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Abstract

The HIV care cascade is a conceptual model used to outline the benchmarks that reflects 

effectiveness of HIV care in the whole HIV care continuum. The models can be used to identify 

barriers contributing to poor outcomes along each benchmark in the cascade such as 

disengagement from care or death. Recently the HIV care cascade has been widely applied to 

monitor progress towards HIV prevention and care goals in an attempt to develop strategies to 

improve health outcomes along the care continuum. Yet there are challenges in quantifying 

successes and gaps in HIV care using the cascade models that are partly due to the lack of analytic 

approaches. The availability of large cohort data presents an opportunity to develop a coherent 

statistical framework for analysis of the HIV care cascade. Motivated by data from the Academic 

Model Providing Access to Healthcare (AMPATH), which has provided HIV care to nearly 

200,000 individuals in western Kenya since 2001, we developed a state transition framework that 

can characterize patient-level movements through the multiple stages of the HIV care cascade. We 

describe how to transform large observational data into an analyzable format. We then illustrate 

the state transition framework via multistate modeling to quantify dynamics in retention aspects of 

care. The proposed modeling approach identifies the transition probabilities of moving through 

each stage in the care cascade. In addition this approach allows regression-based estimation to 

characterize effects of (time-varying) predictors of within and between state transitions such as 

retention, disengagement, re-entry into care, transfer-out, and mortality.
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1. Introduction

The HIV care cascade (or continuum) is a conceptual model describing key benchmarks that 

people living with HIV (PLWH) must pass through to maximize benefits of antiviral therapy 

(ART). In most formulations, the optimal pathway consists of (1) HIV diagnosis through 

testing, (2) linkage to care, (3) engagement and retention in care, (4) initiation of ART 

through retention, and (5) sustained suppression of viral load. The conceptual model 

provides a useful framework for defining and evaluating the benchmarks that measure the 

effectiveness of HIV care, and for developing strategies to improve HIV outcomes for 

PLWH [1–4]. The HIV care cascade has become a framework for monitoring progress and 

identifying HIV care needs in the US since the release of the National HIV/AIDS Strategy in 

2010. Furthermore, the HIV care cascade is used globally as a monitoring rubric to evaluate 

the performance of HIV/AIDS health system management; the World Health Organization 

(WHO) has emphasized the cascade model as the central assessment metric for HIV care 

programs [5]. The UNAIDS recently announced a new global target based on steps (1), (4), 

and (5) in the cascade: by the year 2020, 90 percent of PLWH should be diagnosed and 

know their status, 90 percent of those diagnosed on antiviral therapy, and 90 percent of those 

on therapy have viral suppression

Quantitative analyses such as macro level summaries of proportion meeting specific 

benchmarks, models that examine predictors of engagement in each stage or progression 

through cascade stages, can provide important information needed to intervene to minimize 

the negative outcomes and optimize HIV care and treatment efforts to break the cycle of 

HIV transmission and morbidity. Despite the global acceptance and utility of the HIV care 

cascade as a conceptual model, our empirical understanding about patient flow through the 

continuum is still limited, in part because the statistical methods for analyzing cascade data 

do not have a unified framework. Broadly speaking, there are three main modes of 

summarizing data related to the care cascade. Macro-level analyses rely on characterizing 

targeted aspects of the cascade by presenting aggregated data summaries (e.g., number 

and/or proportion of patients) in each stage of the cascade at certain time points or across 

time periods [2, 6, 7]. By looking at numbers or proportions of PLWH at each stage, one can 

readily identify ‘leaks’ or stages where improvements are needed. Risk-factor and regression 
analyses use individual-level data to identify or evaluate the effect of patient- or program-

level factors associated with reaching specific benchmarks such as linkage, retention, and 

ART initiation [1, 8–11]. For this type of analysis, data are sometimes aggregated across 

time period to define outcome, or time to event outcomes are considered. A third mode of 

analysis uses simulation techniques based on an underlying model of progression through 

the cascade. The mathematical model is specified in advance, and uses inputs from multiple 

data sources to inform values or ranges of values for the parameters. Parameter values are 

calibrated using extant data on outcomes of interest, and simulation from the calibrated 
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model are used to obtain predictions of outcomes of interest under different scenarios. This 

approach has been used to represent complex versions of the cascade and to evaluate impact 

of different intervention strategies or policies [12–16].

The increasing availability of large-scale patient level cohort data is providing new 

opportunities for data-driven analyses of the care cascade. For example, the Academic 

Model Providing Access to Healthcare (AMPATH), based in Eldoret, Kenya, provides HIV 

and primary care to nearly 200,000 individuals in western Kenya and maintains an electronic 

health record (EHR) known as the AMPATH Medical Record System (AMRS) [17]. Twice 

each year, raw data from the AMRS are formatted into a research-grade database that can be 

used to investigate various clinical and epidemiologic questions related to patient care. Data 

from the AMRS form a significant component of the NIH-funded International 

Epidemiology Databases to Evaluate AIDS (IeDEA) for the East African region. The IeDEA 

consortium, which aggregates patient-level data in multiple regions around the world, 

contains patient-level data for 1.7 million PLWH globally (iedea.org). Other large-scale 

cohorts include the CFAR Network of Integrated Clinical Systems (CNICS) [18], 

EuroCoord [19], Veterans Aging Cohort Study (VACS) [20], to name just a few.

