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ABSTRACT 

Ready-made garment manufacturing industries are characterized by high variability of 

the processing times, short product life cycle and huge number of employed resources 

which contribute to low productivity. Thereby, optimal garment assembly line design is 

very crucial for achieving high productivity, increasing line efficiency and improving 

decision making at both levels of production planning. Assembly line design problem has 

gained attention of many researchers in the past years whereby a number of researches 

have been done on garment assembly line balancing problem with simulation technique. 

However, very few have used simulation-based optimization technique to address the 

design problem. The main objective of study was to design an optimal trouser assembly 

line with the parameters’ settings that maximizes the production throughput. Specifically, 

the study aimed to analyze current-state of the existing trouser assembly line and develop 

its simulation model, to generate design alternatives, and to determine the global optimal 

design alternative. The current-state of existing garment production facility was analyzed 

using industrial engineering tools which include brainstorming, fishbone diagram, ABC 

analysis, process mapping, and time study. Then, the discrete event simulation model of 

the trouser assembly line was developed using Arena simulation software and was 

validated using one-sample T-test. The trouser assembly line simulation model was 

accepted at T-value of -0.20 and P-value of 0.842. Sixteen design alternatives were 

generated by performing experiments on the design points derived from the design of 

experiment and the metamodel was developed using liner regression method. The 

metamodel was validated using significant test at alpha value 0.05 and the best setting 

was adopted as the initial solution for the optimization process. Metaheuristic 

optimization was performed on the simulation metamodel with the help of OptQuest for 

Arena to search for the global best design alternative. The effects of bundle size, job 

release policy, task assignment pattern, number of machines and number of helpers on 

the production throughput were analyzed. Only two factors; machine numbers and helper 

numbers and their interaction have significant effect on the throughput. The comparison 

with the existing trouser assembly line design was made based on the production 

throughput. The result shows 28.63% increase in the throughput for the trouser assembly 

line at metamodel design and the overall increase of 53.63% for the optimal design. 

Consequently, the production efficiency increased to 79.75% and 95.25% at metamodel 

and optimal design stages, respectively. From the results of the study, it was concluded 

that simulation-based optimization via design of experiment is suitable for giving an 

insight of garment assembly line and achieving its optimal design. In the further study, 

simulation models of garment assembly line can be developed by considering other 

design parameters which include machines failure and line supervisor functions. In 

addition, further study can be done with different approaches such as using machine 

learning and more complex experimental design for developing the metamodels. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Globally, textiles represent the fourth largest manufacturing industry, with the apparel 

sector forming the most valuable component of this industry (Fan & Hunter, 2009). 

Garment production is the most critical sector in this industry since it is a value addition 

which is expected to increase revenue and profits for company. In addition, huge number 

of labour force and resources in the sewing line are the major aspect for complexity of 

garment assembly line (Fan & Hunter, 2009). 

Assembly line system was introduced in 1913 by Henry Ford with the idea of mass 

production. He designed an assembly line for automobile manufacturing industry which 

was then  adopted in large scale apparel production after the introduction of sewing 

machines in early age of the second industrial revolution (Aydin, 2013). Since then the 

apparel production system became more and more sophisticated. Brahim & Alain (2006) 

coined assembly line as the flowline production whereby a product moves from one 

workstation to another. In assembly line, tasks are allocated to workstations considering 

some restrictions including precedence constraints, cycle time, number of workstations, 

and incompatibility relations between tasks (Alghazi, 2017). Therefore, assembly line 

design becomes very crucial for the proper functioning of any assembly line production 

system and more so, the optimal design.  

Assembly line design problem often has a complex structure due to multiple components 

(e.g. tooling, operators, material handling facilities, etc.). For instance, in a single product 

model assembly line design, a number of design alternatives may exist. The problem can 

easily become highly complicated if the designer has to consider all the possible 

combinations of these alternatives. This problem is classified as non-deterministic 
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polynomial (NP) hard problem or complex combinatorial problem (Brahim & Alain, 

2006). Therefore, optimal design would provide the best solution for this kind of problem.  

In the previous studies, garment  assembly lines design have been implemented using 

different techniques such like manual/practical technique (Karabay, 2014), ranked 

positional weight techniques, probabilistic line balancing technique (Eryuruk et al., 

2008), largest candidate rule techniques, simulation techniques (Guner & Unal, 2008), 

genetic algorithm (Chen et al., 2014), and combination of simulation and heuristics 

techniques (Eryuruk, 2012). A number of literature have considered assembly line design 

as assembly line balancing problem (Dang & Pham, 2016). Kitaw et al (2010) developed 

an approach for assembly line balancing for garment production using simulation models 

with Simul8 simulation software. Kursun & Kalaoglu (2009) also conducted simulation 

study of production line balancing in apparel manufacturing using Enterprise dynamics 

simulation software. A recent study, comprehensively evaluated the garment assembly 

line using Anylogic simulation software and has proved that there is need to do 

optimization (Xu et al., 2017). Simulation technique is only descriptive and does not help 

in decision making. In order to overcome this limitation in assembly line design, a 

technique called simulation-based optimization has been proposed. 

Simulation-based optimization is the state-of-the-art design technique that combine both 

simulation and optimization technique. Whereby simulation is majorly used to analyze 

the behaviour of the system and generate design scenarios while the optimization is used 

to select the global best design alternative. Simulation-based optimization is not a new 

approach, it has been applied to solve design problem by a number of researchers in the 

previous years. For instance, Dang & Pham (2016) designed assembly line for footwear 

production using simulation-based optimization on Arena software. The authors were 

able to improve the labour productivity. Juan (2016) conducted study on production 
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planning in manufacturing industry using simulation-based optimization. Another study 

by Yegul et al (2017) improved the configuration of production line using simulation-

based optimization. While Alrabghi & Tiwari (2016) proposed the use of simulation-

based optimization for developing industrial maintenance strategies. 

In general, simulation-based optimization has not only been in manufacturing sector but 

also other sectors such as transport and healthcare. For instance, Ibrahim et al. (2017) 

conducted a study on minimization of patient waiting time in emergency department of 

public hospital using simulation-based optimization approach. Moreover, Shakibayifar et 

al. (2018) applied simulation-based optimization technique to rescheduling train traffic in 

uncertain conditions during disruptions. Based on the previous studies, the combination 

of discrete event simulation and metaheuristics optimization technique was adopted to 

solve the garment assembly line design and scheduling problem in the current study. 

Assembly line  design problem is how to group and assign a given set of tasks to a number 

of workstations so as to reduce idle time, labor cost and maximize throughput without 

violating the precedence constraints. While the scheduling problem is how to determine 

the best sequence of jobs to minimize some performance such as work in progress (Dang 

& Pham, 2016). In order to tackle the real practical assembly line problem, metaheuristics 

search algorithm integrated into the simulation environment would provide global 

optimal solution  (Brahim & Alain, 2006). Therefore, the present study focused on 

assembly line design for garment production using simulation-based optimization via 

experimental design.  

1.2 STATEMENT OF THE PROBLEM 

Southern Range Nyanza Limited (Nytil) is a vertically integrated textile industry with 

garment production as the most critical department because it is the value addition and 
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entails huge number of resources and operations. The garment department receives orders 

in large quantity from customers such as Healthcare, Uganda police, UPDF, South Sudan 

Army, etc. Therefore, it is subjected to constant pressure of meeting customer’s order due 

date. However, currently the company is operating at low productivity with production 

efficiency of 61.25% which is quite hard for the company to achieve its goal even if the 

operators were to undergo forced overtime. 

The manual technique which is currently used in the department is ineffective and inferior 

for designing this system because manually observing the real garment manufacturing is 

very difficult, time consuming and inaccurate. These problems result into promising 

assembly line balancing problems (Chen et al., 2014) such as bottleneck, low utilization, 

low efficiency and low productivity that hinder the department from achieving its 

goal/objectives. 

A number of researchers have studied assembly line balancing problems in garment 

production using simulation techniques (Xu et al., 2017). Such approaches have not been 

used for designing garment assembly line in Uganda and other Sub-Saharan Africa and 

therefore, the present study is the first of its kind to the best of our knowledge.  

This study goes beyond the existing studies on garment assembly line design by using 

combination of simulation metamodeling technique and the metaheuristics (scatter 

search, tabu search, and neural network) search algorithms to obtain a global optimal 

assembly line design. 

1.3 JUSTIFICATION OF THE STUDY 

Simulation approaches are capable of capturing the uncertainty of the assembly line and 

accurately reproducing its behaviour. Therefore, various assembly line design problems 

such as bottleneck, idle time, low resource utilization will easily be identified and 
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eliminated. Hence, the overall productivity improvement of garment production will be 

achieved.  In addition, the assembly line efficiency will be increased by improving the 

resource utilization. More so, the production capability will be well anticipated and 

therefore, successfully plan for resources and the need for capacity building or extensions. 

By combining both simulation and optimization approaches for assembly line design, 

decision making at both level of production planning i.e. strategic, tactical and operational 

production planning will be improved. The design of experiment (metamodeling) helps 

to analyze the behavior of the simulation models so that the effects of varying assembly 

line design parameters can be explicitly known. Therefore, the conclusion can be drawn 

that will not only be utilized by case study garment industry but also other garment 

industries. 

1.4 SIGNIFICANCE OF THE STUDY  

The study contributes to area of simulation, optimization, design of simulation experiment 

and metamodeling. The study also contributes to practical application of industrial 

engineering tools such as ABC analysis, fishbone diagram, process mapping and time 

study. The study contributes to the digital disruption in apparel manufacturing brought 

about by the fourth industrial revolution (industry 4.0) which is well known as Apparel 

4.0 or Fashion 4.0. 

1.5 OBJECTIVES OF THE STUDY 

1.5.1 Main objective 

The main objective of the study was to design an optimal trouser assembly line with the 

parameters’ setting that maximizes the throughput. 
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1.5.2 Specific objectives 

In order to achieve the main objective of the study, the following specific objectives were 

accomplished. 

i. To analyze the current state of the existing trouser assembly line and develop its 

simulation model using Arena simulation software 

ii. To generate trouser assembly line design scenarios using design of experiment 

iii. To determine an optimal trouser assembly line design using OptQuest for Arena. 

1.6 SCOPE OF THE STUDY 

Garment/apparel production involves pattern design and making, fabric cutting, sewing, 

finishing, and packaging. However, this study only focused on sewing section since it is 

the most complex section that uses large number of operations and resources. The study 

also focused on single product model assembly line. The study considered only single 

objective optimization problem i.e. the throughput which is the number of finished 

products delivered per day. The assembly line design problem was focused on the line 

balancing and resource planning. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

2.1.1 Historical background 

The introduction of mass production revolutionized the production system from the 

traditional craft production system in the early age of the second industrial revolution. 

The mass production reduced average cycle time for from 8.6 hours to 2.3 minutes. While 

the introduction of moving assembly line further reduced the average cycle time from 2.3 

to 1.9 minutes. However, the complexity of the mass production and assembly line system 

had introduced bureaucracy on such a vast scale that it brought its own problems, and 

with no obvious solutions (Degan, 2011). 

The mass production paradigm shifts in textile and apparel production took place after 

the introduction of sewing machines. The technology of sewing underwent tremendous 

development during the twentieth century as the sewing machines became more 

affordable to the working class (Rajkishore & Padhye, 2015).  

Furthermore, the idea of ready-made garments (RMGs) paved their ways as women (with 

sewing skill) in large numbers joined the paid workforce. The ready-made garment 

concept fully utilized mass production system. Although these concepts existed at that 

time, they were not widely available until the beginning of the twentieth century. Since 

then, the RMG sector both for men’s and women’s clothing has seen tremendous growth, 

and today it has almost replaced the customized production of clothing items (Rajkishore 

& Padhye, 2015). The result of this tremendous growth has been due to mass production 

facilitated by assembly line production system. Now days the ready-made garment 

products are expanding tremendously, the few examples include men’s suits, coats, pants, 

trousers, shirts, dresses, ladies’ suits, blouses, blazers, cardigans, pullovers, jeans, shorts, 

polo shirts, uniforms, jacket, etc. 
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2.1.2 Definitions and notations 

2.1.2.1 Terminology used in assembly system 

These are some definitions to describe the assembly system problem and have been used 

by a number of researchers (Brahim & Alain, 2006; Curry & Feldman, 2011; Ortiz, 2006; 

Thomopoulos, 2014). 

Assembly; an assembly is basically fitting together various parts in order to create a 

finished product. 

Assembly line; Brahim & Alain (2006) defined assembly line as a flow-line production 

system composed of succession of workstations. The products pass from one workstation 

to another.  

Task; this is a portion of the total work content in an assembly process. Tasks are 

considered indivisible and they cannot be splitted into smaller work elements without 

unnecessary additional work. 

Precedence constraints; these are the orders in which tasks must be performed 

(technological restrictions). Precedence indicates the order and priority relationship 

between operations in the same process (Torenli, 2009). 

Processing time; this is the time taken for the task to be completed at workstation or time 

taken for machine or operator to complete a given job or task. 

Cycle time; this is the time between the exits of two consecutive products from the line. 

It represents the maximal amount of work processed by each station. Cycle time at a 

workstation is a function of the total operation time and number of operators at that station 

(Boivie & Hoglund, 2008). 
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Station time; this is the total process time at the workstation. The work content of a station 

is referred to as station load. 

Throughput; this denotes the average number of products delivered per unit time. 

 Station idle time; this is the positive difference between the cycle time and the station 

time. The sum of idle times of all stations is called the delay time. 

Line efficiency; this is the measure of capacity utilization of the line. The unused capacity 

is reflected by the balance delay time (Grzechca, 2016). 

Smoothness index; this measures the standard deviation of the distribution of work among 

the stations (Grzechca, 2016). 

Capacity time; the capacity time is defined as the total time available to assemble each 

product. The capacity time is greater or equal to the sum of process time of all tasks’ work 

content. 

Makespan; this is the maximum completion time required to process all operations for a 

given set of products. 

Work in progress/buffer size; this is the number of unfinished products in the assembly 

line. 

Labor productivity; labor productivity is the amount of output that an operator produces 

in a unit time. 

Bottleneck; the bottleneck station is the work center whose capacity is less than the 

demand placed on it and less than the capacities of all other resources. A bottleneck station 

determines the capacity of the whole production system. This implies that each operator 

on the line is a bottleneck for the line and it is of crucial importance to eliminate the 

balance losses for maximizing line capacity. 



10 

 

2.1.2.2 Important distributions  

A number of probability distribution functions are used so frequently and are known by 

special names (Curry & Feldman, 2011). However, the most important ones have been 

described as follows (Altiok & Melamed, 2007; Badiru & Omitaomu, 2011; Kelton, 

Sadowski, & Sturrock, 2007). 

Uniform distribution; the uniform distribution is denoted by UNIF (a, b), and is the 

simplest continuous distribution, where a is the minimum value and b is the maximum 

value. 

Triangular distribution; the triangular distribution is denoted by TRIA (a, c, b) where a 

is the minimum value, c is the most likely value or mode, and b is the maximum value. 

Exponential distribution; the exponential distribution is denoted by EXPO (ƛ), where ƛ is 

called the rate parameter. 

Normal distribution; the normal distribution is denoted by NORM (µ, σ2), where µ is the 

mean (scale parameter) and σ2 is the variance (shape parameter). 

Lognormal distribution; the lognormal distribution is denoted by LOGN (µ, σ), where µ 

is a scale parameter and σ is a shape parameter. 

Gamma distribution; the gamma distribution is denoted by GAMM (α, β), where α > 0 is 

the shape parameter and β > 0 is the scale parameter. 

Erlang distribution; Erlang distribution denoted by ERL (k, ƛ), where, k is the shape 

parameter and ƛ is the rate parameter. 

Beta distribution; the beta distribution is denoted by BETA (α, β), where α > 0 and β > 0 

are two shape parameters. 
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Weibull distribution; the Weibull distribution is denoted by WEIB (α, β), where α > 0 is 

the shape parameter and β > 0 is the scale parameter. 

2.1.3 Garment manufacturing challenges and opportunities  

Garment manufacturing also known as apparel manufacturing is labour intensive which 

has led to the shifting of many apparel manufacturing facilities from developed countries 

to developing countries because of cheap labor force. Although there is cheap labor in 

developing countries, garment industries are facing the greatest challenges such as short 

production life-cycle, high volatility, low predictability, high level of impulse and quick 

market response (Rajkishore & Padhye, 2015). In order to survive, the garment industries 

in developing countries are reducing the cost of production by focusing on sourcing 

cheaper raw materials and minimizing delivery cost rather than labor productivity because 

of the availability of cheap labor. 

Global and local competition is still a major challenge amongst apparel manufactures. 

Therefore, one can only survive on the market if all unnecessary costs are reduced, the 

range of production is expanded, and consumers are considered individually. However, 

the local apparel manufacturers are gradually reducing the production and focusing on 

performing only the entrepreneurial functions involved in apparel manufacturing such as 

buying raw materials, designing clothes and accessories, preparing samples and arranging 

for the production, distribution and marketing of the finished product (Rajkishore & 

Padhye, 2015). 

Rapid technological changes and customer expectations have also imposed a great 

challenge to apparel manufactures especially in developing countries. Therefore, there is 

high demand from the manufacturers to improve the quality of fashion products 

constantly and thus survive in the market (Karthik et al., 2017). In addition, the 

manufacturers are required to adjust their production system in order to meet market 
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demand in that they have to set a flexible production model that is capable of quick and 

easy adjustment to modern requirements (Babu, 2012).  

