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Effects of a Cookstove Intervention on Cardiac
Structure, Cardiac Function, and Blood Pressure
in Western Kenya
To the Editor:

Exposure to household air pollution (HAP) is responsible for 2.9million
to 4.3 million deaths annually.1 The burden of HAP is greatest in sub-
SaharanAfrica, where themajority of homes rely on traditional cooking
practices.2 Of the numerous potentially toxic environmental pollutants
in HAP, most of the literature has focused on carbon monoxide (CO)
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and fine particulate matter <2.5 mm in diameter (PM2.5). There is a
paucity of direct evidence linking HAP and cardiovascular disease out-
comes or intermediate surrogate markers in low- and middle-income
countries. Few studies, including some of our own work,3 have
measured the association between HAP and cardiac structure or func-
tion by echocardiography, but the results have been mixed.4-6 To
address some of these gaps in knowledge, we recently introduced a
cookstove that reduces household levels of CO and PM2.5,
measured blood pressure (BP), and performed echocardiography to
assess its impact on cardiac structure and function.

This was a longitudinal nested cohort study of women who partic-
ipated in a parent cookstove intervention study. The methods for this
study have been previously published3 and are described here briefly.
The cookstove intervention study used a locally improved cookstove,
the Eldoboma cookstove. Key design features include containment of
fuel in an enclosed oven and chimney shielding outside the kitchen. In
independent testing by the Centre for Research in Energy and Energy
Conservation (Kampala, Uganda), the Eldoboma stove exceeded
goals for overall emissions and indoor emissions. Participants were re-
cruited before the cookstove intervention, and a series of study mea-
sures were obtained before an Eldoboma stove was issued to each of
them. Additional study data were collected before and at 1 and
6 months after the cookstove intervention.

A sample size of 40 participants was determined to be able to
detect a 5 mm Hg minimum detectable difference (14% change) in
right ventricular (RV) systolic pressure after the cookstove interven-
tion on the basis of previous literature,4 with a two-sided a level of
0.05 and 80% power. Inclusion criteria were being a woman
$18 years of age who reported spending at least 4 hours per day in
the kitchen. Active smokers were excluded. Data were collected be-
tween December 2013 and November 2014. The study protocol was
approved by the human subjects committees at Duke University,
Stanford University, and Moi University.

HAP measures included CO measured in parts per million using
the EasyLog USB CO Monitor (Lascar Electronics, Eerie, PA) and
PM2.5 measured in micrograms per square meter using the Personal
Data Ram 1000AN (Thermo Fisher Scientific, Waltham, MA) sus-
pended from the ceiling in the center of the kitchen. Devices were ze-
roed and calibrated before each measurement. Nephelometric PM2.5

measurements were adjusted for relative humidity using the methods
of Klasen et al.7 Median values of air pollution levels in the kitchen
across$20 hours of recording time were used as proxies for individ-
ual participant exposure specifically from their home cookstoves.

A certified nurse collected all physical measurements, including
BP, height, and weight, in the home. Echocardiography was per-
formed in the home or at a nearby health facility by a trained technol-
ogist using a standard protocol. The echocardiographic imaging
protocol included two-dimensional, color, and spectral Doppler and
M-mode imaging from traditional imaging windows using a Philips
CX-50 machine (Philips Healthcare, Bothell, WA). Images were
analyzed using the Philips Xcelera cardiology image information man-
agement system (Philips Healthcare). All measures were calculated
from an average of three consecutive cardiac cycles. Two cardiologists
and one cardiac sonographer performed and verified all echocardio-
graphic measures. Table 1 lists the echocardiographic measurements
that were assessed. Right atrial pressure was assessed by inferior vena
cava dynamics. The images were transferred to the Duke Cardiovas-
cular Diagnostic Unit for analysis of myocardial strain using TomTec
software (TomTec Imaging Systems, Unterschleissheim, Germany).
Two-dimensional strain derived from speckle-tracking imaging was
also used to measure RV and left ventricular (LV) function. RV global
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Table 1 BP and echocardiographic characteristics of the study sample over time on follow-up

Characteristic Baseline (n = 44) 1-mo follow-up (n = 43) 6-mo follow-up (n = 42) Ptrend

Systolic BP, mm Hg 123 6 8 116 6 8 115 6 7 <.001

Diastolic BP (mm Hg) 80 6 5 74 6 5 74 6 5 .005

Right atrial minor axis (cm) 4.0 6 0.6 3.7 6 0.6 4.0 6 0.6 .780

RV basal diameter (cm) 3.0 6 0.7 3.5 6 0.5 3.5 6 0.5 .010

Tricuspid annular plane excursion (cm) 2.4 6 0.5 2.3 6 0.4 2.3 6 0.4 .180

Pulmonary arterial diastolic pressure (mm Hg) 7.4 6 3.6 7.5 6 3.9 7.6 6 3.1 .895

Right ventricular systolic pressure (mm Hg) 26.4 6 7.0 21.8 6 7.2 26.3 6 7.2 .344

Mean pulmonary arterial pressure (mm Hg) 14.1 6 4.5 12.2 6 4.4 13.9 6 3.0 .833

LV ejection fraction (%) 62 6 6.0 59 6 4.7 58 6 6.9 .001

LV GLS (%) �21.1 6 3.3 �20.7 6 2.2 �20.7 6 2.5 .592

RV GLS (%) �22.5 6 4.6 �23.4 6 2.8 �22.4 6 4.0 .394

Data are expressed as mean 6 SD.
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longitudinal strain (GLS) assessment was performed in the apical four-
chamber view using the RV free wall and septum. GLS of the left
ventricle was averaged from the results of the segmental peak systolic
strains of apical four-, three-, and two-chamber views.

