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Abstract: The Agriculture sector is the main stay of the Kenyan economic development contributing over 70% of the Gross 

Domestic Product (GDP). The sector is faced with numerous challenges leading to frequent and recurrent food shortages. 

Declining maize grain yield is one among the major challenges that call for urgent interventions to address the looming food 

crisis in the country. Maize play a big role in the Kenyan food security and in most case lack of the same is taken to mean food 

insecurity. It is due the importance attached to the crop that a Long Term Agricultural Experiments (LTAE) was set up 

specifically to research on the Maize grain yield. Many paper published on the LTAE in the country are only single factors 

analysis and lack the application of Response Surface Methodology (RSM) approaches in solving challenges facing the low 

and declining maize grain yield ( 1y ), total microbe population ( 2y ) a crucial component of Soil Organic Matter (SOM) and 

their optimization. The focus of this paper therefore is the application of RSM in maize grain yield and total microbial 

population optimization. Specifically, the paper determined the most significant factors for maize grain yield and total 

microbial population (bacteria, fungi, actinomycetes, rhizobia), (screening phase of the paper), constructed of an efficient and 

appropriate experimental design for evaluating the optimal settings of maize yield and total microbial population count and 

determined univariate optimal settings for maize grain yield and total microbial population. The primary data was summarized 

from LTAE in National Agricultural Research Laboratories (NARL) in Kabete under the Kenya Agriculture and Livestock 

Research Organization (KALRO) and secondary data imputed for experimental points falling outside the set field experimental 

design points. Two treatment factors were identified as the most significant treatment factors (Farm Yard Manure (FYM) and 

Nitrogen and Phosphorus (NP)) at their low levels and Circumscribed Central Composite Design (CCCD) with two star points 

as the most efficient design. CCCD passed most optimal criteria of DAET. Univariately, optimal setting for maize grain yield 

was realized at 3.8x10
3 

kg/ha and that of the total microbial population at 3.6x10
6
 count. The study confirmed that it was 

possible to optimize the input treatment factor that lead to the optimization of both maize grain yield and maintaining maximal 

total microbial population count at its optimal levels. 

Keywords: Response Surface Methodology, Long Term Agricultural Experiments, Univariate Optimization,  

Circumscribed Central Composite Design 
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1. Introduction 

Agricultural experiments are key undertaking in the 

development of most countries. Over the years the growth of 

scientific agricultural experiments has transformed the 

agricultural sector, [17]. In agricultural practices, 

experimentation occupies a crucial undertaking in the 

improvement of farming practices, [24]. The development of 

various forms of scientific experiments on crop improvement 

has led to considerable advancement in finding the optimal 

agricultural conditions for crop production and the same 

applies to maize production. Seeking the optimal input and 

output setting for maize grain yield and total microbial 

population count is a critical experimental undertaking that 

solves the food insecurity and hence the decreasing incomes 

to small scale farmers. Such experimental agenda, give 

experimenter adequate range of treatment factors (fertilizer, 

seed among others) to balance for optimum response (yield) 

in both maize grain yield and total microbes. This has also 

been motivated by the need to produce more food to feed the 

increasing world population and also to strike a balance 

between producing more food and the food safety concept, 

[8]. Agriculture sector is key in Kenyan Economy, [13]. 

Long Term Agricultural Experiments (LTAE) is 

experiments developed to run for a long time and are mainly 

used to monitor faming systems and soil fertility loss over 

time. 

1.1. Why Response Surface Methodology (RSM) 

The increased demand for robust experimental designs 

across various scientific disciplines has resulted to RSM 

receiving considerable attention. RSM is concerned with the 

modeling of one or more response variables using several 

explanatory variables. RSM is an important concept in the 

design of experiments as it has continued to provide solution 

in many fields including agriculture. The initial concept on 

RSM was introduced by Box and Wilson in 1951, [1]. The 

number of experimental problems that can be solved using 

RSM has tremendously increased overtime. 