Another technological challenge facing apparel manufactures in developing countries is 

the differences that exist in the process of making clothes of different fashions, which in 

one way or the other requires a different organization of technological processes (Colovic, 

2012). Therefore, this calls for the most economical ways of work and time required to 

perform work operations, change management, capacity and planning. In addition, it is 

necessary to implement new solutions in manufacturing, information systems, 

management techniques, and design, etc. (Colovic, 2011). 

The promising challenge facing the apparel industries in developing countries is the 

indispensability of scientific approach and engineering applications for apparel 

manufacturing. This implies that the apparel manufactures will find it very difficult to 

meet the cost of production unless and until manufacturing is done with scientific 

approach such as implementation of simulation model for line balancing and assembly 

line design, lean production, etc. (Babu, 2012).  

Generally, the apparel industries in the whole world especially in developing countries 

will not give any pleasing results to the management unless it strives for necessary 

improvements that will lead to productivity growth, more rational usage of all-natural 

resources and cost reduction. In most cases these companies do not see the necessity for 

changes in management, capacity and planning which are negatively impacting many 

apparel industries today (Karthik et al., 2017). 

2.2 Garment manufacturing system  

An apparel or garment production system is an integration of materials handling, 

production processes, personnel, and equipment that direct workflow and generate 
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finished products (Babu, 2012). There are three types of apparel production system that 

are widely adopted in garment industry, these include; (i) group or modular production 

system (Sudarshan & Rao, 2014) (ii) progressive bundle production system and (iii) unit 

production system. In modular production system, operations are done in a contained and 

manageable work cells that includes a number of specialized resources such as an 

empowered work team, equipment and work to be executed. This production system has 

achieved the success of flexibility, however, very high initial capital and investment in 

training are still the major limitation to its adaptation to most apparel industries (Karthik 

et al., 2017).  

The progressive bundle production system normally referred to as conventional 

production system is still the most commonly installed production system till to date 

amongst other garment production system because of its cost effectiveness on high tech-

machines. The operation in this system involves moving bundles of cut pieces (5, 10, 20, 

30 or 40 pieces) manually to feed the line. Whereby, the operator inside the line drags the 

bundles by him/herself from the table and transfer the bundle to the next operator after 

completing his/her task. The major problem with progressive bundle system is the 

tendency of accumulating very large inventory which impose an extra cost of controlling 

and handling inventory. In order to overcome the limitation of material handling in 

progressive bundle system, a new system called unit production system was developed. 

In this system, the overhead transporter is used to move the garment from one workstation 

to another workstation for assembly which improves material handling. The success of 

unit production system is that it improves the production lead times, productivity and 

space utilization, however, this production system is extremely expensive. In general, the 

tradeoff of these production system depends on the production volume, product 

categories, and the cost effectiveness of high-tech machines (Karthik et al., 2017).  
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2.3 Current state analysis  

2.3.1 Time study  

The definition of time study was first coined in the early 20th century in industrial 

engineering, referring to a quantitative data collection method where an external observer 

captured detailed data on the duration and movements required to accomplish a specific 

task, coupled with an analysis focused on improving efficiency (Lopetegui et al., 2014). 

Time study has been considered to be accomplished before any design of assembly line, 

which involves timing and observing motion of the work associated with building the 

product. Collecting times data are absolute requirements to improving the assembly 

operations in the facility (Ortiz, 2006). The advantages of time study method over other 

work measurement techniques include (Babu, 2012); (i) helps in developing a rational 

plan; (ii) helps in improving productivity; (iii) helps in balancing assembly lines; (iv) 

provides the time data for process design; (v) helps in determining operator skill levels. 

Nevertheless, conducting time study is time consuming and very tiresome especially 

when the system has many elements to be measured.  

However, time study has been the most commonly used amongst studies as it determines 

accurate time standards, and it is economical for repetitive type of work. Vast number of 

researches have been done using time study method. For instance, Senthilraja et al. (2018) 

applied time study technique for improving the operators’ productivity in rubber industry. 

While Khatun (2014) studied the effect of time and motion study on productivity in 

garment sector. The author postulated that the target productivity can be achieved by time 

study. The time study technique was adopted in this study because of its industrial 

applicability, and has fewer limitations than other work measurements methods such as 

activity sampling, predetermined time standards (PTS), and structured estimating (Babu, 

2012). 
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The basic time study equipment consists of stop watch, study sheet and time study board 

(Ortiz, 2006). Steps for conducting time study have been presented as shown in Figure 

2.1 (Babu, 2012; Russell & Taylor, 2011). 

The number of timing cycle for specific activity basically depends on the end use of the 

time study data. For instance, if the time study data is to be used in probability distribution 

analysis then a greater number of timing cycle or measurements give better result. For 

each work element/task,  processing time can be  recorded 10 times (Kitaw et al., 2010), 

or 15 times (Sudarshan & Rao, 2014) , 20 times (Kursun & Kalaoglu, 2009) or more, the 

higher the number of measurement, the better the results. There are two common methods 

of measuring time with a stopwatch such as fly back and continuous method. 

2.3.1.1 Fly back method 

Here the stopwatch is started at the beginning of the first element. The readings are then 

recorded at the end of the element and the stopwatch hand is snapped back to zero. The 

time of each element is obtained directly. The only advantage of fly back method is that 

Selection of tasks 

Standardize method of working 

Select operators for study 

Record the details 

Break the task into the elements 

Determine the number of cycles 

Measure the time of each element 

Figure 2.1. Steps used in time study 
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it involves less calculation. However, it has got many limitations such as difficulty in 

training analyst with this method, requires a lot of skills and difficult to take accounts 

once the element is missed (Starovoytova, 2017).  

2.3.1.2 Continuous method 

In this method, the stopwatch is started at the beginning of the first element and then 

allowed to run continuously throughout the study. The advantages of this method include; 

missing of any element does not affect the overall time. It is very simple to train the 

analyst with this method, and it is the most accurate of all other methods. However, this 

method has got one limitation of taking too much time in making subtraction every time 

to achieve the individual measurement. The stopwatch readings are recorded on the study 

sheet at the end of each element. The time for each element is then calculated by 

successive subtraction. The final reading of the stopwatch gives the total time, known as 

the observed time (Puvanasvaran et al., 2013; Starovoytova, 2017). Since, this method 

produces the most accurate result and very simple to apply, it was used in the current 

study.  

When conducting time study in garment sewing line, the component task should be 

recorded as the smallest measurable task as illustrated in Table 2.1 (Babu, 2012). In 

addition, all the ethical issues must be observed and considered when conducting time 

study (Shaw, 2003). For instance, time study engineer should not stand facing the operator 

being studied. The standing position should be right behind or at the side of the operator 

being timed. 
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Table 2.1. Component task classification and when to record 

Job Component tasks and when to record 

Sewing 

machine work 

Taking the work piece 

and placing under 

Sewing by machine Placing on holding 

table 

When to record Start of needle 

movement  

When needle stops When hand is taken 

from the workpiece 

Ironing  Taking and placing the 

workpiece  

Ironing/pressing  Placing on holding 

table 

When to record When iron is picked up When iron is 

returned to position  

When hand is taken 

from the workpiece 

In most apparel manufacturing, Standard Minute Value (SMV) has been used to estimate 

the production time for each task. Although the characteristic of SMV is deterministic in 

nature, some authors have used it to solve the line balancing problem of sewing 

departments. This implies that the production time has been assumed to be constant for 

the similar tasks which is not practically realistic (Akter & Hossain, 2017). However, in 

a real world garment production system, all operations are completed at different times 

because of their stochastic structure, and the stochasticity of operations makes it almost 

impossible to follow a fixed time pattern. Therefore, the use of SMV for apparel assembly 

line design  cannot reflect the real production environment because a lot of factors such 

as performance of machinery (machine failure and set-up), operators variability (fatigue 

and resting), working environment and quality level (rework) of the product may cause 

variations on the task time (Kitaw et al., 2010).  

In order to fully represent the apparel production system in the simulation model, the 

variability of tasks or observed time from time study is very essential. A number of 

researchers have considered observed times to represent the operation times for tasks in 

apparel assembly line balancing problem (Bahadır, 2011; Guner & Unal, 2008; Kitaw et 

al., 2010; Kursun & Kalaoglu, 2009; Wickramasekara & Perera, 2016). However, in the 

present study, the variability of operation times was considered in developing simulation 

model. This is because the study aimed to fully represent the real garment assembly line. 
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Therefore, allowances and operators performance ratings (Yamane et al., 2017) were not 

considered for this case. 

2.3.2 Process mapping  

Process mapping is an exercise of identifying all the steps and decisions in a process in a 

diagrammatic form, with a view to continually improve that process. In literature, two 

commonly used types of process mapping are; process flowchart (outline process map) 

and deployment charts. The former is useful for capturing the initial detail of the process. 

For instance, Kursun & Kalaoglu (2009), Kitaw et al. (2010), Bahadır (2011) and Yamane 

et al. (2017) used process flowchart as conceptual model in their simulation study with 

the aim of analyzing and understanding the current state of the studied system. While the 

latter not only provide a basic overview but also shows who does what along with the 

interactions between people and departments. This one has been used as a standalone 

method amongst studies for process improvement. For instance, Uddin (2015) improved 

production process using value stream mapping as a standalone method. Since, the 

present study adopted process mapping as tool for conceptual modeling but not as 

standalone method, the process flowchart method was used. 

2.3.3 Observations  

Observation is another method that has been used for analyzing the current state of the 

system amongst studies. However, it has been used alongside interview to capture more 

data on the current state of the system (Gebrehiwet & Odhuno, 2017). Observation is a 

very important tool when conducting process mapping and time study. For instance, in 

garment assembly line, two major areas that can be observed on the sewing machines are; 

Machine working (positioning, sewing, and dispose) and Machine not working (waiting 

for repair, waiting for suppliers, personal need for workers and idle (Babu, 2012). The 
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present study combined observation with process mapping for conceptual modeling of 

the garment assembly line. 

2.3.4 Brainstorming  

Brainstorming is one of the most common techniques used to generate ideas from the 

individual or group of people. In most cases, it has been applied in both educational, 

industrial, commercial, and political field (Al-khatib, 2012). In the previous studies, 

brainstorming has been combined with other method such as fishbone diagram (cause-

and-effect analysis tool) for analyzing the current state of the production system. For 

instance, Barton (2004) used brainstorming and fishbone diagram to analyze and identify 

factors that affect the throughput of the production process. Many studies have shown the 

applicability of brainstorming as the problem solving techniques. Al-khatib (2012) 

confirmed the effectiveness of using brainstorming as a problem-solving tool. The ability 

of brainstorming method to generate as many ideas as possible without judgement, has 

motivated this study to use it for generating ideas on factors that influence the throughput 

of garment assembly line.  

2.3.5 ABC analysis  

Traditionally, ABC analysis has been used to classify various inventory items into three 

categories A, B, and C based on the criterion of dollar volume. In the current globalized 

hyper-responsive business environment, a single criterion is no longer adequate to guide 

the management of inventories and therefore, multiple criteria have to be considered 

(Sibanda & Pretorius, 2011). Other criteria that can be considered for ABC analysis 

include; lead time, item criticality, durability, scarcity, reparability, stockability, 

commonality, substitutability, the number of suppliers, mode and cost of transportation, 

the likelihood of obsolescence or spoilage and batch quantities imposed by suppliers. 

Consequently, ABC analysis has been adopted amongst researches to make decision on 
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selection of products, machines, production lines, etc. For instance,  Pinho & Leal (2007) 

used ABC analysis to prioritize a production system for their study based on productivity 

per day criterion. Therefore, in the current situation, ABC analysis tool was also adopted 

to prioritize the product model and assembly line to be used in this study.  

2.3.6 Identification and classification of variables  

There are basically four types of variables that exist in any manufacturing systems and 

are always identified during current state analysis. These are quantities in simulation that 

need to be identified before conducting a simulation study. The first two classes are the 

independent variables and dependent variables. Independent variables are known as the 

decision variables or desired input parameters or factors while dependent variables are 

knowns as output parameters or responses or performance measures. The second two 

classes which are considered in simulation experiments are the nuisance variables and 

intermediate variables. Nuisance variables are known to affect the behavior of the system, 

but cannot be directly controlled. These are rarely presented in simulation, where all 

factors are generally under the user’s control. While the fourth variable is intermediate 

variable that cannot be controlled independently. They are affected by the settings of the 

independent variables and therefore are not considered dependent variables (Kleijnen, 

2008).  

It is very important to identify all the four types of variables before conducting a 

simulation experiment. Dependent variables are always determined by the objective of 

the study. The examples of dependent variables that were considered by the previous 

studies includes; cycle time, throughput, operating cost and worker’s utilization. 

Independent variables are not simple to identify and therefore, they are determined with 

specified methods (Barton, 2013). The independence variables are further categorized as 

quantitative and qualitative factors. For instance, in garment production system, the 
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quantitative factors include; number of operators, number of machines, number of 

workstations, buffer sizes, interarrival time of parts, bundle sizes and many other. While 

the qualitative factors includes; queue disciples, job release policy, operators skills, task 

assignment pattern and priority rules (First in First Out (FIFO), Last in First Out (LIFO), 

and Shortest Processing Time (SPT)) (Kleijnen, 2008; Sanchez et al., 2014).   In literature, 

two methods such as the process diagram (Integrated Definition Zero (IDEF0)), and 

cause-and-effect diagram (fishbone diagram) have been used for identifying the 

independent variables.  

2.3.6.1 Process diagram (IDEF0) 

Process diagram (IDEF0) is the variant of IDEF (integrated definition) diagram which is 

designed to model the decisions, actions and activities of an organization or other system. 

It is used for communicating and analyzing the functional perspective of a system (Bosilj-

vuksic, 2000). IDEF0 has been applied for identification of independent variable in many 

manufacturing companies (Presley & Liles, 1998). One of its main strength is simplicity, 

however, it does not clearly give out the relationship between factors and the effect. 

2.3.6.2 Fishbone diagram  

Cause-and-effect diagram (fishbone diagram) is another method that has been widely 

used amongst studies (Barton, 2004). It is an analysis tool that provides a systematic way 

of looking at effects (performance measures) and the causes (factors or independent 

variables) that create or contribute to those effects (Hekmatpanah, 2011). One of the 

underlying benefits of this method is that, it has nearly unlimited application in research, 

manufacturing, marketing, office operations and so forth. One of its strongest assets is the 

participation and contribution of everyone involved in the brainstorming process 

(Hekmatpanah, 2011). The ability of cause-and-effect diagram to clearly identify and 
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categorize factors that affect the performance of the system is one of the major reasons 

for its adoption in this study. 

2.4 Assembly line design techniques  

2.4.1 Practical or manual techniques 

Practical technique is the conventional assembly line design techniques which is still 

being used for apparel assembly line balancing in most developing countries. In this 

design technique, the required amount of workstations shows the percentage workload of 

the workstation at the same time and also the design can be made according to the 

expected line efficiency (Karabay, 2014). This design technique is quite simple and 

cheaper to implement. However, it suffers from inefficiency for complex apparel 

assembly line design problem. Moreover, it is very risky and difficult to stop the 

production for reason of altering a design. Nevertheless, the current study deals with 

complex assembly line design problem, the manual design technique was not adopted. 

2.4.2 Heuristics techniques 

The second design technique is the heuristics technique which includes the use of one or 

combination of the following; ranked positional weight technique, probabilistic line 

balancing technique, Hoffman, and largest candidate rule technique. These heuristic 

techniques are based on logic and understanding rather than mathematical proofs and 

formulas (Kayar, 2014). Eryuruk et al. (2008) compared efficiency of using ranked 

positional weight technique and probabilistic line balancing technique in apparel 

manufacturing. The authors found that ranked positional weight technique was easier to 

apply and has higher line efficiencies than the counterpart. However, it assumes 

deterministic task/operation times which does not apply to real garment production 

process.  
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The probabilistic line balancing technique considers the variability in the task times and 

that means more reliable assembly line balancing results can be obtained. Largest 

Candidate Rule technique has been applied to redesign the garment assembly line. This 

technique is the easiest method to understand and can be implemented to mass production 

industries such as textile, electronics, footwear, automobile and so on. Nevertheless, it 

often results to bottlenecks due to complexity of assembly system (Ayat et al., 2017). 

Generally, these heuristic techniques are used to develop solutions which are not optimal 

but good solutions which approach the true optimum. The main aim of the current study 

is to achieve an optimal solution. Therefore, heuristic technique is quite ineffective for 

the design of the garment assembly line under the study. 

2.4.3 Analytical techniques  

Analytical techniques involve application of collections of mathematical equations 

whenever solved can be used to predict the expected behavior of the system. For instance, 

the process models that address the behavior and variability of the process at various 

steps. Analytical models have been developed using various media; for instance, only 

paper and pencil are required for a simple system, while more complicated systems 

require computer program, (e.g. Microsoft Excel, and Macros).  Analytical techniques are 

frequently used to examine queueing systems, inventory control and linear programs 

(Hewitt, 2002). The examples of analytical techniques used to solve assembly line design 

problem include; linear programming, constraints programming, etc. 

