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Abstract
Essential and continuous spectrum of symmetric difference equations have been inves-

tigated. It has been shown that the deficiency indices and the existence of these com-

ponents of the spectrum are determined by the growth conditions of the coefficients.

In particular, the deficiency indices are superimposition of those clusters determined

by the coefficient growth. Finally, we have proved the neccessary and sufficient condi-

tions for the existence of essential spectrum of selfadjoint subspace extensions using

subspace theory and asymtotic summation.
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1 INTRODUCTION

In this paper, we consider 2𝑛th order 𝐽 -symmetric difference equation of the form

𝜏𝑦̂(𝑡) = 𝑤−1(𝑡)

{
𝑛∑
𝑘=0

(−1)𝑘Δ𝑘[𝑝𝑘(𝑡)Δ𝑘𝑦̂(𝑡 − 𝑘)] (1.1)

− 𝑖
𝑛∑
𝑗=1

(−1)𝑗
[
Δ𝑗−1(𝑞𝑗(𝑡)Δ𝑗 𝑦̂(𝑡 − 𝑗)) + (Δ𝑗(𝑞𝑗(𝑡)Δ𝑗−1𝑦̂(𝑡 − 𝑗 + 1))

]}
= 𝑧𝑦̂(𝑡)

defined on a weighted Hilbert space 𝓁2
𝑤
(ℕ) with𝑤(𝑡) > 0 as the weight function, 𝑡 ∈ ℕ. Here, we shall assume throughout unless

otherwise stated that 𝑝𝑛(𝑡) ≠ 0, 𝑝𝑘 + 𝑞𝑘 ≠ 0 for all 𝑘 = 0, 1,… , 𝑛, the coefficients are twice differentiable and that 𝑝𝑘(𝑡), 𝑞𝑗(𝑡),
𝑘 = 0, 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛 are real valued functions. The second difference of these functions, that is,△2𝑝𝑘(𝑡) and△2𝑞𝑗(𝑡)
exist and tend to zero as 𝑡→ ∞. We will be solving the equation 𝜏𝑦̂(𝑡) = 𝑧𝑦̂(𝑡), where 𝑧 is a spectral parameter. The difference

equation (1.1) is said to be 𝐽 -symmetric on a complex Hilbert space  = 𝓁2
𝑤
(ℕ) since there exists a linear conjugation operator

𝐽 on  such that ⟨𝐽𝑥, 𝐽𝑦⟩ = ⟨𝑦, 𝑥⟩ for all 𝑥, 𝑦 ∈  and the map 𝐿 generated by (1.1) satisfies the relation 𝐷(𝐿) ⊆ 𝐷(𝐽𝐿∗𝐽 )
where 𝐿∗ is the Hilbert adjoint of 𝐿. 𝐽 is a symplectic matrix that will be made clear in Section 2. In consistency with the

notations in [29], △ refers to a forward difference operator, that is, for any mapping 𝑓 , △𝑓 (𝑡) = 𝑓 (𝑡 + 1) − 𝑓 (𝑡). The notations

that will be used in this study are largely standard and follow closely those of [29]. In most cases, the underlying interval will

be taken as 𝐼 = [𝑎,∞) for a large regular end-point 𝑎, 𝑎 > 0. For Hamiltonian systems, Hinton and Shaw’s results [20] as well

as Remlings’s results [25] on self-adjoint extensions will be used to extend the spectral results to the integral interval [0,∞).
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There are a number of papers that have looked into various components of the spectrum of Hamiltonian systems of differential

operators, for example, the papers by Behncke [3], Sun and Shi [32]. Similarly, the author together with others have discussed

the deficiency indices as well as the location of absolutely continous spectrum of both self-adjoint extenstion operators of

differential operators as well as for self adjoint extenstion subspaces for difference equations. For more details see [1,8–12,24].

Therefore, the results of this paper can be considered as a continuation of the investigations carried out in the above mentioned

papers and in particular, as an extension of some of the results in [11,12,24] to the discretised version. Here, we have applied

asymptotic summation to compute the deficiency indices as well as the location of both essential and continuous spectrum.

The computations are explicit and detailed with an example for illustrative purposes. The results have then been extended to

𝓁2
𝑤
(ℤ) using techniques in [28]. In this case, we have given the necessary and sufficient decay and smoothness conditions for

the existence of the essential spectrum of selfadjoint realisations of minimal subspaces generated by (1.1).

A problem usually encountered in the difference systems is that the minimal operator generated by (1.1) may be neither densely

defined nor single valued, its maximal operator may not be well defined and thus the selfadjoint extension operator for minimal

operator cannot be discussed by application of von Neumann theory for densely defined Hermitian operators. This is unlike the

continuous version where symmetric differential equations will generate densely defined minimal differential operators with

single valued maximal operators. A linear operator in 𝓁2
𝑤
(ℕ) is identified with a linear subspace of 𝓁2

𝑤
(ℕ) × 𝓁2

𝑤
(ℕ) via its graph

and a graph of non-densely defined or multivalued operator in 𝓁2
𝑤
(ℕ) is also a linear subspace of 𝓁2

𝑤
(ℕ) × 𝓁2

𝑤
(ℕ) [26,27,31].This,

therefore, requires the theory of Hermitian subspaces where the von Neumann theory has been extended in order to discuss the

selfadjoint extension of the minimal Hermitian subspaces and for more details see [26–28,31] and the references cited therein.

In addition to the problem mentioned above, computation of the zeros of polynomials of degree five or more can be quite

involving and there is no closed form formula for doing this. In order to avoid such a problem, we have employed the techniques in

[16, Section 3.3] which have also been used in [11,12] to approximate the roots of the associated characteristic polynomial which

are partinent ingredients in the analysis of the deficiency indices of the minimal subspace generated by (1.1) and also the essential

and continuous spectrum of the selfadjoint extension subspace of this minimal subspace. We have managed to circumvent the

problem of non-densely defined minimal operators generated by (1.1) by using subspace theory to do our analysis.