1.2. RSM in Agricultural Experiments 

Agricultural field experimentation has evolved over time 

employing different experimental concepts in solving the 

challenging aspects. Documented available studies in LTAE 

have studied single treatment factor at a time which could be 

misleading in the long run, [23]. The properties of RSM offer 

a feasible near solution to such due to its robustness and 

approach. This paper utilizes the RSM advancements made in 

industrial experiments and in the process optimization to 

solve challenges in agricultural experimentation and more 

specifically in LTAE in seeking feasible solutions in soil 

fertility management options for the small-scale farmers in 

Kenya who depend on maize crop for their livelihood. 

 

1.3. Optimization Process 

In statistics, optimization is the process of making a design 

as functional and effective as possible. The search for 

optimal settings in crop (especially in maize grain yield) 

production naturally presents the need for more than one 

treatment factor to be optimized (minimized/maximized). 

Agricultural experiments like any other multi-objective 

(more than one optimization goal) optimal seeking 

experiments and systems is expected to balance several 

production factors (inputs) for benefits (outputs) to ensure 

that food safety for the future generation is assured and save, 

[8]. 

1.4. Challenges Facing Maize Production in Kenya 

The main challenge associated with the declining maize 

grain yields and total microbial population count (measured 

using Soil Organic Matter (SOM)) has been linked to the 

declining soil fertility. Soil degradation is a widespread 

problem. Resource poor, subsistence farming and low-inputs 

agricultural practices are among the major factors that push 

further the soil degradation, [5]. These have led to; low 

productivity, low income, rural-urban migration, household 

and national food insecurity, [7]. 

1.5. The Problem 

Continuous crop production in the various agricultural 

LTAE including maize experiments trials has pointed out the 

decline in essential soil nutrients either through erosion 

and/or through nutrient loss by crop uptake being the main 

cause. These has resulted to progressive low maize grain 

yields, low levels of the optimal total microbial population 

count and high production costs for sustained production of 

the crop. LTAE in National Agriculture Research Laboratory 

(NARL) on soil fertility maintenance concluded that a set of 

critical treatment factors existed below which it became 

extremely difficult to maintain maize and beans yields, [10]. 

To address these changes therefore, different scientific, 

agronomic and statistical modeling are of paramount value 

for responding to this noble recommendations to avert food 

and nutrition insecurity in the country. 

1.6. Scope 

The paper considered two response variables, maize grain 

yield (y1) and the total microbial population count (y2). The 

paper presents an analysis of LTAE in KALRO and used 

sample years (based on data availability and data normalcy) 

data for building optimal models for maize yield and total 

population count. Maize grain yield (y1) was measured and 

reported in kg/ha. The total microbial population (y2) was 

used as an indicator and measure of soil fertility extracted as 

sum of the total common microbes that included bacteria, 

fungi, actinomycetes and rhizobia. Optimalities for both 

treatment factors and response variables y1 and y2 were 

determined. 
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1.7. A Review of Soil Fertility Studies 

Soil fertility management agricultural experiments have 

been undertaken by both the developed and the developing 

counties with the aim of understanding the effects of soil 

fertility on crop yields. In East Africa such initiatives started 

back in 1930's to address issues of soil fertility through the 

combination of vegetative fallows and animal manure [34] 

(Kibunja, 2007). Most of the studies point out to a one 

dimensional soil fertility maintainance and less use of robust 

statistical analysis and RSM approaches. 

1.8. Screening Experiments 

Screening designs are normally performed at the beginning 

of an investigation when the experimenter intends to 

characterize a process. In this case, characterizing translated 

to determining the main treatment factors and investigating 

the changes of the response by varying each factor [51] 

(Montgomery, 2009). This identification of the critical 

process treatment factors can be very useful for later 

optimization processes because only a subset of the treatment 

factors have to be considered. Factor screening also play a 

big role in large experiments with many treatment factors to 

optimize or consider. 

An experiment can have a large number of factors but 

usually only a handful of the factors are important and 

significant. A screening experiment employs a design of 

economical run size to identify the most important treatment 

factors [13] (Cheng & Wu, 2001). Such experiments are of 

1
st
-order design fractional factorial designs or Plackett-

Burman designs with intensive study of the response surface, 

typically with fewer factors and over a smaller region. 2
n-k 

designs are most commonly used for screening stage [24] 

(George, Hunter, & Hunter, 2005). 