 A number of studies have used analytical techniques to solve the assembly line balancing 

problem in apparel industries (Mcnamara, 2016). Nevertheless, analytical technique is 

inefficient and ineffective for designing of a complex system since, it is very difficult and 

tedious to come up with mathematical formulae for such a complex system. Moreover, it 
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cannot explore all the design pattern. Based on those limitations, analytical technique 

could not be adopted for the present study. 

2.4.4 Simulation techniques  

A simulation technique uses a simulation program to produce sample histories and 

therefore a set of statistics computed from these histories are used to form the performance 

measures of interest. In  literature, different simulation models have been used to analyze 

the problem in the system designs (Altiok & Melamed, 2007). Simulation models are 

basically classified as continuous simulation, discrete event simulation, combined 

discrete/continuous (hybrid), and Morte Carlo simulation (Brailsford et al., 2018). The 

choice of simulation models is based on functional characteristics of the system and the 

objectives of the study. Discrete event simulation has been used in apparel manufacturing 

and other manual or semi-automatic production systems such as footwear, electronics and 

automotive assembly lines.  

The basic idea of discrete event simulation paradigm is that the simulation model 

possesses a state at any point in time. Guner & Unal (2008) investigated and demonstrated 

the application of computer simulation for the design of a manufacturing process for t-

shirt production in a virtual-reality environment. Shumon et al. (2010) also developed a 

simulation model that represented a real production process of polo-shirt garment 

products which was aimed to identify bottlenecks and enhance production system. The 

recent study by Simea et al., (2019) demonstrated the feasibility of using simulation 

technique for assembly line balancing in Apparel industry. 

In order to obtain better results, many studies have combined simulation and heuristic 

techniques for apparel assembly line design. For instance, Eryuruk (2012) designed 

apparel assembly line using the combination of simulation and heuristic techniques with 

the aim to maximize the line efficiency by using optimum machine and worker amount 
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for a constant cycle time. The author considered two heuristics algorithms such as 

probabilistic line balancing technique and largest candidate rule algorithm.  

In the previous studies, the commonly used discrete event simulation software are; Arena, 

Promodel, Anylogic, Enterprise Dynamics, Simul8 and Quest  (Tewoldeberhan et al., 

2002). The selection of software to use for simulation study is very important which is 

majorly based on the criteria such as the ease of use, animation capability, model 

development and input category (Magno et al., 2018). Arena software has been the most 

popularly used amongst studies (Prajapat & Tiwari, 2017). Simulation technique is the 

best for system analysis since it gives a clear insight on the behaviour of the system (Bon 

& Shahrin, 2016), however, it is only descriptive in nature and does not make decision on 

the available design alternatives. Therefore, the use of simulation techniques alone is 

inferior for an optimal assembly line design for which it is the case for the present study.  

2.4.5 Metaheuristics technique  

Another important design technique is the Metaheuristics technique. This technique 

involves application of one or a combination of the following algorithms; simulated 

annealing, genetics algorithm, scatter search, tabu search and artificial neural networks. 

The commonly applied metaheuristic technique in apparel assembly line design is the 

genetic algorithm. For instance, Chen et al. (2014) conducted a study on grouping genetic 

algorithm to solve assembly line balancing problem with different labor skill levels in 

sewing lines of garment industry. The authors aimed to minimize the number of 

workstations for a given cycle time. These metaheuristic techniques have been applied 

for many years in the apparel industries. Nevertheless, for manual or semi-automatic 

operations oriented system like most apparel industries, it is impossible to gain certain 

results with these metaheuristics algorithms, and it is quite difficult to predict upcoming 

events when the production system is modified (Guner & Unal, 2008). Therefore, this 



26 

 

technique is not well suited to obtain clear results when used as a standalone for solving 

optimal design problem. The only solution is to combine it with the simulation technique 

in order to achieve better results.  

2.4.6 Simulation-based optimization technique 

Simulation-based optimization  which has also been referred to as simulation 

optimization, black box optimization, parametric optimization, stochastic optimization, 

and optimization via simulation (Amaran et al., 2016), is a state-of-art design approach 

that generate a number of scenarios from a probabilistic model and then select the best 

alternative solution by applying scheduling decisions to these scenarios 

(Dehghanimohammadabadi et al., 2017). This technique basically combines the 

simulation technique with optimization/metaheuristic technique.  

The complexity of the assembly line and the large number of feasible design alternatives 

make it extremely difficult for a design engineer to identify a solution that could best 

satisfy all criteria (Michalos et al., 2015). Thereby, combining the simulation and 

optimization means that all the advantages of the two design techniques are utilized. 

Consequently, this technique is well suited for the present design problem and has been 

adopted for this study. Simulation-based optimization was the best options for the present 

study because it is not only applied to solve system design problem but also the scheduling 

problem (Shakibayifar et al., 2018). In general, it has been used to solve a number of 

industrial engineering problems (Junior et al., 2019). There are three commonly used 

methods of simulation-based optimization namely; metamodeling, metaheuristic and 

mixed method (Jeong et al., 2013). 
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2.4.6.1 Metamodeling method 

The metamodeling technique is an approximation of the simulation model, which 

represents the relationship between design parameters and responses. In a simple term, 

metamodels approximate the input-output behavior of simulation models. The term 

indicates a mathematical approximation that models the behavior of another model 

(Barton, 2015; Ghiasi et al., 2018). The objective of metamodeling is to reduce the 

computational cost of the simulation model during the optimization process (Antunes et 

al., 2019; Parnianifard et al., 2019). The most commonly used approaches to metamodel 

construction are a statistic-based approach and machine-learning approach. The former 

solely depends on the data received from the simulation experiments. In this approach, 

the regression models are commonly used in practice because of their manageable 

characteristics (Jeong et al., 2013).  

While the latter is based on neural networking, rule learning, and fuzzy logic (Ghiasi et 

al., 2018; Østergård, Jensenb, & Maagaard, 2018). This approach uses experimental data 

from simulations to train the surrogate model. It can provide more comprehensive and 

accurate solutions than the regression model. On the other hand, insufficient training data 

sets and inappropriate model validation can yield inaccurate models. That is, building a 

good learning model often requires a high computational cost. In general, metamodeling 

method transforms intractable problems into problems that can be solved. It transforms 

the implicitly stochastic response of the simulation as an explicit deterministic functional 

form. Nevertheless, in real life design problem, high-dimensional, non-differentiable or 

discontinuous response surface can exist and metamodeling technique sometimes fails to 

discover the optimal solution (Jeong et al., 2013). 

In general, metamodeling consists of three main steps which include (i) choosing a 

functional form for the metamodeling function based on the study goal (ii) designing and 
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executing the experiments to fit the metamodel and (iii) model learning/fitting the 

metamodel and validating the quality of its fit (Batur et al., 2017; Song et al., 2017). 

Basically, there are two goals/purposes of metamodeling which include; inference and 

prediction. The former provides an insight of the relationship between different inputs 

and the response of a system, identifying the most influential inputs, quantifying their 

impact on the response and detecting important interactions. While the latter requires a 

metamodel that accurately approximates the system’s response, without seeking an 

explanation for this outcome (Protopapadaki & Saelens, 2019). 

2.4.6.2 Metaheuristic method 

The metaheuristic method is an iterative process that moves from current solutions to 

high-quality solutions or global optimal solution by exploring the search space. This 

method is not problem-specific and make few or no assumptions. Unfortunately, 

metaheuristics can be ineffective and inefficient if the starting point is at a great distance 

from the optimal solutions (Jeong et al., 2013). Some researchers have used metaheuristic 

techniques to design an assembly line as described above and the same techniques are 

applied in metaheuristic-based optimization such as tabu search, scattered search, neural 

network, simulated annealing and genetic algorithms.  

A number of authors have applied simulation-based optimization for solving different 

design problems. For instance, Sarhangian et al (2008) applied simulation-based 

metaheuristic optimization technique to optimize inspection strategies for multi-stage 

manufacturing processes. In their study, the authors used Arena software for building 

simulation software and Optquest packages for optimization model development. In 

addition, Dang & Pham (2016) designed footwear assembly line using simulation based 

adaptive neighborhood search algorithm heuristics (metaheuristics). Other authors 

proposed an integrated simulation-optimization framework based on metaheuristic 
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method to overcome an inherited complexity of classical production planning in multi-

product/multi-machine production systems and optimizes several production objectives 

simultaneously (Alvandi et al., 2017).  

The primary reasons why metaheuristic algorithms are particularly appropriate for 

discrete-event simulation optimization are that these methods; (i) can handle both 

continuous and discrete input parameters in contrast to search methods requiring that 

input factors be expressed explicitly (ii) deal well with conditions of local optima 

compared to response surface methods (iii) reduce computational complexity in contrast 

to other search techniques, thus reducing solution identification speed, and (iv) perform 

quite well under test conditions comparing a generated optimum with complete 

enumeration of the solution space (Riley, 2013). 

2.4.6.3 Mixed method 

Both metamodeling and metaheuristic methods are powerful simulation-based 

optimization techniques. Nevertheless, they also have weaknesses under certain 

conditions. However, many researchers have been trying to overcome the drawbacks of 

each technique by using a combination of the metamodeling and metaheuristic methods. 

Their common ideas are often very successful, as they achieve combined advantage of 

metaheuristic methods with the strength of metamodeling methods.  

The power of metaheuristic methods is certainly based on the concept of exploring 

solutions to obtain new trials, while a strength of metamodeling methods is that it reduces 

the simulation evaluation cost of new trials by filtering the trials (Jeong et al., 2013). A 

number of previous studies used mixed method to conduct simulation-based optimization. 

For instance, Ky et al. (2016)  reviewed surrogate based method for black box 

optimization. While, Jeong et al. (2013) integrated both metamodel and metaheuristics 
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method for exploring design parameters in a defense system (hybrid system). In order to 

reduce the computational burden of the optimization process for the present study, 

metamodeling method was adopted by going through design of experiment, since the 

computational cost associated with running a metamodel is negligible in comparison to 

the cost of simulation runs.  

2.5 Simulation- based optimization model 

In most previous studies, simulation-based optimization model consisted of two different 

model which include simulation model and optimization model as illustrated in figure 

2.2. However, very few studies have considered design of simulation experiment 

(metamodel) in simulation-based optimization model. For instance, Barton (2015) 

demonstrated the importance of using experimental design during simulation experiment. 

Consequently, the present study adopted it to achieve better results. Both simulation 

model, metamodel and optimization (metaheuristics) model have been described as 

shown in Figure 2.2.   

 
Figure 2.2. Simulation-based optimization framework 
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2.5.1 Simulation model  

Simulation is referred to as an advanced method for analyzing the behavior of the systems. 

However, the choice of the type of simulation to consider for designing a particular 

system is very critical. Prajapat and Tiwari (2017) reviewed the application of discrete-

event simulation (DES) in the assembly line optimization. Discrete-event simulation has 

been widely used in the assembly line problem because it captures well the variability 

and the stochastic behavior of the real complex manufacturing system. Discrete-event 

simulation represents only the points in time at which the state of the system changes. 

This means that the system is modelled as a series of events, that is, instants in time when 

a state change occurs (Anastasia et al., 2018; Silva, 2018). 

The discrete-event simulation model consists of three major parts including entities, 

attributes and variables. Entities are dynamic objects in the simulation that are usually 

created, move around and then get disposed. Attributes are common characteristics 

attached to entities to individualize them. Attributes are sometimes confused with 

variables yet variables are piece of information that reflect some characteristics of the 

system, regardless of any entities around. Examples of variables include resources, 

queues, statistical accumulators, events (arrival, departure), simulation clock, starting and 

stopping (Dehghanimohammadabadi et al., 2017; Kelton et al., 2007). The simulation 

modeling framework used by previous researches is depicted in Figure 2.3 (Ibrahim et 

al., 2017; Manuela et al., 2018).   
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2.5.1.1 Simulation model verification and validation  

Verification is actually the process of ensuring the simulation model behaves in the way 

it was intended according to the modeling assumptions made. There are basically two 

methods used for verification of simulation model. The first method is to allow only a 

single entity to enter the system and follow that entity to be sure the model logic and data 

are correct. Another commonly used method is to replace some or all model data with 

constants (Kelton et al., 2007). This method is quite simple and it has been the most 

popularly used amongst studies, and therefore, it was adopted in the current study.  

Validation is the process of ensuring that the model behaves as the real system. It is 

necessary to show that the proposed model has an acceptable level of confidence in 

performance of all the processes assumed. Several methods have been used to validate 

the simulation model (Guner & Unal, 2008). The first method involves comparing the 

Problem definition 

Objectives and plan 

Conceptualization model  

Model development  

Computer modeling 

Output analysis 

Data collection and analysis 

Verified? 

Validated? 

Refine model 

development 

Figure 2.3. Simulation modeling framework 
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results of the model with that of the real system (Kelton et al., 2007). While the second 

method which has been widely used by researchers is the hypothesis test, whereby model 

validation is accomplished through hypothesis tests using a throughput with a 95% 

confidence interval (Guner & Unal, 2008). This method is more accurate than the first 

method and it is the most commonly used amongst studies. Therefore, it was adopted in 

this current study.  

The hypothesis is; 

H0; 𝑃𝐹 = 𝑃𝐴 , H0 = Null hypothesis 

H1; 𝑃𝐹 ≠ 𝑃𝐴 

Where PF and PA are the average production rate for real system and Arena model 

respectively.  

The test is if 𝑡0  < 𝑡𝛼

2
,𝑛1+𝑛2−2 ,  the null hypothesis H0 was accepted, where;  

𝑡0 =
𝑃𝐹−𝑃𝐴

√
1

𝑃𝐹

𝑆𝑝
+

1

𝑃𝐴

 ………………………………………………………………. Equation 2.1 

𝑆𝑃 =
(𝑃𝐹−1)𝑆𝐹

2+(𝑃𝐴−1)𝑆𝐴
2

𝑃𝐹+𝑃𝐴−2
 ……………………………………………………. Equation 2.2 

Where 𝑆𝑃
2 is the pooled mean variance, 𝑆𝐹

2  and 𝑆𝐴
2  are the variance for production rate 

from field system and Arena model respectively. 

2.5.1.2 Simulation run setup 

The simulation run setup is normally done to specify the appropriate number of 

replication (sample size, n) for the given run length. There are two methods that have 

been used for determining the sample size of simulation (Currie & Cheng, 2016; Kelton 

et al., 2007; Law, 2007).  
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𝑛 =  𝑡𝑛−1,1−𝛼/2
2 𝑠2

ℎ2 …………………………………………………………... Equation 2.3 

Where h is the half width, s is the sample standard deviation and t- distribution.  This 

method has got difficulty because it does not really solve for n since the right-hand side 

of the equation still depends on n (i.e. both degree of freedom in the t-distribution, and 

the standard deviation depend on n). Therefore, this method is not good for approximation 

of the number of replications. Consequently, a method that does not depends on the 

sample size n, is presented in equation 2.4 (Kelton et al., 2007).  

𝑛 = 𝑛0
ℎ0

2

ℎ2 …………………………………………………………………… Equation 2.4 

Where, n = sample size, 𝑛0 = initial number of replications, h0 = half-width of the selected 

performance measure for that initial number of replications, h = half-width at 95% 

confidence interval. This method is much more accurate that the first one, hence, it was 

used in this current study. 

2.5.2 Simulation experimental design  

Careful planning or designing of simulation experiments is generally of a great help, 

saving time and effort by providing efficient ways to estimate the effects of changes in 

the model’s inputs (decision variables) on its outputs (performance measures). One of the 

principal goals of experimental design is to estimate how changes in input factors affect 

the results, or responses of the experiment i.e. regression metamodel (Kleijnen, 2008). 

In literature, two common types of simulation studies that ill-designed experiments have 

been used were identified. The first type of the study occurs when the analysts perform 

scenario-oriented experiments, where putting the focus on pre-selected “interesting” 

combinations of factor settings results in exploring a handful of design points where many 

factors are changed simultaneously. However, in a real-world, simulation models easily 
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have many or hundreds potential factors. Therefore, a handful of haphazardly chosen 

scenarios, or a trial-and -error approach, can use up a great deal of time without addressing 

the fundamental questions (Sanchez et al., 2014).  The second type of the study occurs 

when the researchers or analysts start with a “baseline” scenario and vary one factor at a 

time, however, in practice, the factors are likely to interact. Therefore, if there are any 

interactions, one-at-a-time sampling will never uncover them (Sanchez & Wan, 2012). 

Design of simulation experiment is the powerful method for simulation studies that 

overcome all the limitations of the above two common simulation studies. The benefits 

of experimental design in simulation are tremendous. One of the major benefits is that, 

the analyst can obtain much insight and information about the simulation model or system 

in a relatively short amount of time from a well-designed experiment (Sanchez & Wan, 

2012). The design of simulation experiment is quite similar to the traditional design of 

experiment used in physical experiment. Therefore, the different experimental design 

approaches used in the design of physical experiment can be as well perfectly used in the 

design of simulation experiment.  

Factorial design is one of the simplest designs that is straightforward to construct and 

readily explainable. Therefore, it is the commonly used design method amongst studies. 

Factorial design has some nice properties as it can examine more than one factor and can 

be used to identify important interaction effects. However, when the number of factors 

becomes moderately large, the number of experiments explodes. In this case, another 

design approach called fractional factorial design has been used in order to overcome the 

limitation of the full factorial design by screening some factors and focusing on the main 

factors (Montevechi et al., 2007).    