Although the approaches described above are commonly used to analyze cascade data, they 

do not always take full advantage of the information available in longitudinal patient-level 

data. Macro-level summaries provide a useful program- or community-level snapshot, but 

frequently aggregate data over multiple time periods or collapse patient-level longitudinal 

data into single summaries (such as ‘engaged in care’). This approach can overlook 

phenomena such as cyclic patient behavior such as coming in and out of care over time [12]. 

Some regression approaches use only partial longitudinal information, or collapse 

longitudinal patient data, which precludes examination of or adjustment for important 

temporal trends such as time, period or cohort effects. Consequently, many analyses reported 

in the literature tend to capture cross-sectional snapshots of patient behavior [21–26]. 

Mathematical models, which are more complex, rely on data summaries from different 

sources of inputs in order to generate simulated outcomes. This raises the question of 

whether the models represent a specific population of interest. Although mathematical 

models can handle complexity that cannot be modeled with sparse, micro-level cohort data, 

the availability of large cohorts of patients with substantial longitudinal information on 

clinical outcomes presents an opportunity to develop a coherent and portable statistical 

framework for modeling progression through the care cascade, and for characterizing the 

role of individual-level factors associated with meeting (or not meeting) key milestones.

However, this ‘big data’ opportunity presents specific challenges: Patient-level cohort data 

are observational in nature. Data are recorded at irregular time points. Some covariates may 

be sparsely measured over time, and are often not available from all cohort members. 

Defining state of care based on raw patient data may not be straightforward, especially for 

those who have incomplete follow-up or long gaps between clinic visits. These features can 

make it difficult to even capture a cross-sectional snapshot of the cohort behavior as well as 

to estimate a temporal trend. These challenges require us to address operationalization of the 

cascade, data preparation, and specification of the model that can capture the cyclic patient 

behavior in longitudinal data.
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To address some of these challenges, we propose using multistate transition models. We 

illustrate our approach through analysis of data from 92,215 individuals enrolled in HIV care 

in AMPATH, the largest HIV care program in Kenya and one of the largest in sub-Saharan 

Africa. We develop a model for engagement and retention in care, which illustrates many of 

the key advantages of the multistate modeling approach, such as handling cyclic behavior, 

modeling time and period effects, and handling competing risks such as death, 

disengagement, and transfer out of care. The multistate model provides a natural way to 

incorporate both patient- and program-level covariates and provides a natural framework for 

extensions that accommodate more states.

The rest of the paper is organized as follows: Section 2 provides details about the AMPATH 

cohort and provides motivation for adopting the state transition framework. In Section 3, we 

provide a review of multistate models and make connections to our current application. 

Section 4 provides details of the model specification for the AMPATH cohort, including how 

the raw data on engagement in care are translated into discrete states at each time point. Our 

data analysis appears in Section 5, and a discussion of future directions and potential 

extensions of the model in Section 6.

2. Data Source and Analysis Goals

AMPATH is a partnership between Moi University College of Health Sciences, Moi 

Teaching and Referral Hospital in Kenya and a consortium of North American institutions, 

and has provided HIV care to nearly 200,000 individuals in western Kenya since 2001. 

Including over 60 HIV/AIDS clinics, AMPATH is one of the largest HIV/AIDS care 

programs in sub-Saharan Africa. Clinical visit information from individuals who are 

engaged in medical care within AMPATH is recorded through an electronic medical records 

database, the AMPATH Medical Record System (AMRS). The AMRS uses an 

implementation of OpenMRS (wws.openmrs.org), a web-based open source electronic 

medical record platform that aims to build and manage health systems in the developing 

countries. Information from AMRS has been used to monitor and evaluate comprehensive 

intervention and treatment programs in western Kenya [13, 17, 27, 28]

The overall goal of our analysis is to use patient level data to model the part of the HIV care 

cascade in AMPATH that relates to engagement and retention in care. We utilize a multistate 

transition model that characterizes individual-level membership in these discrete states as a 

function of time: engaged in care, disengaged from care, transferred out of care, or deceased. 

Individuals may pass back and forth between engaged and disengaged, while transferred out 

and deceased are absorbing states. Duration of disengagement is classified as short, medium 

or long term, as described below. Figure 1 is a graphical representation of the states and 

possible transitions.

Given a specific operationalization of the care cascade – or in our case, the process of 

engagement in care – a key challenge is translation of patient-level data into well-defined 

stages in the cascade. In the AMPATH data, as with all electronic health records, frequency 

of observation times are heterogeneous within and between individuals, and key clinical 

information (e.g., CD4 counts) can be measured sporadically and at irregular times. We use 
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AMPATH patient monitoring guidelines to set equally spaced time intervals to align patient-

level data and ascertain membership in each phase over time. In general, AMPATH patients 

are monitored every 3 months when on ART, and every 6 months if not on ART, so that all 

patients are expected to re-visit a clinic at six-month intervals regardless of their ART status. 

We therefore construct a dataset whereby state membership is ascertained and recorded at 

200-day intervals following enrollment (every 6 months plus a grace period). Information on 

time-varying covariates such as CD4 count and treatment status are treated in a similar way. 

The algorithm used to convert individual patient records into state membership outcomes is 

described in more detail in Section 4.1.

