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SUMMARY

A variety of methods for comparing three distributions have been proposed in the literature. These methods
assess the same null hypothesis of equal distributions but differ in the alternative hypothesis they consider.
The alternative hypothesis can be that measurements from the three classes are distributed according to
unequal distributions or that measurements between the three classes follow a specific monotone ordering,
an inverse-U-shaped (umbrella) ordering, or a U-shaped (tree) ordering. This paper compares these tests
with respect to power and test size under different simulation scenarios. In addition, the methods are
illustrated in two applications generated by different research questions with data from three classes
suggesting monotone and umbrella orders. Additionally, proposals for the appropriate application of these
tests are provided. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A variety of methods have been proposed for comparing treatment effects or, more generally,
comparing relative locations (medians) of different populations. This paper focuses on the setting
with three populations because this research was motivated by projects with three populations.
However, the methods discussed in this paper are also applicable to settings with more than three
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populations of interest. The methods considered assess the same null hypothesis of no difference
among the treatment effects but differ in the alternative hypotheses considered. These can be a
general alternative hypotheses that at least two treatment effects are not equal. Otherwise, the
alternative hypothesis might involve specific orderings of the classes such that measurements
among the three classes follow a monotone ordering (e.g. class 1 < class 2 < class 3). An inverse-
U-shaped (umbrella) ordering can also be considered where the hypothesis is that two classes
have smaller measurements, compared with a third class without imposing an ordering between
these two classes (e.g. class 1 < class 2 > class 3) or even a U-shaped (tree) ordering where
two classes have larger measurements compared with a third class, without imposing an ordering
between these two classes, (e.g. class 1 > class 2 < class 3). The research question under study
dictates the alternative hypothesis to be tested. Monotone orderings are often observed in toxicity
studies where the risk of the occurrence of adverse events is expected to rise with increasing dose
levels. On the other hand, umbrella orderings are commonly encountered in efficacy studies, in
which treatment efficacy is expected to increase with dose only until a maximum efficacy level is
reached [1].

Recently, there has been increased focus directed toward evaluation of the accuracy of new
biomarkers being developed for a variety of medical conditions. Receiver operating characteristic
(ROC) curves and the summary measure area under the ROC curve (AUC) are the standard
approaches for assessing the ability of biomarkers measured on a continuous scale to accurately
distinguish between two disease states or classes (e.g. presence vs absence of cancer) [2]. ROC
analysis has been extended to accommodate three disease states. Specifically, ROC surfaces and
the corresponding summary measure volume under the ROC surface (VUS) have been proposed
when a monotone ordering is of interest (see, e.g. [3]). The umbrella ROC graph and summary
measure umbrella volume (UV) have been recently proposed when umbrella orderings are of
interest [4]. Comparisons of UV and VUS have been made [4], but comparisons have not been
made with parametric and non-parametric approaches developed to compare treatment effects
or population location rather than diagnostic accuracy where particular order restrictions are of
interest. Therefore, a novel contribution of this paper is to provide a comparison of UV and VUS,
methods which assess the ability of continuous biomarkers to accurately distinguish between three
disease states, versus parametric and non-parametric methods that test particular orderings of the
locations of three populations.

Brief descriptions of the different tests are provided in Section 2. Simulation studies to evaluate
the power and size of the tests are summarized in Section 3. In Section 4 the methods are applied
to determine the ability of a biomarker to accurately distinguish between HIV-negative persons
and HIV-positive patients with and without HIV-related neurological sequelae. A second example
concerns the assessment of the effects of different doses of haloperidol on the motor activity
of juvenile rats. We end with a discussion of the findings and include recommendations on the
appropriate use of each method.

2. DESCRIPTION OF METHODS

Consider the setting when there are three classes of interest, denoted 1, 2, and 3. Let Yi j , i=
{1,2,3}, j =1, . . . ,ni be the observed measurements for the three classes 1, 2, and 3, respectively.
There are a total of N =n1+n2+n3 measurements. For ease of presentation, it is assumed that
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there are N unique measurements. Methods to correct for ties in the data are available but are not
discussed here.