A fractional factorial design is basically generated from a full factorial experiment by 

choosing an alias structure. Another interesting property of fractional factorial design is 
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its resolution or the ability to separate main effects and low-order interactions from one 

another (Sibanda & Pretorius, 2011). This property gave rise to three types of fractional 

factorial design which includes resolution-III (three), resolution-IV (four) and resolution-

V (five) and higher. The resolution-III design allow only main effects to be estimated. 

While resolution-IV design provide valid estimates of main effects when two-way 

interactions are present, but preclude estimation of the interaction effects. The more 

useful fractional factorial design for simulation analysis is the resolution-V design. This 

design allows all main effects and two-way interactions to be fit (Sanchez et al., 2014). 

The designs of resolution-V, and higher, are used for focusing on more than just main 

effects in an experimental situation. In general, these designs enable the estimation of 

interaction effects and such designs are augmented to a second-order design (Sibanda & 

Pretorius, 2011). Since, the aim of simulation experimental analysis in the present study 

concerns both main effects and interaction effects of factors, the resolution-V design was 

adopted.  

2.5.3 Optimization model  

Optimization deals basically with the study of those kinds of problems in which one has 

to minimize or maximize one or more objectives that are functions of some real or integer 

variables (Bandyopadhyay & Saha, 2013). General simulation optimization problem form 

has been presented as in table 2.2 (Kandemir & Handley, 2018); 
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Table 2.2. General simulation optimization formulation 

Formulae  Meaning  

Minimize/ maximize 𝐹(𝑥) 

Subject to: Ax< b 

(𝑔𝑙) < 𝐺(𝑥) < (𝑔𝑢)  

𝑙 < 𝑥 < 𝑢  

Objective function 

Constraints on input variables 

Constraints on the output measures 

Bounds 

 

Similar to simulation model, the optimization models are also classified as discrete, 

continuous and combined discrete/continuous. Although the simulation model can 

provide valuable assistance in analyzing designs and finding good solutions, it cannot 

obtain an optimum solution.  

An optimization model seeks for the optimum solution by maximizing or minimizing 

some quantity such as profit or cost. It has major element such like control, constraints 

and objective as illustrated in Figure 2.4 (Rockwell Automation, 2009). Whereby, 

controls are usually either variables or resources that can be meaningfully manipulated to 

affect the performance of the simulated system. for example, the number of workers to 

be assigned to an activity, the amount of product to make and so on. Constraints are the 

Figure 2.4. Optimization model on OptQuest 



38 

 

relationships among controls and/ or output (response). For example, constraints might 

restrict the amount of money allocated among various investment not to exceed a 

specified amount. Example of constraints used by previous studies include machine 

availabilities, due date, demands and machines’ capacity. 

Objective function is basically a mathematical response or an expression used to represent 

the model objective, such as minimizing queues or maximizing profits in term of statistics 

collected from the simulation model.  Prajapat & Tiwari (2017) reviewed the major sub-

categories of objective functions such as time-based, cost-based, bottleneck reduction, 

throughput, resource management, utilization and other objectives. The authors noticed 

some overlap between various optimization objectives; for instance, bottleneck reduction 

will automatically increase the throughput, and the increase in throughput will lead to an 

increase in sales. Fundamentally many of the objective functions can be interpreted as 

cost objectives, as they essentially aim to increase the production rate in order to produce 

more products; this drives sale and increases profit (Prajapat & Tiwari, 2017). Therefore, 

for the case of the present study, throughput was maximized. It was used as the primary 

performance metric for garment assembly line design. In most cases, the optimization 

methods or procedures varies depending on the software package and search strategies 

used (Rockwell Automation, 2009). 

2.6 Effects of factors  

In this section, previous studies on the effect of some factors such as resource number, 

Bundle size, task assignment pattern, job release policy on the manufacturing system was 

reviewed. In a manufacturing system, resources are substance that can be utilized in the 

production process. The most common ones are machines, operators, helpers, etc. A 

number of studies on the effect of varying resource capacity/number have been done. For 

instance, Anisah et al. (2012) postulated that increasing resource capacity in the 
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bottleneck station also increases the throughput because of the reduction of the cycle time. 

In their study, an increase of 28% in throughput and decrease of 65% in cycle time of 

short-sleeve t-shirt production was achieved. While Marsudi & Shafeek (2013) presented 

the effect of throughput to optimize the resource utilization in manufacturing system 

using queuing network theory. 

In some studies, bundle size has been referred to as lot size depending on the type of the 

manufacturing system. For instance, Anisah et al.(2012) studied the effect of lot size on 

performance of manufacturing system. The authors stressed that reducing lot size can 

reduce cycle time hence increasing the throughput. 

Task assignment pattern in any manufacturing is very critical as it affect the workload of 

the operators. Kandemir (2016) stated that uneven task assignment to the workers can 

result into uneven workload which increase work in progress hence low throughput.  

Job release policy in manufacturing system normally dictate the interval time of the input 

materials in the production line. Akhavan-tabatabaei & Salazar (2011) studied the effect 

of varying job release policy at two levels i.e. no policy and policy based on Work in 

Progress (WIP) threshold. The authors reported that reduction in cycle time and increase 

in throughput was achieved with the job release policy based on WIP threshold. 

Moreover, Vinod et al.(2018) demonstrated the positive effect of WIP based job release 

policy on the performance of manufacturing system.  

2.7 Research gaps  

2.7.1 Gaps in assembly line design  

A number of researches have dealt with assembly line design problem as the line 

balancing problem, while other have considered the physical layout problem. 

Consideration of only one aspect of assembly line design problem does not fully capture 
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the real-world system design problem. The other aspect of assembly line design is 

resource planning which should also be put into consideration.  

Another gap that exist is the number and type of design parameters considered in model 

development. A number of researchers have studied the effect of varying one or two 

design parameters on the system performance. The most commonly varied design 

parameters for assembly line balancing are number of workstations and number of 

operators. However, real-world design problem has a number of parameters to vary in 

order to obtain realistic results. Lastly, a few numbers of researchers have tried to address 

garment assembly line design problem using direct simulation-based optimization.  

2.7.2 Gaps in experimental design  

A number of studies on simulation experiment has been considered as ill-design 

experiment. The common ill-design experiment includes; scenario-oriented (trial and 

error) experiment and one-factor at a time experiment. These ill-design experiments 

consume much time, many important factors can be left out and cannot uncover the 

interaction effects between factors. Therefore, the present study used design of simulation 

experiment in order to analyze effects of many factors and also to uncover the interaction 

effects in case there are interactions between factors. 
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CHAPTER 3: METHODOLOGY  

The present study adopted a multidisciplinary research approach which comprised of both 

qualitative and quantitative research methods. It was conducted in four phases as 

illustrated in Figure 3.1. 

 

Figure 3.1. Research methodology  
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3.1 Phase 1: Current state analysis  

3.1.1 System definition 

NYTIL garment manufacturing facility produces both knit garment wear and woven 

garment wear. However, other garment manufacturing facilities produce either knit 

garment or woven garment wear. The present study was focused on the woven garment 

wear production department. The woven garment manufacturing system consists of nine 

(9) production sections or stages as shown in Figure 3.2. However, only one section 

(assembly/ sewing) was selected for this study because it comprises of huge number of 

resources and high uncertainty in that improving its throughput leads to the overall 

improvement in productivity of the garment manufacturing facility. 

The input variables that influence the throughput of the garment sewing line were 

identified by brainstorming four categories of people in the production department 

namely; operators, quality personnel, maintenance personnel and line supervisors. The 

brainstorming was conducted on individual basis at non-working time so that company 

production is not interrupted. All their ideas were collected and categorized using 

Fabric 
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Cutting 

Parts/pieces 

Numbering 

Parts 
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Sewing 

Buttons 

attach  
Finishing  Packaging 

CAD and 

Pattern 
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Figure 3.2. Woven garment manufacturing process 
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fishbone diagram (Figure 3.3) based on the big four major category of causes (4M) in a 

manufacturing system: Manpower, Method, Material and Machine. 

From the fishbone diagram, five causes (input variables) such as bundle size, job release 

policy, task assignment policy, helper number and machine number were identified to be 

the most critical for the present study. These factors were selected because they have 

greater influence on the throughput as recommended by team brain stormed. Therefore, 

their effects on the throughput of the garment assembly line were studied. 

The woven garment production system under study consisted of three different sewing 

line which are involved in producing different product models. However, to narrow the 

scope of the study, one sewing line and one product model was selected using ABC 

classification method. The three product models included cap, trouser and jacket. With 

A-priority given to trouser assembly line, B-priority given to jacket, and C-priority 

assigned to cap assembly line. Hence, the trouser assembly line was selected for this 

study. The trouser was selected for the study based on the complexity, time and 

economical consideration. 

Maintenance schedule 
Fabric quality 

Shade variation 
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Machine 

Method Manpower 
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Figure 3.3. Fishbone or cause and effect diagram 
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The observation of assembly line configurations, process sequence and operators and 

machines performance were conducted. The observation data was then used for process 

mapping of the entire trouser assembly line. In addition, the operation lists, machine 

breakdown and other related information were observed from the history data collected 

by the company. In sewing section, two major areas that were critically observed on the 

sewing machines include sewing machine working (positioning, sewing, and dispose) and 

sewing machine not working (waiting for repair, waiting for suppliers, personal need for 

workers and idle). 

3.1.2 Conceptual model construction 

In this step, all the processes involved in trouser assembly line were summarized using 

the conceptual model, which is simply a series of logical relationships relative to the 

components and structure of the trouser assembly line. This involved mapping all the 

processes or tasks associated with making trouser. The precedence diagram to show the 

relationships between different tasks from all the sub-assembly processes was first 

sketchily drawn on the paper using the pencil, and then properly drawn using MS. Excel. 

The different trouser parts to be assembled were identified and illustrated as in Figure 3.4, 

where a-s are trouser parts as described in Table 3.1.  

 
Figure 3.4. Trouser parts  
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Table 3.1. Trouser parts to be assembled 

Trouser part Part name Quantity required per trouser 

A Right flybox 1 

B 2nd Adjustable rope 2 

C Left flybox 1 

D Front leg 2 (left and right) 

E Knee patch  2 (left and right) 

F Side pocket  2 (left and right) 

G Bottom rope 2 (left and right) 

H Back leg 2 (left and right) 

I Hip pocket 2 (left and right) 

J Hip flap 2 (left and right) 

K 1st adjustable rope 2 

L Waist band  1 

M Small loop 7 

N Big loop 7 

O Button  19 

P Knee flap 2 (left and right) 

Q Knee pocket 2 (left and right) 

R Back patch 2 (left and right) 

S Company tag and size label 2 (tags) and 2 (size label) 

 

3.1.3 Validation of conceptual model  

The validation of the conceptual model was done through comparison between the 

process mapping and the real situation. The precedent diagram of the garment sewing line 

was presented to be validated by the line supervisors and workers in another department.  

3.2 Phase 2: Simulation model development 

3.2.1 Modeling of input 

3.2.1.1 Time study  

The garment assembly line system consists of series of workstations. However, at each 

workstation, different tasks are completed at different time, therefore, in order to 

understand the operation of trouser assembly line, time study combined with observation 

was conducted. In this study, Labour/operators time study was conducted using direct 

continuous stopwatch method as according to Puvanasvaran et al. (2013). 
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The observed time in seconds was first converted to standard time units (minutes) and 

then recorded. In this study, 20 number of measurements for each task element were made 

at three different period of production seasons so as to capture as much variability in the 

tasks processing time as possible in the production line. The total of 60 number of time 

measurements for each task were obtained from the trouser production line. 

3.2.1.2 Fitting of processing time probability distributions 

Woven garment assembly line presents a unique design problem as some workpieces 

(parts) move in bundle from operator to another especially in preparation section. While 

a single workpiece is worked on normally in the main body assembly line. In this study, 

the processing time measurement for each task was done only on each single part in the 

bundle. But, since the operators seize and release bundle at a time to the next operator, it 

is impossible to use a single workpiece processing time in the simulation model. In order 

to model this situation, the observed time for each task on a single piece was multiplied 

by the number of bundles (bundle size) to be seized and released by the operators in the 

production line. This was done based on the assumption that the total time for finishing 

each task on one bundle correspond to the observed time of single workpiece multiplied 

by the bundle size (number of the parts in the bundle). In the case study problem, the 

bundle size was 25, while other bundle sizes such as 10 and 40 were adopted in the 

simulation model so as to study the effect of varying bundle size on the mean throughput 

of garment production line.  

The processing time for completing the same task on the bundle and a single part was 

inserted into the Arena input analyzer with the objective of obtaining the candidate 

probability distributions and fitted probability distribution. Arena input Analyzer was 

used to fit the distribution of the processing time for each operation or task involved in 

trouser production. All the fitted processing time probability distribution have been 
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summarized and presented in a table based on the bundle sizes (See Appendix A, B, and 

C). Some examples of the fitted processing time probability distribution for some tasks 

performed on 25 bundle size such as button hole on left flybox, left front rise, and knee 

patch attach are illustrated by the histogram as shown in Figure 3.5, 3.6 and 3.7. 

a) Button hole on Left flybox bundle  

Distribution: Erlang    Expression:  6.05 + ERLA (0.39, 6); Square Error: 0.015878 

 

Figure 3.5. Button hole on Left flybox operation time probability distribution 

b) Left front rise operation  

Distribution: Beta         Expression: 4 + 6.88 * BETA (1.95, 3.37) Square Error:

 0.004843 

 

Figure 3.6. Front rise operation time fitted probability distribution 

c) Knee patch attach bundle processing time  

Distribution: Beta         Expression: 20 + 21 * BETA (1.95, 3.37)   Square Error:

 0.004843 
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Figure 3.7. Knee patch attach operation time fitted probability distribution 

3.2.2 Construction of computer model 

The computer model of the trouser assembly line was constructed based on discrete event 

simulation using Arena software (Academic license version 16). The trouser assembly 

line simulation model was built on a 64 bits notebook computer with a 2.00 GHz Intel 

core i3 CPU and 4.00 GB RAM. Due to the low processing speed of the notebook 

computer, 32 bits Arena software category was well-suited to be installed instead of the 

64 bits. Therefore, the simulation model was well-developed and run smoothly without 

freezing the computer. 

Apart from processing times, the following input variables were essential in developing 

the computer model; number of machines, number of operators, number of tasks, number 

of helpers, quantity of input material per day,  interarrival time of parts, productivity per 

day, working hours, task precedence relations, bundle sizes, job release policy, machine 

type and production target. 

In the construction of computer model (see Appendix D), the following Arena elements 

were used; entity, variables, resources, process, attribute and many other transfer and 

control logic elements.  The following model assumptions were used for simulation model 

development in this present study. 

i. The input materials arrive in production line at constant time i.e. every day and 

there was no shortage of material from the cutting section. 

ii. There was no breakdown of the machines in the production line 
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iii. There are no absenteeism of the operators and so machines are never stopped due 

absent of the operators.  

iv. Each operator and helper were assigned to perform a single task in the production 

line and only operators were assigned to sewing machines. Therefore, the number 

of operators were equal to the number of machine and increasing machine number 

also increases operator number and vice versa.  

v. Production only runs for 8 hours in a day and there was no overtime. 

vi. All defected trousers at 8% defect rate per day were reworked by only one 

workstation with a single needle lockstitch machine. 

3.2.3 Verification of computer model 

In this step, simulation runs were conducted to verify if the model follows the logic 

pointed out in the conceptual model. Verification is basically the process of ensuring that 

the model behaves as intended. More specifically, it is known as debugging the model. 

Therefore, Trace and animation techniques (Figure 3.8) were used to verify that each 

program path is correct (see Appendix D). Several programming errors were identified 

and corrected. Moreover, the model verification was also done through testing and 

observing the simulation model at varying situation such as changing the interarrival time, 

process time, run length and replication time. After confirming that model is running well, 

the last task on verification process was to reconvene the company’s managers and other 

expert of garment manufacturing (Figure 3.9).  
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Figure 3.8. Animation of a section of trouser assembly line simulation 

Figure 3.9. Verification by a garment production expert 
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3.2.4 Validation of operational model  

After verification was successfully completed, the simulation replication length (n) was 

determined with the run length of one month. By using the Equation 2.4 adopted from 

Kelton et al. (2007) , the simulation replication number was approximated. 

After the approximation of the simulation replication number for the intended half width 

of the throughput, the simulation model was then validated. The simulation model was 

validated to ensure that its performance and behavior is closed to the real production 

system under the study.  

Since, Arena simulation model only generates output with calculated mean values for the 

number of replications; the mean of throughput from Arena simulation model was used 

for validation as the hypothesized mean (𝜇𝐴). In order to obtain the same production 

period (run length) for one month, the production throughput data was collected for a 

period of one month. In this case, one-sample-T hypothesis test with confidence interval 

of 95% was used to compare the mean throughput from the Arena simulation model and 

the throughput sample from the real production system with the mean throughput (𝜇𝑅). 

The hypothesis test was successfully accomplished with the help of Minitab statistical 

software (version 18) and the null hypothesis was accepted. 