The multistate model enables several types of summaries and analyses. We can generate 

summaries of the proportion in each state and rates of transition between states as a function 

of time for examining temporal trends. The model naturally incorporates the commonly-

observed cyclic pattern of temporary disengagement followed by re-engagement in care 

[29]. State transitions can be modeled as a function of covariates using multinomial 

regression for repeated measures, enabling examination of the effects of individual- and 

program-level factors for evaluation and prediction. Treating state membership using 

multinomial regression has the added advantage of handling competing risks for terminal 

events such as death and transfer out of care.

Given the focus on engagement and retention, we use ART initiation as a covariate rather 

than a state to examine its effect on outcomes over time. More broadly, we examine 

individual-level characteristics such as age, gender, CD4 counts, and calendar year that 

predict passage from one stage of the cascade to another, illustrating how the model can be 

used to identify potential factors associated with negative outcomes such as disengagement 

and death.

3. Multistate process and Markov models

A multistate process is a stochastic process that represents movement through a series of 

discrete states over time. Let {S(t) : t ≥ 0} be a multistate process with a finite state space 

= {1, 2, … , L}. Multistate processes can be characterized in terms of probability of 

transition from state k at time t to state l at time t + u, for u > 0, given by

(1)

For continuous-time processes, a transition intensity function

(2)

describes instantaneous risk of transitioning from state k to l at time t, and can be elaborated 

by including dependence on covariates or on prior states. For discrete-time processes where 
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the time increment u is a fixed constant, S(t) is observed at times t0, t1, t2, …, where t0 = 0 

and tj = uj for j = 1, 2, …. We can rewrite (1) in terms of transition probabilities

where Sj = S(tj). Let {X(t) : t ≥ 0} denote a (possibly multivariate) covariate process, and let 

ℱt− denote the accumulated history of S(t) and X(t) up to but not including time t. Some 

components of X(t) may be time invariant (e.g., baseline covariates and attributes such as 

gender and age at enrollment). In this article, we will model one-step transitions between 

states using a discrete-time model having a first-order dependence structure such that

(3)

where, using a slight abuse of notation,  is the information in X(t) available up to 

but not including tj. In words, this assumption implies first-order dependence in state 

transitions conditionally on covariate information Xj.

An early accounting of large sample theory and inference procedures for multistate models 

can be found in Albert [30]. Continuous time formulations can also be represented in terms 

of counting processes; see Kalbfleisch and Lawless [31] and Andersen et al. [32] for a 

comprehensive treatment. A variety of applications are described in Putter et al. [33] and 

Therneau and Grambsch [34]. Discrete-time models can be formulated in terms of log-linear 

models [35], which is closer to the approach we take here.

Multistate transition models have broad application and have been widely applied in 

biomedical research, particularly for describing disease progression [36–39] and evolution 

[40]. In HIV/AIDS, they have been used to model disease progression [41–44] and to 

characterize trajectories of associated markers of progression [45, 46]. Another important 

application concerns the evolution of antiretroviral drug resistance [47, 48]. Discrete time 

models also have been used to characterize and predict HIV/AIDS epidemics [49, 50].

Applications of multistate modeling to the HIV care cascade are relatively new but can be 

expected to increase. For example, Yehia et al. [51] used multinomial models to characterize 

transitions between states defined in terms of retention in care and viral suppression; 

however, their analysis considered only one-year transitions during a brief time period. 

Nosyk et al. [29] use a recurrent event model to characterize retention on antiviral therapy. 

The emerging importance of the HIV care cascade as a framework for monitoring patient- 

and program-level outcomes, combined with the increasing availability of large-scale cohort 

data and data from electronic health records, provides a natural and important opportunity 

for new applications of multistate modeling. The model presented here is intended to 

describe a basic framework and to provide a basis for formulating more elaborate and 

complex statistical approaches to representing the full care cascade.
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4. Multistate model for engagement in care

4.1. Defining states

Let i = 1, … , n index individuals in a cohort enrolled at time t = 0 and followed until a fixed 

date on which the database is closed. Because of staggered enrollment times, the maximum 

possible follow up time for individual i is . Following Figure 2, we discretize the time axis 

into intervals [0, t1], (t1, t2], (t2, t3], … having equal length u = tj − tj−1, where t0 = 0 is 

enrollment time.

Patient-level data related to engagement in care can be represented in terms of three distinct 

counting processes. For individual i and for t ≥ 0, let  denote number of visits, and let 

 and  denote zero-one counting processes for death and transfer out of care, 

respectively. Let  denote an ‘at-risk’ variable that 

indicates whether an individual is eligible to return for clinic visits. Information in the 

counting processes is used to generate a discrete-time multistate process {Si(t) : t = 0, t1, t2, 

… , tJi}, where Si(t) ∈ {1, 2, … , L} is state membership at time t and  is 

the number of intervals (tj−1, tj ] such that . Alternatively we can write {Sij : j = 0, 1, 

2, … , Ji}, where Sij = Si(tj).

For the AMPATH data, counting process information is converted into the discrete-time 

process as follows:

(4)

Put simply, Sij denotes state membership at the end of interval (tj−1, tj ]. All cohort members 

are engaged at enrollment to care so that Si0 = 1 for all i. For those with Yi(tj) = 1 (not dead 

or transferred out), Sij = 1 (engaged) if one or more visits occur within the interval and Sij = 

2, 3, or 4 (disengaged) if not. States 2, 3 and 4 represent durations of disengagement from 

care, measured in intervals. In principle the number of ‘disengaged’ states can be increased. 

