables at
unsampled locations, accuracies vary widely among methods
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[70]. In order to estimate the distribution of WQP within
a lake from discrete laboratory measurements, [71] com-
pared inverse distance weighting (IDW), universal Kriging,
and ordinary Kriging for interpolating the water quality
parameters. Their results showed that the Kriging-based
methods outperformed the IDW method by more than
10% in accuracy of interpolation. Obarrio [72] also obtained
similar results in the investigation of lake water quality
and its variability. Within the same case study area of

Kesses Dam, [73] compared the interpolation methods
for elevation mapping and found that Kriging gave the
best results. While there are several types of Kriging used
in geostatistical data interpolation such as ordinary Kri-
ging [74], universal Kriging [75], and median polish [76],
ordinary Kriging is the basis of geostatistics and gives
the optimal data predictions [71, 73], under the assump-
tion that the process is second-order stationary with normal
distribution [77].
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To determine the interpolated value at some point in the
parameter space, Kriging weights data samples that are
nearby rather than giving all data samples of equal weight.
The interpolation is achieved by setting the mean residual
error to zero and also by minimizing the variance of the
errors. Based on the concept of random functions, the surface
or volume is assumed to be one realization of a random func-
tion with a certain spatial covariance [78]. The fundamental
concept in Kriging interpolation therefore is to use the vario-
gram to compute weights A;, which minimizes the variance in
the estimated value. From a given data sample Z(x;), the
semivariogram yp(h) can be estimated according to (18).

N(h)
Y= g X 2 - Zes ey (19

where y(h) is the estimated semivariance at a separation dis-
tance or lag h; Z(x;) and Z(x; + h) are the observed values at
x; and x; + h separated by a distance h, of which there are
N(h) pairs.

The semivariance tends to increase as the distance sepa-
rating pairs of points (lag) increases, implying that points
closer together tend to have more similar values than those
far apart. Theoretical semivariogram fits can be based on
spherical, exponential, Gaussian, and Bessel [73, 76]. In this
study, the spherical model was chosen following from previ-
ous studies in which it yielded the best results [71, 73]. The
general formula for the spatial interpolation is as given in
(19), where Z* (x;) is the interpolated value at x;.

N(h)

Z"(x;) = Z AiZ(x;). (19)

i=1

Once the model variogram is fitted to the empirical data,
it is used to compute the weights A;, such that the estimation
variance is less than the variance for any other linear combi-
nation of the observed values [79]. With simple Kriging, one
assumes that the mean value is known, while with ordinary
Kriging the mean value is determined during the interpola-
tion [80]. For nonstationary variation, where there is drift
(or trend) in the data, universal Kriging or Kriging with
intrinsic random functions should be used [81].

3.4. Error Quantification for Water Quality Parameter
Estimation. In order to estimate the error between the
WQP as determined from the laboratory measurements
and estimated using the sensor-based empirical models, the
following error estimators were adopted in this study, mean
absolute error (MAE), root mean square error (RMSE), nor-
malized root mean square error (NMSE), the coeflicient of
determination R?, and the Pearson correlation coefficient r,
and are summarized in Table 4. In Table 4, x; and y; are,
respectively, the laboratory-measured (observed) and the
predicted water quality parameters for each sample point 7,
and for the n samples. Regression scatterplots between the
estimated and measured water quality parameters were also
generated in order to visualize the correspondences between
the models in terms of the water quality predictions.

15
TaBLE 4: Summary of the WQP estimation error statistic.
Error estimator Error equation
1 n
Mean absolute error or bias MAE = 0 Z |xi =yl
i=1
1< 5
Root mean square error RMSE = - Z (% =)
i=1
Normalized root mean square N MSE% = RMSE 100

error Ximax ~ Ximin
re Y=y (xi—X%)
VI 0= S (- %)

Pearson correlation coefficient

TaBLE 5: Laboratory spectrophotometric measurement results for
Chl-a concentration.

sample (W-X) 664, (Y-2) 665, (664, ~665,)  Chlorophyl
(nm) (nm) (nm) (ugl™)