Another useful approach in the identification of key factors 

is the use of Pareto plots that graphically represents the most 

important treatment factors in their absolute terms. The plots 

are weights of the different factors in descending order with 

less important factors forming the tail of the plot (lower 

weights). In such plots care is called for as for qualifying a 

factor that has a significant interaction(s) as in no case that a 

factors’ main effect is rejected and its interaction is qualified. 

The goal at this stage (screening) is to find the real 

important inputs (factors) among the many inputs/output 

factors that may be changed in a real experiment. Real-world 

processes are driven by only a few factors, the others being 

relatively unimportant. With screening designs, responses are 

taken only for a small fraction of the total possible 

combinations to reduce the number of runs and hence cost 

[71] (Wass, 2010). 

Specialized designs require screening when a number of 

factors are too large for even a highly fractionated design 

[31] (Kelton, 1999). Various screening analyses can be 

utilized with the most conventional method based on main 

effects estimation or the Analysis of Variance (ANOVA). A 

factor is identified as important if its main effects are 

significant, [2]. 

1.9. Constructing Robust and Efficient Experiments 

Designs 

Robust Designs of Experiments (DoE) have been 

constructed to guide the development of various modern 

experiments. These designs have an extensive statistical 

element incorporated making them extensively reliable 

compared to the earlier methods. With the enhanced 

procedures, DoE have attracted many diverse applications in 

research work. Most of the initial DoE involved varying of 

one factor only at a time which presented considerable 

challenges. Orthogonality property in DoE was later 

introduced by Taguchi in early 1950's, [26]. However, it was 

until 1950 that a break through study was carried out by Cox 

and Cochran that have since been the corner stone for DoE 

development and advancement, [3]. Despite the above earlier 

studies that optimized single factors independently, the 

current paper has extended the concept and optimized two 

factors simultaneously. 

1.10. Response Surface Methodology (RSM) 

RSM is a collection of statistical and mathematical 

techniques that are useful for developing, improving and 

optimizing experimental and industrial processes. RSM has 

the ability to produce an approximate function even with a 

smaller amount of data, [25]. The approach is also easy to use 

and apply even with minimal knowledge of the underlying 

process. 

In real-world RSM application problems, it is quite 

common that several responses are of interest, [16]. In RSM 

setting, the experimenter attempts to find the optimal setting 

for the input variables that maximizes (or minimizes) the 

response, [21]. 

RSM methodology was introduced by Box and Wilson in 

1951, [1] by suggesting the adoption and use of the 1
st
-degree 

polynomial in the estimation of response variable. For typical 

RSM, [21], data from experimental design is used to build a 

model for approximating the relationship between the outputs 

(yi) and inputs (xi) variables, upon which the optimization is 

undertaken, [19]. In most cases the univariate optimization 

has been used in which case only one response variable is 

optimized. 

1.11. Response Surface Methodology in Agricultural 

Experiments 

Mead and Pike in 1975, [18] study was the first to review 

the role of RSM in agriculture, however, the study ended up 

recommending the use of non-linear model to address and 

accommodate biological data. More insights of RSM in 

agriculture were presented by Edmondson in 1991, [4], in the 

study that gave crucial findings of RSM in greenhouse 

experiments, [17]. The study further, presented valuable 

knowledge on the use of RSM within the agricultural 

research and experiments as opposed to an industrial setting. 
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2. Method 

2.1. Screening Experiment 

This formed an initial step that involved analysis of all the 

six (6) treatment factors (Control, R, FYM1, FYM2, N1P1 

and N2P2) that were distributed into 4 blocks (Block I, II, III 

and IV) (Annex I). This enabled screening of the most 

important treatment factors to form inputs for a robust 

experimental stage and experimentation purpose. 

The screening phase analysis was based on 1
st
 - order 

regression model (equation 1) followed by a more intensive 

study of the response surface with a fewer treatment factors 

and over a smaller region based on 2
nd

 -order design (for 

testing the only significant interaction factors). 

0 1 2 12 *y FYM NP FYM NPβ β β β ε= + + + +          (1) 

2.2. Design of Experiments (DoE) for the Study 

DoE was used to find out the cause-and-effect relationship 

between input (FYM and the mineral fertilizers) and output 

(maize grain yield and total microbial population). 

