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MODELING WITH DOUBLY INTERVAL-CENSORED EVENT

TIME AND INFREQUENT LONGITUDINAL DATA1

By Li Su and Joseph W. Hogan

MRC Biostatistics Unit and Brown University

Hepatitis C virus (HCV) coinfection has become one of the most
challenging clinical situations to manage in HIV-infected patients.
Recently the effect of HCV coinfection on HIV dynamics following
initiation of highly active antiretroviral therapy (HAART) has drawn
considerable attention. Post-HAART HIV dynamics are commonly
studied in short-term clinical trials with frequent data collection de-
sign. For example, the elimination process of plasma virus during
treatment is closely monitored with daily assessments in viral dy-
namics studies of AIDS clinical trials. In this article instead we use
infrequent cohort data from long-term natural history studies and
develop a model for characterizing post-HAART HIV dynamics and
their associations with HCV coinfection. Specifically, we propose a
joint model for doubly interval-censored data for the time between
HAART initiation and viral suppression, and the longitudinal CD4
count measurements relative to the viral suppression. Inference is ac-
complished using a fully Bayesian approach. Doubly interval-censored
data are modeled semiparametrically by Dirichlet process priors and
Bayesian penalized splines are used for modeling population-level and
individual-level mean CD4 count profiles. We use the proposed meth-
ods and data from the HIV Epidemiology Research Study (HERS) to
investigate the effect of HCV coinfection on the response to HAART.

1. Introduction.

1.1. HIV dynamics following initiation of antiviral therapy. The wide-
spread use of highly active antiretroviral therapies (HAART) against HIV in the
United States has resulted in reducing the burden of HIV-related morbidity
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and mortality [Jacobson, Phair and Yamashita (2004)]. HIV dynamics fol-
lowing HAART are usually studied in short-term clinical trials with frequent
data collection design. For example, in viral dynamics studies of AIDS clin-
ical trials the elimination process of plasma virus after treatment is closely
monitored with daily measurements, which has led to a new understand-
ing of the pathogenesis of HIV infection and provides guidance for treating
AIDS patients and evaluating antiviral therapies [Wu (2005)]. Here in this
article HIV dynamics refer to a two-part response to HAART: viral sup-
pression and concurrent or subsequent immune reconstitution. In clinical
practice, the virus is considered suppressed when plasma HIV RNA (viral
load) is below a lower limit of detection; the degree of immune reconstitution
is commonly measured by the change of CD4+ lymphocyte cell count (CD4
count) after HAART initiation.

It is well known that CD4+ lymphocyte cells are targets of HIV and their
abundance declines after HIV infection. Investigators have studied the asso-
ciation between viral load and CD4 count during HAART treatment and, in
general, they are negatively correlated [Lederman et al. (1998); Liang, Wu
and Carroll (2003)]. Longitudinal data on these markers have been analyzed
separately, particularly by using random-effects models. Recently, bivariate
linear mixed models were proposed to jointly model viral load and CD4
count by incorporating correlated random effects. These models were spec-
ified in terms of concurrent association between viral load and CD4 count
[Thiébaut et al. (2005); Pantazis et al. (2005)]. However, a natural time
ordering for virologic and immunologic response to HAART (or any antivi-
ral therapy) is often observed: when a patient begins a successful HAART
regimen, viral replication is usually inhibited first, leading to a decrease in
viral load; then, CD4 count often increases as the immune system begins to
recover. Consequently, increase in CD4 count is thought to depend on the
degree of viral suppression; it may be slower to respond than viral load or
it may not increase at all if the virus is not suppressed [Jacobson, Phair
and Yamashita (2004)]. Therefore, it would be advantageous to acknowl-
edge these common sequential changes of viral load and CD4 count when
modeling post-HAART HIV dynamics.

1.2. Coinfection with Hepatitis C virus and HIV dynamics. Hepatitis
C virus (HCV) coinfection is estimated to occur in 30% of HIV-infected
patients in the United States and has become one of the most challeng-
ing clinical situations to manage in HIV-infected patients [Sherman et al.
(2002)]. Several studies have suggested that HCV serostatus is not associ-
ated with the virologic response to HAART [Greub et al. (2000); Rockstroh
et al. (2005)]. However, the evidence for immunologic response is conflicting.
Some studies have shown that HIV–HCV coinfected patients have a blunted
immunologic response to HAART, compared to those with HIV infection
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alone, although others have found comparable degrees of immune reconsti-
tution in persons with HIV–HCV coinfection [Miller et al. (2005); Stebbing
et al. (2005); Rockstroh (2006); Sullivan et al. (2006)]. A primary motivation
of our model is to investigate the effect of HCV coinfection on post-HAART
HIV dynamics using cohort data from natural history studies. We focus on
two important questions: (1) Do HCV-negative patients have shorter time
from HAART initiation to viral suppression? (2) Do HCV-negative patients
have better immune reconstitution at the time of viral suppression? Note
that in the second question the sequential nature of the virologic and im-
munologic response to HAART is emphasized.

1.3. HIV natural history studies and the HERS. Because the incidence
of clinical progression to AIDS fell rapidly following the widespread intro-
duction of HAART in 1997, long-term clinical trials in patients with HIV
become time-consuming and expensive [Mocroft et al. (2006)]. Currently,
natural history studies are the major source of knowledge about the HIV
epidemic and the full treatment effect of HAART over the long term. For ex-
ample, studies such as Multicenter AIDS Cohort Study (MACS), Women’s
Interagency HIV Study (WIHS) and Swiss HIV Cohort Study (SHCS) have
played important roles in understanding the science of HIV, the AIDS epi-
demic and the effects of therapy [Kaslow et al. (1987); Ledergerber et al.
(1994); Barkan et al. (1998)]. In HIV natural history studies, HIV viral
load and CD4 count are usually measured with wide intervals (e.g., every 6
months approximately). Therefore, for some event time of scientific interest,
for example, the time between HAART initiation and viral suppression, both
the time origin (HAART initiation) and the failure event (viral suppression)
could be interval-censored. This situation is referred to as ‘doubly interval-
censored data’ in the literature. In fact, the statistical research on doubly
interval-censored data was primarily motivated by scientific questions in HIV
research, for example, modeling ‘AIDS incubation time’ between HIV infec-
tion and the onset of AIDS [De Gruttola and Lagakos (1989); Sun (2006)].
Both nonparametric and semiparametric methods have been proposed for
the estimation of the distribution function of the AIDS incubation time and
its regression analysis. A comprehensive review on the analysis of doubly
interval-censored data can be found in Sun (2006).