The spectral multiplicity has been obtained by application of the theory of 𝑀-matrix as developed by Hinton and Schneider

[18] which is a generalisation of the Weyl–Titchmarsh 𝑚-function and relates the asymptotics of the eigenfunctions of Hamil-

tonian systems to the spectrum of the selfadjoint realisations of the associated minimal subspaces [27,28,30]. Losely translated,

the spectral multiplicity of the continuous spectrum is equal to the number of eigenfunctions that lose their square summability

as Im 𝑧→ 0. The 𝑀-matrix is the Borel transform of the spectral measure and the latter can be recovered from the 𝑀-matrix

[25].

The paper is divided into three sections, namely; 1. Introduction, 2. Subspaces 3. Essential and continuous spectra.

2 SUBSPACES

Discrete Hamiltonian systems originated from the discretisation of continuous Hamiltonian systems and from the discrete pro-

cesses acting in accordance with the Hamiltonian principle such as discrete physical problems and discrete control problems.

Thus like in the differential case, the coefficients will be assumed to be real-valued functions and will be allowed to be unbounded

and satisfy the following conditions:

△2𝑓

𝑓
∈ 𝓁1,

△𝑓

𝑓
∈ 𝓁2, △𝑓 = 𝑜(1),

𝑓 = 𝑝𝑘, 𝑞𝑗 , 𝑘 = 0, 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛, ∀𝑡 ∈ ℕ. (2.1)

Besides, we will assume that

𝑝𝑛(𝑡), 𝑤(𝑡) > 0, 𝑝𝑘(𝑡) + 𝑞𝑘(𝑡) ≠ 0, 𝑘 = 0, 1,… , 𝑛. (2.2)

For simplicity in computations, and actually throughout this paper, we will take 𝑤(𝑡) = 1 for all 𝑡 ∈ ℕ. In order to define the

discrete Hamiltonian system for (1.1), one introduces quasi-difference, see [9,10,29],

𝑥𝑘(𝑡) = Δ𝑘−1𝑦̂(𝑡 − 𝑘), 𝑘 = 1,… , 𝑛,

𝑢𝑛(𝑡) = 𝑦̂[𝑛] = 𝑝𝑛(𝑡)Δ𝑛𝑦̂(𝑡 − 𝑛) − 𝑖𝑞𝑛(𝑡)Δ𝑛−1𝑦̂(𝑡 − (𝑛 − 1)),
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𝑢𝑘(𝑡) = 𝑦̂[2𝑛−𝑘] =
𝑛∑
𝑙=𝑘

(−1)𝑙−𝑘𝑝𝑙(𝑡)Δ𝑙𝑦̂(𝑡 − 𝑙) − 𝑖
𝑛∑

𝑙=𝑘+1
(−1)𝑙−𝑘

{
Δ𝑙−𝑘(𝑞𝑙(𝑡)Δ𝑙−1𝑦̂(𝑡 − 𝑙 + 1))

+ Δ𝑙−𝑘−1(𝑞𝑙(𝑡)Δ𝑙𝑦̂(𝑡 − 𝑙))
}
− 𝑖𝑞𝑘(𝑡)Δ𝑘−1𝑦̂(𝑡 − 𝑘 + 1) 𝑘 = 1,… , 𝑛 − 1. (2.3)

These formulae correspond very closely to the expressions for the quasiderivatives, which were first introduced by Walker

[33]. Now define the vector valued functions 𝑥(𝑡), 𝑢(𝑡) and 𝑦(𝑡) by

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡))𝑡𝑟, 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑛(𝑡))𝑡𝑟, 𝑦(𝑡) = (𝑥(𝑡), 𝑢(𝑡))𝑡𝑟

and the partial shift operator𝑅𝑦(𝑡) by𝑅𝑦(𝑡) = (𝑥(𝑡 + 1), 𝑢(𝑡))𝑡𝑟, where 𝑡𝑟 denotes the vector transpose. Then (1.1) can be written

in its discrete linear Hamiltonian form, see [29],

𝐽 △ 𝑦(𝑡) = [𝑧𝑊 (𝑡) + 𝑃 (𝑡)]𝑅𝑦(𝑡), (2.4)

where 𝑊 (𝑡) and 𝑃 (𝑡) are 2𝑛 × 2𝑛 complex Hermitian matrices, 𝑊 (𝑡) = diag(𝑤(𝑡), 0,… , 0), 𝑥(𝑡), 𝑢(𝑡) ∈ ℂ𝑛, 𝐽 is a canonical

symplectic matrix, that is,

𝐽 =
(

0 −𝐼𝑛
𝐼𝑛 0

)
and 𝑃 (𝑡) =

(
−𝐶(𝑡) 𝐴∗(𝑡)
𝐴(𝑡) 𝐵(𝑡)

)
.

(2.4) can then be rewritten as

Δ
(
𝑥

𝑢

)
(𝑡) =

(
𝐴 𝐵

𝐶 −𝐴∗

)(
𝑥(𝑡 + 1)
𝑢(𝑡)

)
. (2.5)

The nonzero matrix elements of 𝐴, 𝐵 and 𝐶 are given by

𝐴𝑗,𝑗+1 = 1, 𝐴𝑛,𝑛 = 𝑖
𝑞𝑛

𝑝𝑛
, 𝐵𝑛,𝑛 = 𝑝−1𝑛 , 𝐶𝑗,𝑗 = 𝑝𝑗−1, 𝐶𝑗,𝑗+1 = 𝑖𝑞𝑗 , 𝐶𝑗+1,𝑗 = −𝑖𝑞𝑗 .