3.3 Phase 3: Metamodeling  

3.3.1 Definition of experimental design 

In the design of simulation experiment, factors and their levels were defined. The factors 

for this study were selected from the fishbone diagram in the phase 1 above. These factors 

correspond to those that were defined by the team brainstormed. From the views the team, 

these factors are most probable of having contribution in throughput of the assembly line. 

The number of levels of factors considered for this study were two (i.e. low and high). 
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Hypothetically, there exist main factors and their interactions that might influence the 

throughput of the assembly line. Therefore, resolution-V fractional factorial design was 

used for case of this present study to test this hypothesis. This is because of resolution-V 

design has greater ability to allow all main effects and two-way interactions to be fitted. 

Minitab statistical software (version 18) was used for generation and analysis of model 

design. The factors and their levels used in this study were described as follows: 

Factor A (Bundle size). It is the number of cut pieces of each part of the trouser (or any 

other woven garment product) which are moved from one operator to another. Different 

bundle sizes are being used in garment manufacturing. Therefore, two levels such as 10 

and 40 were used in this study to determine their effect on the overall throughput of the 

production line. 

Factor B (Job release policy). This is the method of availing input materials into the 

production line. In this study, the effect of two levels on the throughput were studied. The 

levels include; no policy and policy, in ‘no policy’ means the input materials are made 

available to the production line at constant rate i.e. every day. While for ‘Policy level’ the 

input materials are made available depending on the WIP threshold of the bottleneck 

station. 

Factor C (Task assignment pattern). This is the method of distributing work to the 

operators performing the same task in the production line. Two levels such as random and 

equal task assignment pattern were studied. In random task assignment, the work load of 

operators performing similar task are randomly distributed. While, Equal task assignment 

pattern, the work load of operators performing similar tasks are equally distributed. 

Factor D (Machine number). This is the input variable that was also studied in two level 

such as increase and decrease. For case of increase level, three single needle lockstitch 
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and one iron press were added in the production line. While, in the decrease level, three 

single needle lockstitch and one button hole machines were removed from the production 

line. 

Factor E (Helper number). Helpers are the workers in the production line who are not 

attached to any machine, they don’t operate any machine but perform tasks such as bundle 

handling, trimming, separating bundles, transporting bundles, matching part, and manual 

attaching of rope to the trouser. The effect of increasing and decreasing their number in 

the production line were also studied. Where, three helpers were added and three were 

removed from the production line. The two levels include; reduce and increase. 

3.3.2 Execution of simulation experiments 

After designing simulation experiment using Minitab software, 16 runs or design points 

were the outcomes from the design of experiment. The number of runs represented 

different design scenarios for the simulation model of the garment assembly line. This 

implies that 16 different design scenarios were generated.  The simulation experiment 

was performed on each design scenario with the same replication length of 1 month of 8 

hours working days and the warm up period of 2 days. The replication number of 10 was 

considered for each design scenario. The warm up period and replication number for the 

steady-state simulation were specified in accordance to Law (2007). 

3.3.3 Statistical and sensitivity analyses 

Statistical analysis was performed to develop regression metamodel for obtaining the 

local best solution for optimization process, and for analyzing effects of factors on 

throughput of the garment production line in order to answer the following questions; 

which factors are important? How do the factors influence the simulation response 

(throughput)? What are the possible interaction effects between factors? The basis of this 
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effect analysis is based on the design matrix as defined by the design of experiment 

(resolution-V design). This is also known as sensitivity analysis (Montevechi, Miranda, 

& Friend, 2012). The statistical and sensitivity analyses were performed with the help of 

Minitab statistical software (version 18). The fitted metamodel was checked to see if the 

fidelity is adequate for the intended use. For this study, a simple significance checks 

(Barton, 2015) was used to validate the regression metamodel. 

The design point or experiment number (design scenario) which produces the greatest 

effect on the response was selected to be the local optimal best solution of garment 

assembly line design. Therefore, the factor setting responsible for the highest throughput 

was retained for optimization process in order to determine the global optimal best 

solution. 

3.4 Phase 4: Optimization Model development 

In this phase, the objective function for the optimization was determined from the 

regression metamodel. While the constraints, and upper and lower bounds were 

determined based on the discussion with the management of NYTIL garment facility. The 

optimization was performed on the factor setting of the metamodel or design scenario that 

produced the best throughput. This was used as the initial best solution in the optimization 

problem.  

A black box optimization on the trouser assembly line simulation model was performed 

using OptQuest for Arena. OptQuest treats the simulation model as a black box because 

it observes only the input/output of the simulation model. OptQuest combines the 

metaheuristics of tabu search, neural networks, and scatter search into a single search 

heuristic. The fundamental principal behind OptQuest optimization process is that if a 

candidate solution does not fit the constraints, then that solution is eliminated and 
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OptQuest explores candidates that are more likely to be better. OptQuest accord the 

simulation analysts to explicitly determine integer and linear constraints on the 

deterministic simulation inputs (Kleijnen & Wan, 2007). 

The implicit mathematical formulation of the optimization problem is defined as shown 

in Equation 3.1; 

𝑀𝑎𝑥(𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) = 𝑓𝑖(𝐴𝐶 , 𝐴𝑆, 𝐴𝐿) at constant (𝐴𝑆, 𝐴𝐿) 

                               Subjected to: ℎ𝑖 (𝐴𝐶 , 𝐴𝑆, 𝐴𝐿)}≤𝐴𝐼 ……………………. Equation (3.1) 

Where; 𝑓𝑖(𝐴𝐶 , 𝐴𝑆, 𝐴𝐿) = model input function,  ℎ𝑖(𝐴𝐶 , 𝐴𝑆, 𝐴𝐿) = function of constraints 

on the model control, model stochastic factors and model logic and  𝐴𝐼= set of constraints. 

• Model control factors (𝐴𝐶) are known as decision variables such as machine 

number and helper number. The important model control factors were determined 

by regression analysis. 

• Model stochastic factors (𝐴𝑆) are fixed variables that were used for building the 

computer model (e.g. processing time, availability of resources, defect rate, 

rework, machine reliability, interarrival and inter-departure time). 

• Model logic control (𝐴𝐿) are fixed qualitative variables that are more logical or 

structural in nature coded in the Arena simulation software (e.g. process routing, 

queue discipline, dispatching rule). 

• Model constraints (𝐴𝑖) (e.g. precedence constraints, limits on the production 

resources, constraints on model control factors such as maximum number of 

machines and helpers to be increased). These were identified from the real system.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Current state analysis and simulation model  

4.1.1 Validated conceptual model 

The whole production line was divided into three main sections and subsections, the main 

section includes front preparation, back preparation, and trouser body assembling. While 

the subsections include side pocket preparation, hip pocket preparation, back patch 

preparation, hip flap preparation, knee pocket preparation, knee flap preparation, big loop 

preparation, small loop preparation, adjustable loop preparation as shown in Figure 4.1. 

The major reason for breaking down the production line into small sections was to make 

it easy to capture all the activities involved in the production. The tasks’ precedence can 

be altered and thus it has effect on the overall performance of the production line. The 

Figure 4.1 shows the conceptual model, whereby 1-72 represent the operations as 

described in Table 4.1, and a-q are input trouser parts to assembled. 
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Table 4.1. Trouser assembly tasks description 

OPS Tasks OPS Tasks  OPS Tasks  

1. Left flybox pressing 25. Hip flap attach 49. Big loop turning  

2. Buttonhole on Left 

flybox 

26. Hip pocket finish 50. Big loop runstitch 

3. Left front rise 

overlock 

27. Back prep bundling 51. Big loop button hole 

4. Right front rise 

overlocks 

28. Front and back 

bundling  

52. Small loop runstitch  

5. Knee patch attach 29. Side seam overlock 53. Small loop, big loop 

and waistband attach 

6. Side pocket flatlock 30. Side seam topstitch 54. Waistband topstitch  

7. Side pocket 

overlocks 

31. Knee pocket point 

marking 

55. Waist band closing 

with size and label 

tags 

8. Right flybox 

overlock 

32. Knee pocket 

topstitch 

56. Inseam Overlock 

9. Side pocket attach 33. Knee pocket 

tacking  

57. Trouser turning  

10. Side pocket topstitch 34. Knee pocket 

Overlock 

58. Inseam topstitch 

11. Right flybox attach 35. Knee pocket 

hemming 

59. Button hole on Hip 

band 

12. Left fly box tacking 36. Knee pocket 

ironing 

60. Button hole on the 

bottom leg 

13. Fly attach 37. Knee pocket attach 61. Bottom rope attach  

14. Front prep bundling 38. Knee flap folding 62. Bottom hemming 

15. Back marking  39. Button hole on 

knee flap 

63. Small loop tacking 

16. Back patch pressing  40. Knee flap runstitch 64. Final Bar tacking  

17. Back patch attach 41. Knee flap turning 65. Adjustable rope 

cutting 

18. Hip pocket cutting 42. Knee flap topstitch 66. Adjustable hemming 

19. Hip pocket overlocks 43. Knee flap attach 67. 1st adjustable rope 

attach 

20. Hip flap folding  44. Bar tacking 68. 2nd adjustable rope 

attach 

21. Button Hole on hip 

flap 

45. Back rise overlocks 69. Button point marking 

22. Hip flap runstitch  46. Back rise Topstitch  70. Trimming  

23. Hip flap turning  47. Big loop matching  71. Quality checking  

24. Hip flap topstitches 48. Big loop runstitch 72. Rework  

OPS= operation sequence 
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Figure 4.1. Conceptual model of trouser assembly line  

a - left flybox , b - leg front, c - knee patch, d - side pocket, e - right flybox, f - leg back, 

g - back patch, h - hip pocket, i - hip flap, j - knee pocket, k - knee flap, l - big loop, m - 

small loop, n - waistband, o - company tags, p - leg bottom rope, q - adjustable rope 
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4.1.2 Validated Simulation model  

4.1.2.1 Simulation run length and replication numbers 

In the present study, a steady-state simulation was performed with a warm-up period of 2 

days, the total run length of 28 days (one month’s) of 8 production hours and the 

replication number of 10. Simulation run was executed with no animation/batch mode 

and it took 2 mins 39 seconds to complete the simulation run on a 2.0 GHz notebook 

computer. The results show the mean throughput of 496 pieces per day with the minimum 

and maximum average of 470 and 501, respectively with the confidence interval half 

width of 6.62 as shown in the Arena crystal report (Figure 4.2). 

  

4.1.2.2 Validation using One-sample-T test 

The sample production throughput data from the real trouser assembly line are shown in 

Appendix E. When the mean throughput of the trouser production line from Arena model 

Figure 4.2. Average throughput of the simulation model 



60 

 

was compared with the sample data of throughput from the real-world trouser production 

line, the result was observed using the boxplot as depicted in the Figure 4.3. The results 

of the descriptive statistics for the sample throughput of the real garment production line 

is presented in the Table 4.2; where, N is the sample number, μ is the mean of the real 

system throughput (pieces per day). 

Table 4.2. Descriptive statistic for the real system throughput sample 

N Mean StDev SE Mean 95% CI for μ 

23 490.8 124.2 25.9 (437.1, 544.5) 

 

From the test result, the null hypothesis (H₀) was accepted because the hypothesized mean 

or the mean throughput of Arena model falls within the 95% confidence interval for the 

mean throughput of the real production system. Moreover, the T- Value of -0.20 and P-

Value of 0.842 was estimated.   

 

Figure 4.3. One-sample T-test Boxplot 

The simulation model was an acceptable approximate of the existing trouser assembly 

line at T-value (-0.20). This is because the P-value (0.842) is greater than the alpha value 
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(0.05). Therefore, it failed to reject the null hypothesis. This indicates that the effect size 

(the difference between real-world throughput sample data and the hypothesized Arena 

simulation throughput mean) is not statistically significance at p-value 0.842. The little 

difference could be due to the high variation in the throughput sample data obtained from 

the real system. Nevertheless, there is no significant difference between the mean 

throughput from Arena model and that of the real system, hence, all the assumptions used 

in the simulation model development were validated.   

4.2 Metamodel of trouser assembly line simulation model 

4.2.1 Resolution-V design 

Fractional factorial design (resolution-V design) was used to study the effect of the 

selected factors on the response (throughput). The selection of this design method was 

based on the hypothesis that three factors and higher order interactions are insignificant. 

The resolution-V design was developed using Minitab software, the result of design 

specifications is as shown in the Table 4.3. 

Table 4.3. Experimental design specification 

Factors Level Base 

design 

Resolution Run Replicates Fraction  Blocks Center 

point  

5 (- /+) 5,16 V 16 1 1/2 1 1 

Design generator: E= ABCD, Defining relation; I= ABCDE, Alias structure for the design 

is presented as; I+ABCDE, A+BCDE, B+ACDE, C+ABDE, D+ABCE, E+ABCD, 

AB+CDE, AC+BDE, AD+BCE, AE+BCD, BC+ADE, BD+ACE, BE+ACD, CD+ABE, 

CE+ABD, DE+ABC. 

The resolution-V design confounds main effects with four-factors interactions and two-

factors interactions with three-factors interactions as represented above as the alias 

structure. This implies that the model for resolution-V design can contain all of the main 

effects and two-factor interactions. The three-factors and higher order interaction are rare 

so it is generally safe to ignore them. The experimental design result from the Minitab 
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software in coded values with 16 design points (runs) and single block for each run as 

presented in Table 4.4. 

Table 4.4. Experimental design table 

Run Blk A B C D E 

1 1 + - - + + 

2 1 - - + + + 

3 1 - + - + + 

4 1 + - + + - 

5 1 + - - - - 

6 1 + + + + + 

7 1 - - + - - 

8 1 - + + - + 

9 1 + - + - + 

10 1 + + + - - 

11 1 + + - - + 

12 1 - - - - + 

13 1 - + + + - 

14 1 - + - - - 

15 1 - - - + - 

16 1 + + - + - 

Blk= Blocks, (A, B, C, D, E) = Factors, - and + = Levels (low and high) 

4.2.2 Design scenarios  

The validated simulation model of the garment assembly line was used to perform the 

different experimental runs. The simulation model was altered depending on the different 

design points generated from the design of experiment. This resulted into development of 

16 different simulation models which are also known as design scenarios or design 

alternatives. The experiment was performed for each design alternative while their mean 

throughput was observed. The experimental result for each design alternative (runs 

number) is presented as shown in Table 4.5. 
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Table 4.5. The mean throughput for each design scenario 

Design 

scenario 

Factors  Throughput  

Mean (pieces 

per day) 

 A B C D E  

1 40 no policy random increase increase 609 

2 10 no policy equal increase increase 638 

3 10 Policy random increase increase 583 

4 40 no policy equal increase reduce 496 

5 40 no policy random reduce reduce 465 

6 40 Policy equal increase increase 607 

7 10 no policy equal reduce reduce 467 

8 10 Policy equal reduce increase 467 

9 40 no policy equal reduce increase 467 

10 40 Policy equal reduce reduce 467 

11 40 Policy random reduce increase 429 

12 10 no policy random reduce increase 467 

13 10 Policy equal increase reduce 496 

14 10 Policy random reduce reduce 439 

15 10 no policy random increase reduce 496 

16 40 Policy random increase reduce 496 

A= Bundle size, B= Job release policy, C= Task assignment pattern, D= Machine number, 

E= Helper number. 

4.2.3 Analysis and validation of regression metamodel 

The regression metamodel was analyzed using regression analysis with the help of 

Minitab software. The factorial regression analysis of the response (throughput) versus 

factors (bundle size, job release policy, task assignment pattern, machine number, and 

helper number) for different design scenarios was performed using analysis of variance 

(ANOVA). The results are summarized as shown in Table 4.6. 
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Table 4.6. Analysis of Variance 

Source DF Contribution Adj SS Adj MS 

Model 15 100.00% 64529.8 4302.0 

  Linear 5 77.24% 49845.3 9969.1 

    Bundle size 1 0.03% 20.2 20.2 

    Job release policy 1 1.44% 930.3 930.3 

    Task assignment pattern 1 1.44% 930.2 930.2 

    Machine number 1 55.06% 35532.2 35532.2 

    Helper number 1 19.27% 12432.3 12432.3 

  2-Way Interactions 10 22.76% 14684.5 1468.4 

    Bundle size*Job release policy 1 0.20% 132.2 132.2 

    Bundle size*Task assignment pattern 1 0.20% 132.2 132.2 

    Bundle size*Machine number 1 0.00% 2.3 2.3 

    Bundle size*Helper number 1 0.47% 306.2 306.2 

    Job release policy*Task assignment 

pattern 

1 0.33% 210.2 210.2 

    Job release policy*Machine number 1 0.00% 2.2 2.2 

    Job release policy*Helper number 1 0.47% 306.2 306.2 

    Task assignment pattern*Machine 

number 

1 0.02% 12.2 12.2 

    Task assignment pattern*Helper 

number 

1 0.37% 240.2 240.2 

    Machine number*Helper number 1 20.67% 13340.3 13340.3 

Error 0 * * * 

Total 15 100.00%       

 

The result shows the model’s total degree of freedom (DF) of 15, whereby, 5 DF for 

Linear model and 10 DF for two-way interaction model. The degree of freedom for error 

was zero for the designed model. This means that the observed mean response 

(throughput) value is equal to the model predicted mean throughput. This is because the 

mean throughput from the simulation model has already been fitted for the different runs 

and replications. Unlike the physical experiment, computer experiment is deterministic 

hence there is no random errors for each replication (Barton, 2015). In addition, the 
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regression analysis of resolution-V design is incomplete because the experiment is 

saturated, and all of the available degrees of freedom are consumed by the metamodel. 