The HIV Epidemiology Research Study (HERS) is a multi-site longitudi-
nal cohort study of HIV natural history in women between 1993 and 2001
[Smith et al. (1997)]. At baseline between 1993 and 1995 the study enrolled
871 HIV-seropositive women and 439 HIV-seronegative women at high risk
for HIV infection. Participants were scheduled for approximately a 6-year
follow-up, where a variety of clinical, behavioral and sociologic outcomes
were recorded approximately every 6 months and measurements correspond
to dates. The top part of Table 1 gives selected baseline characteristics of
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Table 1

Selected characteristics of the 1310 HERS women (top) and the 374 HERS women
included in the analysis (bottom) in Section 4

HIV-positive HIV-negative

(N = 871) (N = 439)

Median age at enrollment 35.0 34.5
Age range at enrollment 16.4–55.2 16.6–56.0
Injection drug user at enrollment (%) 25.1 26.4
CD4 count at enrollment (%)

<200 17.1 0.0
200–499 50.7 1.7
≥500 32.2 98.3

HCV antibody test at enrollment (%)
Positive 60.3 47.8
Negative 38.8 50.8
Missing 0.9 1.4

HCV-positive HCV-negative
(N = 208) (N = 166)

Median follow-up time (months) 67.3 71.0
Median age at enrollment 36.7 33.1
Age range at enrollment 21.2–55.0 19.0–55.2
Injection drug user at enrollment (%) 29.8 2.4
Ever on antiviral treatment before 1996 (%) 57.2 62.1
CD4 count before first reported HAART use (%)

<200 34.6 36.8
200–499 52.9 45.8
≥500 12.5 17.5

the 1310 study participants; more details can be found in Smith et al. (1997).
Quantification of HIV RNA viral load was performed using a branched-DNA
(B-DNA) signal amplification assay with the detection limit at 50 copies/ml
and flow cytometry from whole blood was used to determine CD4 counts
at each visit. All participants were HAART-naive at baseline. During the
study 382 participants reported HAART use based on information gathered
during in-person interviews. Because assessments were scheduled to be car-
ried out every 6 months and participants were only asked about whether
they were on HAART during the last 6 months, exact dates for HAART
initiation are not available. The analysis in Section 4 includes 374 women
with HAART use who had HIV sero-conversion before baseline and baseline
HCV coinfection information. Some characteristics of these 374 women are
presented at the bottom of Table 1.

Figure 1 shows smoothing spline fits and the corresponding derivative
(change rate) curves for average CD4 count and the prevalence of detectable
viral load for the 374 HERS women, where the measurement times are cente-
red such that time 0 represents the earliest visit with HAART information
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Fig. 1. Top panels: smoothing spline fit and the corresponding derivative (change rate)
curve for average CD4 count since reported HAART initiation in the HERS cohort; bottom
panels: smoothing spline fit and the corresponding derivative (change rate) curve for the
prevalence of detectable viral load (≥50 copies/ml) since reported HAART initiation in
the HERS cohort; solid lines: smoothing spline fits; dashed line: derivative curves of the
smoothing spline fits; black dots: maximum of the increasing rate for average CD4 count
and maximum of the decreasing rate of viral load prevalence.

reported. The left panels indicate that the increasing trend for average CD4
count started later than the decreasing trend for viral load prevalence, but
this phenomenon is probably not related to HAART because the starting
times for these trends are 1–2 years before the reported HAART initiation
time. It might be more useful to examine the change rates for average CD4
count and viral load prevalence to assess the effectiveness of HAART. In fact,
the right panels of Figure 1 show that the maximum decreasing rate for viral
load prevalence occurred earlier (around 4 months before reported HAART
initiation) than the maximum increasing rate for average CD4 count (around
the reported HAART initiation), which suggests the possible sequential re-
lationship in post-HAART HIV dynamics discussed in Section 1.1.

1.4. Modeling post-HAART HIV dynamics in the HERS. Our objective
is to develop a model for the joint distribution of the time from HAART
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Fig. 2. CD4 counts (on square root scale) and censoring intervals for 9 selected HERS
women; dotted line: censoring intervals for HAART initiation; solid line: censoring inter-
vals for viral suppression following HAART; circles represent the data from HCV-positive
group and triangles represent the data from HCV-negative group.

initiation to viral suppression, and the longitudinal CD4 counts relative to
the viral suppression time following HAART. As discussed in Section 1.3,
the time from HAART initiation to viral suppression is doubly interval-
censored. Specifically, considering the reporting bias for HAART initiation,
we define the right endpoint of its corresponding censoring interval to be the
first visit of reported HAART use and the definition for the left endpoint is
based on assumptions about the earliest possible time of HAART initiation
in the HERS cohort. Further, viral suppression following HAART can be
either interval-censored or right-censored. Details can be found in Section 4.

Figure 2 shows CD4 counts and corresponding censoring intervals of
HAART initiation and viral suppression following HAART for selected HERS
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women. As seen in the top left panel of Figure 2, viral suppression after
HAART can be right-censored due to participant dropout, death and/or
study end. Similarly, participants could have incomplete CD4 count mea-
surements for 12 scheduled follow-up visits. However, because we focus on
the subpopulation of HAART users in the HERS cohort, the missingness
rate is relatively low compared to the whole HERS population; 90.64% of
the 374 women in our analysis had at least 10 visits. Therefore, for the
HERS analysis in Section 4, we assume that the missing data mechanism is
missingness at random [Little and Rubin (2002)]. Given that the parame-
ters for modeling the missing data mechanism and the outcomes are distinct
and they have independent priors, the missing data are then ignorable when
making posterior inference about the outcomes.

The remainder of the article is organized as follows. In Section 2 we specify
the joint model for doubly interval-censored event time and longitudinal
CD4 count data. Section 3 describes the posterior inference and gives full
conditional distributions for Gibbs steps. We use the model to analyze the
HERS data for investigating the HCV coinfection problem introduced in
Section 1.2, and present the results in Section 4. The conclusion and some
discussion are given in Section 5.

2. A model for post-HAART HIV dynamics.

2.1. Model under an idealized situation. Our goal is to model the joint
distribution of the time from HAART initiation to viral suppression and
the longitudinal CD4 counts. Figure 3 is a schematic illustration of the
variables of interest under an idealized situation. Let t (t ≥ 0) denote the
time since enrollment and let H and V represent the time from enrollment
to HAART initiation and the time from enrollment to viral suppression after
HAART, respectively. By definition, V >H and W = V −H is the time from

Fig. 3. A scheme of the variables of interest under an idealized situation for post-HAART
HIV dynamics: 0 represents enrollment, t indexes the time since enrollment, H is HAART
initiation time, V is viral suppression time following HAART, W is the time from HAART
initiation to viral suppression, and Y (t1), Y (t2), . . . , Y (tn) are CD4 count measurements
with their expectations represented by the curve.
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HAART initiation to viral suppression. Further, Y (t1), Y (t2), . . . , Y (tn) are
CD4 count measurements taken at time points t1 < · · · < tn. Throughout
this article, the time points t1 < · · ·< tn are assumed to be noninformative
and fixed by study design. Let X denote covariates, for example, the baseline
HCV serostatus. The joint density of W and Y (t1), Y (t2), . . . , Y (tn) given
X, H and t1, . . . , tn can be written as

p(w,y1, y2, . . . , yn|X, h, t1, . . . , tn)
(2.1)

= p(w|X, h)p{y1, y2, . . . , yn|X, t1 − (h+w), . . . , tn − (h+w)}.

The conditioning on H is because we are not interested in the marginal
distribution of H and the observed H = h is only used as the time origin
for W .