Here 𝑝0 and 𝑝𝑛−1 should be read as 𝑝0 − 𝑧𝑤 and 𝑝𝑛−1 −
𝑞2
𝑛

𝑝𝑛
, where 𝑧 is the spectral parameter. In most of the remainder, the spec-

tral term 𝑧𝑊 will be absorbed into 𝐶 . (2.4) and (2.5) result into a first order system of (1.1) with a trasfer form 𝑆(𝑡, 𝑧) given by(
𝑥(𝑡 + 1)
𝑢(𝑡 + 1)

)
= 𝑆(𝑡, 𝑧)

(
𝑥(𝑡)
𝑢(𝑡)

)
=
(
𝐸 𝐸𝐵

𝐶𝐸 𝐼𝑛 − 𝐴∗ + 𝐶𝐸𝐵

)(
𝑥(𝑡)
𝑢(𝑡)

)
which is appropriate in determination of the eigenfunctions of the Hamiltonian system (2.4) asymptotically. Here

𝐸 = (𝐼𝑛 − 𝐴)−1.

Now let 𝓁2
𝑤
(𝐼) be a Hilbert space with weight function𝑤 and define this Hilbert space using the vector valued functions 𝑥(𝑡),

𝑢(𝑡) and 𝑦(𝑡) by

𝓁2
𝑤
(𝐼) =

{
𝑦 ∶ 𝑦 = {𝑦(𝑡)}∞

𝑡=0 ⊂ ℂ2𝑛 and

∞∑
𝑡=0

(𝑅𝑦∗)(𝑡)𝑊 (𝑡)(𝑅𝑦)(𝑡) <∞
}
.

Then the scalar product for the vector valued functions of the system is [29]

∞∑
𝑡=0
𝑦1(𝑡 + 1)𝑤(𝑡)𝑦(𝑡 + 1) = ⟨𝑦1, 𝑦⟩𝑤, 𝑦, 𝑦1 ∈ 𝓁2

𝑤
(𝐼).

The system (2.4) will be assumed to satisfy some regularity conditions. There exists 𝑡0 such that for all solutions 𝑦(., 𝑧) of

(2.4) and for all 𝑧 ∈ ℂ ∑
𝑠≥𝑡0

(𝑅𝑦(𝑠, 𝑧))∗𝑊 (𝑡)𝑅𝑦(𝑠, 𝑧) > 0, 𝑠 ≥ 𝑡0, (2.7)

𝐼𝑛 − 𝐴(𝑡) is invertible .
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The assumption that 𝐼𝑛 − 𝐴(𝑡) be invertible is to ensure the existence and uniqueness of the solutions of any initial value problem

for (1.1).

It is well known that if definiteness conditions corresponding to

𝐽𝑦′(𝑡) = (𝑃 (𝑡) + 𝑧𝑊 (𝑡))𝑦(𝑡), 𝑡 ∈ [0,∞),

is satisfied, then the minimal operator generated by this continuous system is densely defined and the maximal operator is well

defined [2,21,22]. In this case the defect index of the minimal operator is equal to the number of linearly independent square

integrable solutions [21,22]. But if this corresponding definiteness condition is not satisfied, the minimal operator may not

be densely defined and the maximal operator may be multivalued [2,21,22]. However, in the case of the discrete systems, the

minimal operator may fail to be densely defined even if the condition (2.7) is satisfied and this is an important difference between

differential and difference equations. Due to these technical difficulties, the spectral properties for difference equations have not

been studied that much compared to differential equations.

Since the minimal operator generated by (1.1) may be neither densely defined nor single valued, its maximal operator may

not be well defined and thus the selfadjoint extension operator for minimal operator cannot be discussed by application of von

Neumann theory for densely defined Hermitian operators. This, therefore, requires the theory of Hermitian subspaces where the

von Neumann theory has been extended in order to discuss the selfadjoint extension of the minimal Hermitian subspaces and

for more details see [26–28,31] and the references cited therein.

Let  be a linear subspace or a linear relation in 𝓁2
𝑤
(𝐼) × 𝓁2

𝑤
(𝐼), where the domain, range and kernel of  are defined by

𝐷() = {𝑦 ∈ 𝓁2
𝑤
(𝐼) ∶ (𝑦, 𝑔) ∈  for some 𝑔 ∈ 𝓁2

𝑤
(𝐼)},

𝑅() = {𝑔 ∈ 𝓁2
𝑤
(𝐼) ∶ (𝑦, 𝑔) ∈  for some 𝑦 ∈ 𝓁2

𝑤
(𝐼)},

𝐾() =
{
𝑦 ∈ 𝓁2

𝑤
(𝐼) ∶ (𝑦, 0) ∈ }

,

and finally define

 − 𝑧𝐼 = {(𝑦, 𝑔 − 𝑧𝑦) ∶ (𝑦, 𝑔) ∈ }

and

∗ =
{
(𝑦, 𝑔) ∈ 𝓁2

𝑤
(𝐼) × 𝓁2

𝑤
(𝐼) ∶ ⟨𝑦, 𝑓⟩ = ⟨𝑔, 𝑥⟩, for all (𝑥, 𝑓 ) ∈ }

so that  ⊂ 𝓁2
𝑤
(𝐼) × 𝓁2

𝑤
(𝐼) is called a Hermitian subspace if  ⊂∗. Now define dim(𝑅( − 𝑧𝐼))⊥ as the defect index of

 and 𝑧. But since 𝑅( − 𝑧𝐼)⊥ = 𝐾(∗ − 𝑧𝐼), the defect indices of  and its closure with respect to the same 𝑧 are equal.

We will denote

def = dim±() = dim±𝑖() = (+,−)

as positive and negative defect indices of .

