
Fast Solution of the Linearized Poisson-Boltzmann Equation with
nonaffine Parametrized Boundary Conditions Using the Reduced Basis
Method

Cleophas Kweyu,1, a) Lihong Feng,1, b) Matthias Stein,1, c) and Peter Benner1, d)

Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg,
Germany

(Dated: 27 September 2018)

The Poisson-Boltzmann equation (PBE) is a nonlinear elliptic parametrized partial differential equation that arises in
biomolecular modeling and is a fundamental tool for structural biology. It is used to calculate electrostatic potentials
around an ensemble of fixed charges immersed in an ionic solution. It can also be used to estimate the electrostatic
contribution to the free energy of a system. Efficient numerical computation of the PBE yields a high number of
degrees of freedom in the resultant algebraic system of equations, ranging from several hundred thousands to millions.
Coupled with the fact that in most cases the PBE requires to be solved multiple times for a large number of system
configurations, this poses great computational challenges to conventional numerical techniques. To accelerate such
computations, we here present the reduced basis method (RBM) which greatly reduces this computational complexity
by constructing a reduced order model of typically low dimension. In this study, we employ a simple version of the
PBE for proof of concept and discretize the linearized PBE (LPBE) with a centered finite difference scheme. The
resultant linear system is solved by the aggregation-based algebraic multigrid (AGMG) method at different samples
of ionic strength on a three-dimensional Cartesian grid. The discretized LPBE, which we call the high-fidelity full
order model (FOM), yields solution as accurate as other LPBE solvers. We then apply the RBM to FOM. The discrete
empirical interpolation method (DEIM) is applied to the Dirichlet boundary conditions which are nonaffine with the
parameter (ionic strength), to reduce the complexity of the reduced order model (ROM). From the numerical results,
we notice that the RBM reduces the model order from N = 2 × 106 to N = 6 at an accuracy of 10−9 and reduces
computational time by a factor of approximately 7, 600. DEIM, on the other hand, is also used in the offline-online
phase of solving the ROM for different values of parameters which provides a speed-up of 20 for a single iteration of
the greedy algorithm.

Keywords: Reduced basis method, Poisson-Boltzmann equation, ionic strength, finite differences scheme, aggregation-
based algebraic multigrid method, discrete empirical interpolation method.

I. INTRODUCTION

A. Electrostatic Interactions in Biomolecular Systems

Electrostatic interactions are important in biological pro-
cesses such as molecular recognition, enzyme catalysis, and
biomolecular encounter rates. A significant challenge in com-
putational biology has been to model these interactions accu-
rately and efficiently. This is because biomolecules are sur-
rounded by solvent molecules and therefore, the solvent ef-
fects must be considered during modeling. There are two
main groups of computational approaches which are used to
model electrostatic interactions based on how the solvent is
treated. Explicit methods place the solvent molecules around
the biomolecule while implicit methods consider the solvent
molecules as a continuum1,2.

a)kweyu@mpi-magdeburg.mpg.de; Computational Methods in Systems and
Control Theory (CSC)
b)feng@mpi-magdeburg.mpg.de; Computational Methods in Systems and
Control Theory (CSC)
c)matthias.stein@mpi-magdeburg.mpg.de; Molecular Simulations and De-
sign (MSD)
d)benner@mpi-magdeburg.mpg.de; Computational Methods in Systems and
Control Theory (CSC)

The Poisson-Boltzmann equation (PBE) is one of the most
popular implicit solvent models which describes the solvent in
a continuum model through the Boltzmann distribution. The
PBE solves the electrostatic potential in the entire domain
which comprises both the molecule and the solvent. From
this potential, further information can be obtained at vari-
ous regions of interest and for different applications. Firstly,
the electrostatic potential at the biomolecular surface, com-
monly known as electrostatic surface potential, can provide
insights into possible docking sites for other small or large
molecules. Secondly, the potential outside the biomolecule
can provide information about the free energy of interaction
of small molecules at different positions in the vicinity of the
biomolecule. Thirdly, free energy of a biomolecule can be
determined, which provides information about the molecule’s
stability. Finally, the electrostatic field can be estimated from
which the mean atomic forces can be derived. More informa-
tion can be found in2–5.

Analytical solutions of the PBE are only possible under
the assumption that the biomolecules of interest have regular
shapes, for example, spheres or cylinders. And even if these
solutions exist, they are still quite complex. However, these
are not realistic because biomolecules have irregular shapes
or geometries and charge distributions6,7. This makes it nec-
essary to apply numerical techniques to the PBE and the first
of such methods were introduced in8 where the electrostatic

ar
X

iv
:1

70
5.

08
34

9v
2

 [
m

at
h.

N
A

]
 1

1
O

ct
 2

01
7

mailto:kweyu@mpi-magdeburg.mpg.de
mailto:feng@mpi-magdeburg.mpg.de
mailto:matthias.stein@mpi-magdeburg.mpg.de
mailto:benner@mpi-magdeburg.mpg.de

2

potential was determined at the active site of a protein (or en-
zyme). The most popular numerical techniques in this regard
are based on discretization of the domain of interest into small
regions and employ the finite difference methods (FDM)1,9,
the finite element methods (FEM)9,10, or the boundary ele-
ment methods (BEM)11,12. A thorough review of the numeri-
cal methods for solving the PBE can be found in13.

All of the aforementioned numerical methods have one ma-
jor advantage in common. It is possible to employ “elec-
trostatic focussing”, which enables users to apply relatively
coarse grids for the entire calculations and very fine grids in
regions of great interest such as the binding or active sites
of macrobiomolecules. This adaptivity provides highly ac-
curate local solutions to the PBE at reduced computational
costs14. However, the BEM has the drawback of being ap-
plicable only to the LPBE and thus limiting its general use.
Numerous software packages have been developed to solve
the PBE and some of the major ones include the adaptive
Poisson-Boltzmann solver (APBS)9 and Delphi15. There are
also recent developments regarding the PBE theory which in-
clude, the treatment of the biomolecular system as an interface
problem, the extensive studies on the nonlinear PBE, among
others, see Section I B for more details.

Due to the limited computational memory and speed, solv-
ing the PBE efficiently is still computationally challenging
and affecting the accuracy of the numerical solutions. This
is due to the following reasons. Firstly, electrostatic interac-
tions are long-ranged and therefore, the electrostatic poten-
tial decays exponentially over large distances, see equation
(7). This requires an infinite domain which is infeasible in
practice. Secondly, biomolecules of interest comprise of thou-
sands to millions of atoms which require a large domain to ac-
commodate both the biomolecule and the solvent. To circum-
vent these challenges, it is customary to choose a truncated
domain of at least three times the size of the biomolecule so
as to accurately approximate boundary conditions6. Nonethe-
less, this still leads to a very large algebraic system consist-
ing of several hundreds of thousands to millions of degrees
of freedom. It becomes even more difficult if the PBE is in-
corporated in a typical dynamics simulation which involves
millions of time steps or in a multi-query task where the so-
lution is solved many times for varying parameter values such
as the ionic strength1.

The computational complexity arising from the resultant
high-dimensional system can be greatly reduced by applying
model order reduction (MOR) techniques. The main goal of
MOR is to construct a reduced-order model (ROM) of typi-
cally low dimension, whose solution retains all the important
information of the high-fidelity system at a greatly reduced
computational effort. Because the PBE is a parametrized
PDE (PPDE), we apply the reduced basis method (RBM)
which falls into the class of parametrized MOR (PMOR)
techniques16. However, it is important to note that the RBM
is not an independent numerical technique; hence its accuracy
depends on that of the underlying technique which is used to
discretize the PBE16,17. In this paper, we discretize the PBE
using FDM before applying the RBM.

The benefits of the RBM, or the MOR in general, become

FIG. 1: 2-D view of Debye-Hückel model.

obvious when the same problem has to be solved for a large
number of parameter values. In our study, the break-even
point is about 10, and thus, the RBM becomes very effective
if dozens or more parameter configurations need to be evalu-
ated.

Here, we consider a protein molecule immersed in ionic so-
lution at physiological concentration, and determine the elec-
trostatic potential triggered by the interaction between the two
particles, see Figure 1. The electrolyte here is of monovalent
type, implying that the ionic strength is equivalent to the con-
centration of the ions. The ionic strength is a physical param-
eter of the PBE, and we determine the electrostatic potential
under variation of this parameter. This paper is an extension
of the ECCOMAS Congress 2016 proceedings paper,18 with
the following additional key inputs. Firstly, we employ non-
affine Dirichlet boundary conditions given in Section II D to
replace the zero Dirichlet boundary conditions in the former.
Secondly, and as a consequence of the nonaffine parameter de-
pendence of these boundary conditions, we apply the discrete
empirical interpolation method (DEIM) to reduce the resul-
tant complexity in the reduced order model (ROM) during the
online phase of the reduced basis method (RBM), see Sec-
tion III B and Section III C19. Lastly, we apply finite volume
discretization to the dielectric coefficient function instead of
taking the averages of the dielectric values between two neigh-
bouring grid points. This is meant to reduce the truncation
error as explained in Section II B.