The factorization in (2.1) is based on the sequential relationship in post-
HAART dynamics. When HAART regimen is successful in suppressing the
virus, we are able to obtain W , the time from HAART initiation to vi-
ral suppression. As mentioned in Section 1.1, there is a time ordering of
virologic response and immunologic response to HAART. Because of this
sequential relationship of virologic and immunologic response as well as the
large between-individual heterogeneity in terms of the ability to suppress vi-
ral replication, the time to suppression and the durability of suppression, we
believe that the mean CD4 count profiles from different individuals are more
comparable after realigning measurement times by their individual viral sup-
pression times following HAART. Therefore, we assume that the distribu-
tion of Y (t1), Y (t2), . . . , Y (tn) given X depends on H and W only through a
change in the time origin for the measurement times t1, . . . , tn. This is simi-
lar to curve registration, a method originated in the functional data analysis
literature [Ramsay and Li (1998)] for dealing with the situations where the
rigid metric of physical time for real life systems is not directly relevant to
internal dynamics. For example, the timing variation of salient features of
individual puberty growth curves (e.g., time of puberty growth onset, time
of peak velocity of puberty growth) can result in the distortion of population
growth curves [Ramsay and Silverman (2005)]. Likewise, in our case, simply
averaging individual CD4 count profiles along the time since enrollment (t)
or the time since HAART initiation (H) can attenuate the true population
immunologic response profile following HAART. Because viral suppression
is the main driving force of immune reconstitution [Jacobson, Phair and
Yamashita (2004)], it is sensible to center the time scale at individual viral
suppression times (V =H +W ) in order to describe the trends in immune
reconstitution at the population level.

However, as mentioned in Section 1.3, W can be doubly interval-censored
in HIV natural history studies, which presents a challenge in making in-
ferences about the density in (2.1). In fact, for p{y1, y2, . . . , yn|X, t1 − (h+
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w), . . . , tn − (h + w)}, we are faced with a situation similar to the missing
or interval-censored covariate problem in generalized linear model literature
[Chen et al. (2005); Calle and Gómez (2005)]. To accommodate this situ-
ation, we will extend the semiparametric Bayesian approach in Calle and
Gómez (2005) by modeling H and W simultaneously. Note that here we
model the observed H only for taking into account the uncertainty in the
time origin of W ; we do not intend to make inference about the marginal dis-
tribution for HAART initiation time, which requests the right-censored data
from those participants who did not initiate HAART during the study. This
is different from the AIDS incubation time problem which motivated the
research in doubly interval-censored data, where both HIV infection time
and AIDS incubation time are of interest and HIV infection time can be
right-censored [De Gruttola and Lagakos (1989)]. Moreover, for the HERS
cohort, HAART was not available before 1996; therefore, when HAART ini-
tiation time is of scientific interest, it is not valid to use enrollment as the
time origin because all HERS women were not at risk for HAART initiation
between enrollment and 1996. However, for the purpose of accommodating
uncertainty for the time origin of W , we can still use the observed censoring
intervals for H with enrollment as their time origin.

In the following sections, we present the details of the proposed joint
model for the HERS data.

2.2. Model with doubly interval-censored data.

2.2.1. Observed data. Recall that all HERS women were HAART-naive
at baseline. For those who initiated HAART during follow-up, let H be a
positive random variable representing the time from enrollment to HAART
initiation. Participants were monitored only periodically, and at each follow-
up visit they only reported whether they were on HAART treatment since
the last visit. Hence, the true value for H is only known to lie within an
interval (LH ,RH ], where LH is the time of the visit preceding HAART
initiation and RH is the time of the first visit at which HAART use is
reported.

Let V be the time from enrollment to viral suppression following HAART
initiation. By definition, V > H . For those whose viral load has been sup-
pressed, V is observed to be in an interval (LV ,RV ], where LV and RV are
defined similarly as LH and RH . For those whose viral load was not sup-
pressed during follow-up, V ∈ (LV ,+∞), which corresponds to right cen-
soring of V . Because right censoring can be treated as a special case of
interval censoring with RV =+∞, we simply write V ∈ (LV ,RV ]. The time
between HAART initiation and viral suppression is W = V −H . At a given
value for H , (LH ,RH ] and (LV ,RV ] can overlap because virus suppres-
sion can occur quickly after HAART but before the next visit; therefore,
W ∈ (max(0,LV −H),RV −H].



10 L. SU AND J. W. HOGAN

Further, we observe CD4 countsY = (Y1, . . . , Yn)
T at time points t1, . . . , tn,

which can be different across individuals and X is the covariate that includes
baseline HCV coinfection status Z, where Z ∈ {0,1} indicates positivity of
HCV antibody.

In summary, the observed data for a HAART user in the HERS cohort
consist of the observed CD4 counts Y, the covariate X, the observation
times t1, . . . , tn and the intervals (LH ,RH ], (LV ,RV ] that respectively in-
clude HAART initiation time H and viral suppression time V .

2.2.2. Noninformative assumption for interval-censoring. The joint den-
sity for the above observed data and the unobservedH andW can be written
as

p(lH , rH , lV , rV , h,w,y|X, t1, . . . , tn)

= p0(l
H , rH , lV , rV |X)p1(h|X, lH , rH , lV , rV )

(2.2)
× p2(w|X, h, lH , rH , lV , rV )

× p3{y|X, t1 − (h+w), . . . , tn − (h+w), lH , rH , lV , rV }.

Denote the cumulative distribution function (CDF) of H given X by
GH(h|X;λH), and the CDF of W given X by GW (w|X;λW ). The corre-
sponding probability density functions (PDF) are gH(h|X;λH) and gW (w|X;
λW ), respectively. We assume that the censoring of H and W occurs non-
informatively [Oller, Calle and Gómez (2004); Calle and Gómez (2005)], in
the following sense:

(a) (LH ,RH ,LV ,RV ) provide no additional information about Y when H

and W are exactly observed. That is, the conditional density of Y

given (X,H,W, t1, . . . , tn) and (LH ,RH ,LV ,RV ) does not depend on
(LH ,RH ,LV ,RV ):

p3{y|X, t1 − (h+w), . . . , tn − (h+w), lH , rH , lV , rV }

= p3{y|X, t1 − (h+w), . . . , tn − (h+w);θ}.

(b) The only information about H and W provided by the observed cen-
soring intervals is that (LH ,RH ], (LV ,RV ] contain H and V =H +W ,
respectively. That is, the conditional density of H given X and (LH ,RH ]
satisfies

p1(h|X, lH , rH , lV , rV )
(2.3)

=
gH(h|X;λH)

GH(rH |X;λH)−GH(lH |X;λH)
,
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which corresponds to the density of H given X truncated in (LH ,RH ].
Similarly, the conditional density of W given X, H and (LV ,RV ] is

p2(w|X, h, lH , rH , lV , rV )
(2.4)

=
gW (w|X;λW )

GW (rV − h|X;λW )−GW (max(0, lV − h)|X;λW )
,

the truncated density gW (w|X;λW ) in the interval (max(0,LV −H),RV −
H]. We denote (2.3) by gHT (h|X, lH , rH ;λH) and (2.4) by gWT (w|X, h, lV , rV ;

λW ), where the subscript T stands for ‘truncated’ density.

Given these noninformative conditions, the joint density in (2.2) can be
simplified as

p(lH , rH , lV , rV , h,w,y, |X, t1, . . . , tn)

= p0(l
H , rH , lV , rV |X)gHT (h|X, lH , rH ;λH)

(2.5)
× gWT (w|X, h, lV , rV ;λW )

× p3{y|X, t1 − (h+w), . . . , tn − (h+w);θ}.