Now define two semi-scalar product spaces

𝓁(𝐼) =
{
𝑦 ∶ 𝑦 = {𝑦(𝑡)}∞

𝑡=𝑎 ⊂ ℂ2𝑛}
and

2
𝑊
(𝐼) =

{
𝑦 ∈ 𝓁(𝐼) ∶

∑
𝑡∈𝐼
𝑅∗(𝑦)(𝑡)𝑊 (𝑡)𝑅(𝑦)(𝑡) < ∞

}
with the semi-scalar product

⟨𝑦1, 𝑦2⟩ = ∑
𝑡∈𝐼
𝑅∗(𝑦2)(𝑡)𝑊 (𝑡)𝑅(𝑦1)(𝑡).

Then it follows that ‖𝑦‖ = (⟨𝑦, 𝑦⟩) 12 for 𝑦 ∈ 2
𝑊
(𝐼). Since 𝑊 (𝑡) may be singular in 𝐼 , ‖.‖ is semi-norm. One thus defines a

quotient space

𝐿2
𝑊
(𝐼) = 2

𝑊
(𝐼)∕

{
𝑦 ∈ 2

𝑊
(𝐼) ∶ ‖𝑦‖ = 0

}
.
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It is true that 𝐿2
𝑊
(𝐼) is a Hilbert space with an inner product ⟨., .⟩. For a function 𝑦 which is a solution of (1.1) and is summable,

denote by 𝑦̃ the corresponding class in 𝐿2
𝑊
(𝐼) and for any 𝑦̃ ∈ 𝐿2

𝑊
(𝐼) by 𝑦 ∈ 2

𝑊
(𝐼) denote a representative of 𝑦̃. It is evident

that ⟨𝑦1, 𝑦2⟩ = ⟨𝑦1, 𝑦2⟩ for any 𝑦1, 𝑦2 ∈ 𝐿2
𝑊
(𝐼). Now let 𝜋 be a natural quotient map such that

𝜋 ∶ 2
𝑊
(𝐼) → 𝐿2

𝑊
(𝐼), 𝑦 → 𝑦̃.

Then 𝜋 is surjective and not injective in general. One defines the natural difference operator corresponding to (1.1) by

(𝑦)(𝑡) = 𝐽Δ𝑦(𝑡) − 𝑃 (𝑡)𝑅(𝑦)(𝑡). (2.8)

Further, we define

2
𝑊 0(𝐼) =

{
𝑦 ∈ 2

𝑊
(𝐼) ∶ there exists two integers 𝑠, 𝑘 ∈ 𝐼

with 𝑠 ≤ 𝑘 such that 𝑦(𝑡) = 0 for 𝑡 ≤ 𝑠 and 𝑡 ≥ 𝑘 + 1}

and

𝐻̃ =
{
(𝑦̃, 𝑔̃) ∈ 𝐿2

𝑊
(𝐼) × 𝐿2

𝑊
(𝐼) ∶ there exists 𝑦 ∈ 𝑦̃ such that 𝑦(𝑡) = 𝑊 (𝑡)𝑅(𝑔)(𝑡), 𝑡 ∈ 𝐼

}
,

𝐻00 =
{
(𝑦̃, 𝑔̃) ∈ 𝐻̃ ∶ there exists 𝑦 ∈ 𝑦̃ such that 𝑦 ∈ 2

𝑊 0(𝐼) and 𝑦(𝑡) = 𝑊 (𝑡)𝑅(𝑔)(𝑡), 𝑡 ∈ 𝐼
}
.

Then 𝐻̃ and 𝐻00 are both linear subspaces in 𝐿2
𝑊
(𝐼) × 𝐿2

𝑊
(𝐼). 𝐻̃ and 𝐻00 are called maximal and preminimal subspaces

corresponding to , the natural difference operator generated by (1.1), respectively. 𝐻0 = 𝐻00 is the minimal subspace corre-

sponding to  in 𝐿2
𝑊
(𝐼) × 𝐿2

𝑊
(𝐼).

It follows that𝐻00 ⊂ 𝐻̃ ⊂ 𝐻∗
00 and consequently𝐻00 is a Hermitian subspace in𝐿2

𝑊
(𝐼) × 𝐿2

𝑊
(𝐼). It has been proved in [27]

that the adjoint of preminimal subspace is the maximal subspace and thus 𝐻∗
00 = 𝐻

∗
0 = 𝐻̃ .

In order to discuss the selfadjoint extension subspace for 𝐻0, one needs that the system (2.4) satisfies definiteness and some

regularity conditions. These will be stated as follows:

A : There exists a finite subinterval 𝐼1 ⊂ 𝐼 such that for any 𝑧 ∈ ℂ and for any non-trivial solution 𝑦(𝑡) of (1.1) the following

always holds: ∑
𝑡∈𝐼1

𝑅(𝑦)∗(𝑡)𝑊 (𝑡)𝑅(𝑦)(𝑡) > 0.

B : Assume always that 𝐼𝑛 − 𝐴(𝑡) is invertible for all 𝑡 ∈ [0,∞).

We need to point out here that these assumptions have slight variations from those stated in (2.7). The definiteness condition

A together with the regularity condition B now guarantees the existence of a unique solution for (2.4). If 𝑧 ∈ ℂ∖ℝ, G. Ren

and Y. Shi [27] have shown that the dimension of the defect space of 𝐻0 and also of 𝐻00 are equal to the number of linearly

independent square summable solutions of (1.1) or (2.4). Suppose that 𝑛 ≤ 𝑝 ≤ 2𝑛, then 𝐻0 has selfadjoint extension subspace

in 𝐿2
𝑊
(𝐼) × 𝐿2

𝑊
(𝐼) denoted by 𝐻 if and only if there exists two matrices 𝑀𝑝×2𝑛 and 𝑁𝑝×(2𝑝−2𝑛) such that

rank(𝑀,𝑁) = 𝑝, 𝑀𝐽𝑀∗ −𝑁Φ𝑡𝑟𝑁∗ = 0

and

𝐻 =

⎧⎪⎪⎨⎪⎪⎩
(𝑦̃, 𝑔̃) ∈ 𝐻̃ ∶ 𝑀𝑦̃(𝑎) −𝑁

⎛⎜⎜⎜⎜⎝
(𝑦̃, 𝑦1)(∞)
(𝑦̃, 𝑦2)(∞)