B. An overview of Poisson-Boltzmann Theory

There are numerous ways and reviews on the derivation of
the PBE. The simplest stems from the Poisson equation20,21

(in SI units),

−~∇.(ε(x)~∇u(x)) = ρ(x), in Ω ∈ R3, (1)

which describes the electrostatic potential u(x) at a point x ∈
Ω. The term ρ(x) is the charge distribution which generates
the potential in a region with a position-dependent and piece-
wise constant dielectric function ε(x). Equation (1) is gener-
ally solved in a finite domain Ω subject to Dirichlet bound-
ary conditions u(x) = g(x) on ∂Ω. Usually, g(x) employs
an analytic and asymptotically correct form of the electro-
static potential and therefore, the domain must be sufficiently
large to ensure an accurate approximation of the boundary
conditions7.

3

To obtain the PBE from equation (1), we consider two con-
tributions to the charge distribution ρ(x): the “fixed” solute
charges ρf (x) and the aqueous “mobile” ions in the solvent
ρm(x). The Nm partial atomic point charges (zi) of the
biomolecule are modeled as a sum of delta distributions at
each atomic center xi, for i = 1, . . . , Nm, that is,

ρf (x) = 4πe2

kBT

Nm∑
i=1

ziδ(x− xi). (2)

The term e/kBT is the scaling coefficient which ensures that
the electrostatic potential is dimensionless, where e is the
electron charge and kBT is the thermal energy of the system
and is comprised of the Boltzmann constant kB and the abso-
lute temperature T . The total charge of each atom is ezi.

On the other hand, the solvent is modeled as a continuum
through the Boltzmann distribution which leads to the mobile
ion charge distribution

ρm(x) = 4πe2

kBT

m∑
j=1

cjqje
−qju(x)−Vj(x), (3)

where we havemmobile ion species with charges qj and bulk
concentrations cj . The term Vj(x) is the steric potential which
prevents an overlap between the biomolecule and the counte-
rions. For monovalent electrolytes, whose ions are in a 1 : 1
ratio, for example, NaCl, equation (3) reduces to

ρm(x) = −κ2(x) sinh(u(x)), (4)

where the kappa function κ2(x) is position-dependent
and piecewise constant; it describes both the ion acces-
sibility through e−V (x) and the bulk ionic strength (or
concentration)14.

We eventually obtain the PBE by combining the two ex-
pressions for the charge distributions in (2) and (4) with the
Poisson equation (1) for a monovalent electrolyte,

−~∇.(ε(x)~∇u(x))+κ̄2(x) sinh(u(x)) = 4πe2

kBT

Nm∑
i=1

ziδ(x−xi), in Ω ∈ R3,

(5)
subject to

u(x) = g(x) on ∂Ω, (6)

where

u(∞) = 0 =⇒ u(xmax)→ 0 as |xmax| → ∞. (7)

In equation (5), u(x) = eψ(x)/kBT is the dimensionless po-
tential scaled by e/kBT and ψ(x) is the original electrostatic
potential in centimeter-gram-second (cgs) units at x ∈ R3.
The terms ε(x) and k̄2(x) are discontinuous functions at the
interface between the charged biomolecule and the solvent,
and at an ion exclusion region (Stern layer) surrounding the
molecule, respectively. The term k2 = 8πe2I/1000εkBT
is a function of the ionic strength I = 1/2

∑N
i=1 ciz

2
i . The

function g(x) represents the Dirichlet boundary conditions

which are discussed in detail in Section II D and are non-
affine in the parameter I . Equation (7) shows that the elec-
trostatic potential decays to zero exponentially as the position
approaches infinity. Details on mapping ε(x) and k̄2(x) onto
a computational grid can be found in9. The PBE (5) poses
severe computational challenges in both analytical and nu-
merical approaches due to the infinite (unbounded) domain in
(7), delta distributions, rapid nonlinearity, and discontinuous
coefficients6,10.

The PBE (5) can be linearized under the assumption that
the electrostatic potential is very small relative to the thermal
energy kBT 2. Therefore, the nonlinear function sinh(u(x))
can be expanded into a Taylor series

sinh(u(x)) = u(x) + u(x)3

3! + u(x)5

5! + . . . , (8)

and only the first term is retained. We obtain the linearized
PBE (LPBE) given by

−~∇.(ε(x)~∇u(x)) + k̄2(x)u(x) = (4πe2

kBT
)
Nm∑
i=1

ziδ(x− xi).

(9)
Usually, proteins are not highly charged, and it suffices to
consider the linearized PBE (LPBE). One can still obtain ac-
curate results because the higher order terms in (8) do not
provide a significant contribution. However, we must note
that the LPBE can give inaccurate results for highly charged
biomolecules such as the DNA and RNA (nucleic acids),
phospholipid membranes, and polylysine4. More information
about the PBE, including its derivation from first principles,
can be found in6.

It is worth noting that there are recent developments of the
PBE theory. Firstly, the biomolecular system has been con-
sidered as an interface problem which requires solution de-
composition techniques to get rid of the solution singularities
caused by the Dirac-delta distributions on the right hand side
of (9) or (5). This has been discussed, for example, in22–24

where the LPBE has been modified into the form

−εp∆u(x) = α

Nm∑
i=1

ziδ(x− xi), x ∈ Dp,

−εs∆u(x) + κ2u(x) = 0, x ∈ Ds,

u(s+) = u(s−), εs
∂u(s+)
∂n(s) = εp

∂u(s−)
∂n(s) , s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,


(10)

where α is a constant, Dp the protein domain, Ds the solvent
domain and Γ the interface between the protein and the sol-
vent. The PBE (nonlinear) has also been extensively solved as
an interface problem22,23.

The interface problem in (10) is more accurate than the
model in (9) considered in this study, because the local or
short-range potentials generated by the Dirac-delta distribu-
tions are computed independent of the long-range potentials,
thus avoiding errors. However, this model is still computa-
tionally expensive because the numerical calculations by con-
ventional methods are in O(N 3), (commonly known as the

4

“curse of dimensionality”), where N is the dimension of the
system in one direction. Therefore, we use the simple model
(9) for the purpose of introducing and validating the RBM.
Considering the interface problem would be our next step.

Secondly, studies on a variational problem of minimizing
a mean-field variational electrostatic free-energy functional
have been conducted25. This has been done in order to inves-
tigate the dependence of dielectric coefficient on local ionic
concentrations and its effect on the equilibrium properties of
electrostatic interactions in an ionic solution which was pro-
posed, for instance, in26. Results show that indeed the dielec-
tric coefficient depends on the local ionic concentrations and
this dependence can be expressed as a mathematical function
which is continuous, monotonically decreasing, and convex25.

C. Applications and Post-processing of the PBE
solution

The resultant electrostatic potential for the entire system
can be used to calculate electrostatic free energies and elec-
trostatic forces. The electrostatic free energy represents the
work needed to assemble the biomolecule and is obtained by
integration of the potential over a given domain of interest7,27.
For the LPBE, this energy is given by

Gelec[u(x)] = 1
2

∫
Ω
ρfu(x)dx = 1

2

N∑
i=1

ziu(xi), (11)

where u(xi) is the mean electrostatic potential acting on an
atom i located at position xi and carrying a charge zi. The
integral in (11) can be seen as the integral of polarization en-
ergy which is equivalent to the sum of interactions between
charges and their respective potentials. On the other hand, it is
also possible to differentiate the energy functional in (11) with
respect to atomic positions to obtain the electrostatic force on
each atom7,14,28.

The electrostatic potential can also be evaluated on the sur-
face of the biomolecule (electrostatic surface potential). It is
used to provide information about the interaction between the
biomolecule and other biomolecules or ligands or ions in its
vicinity. Figure 2 shows the electrostatic potential mapped
onto the surface of the protein fasciculin 1 and was generated
by the Visual Molecular Dynamics (VMD) software at differ-
ent orientations29. The electrostatic potential is computed by
our FDM solver. The red colour represents regions of neg-
ative potential, the blue colour represents regions of positive
potential, and the white colour represents neutral regions.

FIG. 2: Electrostatic potential mapped onto protein
surface of fasciculin 1 toxin CPDB entry 1FAS.