1 0.7800 0.7443 0.0357 9.54
2 0.7170 0.6827 0.0343 9.15
3 0.6920 0.6600 0.0320 8.55
4 0.6081 0.5805 0.0276 7.37
5 0.4562 0.4343 0.0219 5.84
6 0.5871 0.5644 0.0227 6.05
7 0.7050 0.6711 0.0339 9.04
8 0.6088 0.5813 0.0275 7.35
9 0.8910 0.8525 0.0385 10.27
10 0.6532 0.6244 0.0288 7.69
11 0.8830 0.8449 0.0381 10.16
12 0.7950 0.7581 0.0369 9.84
4. Results and Analysis

4.1. Water Quality Parameter Measurements and Predictions

4.1.1. Retrieval of Chlorophyll-a Concentration. Using the
spectrophotometric method [82], the results for the labora-
tory measurement and determination of the concentration
of Chl-a in the twelve sampling stations are as presented in
Table 5. The in situ measurement results show that the chlo-
rophyll concentration in Kesses Dam ranged between 7 and
10 ugL™", at the peak of the dry season.

From the Landsat data, the predefined algorithms in the
second subsection of Section 3.2.1 were first used to deter-
mine the Chl-a concentration within the reservoir, by using
the remote sensing reflectance R, as derived from band 2
(green) and band 4 (NIR). In carrying out the regression
analysis between the Landsat-predicted and in situ laboratory
measurements, the results in Figure 9 show an existence of a
high correlation between the estimated and measured values
for Chl-a of R*=0.8111. This implies that the green band
and the NIR band are instrumental in the detection of
Chl-g, as also supported by results from studies by [8].

As already stated above, for HydroColor, an adjusted
ratio technique is first used where the reflectance in the red
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is subtracted before the Cchl parameter is used in the deriva-
tion of Chl-a. The surface values for extracted chlorophyll
show a perfect relationship with the Cchl ratio as presented
in Figure 10. The near 1:1 match validates the applicability
of HydroColor for further data collection and analysis. The
results of the regression between the laboratory measure-
ments and the HydroColor estimates of Chl-a concentration
are presented in Figure 11, and the results explain a coeffi-
cient of determination of nearly 0.7. A good correspondence
between the in situ data and HydroColor in retrieving the
concentration of chlorophyll in the reservoir is observed as
depicted in Figures 10 and 11.

For the estimation of chlorophyll from EyeOnWater, the
observed chlorophyll values were found to be quite negligible
(in the order of x10°) and could not be correlated with the

results from the laboratory measurements and other two
models. These magnitudes of Chl-a as determined from Eye-
OnWater are attributed to the low values that are used in the
calibration of the EyeOnWater model, as compared to the
establishment laboratory observations. A regression between
the chlorophyll concentration estimation results from Land-
sat and HydroColor showed a correlation of above 50%
(Figure 12). In all the regression analyses, except for the val-
idation of Cchl and Chl-a, the linear empirical model yielded
the best regression fits.

A summary of the statistical analyses for the error quan-
tifications between the laboratory measurements and the
results from Landsat and HydroColor is presented in
Table 6. From the summary results in Table 6, it is observed
that for chlorophyll-a determination, there is an above
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TABLE 6: Statistical summary of Chl-a estimations using Landsat and HydroColor models in relation to the in situ laboratory measurements.

Sensor MAE (%) RMSE (ugL™") NRMSE1 NRMSE2 r R?
Landsat ETM+ 0.7218 0.7900 0.1280 0.0980 0.9006 0.8111
HydroColor 20.925 2.0890 0.3010 0.3030 0.8310 0.6906
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FI1GURE 13: Estimated turbidity from Landsat as compared with the lab-measured turbidity.

average relationship between the Landsat-based model, the
HydroColor app, and the measured data from laboratory
testing. These results demonstrate that the Landsat- and
HydroColor sensor-based models are significantly accurate
and comparable in the estimation of the concentration of
Chl-a in water reservoirs, with at least 70% degree of accu-
racy. In estimating Chl-a within the reservoir, it is observed
that the Landsat-based model marginally performed better
than HydroColor in terms of the RMSE and the coefficients
of correlation and determination.