2.2.3. Hierarchical structure of the model. To construct the observed
data likelihood, we index each individual’s data by i= 1, . . . ,N and let ni
be the number of observations for the ith individual, (Yi, Xi, L

H
i , R

H
i , LVi ,

RV
i , ti1, . . . , tini) are observed. If we denote by [A|B;Ω] the conditional dis-

tribution of random variable A, given random variable B and parameter Ω,
we can summarize our model by a hierarchical structure from a Bayesian
point of view:

[Yi|Xi,Hi,Wi, ti1, . . . , tini ;θ]∼ P3(y|Xi, ti1 − vi, . . . , tini − vi;θ),

[Wi|Xi,Hi,L
V
i ,R

V
i ;λ

W ]∼GW
T (w|Xi, hi, l

V
i , r

V
i ;λ

W ),

[Hi|Xi,L
H
i ,R

H
i ;λ

H ]∼GH
T (h|Xi, l

H
i , rHi ;λH),

(2.6)
[LHi ,R

H
i ,L

V
i ,R

V
i |Xi]∼ P0(l

H , rH , lV , rV |Xi;δ),

[δ,λH ,λW ,θ]∼ F (δ,λH ,λW ,θ),

vi = hi +wi, i= 1, . . . ,N,

where P3(·), G
W
T (·), GH

T (·), P0(·) and F (·) are the corresponding distribution

functions. Assuming the independence of the priors for δ and (λH ,λW ,θ),
the marginal distribution of the censoring intervals P0(l

H , rH , lV , rV |Xi;δ)
is not part of the posterior inference about (λH ,λW ,θ) because of the
noninformative censoring conditions. Therefore, we do not need to model
P0(l

H , rH , lV , rV |Xi;δ) explicitly.
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2.2.4. Semiparametric Bayesian approach for event time distributions.

We use a semiparametric Bayesian approach for modeling H and W . The
CDFs GH and GW are left unspecified and not constrained to a parametric
family. Therefore, GH and GW are themselves unknown parameters, and
Dirichlet process priors [Ferguson (1973)] are assigned.

A Dirichlet process prior (DPP) on a nonparametric distribution G is a
distribution on the space of all possible distributions for G [Ferguson (1973)].
The parameters of DPP are a parametric distribution G0(·;λ), and a positive
scalar α. The parametric distribution G0 corresponds to the prior expecta-
tion of the distribution function G. The precision parameter α indicates how
similar we believe the base measure G0 and the nonparametric distribution
G are. A DPP with parameters α and G0 is denoted by D(αG0).

In the HERS analysis reported in Section 4, we include baseline HCV
status as the covariate for event time distributions. Therefore, adding non-
parametric DPP for GH and GW with base measures GH

0 , GW
0 , and precision

parameters αH , αW , the initial hierarchical model structure in (2.6) can be
elaborated as

[Yi|Xi,Hi,Wi, ti1, . . . , tini ;θ]∼ P3(y|Xi, ti1 − vi, . . . , tini − vi;θ),

[Wi|Xi,Hi,L
V
i ,R

V
i ]∼GW

T (w|Zi, hi, l
V
i , r

V
i ),(2.7)

[GW (·|Zi);λ
W , αW ]∼D(αWGW

0 (·|Zi;λ
W )),

[Hi|Xi,L
H
i ,R

H
i ]∼GH

T (h|Zi, l
H
i , rHi ),

[GH(·|Zi);λ
H , αH ]∼D(αHGH

0 (·|Zi;λ
H)),

[LHi ,R
H
i ,L

V
i ,R

V
i |Xi]∼ P0(l

H , rH , lV , rV |Xi;δ),

[δ,λH ,λW ,θ]∼ F (δ,λH ,λW ,θ),

vi = hi +wi, i= 1, . . . ,N.

2.2.5. Model for CD4 counts. In this section we describe the model for
CD4 counts. Recall that our objective is to characterize mean CD4 count
profiles relative to individual viral suppression times for HCV groups, after
adjusting for other covariates. In other words, our focus is on the parameter
θ in P3(y|Xi, ti1 − (hi +wi), . . . , tini − (hi +wi);θ). Since viral suppression
time V can be right-censored, those individuals with V less than or equal
to the maximum follow-up time T are treated as HAART responders, while
those with V > T are considered as nonresponders in the study period for
comparison purpose. It is also assumed that the mean CD4 count profiles
differ by both HAART responder groups and HCV groups; thus, different
smooth functions are used for these subpopulations. We only realign the
data for the HAART responder group by viral suppression times; for the
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nonresponder group the measurement time origin is still participant enroll-
ment.

In addition, there are other important covariates that are possibly associ-
ated with immunologic response to HAART besides the HCV serostatus, for
example, the overall CD4 level before HAART initiation and baseline injec-
tion drug use information. Specifically, let X∗

i be a vector of other covariates
excluding baseline HCV status Zi, and T be the maximum follow-up time
for the study. For j = 1, . . . , ni, we assume that the CD4 count at tij for the
ith individual follows

Yij|X
∗
ij ,Zi, vi, tij =

{

mi(tij − vi) +X∗
iβ

∗ + eij , if vi ≤ T ,
ci(tij) +X∗

iβ
∗ + eij, if vi >T ,

(2.8)

where

mi(t) = Zi ·m1(t) + (1−Zi) ·m0(t) + γmi (t),

ci(t) = Zi · c1(t) + (1−Zi) · c0(t) + γci (t).

Here m1(t), m0(t), c1(t), c0(t) are smooth functions describing the popula-
tion CD4 count profiles that are specific to HCV serostatus, γmi (t) and γci (t)
are individual-level smooth functions that represent random deviations from
population profiles, β∗ is the regression coefficient for X∗

ij , and the within-

individual error term eij
i.i.d.
∼ N(0, σ2). We assume that ei(t), γ

m
i (t) and γci (t)

are mutually independent. Detailed specification for all smooth functions can
be found in the Appendix. Overall, m1(t), m0(t), c1(t), c0(t) can be consid-
ered as fixed effects, γmi (t), γci (t) can be considered as random effects, and
eij is the measurement error in the linear mixed model framework. Because
within-subject covariance is not of direct interest in our analysis, no stochas-
tic process is further introduced into the CD4 count model except random
effects and measurement error. However, when within-subject covariance
is the target of inference, stochastic processes, for example, the integrated
Ornstein–Uhlenbeck process in Taylor, Cumberland and Sy (1994), can be
added.

3. Prior specification and posterior inference. Gibbs sampling can be
used to obtain posterior samples from the full conditional posterior distri-
butions of λH , λW and θ. Compared to the model with known H and W

in (2.1), the model in (2.7) involves an extra layer in the Gibbs steps. That
is, at each iteration, the doubly interval-censored W together with H are
sampled from their conditional posterior distributions, which results in a
complete data set that is used to update the posterior distributions of the
model parameters.

For the HERS analysis in Section 4, we assume that the prior for θ and
the prior for λH , λW are independent. Normal distributions are used as
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base measures of DPP for GH and GW . Different values of the precision
parameters (αH , αW ) are used to evaluate the sensitivity in estimating GH

and GW . For the CD4 count model, standard vague priors, such as normal-
gamma conjugate family, are used.