The outline of this paper is as follows: In Section II, we
provide a glimpse on the finite difference discretization of the
LPBE and those of the dielectric coefficient and kappa func-
tions, charge densities, as well as their respective mappings to
the computational grid. In Section III, we provide the basics
of the RBM which include the problem formulation, the so-
lution manifold, the greedy algorithm, the discrete empirical
interpolation method (DEIM), and the a posteriori error es-
timation. In Section IV, we provide numerical results of the
FOM (via the FDM) and those of the ROM (via RBM and
DEIM). Conclusions and some ideas on future work are given
in the end.

II. DISCRETIZATION OF THE POISSON-BOLTZMANN
EQUATION

A. Finite Difference Discretization

We discretize the LPBE in (2) with a centered finite differ-
ences scheme to obtain the algebraic linear system as below,

− H

dx2 ε
x
i+ 1

2 ,j,k
(ui+1,j,k−ui,j,k)+ H

dx2 ε
x
i− 1

2 ,j,k
(ui,j,k−ui−1,j,k)

− H

dy2 ε
y

i,j+ 1
2 ,k

(ui,j+1,k−ui,j,k)+ H

dy2 ε
y

i,j− 1
2 ,k

(ui,j,k−ui,j−1,k)

− H

dz2 ε
z
i,j,k+ 1

2
(ui,j,k+1−ui,j,k) + H

dz2 ε
z
i,j,k− 1

2
(ui,j,k−ui,j,k−1)

+Hκ̄2
i,j,kui,j,k = HCqi,j,k, (12)

where H = dx × dy × dz is a scaling factor, qi,j,k is the
discretized molecular charge density and C = 4πe2/kBT . It
is important to choose efficient algorithms and parameters to
be used in the discretization of the charge density distribu-
tion, the kappa, and the dielectric functions that appear in the
LPBE for the accuracy of the mean electrostatic potential so-
lution. An efficient method is usually chosen to partition the
domain into regions of solute (or biomolecule) and the solvent
dielectric. Some of the key methods employed in APBS are
the molecular surface and cubic-spline surface methods27. In
the following subsections, we provide some insights into these
discretizations.

5

B. Calculation of Dielectric Constant Distribution and
Kappa function

We notice that the dielectric constant ε in equation (12), is
discretized at half grid, and therefore, we use a staggered mesh
which results in three arrays (in x, y, and z directions) repre-
senting the shifted dielectric values on different grids. This
intends to fully take advantage of the finite volume discretiza-
tion in order to minimize the solution error by increasing the
spatial resolution. The dielectric coefficients and kappa func-
tions which are piecewise constant, are mapped according to
the following conditions,

ε(x) =
{

2 if x ∈ Ω1

78.54 if x ∈ Ω2 or Ω3
, (13)

k̄(x) =
{

0 if x ∈ Ω1 or Ω2√
ε3k if x ∈ Ω3

, (14)

where Ω1 is the region occupied by the protein molecule, Ω2
is the ion-exclusion layer, and Ω3 is the region occupied by
the ionic solution.

Techniques used to map the dielectric and kappa functions
onto the grid include, among others, the molecular surface,
and the smoothed molecular surface, which are calculated us-
ing the Connolly approach30 and the cubic-spline surface. For
more information see27. The cubic-spline surface method,
which is our method of choice, is more suitable than the other
two because it is possible to evaluate the gradient of the mean
electrostatic potential such as in the determination of the sol-
vated or polar forces. This method introduces an intermediate
dielectric region at the interface between the solute and the
solvent because the kappa and dielectric maps are built on a
cubic-spline surface. This smoothes the transition of the func-
tions to circumvent discontinuities inherent in them9,27.

C. Calculation of Charge Densities

The molecular charge density (right-hand side of the LPBE
(9)) can be obtained from any file with atomic coordinates,
charges, and radii. However, these atomic coordinates may
not coincide with any of our grid points. Therefore, it is neces-
sary to find an efficient method of spreading the point charges
(summation term in LPBE) to the grid points. Several meth-
ods are available to map or spread the charges onto the grid
points, e.g. in the APBS software package. Trilinear inter-
polation (or linear spline) in which charges are mapped onto
nearest-neighbour grids, results in potentials which are very
sensitive to the grid resolution. Cubic B-spline interpolation
where charges are mapped to two layers of grid points, has an
average sensitivity to the grid setup, and quintic B-spline in-
terpolation has the lowest sensitivity to grid spacing because
charges are spread out to three layers of the grid points9.

In this study, we use the cubic B-spline interpolation (ba-
sis spline) method which maps the charges to the nearest and
next-nearest grid points. Although computationally expen-
sive, this method provides softer or smoother distributions

of charges which subsequently reduces the sensitivity of the
mean electrostatic potential solutions to the grid spacing27.

D. Dirichlet Boundary Conditions

Analytical solutions to the LPBE can only be obtained for
systems with simple geometries, for example, spherical and
cylindrical systems. Equation (15) shows an analytical so-
lution for a spherical molecule with uniform charge (Born
ion)6. From this equation, we can obtain two different kinds
of Dirichlet boundary conditions, the single Debye-Hückel
(SDH) and multiple Debye-Hückel (MDH). For the former,
we assume that all the atomic charges are collected into a sin-
gle charge at the center of the solute approximated by a sphere.
This kind of boundary condition is suitable when the bound-
ary is sufficiently far from the biomolecule. On the other hand,
the latter assumes the superposition of the contribution of each
atomic charge (i.e. multiple, non-interacting spheres with
point charges) with respective radius. This kind of boundary
condition is more accurate than SDH for closer boundaries but
can be computationally expensive for large biomolecules.

In this study, we employ the MDH type9,31,

u(x) = (e2

kBT
)
Nm∑
i=1

zie
−κ(d−ai)

εw(1 + kai)d
on ∂Ω, d = |x−xi|.

(15)
Here, zi are the point partial charges of the protein, εw is
the solvent dielectric, κ = κ̄/

√
εw is a function of the ionic

strength of the solution, ai are the atomic radii, and Nm is the
total number of point partial charges in the protein.

III. ESSENTIALS OF THE REDUCED BASIS METHOD

The Reduced basis method (RBM) and proper orthogonal
decomposition (POD) are examples of popular projection-
based parametrized model order reduction (PMOR) tech-
niques. The main goal of these techniques is to generate a
parametric ROM which accurately approximates the original
full order model (FOM) of high dimension over varying pa-
rameter values16,17,32. The RBM exploits an offline/online
procedure which ensures an accurate approximation of the
high-fidelity solution in a rapid and inexpensive manner and is
widely applicable in real-time and many-query scenarios. For
a thorough review, see16.

We consider a physical domain Ω ⊂ R3 with boundary
∂Ω, and a parameter domain D ⊂ R. The LPBE (9) is dis-
cretized with the centered finite difference scheme (12) on Ω
and Dirichlet boundary conditions (6) obtained from (15) are
applied. The resultant discrete problem of the LPBE becomes,
for any µ ∈ D, find uN (µ) that satisfies the linear system

A(µ)uN (µ) = f(µ), µ ∈ D, (16)

where A(µ) ∈ RN×N and f(µ) ∈ RN . The matrix A(µ) can

6

also be written as a parameter-affine matrix,

A(µ) =
Q∑
i=1

Θi(µ)Ai, (17)

where Q ∈ N, Θi are scalar coefficient functions, and Ai are
the parameter independent matrices. TheN ×N system is in-
deed computationally expensive to be solved for an accurate
approximation of u(µ) because the dimension N is approxi-
mately 2×106 in our problem. Therefore, we apply the RBM
to save computational costs by providing an accurate approx-
imation of uN (µ) at a greatly reduced dimension of N � N .
The ROM is given by (20).

However, as detailed in Section III B, we encounter some
computational complexity in the online phase of RBM which
is caused by the nonaffine parameter dependence in the right-
hand side vector f(µ) from the boundary condition (15). The
parameter, the ionic strength, resides in the kappa term κ in
the exponential function. This violates one of the key assump-
tions of the RBM which requires that all the system matrices
and vectors must be affinely dependent on the parameter so
that the offline/online decomposition is natural33. To circum-
vent this problem, we propose to apply an empirical interpola-
tion method to reduce the complexity of the the online phase
by avoiding the high-dimensional computation related to the
vector f(µ). We provide some details in Section III C.