4.1.2. Estimation of Turbidity. The results from the labora-
tory measurements from the twelve sampling points showed
that the degree of turbidity within the reservoir ranged
between 5 and 8 NTU. For the regression analysis between
the measured and predicted turbidity, the results are pre-
sented in Figures 13-15. Using linear and natural logarithmic
empirical regression models, it is observed that all the three
methods predicted the presence of turbidity by at least 70%
accuracy as from the correlation coefficients. From the results
of the estimation of turbidity from Landsat ETM+, the reflec-
tance of the independent blue yielded the highest correlation
coefficient. As in the case of Chl-a estimation, it can also be

concluded that the three models are suitable for predicting
the presence of turbidity in inland waters.

To compare the results for the estimations of turbid-
ity from the three models, an intermodel regression between
the three WQP prediction results are presented in Figures 16
and 17. Tt is observed that for the single season analysis,
Landsat and HydroColor are better in determining turbidity
as compared to EyeOnWater. A statistical summary pre-
sented in Table 7 shows that for the models, the correlation
coeflicients are all higher than 0.8 in determining the turbid-
ity. The MAE are observed to be at less than 5% on average,
and the other error statistics are also much lower, all indi-
cating good correlation between the apps and the reference
laboratory measurements.

4.1.3. Prediction of SPM. From the laboratory test results,
the reservoir was found to contain SPM concentrations
ranging between 3 and 9 mgm ™. By using polynomial, natu-
ral logarithm, and linear regression models, the laboratory-
measured SPM concentrations were empirically regressed
with the Landsat, EyeOnWater, and HydroColor results
for SPM prediction. The respective results presented in
Figures 18-20 indicate that the coeflicients of determination
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TABLE 7: Statistical analysis of the prediction of turbidity using Landsat ETM+, EyeOnWater, and HydroColor app models.
Sensor MAE (%) RMSE (NTU) NRMSE1 NRMSE2 r R?
Landsat ETM+ 0.624933 0.7920 0.4510 0.1250 0.9136 0.8346
EyeOnWater app 4.623951 0.8970 0.1780 0.1543 0.8190 0.6711
HydroColor app 5250214 0.6010 0.1240 0.1014 0.8405 0.7065
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FIGURE 18: Laboratory-measured SPM versus the Landsat-estimated SPM.
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were determined 0.4117, 0.5352, and 0.7460. The results
from Landsat indicate that the ETM+-band 2 (green) and
band 4 (NIR) may not be the best in estimating the SPM con-
centration as the coefficient of determination was at below
50%. The results show that both the EyeOnWater and
HydroColor apps are suitable for determining the concentra-
tion of SPM, with the best SPM determinant being from the
HydroColor app.

The results of intercorrelational analysis for the determi-
nation of SPM from Landsat and the two apps, as shown in
Figures 21 and 22, illustrate the fact that for SPM determina-
tion, the models present differing results. However, a sum-
mary in Table 8 of the statistical analysis shows that all the
models except for Landsat are capable of detecting the pres-
ence of SPM with more than 50% of accuracy as determined
using the coeflicient of determination. Despite the fact that
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TABLE 8: Statistical evaluation of SPM estimation using Landsat, EyeOnWater, and HydroColor App models.
Sensor MAE (%) RMSE (mgm’3 ) NRMSE1 NRMSE2 r R?
Landsat ETM+ 10.11 10.478 4.4820 0.7260 0.6416 0.4117
EyeOnWater app 4.06 1.2612 0.3140 0.2360 0.7315 0.5352
HydroColor app 26.02 1.4212 0.1940 0.2380 0.8637 0.7460

HydroColor had the highest MAE of 26%, the regression
coeflicients are much higher as compared to the Landsat
and HydroColor estimates. Notably, the SPM estimates from
the three models are observed to have high predictive differ-
ences, hence the low regression coefficients.

As already mentioned in the introduction, the dis-
crimination of SPM from water reflectance is based on
the relationship between the scattering and absorption
properties of water and its constituents. Most of the scat-
tering is caused by suspended sediments, and the absorp-
tion is controlled by chlorophyll-a and coloured dissolved
organic matter. These absorptives in water components
have been shown to lower the reflectance in a substantial
way, and their effects are generally found at wavelengths
less than 500nm [10].