Several treatment factors that affected simultaneously the 

maize grain yield and total microbial population were given 

more weight especially the main effects (isolated factor) and 

the interaction effects. The simplest design tested was 

represented by a 2
2
 factorial designs. Two levels of each 

treatment factor was denoted as "low" and "high" symbolic 

presented as "-" at low level and as "+" at high level. For 2
2
 

yielded 4 runs for full factorial at their main effect was 

represented in Figure 1. 

 

Figure 1. A 22 Factorial Design Layout. 

The general model for full factorial that represented Figure 1 was presented 

as (2) and a general model (3). 

0 1 2 12 *y FYM NP FYM NPβ β β β ε= + + + +            (2) 

and 

2 2
0 1 2 11 22 12 *y FYM NP FYM NP FYM NPβ β β β β β ε= + + + + + +  (3) 

To improve on the above design and arrive at a precise 

result the study applied a Central Composite Design (CCD) 

with an embedded factorial design with centre point and an 

augmented “star points” for curvatures estimation. 

Choosing a suitable experimental design was an important 

step in investigating factors that influenced the response 

variables (maize grain yield (y1) and total microbial population 

(y2)). The paper used optimal criteria to evaluate the three 

CCD designs (2
2
 - factorial, CCD and the CCCD) and the 

design with a combination of best optimal criteria was chosen. 

D-, A-, E-, T-Optimalities (DAET) was applied in this step. 

2.3. Optimal Settings for Maize Grain Yield and Total 

Microbial Population Count 

Optimization was achieved by undertaking the following 

steps:- 

1. Screening that involved the determination of factors that 

influence the outcome variables; 

2. Improvement of the process that involved approaches in 

search of optimum by repeated change of input factor(s) 

settings and 

3. Determining the optimum of the input factors and the 

optimal settings of response factors (maize yield and 

total microbial population) settings. 

The surface is represented by the response surface 

equation, 

1 2(x , x )fη =                          (4) 

In the search of optimal region, the following steps were 

undertaken; 

Step I: Finding a suitable approximation for y=f(x) using 

Least Square Method (LSM) in a low-order polynomial; 

Step II: Moving towards the region of optimum 

(climbing/descending the hill) and 

Step III: When curvature was found, locating a new 

approximation for y=f(x) (generally a higher order 

polynomial); 

Step IV: Performing the response surface analysis proper 

and 

Step V: Optimization of the process for y1 and y2. 

For screening and for steepest ascent, the 1
st
-order model 

was used for each of the response variables (y1 and y2) 

independently. Equation (5) represents maize while (6) 

represents total microbes; 

1 0

1

k

i i

i

y xβ β ε
=

= + +∑                            (5) 

and 

2 0

1

k

i i

i

y xβ β ε
=

= + +∑                            (6) 

The 2nd – order was further estimated using the equation 

(7). 

0

1

k k

i i ij i j

i i j

y x x xβ β β ε
= <

= + + +∑ ∑ ∑            (7) 
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2.4. Optimization in Case of Single (Y1 and Y2) Response 

Experiment 

This was achieved using the following methods; 

1. Graphically (through contours in case of 2 factors) and 

2. Analytically (for validating the method 1). 

3. Results 

3.1. Significant Treatment Factors for the Maize Grain 

Yield (Y1) 

From the regression analysis three factors levels 

significantly explained the maize grain yield N1P1+FYM1 (x1), 

NIL and NIL+R and FYM1 (in the intercept) all with p-

value<0.001, R
2
=96.4% and adjusted R

2
 = 94.6%. However, 

treatments with NIL (controls) had a negative (-ve) influence 

on the maize grain yield (Annex II). The treatments were also 

significant (p-value<0.001) while that of blocks were not 

statistically significant. The intercepts was large enough to be 

ignored and therefore it was retained for modeling the maize 

grain yield. The blocks effects were not significant which was 

due to their insignificance from the initial descriptive plots. 

This was an encouraging result as blocks were only intended 

for local control and further random error. The largest positive 

effects on the maize grain yields were realized with 

N1P1+FYM1, N1P1+FYM1+R and FYM1+R treatments while 

the greatest negative effects were from NIL, NIL+R 

treatments. This is a clear indication that the combination of 

chemical fertilizers and the FYM had better yields for maize. 