2.1. General alternative hypothesis

The Kruskal–Wallis (KW) test is a distribution-free test that addresses the null hypothesis that
there is no treatment effect or equivalently no difference in population locations against the general
alternative hypothesis that at least two treatment effects or disease classes are not equal [5]. The
KW test statistic is calculated by first ordering all N observations from smallest to largest. Let ri j
denote the rank of Yi j in the combined data. Let Ri be the sum of the ranks for group i and let
Ri. be the average rank for group i . Then the KW test statistic is given by

KW= 12

N (N+1)

3∑
i=1

(
Ri.− N+1

2

)2

(1)

The null hypothesis is rejected if the test statistic (1) is larger than a value chosen to make the type I
error probability equal to �. Post-hoc procedures would be required to determine which class
measurements differ.

A parametric approach to test the general alternative hypothesis is the one-way analysis of
variance (ANOVA). ANOVA compares the means of the groups by calculating the ratio of the within
sum of squares and the between sum of squares. More specifically, the F-statistic is calculated as

F=
∑3

i=1 ni Ȳ
2
i −Y 2

.. /N∑3
i=1(ni −1)s2i

where Y.. is the sum of the measurements across all groups, Ȳi is the average of the measurements
for group i , and s2i is the sample variance for group i . The p-value is obtained by comparing the
F-statistic with an F distribution with 2 and n−2 degrees of freedom.

2.2. Monotone ordering

The Jonckheere–Terpstra (JT) test is a distribution-free test for ordered alternative hypothesis that
the treatment effects are in a specified monotone ordering, e.g. Y1<Y2<Y3 [6, 7]. To calculate
the JT test statistic, one calculates the three Mann–Whitney counts U12, U13, and U23, where
Ui j is the number of measurements with disease class i that are smaller than measurements for
disease class j . The null hypothesis is rejected if the test statistic is larger than a value chosen to
make the type I error probability equal to �. A corresponding summary measure, S1, has recently
been proposed for the JT test to measure the accuracy of classifying into the correct classes [8].
S1 ranges from 1 for perfect classification in the monotone ordering, say Y1<Y2<Y3, to −1 where
the classification is in the opposite ordering Y1>Y2>Y3.

Terpstra and Magel proposed a non-parametric test for the same monotone ordered alternative
hypothesis as the JT test, but the Terpstra and Magel (TM) test is based on comparing measurements
from all three classes at the same time, rather than performing pairwise comparisons as the JT test
does. More specifically, the TM test is based on the test statistic

T =
n1∑
i=1

n2∑
j=1

n3∑
k=1

I (Y1i ,Y2 j ,Y3k) (2)
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where I (Y1,Y2,Y3) equals one if Y1,Y2,Y3 are in the correct order (i.e. Y1<Y2<Y3) and zero
otherwise. The TM test is performed by comparing

T −n1n2n3/6√
Var(T )

with a standard normal distribution, where Var(T ) is given in [9].
The VUS has been proposed as a summary measure for the ROC surface (see [3] for a summary).

VUS is equal to the probability that three measurements, one from each class, will be classified in
the correct monotone order, e.g. Y1<Y2<Y3 [10]. The VUS test statistic is (V̂US− 1

6 )/
√
Var(V̂US),

where V̂US is the fraction of times the measurements are in the correct ordering Y1<Y2<Y3 [11].
Specifically,

V̂US= 1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I (Y1i ,Y2 j ,Y3k) (3)

where I (Y1,Y2,Y3) equals one if Y1,Y2,Y3 are in the correct order (i.e. Y1<Y2<Y3) and zero
otherwise. VUS takes the value 1

6 when the three distributions completely overlap. Variance of
the VUS can be estimated using a U-statistics approach [11] or by using the bootstrap [3]. By
comparing (3) and (2), it is clear that V̂US is equivalent to the TM test statistic. Therefore, only
VUS is considered in the remainder of this paper.

Cuzick proposed an extension of theWilcoxon test that is based on the test statisticC=∑N
i=1 ziri ,

where N is the total number of observations in the combined sample, ri is the rank of the i th
observation in the combined sample, and zi is the group number that the i th observation belongs
[12]. The Cuzick test is performed by comparing

C−(N+1)(
∑3

j=1 z j n j )/2√
Var(C)

(4)

with a standard normal distribution, where Var(C) is (N 2(N+1)/12)(
∑3

i=1 z
2
i ni/N−∑3

j=1
z j n j/N ).