Preliminary analyses of the AMPATH cohort indicates that the probability of returning to 

care after 3 or more intervals without a visit is less than .02, motivating our choice to use 

only 3 categories; in principle, the number of categories can be greater. Note that Sij = 4 is 

not an absorbing state: individuals can return to care even after being disengaged for 3 or 

more intervals.
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States 5 (transfer out) and 6 (death) are absorbing states. In the AMPATH EMR, a transfer 

indicator (yes/no) is available but transfer date is not. Therefore transfer is assumed to occur 

in the first interval following the most recent engagement in care. For those who died, state 

membership becomes deceased from the date of death.

Translation of counting processes into discrete-time states is illustrated in Figure 2. Each 

panel depicts data from a single patient starting from enrollment at t = 0 and extending 

through database closure (August 24, 2016). Grey vertical lines represent patient visits; at 

each visit, . State membership is represented along the bottom of Figure 2. 

Database closure can induce right censoring of the last time interval. In our analysis we 

assume this administrative censoring is non-informative; hence we do not include 

information from these incompletely observed intervals.

In addition to information about state of engagement, we assume there is information 

available on an r-dimensional covariate process {Xij : j = 0, 1, 2, … , Ji}, where 

is the most recently observed value of Xi(t) at the instant prior to tj. Referring again to 

Figure 2, observed CD4 counts are plotted as a function of time, and treatment status is 

represented using solid or dashed vertical line for each visit. Some of the covariates, such as 

gender and age at enrollment, are time-independent.

4.2. State transitions

An important quantity describing change over time is the state transition probability pjkl = 

pr(Sj = l | Sj−1 = k), which forms the basis of several types of analyses. In the absence of 

covariates, the collection of transition probabilities can be used to form the L × L transition 

matrix Pj, where element (k, l) is pjkl. An annotated version of Pj corresponding to the 

AMPATH engagement states in (4) is given in Table 2. Note that the sum of each row of Pj is 

1.

From a programmatic point of view, time-specific or aggregated summaries of Pj can be 

useful in identifying ‘leaks’ in the process of retention in care. Specific elements of the 

transition matrix can be plotted as a function of time, providing visual representation to 

identify periods of high risk where unfavorable outcomes such as patient disengagement 

from care or death are more pronounced. Moreover, under certain assumptions, the transition 

matrix can be used to estimate marginal probability of state membership as a function of 

time. To illustrate, let πjl = pr(Sj = l) and let πj = (πj1, πj2, … , πjL)T denote the vector of 

state membership probabilities at time j. Under the assumption of first-order Markov 

dependence, and in the absence of covariates, marginal state membership probabilities are 

calculated as .

4.3. Regression models for state transitions

In the discrete time domain, state membership Sij at each time point tj follows multinomial 

distribution. Recall that Sij ∈ {1, … , L}. The general multinomial model can be elaborated 

as follows to incorporate the effect of covariates on transition dynamics:
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(5)

where pijk(x) = (pijk1(x), … , pijkL(x))T is an L-vector having elements pijkl(x) = pr(Sij = l | 

Si,j−1 = k, Xij = x), with . Having absorbing states or order restrictions, as in 

Table 2, constrains a subset of the transition probabilities to be zero. In practice the domain 

of k in model (5) is limited to non-absorbing states, a constraint that is easily imposed in 

practice by conditioning on Yi(tj−1) = 1 and restricting sample at tj to those still in the risk 

set. Although this model assumes first-order dependence as in (3), more general dependence 

structures are possible and are discussed further in our data analysis in Section 5.

The specification in (5) lends itself directly to formulation of regression models for 

longitudinal multinomial data [35, 52]. We adopt the commonly-used loglinear specification 

that models rate of transition from one state to another relative to a reference state, and 

captures covariate effects in terms of log relative rate ratios (RRR). Suppressing subscript i, 
a fully general specification is

(6)

where, for j = 1, … , maxi{Ji}, k = 1, … , L and l = 2, … , L, the coefficient gjkl(x) is a 

function that represents the effect of xj on log rate of the transition from state k → l relative 

to k → 1. In practice it will typically be necessary to impose structure on g in order to fit the 

model, such as assuming g has a known functional form, that the form of g is constant over 

time, or that g is indexed by a finite-dimensional parameter vector.

Subscripting gjkl by k implicitly indicates that prior state Sj−1 is part of the regression 

function, and that regression effects are state-specific. For example, looking at transitions 

from k = 1 (engaged) at tj−1 to l = 2 (disengaged) at tj as a function of a scalar, time invariant 

covariate x, we can write

where αj12 is an intercept term and βj12 is the log RRR characterizing the effect of x on 

transition rate pj12(x) (from engaged to disengaged) relative to rate pj11(x) (from engaged to 

engaged). When g is linear in a regression coefficient β, as in this example, the relative risk 

ratio exp(β) may provide more natural interpretation about the effect of the covariate.

In addition to the effect of clinical or socio-economic covariates on the relative transitions, 

we can also estimate various types of temporal variations such as time, period, or cohort 
effects that are often of interest in epidemiologic studies. Briefly, the time effect refers to the 
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effect of follow-up time, the period effect is the effect of calendar time, and the cohort effect 

represents the effect of enrollment time/date. It is known that these three effects cannot be 

evaluated simultaneously, even with longitudinal data. However, any two of them can be 

captured within the regression function by appropriately parameterizing the design matrix. 