Let H = (H1, . . . ,HN )
T, W = (W1, . . . ,WN )

T, Ti = (t1i, . . . , tini)
T and

T = (T1, . . . , TN )
T; LH , RH , LV and RV are the vectors of left and right

endpoints for censoring intervals. To derive the full conditional distribution
for model (2.7), we use the Polya urn characterization of DPP [Blackwell
and MacQueen (1973)] and extend the ideas of Escobar (1994) and Calle and
Gómez (2005). Specifically, we sample from [H,W,λH ,λW ,θ|Y1, . . . ,YN ,

X1, . . . ,XN ,L
H ,RH ,LV ,RV ,T], by the iterations as follows: first, H and

W are imputed by using corresponding conditional distributions; second,
the parameter θ is updated using the complete data set obtained from the
first step and current values of the rest of parameters; last, the parame-
ters λH ,λW are updated using distinct values of imputed H and W. De-
tails on priors and full conditional posterior distributions are given in the
Appendix.

4. Data analysis. In this section we apply the joint model to the HERS
data introduced in Section 1.3. Two different definitions are used for censor-
ing intervals of HAART initiation and the results are compared. The first one
is explicitly based on reported HAART use information, and we refer to them
as ‘narrow’ intervals for H . Here RH is the first visit with reported HAART
use; LH is the immediate previous visit without HAART use. There are 159
(89 HCV seropositive, 70 HCV seronegative) patients with right-censored
viral suppression time in this case. However, we find that some patients had
viral suppression immediately before LH , which could be due to the possible
reporting bias regarding HAART initiation. As a result, we might miss the
true viral suppression time following HAART and artificially create some
cases with right-censored viral suppression time (or viral suppression that
occurred long after HAART initiation). To reduce its impact in a conserva-
tive manner, we redefine all 374 left endpoints of HAART initiation intervals
to be March 11th, 1996, which is the left endpoint of the censoring interval
for the patient who was the first reporting HAART use in the HERS cohort.
Because censoring intervals for HAART initiation are wider under this new
definition, we refer to them as ‘wide’ intervals for H and here the num-
ber of patients with right-censored viral suppression time is reduced to 141
(78 HCV seropositive, 63 HCV seronegative). Figure 4 shows the CD4 count
data and censoring intervals under two definitions of HAART initiation time
intervals for two selected women in the HERS cohort. In the left panel, the
‘wide’ definition for H also changes the interval for viral suppression time
V , while in the right panel the intervals for V remain the same.
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Fig. 4. CD4 counts (on square root scale, circles: HCV positive, triangles: HCV neg-
ative) and censoring intervals of H and V = H +W under two definitions of HAART
initiation time intervals for two selected women in the HERS cohort; censoring intervals
under ‘narrow’ definition are represented by dashed lines, censoring intervals under ‘wide’
definition are represented by solid lines; censoring intervals of H and V =H +W are on
the top and bottom of panels, respectively.

For CD4 counts, square-root transformation is used because it is more
appropriate for the assumptions of Normality and homogeneous variance as
shown by exploratory analysis. In addition to baseline HCV serostatus, two
other covariates are included in the CD4 model: the observed CD4 count
(scaled by 100) immediately before reported HAART initiation (pretreat-
ment CD4 level) and the indicator of baseline injection drug use (IDU). For
penalized splines approximating population-level smooth functions, we use
truncated quadratic bases with 20 knots, allowing sufficient flexibility for
capturing CD4 count changes at viral suppression times. These knots are
placed at viral suppression times as well as at the sample quantiles of the
realigned measurement times using midpoints of the observed censoring in-
tervals for viral suppression. Because data for individual women are sparse
over time and the maximum number of data points for individual women is
15, we use truncated quadratic bases with one knot at the viral suppression
times for estimating individual-level smooth functions. Since the first deriva-
tives (velocities) of the population-level smooth functions can be computed
in analytic form when truncated quadratic bases are used, we also examine
the posterior inference for these derivatives.

The prior specifications are as described in Section 3 and the Appendix.
For assessing sensitivity in estimating GH and GW , precision parameters
(αH , αW ) of the Dirichlet process are taken to be equal to (1,1) and (10,10),
which indicate different levels of faith in the prior normal base measures
for H and W . We run two MCMC chains with 7000 iterations, the first
2000 of which are discarded. Convergence is established graphically using
history plots; pooled 10,000 posterior samples are then used for inference.
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The results at both values of αH , αW are similar; here we present those
with (αH , αW ) = (10,10). MCMC is implemented in MATLAB programs
[The MathWorks Inc. (1997)].

For the purpose of modeling doubly interval-censored event time W only,
marginal models can be used by excluding the part for CD4 counts from
(2.7). We will compare the results from our joint model with those from
marginal models, and investigate the possible impact of joint modeling.

4.1. Results for virologic response to HAART. Table 2 presents the pos-
terior mean estimates of the percentiles of the time between HAART ini-
tiation and viral suppression for the HAART responder group. The results
based on ‘wide’ intervals for H suggest that the HCV negative group might
have shorter time to achieve viral suppression than the HCV positive group,
but this is not the case with ‘narrow’ intervals for H , where the HCV nega-
tive group has more right skewed distribution. Further, the joint model tends
to give smaller estimates than the marginal model. For example, in Table 2
both location estimates and variability estimates from the joint model based
on ‘wide’ intervals for H are smaller than those from the marginal model,
which suggests that modeling CD4 counts affects the estimation for dou-
bly interval-censored W when the information from censoring intervals is
limited.

Table 3 gives the estimated proportions of HAART responders with time
between HAART initiation and viral suppression less than or equal to 90/180
days. In both cases of ‘wide’ and ’narrow’ intervals for H , the 95% credible
intervals for differences between proportions by HCV groups cover zero.

Table 2

Percentiles (posterior mean estimates) of the time between HAART initiation and viral
suppression (in units of days) for HAART responder group by HCV serostatus in

marginal and joint models; ‘narrow’ stands for ‘narrow’ intervals for H , ‘wide’ stands
for ‘wide’ intervals for H

5% 25% 50% 75% 95%

‘narrow’ W |V ≤ T Marginal HCV + 15 37 126 654 1339
HCV − 13 39 118 625 1384

Joint HCV + 13 28 88 291 906
HCV − 13 31 82 356 959

‘wide’ W |V ≤ T Marginal HCV + 3 145 582 1129 1497
HCV − 1 120 436 1021 1521

Joint HCV + 1 122 350 793 1232
HCV − 1 91 322 768 1315
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Thus, in the HERS cohort, there is not sufficient evidence that baseline
HCV serostatus is associated with virologic response to HAART. This is also
demonstrated in Figure 5, where the hazard functions of viral suppression
are plotted over grid points of 30 days. Here the hazard is defined as p(W <

t2|W ≥ t1, V ≤ T ), where t1, t2 are grid points. With both ‘narrow’ and
‘wide’ intervals for H , the hazard functions of viral suppression are generally
similar across the HCV groups. Note that estimated proportions of HAART
responders p(V ≤ T ) are also similar for the HCV groups in all cases.