A. The Solution Manifold and the Greedy Algorithm

Another key assumption in RBM besides the affine param-
eter dependence, is the existence of a typically smooth and
very low dimensional solution manifold which almost cov-
ers all the high-fidelity solutions of (16) under variation of
parameters17,

MN = {uN (µ) : µ ∈ D}. (18)

The RB approximation space is then built upon this solution
manifold and is given by the subspace spanned by the snap-
shots of the FOM. In other words, it is the subspace spanned
by the high-fidelity uN (µ) solutions corresponding to a num-
ber of samples of the parameters, that is,

range(V) = span{uN (µ1), ..., uN (µl)}, ∀µ1, ..., µl ∈ D.
(19)

The greedy algorithm as given in Algorithm 1 is used to gen-
erate the reduced basis space (19) through an iterative proce-
dure where a new basis is computed at each iteration34. The
RB space can be thought of being nested or hierarchical such
that the previous basis set is a subset of the next and so on.

Algorithm 1 Greedy algorithm35

Input: A training set Ξ ⊂ D including samples of µ covering the
parameter domain D, i.e., Ξ := {µ1, . . . , µl}.

Output: RB basis represented by the projection matrix V .
1: Choose µ∗ ∈ Ξ arbitrarily.
2: Solve FOM (16) for uN (µ∗).
3: V1 = [uN (µ∗)], N = 1.
4: while max

µ∈Ξ
∆N (µ) ≥ ε do

5: µ∗ = arg max
µ∈Ξ

∆N (µ).

6: Solve FOM (16) for uN (µ∗).
7: VN+1 = [VN uN (µ∗)].
8: Orthonormalize the columns of VN+1.
9: N = N + 1.

10: end while

The RB approximation is then formulated as, for any given
µ ∈ D, find uN (µ) ∈ XN which satisfies

AN (µ)uN (µ) = fN (µ), (20)

where AN = V TAV and fN (µ) = V T f(µ). V is the or-
thonormal matrix computed from the greedy algorithm. From
the fact that N � N , solving the small dimensional reduced
order model (ROM) is much cheaper than solving the high-
fidelity model, the FOM (16)17. However, one problem still
remains when computing the ROM. The computational com-
plexity of evaluating the nonaffine function fN (µ) still de-
pends on the dimension of the FOM, as illustrated in Sec-
tion III B. Efficient implementation of Algorithm 1 depends
on an efficient error estimation ∆N (µ) of the ROM, which is
discussed in Section III E.

B. Computational Complexity of the Reduced Order
Model (ROM)

To demystify the issue of computational complexity in the
ROM, we can first rewrite (16) explicitly to illustrate the affine
parameter decomposition on the left-hand side and the non-
affine right-hand side,

(A1 + µA2)uN = ρ+ b(µ), µ ∈ D, (21)

where the matrix A1 comes from the Laplacian operator term,
A2 is a diagonal matrix from the kappa term, ρ represents
the charge density term and b(µ), the boundary conditions ob-
tained from the analytical solution in (15). We can clearly
notice the affine parameter decomposition of the matrix A in
(16) into A1 and µA2 in (21). However, the right-hand side
function b(µ) is nonaffine in the parameter and therefore it
cannot be decomposed in such a manner. Consider the ROM
which is obtained by the greedy algorithm approach in Algo-
rithm 1 and a Galerkin projection,

(Â1︸︷︷︸
N×N

+µ Â2︸︷︷︸
N×N

) uN︸︷︷︸
N×1

= ρ̂︸︷︷︸
N×1

+ V T︸︷︷︸
N×N

b(µ)︸︷︷︸
N×1

, (22)

where Â1 = V TA1V , Â2 = V TA2V , ρ̂ = V T ρ, and N �
N .

7

It is clear from (22) that the last term of the right-hand side
(RHS) still depends on the dimensionN of the FOM while all
the other matrices and vectors depend only on the dimension
N of the ROM, with N � N . Therefore, the reduced order
matrices on the left-hand side and the first vector on the right-
hand side of (22) can be precomputed and stored during the
offline phase, thereby providing a lot of computational sav-
ings. However, the term V T b(µ) cannot be precomputed be-
cause of the aforementioned nonaffine parameter dependence
and therefore, the Galerkin projection involving matrix-vector
products which are dependent on the dimension N , has to be
computed in the online phase of solving the ROM.

In principle, we require O(2NN) flops for these matrix-
vector products and a full evaluation of the nonaffine analyti-
cal function (15) to obtain V T b(µ). This can be computation-
ally expensive for a large N , especially during the a posteri-
ori error estimation (computing ∆N (µ)), where the residual is
computed l times for varying parameter values µi, i = 1, . . . , l
for a single iteration of the greedy algorithm. The discrete
empirical interpolation method (DEIM) is an approach to cir-
cumvent this problem in order to reduce the computational
complexity of the nonaffine function. We discuss this tech-
nique at length in the next Subsection.

C. Discrete Empirical Interpolation Method (DEIM)

DEIM is a complexity reduction technique that was pro-
posed in19 to overcome the drawback of the proper orthogo-
nal decomposition (POD) approach for approximating a non-
affine (or nonlinear) parametrized function in the ROM during
the online phase. This drawback is in the sense that the eval-
uation of the nonlinear/nonaffine function is still equivalent
to that of computing the counterpart of the original system,
which yields no computational savings. Therefore, the main
idea of DEIM is to interpolate the nonlinear/nonaffine func-
tion by computing only a few entries of it, which dramatically
reduces the computational complexity19,36.

We provide a brief overview on using the singular value de-
composition (SVD) to obtain the interpolation basis vectors.
Firstly, we compute snapshots of the function b(µ) at a set of
parameter µ in the training set Ξ = {µ1, . . . , µl} ⊂ D and
construct the snapshot matrix,

F = [b(µ1), . . . , b(µl)] ∈ RN×l. (23)

Secondly, we compute its singular value decomposition
(SVD),

F = UFΣWT , (24)

where UF ∈ RN×l, Σ ∈ Rl×l, and W ∈ Rl×l. Note that
the matrices UF and W are orthogonal, that is, (UF)TUF =
WTW = Il, Il ∈ Rl×l and Σ = diag(σ1, . . . , σl), with σ1 ≥
. . . ≥ σl ≥ 0.

Figure 3 shows the decay of the singular values of Σ for
the protein fasciculin 1. Figure 3(a) shows the behaviour of
20 singular values with almost no decay from the 11th singu-
lar value. We discard these non-decaying singular values to

5 10 15 2010−15

10−10

10−5

100

105

Number of singular values

Si
ng

ul
ar

va
lu

es

(a) 20 singular values

2 4 6 8 1010−15

10−10

10−5

100

105

Number of singular values

Si
ng

ul
ar

va
lu

es

(b) 11 singular values

FIG. 3: Decay of singular values of Σ in (24).

obtain those in Figure 3(b). From the latter, we can actually
truncate the singular values by selecting only the largest of
them represented by r ∈ {1, . . . , l} that correspond to some
required degree of accuracy. In this case, l = 11 and r = 9
which corresponds to an accuracy of εsvd = O(10−10) in
(26). The number r plays an important role to select a basis
set {uFi }ri=1 of rank r fromUF which solves the minimization
problem37,

arg min
{ũi}r

i=1

l∑
j=1
‖Fj −

r∑
i=1
〈Fj , ũi〉ũi‖22, s.t. 〈ũi, ũj〉 = δij ,

(25)
where Fj is the jth column of the snapshot matrix F , and δij
is the usual Kronecker delta.

The following criterion is used to truncate the largest sin-
gular values from Figure 3 based on some desired accuracy,
εsvd.

l∑
i=r+1

σi

l∑
1=1

σi

< εsvd, (26)

where σi, i = 1, . . . , l are the nonzero singular values of F .
The dotted horizontal black line corresponds to r = 9 singular
values and the corresponding singular vectors {uFi }ri=1 are
used in the DEIM approximation.

DEIM overcomes the problem mentioned in Section III B
by determining an interpolation of the nonaffine function
b(µ). This is realized by approximating b(µ) with the lin-
ear combination of the basis vectors UF = [uF1 , . . . , uFr] ∈
RN×r, i.e.

b(µ) ≈ UF c(µ), (27)

where c(µ) ∈ Rr is the corresponding coefficient vector, and
can be determined by assuming that UF c(µ) interpolates b(µ)
at r selected interpolation points, then,

PT b(µ) = PTUF c(µ), (28)

where P is an index matrix given by

P = [e℘1 , . . . , e℘r
] ∈ RN×r, (29)

which consists of unit vectors e℘i
, i = 1, . . . , r, where the in-

dices ℘i, are the DEIM interpolation points which are selected

8

iteratively with a greedy algorithm. Suppose that PTUF ∈
Rr×r is nondegenerate, then c(µ) can be determined from
(28) by

c(µ) = (PTUF)−1PT b(µ). (30)

Therefore, the function b(µ) in (14) can be approximated as

b(µ) ≈ UF c(µ) = UF (PTUF)−1PT b(µ), (31)

so that the ROM in (22) with DEIM approximation becomes,

(Â1︸︷︷︸
N×N

+µ Â2︸︷︷︸
N×N

)uN (µ)︸ ︷︷ ︸
N×1

= ρ̂︸︷︷︸
N×1

+V TUF (PTUF)−1︸ ︷︷ ︸
N×r

PT b(µ)︸ ︷︷ ︸
r×1

.