⋮
(𝑦̃, 𝑦𝑝)(∞)

⎞⎟⎟⎟⎟⎠
= 0

⎫⎪⎪⎬⎪⎪⎭
. (2.9)

Here, Φ = {𝑦1(𝑎),… , 𝑦𝑝(𝑎)}(2𝑝−2𝑛)×(2𝑝−2𝑛) is an invertible matrix of square summable solutions of 𝜏𝑦̂(𝑡) = 𝑧𝑦̂(𝑡). For more

details see [28, Theorems 5.7 & 5.8] and Section 5 of the same reference in general.
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It has been shown in [27] that def𝐻0 is independent of the half-planes if 𝑧 is nonreal. In that case, 𝐻0 has a selfadjoint

extension subspace 𝐻 defined by (2.9). Moreover, if a closed Hermitian subspace has equal finite defect indices, then all its

selfadjoint extension subspaces have the same essential spectrum [27]. For point spectrum of these subspaces, every isolated

point of the spectrum of selfadjoint subspace is an eigenvalue of the subspace and therefore constitutes the point spectrum. Only

those eigenfunctions that lose their square summability as Im 𝑧 → 0 contribute to absolutely continuous spectrum.

A relationship between the spectral results of selfadjoint subspace extension to that of the corresponding selfadjoint extension

operator if the minimal and maximal operators generated by (1.1) were densely defined and single-valued respectively is given

here below and for more details see [28] .

Theorem 2.1. If 𝐻 is a selfadjoint extension subspace in 𝐿2
𝑊
(𝐼) × 𝐿2

𝑊
(𝐼) and 𝐻𝑠 is the selfadjoint operator defined on the

subspace 𝐻 , then

𝜎𝑝(𝐻) = 𝜎𝑝(𝐻𝑠), 𝜎𝑎𝑐(𝐻) = 𝜎𝑎𝑐(𝐻𝑠), 𝜎𝑒𝑠𝑠(𝐻) = 𝜎𝑒𝑠𝑠(𝐻𝑠).

3 ESSENTIAL AND CONTINUOUS SPECTRA

3.1 The eigenvalues
The aim of this section is the analysis of the essential and absolutely continuous spectrum of the subspace𝐻 , that is, 𝜎𝑒𝑠𝑠(𝐻) and

𝜎𝑎𝑐(𝐻) respectively as well as their spectral multiplicities. For this, we will determine the absolutely continuous spectrum via

the𝑀-function. This in turn requires the asymptotics of the solutions of (1.1). Since it has been shown in [25,32] that essential

and absolutely continuous spectra together with their spectral multiplicities are independent of the boundary conditions and the

left regular endpoints, we will pay little attention to the left regular endpoints. To obtain the asymptotics of the eigenfunctions

of (1.1), rewrite (2.4) or (2.5) in the propagator form (2.6) and hence we determine the eigenvalues of the matrix 𝑆(𝑡, 𝑧). For

this we compute the characteristic polynomial (𝑡, 𝜆, 𝑧) = det(𝑆(𝑡, 𝑧) − 𝜆 ⋅ 𝐼2𝑛) and then this is multiplied by (𝑝𝑛 − 𝑖𝑞𝑛)𝜆−𝑛 to

get

 (𝜆, 𝑧, 𝑡) =
𝑝𝑛 − 𝑖𝑞𝑛
𝜆𝑛

(𝜆, 𝑡, 𝑧)

=
𝑛∑
𝑘=0

𝑝𝑘(1 − 𝜆)𝑘
(
1 − 𝜆−1

)𝑘 + 𝑛∑
𝑗=1
𝑞𝑗(1 − 𝜆)𝑗−1

(
1 − 𝜆−1

)𝑗−1 (
𝑖𝜆 + (𝑖𝜆)−1

)
.

Now a transformation of the form

𝜆 = 𝑠 + 1
𝑠 − 1

(3.2)

leads to 𝑠 = 𝜆+1
𝜆−1 and this kind of transformation maps the interior of the unit circle onto the left hand plane and the unit circle

onto the imaginary axis. With

(1 − 𝜆)
(
1 − 𝜆−1

)
= −4

(
𝑠2 − 1

)−1
and 𝑖

(
𝜆 − 𝜆−1

)
= 4𝑖𝑠

(
𝑠2 − 1

)−1
one gets

(𝑠2 − 1)𝑛 (
𝑠 + 1
𝑠 − 1

, 𝑧

)
=

𝑛∑
𝑘=0

(−1)𝑘𝑝𝑘22𝑘
(
𝑠2 − 1

)𝑛−𝑘 + 𝑛∑
𝑗=1

(−1)𝑗−122𝑗𝑞𝑗
(
𝑠2 − 1

)𝑛−𝑗
𝑖𝑠 − 𝑧

(
𝑠2 − 1

)𝑛
. (3.3)

As in the previous studies, however, one should switch to the Fourier variant 𝑄 of this polynomial, by replacing 𝑠 by 𝑖𝑠. Then

𝑄(𝑠, 𝑧) =
(
𝑠2 + 1

)𝑛  (
𝑖𝑠 + 1
𝑖𝑠 − 1

, 𝑧

)
(3.4)