In Section 5, we estimate period effects using a regression spline and time effects using 

indicator variables for interval number j.

4.4. State membership prediction

Recall that in the absence of covariates, the matrix Pj contains the one-step transition 

probabilities {pjkl} as listed in Table 2. Elements of a matrix Pj(x) having covariate-

dependent transition probabilities {pjkl(x)} are calculated via

For settings where covariates are exogenous, marginal state membership probabilities as a 

function of xj can be calculated as described in Section 4.2. Specifically, let x̄j = (x1, … , xj) 

denote the longitudinal history of {xj}, and let πj(x̄j) represent the L × 1 vector of (covariate-

specific) marginal state probabilities πjl(x̄j) = pr(Sj = l | x̄j). Then 

. Averaging over the distribution of x̄j yields predicted 

distribution across states for the population. When covariates are endogenous, as is the case 

with CD4 count and similar disease markers, predicting state membership probabilities 

requires a model for the joint distribution of the covariate and state transition processes.

4.5. Estimation and model diagnostics

The time-specific transition probabilities listed in Table 2 can be estimated using those in the 

risk set at each time tj,

Under the assumption of first-order dependence, these can subsequently be used to estimate 

state membership probabilities as described in Section 4.2.

Estimation and inference about covariate effects requires simplifications of the regression 

functions gjkl(x). A natural simplification, which we adopt in our example, is to assume the 

functional form of g is known, is constant over time, and is indexed by an unknown vector of 

regression parameters. Specifically, we consider versions of model (6) that can be written as
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(7)

where, for k → l transitions, αjkl is a time-specific intercept and βkl is a vector of regression 

coefficients having the same dimension as xj. The term hkl(dj ; γkl) captures a transition-

specific period effect: dj is calendar date corresponding to interval endpoint tj (which varies 

by individual) and each hkl(·; γkl) is a smooth function parameterized by a finite-

dimensional parameter γkl. In practice h can specified using regression splines or other low-

rank smoothing techniques. In our application we specify h using thin plate regression 

splines [53] and implement estimation using the mgcv package in R. In principle, estimation 

and inference can be carried out using any statistical software package that fits multinomial 

regression models.

Consistent estimates of model parameters in (7) can be obtained by using maximum 

likelihood to fit a multinomial regression to the longitudinal observations, treating them as if 

they are independent. Consistency in this case requires (i) length of follow up is non-

informative in the sense that it is unrelated to state transition rate at each time tj, 
conditionally on xj ; and (ii) the number of individuals increases in such a way that the ratio 

of individuals to intervals is a constant. This second condition permits estimation of time-

specific intercepts even though the number of time points may increase with the number of 

individuals. Asymptotic normality of the parameter estimates relies on mild regularity 

conditions in [54] along with some conditions on working covariance structure described in 

[55]. Estimation of standard errors must acknowledge within-subject correlation. Either 

robust standard errors [56] or bootstrap resampling (within individuals as the sampling unit) 

can then be used.

Model fit can be assessed by comparing, at each time j and for those with Yi(tj−1) = 1, the 

observed and predicted proportion in each state (i.e., marginal state membership 

probability). Chi-square type goodness-of-fit tests applied to large datasets may be prone to 

generating statistically significant discrepancies; visual comparisons may be more useful for 

identifying meaningful differences between observed and fitted values. Examples are 

provided in our analysis of AMPATH data.

Finally, the assumption of first-order Markov dependence is a strong one. As a practical 

matter, it is may not be feasible to test all possible violations of first-order dependence. 

However, one straightforward approach — used in our analysis — is to fit model (6) with 

Sj−2 as a covariate, possibly interacted with elements of Xj, and test for violations of first-

order Markov dependence using a Wald test for the added covariates (with standard errors 

calculated as indicated above).
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5. Application to AMPATH Data

5.1. Overview

We illustrate application of the multistate modeling approach using data from AMPATH as 

described in Section 2. Our analysis uses data on 92,215 HIV infected adults aged 18 years 

or greater who enrolled in AMPATH supported clinics between June 2008 and August 2016. 

The time axis originates at enrollment in care (t0 = 0; baseline). Characteristics at enrollment 

and data on follow-up information are shown in Table 1. The database closure date is August 

24th, 2016, which yields a maximum of maxi{Ji} = 15 intervals for ascertaining state 

membership.

We operationalized the 6-state engagement process as described in Section 2 using intervals 

of length u = 200 days. We used the mapping in (4) to define, for each individual, state 

membership Sij at times {t0, t1, t2, …} = {0, 200, 400, …}. We also incorporated covariate 

information on age and gender at enrollment, and on CD4 count and treatment status, both 

of which vary over time. Figure 2 depicts raw data on visit times, treatment status and CD4 

count for four different patients, and illustrates how information on visit times (vertical 

lines) is converted into state membership (color-coded bars along horizontal axis). Figure 3 

shows the number of individuals with available data as a function of potential length of 

follow-up time.

Our analysis is designed to characterize state transitions appearing in Table 2, and has 

several components. First, we summarize state transition rates in Pj as a function of time 

since enrollment and overall (aggregating over time). Next, we use multinomial regression to 

estimate the effects of age, gender, time-varying CD4 count and time-varying treatment 

status on state transitions over time. We also use the model to characterize period effects 

(calendar time) and effect of time since enrollment. Finally, we apply goodness of fit tests 

and investigate possible violations of the first-order Markov assumption.