This result into zero degree of freedom for residual error(s), and the adjusted mean square 

(Adj MS) of the error is not defined for the metamodel giving the R2 =1. In addition, the 

adjusted sums of squares (Adj SS) is also not defined for the error, hence, there is no 

residual plots for this metamodel design. This result shows a biased approximation of 

simulation model. Nevertheless, it shows that the metamodel is a good approximation of 

the simulation model since mean square error (MSE) equal to zero.  In order to distinguish 

significant regression coefficient from insignificant one, the normal effect plot (Figure 

4.4) was used. 

 

Figure 4.4. Normal plot of the effects 

The plot indicates that there are many terms (factors and their interactions) of near zero 

effect which are considered insignificant but that the outliers (E, DE and D) are 

considered significant. Since then, some terms (two factors and one interaction) are 

statistically significant, the regression metamodel is validated but all the insignificant 
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terms were removed and only the significant terms are retained in the metamodel.  The 

regression equation for the metamodel is presented as shown Equation 4.1;  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 507.5 − 0.075𝐴 − 12.42𝐵 + 12.42𝐶 + 46.5𝐷 + 35.17𝐸 +

0.1917𝐴𝐵 − 0.1917𝐴𝐶 + 0.025𝐴𝐷 − 0.2917𝐴𝐸 + 3.625𝐵𝐶 + 0.375𝐵𝐷 −

4.375𝐵𝐸 − 0.875𝐶𝐷 + 3.875𝐶𝐸 + 28.88𝐷𝐸 ………………………… (Equation 4.1) 

 

Figure 4.5. Pareto chart of the effects 

By analyzing Pareto Chart of the effects, insignificant terms were removed from the 

metamodel. The Figure 4.5 illustrates that only the effect of the terms: two main factors 

(D and E) and one interaction (DE) exceeded the margin of error line at effect level (25.1) 

with Lenth’s Pseudo Standard Error (PSE) = 9.75. These were retained in the regression 

metamodel while the terms having effects below the reference line were safely removed. 

In this respect, a new linear regression metamodel including two inputs (D and E) with 

two-way interaction (DE) was obtained (Equation 4.2). 

The new regression equation for the metamodel is;  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 507.5 + 46.5𝐷 + 35.17𝐸 + 28.88𝐷𝐸 ………………… (Equation 4.2) 
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Where, 507.5 is the estimated value for the intercept term. The P-vector of parameters or 

parametric coefficient for D, E and DE terms are 46.5, 35.17 and 28.88, respectively.   

The best factor setting (Table 4.7) for the metamodel was selected from the dataset in the 

experimental results was adopted as the initial solution for the Optquest optimization 

process. 

Table 4.7. Best parameter setting for the metamodel 

S/N Decision variables  Settings  

1 Bundle size  25 

2 Job release policy  No policy  

3 Task assignment pattern  Equal  

4 Machine number Increase (1 iron and 3 single needle lockstitch) 

5 Helper number  Increase (3 helpers) 

 

4.2.4 Sensitivity Analysis for main factors and interaction effects 

4.2.4.1 Main factors effects 

The main factors effect of the five factors (Bundle size, job release policy, task assignment 

pattern, machine number and helper numbers) on the production throughput are shown in 

Figure 4.6 and interpreted as follows. 

 

Figure 4.6. Main effects plot for throughput 
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Bundle size effect plot.  With all factors kept constant, the mean throughput decreased 

by a very small value when the bundle size was changed from 10 to 40. Thus, if the same 

quantity of input materials were kept constant for all levels of bundle sizes, a very small 

decrease would be observed in the mean throughput when the bundle size of 40 is used. 

This is explained by the longer time it takes for each preparation section to complete tasks 

on bundles while keeping the main body assembly idle. This implies a longer warm up 

time for the production line resulting into low throughput. 

Job release policy effect plot. The plot connotes that if all other factors were kept 

constant, changes in the level of job release policy would have a greater change in the 

mean throughput when compared to that of the bundle size. A decrease in the mean 

throughput was observed when the job release policy was changed from no policy to 

policy level. This is because at no policy level, the quantity of input materials is kept 

constant in the production line and every preparation section is capable of preparing 

enough parts for the main body assembly section. As for the case of policy system which 

was based on the WIP threshold of the bottleneck workstation, there is a lot variability in 

the throughput of the different sections as they have to wait for the input materials and 

thus, affecting the productivity of the main body assembly. This therefore reduces the 

overall throughput of the production line. For instance, big loop preparation has to be 

done at a faster rate than other sub-assembly processes because seven loops are required 

to be assembled on one trouser. For this reason, any delays in the preparation process 

could cause starvation of the main body assembly as well as the extreme workstations 

resulting into low throughput. In previous studies, job release policy based on WIP 

threshold of the bottleneck workstation was observed to increase throughput (Akhavan-

tabatabaei & Salazar, 2011; Vinod et al., 2018). In contrast, the present study achieved 

lower throughput. A plausible explanation is that previous studies considered the 
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assembly line problem which does involve parts preparation processes. Consequently, 

keeping WIP of one workstation does not starve the extreme workstations, thus increasing 

the throughput. It should be emphasized that job release policy based on WIP threshold 

of the bottleneck workstation does not work well on the assembly line problem that 

requires part preparation process as it leads to starvation of the main body assembly 

resulting into low throughput. 

Task assignment pattern effect plot. There was a small increment in the average 

throughput when random task assignment pattern was changed to equal task assignment. 

With the random task assignment, there is unequal workload for operators performing 

similar tasks in the workstation. Thus, the workstation cycle and idle times are increased, 

resulting into low throughput. On the other hand, equal task assignment maintains the 

same workload among operators, reducing the cycle and idle times which ultimately 

increases the overall throughput. The present study is in complete agreement with the 

report of Kandemir & Handley (2018) who reiterated that equal task assignment had 

higher production throughput and efficiency due to equal workload of the operators and 

minimization of workstation idle time.  

Machine number effect plot. The effect of machine numbers on the throughput was 

found to be statistically significant at α = 0.05. This means that, the throughput increases 

when machine number is increased in the workstation and vice versa. This is because 

increasing machine number in the bottleneck workstation reduces cycle and parts waiting 

times as well as the WIP.  

Helper number effect plot. Similarly, helper number had a significant effect on the mean 

throughput though its effect was smaller when compared to machine number. The work 

of helpers in the production line normally influences the feeding of parts to the extreme 

workstations. When the number of helpers is increased, the extreme workstation is never 
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starved of materials due to reduction of helper’s workstation cycle time and WIP. 

Subsequently, a higher throughput is realized. Contrastingly, decreasing the number of 

helper results in an increase in their workstation cycle time, leading to starvation of the 

extreme workstations thus a lower throughput. 

4.2.4.2 Interaction effect of factors 

 

Figure 4.7. Interaction plot for throughput 

The interaction effect of the factors on the production throughput is illustrated in Figure 

4.7. Each plot represents the interaction between two factors. When the red and blue lines 

of the factor levels are with considerably different slopes, it indicates that there is an 

interaction between the two factors. In this respect, the interaction effects of the factors 

were interpreted as follows. 

Bundle size and job release policy effect plot. This interaction plot indicated that there 

is very little interaction between bundle size and job release policy as the no policy and 
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policy lines took slightly different slopes. With the bundle size of 10, the average 

throughput decreased by a large value when the job release policy was changed from no 

policy to policy level. While with the bundle size of 40, the throughput decreased by a 

very small value and almost did not change at all when the job release policy was changed 

from no policy to policy level. 

Bundle size and task assignment pattern effect plot. There was also an insignificant 

effect of the interaction between bundle size and task assignment. Nonetheless, there was 

little interaction effect as the slopes of random and equal lines are not parallel. This 

implies that with the bundle size of 10, the mean throughput increased by a large value 

when task assignment pattern changed from random to equal level. With the bundle size 

at 40, the mean throughput increased by a very small value when the task assignment 

pattern changed from random to equal level. 

Bundle size and machine number effect plot. There was actually no interaction between 

bundle size and the number of machines since there was no significant difference in the 

slopes of the reduce and increase levels considered. This points out that there could not 

be any differences even if the alpha value were increased. 

Bundle size and helper number effect plot. The slope of the reduce and increase lines 

of the two levels of the helper numbers differed slightly. The plot indicates that if the 

bundle size is at 10, the mean throughput increases by a larger value when the helper 

number is changed from reduce to increase level (helper number is increased). The reverse 

would be true if the bundle size is at 40. 

Job release policy and task assignment pattern effect plot. The slope of random and 

equal lines of the two levels of task assignment pattern took slightly different directions. 

Consequently, significant interactions can exist when the alpha value is increased. The 
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plot connotes that, if the job release policy is at no policy, there is almost no change or a 

very small increase in the throughput when the task assignment pattern changes from 

random to equal level. But if the job release policy is set at policy level, the throughput 

increases by a bigger value when the task assignment pattern changes from random to 

equal level. 

Job release policy and machine number effect plot. There is likely to be no interaction 

between job release policy and machine number at all even if the alpha value is further 

increased because the slope of the reduce and increase levels of machine number are 

parallel.  

Job release policy and helper number effect plot. There is an insignificant interaction 

between job release policy and helper number at α = 0.05. Notwithstanding, the reduce 

and increase levels of helper number took slightly different slopes. Thus, their interaction 

could be significant when the alpha value is further increased at some point. 

Task assignment pattern and machine number effect plot. There is no interaction 

between task assignment and machine number as the slope of the reduce and increase 

levels of machine number took the same direction.  

Task assignment pattern and helper number effect plot. It can be observed from the 

plot that the slope of the reduce and increase lines of helper number are parallel. The plot 

therefore means that, if the task assignment pattern is at random level, the average 

throughput insignificantly increases when the helper number is increased. However, if the 

task assignment pattern is at equal level, the average throughput increases by a larger 

value when the helper number is increased. 

Machine number and helper number effect plot. There was a statistically significant 

interaction between machine number and helper number at α = 0.05. It is observed that 
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the slope of the reduce and increase lines of helper number differed significantly. The plot 

means that if the machine number is at reduce level, there is no change in the mean 

throughput when the helper number is increased. The reverse is true when the machine 

number is at increase level. It can be noted that increasing helper number when the 

machine number is at reduce level does not change the average throughput because 

helpers perform simple tasks in the production line and their tasks depends on the 

workstations with machines. Reducing helper number contributes to high WIP and idle 

time in the workstations for the helpers but the throughput remains constant because only 

the cycle time of the helpers is changed. However, increasing the helper number when 

the machine number is at increase level increases throughput because the cycle and idle 

times as well as the WIP of both the machine and the helper workstations are reduced. 

4.3 Optimal assembly line design  

4.3.1 Objective function, Controls and constraints 

The objective function for the optimization model was derived from the metamodel 

regression equation and presented as in Equation 4.3; 

𝑀𝑎𝑥{𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡} = 𝑀𝑎𝑥{507.5 + 46.5𝐷 + 35.17𝐸 + 28.88𝐷𝐸} < 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

………………………………………………………………………… (Equation 4.3) 

Where D, (machine number) and E (helper number) are the model control factors, DE is 

factors interaction. The set of constraint for this optimization problem consisted of the 

constraint on the machine number, constraint on the helper number and constraint on the 

throughput are presented as follows;   

Machine number ≤ 10, Helper number ≤ 5, and lower and upper bound was set to be 1and 

3, respectively (i.e. 1≤ x ≤3). 
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The optimization problem considered in this study is stochastic in nature because the 

simulation model has some input data that are probabilistic such as the processing time, 

etc. It is a nonlinear optimization problem because the objective function has some factors 

interaction (DE). It is a discrete optimization problem because the model control factors 

have discrete values. Moreover, it is a single objective optimization problem because only 

one response (Throughput) is maximized. 

All the optimization model elements such as objective function, controls, constraints, 

lower and upper bounds were entered into the OptQuest. The OptQuest automated the 

Arena simulation model and it generated many design alternatives (number of 

simulation). It was allowed to search for the best solution through 100 simulations (design 

alternatives) as shown the Figure 4.8. 

 

Figure 4.8. OptQuest optimization process 

At the end of the Optimization process, Optquest presented 20 best solutions for each 

simulation out of 100 total simulations performed as presented in the Table 4.8. 
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Therefore, simulation 80 was determined to be the global optimal solution since it has the 

highest objective value. 

Table 4.8. Best solutions from OptQuest optimization process 

  Number of resources (machine and helper) added 

Simulation  Objective 

value 

5threads 

overlock 

Bartack 

machine 

Helper  

 

Single needle 

lockstitch 

80 762.3 1 2 2 4 

40 762.2 1 1 2 5 

43 762.2 1 1 2 5 

33 762.1 1 1 2 4 

81 762.1 2 2 2 3 

45 762.0 1 1 2 4 

20 761.9 1 0 2 5 

32 761.8 1 1 2 3 

74 761.6 1 2 2 4 

77 761.6 1 2 2 3 

18 761.4 2 1 2 4 

29 761.3 1 1 2 5 

79 761.3 1 0 2 6 

28 761.2 2 0 2 4 

42 761.1 2 0 2 5 

34 761.0 1 0 2 5 

41 761.0 0 1 2 6 

8 760.9 1 0 2 3 

30 760.9 1 0 2 5 

71 760.7 1 2 2 5 

 

4.3.2 Comparison of the three model designs 

The comparison of the three models such as base model (existing design), metamodel and 

optimal design (best solution from OptQuest) was made based on the resource number 

and the mean throughput (Table 4.9 and Table 4.10). Furthermore, the comparison was 

also made on three designed models based on the resource number assigned to the 

respective workstation of the production line as presented in Appendix F. The surface 

plot (Figure 4.9) shows the comparison of the total resource number and the throughput 

for the three model designs. The plot illustrates that maximizing the production 

throughput is centred around increasing the resource number.  
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Table 4.9. Comparison of different model designs based on the resource number  

s/n Resource type Resource number 

Existing/ Base 

model design 

Metamodel 

design 

Optimal 

design 

1. Single needle lockstitch machine 47 50 54 

2. Double needle lockstitch machine  3 3 3 

3. Flatlock machine  1 1 1 

4. Overlock machine (3 and 5threads)  9 9 10 

5. Feed of arm 4 4 4 

6. Automatic wallet machine 1 1 1 

7. Iron press machine 3 4 4 

8. Bartack machine 4 4 6 

9. Button hole sewing machine 6 6 6 

10. Small loop sewing machine 1 1 1 

11. Turning machine 4 4 4 

12. Operator 83 87 94 

13. Helper 19 22 24 

14. Quality personnel 2 2 2 

 Total  187 198 214 

 

Table 4.10. Comparison based on the total resource number and the throughput 

Design  Total 

resource 

number 

Throughput 

(pieces per day) 

Percentage 

Throughput 

increase (%) 

Efficiency 

(%)  

Existing (Based 

model) 

187 496 0 61.25 

Metamodel 198 638 28.63 79.75 

Optimal 210 762 53.63 95.25 

 

 

Figure 4.9. Surface plot of the three designed models 
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Table 4.11. Comparison of the designs based on the design variables  

S/N Design variables Existing design Optimal design 

1. Total machine number 83 94 

2. Total operator number  83 94 

3. Total helper number 19 24 

4. Bundle size  25 25 

5. Job release policy  No policy No policy 

6. Task assignment pattern Equal Equal 

The operator number is equal to the machine number because one operator is allowed to 

operate only one machine in the production line. Since the assumption made was that 

increasing or decreasing machine number automatically changes the operator number 

with equivalent value. In the optimization process, the constant bundle size of 25 was 

used because the effect of varying its level (10 to 40 bundle sizes) was insignificant.  

The result shows that an increase of 53.63% on the throughput was achieved with the 

trouser assembly line optimal design. While an increase of 28.63% on the throughput was 

achieved at the metamodel design stage. Consequently, the production efficiency 

increased to 79.75% and 95.25% for metamodel and optimal design stages, respectively. 

This result is very much closed the study reported by Anisah et al. ( 2012). In order for 

the company under case study to achieve that an increase in the production throughput, 

an optimal design is required to be implemented by making possible changes (Table 4.11) 

in their trouser assembly line. It was also noted that increasing resource number has direct 

effect on the throughput. However, it is only true if the resources are added in the 

bottleneck workstations otherwise the effect cannot be realized. There were total of 15 

bottleneck workstations identified and eliminated in the trouser assembly line as 

highlighted in Appendix F. With seven (7) bottleneck workstations identified at 

metamodel design stage, and eight (8) were identified at optimal design stage. The 

bottleneck workstation is the one whose capacity is less than the demand placed on it and 
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less than the capacities of all other resources. It was effectively determined through 

extensive simulation of the assembly line while observing the WIP at each workstation. 

Therefore, NYTIL garment facility is recommended to implement the global optimal line 

balancing solution in order to achieve an increase in the throughput, and attain the 

sustainability of their assembly systems. 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion  

The present study has demonstrated garment assembly line design using simulation-based 

optimization via design of experiment. The aim of study was to design an optimal trouser 

assembly line with the parameters’ setting that maximizes the throughput. Several 

conclusions were drawn from the present study. 