Le proposed a test for monotone ordered alternatives that has form similar to the KW test [13].
Specifically, the Le test is based on the test statistic

W =
3∑

i=1
ni (Li −Mi )R̄i

where Li is the total number of observations in all the groups to the left of the i th group in the
monotone group ordering, Mi is the total number of observations in all the groups to the right of
the i th group in the monotone group ordering, and R̄i is the average rank value for group i . The
Le test is performed by comparing

W√
(N (N+1)/12)

∑3
i=1 ni (Li −Mi )

(5)

with a standard normal distribution. Interestingly, formulas (4) and (5) are equal when the three
groups have the same number of measurements (i.e. n1=n2=n3).
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All the monotone ordering tests described previously in this subsection have been non-parametric
approaches. Next, we describe a parametric test, the modified F test for monotone ordering
(denoted by F̄m) (see, e.g. [14]). The F̄m-statistic is a modification of the usual F-statistic in order
to account for the monotone ordering of interest. Specifically

F̄m=
∑3

i=1
∑ni

j=1(Yi j − Ȳ )2−∑3
i=1

∑ni
j=1(Yi j − Ỹi )2∑3

i=1
∑ni

j=1(Yi j − Ȳi )2/(N−3)
(6)

where Ȳ is the overall mean and (Ỹ1, Ỹ2, Ỹ3) is the point at which
∑3

i=1
∑ni

j=1(Yi j − Ȳi )2 is

minimized subject to the constraint Y1�Y2�Y3. The null distribution of F̄m can be computed using
a simple Monte Carlo algorithm [14].
2.3. Umbrella ordering

The Mack–Wolfe (MW) test has been proposed when the umbrella alternative hypothesis is of
interest [15]. This approach computes p(p−1)/2 pairwise comparisons for the p classes or
treatments. When there are p=3 classes, so that the alternative hypothesis of interest is Y1<Y2>Y3,
the MW test is equivalent to a standard two-sample Wilcoxon–Mann–Whitney (WMW) test where
the values for Y1 and Y3 are pooled [16]. The WMW test is equivalent to a test that the AUC is
significantly greater than 0.5, i.e. the distributions completely overlap.

The UV test has recently been proposed as a non-parametric approach to test the alternative
hypothesis that there is an umbrella ordering such as Y1<Y2>Y3 [4]. The UV test statistic is
(ÛV− 1

3 )/
√
Var(ÛV), where ÛV is the fraction of times the measurements are in the umbrella

ordering of interest and Var(ÛV) is provided in [4]. In other words, for the umbrella ordering
Y1<Y2>Y3

ÛV= 1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

IU [Y1i ,Y2 j ,Y3k]

where IU (Y1,Y2,Y3) equals one if Y1<Y2>Y3 and zero otherwise. UV is equal to 1
3 when the

three distributions completely overlap. Similar to the TM and VUS statistics, the UV statistic is
based on comparing measurements from all three classes at the same time rather than pairwise as
the MW statistic does. The UV test can also be applied to tree orderings [4].

The respective parametric test suitable for an umbrella alternative is based on the F̄u-statistic
which has the same form as equation (6)

F̄u=
∑3

i=1
∑ni

j=1(Yi j − Ȳ )2−∑3
i=1

∑ni
j=1(Yi j − Ỹi )2∑3

i=1
∑ni

j=1(Yi j − Ȳi )2/(N−3)

but (Ỹ1, Ỹ2, Ỹ3) is the point at which
∑3

i=1
∑ni

j=1(Yi j − Ȳi )2 is minimized subject to the constraint

Y1�Y2�Y3. The null distribution of F̄u can be computed using Monte Carlo methodology analogous
to that for F̄m.

2.4. Tree ordering

The Fligner–Wolfe (FW) test is a distribution-free test to test whether treatments differ from a
control [17]. The null hypothesis is still that all treatment effects are equal for the treatment and
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Table I. List of methods for assessing the ability of continuous measurements to correctly classify three
classes in a particular order. All approaches consider the null hypothesis that measurements from the three

classes follow the same distribution but different alternative hypotheses.

Test Approach Alternative Notes

Kruskal–Wallis (KW) Non-para General
ANOVA Para General
Jonckheere–Terpstra (JT) Non-para Monotone
Terpstra–Magel (TM) Non-para Monotone Essentially equivalent to VUS
VUS Non-para Monotone Essentially equivalent to TM
Cuzick Non-para Monotone Equivalent to Le for equal class sizes
Le Non-para Monotone Equivalent to Cuzick for equal class sizes
F̄m Para Monotone
Mack–Wolfe (MW) Non-para Umbrella Equivalent to WMW for 3 classes
Umbrella volume (UV) Non-para Umbrella
F̄u Para Umbrella
Fligner–Wolfe (FW) Non-para Tree

control groups while the alternative hypothesis is that the effect for at least one treatment group
is different from the control group. The FW test statistic is calculated by first ordering all N
observations from smallest to largest. Then the FW test statistic is the sum of the joint ranks for
the non-control treatments. This test statistic is equivalent to the two-sample WMW test statistic
computed for the control observations and the combined treatment observations.