Further, the study evaluated the model adequacies which 

were met. 

3.2. Significant Factors for Total Microbial Population 

Count (y2) 

The 1
st
-order model for the total microbial population 

count did not reflect significant (p>0.05). This led to the 

undertaking of a full model, normally proposed in such cases 

to get the significance in higher levels models (Annex III). 

Only interaction between, NIL: Block-II and FYM1: R: 

Block-II turned significant in the full model. This indicated 

that their main factors need to be considered in the 

optimization stage as primary treatment factors. This implies 

that NIL (control) and FYM1+R were important. R-square 

improved from 24% to 69% from the reduced model to the 

full model (2
nd

 – order). 

3.3. Efficient and Appropriate Experimental Design for 

Optimal Setting for Maize Yield and Total Microbial 

Population 

Efficient design for the two responses variables (maize and 

total microbes) that lead to the optimal region step by step is 

proposed. 

The baseline (centre point - (0, 0)) was taken as the usual 

farmers practice (status quo) FYM1 and N1P1 and also the 

same factors that were statistically significant in the prediction 

of the two response factors. To represent the same 

mathematically, the study used coded values to link the two 

(coded and natural values). The responses were computed 

from the average of the different levels of the factor 

treatments. To measure the model disturbances, crop residues 

were added in the design as they were likely to affect the maize 

yields and the subsequent treatment levels. The estimated 

responses were arrived at by averaging yields and microbial 

population count from the different factor levels using 

statistical intra and extra-polation procedures. The computed 

values were later compared with the model estimated values to 

assess model fit and to map the next design points. 

 

Figure 2. Design 1 Indicating the Link between Coded and Natural Values. 

Using figure 1, the design points and model in Table 1 and 

2 were generated. 

Table 1. Design I Layout for the Treatment Factors and the Corresponding to the Imputed Values for Responses. 

Experiment FYM NP fym np maize yield Total Microbes Model 

Current Point 95 86.4 0 0 3,259.0 3,252,158.5 1 

1 50 66.4 -1 -1 3,239.0 3,095,105.0 1 

2 50 106.4 -1 1 3,264.0 3,023,695.0 1 

3 140 66.4 1 -1 3,275.0 3,480,621.0 1 

4 140 106.4 1 -1 3,300.0 3,409,212.0 1 

Table 2. Design 1 Model for Maize Yield (y1). 

Parameter Estimate se t-value p-Value 

Intercept 3269.5 0 5.5 <0.001 

fym 18 0 2.7 <0.001 

np 12.5 0 1.91 0.001 

fyp:np 0 0 0.02 0.988 
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With the corresponding model given by; 

3
1

ˆ 3.3 10 18 12.5 0 :y x fym np fym np= + + +         (8) 

For the total microbial population count the model became 

6 5 3
2

ˆ 3.3 10 1.9 10 3.6 10 0.25 :y x x fym x np fym np= + − +      (9) 

Giving; 

Table 3. Design 1 Contour Plots for Total Microbial Population. 

Parameter Estimate se t-value p-Value 

Intercept 3252158 0.17 18776345 <0.001 

fym 192758.3 0.19 995399.3 <0.001 

np -35704.8 0.19 -184379 <0.001 

fyp:np 0.25 0.11 2.24 0.2677 

The interaction between fym and np (fym:np) was very 

small relative to the main effects coefficients (large values) 

and it is also not significant; dropping this, the new model for 

microbial population as; 

6 5 3
2

ˆ 3.3 10 1.9 10 3.6 10y x x fym x np= + −             (10) 

For the steepest ascent, the two equations, indicates that 

moving from low levels of FYM1 to higher levels of FYM1 

(in coded values), the maize yield increases by 18 kg/ha and 

moving from low level for N1P1 to the higher levels N1P1+R 

the maize yield increases by 12.5kg/Ha. Similarly, moving 

from low levels of FYM1 to higher levels of FYM1, the 

microbial population increases by 1.9x10
5
 and moving from 

low level for N1P1 to the higher levels of N1P1 the microbial 

population count decreases by 3.6x10
4
. 