=
𝑛∑
𝑘=0

𝑝𝑘22𝑘
(
𝑠2 + 1

)𝑛−𝑘 + 𝑛∑
𝑗=1

22𝑗𝑞𝑗
(
𝑠2 + 1

)𝑛−𝑗
𝑠 − 𝑧

(
𝑠2 + 1

)𝑛
.
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𝑄 is a polynomial with real coefficients. Now let 𝑠2 + 1 be 𝑥 and we convert the above polynomial to be a polynomial of 𝑥 and

𝑧 given by the expression

Φ(𝑥, 𝑧) =
𝑛∑
𝑘=0

4𝑘𝑝𝑘𝑥𝑛−𝑘 +
𝑛∑
𝑘=1

4𝑘𝑞𝑘𝑥𝑛−𝑘 − 𝑧𝑥𝑛. (3.5)

In order to solve for the 𝑥-roots of the above polynomial, besides (2.2), we make the following assumptions on the growth of

the coefficients: |||| 𝑝𝑘 + 𝑞𝑘
𝑝𝑘−1 + 𝑞𝑘−1

||||≫ ||||𝑝𝑘+1 + 𝑞𝑘+1𝑝𝑘 + 𝑞𝑘

||||
which implies generally that

∣ 𝑝𝑘−1 + 𝑞𝑘−1 ∣∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣= 𝑜
(
∣ 𝑝𝑘 + 𝑞𝑘 ∣2

)
. (3.6)

Thus using Eastham’s approach [16] and generally applied in the spectral analysis of differential operators with unbounded

coefficients by the author and others [1,11,12], the magnitude of the 𝑥-roots of Φ(𝑥, 𝑧) can be estimated generally by ∣ 𝑥𝑛−𝑘 ∣≈

4
|||| 𝑝𝑘+1+𝑞𝑘+1𝑝𝑘+𝑞𝑘

||||. This means that the 𝑥-roots are of the form

𝑥𝑛−𝑘 ≈ −4
𝑝𝑘+1 + 𝑞𝑘+1
𝑝𝑘 + 𝑞𝑘

+ 𝑜(1). (3.7)

An application of implicit function theorem shows that the correction term to the 𝑥-roots which is denoted by 𝑜(1) in (3.7) is

given by
𝜕Φ(𝑥𝑘,𝑧)
𝜕𝑥

with the leading term computed at the pivotal coefficient, that is, 𝑝𝑘 + 𝑞𝑘 since the application of (3.6) shows

that the other terms of
𝜕Φ(𝑥𝑘,𝑧)
𝜕𝑥

off the pivotal coefficient tend to zero as 𝑡→ ∞. Thus we have the correction term approximated

by

4𝑘(𝑝𝑘 + 𝑞𝑘)
(
−4
𝑝𝑘+1 + 𝑞𝑘+1
𝑝𝑘 + 𝑞𝑘

)𝑛−𝑘−1
.

In approximating the 𝑥𝑛−𝑘-roots of Φ(𝑥, 𝑧) using the techniques of [1,11,12], one writes

Φ(𝑥, 𝑧) = Φ(𝑛−𝑘)0(𝑥, 𝑧) + Φ(𝑛−𝑘)1(𝑥, 𝑧)

where

Φ(𝑛−𝑘)0(𝑥, 𝑧) = (𝑝𝑘 + 𝑞𝑘)𝑥𝑛−𝑘 + 4(𝑝𝑘+1 + 𝑞𝑘+1),

and

Φ(𝑛−𝑘)1(𝑥, 𝑧) = 𝑂

(
4𝑘−1(𝑝𝑘−1 + 𝑞𝑘−1)

(
𝑝𝑘+1 + 𝑞𝑘+1
𝑝𝑘 + 𝑞𝑘

)2
)
.

Theorem 3.1. The zeros of Φ(𝑥, 𝑧) are approximately equal to the zeros of Φ(𝑛−𝑘)0(𝑥, 𝑧) for each 𝑘 = 0, 1,… , 𝑛 − 1.

Proof. The strategy of the proof will follow closely the approaches in [12, Lemmas 3.1–3.3]. Thus by Lemma 3.1 of [12] if
𝑃 (𝛾) is a polynomial in 𝛾 such that the leading coefficient and the constant term have absolute value 1 and the other remaining
coefficients are bounded, then there exists𝐾 > 0 such that𝐾−1 ≤∣ 𝛾 ∣≤ 𝐾 for every root 𝛾 of 𝑃 (𝛾). This can be achieved for the
roots of Φ(𝑛−𝑘)0(𝑥, 𝑧) by appropriate scalling of the coefficients. The roots of Φ(𝑛−𝑘)0(𝑥, 𝑧) are bounded. We need to show that

Φ(𝑛−𝑘)1(𝑥, 𝑧) = 𝑜(1). The leading term in this case is given by 𝑂
(
4𝑘−1(𝑝𝑘−1 + 𝑞𝑘−1)

(
𝑝𝑘+1+𝑞𝑘+1
𝑝𝑘+𝑞𝑘

)2)
. This can be simplified as

4𝑘−1 ∣ 𝑝𝑘−1 + 𝑞𝑘−1 ∣
||||𝑝𝑘+1 + 𝑞𝑘+1𝑝𝑘 + 𝑞𝑘

||||2 = 4𝑘−1 ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣
(
∣ 𝑝𝑘−1 + 𝑞𝑘−1 ∣∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣∣ 𝑝𝑘 + 𝑞𝑘 ∣−2

)
.
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Now application of (3.6) shows that the term within the brackets tends to zero as 𝑡→ ∞ and hence the desired result. Assume
the zero of Φ(𝑛−𝑘)0(𝑥, 𝑧) is 𝑥(𝑛−𝑘)0 and the corresponding root of Φ(𝑥, 𝑧) within the same cluster is 𝑥𝑛−𝑘, then by factorisation
we have