2.5. Summary of methods

All methods considered in this section assess the null hypothesis that measurements from the
three classes follow the same distribution, i.e. Y1=Y2=Y3. However, there are differences in the
alternative hypotheses considered and the test statistics used (Table I). Some of the approaches are
non-parametric while others make parametric assumptions. The KW and ANOVA tests consider
the general alternative hypothesis that Yi �=Y j for some (i, j)∈{1,2,3} and i �= j . Conversely,
MW, UV, and F̄u test the alternative hypothesis that the classes follow an umbrella ordering, e.g.
Y1<Y2>Y3. In this case, the MW test is equivalent to the WMW test where Y1 and Y3 are pooled.
The VUS, TM, Cuzick, Le, F̄m, and JT tests consider the alternative hypothesis that the classes
follow a monotone ordering, e.g. Y1<Y2<Y3. The Cuzick and Le tests are equivalent when the
three classes have the same number of measurements. Finally, the FW test considers the alternative
hypothesis of a tree ordering.

3. SIMULATION STUDIES

A simulation study was performed to evaluate the power and size of the tests described in Section 2.
In the simulations, the Cuzick, Le, F̄m, JT, and VUS tests tested the alternative hypothesis that
the measurements follow the monotone ordering Y1<Y2<Y3. The UV and F̄u tests considered the
umbrella ordering Y1<Y2>Y3 while MW tests Y2 is greater than Y1 and Y3 pooled. The FW test
tested the hypothesis that Y1>Y2 or Y2<Y3. The simulations were replicated 1000 times for each of
nine scenarios with balanced sample size of 10, 20, and 40 measurements in each class (Table II)

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1144–1158
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and unbalanced sample sizes (n1,n2,n3) of (10,10,20), (10,10,40), and (10,20,40) (Table III). All
tests were one-sided with 0.05 type I error.

In Scenario 1 sampling was performed under the null hypothesis where Y1,Y2, and Y3 were
simulated from a standard normal distribution. The simulated size for some of the tests deviated
substantially from the nominal level for small sample sizes. However, the simulated size is generally
closer to the nominal level for n1=n2=n3=40 and are much closer to the nominal level for
n1=n2=n3=80 (results not provided). The Le test has unacceptably large size for unbalanced data
scenarios and thus, the Le test is not recommended when there is unequal number of measurements
in the classes. Since the Le test clearly is not appropriate for unbalanced data settings and it is
equivalent to the Cuzick test for balanced data in the three-class case, the performance of the Le
test is not discussed for the other simulated scenarios.

In Scenario 2 a monotone ordering was considered for the class measurements with Y1∼
N(0,1),Y2∼N(0.5,1), and Y3∼N(1,1). The Cuzick test was the most powerful for all the sample
sizes considered, but power for the JT test was only slightly smaller. The next powerful tests were
the F̄m test and the VUS test. As expected, all the tests that test a monotone ordering had larger
power than the general alternative tests (KW and ANOVA). As desired, the MW and UV tests,
which test umbrella orderings, had low power to detect the monotone ordering. Conversely, it is
undesired that the F̄u test, which tests umbrella orderings, had relatively high power to detect the
monotone ordering. Similar results are observed for Scenario 3 where Y1∼ t3,Y2∼ t3+0.5, and
Y3∼ t3+1. It is not surprising that the power is larger for the non-parametric KW test than the
parametric ANOVA test in Scenario 3 and the reverse is observed in Scenario 2 where the data
are simulated from Normal distributions.

Scenario 4 simulates an umbrella alternative where Y1∼N(0,1),Y2∼N(1,1), and Y3∼N(0,1)
while in Scenario 5 Y1∼ t3,Y2∼ t3+1, and Y3∼ t3. In both of these scenarios the MW test appears
to be the most powerful followed by UV and F̄u, which are all more powerful than the general
alternative approaches. The large power for MW likely results from the large effective sample size
due to pooling of measurements for Y1 and Y3 which follow identical distributions. The monotone
ordering approaches are not sensitive to the umbrella alternative in this scenario, except for F̄m.