4.1.4. Prediction of Water Colour. The colour of water is a
classic relative indicator that has been instrumental in detect-
ing harmful algal blooms, release of contaminants, and track
plumes [5, 83]. Observations of water colour can be carried
out using near-water surface, airborne, and satellite plat-
forms. The colour saturation of a water system determines

how much optically active components are present to appar-
ently affect the measure of the depth of light penetration into
the water. Colour saturation as a quantitative measure of the
saturation of a particular colour does not depend on the type
of water constituent but on the constituents’ capability to
attenuate light. In this case study, the colour saturation and
the dominant water colour wavelength for each sampling
point measurement were obtained with the results summa-
rized in Table 9 for the inferred laboratory measurements,
and from EyeOnWater and HydroColor inferences.

Because it is not possible to retrieve the water colour from
Landsat ETM+ bands in terms of wavelengths, and for com-
parison with the laboratory-based colour wavelengths, only
results from the laboratory measurements, EyeOnWater,
and HydroColor are presented. The results in Table 9 indi-
cate that the water wavelength colour in the reservoir varied
between 500 and 590 nm. Using the laboratory colour chart
as the reference, it is inferred from Table 9 that the EyeOn-
Water colour FU results were comparable to the standard
laboratory wavelengths. For the HydroColor, the app’s
colour reference scheme is different from the standard labo-
ratory scheme; thus, as seen in Table 9, the wavelengths are
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FIGURE 24: Regression of predicted from R ((B) and measured turbidity.

in the range of 513-609 nm. Similar findings were also made
by [44].

The results in Table 9 show that the dominant water col-
our in the reservoir is the greenish colour. By inference, pre-
dominantly greenish water colour indicates increased
nutrient and phytoplankton levels, as well as a high content
of minerals and dissolved organic materials. Greenish-blue
is also an indication of algae dominance, and increased dis-
solved matter and sediments may be present. The greenish-
brown colour characterizes high nutrient and phytoplankton
concentration and increased sediment and dissolved organic
matter. It implies that if the water looks especially green, then
there are a lot of microscopic algae (phytoplankton) growing
near the surface. Phytoplankton blooms often turn the water
green, but a dense bloom of certain species can be orange,
brown, or red. When the water looks murky and brown, it
means there are sediments or mud suspended in the water.

4.2. Development of Predictive Model WQP Retrieval from
Landsat ETM+-VNIR. While several studies have developed
algorithms for water quality retrieval, the main challenge in
using already existing algorithms, as already stated, is that
the conditions of sample collection and the specific dynamics
and characteristics of water bodies vary significantly. Also,
in developing the algorithms, the spectral characteristics,
reflectance, radiance, and pixel resolution values are often
regressed against the laboratory-acquired results. The results

of the empirical regression analysis and generation of the
WQP predictive models are represented in Figures 23-25,
and a summary of the correlational analyses of the Landsat
ETM+-VNIR bands in generating the case study algorithms
is presented in Table 10.

From the results, it is observed that the independent var-
iables comprising of ETM+-band 2 (green) and band 3 (red)
had the highest significant relationships in estimating the
presence of chlorophyll-a, as they, respectively, explained
90% and 66% of the correlation accuracy (Table 9). From
the results in Figures 9 and 23, it is deduced that Chl-a in
the Kesses Dam case study can effectively be predicted using
the new regression model that is based on the remote sensing
reflectance of ETM+-band 2, with R? of 0.8059. The results
are comparable to that of the tested [23] algorithm and are
represented by a simple linear regression equation of the
Landsat ETM+ green band.

For the derivation of Chl-a from Landsat, the broad
ETM+/TM bands may not spectrally resolve the sharp spec-
tral features arising from the absorption by Chl-a. This is
because chlorophyll comprises of the combined biological,
physical, and chemical factors, making the spectral patterns
complex. The Chl-a absorption peak is in the red region of
the spectrum at 670 nm which is only half contained in the
red band of ETM+ data; the peak near 700 nm is out of the
ETM+ red band. Therefore, different methods of band com-
binations from band 2 and band 4 may be applied to the
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TaBLE 10: Bivariate regression equations and the corresponding correlation coefficients for WQP estimations from Landsat ETM+ bands.