The conceptual model was constructed based on the current practice in trouser assembly 

line which was validated by line supervisors. Most details on trouser production process 

was captured during conceptual model construction which simplified the development of 

the simulation model. The study showed that simulation model is an acceptable 

approximate of real-world trouser assembly line at 95% confidence interval. This was 

validated using one-sample T-test with the t-value of as low as -0.20 at p-value (0.842). 

The steady-state discrete event simulation on Arena is well suited for capturing the 

behavior of the complex garment assembly line with the consideration of stochastic task 

times and bundle processing.   

The result showed that the developed metamodel is a biased approximation of trouser 

simulation model with the R2 = 1 and MSE = 0. Therefore, this metamodel is not suitable 

for prediction. But, based on the purpose of metamodeling in this study, the metamodel 

was used to give an insight of the relationship between factors and the throughput, 

identifying the most influential factors, quantifying their impact on the throughput and 

detecting important interactions. 

The effect of five factors such as bundle size, job release policy, task assignment pattern, 

machine number and helper number were analyzed. The study showed that increasing 

resource (machine and helper) number has great effect on the production throughput of 
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garment assembly line.  In the regression analysis, only two factors (machine number and 

helper number) were significant and retained in the metamodel because the other factors 

have very minimal effect on the workstation cycle time as well as the work in progress. 

Hence, the overall throughput is slightly changed when these factors are varied in their 

levels. The increase of 28.63% in the production throughput with the efficiency of 79.75% 

was achieved for the best setting of the metamodel. The machine number showed no 

interaction with other factors except with helper number. Although, insignificant 

interaction effect was observed for other factors, the interaction effect of machine number 

and helper number was significant at alpha value 0.05. 

The study also showed that 53.63% increase in production throughput and efficiency of 

95.25% can be achieved with the optimal design. This confirmed the suitability of 

designing an assembly line using simulation-based optimization via design of experiment. 

The initial design solution obtained from the metamodel narrowed down the search space 

of the Optquest optimization process. The nonlinear single objective optimization with 

discrete control values was considered in the present study. 

5.2 Recommendation  

The garment industries should implement the optimal design solution from this study so 

as to evaluate the practical implication of the optimal design model. Further study can be 

done to improve the present simulation model by considering other design parameters 

which include machine failure and line supervisor functions.   

Further study should adopt machine learning approach in developing the metamodel. In 

addition, more factors can be studied using resolution-VI and higher order experimental 

design. In order to overcome the biasness of the metamodel, the future study can use a 

space-filling experimental design such as Latin hypercube design and orthogonal array. 
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In the present study, single objective optimization was considered, therefore, further study 

can develop a profound optimization model with at least two objective functions which 

include production cost, cycle time and resource utilization. Further study can be 

performed to compare the results of this study with the direct simulation-based 

optimization method in terms of the optimal throughput values and the computation cost. 

The garment assembly line configuration/layout optimization was beyond the scope of 

the present study. Therefore, further study can be directed toward optimization of the 

garment assembly line layout or physical design. 
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APPENDICES 

Appendix A. Fitted processing time probability distribution for 25 bundle size 

Sequence Operations description  Resource 

type 
Resource 

number  

Processing time 

distribution (for a one 

resource) 

Bundle size 

1 Left flybox pressing Iron press 1shared TRIA (3, 5.12, 5.9) 25 

2 Buttonhole on Left 

flybox 

BH 1 6.05 + ERLA (0.39, 6) 25 

3 Left front rise overlock 3thread O/L 1 4 + 6.88 * BETA (1.95, 

3.37) 

25 

4 Right front rise 

overlocks 

2.29 + ERLA (0.239, 5) 25 

5 Knee patch attach S/NL 3 20 + 21 * BETA (0.856, 

1.33) 

25 

6 Side pocket flatlock F/L 2 4 + 4 * BETA (1.94, 2.74) 25 

7 Side pocket overlocks 5thread O/L 

 

1 2 + ERLA (0.555, 2) 

 

25 

 

8 Right flybox overlock 1.6 + LOGN (0.719, 

 0.418) 

9 Side pocket attach S/NL 2 7 + 11 * BETA (1.67, 

1.67) 

25 

10 Side pocket topstitch S/NL 2 10 + GAMM (1.44, 2.7) 25 

11 Right flybox attach S/NL 2 TRIA (13, 20.7, 25) 25 

12 Left fly box tacking S/NL 2 9 + WEIB (3.39, 2.09) 25 

13 Fly attach S/NL 2 12.1 + GAMM (0.955, 

3.94) 

25 

14 Front prep bundling Helper  1 5 + 10 * BETA (1.27, 

2.07) 

25 

15 Back marking  Helper 1 3 + 4.65 * BETA (1.55, 

2.76) 

25 

16 Back patch pressing  Iron press 1shared TRIA (3, 8.29, 9.73) 25 

17 Back patch attach S/NL 2 10 + 11 * BETA (0.737, 

0.96) 

25 

18 Hip pocket cutting AWM 1 TRIA (3.17, 3.99, 7) 25 

19 Hip pocket overlocks 5t O/L 1 5 + 3.83 * BETA (2.14, 

3.14) 

25 

20 Hip flap folding  Helper 1 NORM (4.77, 0.65)  

21 Button Hole on hip flap BH 1 3.55 + GAMM (0.194, 

5.47) 

25 

22 Hip flap runstitch  S/NL 1 3 + LOGN (2.72, 1.83) 25 

23 Hip flap turning  TM 1 NORM (3.25, 0.551) 25 

24 Hip flap topstitches S/NL 1 3 + 5 * BETA (1.7, 1.88) 25 

25 Hip flap attach S/NL 

 

2 

 

5.45 + LOGN (1.44, 

0.936) 

19 + 10 * BETA (1.46, 

1.46) 

25 

 26 Hip pocket finish 

27 Back prep bundling Helper 1 3 + 2 * BETA (0.889, 

0.968) 

25 

28 Front and back bundling  Helper  1 2 + 6.86 * BETA (1.18, 

2.11) 

25 

29 Side seam overlock 5thread O/L 2 NORM (1.21, 0.115) Not bundled 

30 Side seam topstitch F/A 2 TRIA (0.52, 0.747, 0.94) Not bundled 

31 Knee pocket point 

marking 

Helper 1 0.32 + 0.57 * BETA 

(0.889, 1.18) 

Not bundled 

32 Knee pocket topstitch S/NL 2 11 + ERLA (1.89, 2) 25 

33 Knee pocket tacking  S/NL 1 4 + 3 * BETA (1.33, 1.75) 25 

34 Knee pocket Overlock 5thread O/L 1 2 + 4 * BETA (0.831, 

2.05) 

25 

35 Knee pocket hemming S/NL 1 2 + 4 * BETA (1.41, 1.13) 25 
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36 Knee pocket ironing Iron press 2 8 + 5.78 * BETA (0.957, 

1.06) 

25 

37 Knee pocket attach S/NL 2 0.88 + 0.92 * BETA 

(1.77, 1.96) 

25 

38 Knee flap folding Helper 1 3.63 + 3.13 * BETA 

(3.89, 2.38) 

25 

39 Button hole on knee flap BH 1 4.27 + WEIB (1.21, 1.99) 25 

40 Knee flap runstitch S/NL 1 TRIA (2.37, 3.81, 6.88) 25 

41 Knee flap turning TM 1 NORM (4.02, 1.01) 25 

42 Knee flap topstitch S/NL 1 4 + 5.78 * BETA (0.903, 

2.11) 

25 

43 Knee flap attach D/NL 2 TRIA (0.67, 1.04, 1.7) 25 

44 Bar tacking BT 2 NORM (1.25, 0.266) 25 

45 Back rise overlocks 5thread O/L 1 0.26 + LOGN (0.185, 

0.0881) 

25 

46 Back rise Topstitch  D/NL 1 NORM (0.439, 0.0494) 25 

47 Big loop matching  Helper 1 NORM (0.0663, 0.018) 25 

48 Big loop runstitch S/NL 3 0.12 + 0.3 * BETA (2.89, 

5.28) 

25 

49 Big loop turning  Helper 2 0.07 + GAMM (0.0143, 

7.47) 

25 

50 Big loop runstitch S/NL 2 0.09 + 0.19 * BETA 

(1.78, 2) 

25 

51 Big loop button hole BH 1 TRIA (0.04, 0.055, 0.11) 25 

52 Small loop runstitch  LM 1 TRIA (0.11, 0.134, 0.18) Not bundled 

53 Small loop, big loop and 

waistband attach 

S/NL 3 1.58 + ERLA (0.068, 7) Not bundled 

54 Waistband topstitch  S/NL 2 TRIA (0.73, 1.34, 1.5) Not bundled  

55 Waist band closing with 

size and label tags 

S/NL 2 0.77 + GAMM (0.0607, 

3.58) 

Not bundled 

56 Inseam Overlock 5thread O/L 2 0.49 + WEIB (0.483, 

6.16) 

Not bundled 

57 Trouser turning  Helper 1 0.2 + LOGN (0.218, 

0.112) 

Not bundled  

58 Inseam topstitch F/A 2 0.32 + 0.56 * BETA 

(1.98, 1.61) 

Not Bundled  

59 Button hole on Hip band BH 1 TRIA (0.31, 0.344, 0.47) Not bundled 

60 Button hole on the 

bottom leg 

BH 1 0.32 + 0.2 * BETA (2.7, 

3.33) 

Not bundled 

61 Bottom rope attach  Helper 1 0.5 + LOGN (0.251, 

0.168) 

Not bundled  

62 Bottom hemming S/NL 2 0.71 + 0.73 * BETA 

(2.04, 2.6) 

Not bundled  

63 Small loop tacking S/NL 2 TRIA (0.82, 1.17, 1.37) Not bundled  

64 Final Bar tacking  BT 2 TRIA (0.74, 0.851, 1.05) Not bundled 

65 Adjustable rope cutting Helper 1 TRIA (0.1, 0.145, 0.19) Not bundled  

66 Adjustable hemming S/NL 1 TRIA (0.1, 0.136, 0.2) Not bundled 

67 1st adjustable rope attach S/NL 1 NORM (0.75, 0.0479) Not bundled 

68 2nd adjustable rope 

attach 

S/NL 1 0.53 + 0.32 * BETA 

(3.19, 2.1) 

Not bundled 

69 Button point marking Helper 1 0.55 + GAMM (0.0328, 

6.16) 

Not bundled 

70 Trimming  Helper 7 NORM (4.84, 0.345) Not bundled 

71 Quality checking  Quality 

personnel 

2 0.82 + LOGN (0.332, 

0.154) 

Not bundled 

72 Rework  S/NL 1 TRIA (2, 3.5, 4.7) Not bundled 

BH=button hole machine, SN/L=single needle lockstitch machine, DN/L=double needle 

lockstitch machine, BT= Bartack machine, O/L= overlock machine, TM= Turning 

machine, LM= loop stitching machine, F/A= Feed of arm machine, F/L=Flatlock 

machine, AWM= automatic wallet machine 
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Appendix B. Fitted Processing time probability distribution for 10 bundle size 

Sequence Operations 

description  

Resource 

type 

Resource 

number 

Processing time 

distribution (for one 

resource) 

Bundle 

size 

1 Left flybox pressing Iron press 1shared 1.18 + 1.18 * BETA (3.53, 

2.6) 

10 

2 Buttonhole on Left 

flybox 

BH 1 2.42 + WEIB (1.06, 2.57) 10 

3 Left front rise overlock 3thread O/L 1 

 

1.35 + GAMM (0.229, 5.48) 10 

4 Right front rise 

overlocks 

NORM (1.39, 0.201) 10 

5 Knee patch attach S/NL 3 8 + 9 * BETA (1.07, 1.82) 

TRIA (8, 8.19, 10) 

10 

6 Side pocket flatlock F/L 2 1.56 + 1.68 * BETA (2.09, 

2.94) 

 

7 Side pocket overlocks 5thread O/L 

 

1 

 

0.68 + LOGN (0.567, 0.307) 10 

8 Right flybox overlock 0.63 + LOGN (0.296, 0.163) 10 

9 Side pocket attach S/NL 2 3 + 4.61 * BETA (1.6, 2.09) 10 

10 Side pocket topstitch S/NL 2 4 + GAMM (0.576, 2.7) 

NORM (5.31, 0.593) 

10 

11 Right flybox attach S/NL  2 TRIA (5, 8.21, 10) 10 

12 Left fly box tacking S/NL 2 3.41 + ERLA (0.279, 5) 10 

13 Fly attach S/NL  2 5 + WEIB (1.49, 1.9) 10 

14 Front prep bundling Helper  1 2 + 4 * BETA (1.27, 2.07) 10 

15 Back marking  Helper 1 1.14 + 1.86 * BETA (1.64, 

2.63) 

10 

16 Back patch pressing  Iron press 1shared TRIA (1.15, 3.3, 3.89) 10 

17 Back patch attach S/NL 2 4 + 4.73 * BETA (0.829, 

1.22) 

10 

18 Hip pocket cutting AWM 1 TRIA (1.26, 1.6, 2.83) 10 

19 Hip pocket overlocks 5thread O/L 1 2 + 1.53 * BETA (2.01, 2.98) 10 

20 Hip flap folding  Helper 1 NORM (1.91, 0.26) 10 

21 Button Hole on hip flap BH 1 1.42 + GAMM (0.0777, 

5.47) 

10 

22 Hip flap runstitch  S/NL 1 1.14 + LOGN (1.14, 0.698) 10 

23 Hip flap turning  TM 1 NORM (1.3, 0.22) 10 

24 Hip flap topstitches S/NL 1 TRIA (1.01, 2.15, 3.29) 10 

25 Hip flap attaches & 

 

S/NL 2 2.17 + LOGN (0.584, 0.37) 

 

10 

26 Hip pocket finish TRIA (7.7, 8.82, 10) 10 

 

27 Back prep bundling Helper 1 TRIA (1.11, 1.56, 2) 10 

28 Front and back 

bundling  

Helper  1 0.64 + 2.91 * BETA (1.57, 

2.43) 

10 

29 Side seam overlock 5thread O/L 2 NORM (1.21, 0.115) Not 

bundled 

30 Side seam topstitch F/A 2 TRIA (0.52, 0.747, 0.94) Not 

bundled 

31 Knee pocket point 

marking 

Helper 1 0.32 + 0.57 * BETA (0.889, 

1.18) 

Not 

bundled 

32 Knee pocket topstitch S/NL 2 4.16 + ERLA (0.584, 3) 

4.29 + 1.32 * BETA (1.31, 

1.59) 

10 

33 Knee pocket tacking  S/NL 1 1.48 + 1.44 * BETA (2.45, 

3.05) 

10 

34 Knee pocket Overlock 5t O/L 1 0.65 + 1.8 * BETA (1.48, 

2.88) 

10 

35 Knee pocket hemming S/NL 1 TRIA (0.75, 1.91, 2.55) 10 

36 Knee pocket ironing Iron  2 TRIA (3, 4.97, 5.51) 10 

37 Knee pocket attach S/NL 2 0.88 + 0.92 * BETA (1.77, 

1.96) 

Not 

bundled 

38 Knee flap folding Helper 1 1.45 + 1.26 * BETA (3.95, 

2.44) 

10 
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39 Button hole on knee 

flap 

BH 1 1.71 + WEIB (0.482, 1.98) 10 

40 Knee flap runstitch S/N 1 TRIA (1, 1.38, 2.75) 10 

41 Knee flap turning TM 1 NORM (1.61, 0.406) 10 

42 Knee flap topstitch S/NL 1 1.39 + LOGN (0.915, 0.627) 10 

43 Knee flap attach D/NL 2 TRIA (0.67, 1.04, 1.7) Not 

bundled 

44 Bar tacking BT 2 NORM (1.25, 0.266) Not 

bundled 

45 Back rise overlocks 5t O/L 1 0.26 + LOGN (0.185, 

0.0881) 

Not 

bundled  

46 Back rise Topstitch  D/NL 1 NORM (0.439, 0.0494) Not 

bundled 

47 Big loop matching  Helper 1 NORM (0.0663, 0.018) Not 

bundled 

48 Big loop runstitch S/NL 3 0.12 + 0.3 * BETA (2.89, 

5.28) 

Not 

bundled 

49 Big loop turning  Helper 2 0.07 + GAMM (0.0143, 

7.47) 

Not 

bundled 

50 Big loop runstitch S/NL 2 0.09 + 0.19 * BETA (1.78, 2) Not 

bundled 

51 Big loop button hole BH 1 TRIA (0.04, 0.055, 0.11) Not 

bundled 

52 Small loop runstitch  LM 1 TRIA (0.11, 0.134, 0.18) Not 

bundled 

53 Small loop, big loop 

and waistband attach 

S/NL 3 1.58 + ERLA (0.068, 7) Not 

bundled 

54 Waistband topstitch  S/NL 2 TRIA (0.73, 1.34, 1.5) Not 

bundled  

55 Waist band closing 

with size and label tags 

S/NL 2 0.77 + GAMM (0.0607, 

3.58) 

Not 

bundled 

56 Inseam Overlock 5thread O/L 2 0.49 + WEIB (0.483, 6.16) Not 

bundled 

57 Trouser turning  Helper 1 0.2 + LOGN (0.218, 0.112) Not 

bundled  

58 Inseam topstitch F/A 2 0.32 + 0.56 * BETA (1.98, 

1.61) 