From Table 2, median estimates for the time between HAART initiation
and viral suppression are approximately one year with ‘wide’ intervals for
H and 3–4 months with ‘narrow’ intervals for H in the joint model. Com-
pared to the clinically expected value, the estimates with ‘wide’ intervals
for H might be overestimated due to the following reasons. First, data were
collected approximately every six months in the HERS, thus the immediate
virologic response to HAART were not available. Second, HAART informa-
tion was self-reported and we set up the left endpoints of HAART initiation

Table 3

Proportions (posterior mean estimates) of HAART responders and proportions of
HAART responders with time between HAART initiation and viral suppression less than
90 (180) days by HCV serostatus from marginal and joint models in the HERS cohort;
95% credible intervals are in square brackets; ‘narrow’ stands for ‘narrow’ intervals for

H , ‘wide’ stands for ‘wide’ intervals for H

p(V ≤ T ) p(W ≤ 90|V ≤ T ) p(W ≤ 180|V ≤ T )

‘narrow’
Marginal HCV + 0.75 0.42 0.56

HCV − 0.72 0.43 0.56
Difference −0.03 0.02 −0.01

[−0.14, 0.08] [−0.24, 0.25] [−0.12, 0.11]

Joint HCV + 0.63 0.48 0.66
HCV − 0.64 0.52 0.62

Difference 0.01 0.05 −0.04
[−0.05, 0.06] [−0.24, 0.31] [−0.14, 0.07]

‘wide’
Marginal HCV + 0.85 0.13 0.29

HCV − 0.78 0.22 0.33
Difference −0.07 0.08 0.04

[−0.22, 0.07] [−0.03, 0.19] [−0.06, 0.14]

Joint HCV + 0.68 0.17 0.36
HCV − 0.68 0.24 0.38

Difference 0.01 0.07 0.01
[−0.05, 0.07] [−0.06, 0.20] [−0.10, 0.12]
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Fig. 5. Hazard function of viral suppression after HAART initiation by HCV serostatus
in the HERS cohort over grid points of 30 days from the joint model; left panel: ‘narrow’
intervals for H ; right panel: ‘wide’ intervals for H .

time to be March 11th, 1996 for reducing reporting bias. Consequently, cen-
soring intervals for observed HAART initiation times are wide. Third, 38% of
the participants had right-censored viral suppression times, which might be
related to the adherence of HAART treatment and individual heterogene-
ity in virologic response. However, these situations do not differ by HCV
serostatus, thus the corresponding comparison can still be useful.

4.2. Results for immunologic response to HAART. The results for CD4
counts are similar under both definitions of censoring intervals for HAART
initiation and we present those based on ‘wide’ intervals for H .

4.2.1. Population estimates. We compute posterior mean estimates for
all targets of inference. The coefficient estimate for pretreatment CD4 level is
2.35 (95% credible interval [2.22,2.49]), which clearly indicates the positive
association between pretreatment CD4 level and the current CD4 count,
given baseline HCV and IDU statuses. The coefficient estimate for baseline
IDU is −0.06 (95% credible interval [−0.80,0.64]), suggesting that baseline
IDU status was not associated with current CD4 counts, given baseline HCV
and pretreatment CD4 level.

For HAART responders, mean CD4 count profiles (after accounting for
pretreatment CD4 level and baseline IDU) are plotted in the panel (a)
of Figure 6. We transform the estimates back to the original CD4 count
scale for illustration purposes. The estimated CD4 count profiles of both
HCV groups were decreasing at 3–6 years before viral suppression. CD4
counts started to increase before HIV virus was completely suppressed (time
point 0). This is consistent with findings from other studies, that is, CD4
cells may increase after HAART for patients who do not fully suppress the
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virus, because the level of viral load is decreasing [Jacobson, Phair and Ya-
mashita (2004)]. However, Figure 6(a), also suggests that the decreasing
trend for HCV-negative patients ends earlier than HCV-positive patients
when HAART started to be initiated. In addition, the average CD4 level
after viral suppression achieved by HCV-negative patients is higher than
HCV-positive patients. For example, at viral suppression time the difference
of average CD4 count for HCV groups is approximately 16 (95% credible

Fig. 6. (a) Estimated CD4 count profiles by HCV groups for HAART responders (trans-
formed to original CD4 count scale) in the joint model, after accounting for pretreatment
CD4 level and baseline injection drug use: solid line, HCV-positive group; dotted line,
HCV-negative group. (b) Difference between CD4 count profiles (in original CD4 count
scale) in the joint model: solid line, posterior mean estimates; dotted lines, 95% point-
wise credible bands. (c) Derivatives for CD4 count profiles by HCV groups for HAART
responders (in square root CD4 count scale) in the joint model, after accounting for pre-
treatment CD4 level and baseline injection drug use. (d) Difference between derivatives for
CD4 count profiles (in square root CD4 count scale) in the joint model. The ticks at the
top and the bottom of the panels are the HAART initiation times corresponding to the 5%,
50% and 95% quantiles of the time between HAART initiation and viral suppression in
Table 2: solid line, HCV-positive group; dotted line, HCV-negative group.



20 L. SU AND J. W. HOGAN

interval [−3,35]), controlling for pretreatment CD4 level and baseline IDU.
We also plot the difference curve between mean CD4 count profiles of HCV
groups [Figure 6(b), in original CD4 count scale]. The pointwise 95% credible
bands are approximately above zero after CD4 counts started to increase.
Note that the difference between point estimates of the mean CD4 counts
at the left boundary for the time since viral suppression axis might be due
to the small sample size and large estimation variability, which is suggested
by the width of 95% pointwise credible bands.

To evaluate immune reconstitution after HAART, the rate of CD4 count
change is a useful measure. Panel (c) of Figure 6 presents the derivative
(velocity) curves for mean CD4 count profiles of HAART responders. For
both HCV groups, the velocities of the average CD4 count change reach
the maximum approximately at viral suppression times, which is sensible
because the major driving force of immune reconstitution is viral suppression
[Jacobson, Phair and Yamashita (2004)]. Overall, the HCV-negative group
has slightly larger point estimates of mean CD4 count change rate leading up
to and following viral suppression. Panel (d) of Figure 6 gives the difference
and the corresponding 95% credible bands between derivative curves of HCV
groups. After controlling for pretreatment CD4 level and baseline IDU, the
rates of mean CD4 count change do not appear to be different by HCV
serostatus in the HERS cohort.

The left panel of Figure 7 presents the mean CD4 count profiles for
HAART nonresponders (in original CD4 count scale) along the time since

Fig. 7. (a) Estimated CD4 count profiles by HCV groups for HAART nonresponders
(transformed to original CD4 count scale) in the joint model, after accounting for pretreat-
ment CD4 level and baseline injection drug use: solid line, HCV positive group; dotted line,
HCV negative group. (b) Difference between CD4 count profiles (in original CD4 count
scale) in the joint model: solid line, posterior mean estimates; dotted lines, 95% pointwise
credible bands.
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enrollment. Both HCV groups had the same decreasing patterns, and the
difference curve and its 95% credible band (right panel of Figure 7) indicate
that there is not difference in mean CD4 count levels for HCV groups in
this nonresponder population, after adjusting for pretreatment CD4 level
and baseline IDU.