Φ(𝑛−𝑘)0(𝑥, 𝑧) = (𝑥𝑛−𝑘 − 𝑥(𝑛−𝑘)0)Φ̃(𝑛−𝑘)0(𝑥, 𝑧)

where Φ̃(𝑛−𝑘)0(𝑥, 𝑧) is a polynomial with lower degree than that of Φ(𝑛−𝑘)0(𝑥, 𝑧). Thus for some interval, one can show by
application of Banach fixed point theorem that 𝑥𝑛−𝑘 ≈ 𝑥(𝑛−𝑘)0. For more details, see [12, Lemma 3.3]. □

The zeros of Φ(𝑥, 𝑧) are approximately equal to the zeros of Φ0(𝑥, 𝑧) in such a away that if the 𝑥-root of Φ(𝑛−𝑘)0(𝑥, 𝑧) is

real or complex with non-zero imaginary part, then the corresponding 𝑥-root of Φ(𝑥, 𝑧) is also real or complex with non-zero

imaginary part respectively. Thus one gets the 𝑥-roots of Φ(𝑥, 𝑧) such that ∣ 𝑥𝑛 ∣≫∣ 𝑥𝑛−1 ∣≫ ⋯≫∣ 𝑥2 ∣≫∣ 𝑥1 ∣. Therefore, the

𝑠-roots of the polynomial 𝑄(𝑠, 𝑧) can be obtained from the relation 𝑠(𝑛−𝑘)± = (𝑥𝑛−𝑘 − 1)
1
2 .

In consideration of the resultant polynomial Φ(𝑥, 𝑧) and its discriminant 𝜕𝑥Φ(𝑥, 𝑧), one can show that there are only finitely

many spectral values 𝑧 for which Φ(𝑥, 𝑧) has multiple roots, for more details, see [3]. Let 𝜔1 < 𝜔2 < ⋯ < 𝜔𝑚 denote all the real

spectral values 𝑧 leading to multiple roots. Following [3], the analysis will be restricted to small complex neighbourhoods of

𝑧0 ∈ (𝜔𝑗, 𝜔𝑗+1), 𝑗 = 0,… , 𝑚, where 𝜔0 = −∞ and 𝜔𝑚+1 = ∞. For a given 𝑧0 ∈ (𝜔𝑗, 𝜔𝑗+1), one can choose 𝜖 > 0 and 𝑎 > 0
such that Φ(𝑥, 𝑧) = 0 has no multiple or double roots for any

𝑧 ∈ 𝜖(𝑧0) = {𝑧| |𝑧 − 𝑧0| ≤ 𝜖, Im(𝑧) > 0} = ,
and 𝑡 ≥ 0. This is possible because for any 𝑧 ∈  ∩ℝ the roots 𝑥 of Φ(𝑥, 𝑧) depend analytically on the coefficients 𝑝𝑘, 𝑞𝑗 and

the spectral parameter 𝑧. Even though this analysis was done for the polynomial of differential operators, it is true for every

polynomial that has a spectral parameter 𝑧 in built on it.

Remark 3.2. The above analysis leads to a pair of 𝑠-roots with equal magnitude. But this cannot stop one from making some other
assumptions on the growth of the coefficients that lead to even number of 𝑠-roots with equal magnitude. Actually, the phrase
“cluster of eigenvalues of the same magnitude” as used in [11] is applicable here, though by construction of appropriate
polynomials, the cluster can only be of even number of eigenvalues. This conforms with the existing Hamiltonian theory of
difference equations which so far has been developed only for even oder symmetric difference equations. For example, if in the
above we assume that

∣ 𝑝2(𝑘−1) + 𝑞2(𝑘−1) ∣∣ 𝑝2(𝑘+1) + 𝑞2(𝑘+1) ∣= 𝑜
(
∣ 𝑝2𝑘 + 𝑞2𝑘 ∣2

)
,

𝑘 = 1, 2, 3,… , 𝑛 − 1, 𝑞0 = 0 and 𝑝0 = 𝑝0 − 𝑧 and for the odd indexed coefficients, we assume that

(𝑝2𝑘−1 + 𝑞2𝑘−1) = 𝑂((𝑝2(𝑘−1) + 𝑞2(𝑘−1))(𝑝2𝑘 + 𝑞2𝑘))
1
2 , 𝑘 = 1, 2,… , 𝑛 − 1,

then this leads to two 𝑥-roots of Φ(𝑥, 𝑧) of equal magnitude and therefore four 𝑠-roots of equal magnitude. This kind of clustering
can be done depending on the growth of the coefficients and in each case a cluster of an even number of 𝑠-roots with equal
magnitude will be achieved.

3.2 Uniform dichotomy condition
Since the system (2.4) respectively (1.1) are solved by asymptotic summation which is based on the Levinson–Benzaid–Lutz

theorem [8–10,24], the 𝑠-roots need satisfy the 𝑧-uniform dichotomy condition. As a result of that we need the following lemma

which is Lemma 4.6 in [9]

Lemma 3.3. Let

𝑢(𝑡 + 1) = [Λ(𝑡) + 𝑅(𝑡)]𝑢(𝑡), 𝑡 ≥ 𝑡0, Λ(𝑡) = diag(𝜆1(𝑡),… , 𝜆𝑛(𝑡)) (3.8)

be an asymptotically constant difference equation satisfying for 𝑠 = 1,… , 𝑛

𝜆𝑠(𝑡) = 𝜆𝑠0 + 𝜆𝑠1, with 𝜆𝑠0 constant, (3.9)
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𝜆𝑠1(𝑡) → 0 as 𝑡→ ∞, 𝜆𝑠0 distinct, 𝑅(𝑥) ∈ 𝓁1. Moreover assume that 𝜆 =∣ 𝜆𝑠0 ∣≤ 1 − 𝛿, 𝑠 = 1,… , 𝑘 and
|||| 𝜆𝑠0𝜆𝑗0 |||| ≥ 1 + 𝛿 or|||| 𝜆𝑠0𝜆𝑗0 |||| ≤ 1 − 𝛿, 𝛿 > 0 for 𝑗 = 𝑘 + 1,… , 𝑛. Then (3.8) has 𝑘 independent solutions

𝑢𝑙(𝑡) = 𝑂

(
𝑡−1∏
𝑡0

(𝜆(1 + 𝑚(𝜈)))

)
, 0 ≤ 𝑚𝑙 → 0, 𝑙 = 1,… , 𝑘, (3.10)

as 𝑡→ ∞, where 𝑚 is defined as follows. For given 𝑙 ∈ {1,… , 𝑘} define 𝑚𝑙(𝜈) by ∣ 𝜆𝑙(𝜈) ∣= 𝜆(1 + 𝑚𝑙(𝜈)) and let 𝑚(𝜈) =
max𝑚𝑙(𝜈)+.