(32)
The interpolant V TUF (PTUF)−1PT b(µ) can be computed
a lot cheaper than V T b(µ) because we can precompute
V TUF (PTUF)−1 independent of the parameter µ. Alterna-
tively, we can also compute only those entries in b(µ) that cor-
respond to the interpolation indices ℘i, i = 1, . . . , r, r � N ,
i.e., PT b(µ) instead of the entire N entries in b(µ).

For the actual numerical implementation of the interpola-
tion (31), the matrix P needs not be explicitly applied. In-
stead, only the interpolation indices ℘i, i = 1, . . . , r need to
be applied to the matrix UF or the nonaffine function b(µ).
This implies that PTUF merely consists of the rows of UF
which correspond to the interpolation indices ℘i, i = 1, . . . , r.
Similarly, PT b(µ) is a condensed vector composed of a few
entries of b(µ) which correspond to the same indices.

Algorithm 2 provides a brief overview of the DEIM proce-
dure.

Algorithm 2 DEIM algorithm19,38

Input: POD basis {uFi }ri=1 for F in equation (10).
Output: DEIM basis UF and indices ~℘ = [℘1, . . . , ℘r]T ∈ Rr .

1: ℘1 = arg max
j∈{1,...,N}

|uF1j |, where uF1 = (uF11, . . . , u
F
1N)T .

2: UF = [uF1], P = [e℘1], ~℘ = [℘1].
3: for i = 2 to r do
4: Solve (PTUF)α = PTuFi for α, where α =

(α1, . . . , αi−1)T ,
5: ri = uFi − UFα,
6: ℘i = arg max

j∈{1,...,N}
|rij |, where ri = (ri1, . . . , riN)T .

7: UF ← [UF uFi], P ← [P e℘i], ~℘←
[
~℘

℘i

]
.

8: end for

Note that in Algorithm 2, the POD basis {uFi }ri=1 is of great
significance as an input basis for the DEIM procedure in two
ways. First, a set of interpolation indices ℘i are constructed
inductively based on this basis through a greedy algorithm.
Secondly, an error analysis in19 indicates that the ordering of
this basis according to the dominant singular values makes
it the right choice for this algorithm. In step 1, the process
selects the first interpolation index ℘1 which corresponds to
the location of the entry in uF1 with the largest magnitude. The
subsequent indices in step 6, ℘i, i = 2, . . . , r, are selected in
such a way that each of them corresponds to the location of
the entry in r (step 5) with the largest magnitude.

D. DEIM Approximation Error

We compute the error due to the DEIM interpolation which
is to be included into the residual in the a posteriori error es-
timation. This error was first proposed in36 for nonlinear dy-
namical systems and has also been used in38 in the context of
a nonlinear population balance systems. We extend this idea
to parametrized elliptic PDEs where the DEIM error is given
by,

eDEIM = b(µ)− b̃(µ) = Π2(I −Π)b(µ), (33)

where Π and Π2 are oblique projectors defined as follows,

Π = UF (PTUF)−1PT , (34)

and

Π2 = (I −Π)ŨF (P̃T (I −Π)ŨF)−1P̃T . (35)

In equation (34), UF = (uF1 , . . . , uFr) ∈ RN×r and P ∈
RN×r are the current DEIM basis and interpolation index ma-
trix obtained from Algorithm 2.

To obtain Π2 in (35), we assume that r∗(≥ r) DEIM basis
vectors U∗F = (uF1 , . . . , uFr∗) interpolate b(µ) exactly, i.e.

b(µ) = U∗F ((P ∗)TU∗F)−1(P ∗)T b(µ), (36)

where P ∗ is the corresponding index matrix with r∗ columns.
Finally, ŨF = U∗F (:, r+1 : r∗) and P̃ = P ∗(:, r+1 : r∗) such
that U∗F = [UF , ŨF] and P ∗ = [P, P̃], whereM(:, r+1 : r∗),
using MATLAB notation38. In the next subsection, we intro-
duce an a posteriori error estimation derived from the residual
of the approximate RB solution and the DEIM approximation
error.

E. A Posteriori Error Estimation

A posteriori error estimators are computable indicators
which provide an estimate to the actual solution error by uti-
lizing the residual of the approximate RB solution. An effi-
cient error estimator is required to possess three major char-
acteristics, namely: it is required to be as sharp as possible
(close to the unknown actual error), asymptotically correct
(tend to zero with increasing RB space dimension N , at a
similar rate as the actual error), and computationally cheap
(because it is computed in the online phase). Therefore, these
estimators guarantee both reliability and efficiency of the re-
duction process39.

We first compute the residual due to DEIM interpolation;

rDEIM
N (uN ;µ) = (ρ+ b̃(µ))−AN (µ)uN (µ), (37)

where b̃(µ) = Πb(µ) is the DEIM interpolation of b(µ) and
uN (µ) := V uN (µ) is the RB solution transformed back to
the high-fidelity space N . Then the final residual is obtained

9

by including the DEIM approximation error derived in Sec-
tion III D as follows;

rN (uN ;µ) = (ρ+ b(µ))−AN (µ)uN (µ)
= (ρ+ b̃(µ))−AN (µ)uN (µ) + b(µ)− b̃(µ)
= rDEIM

N (uN ;µ) + b(µ)− b̃(µ)︸ ︷︷ ︸
:=eDEIM

= rDEIM
N (uN ;µ) + eDEIM.

(38)

The a posteriori error estimation is then derived from the
residual in (38). Rewriting the first equation of (38), we obtain

rN (uN ;µ) = AN (µ)uN (µ)−AN (µ)uN (µ)
= AN (µ)e(µ),

(39)

where the error e(µ) := uN (µ)− uN (µ) is given by

e(µ) = (AN (µ))−1rN (uN ;µ). (40)

We obtain an upper bound for the 2-norm of the error by tak-
ing the 2-norm on both sides of equation (40), i.e.

‖e(µ)‖2 ≤ ‖(AN)−1(µ)‖2‖rN (uN ;µ)‖2 = ‖rN (uN ;µ)‖2
σmin(AN (µ))

=: ∆̃N (µ),
(41)

where σmin(AN (µ)) is the smallest singular value of
AN (µ)39. The quantity ∆̃N (µ) is a rigorous error bound, and
can be used to select snapshots within the greedy algorithm in
the offline stage and consequently to measure the accuracy of
the RB approximation in the online stage34. For efficient com-
putation of the norm of the residual and error bounds, see33,39.
It is computationally expensive to compute σmin(AN (µ)) in
the online phase as it entails solutions of large-scale eigen-
value problems34. Therefore, in our computations, we use the
norm of the residual as our error estimator, which satisfies the
inequality (41) and provides an estimation of the true error
that works well for our problem. It also provides rapid con-
vergence as depicted in the numerical results in Figure 5. It is
given by

‖e(µ)‖2 ≈ ‖rN (uN ;µ)‖2 := ∆N (µ). (42)

IV. NUMERICAL RESULTS

A. Finite Difference Results

We consider the LPBE (9), a parameter domain µ ∈ D =
[0.05, 0.15], and a cubic grid of 129 points and a box length of
60 Å centered at the protein position. The parameter domain
is chosen for a feasible physiological process and µ resides in
the second term in the kappa function. Information about the
molecular charge density is obtained from a PQR file which

0.6

120

0.7
0.8

100 120

0.9

u(
x,

y,
1)

80

1

100

y

1.1

60 80

x

6040 4020 20

0.05

120

0.1

100 120

u(
x,

y,
1)

0.15

80 100

y

60

0.2

80

x

6040 4020 20

0
120

0.02

100

0.04

120

u(
x,

y,
1)

80 100

y

0.06

60 80

x

6040 4020 20

0

2

120

4

100

6

120

10 -3

u(
x,

y,
1)

80 100

8

y

60 80

10

x

6040 4020 20

FIG. 4: High-fidelity solutions (uN (µ)) at varying ionic
strengths (i.e., µ = {0, 0.05, 0.15, 0.5}), respectivley.

contains 1228 atoms of the protein fasciculin 1 toxin CPDB
entry 1FAS. We discretize the LPBE with a centered finite dif-
ference scheme and the resulting parametrized linear system
(16) is of more than 2×106 degrees of freedom. This FOM is
solved by the aggregation-based algebraic multigrid (AGMG)
method, where a tolerance of 10−10 and a zero initial guess
are used40–42.