4.2.2. Individual estimates. The parameter estimates for individuals may
not exactly follow the patterns of the population if the between-subject vari-
ation is large. Data, 50 sample curves from posterior predictive distributions
and averages of 50 sampled mean curves for nine selected HERS women in
Section 1, are plotted in Figure 8. Compared with Figures 6 and 7, we can
see that not only the magnitude but also the patterns are different between
the population and individual estimated profiles. However, the model fits
well to this representative sample of individuals.

5. Conclusion and discussion. We proposed a joint model for doubly
interval-censored event time and longitudinal data in HIV natural history
studies in order to investigate the post-HAART HIV dynamics and the as-
sociated factors. Using data from the HERS cohort, we found that HCV-
negative and HCV-positive patients had similar virologic response, which is
measured by the time from HAART initiation to viral suppression. Further,
our results show that for patients with virologic response to HAART, being
HCV seronegative is associated with higher average CD4 count level after
viral suppression, given the same pretreatment CD4 level and baseline IDU
status. The HCV-negative group showed slightly higher immune reconsti-
tution level (measured by the rate of mean CD4 count change) leading up
to and following viral suppression, however, the evidence from the HERS
cohort is not sufficient to support the conclusion.

Data from natural history studies have been used to evaluate the effect
of HCV coinfection on post-HAART HIV dynamics [Greub et al. (2000);
Sulkowski et al. (2002); Miller et al. (2005)]. However, virologic response
and immunologic response were investigated separately and simple summary
statistics were used for inference, for example, average CD4 count increases
after HAART initiation by visits, hazard ratio of increasing CD4 count by at
least 50 cells/µl in a year, etc. In contrast, our method considers the charac-
teristics of longitudinal cohort data as well as the biological background of
the post-HAART HIV dynamics (such as the sequential relationship between
virologic and immunologic response); our joint modeling approach utilizes
all available information from natural history studies and the results can be
informative in generating hypotheses for AIDS clinical trials.

In the HERS analysis, we considered the women with V > T as HAART
nonresponders and examined their population mean CD4 count profiles.
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Fig. 8. CD4 count data (on square root scale) and 50 posterior predictive sample curves
in the joint model from 9 selected women in the HERS cohort: vertical dotted lines are
censoring intervals for HAART initiation (under ‘wide’ definition), vertical solid lines are
censoring intervals for viral suppression; except for panels (a) and (e) with vi > T , ticks
at the bottom of each panel are imputed viral suppression times (vi ≤ T ); circles represent
data from the HCV-positive group and triangles represent data from the HCV-negative
group; solid lines are averages of 50 sampled mean curves.

However, because the data are from a natural history study and the ob-
served HAART initiation times vary across individuals, the observed data
for viral suppression time actually depend on the timing of HAART initia-
tion. Therefore, the HERS women with V > T might not be a homogenous
group in terms of response to HAART. The definition of ‘responder,’ how-
ever, does not differ by HCV status. Thus, for comparison purposes, it would
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still be useful to examine the population mean CD4 count profiles for both
women with V > T and women with V ≤ T .

Due to the sparse data, information on event times for evaluating viro-
logic response is limited in the HERS cohort. In order to reduce possible
reporting bias regarding HAART initiation, we use two definitions of cen-
soring intervals for HAART initiation and investigate the impact on the
analysis. The conclusions for HCV serostatus and post-HAART HIV dy-
namics do not differ by the definitions. However, the actual estimates for
time between HAART initiation and viral suppression might be larger com-
pared to the clinical expected values due to the study design, conservative
definition of censoring intervals, participant noncompliance, drug resistance
and other individual heterogeneity in virologic response to HAART. As we
are being conservative by moving left endpoints of HAART initiation time
to the earliest possible date, another option could be a hybrid approach by
changing censoring intervals only for those with suspicious viral suppression
immediately before self-reported HAART initiation date. Alternatively, we
could specify a uniform prior for the left boundary of HAART initiation
time between the left boundaries defined in ‘narrow’ and ‘wide’ intervals to
reflect uncertainty about true HAART initiation time.

Besides HCV coinfection, other potential determinants or modifiers of
post-HAART HIV dynamics include characteristics of the HAART regimen,
prior antiviral treatment history, stage of disease at the time of HAART
initiation (viral load level), an intact immune system and other host char-
acteristics, such as age, race, gender and genotype [Jacobson, Phair and
Yamashita (2004)]. For adjusting these possible factors, covariates can be
added into the CD4 count model (2.8) similarly as for the case of pretreat-
ment CD4 level and baseline IDU status. For doubly interval-censored data,
one limitation of our Bayesian semiparametric approach is that sample sizes
could be small for reliable estimation when the unique values of the covari-
ates are large. For example, there were only 4 HERS women who were IDU
and HCV negative at baseline. Therefore, we could not assign different DPP
to all combinations of the covariate values when baseline IDU is included
as a covariate. In this scenario, a parametric approach can be developed to
adjust for additional covariates.

We believe that the proposed joint modeling approach is methodologically
valuable. The proposed regression spline method is simple to implement,
and naturally incorporates the typical features of longitudinal data such as
between-individual and within-individual variations. The proposed model
can be extended to characterize multiple processes in disease progression
after treatment intervention, for example, the neurocognitive response to
HAART treatment after immune reconstitution is another process of interest
apart from the virologic and immunologic response [Bell (2004)].
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APPENDIX: FULL CONDITIONAL DISTRIBUTIONS FOR GIBBS
STEPS IN SECTION 3

A.1. Data augmentation for event times. A value for each censored ob-
servation, Hi, is sampled from the conditional distribution of Hi given all
other parameters. Under a DPP this conditional distribution maintains the
same Polya urn structure assumed a priori for H1, . . . ,HN . It can be shown
that the full conditional distribution of Hi has the following form:

[Hi|Yi, Ti,Xi,W,{Hj, j 6= i},LH ,RH ,LV ,RV ,λH ,λW ,θ]
(A.1)

∼ r0 · g
H
0T (hi|Zi, vi, l

H
i , rHi ,λH) +

∑

j 6=i

rj · I(hj = hi),

where gH0T is the truncated posterior distribution in the censoring interval
(LHi ,min(RH

i , Vi)]. Note that Yi does not get involved in (A.1) because
conditioning on Vi, Yi and Hi are independent. Since Vi only provides in-
formation on the range of Hi, g

H
0T is simply the truncated gH0 , base measure

of Hi given Zi. Furthermore,

r0 ∝ αH
∫ min(rHi ,vi)

lHi

gH0 (hi|Zi;λ
H)dhi,

rj ∝ I(lHi < hj ≤min(rHi , vi),Zj =Zi),

and r0+
∑

j 6=i rj = 1. Thus, a new value of Hi is equal either to hj with prob-

ability rj , or to a sampled value from the distribution gH0T with probability
r0. Also, we assume that depending on the value of Zi, the base measure gH0
are normal distributions with distinct parameters (µH1 , τH1 ) or (µH0 , τH0 ).

For Wi = Vi−Hi, the full conditional distribution follows:

[Wi|Yi, Ti,Xi,H,{Wj , j 6= i},LH ,RH ,LV ,RV ,λH ,λW ,θ]

∼ q0 · g
W
0T (wi|yi, Ti,Xi, hi, l

V
i , r

V
i ,λ

W ) +
∑

j 6=i

qj · I(wj =wi),

where

gW0T (wi|yi, Ti,Xi, hi, l
V
i , r

V
i ,λ

W )

∝ p3(yi|Xi, Ti − (hi +wi);θ)g
W
0 (wi|Zi;λ

W )

× I(max(0, lVi − hi)<wi ≤ rVi − hi)

is the truncated posterior distribution of Wi in (max(0,LVi −Hi),R
V
i −Hi].