This was expected from the descriptive analysis that 

portrayed that the addition of artificial fertilizers had 

decreasing effects on the microbial population count. This 

also indicated that maize grain yields registered improved 

performances when the both treatments are at their high 

factor levels. This assertion is further portrayed in the 

contour plots for the two response variables 

 

Figure 3. Design 1 Contour Plots for Maize Yield and Total Microbial 

Population. 

The 3 designs criteria proposed section 3, when applied 

gave D-, E- and A- optimality values as in Table 4. With 

these results the study concluded that a Circumscribed 

Central Composite Design (CCCD) design was the most 

appropriate. Using the CCCD as the efficient design for the 

maize grain yield and total microbial population count with 

two star points the response factors are generated 

Table 4. D. A. E. T for the 3 Designs. 

Optimality Factorial FCD CCCD Criterion 

D 80 182.25 442.4 Larger the better 

A 0.7 0.71 0.4 smaller the better 

E 0.25 0.22 0.17 smaller the better 

T 7.5 9.5 7.7 smaller the better 

3.4. Estimating the Response (Outcome) Variables from the 

Best Design 

Having established the appropriate best design for the 

experiment, the results reported from the main experiment 

were used to estimate the maize grain yield and total 

microbial population count using both extra and intra-

polation approaches at various treatment factor levels outside 

the LTEA formulation. This was deemed necessary as 

efficient design called for extra design points not within the 

LTEA. For instance, at center point (0, 0) the maize yields 

and total microbial population were calculated using simple 

average. For other design points, we used the extrapolation 

and simulation formula model that gave. 

Table 5. Estimation of Response Values outside the normal LTAE design 

points. 

Experimental Point Maize Yield (y1) Microbial Population (y2) 

0,0 (3202+3226)/2 (4126373+2063837)/2 

-1,-1 Extrapolation1 Extrapolation2 

-1+1 Extrapolation3 Extrapolation4 

+1,+1 Extrapolation5 Extrapolation6 

0,+1.41 Extrapolation7 Extrapolation8 

-1.41,0 Extrapolation9 Extrapolation10 

+1.41,1 Extrapolation11 Extrapolation12 

0,-1.41 Extrapolation13 Extrapolation14 

The extrapolation formulas were used in estimating the 

response values outside the experiment and the resulting 

output. The resultant data was used in the next testing 

determining the optimal inputs that gave the optimal outputs 

value. The extrapolation values of the response values were 

determined using equation (11). 

2
1 2 1

2 1

(y y )
x x

y
x x

−
+ −

−
                                   (11) 

3.5. Determining the Optimal Settings for Maize Grain 

Yield and Total Microbial Population Count 

The optimization for this section was derived for maize 

yield and total microbial population count response variable 

independently using results from the Table 6. 
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Table 6. Estimated Data for CCCD with star points. 

partten fym np yield microbial 

+- 1 1 3264 3095105 

-+ -1 1 2160.11 2433104 

00 0 0 3264 3095105 

-- -1 -1 2113.17 2003824 

A0 1.41 0 4211.79 3470620 

00 0 0 3264 3095105 

++ 1 1 4414.83 3689516 

0A 0 1.41 4744.46 4148661 

0a 0 1.41 3018.81 2352240 

a0 -1.41 0 2269.23 2204914 

The real values are for farm yard =120.65kg/ha equivalent 

to 13.3 tons/ha of fym. This should contain an estimated 

64.34kg N and 32.17 kg P at the optimal region. For np the 

real values are 11.6 kg/ha equivalent to almost 1.5 bags/ha. 

The optimal values for fym and np are 120.65kg/ha and 11.6 

kg/ha that yields to the maximal yield of 3.80x10
3
. This gave 

the contour and response surface plots in Figures 4-8. 

 

Figure 4. Contours at the Optimal Region for Maize Yield (y1). 

 

Figure 5. Response Surface Plot for Maize Yield (y1). 

 

Figure 6. Contours and Response Surface for model total microbial 

population. 

The 2
nd

 model fitted the data well and were used for 

searching the path of steepest ascent. 

 
Figure 7. Steepest Ascent for Total Microbial population (y2). 

 

Figure 8. Response Surface plot for Microbial Population (y2). 