Water quality parameter Remote sensing reflectance R (1) Bivariate regression models (x = R(};)) r R?
i R (R) y=385.93x — 7.4615 0.6596 0.4351
R (G) y=525.21x — 24.061 0.8977 0.8059
R, (log,,B) ¥ =2009.6x" +7061.3x> + 8278.9x + 3244.1 0.9628 0.9269
R, (B) ¥ =3092.4x> — 14585x> + 22940x — 12027 0.9629 0.9272

Turbidity

R (G) y=—64775x> + 8009.5x — 241.12 0.3971 0.1577
R, (R/NIR) y=-28.676x" + 62.138x — 27.139 0.3173 0.1007
R (B/G) ¥ =5.6364x% - 22.611x + 26.351 0.3790 0.1440
R (NIR) y=0.7278x* - 16.75x + 99.462 0.6808 0.4646
SPM R, (R/NIR) ¥ = 54.665x* — 120.24x + 69.507 0.5234 0.2739
R (R) y=0.376x" — 18.492x + 230.42 0.4511 0.2035

ETM+ data to determine the Chl-a level [84]. The findings in
this study for the Chl-a regression is also supported by the
study results from [85], where it was demonstrated that chlo-
rophyll-a could be retrieved using models based on the red or
green band, with the model with the green band giving the
most optimal results. The results for Chl-a determination
are also supported by the experimental analysis by [8], where
by simulating the OLI bands in order to estimate Chl-a, high
absorption at the green band and low absorption at the blue
region were associated with the presence of chlorophyll-a.
Water turbidity is caused by the presence of suspended
and dissolved matter such as clay, silt, finely divided organic
matter, plankton, other microscopic organisms, organic
acids, and dyes [53]. Because of these constituents, turbidity
is an indicator and measure of the light-scattering properties
of water. From the experimental results, it was observed that
the independent variables comprising of the logarithm of
ETM+-band 1 had the most significant relationship with tur-
bidity, as it explained more than 92% of the variance in tur-
bidity (Figure 24). Using a cubic polynomial regression
model, the results in Figure 24 show that R ((B) is more suit-
able in estimating the turbidity in the reservoir as compared
to the logarithmic band ratio results in Figure 13, from [26].
Notably from Table 10, the results from the remote sensing

reflectance are seen to be same as those from the natural
log of ETM+-band 1. Again, it is deciphered here that the
independent blue-band variable is the most suitable band
for the prediction of turbidity.

From the literature review, most remote sensing studies
have been devoted to retrieve SPM, which is the parameter
of main interest in sediment transport studies; however,
fewer studies have been dedicated to the retrieval of turbidity.
Nonetheless, turbidity has been used as an effective indicator
of water quality, and being an optical property of water, it is
more strongly related to the backscattering coefficient and
thus to reflectance than is SPM. In this study, the correlation
analysis between the in situ measured SPM and the Landsat-
derived R (1) for SPM estimation indicated that there was a
significant positive correlation between the ETM+-derived
reflectance in the near-infrared R (NIR), exhibiting a fair
correlation of R*=0.4635 and r=0.6808 at p < 0.05, with
the in situ SPM measurements using a linear regression
model (Figure 25). This relatively low correlation between
the in situ measurement of SPM and the ETM+-based
derived R (NIR) is also reported in related studies (e.g.,
[86-91]). It can be concluded that because SPM transports
nutrients and contaminants, it reduces the transmission of
light through a water column hence influencing the entire
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aquatic ecosystems [92]. This means that it may be more
complex to detect SPM in the VNIR as also reported in the
empirical results by [23].

From the results in Figures 23-25, it is conclusive that the
ETM+-VNIR bands can effectively be used for the estimation
of the turbidity and Chl-a; however, further research needs to
be carried out on the use of the Landsat bands in the more
accurate detection of the SPM in reservoirs. A summary of
the empirical regression correlation equations is presented
in Table 10. Only the results that meet the set criteria of the
significance p < 0.05 are presented.