The choice of the tolerance directly affects the results of
the greedy algorithm. Therefore, it is prudent to ensure that
the high-fidelity solution (uN (µ),N = 2, 146, 689) is highly
accurate. Some of the iterative methods commonly used in
the PBE solvers are; the minimal residual (MINRES) method,
the generalized minimal residual (GMRES) method and the
biconjugate gradient stabilized (BICGSTAB) method. These
methods employ the incomplete LU factorization to generate
the preconditioner matrices L (lower diagonal) and U (upper
diagonal) which are used to improve their stability and con-
vergence at low costs27.

Figure 4 shows the lower cross-sections of the z-axis of
the electrostatic potential u(x, y, 1). Note that the potential
decays exponentially with the variation of the parameter µ,
and is attributed to the large force constant (332 kcal/mol) of
electrostatic interactions. In the absence of ions (that is, at
µ = I = 0), these interactions are long ranged, but in the
presence of ions (that is, µ > 0), they are damped or screened
and gradually decay to zero2. The computational time taken
to obtain the high-fidelity solution uN (µ) is approximately 28
seconds on average and varies depending on the value of the
ionic strength used.

B. Accuracy of FDM

We demonstrate the accuracy and reliability of the FDM be-
fore applying the RBM for the solution of the PBE. This is be-
cause the accuracy of the RBM depends on that of the underly-
ing discretization technique. In this study, we consider six test

10

examples to validate the FDM which include a Born ion and
five proteins consisting of between 380 and 3400 atoms, re-
spectively. We compare the FDM results with those of APBS
for electrostatic solvation free energy at different mesh refine-
ments. Firstly, we consider the Born ion which is a canonical
example for polar solvation and whose analytical solution is
well known.

This analytical solution gives the polar solvation energy
which results from the transfer of a non-polarizable ion be-
tween two dielectrics43, i.e.,

∆pGBorn = q2

8πε0r
(1
εout
− 1
εin

), (43)

where q is the ion charge, r is the ion radius, εout is the ex-
ternal dielectric coefficient (e.g., water) and εin is the internal
dielectric coefficient (e.g., vacuum). This model assumes zero
ionic strength. We consider a Born ion of unit charge, 3Å ra-
dius and located at the origin ((0, 0, 0)). Here, εin = 1 and
εout = 78.54. With these parameters, the analytical solution
in (43) is

∆pGBorn = −691.85(q
2

r
) = −230.62kJ/mol. (44)

We compare numerical computations using equation (11)
for charging free energies in a homogeneous (εin = εout = 1)
and heterogeneous (εin = 1, εout = 78.54) dielectric coef-
ficients with the analytical solution43. We use the following
additional parameters. We consider two different mesh sizes
(or ∆x), which result in different degrees of freedom (or N)
as shown in Table I. Numerical results using FDM are com-
pared with those of the exact solution (43) and APBS (which
uses FEM). The results show that the FDM method gives so-
lutions which are consistent with those of the exact solutions,
as well as those of the APBS software package.

∆x N Solver Numerical Analytical Relative error

0.33 973 APBS -229.59 -230.62 4.4662e-3
FDM -232.86 -230.62 9.7130e-3

0.25 1293 APBS -230.00 -230.62 2.6884e-3
FDM -230.42 -230.62 8.6723e-4

TABLE I: Comparison of Born ion solvation energies in kJ/mol.

Secondly, we compare the accuracy of FDM for the LPBE
with the following set of typical examples of use of LPBE
and APBS in particular: Calculation of the total electrostatic
energy (including self-interaction energies) of a 22 residue,
α-helical peptide from the N protein of phage λ which binds
to its cognate 19 nucleotide box B RNA hairpin44, Fasciculin
1, an anti-acetylcholinesterase toxin from green mamba snake
venom45, the electrostatic potential of a minimized FKBP pro-
tein from binding energy calculations of small ligands46, a
180-residue cytokine solution NMR structure of a murine-
human chimera of leukemia inhibitory factor (LIF)47, and the
binding energy of a balanol ligand to the catalytic subunit of
the CAMP-dependent protein kinase A, here the apo form of

∆x N ∆E, FDM ∆E, APBS Relative
error

1. Solvation energies of a 22 residue, α-helical peptide from the N
protein of phage λ in kJ/mol. (379 atoms)

0.375 1293 -4557.7052 -4546.5150 2.4613e-3
0.320 1613 -4541.4782 -4532.7595 1.9235e-3
0.260 1933 -4522.4752 -4516.8544 1.2444e-3

2. Solvation energies of fasciculin 1 in kJ/mol. (1228 atoms)
0.465 1293 -5870.5357 -5845.8594 4.2212e-3
0.375 1613 -5684.8448 -5664.8475 3.5301e-3
0.320 1933 -5629.1979 -5611.2503 3.1985e-3

3. Solvation energies of the electrostatic potential of a minimized
FKBP protein in kJ/mol. (1663 atoms)

0.465 1293 -4419.0384 -4403.8761 3.4429e-3
0.375 1933 -4344.5491 -4331.1010 3.1050e-3
0.320 2253 -4292.5359 -4288.0842 1.0382e-3

4. Solvation energies of a 180-residue cytokine solution NMR struc-
ture of a murine-human chimera of leukemia inhibitory factor (LIF)
in kJ/mol. (2809 atoms)

0.450 1613 -9317.7636 -9293.9750 2.5595e-3
0.375 1933 -9270.0472 -9247.2822 2.4618e-3
0.280 2573 -9153.9477 -9134.2879 2.1523e-3

5. Solvation energies of CAMP-dependent protein kinase A, here the
apo form, in kJ/mol. (3423 atoms)

0.465 1293 -19742.3639 -19681.3183 3.1017e-3
0.375 1613 -19332.6588 -19296.6336 1.8670e-3
0.320 1933 -19039.8581 -19014.0380 1.3579e-3

TABLE II: Comparison of electrostatic solvation free energies
∆E, between FDM and APBS for different proteins.

the enzyme48. The proteins and or complexes have the fol-
lowing number of atoms (379, 1228, 1663, 2809, and 3423),
respectively.

The electrostatic solvation free energies, ∆E are computed
and shown in Table II for varying grid resolutions ∆x. How-
ever, we here do not have the analytical electrostatic energies
for these proteins but rely on the accuracy of the APBS soft-
ware for validation. A compute cluster with 4 Intel Xeon E7-
8837 CPUs running at 2.67 GHz (8 cores per CPU) and 1 TB
RAM, split into four 256 GB parts (each CPU controls one
part) is used to carry out the computations which require a
huge amount of memory, so that it allows for solving large-
scale problems with N ≥ (3× 106).

From Table II, we can clearly see that the results of the
FDM method agree well with those of APBS in terms of con-
vergence with respect to mesh refinement. Hence, we con-
clude that we can test the RBM in conjunction with our FDM
solver reliably. We expect no differences when using a FEM
solver like APBS, which would require intruding the software.

11

True error Error estimator

2 4 610−6

10−1

104

Reduced dimension N
2 4 610−6

10−1

104

Reduced dimension N

2 4 610−6

10−1

104

Reduced dimension N
2 4 610−6

10−1

104

Reduced dimension N

2 4 610−6

10−1

104

Reduced dimension N

FIG. 5: Comparison of maximal error estimator and
true error for the proteins in Table II, respectively.

C. Accuracy of the RBM

In this section, we evaluate the accuracy of the RBM for
the approximation of the high-fidelity solutions generated by
the FDM for the five proteins which were investigated in Sec-
tion IV B. We consider a cubic domain of 129 points and a box
length of 60 Å centered at the protein position for all the com-
putations. Figure 5 shows the decay of the error estimator and
the true error during the greedy algorithm at the current RB
dimension i = 1, . . . , N . They corroborate the asymptotic
correctness property stated in Section III E, and it is evident
that the error estimator is an upper bound to the true error.
We also observe a high convergence rate of the error estima-
tor with up to two orders of magnitude and the RB space is
rich enough at only six iterations of the greedy algorithm for
the five proteins. These error estimators are the maximal error
and relative maximal error, respectively, and are defined as,
∆max
N = max

µ∈Ξ
‖rN (uN ;µ)‖2, and ∆max

N /‖uN (µ∗)‖2, where

µ∗ = arg max
µ∈Ξ
‖rN (uN ;µ)‖2.