5.2. Summarizing state transition rates and temporal trends

Table 3 provides a summary of state transition rates using all data aggregated over time. 

Entries in the upper left indicate the cyclic nature of engagement in care: among those 

engaged at a specific time, rate of continued engagement is .85 and rate of disengagement 

is .13. Among those disengaged for one period of time, about 11 percent return to care.

Transitions related to the disengaged states illustrate the deleterious effects of being 

disengaged in care for more than 200 days. Among those disengaged for a single interval 

(Disengaged 1), 88 percent will remain disengaged for a second interval (Disengaged 2); 

subsequent to that, 94 percent will become disengaged for 3 or more intervals (Disengaged 

3+). Hence, among those who become disengaged for one interval, the probability of 

remaining disengaged for 3 or more intervals is (.94)(.88) ≈ .83.

Table 3 also indicates that the per-interval mortality rate is slightly over .02 (aggregating 

values in the last column). It must be noted that mortality estimates are based only on deaths 

that are confirmed and recorded in the AMRS, and that these estimates have a potentially 
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substantial downward bias [57–59]. Another potential source of mortality rate under-

estimation is reporting lag because death registration data is not linked directly to AMRS.

Figure 4 shows temporal trends in the state transition rates, and can be viewed as a 

visualization of the entries of the transition matrix Pj as a function of interval endpoint times 

tj. The plot is rendered in the logit scale to make temporal trends and fluctuations more 

apparent. The plot of transitions from the engaged state (S = 1) suggest that the most critical 

period for retention in care is the first interval after enrollment, where we see a sharp 

decrease in re-engagement following enrollment. Referring to transitions from ‘disengaged 

1’ (S = 2, upper right panel), we see that those who are disengaged in this first interval are 

additionally at higher risk for remaining disengaged in the second interval. Thereafter, 

retention and re-engagement rates (green lines) tend to remain steady or even increase 

slightly, except for those who have been disengaged for more than 3 intervals (S = 4, lower 

right panel). Rates for mortality and transfer-out are relatively low and remain roughly 

constant over time.

Overall, plots for transitions from various disengagement status imply that disengaged 

patients who did not come back in the first to the second follow up years are at high risk of 

having a long gap to come back for care and ultimately become lost. These plots 

simultaneously identify when and where the greatest gaps in AMPATH care exist. The gaps 

are attributable to high continued disengagement rate in the early follow up period, which 

further leads to a high chance of having a long gap and becoming lost-to-follow-up in the 

following years.

5.3. Regression modeling

We use a version of the regression model given in (7) for our analysis in this section. 

Specifically, our model has the form

The domain of k indicates that only those transitions k → l from states k = 1, … , 4 are 

being modeled. Further restrictions apply as they relate to modeling transitions from the 

disengaged state (Table 2); in particular the model only applies to transition rates that are not 

deterministically 0 or 1. The variable dij captures period effect, and represents the number of 

days elapsed from January 1, 2008 until the (individual-specific) date associated with time tj. 
The period effect is captured by the smooth function hkl, which is specific to each k → l 
transition but does not vary with enrollment time. As indicated previously, we use thin plate 

regression splines to specify hkl.

The covariate matrix Xij is set up as follows. Let Xi0 = (I{Agei ≥ 35}, Malei) denote the 1 × 
2 indicator vector for age and gender at baseline (Malei = 1 if male, 0 if female). We define a 

3-level nominal variable for time-varying CD4 count based on the most recently observed 

value of CD4 as of tj, and a two-level variable for treatment based on whether or not an 
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individual is on antiretroviral therapy at tj (1 if yes, 0 if no). The CD4 variable takes value 1 

if the most recently observed CD4 count is less than or equal to 350; value 2 if over 350, and 

value 0 if CD4 has not been measured between t0 and tj. We then create a 1 × 5 vector of 

indicators to reflect the full interaction between these two, using {CD4 < 350,ARV−} as the 

reference category. Appended to Xi0, this generates a 1 × 7 covariate vector Xij for the risk 

set {i : Yi(tj) = 1} at each time tj, so that the coefficient vector βkl has dimension 7 × 1. Table 

4 and 5 show the effect of covariates in Xj on state transition probabilities in terms of 

relative rate ratios (RRR).

Table 4 shows covariate effects for transitions from the engaged state (S = 1). To illustrate 

interpretations, consider the effect of age on transition from engaged to disengaged, for 

which RRR = .64. The RRR represents a comparison, between those with Age ≥ 35 and Age 

< 35, of the rate ratio p12/p11, where the transition rate engaged → disengaged is in the 

numerator and engaged → engaged in the denominator (i.e., transition to engaged is the 

reference transition). Using a slight abuse of notation, we can see that the RRR is actually a 

ratio of ratios by writing

In short, the RRR here indicates that older individuals are less likely to disengage in care, 

once engaged. Reading across the first row, we see that older individuals also are less likely 

to transfer from care (RRR = .57) and are at higher risk for mortality (RRR = 1.14), once 

engaged in care. The gender effect indicates that men are at higher risk for becoming 

disengaged and for mortality. Note that the RRR for any individual covariate is conditional 

on other covariates included in the model. Hence the RRR shown in Tables 4 and 5 are 

conditional on the other covariates listed as well as calendar time.