The determination of the trophic status of reservoir and
lakes is one of the prime inland water management issues,
and the trophic state is often characterized by the Chl-a
and SPM. From the case study results presented above, it is
evident that the reservoir WQP can be estimated using the
EyeOnWater and HydroColor smartphone apps and the
Landsat ETM+-VNIR bands. For monitoring the local water
bodies, the results show that the smartphones are most suit-
able for estimating all the three WQP with an accuracy of
above 75% in terms of the correlation coeflicients, except in
using EyeOnWater for predicting the presence and concen-
tration of chlorophyll. Landsat on the other hand is most
appropriate in measuring all the three water quality parame-
ters with very high accuracy of up to 90% for Chl-a and tur-
bidity, and 68% accuracy for SPM in terms of the determined
correlation coefficients R. The results are all positively show-
ing the applicability of smartphone apps and the Landsat
ETM+-VNIR in obtaining the WQP in a reservoir.

Previous studies have also indicated that the use of single
bands gave better results for the estimation of the analyzed
water quality physical parameters. Hicks et al. [93] generated
Pearson correlation coefficients between —0.46 and 0.96 for
turbidity for lakes in New Zealand using Landsat 7 and
reported strongest relationships (>0.90) for single bands
blue, red, and NIR.

4.3. Evaluation of the Spatial Distribution and Variability
of the WQP in the Reservoir. In order to further analyze
the performance of the models and to estimate the spatial
distribution and variability of the predicted and estimated
reservoir water quality parameters, spatial interpolation
was carried out using ordinary Kriging as explained above.
By determining the spatial distributions of the water qual-
ity variables, it is possible to analyze, characterize, and
visualize the water quality over the entire reservoir from
the sample points.

4.3.1. Distribution and Variability of Chl-a. The results for
the spatial interpolation of the measured concentrations of
Chl-a are presented in Figure 26, with Figure 26(a) showing
the benchmark Chl-a distribution results from the labora-
tory measurements. Apart from the results from EyeOn-
Water (Figure 26(d)), which as already mentioned above
have different calibration values, the results from Landsat
and HydroColor (Figures 26(b) and 26(c)) show matching
results with those from the laboratory measurements in
Figure 26(a). It is observable that the areas with the highest
and lowest concentrations of Chl-a are in good coincidence
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not only in relative location and distribution but also in
terms of the magnitudes of the concentrations of chlorophyll
within the reservoir. For example, in the case of laboratory
measurements, the maximum ranges of Chl-a concentration
are observed to be between 7.37 and 10.3 yg-L™", while the
maximum Chl-a concentration results from Landsat esti-
mates range between 7.75 and 11.1 ug-L™", and similarly for
HydroColor the range was between 7.72 and 9.38 ugL™".
These results illustrate the fact that the presence and concen-
tration of Chl-a can be estimated using both Landsat, by
using the developed regression model equation, and the
HydroColor App. A similar trend in the location and distri-
bution patterns of areas with the least Chl-a concentrations
is observed to coincide with the laboratory-measured results.

From the results in Figures 26(a)-26(c), the areas exhi-
biting the highest concentrations of Chl-a correspond to
areas which receive water via the two streams, which pass
through the agricultural lands and villages in adjoining
areas of the dam and within the watershed. Also towards
the weir, there is high activity which is mainly due to the agri-
cultural activities in the nearby farms. The rest of the reser-
voir waters show fairly lower concentrations of Chl-a, as
they are further away from the main point and nonpoint
sources of pollutants.

4.3.2. Turbidity Distribution. The turbidity was measured
from laboratory measurements and estimated from the
Landsat, EyeOnWater, and HydroColor models. The results
for the spatial mapping from the point turbidity estimates
are presented in Figure 27. Similar to the distributions
observed for chlorophyll, turbidity also exhibited similar var-
iability patterns for the four spatial maps. It is observable in
Figure 27 that the maximum and minimum ranges of turbid-
ity are similar, with nearly the same locational distributions.
Notable however is that the regions with high concentrations
in chlorophyll are not the same as those with high turbidity
levels. However, the reservoir areas with low chlorophyll con-
centrations are the same as for turbidity levels.