In the greedy algorithm, we apply an error tolerance of
ε = 10−3 and a training set Ξ consisting of l = 11 sam-
ples of the parameter. From Figure 5, it is evident that both
the error estimator and the true error fall below the prescribed
tolerances at the final dimension of the ROM (i.e. N = 6).

Figure 6 shows the error estimator and the true error of the
finally constructed ROM over µi = Ξ, for i = 1, ..., 11 sam-

True error Error estimator

2 4 6 8 1010−6

10−5

10−4

10−3

Ξ ∈D
2 4 6 8 10

10−6

10−4

Ξ ∈D

2 4 6 8 10

10−6

10−4

Ξ ∈D
2 4 6 8 10

10−6

10−4

Ξ ∈D

2 4 6 8 10

10−6

10−4

10−2

Ξ ∈D

FIG. 6: Comparison of error estimator and true error for
the final ROM for Ξ ∈ D and for the proteins in Table II,

respectively.

ples for each protein as in Table II, respectively. It is evident
that the error estimator for the final RB approximations of di-
mensionN = 6 is indeed an upper bound of the true error and
a trend that both quantities behave similarly is clearly visible
from the graphs. Consequently, the error estimators fall below
the greedy tolerance of 10−3.

Figure 7 is used to validate the true error in Figure 6,
whereby 20 random values of the parameter domain D which
are different from those in the training set Ξ are used. A com-
mon observation from these figures is that the true errors fall
below O(10−4), which is an order of magnitude below the
error estimator. The computational time taken to obtain the
approximate solution uN (µ) in the online phase is approxi-
mately 4.97 × 10−3 seconds on average, for any parameter
µ ∈ D.

D. Runtimes and Computational Speed-ups

Before we dive into the runtimes of the various phases of
the RBM, we would like to make clear about some key notions
of the two phases of the greedy algorithm, i.e., the offline and
online phases, respectively. The offline phase is subdivided
into two parts, the offline-offline phase, and the offline-online
phase33. The offline-offline phase involves computation of
the snapshots and pre-computing the parameter-independent

12

True error

5 10 15 2010−7

10−6

10−5

10−4

Random µ ∈ D
5 10 15 2010−7

10−6

10−5

10−4

Random µ ∈ D

5 10 15 2010−7

10−6

10−5

10−4

Random µ ∈ D
5 10 15 2010−7

10−6

10−5

10−4

Random µ ∈ D

5 10 15 2010−7

10−6

10−5

10−4

Random µ ∈ D

FIG. 7: True error ‖uN (µ)− uN (µ)‖2 for random parameters
µ ∈ D for the proteins in Table II, respectively.

quantities. The offline-online phase involves computation of
the error estimator and the RB approximation. On the other
hand, the pure online phase is where the final ROM has been
constructed after the accuracy of the reduced basis is fulfilled,
and is independent of the greedy algorithm. In this phase, the
ROM can be solved for any parameter value in the parameter
domain, including those which are different from the training
set.

Table III shows the runtimes and computational speed-ups
obtained with the use of DEIM approximation during the
offline-online phase of the RBM at a single iteration of the
greedy algorithm and with the use of the RBM in solving the
linear system. We use a modest PC with the following speci-
fications: Intel (R) Core (TM)2 Duo CPU E8400 @ 3.00GHz
with 8GB RAM. In this section, the PBE is applied to the pro-
tein fasciculin 1.

Runtime (seconds) and speed-up
Without DEIM With DEIM Speed-up

Offline-online phase 96.29 4.84 20
Assemble and solve

ROM 8.36 9.91e-03 844

TABLE III: Runtimes and speed-ups due to DEIM.

Table IV shows the runtimes of computing the FOM and the
ROM at a given parameter value, respectively. The runtimes

at different phases of the RBM are also presented. Speed-up
factors induced by solving the ROM are listed to visualize the
big difference between the FOM and the ROM. The ROM is
much faster and takes a split second to assemble and solve for
any parameter value. In the offline phase of the RBM, which
comprises the greedy algorithm, the dominating cost is that of
solving the linear system of the FOM by AGMG (i.e., com-
puting snapshot) at every iteration of the greedy algorithm.
Miscellaneous in this case refers to the runtime to initialize the
FDM, including assembling the FOM. The total RBM runtime
includes the miscellaneous and offline runtimes.

Runtime (seconds) and speed-up
FOM ROM Speed-up

Solve linear system 11.88 4.97e-03 7,616
Assemble and solve linear system 27.82 9.91e-03 5,500

Runtime (seconds) for RBM phases
Miscellaneous Offline Online Total RBM

10.58 85.54 9.91e-03 96.12

TABLE IV: Runtimes and speed-ups for FOM, ROM and RBM.

Table V shows the runtimes of APBS and RBM for solving
the FOM and the ROM at any given parameter value, respec-
tively. The speed-up factor of RBM w.r.t. the APBS is also
shown for different numbers of parameter values. It is evident
that RBM is much more efficient than APBS when solving
the system for many input parameter values (i.e. in a multi-
query context). This is because we only need to solve a small
system of order N = 6 once the final ROM model has been
constructed which takes approximately 9.91 × 10−3 seconds
for each parameter value, whereas APBS solves the FOM be-
sides the initial system setup.

In a nutshell, to solve the LPBE for any parameter value
with APBS, it takes 22.893 seconds, because the solver has
to reconstruct the linear system. This implies that it takes ap-
proximately 2, 289.3 seconds to compute the potential for 100
parameter values (neglecting the runtime to modify the input
files). This is more expensive than the total RBM time of
96.12 seconds. On the other hand, it takes the RBM approx-
imately 9.91 × 10−1 seconds to solve the ROM of the LPBE
for the same number of parameters values (i.e., 100).

The RBM only solves the FOM N times during the expen-
sive offline phase as stated in Algorithm 1. Moreover, the
RBM utilizes the precomputed system matrices and vectors
and only solves the ROM for the new parameter value, thus
saving a significant amount of computational costs during the
online phase. This efficient implementation of a new math-
ematical approach to solve the PBE holds great promise to-
wards reducing computational costs in a multi-query scenario
and molecular dynamics simulation.

13

Runtime (seconds) and speed-up for APBS and RBM
No. of parameters APBS RBM Speed-up

1 22.893 ≈ 96.12 0.24
10 228.93 ≈ 96.12 2.38
100 2,289.3 ≈ 96.12 24

1000 22,893 ≈ 106.12 215.75

TABLE V: Runtimes for APBS and RBM.

V. CONCLUSIONS

In this paper, we have presented a new, computationally ef-
ficient approach to solving the PBE for varying parameter val-
ues. The RBM reduces the high-dimensional full order model
by a factor of approximately 360, 000 and the computational
time by a factor of approximately 7, 600. The error estimator
provides fast convergence to the reduced basis approximation
at an accuracy of O(10−3). The true error between the RBM
and the FDM is smaller than O(10−4), for all the parameter
samples tested. DEIM provides a speed-up of 20 in the online
phase by reducing the complexity of the nonaffine Dirichlet
boundary conditions. This is achieved by only selecting a
few entries from a high-dimensional vector which provides
the most important information. Therefore, the RBM can be
extremely beneficial in cases where simulations of the PBE for
many input parameter values are required. This method can
also be implemented in the available PBE solvers, for exam-
ple, APBS, after a few adjustments regarding parametrization
in the linear system are made. Our future research is based
on two aspects. Firstly, we plan to develop a more efficient
error estimator which is more rigorous than merely taking the
norm of the residual. Secondly, we aim to develop a modified
version of the LPBE which considers the PBE as interface
problem by applying a range-separated tensor format. This is
expected to reduce the computational complexity experienced
by the current PBE studies, and to provide more accurate re-
sults due to the more realistic model.

ACKNOWLEDGMENTS

The authors thank the following organizations for financial
and material support on this project: International Max Planck
Research School (IMPRS) for Advanced Methods in Process
and Systems Engineering and Max Planck Society for the Ad-
vancement of Science (MPG).

1J. Wang and R. Luo, J. Comput. Chem. 31, 1689 (2010).
2F. Fogolari, A. Brigo, and H. Molinari, J. Mol. Recognit. 15, 377 (2002).
3F. Fogolari, P. Zuccato, G. Esposito, and P. Viglino, Biophys. J. 76, 1
(1999).

4B. Honig and A. Nicholls, Sci., New Series 268, 1144 (1995).
5K. A. Sharp and B. Honig, Annu. Rev. Biophys. Chem. 19, 301 (1990).
6M. J. Holst, Multilevel methods for the Poisson-Boltzmann equation,
Ph.D. Thesis, Numerical Computing group, University of Illinois, Urbana-
Champaign, IL, USA (1994).