Furthermore,

q0 ∝ αW
∫ rVi −hi

max(0,lVi −hi)
p3(yi|Xi, Ti − (hi +wi);θ)g

W
0 (wi|Zi;λ

W )dwi,

qj ∝ p3(yi|Xi, Ti− (hi +wj);θ)I(max(0, lVi − hi)<wj ≤ rVi − hi,Zj = Zi),
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and q0+
∑

j 6=i qj = 1. Thus, a new value of Wi is equal either to wj with prob-

ability qj , or to a sampled value from the distribution gW0T with probability
q0, where g

W
0T is the full conditional distribution of W that would be obtained

if the completely parametric hierarchical model (2.6) is used and gW0 is the
prior distribution (base measure) for W given Z. We again assume that gW0
are normal distributions with distinct parameters (µW1 , τW1 ), (µW0 , τW0 ). Be-
cause p3(yi|Xi, Ti − (hi +wi);θ) is based on the model in (2.8), there is no
closed form for gW0T and the Metropolis step [Gelman et al. (2003)] is used
for sampling. The integral in q0 is approximated by the Gauss–Legendre
quadrature with 20 nodes.

A.2. Update parameters in the CD4 count model. We use Bayesian pe-
nalized splines [Ruppert, Wand and Carroll (2003)] with a truncated poly-
nomial basis for approximating CD4 count profiles at both population level
and individual level.

Following Ruppert, Wand and Carroll (2003), m1(t), m0(t), c1(t), c0(t),
γmi (t) and γci (t) (i= 1, . . . ,N ) in (2.8) can be approximated by

m1(t) =B(t)Tβ1, m0(t) =B(t)Tβ2,

c1(t) =A(t)Tα1, c0(t) =A(t)Tα2,

γmi (t) =φ(t)Tbi, γci (t) =ψ(t)
Tai,

where B(t) = (1, t, . . . , tp, (t−ν1)
p
+, . . . , (t−νKB)

p
+)

T, A(t) = (1, t, . . . , tp, (t−

ξ1)
p
+, . . . , (t − ξKA)

p
+)

T, φ(t) = (1, t, . . . , tp, (t − η1)
p
+, . . . , (t − ηKφ)

p
+)

T and

ψ(t) = (1, t, . . . , tp, (t−ζ1)
p
+, . . . , (t−ζKψ)

p
+)

T are truncated polynomial bases;

p ≥ 1 is an integer and (d)p+ = dp · I(d ≥ 0). (ν1, . . . , νKB), (ξ1, . . . , ξKA),
(η1, . . . , ηKφ) and (ζ1, . . . , ζKψ) are the corresponding knots; (KB , KA, Kφ,
Kψ) are the number of knots.

Let

β1 = (β1,0, . . . , β1,p+KB)
T, β2 = (β2,0, . . . , β2,p+KB)

T,

α1 = (α1,0, . . . , α1,p+KA)
T, α2 = (α2,0, . . . , α2,p+KA)

T,

bi = (bi,0, . . . , bi,p+Kφ)
T, ai = (ai,0, . . . , ai,p+Kψ)

T,

and xij = tij − vi, then the proposed model in (2.8) can be rewritten as

Yij|X
∗
i ,Zi, vi, tij

=















B(xij)
Tβ1 +φ(xij)

Tbi +X∗
iβ

∗ + eij , if vi ≤ T,Zi = 1,
B(xij)

Tβ2 +φ(xij)
Tbi +X∗

iβ
∗ + eij , if vi ≤ T,Zi = 0,

A(tij)
Tα1 +ψ(tij)

Tai +X∗
iβ

∗ + eij , if vi > T,Zi = 1,
A(tij)

Tα2 +ψ(tij)
Tai +X∗

iβ
∗ + eij , if vi > T,Zi = 0.
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We use the standard prior distributions for all parameters in the CD4 count
model as follows: β∗ ∝ 1, for s = 0, . . . , p, p(β1,s)∝ 1, p(β2,s)∝ 1, p(α1,s)∝
1, p(α2,s) ∝ 1, bi,s ∼ N(0, σ2

bs
), ai,s ∼ N(0, σ2

as
), σ2

bs
∼ Gamma(10−3,10−3)

and σ2
as

∼ Gamma(10−3,10−3); for k = 1, . . . ,KB , β1,p+k ∼ N(0, σ2
β1
) and

β2,p+k ∼N(0, σ2
β2
); for k = 1, . . . ,KA, α1,p+k ∼N(0, σ2

α1
) and α2,p+k ∼N(0, σ2

α2
);

for k = 1, . . . ,Kφ, bi,p+k ∼ N(0, σ2
b ); for k = 1, . . . ,Kψ, ai,p+k ∼ N(0, σ2

a);
σ2
β1
, σ2

β2
, σ2

α1
, σ2

α2
, σ2

b , σ
2
a all follow Gamma(10−3,10−3) distribution. Note

that σ2
β1
, σ2

β2
, σ2

α1
, σ2

α2
are smoothing parameters for the population pe-

nalized splines; σ2
b and σ2

a are smoothing parameters for individual penal-
ized splines; σ2

bs
, σ2

as
(s = 0, . . . , p) are variance component parameters for

random effects. Further, we assume eij ∼N(0, σ2) for all observations and
σ2 ∼Gamma(10−3,10−3).

Thus, the parameter vector θ includes (β∗,β1,β2,α1,α2,bi,ai) and (σ2
β1
,

σ2
β2
, σ2

α1
, σ2

α2
, σ2

b , σ
2
a, σ

2
bs
, σ2

as , σ
2). Since all conditional posterior distribu-

tions for θ are in closed form, the Gibbs steps are straightforward.

A.3. Update parameters for DPP base measures GH

0
and GW

0
. The

parameters λH and λW are updated from their full conditional distributions:

[λH |Y1, . . . ,YN ,X1, . . . ,XN ,T,H,W,LH ,RH ,LV ,RV ,θ,λW ]

∼
∏

i∈IH

gH0 (hi|Zi, vi, l
H
i , rHi ;λH)f(λH),

λW |Y1, . . . ,YN ,X1, . . . ,XN ,T,H,W,LH ,RH ,LV ,RV ,θ,λH ]

∼
∏

i∈IW

gW0 (wi|Zi, hi, l
V
i , r

V
i ;λ

W )f(λW ),

where IH and IW are the subsets of indexes corresponding to the distinct
Hi and Wi because the distinct Hi and Wi are random samples from GH

0

and GW
0 , respectively [Blackwell and MacQueen (1973)]. In our case, λH =

(µH1 , µH0 , τH1 , τH0 ) and λW = (µW1 , µW0 , τW1 , τW0 ) for the normal base mea-
sures; we assume f(µH1 , µH0 , τH1 , τH0 )∝ (τH1 τH0 )−1 and f(µW1 , µW0 , τW1 , τW0 )∝
(τW1 τW0 )−1. The conditional posterior distributions of λH and λW are both
in closed forms.
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