4.3.3. Spatial Mapping of SPM. The distribution patterns of
SPM within the inland water body systems are important in
understanding its ecosystem dynamics and for the develop-
ment of effective and quantitative monitoring of aquatic
environments [94, 95]. The results for the spatial interpola-
tion and distribution mapping of SPM using Kriging are as
presented in Figure 28. While the laboratory results exhibited
only five major SPM concentration ranges from the twelve
sampling points (Figure 28(a)), the three sensor-based
models showed more variations in terms of the SPM concen-
trations within the dam. The pattern, magnitude, and trend
of the distribution of SPM within the dam as determined
using Landsat and EyeOnWater (Figures 28(b) and 28(c))
are observed to be similar to the generated patterns from
the in situ observations in Figure 28(a). The same trend in
the magnitude and spatial distribution is also observed from
the HydroColor results in retrieving the concentration of
SPM (Figure 28(d)), with slight variations especially in the
areas of high SPM concentrations.
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FIGURE 26: Spatial maps of chlorophyll-a distribution from (a) laboratory measurements, (b) Landsat data, (c) HydroColor, and (d)

EyeOnWater.

4.3.4. Water Colour Mapping. For the spatial interpolation of
the determined water colour wavelengths within the reser-
voir, it was possible to generate the distribution maps from
the laboratory measurements and the smartphone apps, with
the results shown in Figure 29. In comparing the results from
the in situ measurements (Figure 29(a)) with the EyeOn-
Water results in Figure 29(b), it is noticeable that the maxima
and minima wavelengths are in coincidence in magnitude
and in spatial location; hence, EyeOnWater accurately
detected the reservoir water colour.

For the HydroColor app, there was a generation of the
colour hue and not the actual value for the water colour in
terms of wavelength. Because HydroColor uses different
colour charts from the conventional charts for laboratory
testing, it was not possible to directly correlate the results
for colour between HydroColor and laboratory results. Trial
results correlating the HydroColor colour hues to the wave-
length are given in Figure 29(c). Despite the differences in
magnitude of wavelengths between the laboratory and the
HydroColor results, there is an observed good correlation

of the water colour especially in the lower and dominant
wavelengths. The spatial distribution patterns of the water
colour from the two apps are also observed to be in agree-
ment with that of the in situ reference. Of significant interest
is the observed coincidence between the mapped Chl-a vari-
ability maxima and minima with those of the water colour. It
is concluded that there is a strong evidence of correlation
between the water colour and the presence of chlorophyll
within the water reservoir system.

In general, the results from this study may not be as
strong due to the unique reservoir morphology and water
composition, which can be attributed to the reservoir sys-
tem turnover effect, when the equalization of the thermal
gradient in the reservoir induces mixing of surface and bot-
tom waters, making remote monitoring difficult due to insta-
bility [60]. However, the main contribution of this research is
that the automated processing methodology allowed for the
processing and analysis of selected physical water quality
parameters using the in situ laboratory assessments, and
radiance analysis of Landsat ETM+ and smartphone camera
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FiGure 27: Turbidity distribution maps from (a) laboratory measurements, (b) Landsat, (c) EyeOnWater, and (d) HydroColor.

observations, with significant potential for rapid water qual-
ity analysis, and for the involvement and encouragement of
citizens to participate in environmental resource monitoring,
such as water quality assessments and reporting using state-
of-the art techniques including smartphone apps and satellite
data [28, 32-34].

5. Conclusions

The conventional laboratory-based methods for monitoring
water quality not only are cost-ineffective but also do not
represent the synoptic and spatial-temporal view of the
quality of surface water in time and space. Because of the
rapidly growing societal awareness on the changes in the
environment and climate, there is a parallel need to engage
citizens in gathering relevant scientific information for
monitoring environmental changes, such as water supply
and quality, due in part to the recognition that citizens

are a potential source of such critical information [34].
The developments in optical and thermal sensors have
made remote sensing to be an effective tool for extracting
spatial-temporal information on water quality. This study
presented the results of a comparative evaluation of three
sensor-based models from Landsat ETM+-VNIR data and
two smartphone apps—EyeOnWater and HydroColor—for
rapid and cost-effective prediction of optically active water
quality parameters as characterized by turbidity, chloro-
phyll-a, water colour, and SPM, with a case study of Kesses
Dam in Kenya.