The mean age of the 44 female participants was 34.5 6 6.4 years
at baseline, as described in our publication of baseline parameters in
this cohort.3 A robust linear mixed-effects model8 accounting for
repeated measures demonstrated that the cookstove intervention
was associated with a decrease in 24-hour CO levels from a median
of 13.8 ppm (interquartile range [IQR], 7.0–27.8 ppm) at baseline to
7.0 ppm (IQR, 0.0–15.5 ppm) at 1 month following the cookstove
intervention and was sustained at 6 months after the intervention.
Similarly, the 24-hour median PM2.5 level decreased from 57.0 mg/
m3 (IQR, 32.0–84.3 mg/m3) at baseline to 23.9 mg/m3 (IQR, 8.0–
62.7 mg/m3) at 1 month following the stove intervention, before re-
bounding to 30.0 mg/m3 (IQR, 5.4–77.7 mg/m3) at 6 months after
stove intervention. Level of education, age, and body mass index
did not have appreciable effects on the within-person longitudinal
change in HAP level following the intervention.

Similar models, adjusted for age, body mass index, and level of ed-
ucation, showed that most echocardiographic parameters remained
within the clinical range of normal at each time point (Table 1).
Mean RV systolic pressure decreased from 26.4 6 7.0 mm Hg at
baseline to 21.86 7.2 mmHg at 1 month postintervention; however,
this decrease was not sustained at 6 months postintervention. There
were no statistically significant changes in RV or LV GLS. Mean LV
ejection fraction decreased from baseline to 6 months but remained
in the normal range, irrespective of baseline CO level. Systolic BP
decreased significantly from 123.2 mm Hg (95% CI, 118.9–
127.5 mm Hg) before the intervention to 115.0 mm Hg (95% CI,
110.7–119.2 mm Hg) 6 months after the cookstove intervention
(P < .001). Similar results were observed for diastolic BP (6 mm Hg
decrease), pulse pressure (2mmHg decrease), andmean arterial pres-
sure (6 mm Hg decrease).

We evaluated whether the longitudinal changes in BP and echocar-
diographic parameters were associated with the longitudinal change in
HAP levels. An IQR decrease in log-transformed CO was associated
with small changes in LV ejection fraction (�1.1% [�1.8% to
�0.04%] per IQR ppm decrease) and LV GLS (0.31% [0.02% to
0.59%] per IQR ppm decrease). Longitudinal changes in CO and
PM2.5 were associated with a 1.8 mm Hg (95% CI, �3.1 to
�0.6 mm Hg; P = .006) and a 2.7 mm Hg (95% CI, �4.3 to
�1.0 mm Hg; P = .002) lower systolic BP, respectively. There were
no statistically significant associations between per IQR longitudinal
change in PM2.5 and change any of the echocardiographic parameters.

We found that cookstove replacement was associated with a pro-
nounced and statistically significant decrease in household CO,
more so than PM2.5. Of the echocardiographic parameters, we found
an unexpected small decrease in LV ejection fraction 6 months after
the stove intervention, which remained in the normal clinical range.
Concurrently, both systolic and diastolic BP were significantly
reduced after cookstove replacement, with a stepwise decrement cor-
responding to decreases in CO level.

Studies that have investigated the association between HAP and
cardiac structure or function by echocardiography have shown
inconsistent findings. Most have used echocardiography at one
point in time.4-6 Few studies have investigated longitudinal
echocardiographic parameters in association with a cookstove
intervention, which distinguishes this study from prior research.
Our main findings support the observed lack of an association
between cookstove intervention and any meaningful changes in
left or RV structure or function,5 at least within 6 months following
the intervention. Although there was a statistically significant
decrease in RV diameter and LV ejection fraction following stove
intervention, these changes were small and did not cross abnormal
clinical thresholds. Given significantly different study designs and
research questions, it is difficult to directly compare our longitudinal
results with prior cross-sectional research. Moreover, important dif-
ferences in study populations’ age, sex, and absence of significant
echocardiographic abnormalities at baseline, which could partially
account for the disparate results.

Longitudinal changes in BP following stove replacement were sta-
tistically significantly associated with longitudinal changes in both CO
and PM2.5, although without complete concordance between these
two measures of HAP. Our results confirm findings from prior
research showing that cookstove interventions can reduce BP in
women up to 6 months postintervention.9

We acknowledge some limitations in generalizing our findings,
including our sample size and population, which included young
women without significant cardiac disease at baseline and unknown
exposure to secondhand smoke. We did not include a comparator
arm and therefore lack a nonintervention control group with which
to compare our findings and rule out, for example, other time-varying
changes that might have influenced BP. It is also possible that the null
effect we observed on cardiac structure and function was due to insuf-
ficient lowering of HAP levels or insufficient follow-up time. An
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intervention that lowered HAP levels further or a longer period of post-
intervention observation may have shown different results.

Given the significant morbidity and mortality associated with HAP
exposure and dearth of outcome data, more investigation into addi-
tional cardiovascular surrogate outcomes remains a high priority.
The lack of an association between HAP reduction and these specific
echocardiographic markers could suggest that alternative echocardio-
graphic measures should be considered in future studies in this field.
Future studies may also focus on those with preexisting, or at high risk
for, cardiopulmonary disease to detect changes in echocardiographic
measures over time.
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