An examination of the time-varying covariates in Table 4 allows comparison of groups 

defined by their CD4-treatment profile. Looking first at those with CD4 < 350, we see those 

on ARV have lower rates of disengagement, transfer and mortality, compared to those not on 

ARV (the reference group). The effect of treatment within the other CD4 categories can be 

seen by comparing RRR within category. For example, among those with CD4 ≥ 350, the 

RRR for becoming disengaged is .12 while on ARV and .31 if not, suggesting lower overall 

risk of disengagement while on ARV. The effect of ARV is more pronounced if information 

on CD4 is absent. Though not shown here, confidence intervals for these within-category 

comparisons can be obtained by changing the reference category or by direct computation 

from the estimated variance-covariance matrix of the model parameters.

Table 5 summarizes covariate effects for transitions from disengaged states. Among the key 

findings: (i) once disengaged from care for one interval, men and those over 35 are less 

likely to remain disengaged (or, more likely to return to care), but the effect dissipates once 

disengagement lasts for two or more intervals; (ii) within each CD4 category, those on 

treatment are less likely to remain disengaged and tend to have lower rates of mortality.
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Figure 5 shows estimated calendar-year effects in terms of shifts in log relative risk of 

disengagement and death among those who are engaged in care. The left panel indicates that 

rate of disengagement from care increased between 2008 and 2014, but leveled out 

thereafter; the right panel indicates a substantial reduction in observed mortality starting 

around 2013. It is possible that these trends are tied to programmatic changes such as the 

introduction of viral load monitoring in 2014. However attributing the trends to specific 

causes requires a more comprehensive analysis and the curves should not be over-

interpreted. It is likely that the sharp decrease in observed mortality among those engaged in 

care is at least partially attributable to reporting lags. Similar trends are seen in the period 

effect for transitions from disengaged state to mortality (not shown). For those effects, 

incorporating information from contact tracing and double sampling could be used to 

partially correct this potential bias, as indicated above [57–59].

5.4. Model assessment

To assess potential lack of fit, we constructed plots of observed and fitted state membership 

probabilities for each interval with follow-up data available. Results are presented in Figure 

1 in Appendix. With small exceptions, the model shows good agreement with the observed 

data.

A key assumption in our model is first-order Markov assumption. In our implementation, we 

assume state membership at tj depends only on state and covariate information at tj−1, and 

conditionally on that information, is independent of observed-data history at or before tj−2. 

To assess the effects of potential violations of this assumption, we re-fit the model of 

transitions from engaged, adding information about Sj−2 as a categorical covariate. We 

examined a second order dependence for the engagement model only, because 

disengagement state at tj is always determined by second order state membership Sj−2. 

Results shown in Table 1 in Appendix indicate that there is evidence of second order 

dependence in transitions from engaged to other states. The results imply that those who 

engaged in two consecutive intervals are less likely to disengage from care, transfer-out, and 

die, compared to those who missed visits and return to care. However, second order 

dependence did not change the substance of our findings and the estimated effect of 

covariates on transition rates are very robust between two multistate models with and 

without adjusting for Sj−2.

Using second order dependence model, we re-generated the plots of observed and fitted state 

membership probabilities. Figure 2 in Appendix shows that inclusion of second-order term 

seems to improve the model fit for early disengagement (day 200 in short disengagement) 

and transfer-out. Although the impact of second-order term does not seem substantial, it 

would be important to account for higher order dependence in model for predictive inference 

about state membership.

6. Discussion

This paper describes the use of a multistate modeling framework for the HIV care cascade. 

With the growing and widespread availability of large-scale individual-level cohort data, our 

work addresses the need for statistical modeling approaches that can be used to take full 

Lee et al. Page 15

Stat Med. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



advantage of the rich information about longitudinal individual-level outcomes in these on 

these large datasets for both programmatic and research purposes [21].

We focus here on the process of engagement and retention in care, and use a discrete-time 

multistate model of longitudinal transitions between states that characterize engagement, 

duration of disengagement, transfer out of care, and mortality. State membership is defined 

at pre-specified interval endpoints that correspond to a maximum expected lag time between 

visits for individuals engaged in HIV care, where the lag time is set by the user.

The model works on the assumption that care engagement status will be ascertained at 

discrete points in time, starting from enrollment in care. This confers some advantages: it 

enables transparent translation of irregular data from electronic health records into an 

analyzable format; it allows users to apply, with some specialization, statistical software for 

fitting multinomial models for longitudinal data; it enables prediction, evaluation of 

covariate effects, and estimation of state membership probabilities at fixed points in time. 

We have given suggestions on how to translate data on multiple counting processes into a 

discrete-time state transition process, and illustrated how to use the model by analyzing data 

from over 90,000 individuals from AMPATH. We have also shown how to use the model to 

deal with cyclic engagement in care, long-term disengagement, and competing risks of 

terminal events such as transfer from care and death. With some modification, the model can 

be extended to handle other categories that are important in the care cascade.

The model does rely on some key assumptions. A basic assumption is first-order Markov 

dependence. We used it in our example, but we also showed how it can be relaxed. A second 

assumption is that the expected visit frequency in our definition of ‘engaged in care’ applies 

to all individuals at all time points, when in reality visit frequencies can be dependent on 

clinical characteristics and treatment status.

The existing limitations of our model, combined with the broader scope of analytic needs 

related to the HIV care cascade, point to several potential avenues of further development. 