7F. Dong, B. Oslen, and N. A. Baker, Methods Cell Biol 84, 843 (2008).
8J. Warwicker and H. C. Watson, J. Mol. Biol. 157, 671 (1982).

9N. A. Baker, M. J. Holst, and F. Wang, IBM J. Res. Devel. 45, 427 (2001).
10M. Holst, N. Baker, and F. Wang, J. Comp. Chem. 21, 1319 (2000).
11A. H. Boschitsch and M. O. Fenley, J. Comput. Chem. 25, 935 (2004).
12H. X. Zhou, Biophys. J. 65, 955 (1993).
13B. Z. Lu, Y. C. Zhou, M. J. Holst, and J. A. McCammon, Commun. Com-

put. Phys. 3, 973 (2008).
14N. A. Baker, Biomolecular applications of Poisson-Boltzmann equation,

edited by K. B. Lipkowitz, R. Larter, and T. R. Cundari, Reviews in Com-
putational Chemistry, Vol. 21 (John Wiley & Sons, Hoboken, NJ, USA,
2005) pp. 349–379.

15W. Rocchia, E. Alexov, and B. Honig, J. Phys. Chem. 105, 6507 (2001).
16P. Benner, S. Gugercin, and K. Willcox, SIAM Review 57, 483 (2015).
17J. L. Eftang, Reduced basis methods for parametrized partial differential

equations, Ph.D. Thesis, Norwegian University of Science and Technology,
Trondheim, Norway (2011).

18C. Kweyu, M. Hess, L. Feng, M. Stein, and P. Benner, “Reduced basis
method for Poisson-Boltzmann Equation,” in ECCOMAS Congress 2016
- Proc. of the VII European Congress on Computational Methods in Ap-
plied Sciences and Engineering, Vol. 2, edited by M. Papadrakakis, V. Pa-
padopoulos, G. Stefanou, and V. Plevris (National Technical University of
Athens, Athens, 2016) pp. 4187–4195.

19S. Chaturantabut and D. C. Sorensen, SIAM J. Sci. Comput. 32, 2737
(2010).

20J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
21M. T. Neves-Petersen and S. Petersen, Biotechnol. Annu. Rev. 9, 315

(2003).
22L.Chen, M. J. Holst, and J. Xu, SIAM J. Numer. Anal. 45, 2298 (2009).
23D. Xie, J. Comput. Phys. 275, 294 (2014).
24D. Xie and J. Ying, J. Comput. Appl. Math. 307, 319 (2016).
25B. Li, J. Wen, and S. G. Zhou, Commun. Math. Sci. 14, 249 (2016).
26J. Sala, E. Guadia, and J. Marti, J. Chem. Phys. 132, 214505 (2010).
27S. Vergara-Perez and M. Marucho, Comput. Phys. Commun. 198, 179

(2016).
28M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, J. Phys.

Chem. 97, 3591 (1993).
29W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).
30M. L. Connolly, Science 221, 709 (1983).
31W. Rocchia, Math. Comput. Model. 41, 1109 (2005).
32G. Rozza, D. B. P. Huynh, and A. T. Patera, Archives of Computational

Methods in Engineering 15, 229 (2008).
33J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Meth-

ods for Parametrized Partial Differential Equations (Springer International
Publishing, 2016).

34M. W. Hess and P. Benner, IEEE Trans. Microw. Theory Techn. 61, 2265
(2013).

35J. S. Hesthaven, B. Stamm, and S. Zhang, ESIAM Math. Modell. Numer.
Anal. 48, 259 (2014).

36D. Wirtz, D. C. Sorensen, and B. Haasdonk, SIAM J. Sci. Comput. 36,
A311 (2014).

37S. Volkwein, “Model reduction using proper orthogonal decomposition,”
Lecture notes (University of Konstanz, 2013).

38L. Feng, M. Mangold, and P. Benner, AIChE Journal 63, 3832 (2017).
39A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for

Parametrized Partial Differential Equations: An Introduction (Springer In-
ternational Publishing, 2016).

40Y. Notay, Electron. Trans. Numer. Anal. 37, 123 (2010).
41A. Napov and Y. Notay, SIAM J. Sci. Comput. 34, A1079 (2012).
42Y. Notay, SIAM J. Sci. Comput. 34, A2288 (2012).
43“The Born ion,” http://www.poissonboltzmann.org/
examples/The_Born_ion/, accessed: 2016-11-02.

44C. Garcia-Garcia and D. Draper, J. Mol. Biol. 331, 75 (2003).
45M. P. B. P. F.-C. J. Le Du, M.H., J. Biol. Chem. 267, 22122 (1992).
46P. Burkhard, P. Taylor, and W. M. D., J. Mol. Biol. 295, 953 (2000).
47M. Hinds, T. Maurer, Z. J., and N. Nicola, J. Biol. Chem. 273, 13738

(1998).
48N. Narayana, T. Diller, K. Koide, M. Bunnage, K. C. Nicolaou, L. Brunton,

N. Xuong, L. Eyck, and S. Taylor, Biochem. 38, 2367 (1999).

http://dx.doi.org/10.1016/j.cpc.2015.08.029
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1016/S0006-3495(99)77173-0
http://dx.doi.org/10.1016/S0006-3495(99)77173-0
http://dx.doi.org/10.1126/science.7761829
http://dx.doi.org/10.1016/S0091-679X(07)84026-X
http://dx.doi.org/10.1016/0022-2836(82)90505-8
http://dx.doi.org/ 10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2-8
http://dx.doi.org/10.1002/jcc.20000
http://dx.doi.org/10.1016/S0006-3495(93)81094-4
http://dx.doi.org/10.1002/0471720895.ch5
http://dx.doi.org/10.1021/jp010454y
http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.7712/100016.2103.5891
http://dx.doi.org/10.7712/100016.2103.5891
http://dx.doi.org/10.7712/100016.2103.5891
http://dx.doi.org/10.1137/090766498
http://dx.doi.org/10.1137/090766498
http://dx.doi.org/10.1016/S1387-2656(03)09010-0
http://dx.doi.org/10.1016/S1387-2656(03)09010-0
http://dx.doi.org/ 10.1137/060675514
http://dx.doi.org/10.1016/j.jcp.2014.07.012
http://dx.doi.org/10.1016/j.cam.2016.01.005
http://dx.doi.org/10.4310/CMS.2016.v14.n1.a10
http://dx.doi.org/10.1063/1.3429253
http://dx.doi.org/10.1016/j.cpc.2015.08.029
http://dx.doi.org/10.1016/j.cpc.2015.08.029
http://dx.doi.org/10.1021/j100116a025
http://dx.doi.org/10.1021/j100116a025
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1126/science.6879170
http://dx.doi.org/10.1016/j.mcm.2005.05.006
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1007/s11831-008-9019-9
http://dx.doi.org/10.1109/TMTT.2013.2258167
http://dx.doi.org/10.1109/TMTT.2013.2258167
http://dx.doi.org/10.1051/m2an/2013100
http://dx.doi.org/10.1051/m2an/2013100
http://dx.doi.org/10.1137/120899042
http://dx.doi.org/10.1137/120899042
http://dx.doi.org/10.1002/aic.15749
http://www.poissonboltzmann.org/examples/The_Born_ion/
http://www.poissonboltzmann.org/examples/The_Born_ion/
http://dx.doi.org/10.1016/S0022-2836(03)00615-6
http://dx.doi.org/10.1006/jmbi.1999.3411
http://dx.doi.org/ 10.1074/jbc.273.22.13738
http://dx.doi.org/ 10.1074/jbc.273.22.13738
http://dx.doi.org/10.1021/bi9820659

	Fast Solution of the Linearized Poisson-Boltzmann Equation with nonaffine Parametrized Boundary Conditions Using the Reduced Basis Method
	Abstract
	I Introduction
	A Electrostatic Interactions in Biomolecular Systems
	B An overview of Poisson-Boltzmann Theory
	C Applications and Post-processing of the PBE solution

	II Discretization of the Poisson-Boltzmann Equation
	A Finite Difference Discretization
	B Calculation of Dielectric Constant Distribution and Kappa function
	C Calculation of Charge Densities
	D Dirichlet Boundary Conditions

	III Essentials of the Reduced Basis Method
	A The Solution Manifold and the Greedy Algorithm
	B Computational Complexity of the Reduced Order Model (ROM)
	C Discrete Empirical Interpolation Method (DEIM)
	D DEIM Approximation Error
	E A Posteriori Error Estimation

	IV Numerical Results
	A Finite Difference Results
	B Accuracy of FDM
	C Accuracy of the RBM
	D Runtimes and Computational Speed-ups

	V Conclusions
	 Acknowledgments