In Scenario 6, simulated distributions have the same locations as in Scenario 4 but they have
different scale parameters with Y1∼N(0,0.25), Y2∼N(1,9), and Y3∼N(0,4). Here the UV test
is the most powerful for all sample sizes considered. This finding is repeated in Scenario 7 where
measurements come from distributions with different shapes, i.e. Y1∼Unif[0.2,1.2], Y2∼N(1.3,1),
and Y3∼�21. Again the UV test is the most powerful with MW having close, but smaller, power
for balanced sample sizes. The difference in power is greater for unbalanced data.

Scenario 8 considers Y1∼N(1,1),Y2∼N(0,1), and Y3∼N(1,1) so that the data follow the
reverse umbrella ordering or tree ordering Y1>Y2<Y3. In this scenario the FW test had the highest
power but the KW and ANOVA tests had reasonable power for the larger sample sizes considered.
The difference in power between the FW and the ANOVA test was larger in Scenario 9 where
the measurements were not generated using a Normal distribution (Y1∼ t3+1,Y2∼ t3,Y3∼ t3+1).
The JT, Cuzick, Le, and F̄ tests appear to be very sensitive even for scenarios where the alternative
is not a monotone ordering. However, this is not true for the VUS test, which is only sensitive in
detecting monotone orderings.

In summary, when the measurements follow a particular ordering, tests that test that particular
ordering have higher power than the general alternative approaches (KW and ANOVA tests). JT
and Cuzick, which is equivalent to the Le test for balanced data, have the greatest power for
monotone orderings. When Y1 and Y3 come from the same distribution, the MW test has the
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greatest power for the umbrella ordering; otherwise, the UV test has the greatest power. The FW
test had the greatest power for tree orderings. Recommendations on the appropriate use of each
method are provided in Section 5.

4. DATA ANALYSIS

In this section, the approaches are applied to a study of a metabolite to accurately distinguish
between HIV-negative persons and HIV-positive patients with and without HIV-related neurological
sequelae and to a study to assess the effects of different doses of haloperidol on the play behavior
of juvenile rats.

4.1. Analysis of AIDS neurological sequelae

The Human immunodeficiency virus (HIV) invades the central nervous system causing structural
and metabolic changes in the brain. Patients with AIDS often show varying degrees of cognitive,
motor and behavioral impairment, including dementia (AIDS dementia complex—ADC [18]).
A number of studies have shown that an imaging technique called proton magnetic resonance
spectroscopy (1H-MRS) provides a reliable in vivo, non-invasive method for the assessment of
HIV-associated brain injury (for example, see [19]). The area under each spectral peak is associated
with the concentration of a metabolite that reflects activity in a specific cell type in response to
signals in its microenvironment. A frequently measured metabolite is the ratio of myoinositol (MI)
over creatine (Cr). MI is a marker of glial cells that are involved in providing nutrition, structural
support of neuronal cells, and removing pathogens and damaged neurons from the brain. As a
marker of glial cell proliferation, MI is an index of ongoing inflammation and injury to the brain.
Creatine, on the other hand, is a marker of cellular metabolism that is assumed to be constant in
most cases, including during many pathological conditions. Thus, dividing by Cr in the ratio is used
as an internal standard to reduce the variability of the MI signal by accounting for difference among
imaging machine technologies, brain structure localization and other considerations particular to
each specific imaging procedure.

In a study of 136 individuals [20], MI/Cr ratios were measured in the white matter of 60 HIV-
positive patients with neurological disease (ADC), 39 HIV-positive patients that were asymptomatic
(NAS), and 37 HIV-negative controls (NEG). One objective of the study was to determine whether
the MI/Cr ratio could accurately distinguish between ADC, NAS, and NEG patients. The MI/Cr
ratios were lowest for the NEG patients (median 0.6, mean 0.614, standard deviation (SD) 0.073),
followed by NAS patients (median 0.67, mean 0.664, SD 0.03), and ADC patients (median 0.705,
mean 0.709, SD 0.134) (Figure 1).