207 Wambua Alex Mwaniki et al.:  Application of Response Surface Methodology for Determining Optimal Factors in Maximization of   

Maize Grain Yield and Total Microbial Count in Long Term Agricultural Experiment, Kenya 

Solving this gives coded values, the real values are for 

farm yard =92.75kg/ha equivalent to 10.2 tons/ha. This will 

contain an estimated 76.82 kg N and 15.93 kg P at the 

optimal region. For np the real values are 12.4 kg/ha 

equivalent to almost bags 5.4 kg/ha of N and 7.00 kg/ha of P. 

Under these settings the optimal microbial population was 

estimated at 3.6x10
6
. 

Table 7 below gives a summary of the univariate 

optimization achieved that will led to the optimal levels of 

the maize grain yield and total microbes population count. 

Table 7. Summary of Univariate Optimalities, y1 and y2. 

fym np optimal yield optimal microbial population 

120.65kg/ha 64.34 kg/ha 3.8 103 - 

92.75 kg/ha 12.5 kg/ha - 3.6x106 

 

4. Discussions 

The largest positive effects on the maize yields were 

realized with N1P1+FYM1, N1P1+FYM1+R and FYM1+R 

treatments while the greatest negative effects were from NIL, 

NIL+R treatments. This is a clear indication that combination 

of chemical fertilizers and the FYM produces better yields 

for maize. These results are in consistent with earlier studies 

in LTEA and in Embu, Kenya that concluded that use of the 

inorganic fertilizers had higher response to high yields when 

supplemented with the FYM that retained the SOM an able 

condition of multiplication of the microbe. 

From the two 1
st
-order models selection a parsimonious set 

of treatment factors were identified for the subsequent phase 

of experimental design for optimizing both the responses. 

Considering the significant factors and impact of the factors 

and through informed consultation with the LTEA experts on 

the commonly used practices by small-scale farmer in the 

Country and also due to its significance size, the FYM1+ 

N1P1 treatment factor was identified for optimizing the two 

responses (Maize yield and the total microbial population 

count). These include combination of the FYM (organic-

manure application of 5 ton/Ha “boma” manure (about 75 kg 

N and 20 kg P)) and the use N1P1 (chemical fertilizers – N1 

60 kg N/Ha as Calcium Ammonium Nitrate (CAN), P1-26.4 

kg/ha P as Triple Superphosphate (TSP)). The current 

practice for the treatment factors were taken as the baseline 

(center points, (0,0)) during the design of the experiments 

simulation and extrapolation procedure. The significant 

treatment factors FYM and NP selected were simulated to 

assess the possible levels for MOO maize yield and the total 

microbial population count. 

5. Conclusions 

It was evident that the maize yields from the LTEA were 

experiencing yields decline over years despite the continuous 

soil management option practices. The maize yields had 

declined to lows of about 2,100kg/ha in some treatments/soil 

management options. This calls for an integrated reversal 

approach in the retention of soil fertility. These points to a 

possible conclusion that the current operating soil fertility 

options are not optimal for the future soil fertility retention 

and for sustained maize yields. 

Two treatment factors were isolated during the screening 

phase as the most significant and important treatment factors 

from a possible range of input and controllable factors. These 

were farm yard manure (FYM1) and chemical fertilizers at 

level N1P1 at their lower levels. The two treatment factors 

significantly explained the maize yield and total microbial 

population. These two treatment factors were important in for 

ensuring the optimal maize yields while retaining the 

required threshold for total microbial population. 

The study established that using the CCCD within the 

CCD with two star experimental points provided the best 

efficient and appropriate design for the MRSM and MOO in 

maize yield and total microbial population count. 

The univariate optimal of maize yield and total microbial 

population count where higher compared to the multi-objective 

optimal that presented lower levels of both yield and microbial 

population. This is a confirmation that optimization of a single 

variable at a time can provide misleading conclusions and 

hence multi-response optimization offers the best solutions in 

cases were more than one factors of interest to the 

experimenter/Decision Maker (DM) are considered. 

Appendix 

Appendix I: Treatments Factors 
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Appendix II: Model 1 for Maize Yield (y1) 

 

Appendix III: Model for Treatment Factors for Microbial Population (y2) 

 

Appendix IV: Full Model 2 Treatment Factors for Microbial Population (y2) 
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