Not 

Bundled  

59 Button hole on Hip 

band 

BH 1 TRIA (0.31, 0.344, 0.47) Not 

bundled 

60 Button hole on the 

bottom leg 

BH 1 0.32 + 0.2 * BETA (2.7, 

3.33) 

Not 

bundled 

61 Bottom rope attach  Helper 1 0.5 + LOGN (0.251, 0.168) Not 

bundled  

62 Bottom hemming S/NL 2 0.71 + 0.73 * BETA (2.04, 

2.6) 

Not 

bundled  

63 Small loop tacking S/NL 2 TRIA (0.82, 1.17, 1.37) Not 

bundled  

64 Final Bar tacking  BT 2 TRIA (0.74, 0.851, 1.05) Not 

bundled 

65 Adjustable rope cutting Helper 1 TRIA (0.1, 0.145, 0.19) Not 

bundled  

66 Adjustable hemming S/NL 1 TRIA (0.1, 0.136, 0.2) Not 

bundled 

67 1st adjustable rope 

attach 

S/NL 1 NORM (0.75, 0.0479) Not 

bundled 

68 2nd adjustable rope 

attach 

S/NL 1 0.53 + 0.32 * BETA (3.19, 

2.1) 

Not 

bundled 

69 Button point marking Helper 1 0.55 + GAMM (0.0328, 

6.16) 

Not 

bundled 

70 Trimming  Helper 7 NORM (4.84, 0.345) Not 

bundled 

71 Quality checking  Quality 

personnel 

2 0.82 + LOGN (0.332, 0.154) Not 

bundled 

72 Rework  S/NL 1 TRIA (2, 3.5, 4.7) Not 

bundled 
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Appendix C. Fitted processing time probability distribution for 40 bundle size 

Sequence Operations 

description  

Resource type Resource 

number  

Processing time 

distribution (for one 

resource) 

Bundle size 

1 Left flybox pressing Iron press 1shared TRIA (5, 8, 9.44) 40 

2 Buttonhole on Left 

flybox 

BH 1 10 + WEIB (3.87, 2.34) 40 

3 Left front rise 

overlock 

3 thread O/L 1 NORM (10.4, 2.09) 40 

4 Right front rise 

overlocks 

NORM (5.58, 0.805) 40 

5 Knee patch attach S/NL 3 32 + 34 * BETA (0.868, 

1.4) 

40 

6 Side pocket flatlock S/NL  2 6.24 + 6.72 * BETA 

(2.09, 2.94) 

40 

7 Side pocket overlocks 5thread O/L  

 

1 

 

3 + LOGN (2.03, 1.45) 40 

8 Right flybox overlock 2.55 + LOGN (1.16, 

0.664) 

40 

9 Side pocket attach S/NL 2 12 + 17 * BETA (1.43, 

1.61) 

40 

10 Side pocket topstitch S/NL 2 17 + ERLA (2.61, 2) 40 

11 Right flybox attach S/NL  2 TRIA (20, 32.9, 40) 40 

12 Left fly box tacking S/NL 2 NORM (19.2, 2.39) 40 

13 Fly attach S/NL 2 20 + WEIB (5.97, 1.9) 40 

14 Front prep bundling Helper  1 8 + 15 * BETA (1.11, 

1.67) 

40 

15 Back marking  Helper 1 5 + 7 * BETA (1.2, 2.26) 40 

16 Back patch pressing  Iron press 1shared 5 + 10 * BETA (1.31, 

1.07) 

40 

17 Back patch attach S/NL 2 16 + 18 * BETA (0.766, 

1.04) 

40 

18 Hip pocket cutting AWM 1 5.07 + ERLA (0.937, 3) 40 

19 Hip pocket overlocks 5t O/L 1 8 + 6 * BETA (1.97, 2.83) 40 

20 Hip flap folding  Helper 1 NORM (7.63, 1.04) 40 

21 Button Hole on hip 

flap 

BH 1 NORM (7.38, 0.687) 40 

22 Hip flap runstitch  S/NL 1 5 + LOGN (4.18, 3.1) 40 

23 Hip flap turning  TM 1 NORM (5.19, 0.881) 40 

24 Hip flap topstitches S/NL 1 4.04 + 8.96 * BETA 

(2.41, 2.34) 

40 

25 Hip flap attach S/NL 

 

2 9 + LOGN (2.07, 1.77) 40 

26 Hip pocket finish NORM (41.9, 5.51) 40 

27 Back prep bundling Helper 1 TRIA (4.47, 6.24, 8) 40 

28 Front and back 

bundling  

Helper  1 3 + 11 * BETA (1.28, 

2.11) 

40 

29 Side seam overlock 5thread O/L 2 NORM (1.21, 0.115) Not bundled 

30 Side seam topstitch F/A 2 TRIA (0.52, 0.747, 0.94) Not bundled 

31 Knee pocket point 

marking 

Helper 1 0.32 + 0.57 * BETA 

(0.889, 1.18) 

Not bundled 

32 Knee pocket topstitch S/NL 2 18 + 16 * BETA (1.07, 

1.96) 

40 

33 Knee pocket tacking  S/NL 1 TRIA (6, 7.22, 11.7) 40 

34 Knee pocket Overlock 5thread O/L 1 3 + ERLA (1.02, 2) 40 

35 Knee pocket 

hemming 

S/NL 1 TRIA (3, 7.5, 10) 40 

36 Knee pocket ironing Iron press 2 12 + 10 * BETA (1.31, 

1.22) 

40 

37 Knee pocket attach S/NL 2 0.88 + 0.92 * BETA 

(1.77, 1.96) 

Not bundled 

38 Knee flap folding Helper 1 6 + 4.82 * BETA (3.53, 

2.31) 

40 

39 Button hole on knee 

flap 

BH 1 7 + WEIB (1.73, 1.74) 40 
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40 Knee flap runstitch S/NL 1 TRIA (4, 5.5, 11) 40 

41 Knee flap turning TM 1 3 + WEIB (3.87, 2.24) 40 

42 Knee flap topstitch S/NL 1 6 + ERLA (1.58, 2) 40 

43 Knee flap attach D/NL 2 TRIA (0.67, 1.04, 1.7) Not bundled 

44 Bar tacking BT 2 NORM (1.25, 0.266) Not bundled 

45 Back rise overlocks 5thread O/L 1 0.26 + LOGN (0.185, 

0.0881) 

Not bundled 

46 Back rise Topstitch  D/NL 1 NORM (0.439, 0.0494) Not bundled 

47 Big loop matching  Helper 1 NORM (0.0663, 0.018) Not bundled 

48 Big loop runstitch S/NL 3 0.12 + 0.3 * BETA (2.89, 

5.28) 

Not bundled 

49 Big loop turning  Helper 2 0.07 + GAMM (0.0143, 

7.47) 

Not bundled 

50 Big loop runstitch S/NL 2 0.09 + 0.19 * BETA 

(1.78, 2) 

Not bundled 

51 Big loop button hole BH 1 TRIA (0.04, 0.055, 0.11) Not bundled 

52 Small loop runstitch  LM 1 TRIA (0.11, 0.134, 0.18) Not bundled 

53 Small loop, big loop 

and waistband attach 

S/NL 3 1.58 + ERLA (0.068, 7) Not bundled 

54 Waistband topstitch  S/NL 2 TRIA (0.73, 1.34, 1.5) Not bundled  

55 Waist band closing 

with size and label 

tags 

S/NL 2 0.77 + GAMM (0.0607, 

3.58) 

Not bundled 

56 Inseam Overlock 5thread O/L 2 0.49 + WEIB (0.483, 

6.16) 

Not bundled 

57 Trouser turning  Helper 1 0.2 + LOGN (0.218, 

0.112) 

Not bundled  

58 Inseam topstitch F/A 2 0.32 + 0.56 * BETA 

(1.98, 1.61) 

Not Bundled  

59 Button hole on Hip 

band 

BH 1 TRIA (0.31, 0.344, 0.47) Not bundled 

60 Button hole on the 

bottom leg 

BH 1 0.32 + 0.2 * BETA (2.7, 

3.33) 

Not bundled 

61 Bottom rope attach  Helper 1 0.5 + LOGN (0.251, 

0.168) 

Not bundled  

62 Bottom hemming S/NL 2 0.71 + 0.73 * BETA 

(2.04, 2.6) 

Not bundled  

63 Small loop tacking S/NL 2 TRIA (0.82, 1.17, 1.37) Not bundled  

64 Final Bar tacking  BT 2 TRIA (0.74, 0.851, 1.05) Not bundled 

65 Adjustable rope 

cutting 

Helper 1 TRIA (0.1, 0.145, 0.19) Not bundled  

66 Adjustable hemming S/NL 1 TRIA (0.1, 0.136, 0.2) Not bundled 

67 1st adjustable rope 

attach 

S/NL 1 NORM (0.75, 0.0479) Not bundled 

68 2nd adjustable rope 

attach 

S/NL 1 0.53 + 0.32 * BETA 

(3.19, 2.1) 

Not bundled 

69 Button point marking Helper 1 0.55 + GAMM (0.0328, 

6.16) 

Not bundled 

70 Trimming  Helper 7 NORM (4.84, 0.345) Not bundled 

71 Quality checking  Quality 

personnel 

2 0.82 + LOGN (0.332, 

0.154) 

Not bundled 

72 Rework S/NL 1 TRIA (2, 3.5, 4.7) Not bundled 
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Appendix D. Trouser assembly line model development using Arena 

Arena software user interface showing the different modules used for building the trouser 

assembly line simulation model 
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A section of arena simulation model of trouser assembly line  
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Animation of trouser assembly line simulation model  
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Appendix E. Trouser Assembly line production data 

Throughput data set 1 

s/n Date Throughput (pieces per day) 

1 9/10/2018 301 

2 10/10/2018 390 

3 11/10/2018 395 

4 12/10/2018 605 

5 13/10/2018 603 

6 16/10/2018 130 

7 17/10/2018 601 

8 19/10/2018 515 

9 20/10/2018 495 

10 22/10/2018 315 

11 25/10/2018 525 

12 26/10/2018 531 

13 27/10/2018 485 

14 29/10/2018 447 

15 30/10/2018 276 

 

Throughput data set 2 

s/n Date Throughput (pieces per day) 

1 26/03/2019 239 

2 27/03/2019 570 

3 28/03/2019 430 

4 29/03/2019 580 

5 30/03/2019 600 

6 01/04/2019 570 

7 02/04/2019 464 

8 03/04/2019 440 

9 04/04/2019 306 

10 05/04/2019 544 

11 06/04/2019 347 

12 09/04/2019 350 

13 10/04/2019 600 

14 11/04/2019 650 

15 12/04/2019 580 

16 13/04/2019 600 

17 14/04/2019 224 

18 15/04/2019 468 

19 17/04/2019 145 

20 18/04/2019 512 

21 19/04/2019 500 

22 20/04/2019 512 

23 23/04/2019 552 

24 24/04/2019 650 

 

Cutting section trouser parts feeding sheet…. 

Date  S/N Bundle number Trouser size Quantity Total 

29/03/2019 1 233  25  

  234  25  

  235  25  

  236  25  

  237 L1 25  

  238  25  

  239  25  
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  240  25  

     200 

 2 241  25  

  242  25  

  243  25  

  244 L2 25  

  245  25  

  246  25  

  247  25  

  248  25  

     200 

 3 249  25  

  250  25  

  251  25  

  252  25  

  253 XL1 25  

  254  25  

  255  25  

  256  25  

     200 

 4 257  25  

  258  25  

  259  25  

  260 XL2 25  

  261  25  

  262  25  

  263  25  

  264  25  

     200 

=   800 

 

Cutting section trouser parts feeding sheet 

Date S/N Bundle size Trouser size Quantity  Total  

10.04.2019 16 281  25  

  282  25  

  283  25  

  284 S1 25  

  285  25  

  286  25  

  287  27  

  288  28  

     205 

 17. 289  25  

  290  25  

  291 S2 25  

  292  25  

  293  25  

  294  25  

  295  27  

  296  28  

     205 

 18. 297  25  

  298  25  

  299  25  

  300 S 25  

  301  25  

  302  25  

  303  27  

  304  28  

     205 
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 19. 305  25  

  306  25  

  307  25  

  308 2XL 25  

  309  25  

  310  25  

  311  27  

  312  28  

     205 

= 820 
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Appendix F. Detail comparison of the three designs based on resource number 

WSN OPS Operations description  Resource  

Type  Number 

 Base 

model 

design 

Metamodel 

design   

Optimal 

design  

1-B 1 Left flybox pressing Iron press  1shared 1 1 

2 2 Buttonhole on Left flybox Buttonhole machine  1 1 1 

3 

 

3 Left front rise overlock 3 threads overlock 1 1 1 

4 Right front rise overlocks 

4-B 5 Knee patch attach Single needle lockstitch 3 4 4 

5 6 Side pocket flatlock Flatlock machine  1 1 1 

6 7 Side pocket overlocks 5 threads overlock 1 1 1 

8 Right flybox overlock 

7-B 9 Side pocket attach Single needle lockstitch 2 2 3 

8 10 Side pocket topstitch Single needle lockstitch 2 2 2 

9 11 Right flybox attach Single needle lockstitch 2 2 2 

10 12 Left fly box tacking Single needle lockstitch 2 2 2 

11 13 Fly attach Single needle lockstitch 2 2 2 

12 14 Front prep bundling Helper  1 1 1 

13 15 Back marking  Helper  1 1 1 

14-B 16 Back patch pressing  Iron press  1shared 1 1 

15 17 Back patch attach Single needle lockstitch 2 2 2 

16 18 Hip pocket cutting Automatic wallet 

machine 

1 1 1 

17 19 Hip pocket overlocks 5 threads overlock 1 1 1 

18 20 Hip flap folding  Helper 1 1 1 

19 21 Button Hole on hip flap Button hole machine 1 1 1 

20 22 Hip flap runstitch  Single needle lockstitch 1 1 1 

21 23 Hip flap turning  Turning machine 1 1 1 

22 24 Hip flap topstitches Single needle lockstitch 1 1 1 

23-B 

 

25 Hip flap attaches & Single needle lockstitch 2 3 3 

26 Hip pocket finish 

25 27 Back prep bundling Helper 1 1 1 

26 28 Front and back bundling  Helper 1 1 1 

27-B 29 Side seam overlock 5 threads overlock 2 2 3 

28 30 Side seam topstitch Feed of Arm 2 2 2 

29-B 31 Knee pocket point marking Helper 1 1 2 

30 32 Knee pocket topstitch Single needle lockstitch 2 2 2 

31 33 Knee pocket tacking  Single needle lockstitch 1 1 1 

32 34 Knee pocket Overlock 5 threads overlock 1 1 1 

33 35 Knee pocket hemming Single needle lockstitch 1 1 1 

34 36 Knee pocket ironing Iron press 2 2 2 

35-B 37 Knee pocket attach Single needle lockstitch 2 2 3 

36 38 Knee flap folding Helper 1 1 1 

37 39 Button hole on knee flap Button hole machine 1 1 1 

38 40 Knee flap runstitch Single needle lockstitch 1 1 1 

39 41 Knee flap turning Turning machine 1 1 1 

40 42 Knee flap topstitch Single needle lockstitch 1 1 1 

41 43 Knee flap attach Double needle lockstitch 2 2 2 

42-B 44 Bar tacking Bartack machine 2 2 4 

43 45 Back rise overlocks 5 threads overlock 1 1 1 

44 46 Back rise topstitches  Double needle lockstitch 1 1 1 

45-B 47 Big loop matching  Helper 1 2 2 

46 48 Big loop runstitch Single needle lockstitch 3 3 3 

47 49 Big loop turning  Turning machine 2 2 2 

48 50 Big loop runstitch Single needle lockstitch 2 2 2 

49 51 Big loop button hole Button hole machine 1 1 1 

50 52 Small loop runstitch  Loop stitch machine 1 1 1 

51-B 53 Small loop, big loop and 

waistband attach 

Single needle lockstitch 3 4 4 

52 54 Waistband topstitch  Single needle lockstitch 2 2 2 
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53 55 Waist band closing with size 

and label tags 

Single needle lockstitch 2 2 2 

54 56 Inseam Overlock 5 threads overlock 2 2 2 

55 57 Trouser turning  Helper 1 1 1 

56 58 Inseam topstitch Feed of arm  2 2 2 

57 59 Button hole on Hip band Button hole machine 1 1 1 

58 60 Button hole on the bottom leg Button hole machine 1 1 1 

59 61 Bottom rope attach  Helper 1 2 2 

60 62 Bottom hemming Single needle lockstitch 2 2 2 

61 63 Small loop tacking Single needle lockstitch 2 2 2 

62 64 Final Bar tacking  Bartack machine 2 2 2 

63 65 Adjustable rope cutting Helper 1 1 1 

64 66 Adjustable hemming Single needle lockstitch 1 1 1 

65-B 67 1st adjustable rope attach Single needle lockstitch 1 1 2 

66-B 68 2nd adjustable rope attach Single needle lockstitch 1 1 2 

67-B 69 Button point marking Helper 1 1 2 

68-B 70 Trimming  Helper 7 8 8 

69 71 Quality checking  Quality personnel 2 2 2 

70 72 Rework  Single needle lockstitch 1 1 1 

WSN= workstation number, OPS= operation sequence 