Exploratory data analysis suggests that there may be a monotone ordering NEG<NAS<ADC
in MI/Cr ratio values and possibly an umbrella ordering NEG<ADC>NAS. The Cuzick test (C=
22103, p<0.0001), VUS test (VUS=0.4120, p<0.0001), and JT test (S1=0.3955, p<0.0001) all
support the monotone ordering NEG<NAS<ADC. The UV test (UV=0.5580, p<0.0001) and
MW test (AUC=0.6875, p<0.0001) support the umbrella ordering NEG<ADC>NAS. Given
these results, it is not surprising that the KW test (KW=22.7058, p<0.0001) and ANOVA (F=
10.28, p<0.0001) are also highly significant. We conclude that MI/Cr measurements differ between
groups of patients and furthermore that the data support both the umbrella (NEG<ADC>NAS)
and monotone (NEG<NAS<ADC) orderings. Both conclusions have far reaching implications
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Figure 1. Box plots of MI/Cr ratios in the white matter of HIV-negative controls (NEG), HIV-positive
patients that are asymptomatic (NAS), and HIV-positive patients with neurological disease (ADC).

for our understanding of HIV-related neurological disease progression. The monotone ordering
implies that, despite not having overt clinical symptoms, NAS subjects do exhibit perturbations
that are measurable through proton MRS. The combination of the results of both the monotone
trend and umbrella ordering strengthens the impression that brain inflammation, which has been
widely reported as being the hallmark of HIV infection and is thus inflammation is ubiquitous in all
stages of neurological progression (e.g. [19]), persists and increases further among neurologically
advanced (ADC) patients.

4.2. Analysis of rat play behavior

Haloperidol, a non-selective neuroleptic medication widely used in the past to treat schizophrenia
[21], binds to a wide variety of neurotransmitter receptors, but is thought to exert its primary
neurochemical and behavioral effects via antagonism of dopaminergic systems in the brain. The
dose-dependent effects of haloperidol have been extensively studied; at higher doses, haloperidol
has sedative properties, whereas at lower doses, haloperidol has sometimes been associated with
stimulatory effects [22–24]. The rodent model has been frequently used to investigate the neuro-
chemical impact of haloperidol on the central nervous system, as well as the drug’s effect on
appetitive and movement behaviors thought to be significantly underpinned by central dopamin-
ergic systems (e.g. the basal ganglia) [25, 26]. Juvenile rats engage in rough-and-tumble play (RTP)
behavior during a specific period of normal development, from around days 20–40 [27]. Because
RTP behavior involves vigorous motoric behaviors including chasing, wrestling, and pinning [28],
it is reasonable to assume that brain areas associated with movement (e.g. cerebellum and basal
ganglia), and the neurochemical systems that innervate these structures, might underlie rat play
activities. Further, perturbation of these systems via either surgical or neurochemical means, and
observation of the resulting effects, can provide information regarding the relative importance of
these central nervous systems on behavior [29–35]. In order to investigate the manner by which
dopaminergic systems might impact juvenile RTP play behavior, various doses of haloperidol were
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Figure 2. Box plots of number of RTP behaviors observed in pairs of rats that received vehicle, low dose
haloperidol, and high dose haloperidol.

administered to juvenile rats. This analysis compares the results of tartaric acid vehicle, low dose
haloperidol (0.025mg/kg and 0.05mg/kg), and high dose haloperidol (0.1mg/kg and 0.2mg/kg).
Pairs of juvenile rats were videotaped, and their play interactions later analyzed by one of the
authors (S.B).

Figure 2 summarizes the aggregate number of RTP behaviors (e.g. wrestle, chase, pin) for the
19 rats administered vehicle (median 105, mean 118.05, SD 48.5), 39 rats injected with low dose
haloperidol (median 119, mean 117.9, SD 38.9), and 39 rats injected with high dose haloperidol
(median 76, mean 83.2, SD 44.4). The UV test yields a significant umbrella ordering Vehicle <

Low dose > High dose (UV=0.4481, p=0.0421), as does the F̄u test (F̄u=15.14, p<0.0001).
The MW test also suggests that rats that received low dose haloperidol exhibited more RTP
behaviors than rats that received vehicle or high dose haloperidol (AUC=0.6647, p=0.0009).
Therefore, these data support the hypothesis that at higher doses, haloperidol exerts sedative
properties on juvenile rat RTP behavior, whereas at lower doses, haloperidol exerts stimulatory
effects. Interestingly, the Cuzick test (C=10387, p=0.0002), JT test (S1=0.3477, p=0.0002)
and VUS test (VUS=0.315, p=0.0024) also suggest a significant monotone ordering High dose <

Vehicle < Low dose, illustrating the sedative effect of high doses of haloperidol on this particular
type of vigorous motoric activity.