The results from the three models are compared with
the in situ laboratory measurements by using empirical
regression modelling and spatial interpolation using ordinary
Kriging. For the estimations of SPM and Chl-a from ETM+,
Laili et al.’s [23] algorithms were first used for comparative
evaluation and analysis, and the results showed that the con-
centrations of the two WQP were estimated with a coefficient
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FIGURrE 28: Concentration maps of SPM: (a) laboratory measurements, (b) Landsat, (c) EyeOnWater, and (d) HydroColor.

of determination of R* = 0.4117 for SPM and R* of 0.8111 for
Chl-a. For the initial turbidity estimation within the dam,
Waxter’s [26] algorithm estimated the degree of turbidity
with R? =0.8346. In order to determine the suitable case
study functions for detecting the water quality parameters
from the Landsat ETM+ bands, regression modelling and
analysis between the ETM+ bands and the laboratory-
measured water quality variables were carried out. For the
retrieval of Chl-g, a linear empirical model from the remote
sensing reflectance with ETM+-band 2 gave the best results,
with a Pearson correlation coefficient of 0.8977. Using a cubic
polynomial linear regression model, the best measure for
turbidity was obtained from the independent ETM+-band 1
reflectance with R>0.9. For the estimation of SPM, a

second-order polynomial using the ETM+-NIR band gave
the best results with Pearson correlation of r = 0.6808.

The EyeOnWater app, which observes the optical col-
our of water based on the Forel-Ule index, presents an easy
and convenient approach of acquiring and displaying real-
time information about water quality parameters. By using
the initial regression models for the estimation of turbidity
and SPM, the two WQP were, respectively, estimated with
coefficients of correlation r=0.819 and r=0.7315. For the
HydroColor app, the two variables were determined with
respective Pearson correlation coefficients of 0.8405 and
0.8637 for turbidity and SPM. Comparatively, the estima-
tion of turbidity from the EyeOnWater app, which is based
on the FUI-XYZ colour space, was marginally lower than
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HydroColor app.

from the HydroColor app which uses the RGB colour
space. This difference could be attributed to error contribu-
tion by the x-chromaticity coordinate conversion process.
For the chlorophyll estimation from the HydroColor app,
the adjusted ratio Cchl showed a perfect match for chloro-
phyll-a estimation and the actual Chl-a was estimated with
Pearson’s correlation coefficient of r > 0.8.

The increasing demand for high-resolution spatial and
temporal environmental monitoring echoes the need for
new and easy-to-use methods for the collection of reliable
and accurate data sets for water quality monitoring and con-
trol. From the current study results, it is concluded that the
evaluated remote sensing models are effective, cheaper, and
significant in monitoring freshwater bodies like reservoirs,

as compared to the conventional laboratory measurement.
Complemented by predictive algorithms, the smartphone
apps are demonstrated to meet the potential requirements
of future investigations targeting water quality predictions
and serve as potential methodologies for providing timely
benchmark information about the aquatic environment to
the public, scientists, and policymakers. In order to improve
on the reliability and utility of the apps, further studies
through seasonal observations, calibration, and validation
in different geographically homogeneous case studies will
improve and enable standardization of their applicability.
Further, in the initial validation process, future studies would
consider the simultaneous validation of the app radiances
against the satellite sensor-measured radiances for the
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derived water quality parameters. This is because the existing
empirical algorithms may be subjective and biased to specific
geographical region and reservoir water body characteristics.

Further, in order to improve on the water quality retrieval
using the smartphones, the knowledge and integration of
other measurable environmental variables that contribute
to the apparent water colour such as wind speed, cloud cover,
location, and accuracy of measurements should be consid-
ered towards improving the derivation of the water quality
parameters from the smartphone apps. As compared with
the traditional sample collection and analysis approaches,
the potential advantages of remote sensing sensor-based
approaches are demonstrated and can effectively be used
for increased spatial-temporal monitoring of reservoirs
and for continuous assessment and or management of
water quality.
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