First, the definition of ‘engaged in care’ can be elaborated to accommodate expected time of 

return visit; more generally, a model structure that accommodates patient visits as a 

continuous-time process can be considered. Both of these extensions would trade simplicity 

for complexity, and it will be important to understand the potential benefits of increasing 

model complexity as it pertains to fulfilling the larger analytic goals related to summarizing 

the cascade.

Second, we are working on models that increase the number of states needs to be expanded 

to accommodate the important benchmarks related to initiating antiviral treatment and 

having viral load suppression. AMPATH has recently instituted annual viral load monitoring 

for most of its clients, which makes this extension more practically feasible. Third, as most 

data on the care cascade is observational, there is a need to develop a framework for causal 

inference or, more generally, handling exogenous covariates. We are currently working on 

using inverse probability weighting and g estimation, which build naturally on the 

longitudinal regression framework, to assess causal effects for key cascade-related 

outcomes. In addition, we are working on incorporating variable selection tools.
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Fourth, variable selection and the ability to handle more covariates is clearly important. Data 

from cohort studies typically collect comprehensive information about risk factors, 

diagnosis, and lab test results. We are working to incorporate formal approaches to variable 

selection to allow users to identify specific determinants of transition dynamics along the 

care cascade, and thereby make better use of existing resources for interventions.

Finally, misclassification of deaths and other outcomes is a common problem in state 

membership ascertainment. Incorporation of data from contact tracing and double sampling 

can lead to significant improvements in estimation. A major priority in the next step of 

model development is incorporation of external information derived by tracing those who 

are disengaged for an extended period of time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The HIV care cascade using AMRS reflecting retention aspect of the cascade in care of 

AMPATH. At each state, patients are in the following states: Engaged: engaged in care, 

Disen. 1: disengaged from care for one interval (i.e., disengaged for a short-term), 

Disen. 2: disengaged from care for two consecutive intervals (i.e., disengaged for a 

moderate-term), Disen. 3+: disengaged from care for more than two consecutive intervals 

(i.e., disengaged for a long-term), Xfer: transferred-out, and Death: deceased
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Figure 2. 
Example of state ascertainment using data from four individuals in the AMPATH dataset. 

Grey vertical lines represent patient visits (solid if on treatment, dashed if not). The solid 

black vertical line is database closure date. CD4 counts are plotted as a function of time 

(black dot). Color-coded state membership depicted along the bottom of the graph.
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Figure 3. 
Number of subjects in each state over time. At baseline, 92,215 unique individual records 

are available from AMPATH data. Six states are considered: engaged in care, disengaged 

from care for one interval ( Disengaged 1), 3 = disengaged for two consecutive intervals 

( Disengaged 2), 4 = disengaged for more than two consecutive intervals ( Disengaged 

3+), and 5 = transferred-out, 6=deceased. By definition, all individuals are engaged in care at 

baseline (day 0).
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Figure 4. 
Temporal trends in (unadjusted) state transition probabilities (STP) calculated at every 200 

days. STP are presented in the logit scale to make temporal trends and fluctuations more 

apparent. All patients started from engagement in care at day 0, and thus no transitions from 

state 2 to other states were made at day 0. In each title, S=s (s=1,2,3,4) represents prior state 

membership. Transition to transfer-out was not allowed from state 2,3, and 4.
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Figure 5. 
Calendar year effects (i.e., period effects) on transition from engaged to disengaged (left 

panel) and transition from engaged to death (right panel). Splines were used to estimate the 

smoothed effect of calendar years.
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Table 1

Baseline (i.e., at enrollment) characteristics of 92,215 HIV infected adults who enrolled in AMPATH between 

June 2008 and August 2016.

Variable Number (%) Median (IQR)

Male 30,900 (33.5)

Age 35 (28, 43)

CD4* 247 (101, 439)

Taking ART 11,791 (12.8%)

Year of enrollment

 2008 8,475 (9.2)

 2009 16,016 (17.4)

 2010 14,922 (16.2)

 2011 13,988 (15.2)

 2012 11,235 (12.2)

 2013 9,177 (10.0)

 2014 9,411 (10.2)

 2015 8,244 (8.9)

 2016 747 (0.8)

*
CD4 was measured and available for 31,535 (34%) patients at the time of enrollment to AMPATH care.
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Table 4

Relative risk ratios (RRR) and 95% bootstrapped confidence intervals for effect of covariates on transitions 

from engaged in care (Sj−1 = 1) to disengaged (Sj = 2), transfer-out (Sj = 5) or death (Sj = 6), relative to 

remaining engaged in care (Sj = 1); i.e., remaining engaged in care is the reference state.

State at tj−1 Engaged

State at tj Disengaged Transfer Death

Age ≥ 35 .64 (.63, .65) .57 (.52, .62) 1.14 (1.08, 1.20)

Male 1.09 (1.07, 1.12) .87 (.79, .95) 1.72 (1.63, 1.81)

CD4 < 350, ARV− Reference

CD4 < 350, ARV+ .16 (.16, .17) .29 (.24, .34) .47 (.44, .51)

CD4 ≥ 350, ARV− .31 (.30, .32) .24 (.20, .30) .11 (.10, .12)

CD4 ≥ 350, ARV+ .12 (.11, .12) .19 (.16, .23) .13 (.12, .15)

No CD4, ARV− 1.70 (1.62, 1.77) 1.18 (.90, 1.54) .90 (.81, 1.00)

No CD4, ARV+ .44 (.42, .46) .55 (.45, .68) .53 (.48, .59)
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