5. DISCUSSION

In this paper we compare and contrast approaches for testing hypotheses regarding treatment
effects distributions, or equivalently, the accuracy of biomarkers. The specific focus is on settings
and research questions where there are three classes or populations and the measurements of
interest are made on a continuous scale. We agree with Terpstra and Magel [9] that a monotone
or umbrella ordered test should have the following properties: (1) the size of the test should be
approximately equal to the nominal size, (2) the test should have higher power than a general
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alternative test when the alternative hypothesis being tested is true, (3) the test should have low
power for any alternative hypothesis that is not consistent with the true alternative. Simulations
suggest that the Cuzick and JT tests, both designed to detect monotone orderings, have high power
to detect a monotone ordering but the VUS is less sensitive to situations that are not consistent with
a monotone ordering, especially with unbalanced data. These results are consistent with previous
findings [9, 36]. Thus, the VUS test may be the preferred method of analysis in actual research
practice.

Our simulation results also suggest that the UV test has higher power than the MW test
for umbrella orderings except when measurements for two of the classes come from the same
distribution, which is not common in real-world applications. The UV test also has the appealing
property that it has lower power than MW for alternative hypotheses not consistent with an
umbrella ordering. The ANOVA and KW tests yielded lower power than tests of restricted orders
in all of the research scenarios considered, and hence should not serve as the initial test, unless
restricted orderings are not of interest. This finding for KW is consistent with previously published
results [16].

There are interesting relationships between monotone, umbrella, and tree orderings. First, a tree
alternative hypothesis can be converted to an umbrella alternative hypothesis by changing the signs
of the measurement values. For example, the tree ordering Y1>Y2<Y3 is equivalent to the umbrella
ordering −Y1<−Y2>−Y3. Second, an alternative hypothesis regarding a monotone ordering can
be converted to a less stringent hypothesis of a tree or umbrella ordering by changing the order of
the groups. For example, an alternative hypothesis of the monotone ordering Y1<Y2<Y3 can be
converted to a less stringent hypothesis of the tree ordering Y2>Y1<Y3 and the umbrella ordering
Y1<Y3>Y2. In real research data, however, there often is inherent ordering of the groups so that it
is not possible to change the order of the groups, as is the case in the data analyzed in Section 4.
Furthermore, it is in settings with an inherent ordering that the contrast between umbrella and
monotone orderings is especially interesting because the orderings yield different explanations.
This paper compares methods that can detect and distinguish between the two orderings.

Ideally, the research question will drive the alternative hypothesis to be tested. This will dictate
the statistical test to be performed and, thus, will limit the need to worry about inflated type I error
due to multiple testing. In Section 4.2, there was particular interest in testing whether juvenile
rats that received low dose haloperidol exhibited greater RTP activity as compared with rats that
received vehicle or high dose haloperidol. In other words, an umbrella ordering was of interest. In
the neurological impact of HIV example (Section 4.1), both a monotone and an umbrella ordering
were of interest. The monotone ordering is plausible, since neurological disease progression should,
theoretically, be associated with higher brain inflammation. Thus, higher MI/Cr levels would
be expected among more severely affected HIV-infected patients [20, 37]. On the other hand,
an umbrella ordering is also plausible. NAS subjects would be expected to have higher MI/Cr
levels than HIV-negative controls as brain inflammation has been reported in all stages of HIV
infection regardless of whether or not patients are symptomatic for neurological deterioration
[19, 37]. Results of these analyses have far reaching implications for our understanding of HIV-
related neurological disease progression. The result that inflammation continues in the ADC stage
is interesting (umbrella ordering) because lack of that would imply a burn-out disease situation.
The result that inflammation is present among subjects without overt clinical symptoms (monotone
ordering) implies two things: first, interventions in the brain are needed for those who do not
exhibit clinical symptoms; second, MRS is a non-invasive early warning system that can identify
those otherwise clinically asymptomatic patients most in need of this intervention. In all cases,
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exploratory data analysis can be useful if a priori there is not a particular alternative hypothesis
of interest.

In summary, research questions may be best tested with an alternative hypothesis of a specific
ordering of the groups rather than a general ordering. This paper discusses several approaches to
test a monotone or umbrella ordering. Additionally, the paper illustrates that application of these
approaches can yield novel findings.
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