This lemma implies that the 𝑠-roots of the polynomial 𝑄(𝑠, 𝑧) which are in the form 𝛼 ± 𝑖𝛽 with 𝛽 > 0 will lead to square

summable solutions for 𝑠 = 𝛼 + 𝑖𝛽 and non-square summable solutions for 𝑠 = 𝛼 − 𝑖𝛽 irrespective of the 𝑧-uniform dichotomy

condition. This simplifies the proof of uniform dichotomy condition and hence it suffices to prove the dichotomy condition only

for the real 𝑠-roots. We, therefore, have the following results.

Theorem 3.4. Assume that (2.2) and (3.6) are satisfied, then the 𝑠-roots of the polynomial𝑄(𝑠, 𝑧) satisfy the 𝑧-uniform dichotomy
condition.

Proof. By application of Lemma 3.3 it suffices to prove uniform dichotomy condition only for real 𝑠-roots. This will be considered
in three cases:

(i) Assume that 𝑠𝑗± are real and are from the same cluster, then these roots are not equal since we have restricted our choice of
𝑧 in . The 𝑠-roots have different signs. The uniform dichotomy condition is proved off the real axis. The correction terms

to the 𝑠-roots is determined by
(
𝜕Φ(𝑥,𝑧)
𝜕𝑥

)−1
and leads to non-zero imaginary parts of different signs. Off the real axis, the

moduli of the corresponding two 𝜆-roots will be different with one of them having magnitude greater than one and the other
of magnitude less than one. This is the required uniform dichotomy condition between 𝑠-real roots of the same cluster.

(ii) Assume that 𝑠𝑘 and 𝑠𝑗 are real with 𝑘 ≠ 𝑗 and for simplicity let 𝑘 > 𝑗. The correction terms of 𝑠𝑘 and 𝑠𝑗 are determined by(
𝜕Φ(𝑥𝑘,𝑧)
𝜕𝑥

)−1
and

(
𝜕Φ(𝑥𝑗 ,𝑧)
𝜕𝑥

)−1
respectively. These correction terms are not equal, since

||||𝜕Φ(𝑥𝑘, 𝑧)
𝜕𝑥

||||≫ |||||
𝜕Φ(𝑥𝑗, 𝑧)
𝜕𝑥

||||| .
To see this, note that ||| 𝜕Φ(𝑥𝑘,𝑧)

𝜕𝑥

||| ≈∣ 𝑝𝑘 + 𝑞𝑘 ∣∣ 𝑥𝑘 ∣𝑛−𝑘−1 and
|||| 𝜕Φ(𝑥𝑗 ,𝑧)

𝜕𝑥

|||| ≈∣ 𝑝𝑗 + 𝑞𝑗 ∣∣ 𝑥𝑗 ∣𝑛−𝑗−1. It suffices to show that ∣𝑥𝑗 ∣𝑛−𝑗−1

∣𝑥𝑗 ∣𝑛−𝑗−1

is 𝑜(1) but this is true since this term is equal to ∣ 𝑥𝑗
𝑥𝑘

∣𝑛∣ 𝑥𝑘 ∣𝑘+1∣ 𝑥𝑗 ∣−(𝑗+1) and ∣ 𝑥𝑘 ∣≫∣ 𝑥𝑗 ∣ by assumption that 𝑘 > 𝑗 and
(3.6). This implies that off the real axis, the two 𝑠𝑘 and 𝑠𝑗 will lead to 𝜆-eigenvalues of different magnitudes which again
implies that 𝑧-uniform dichotomy condition is satisfied.

(iii) If 𝑝0 ≈ 𝑧 and the 𝑠𝑛-roots are real, then the 𝑧-uniform dichotomy condition follows at once from [10, Section 4]. □

3.3 Diagonalisations
As explained in Section 3.1 and also in [10, Section 3], we can chose 𝑧 ∈ 𝜖(𝑧0) in such a way that 𝑆(𝑡, 𝑧) in (2.6) has distinct

eigenvalues. Thus by applying results in [10], we can find a transforming matrix 𝐷, which diagonalises the matrix 𝑆(𝑡, 𝑧),
𝐷−1𝑆𝐷 = diag(𝜆1,… , 𝜆2𝑛). Here the eigenvectors that form the columns of the matrix𝐷 in a more generalised case are obtained

by replacing Δ by 𝜆 − 1 and 𝑦̂(𝑡 + 𝑘) by 𝜆𝑘 in (2.3). Therefore, a transformation of the form

𝑣 = 𝐷
(
𝑥

𝑢

)
leads to [10]

𝑣(𝑡 + 1) = (Λ(𝑡) +𝑅(𝑡))𝑣(𝑡) with Λ = diag(𝜆𝑘(𝑡)) and 𝜆𝑘(𝑡) = (𝜆𝑘 + 𝑅𝑘𝑘)(𝑡). (3.11)
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Here 𝑅𝑘(𝑡), arises from the correction terms after the first diagonalisation. Recall that the coefficients were assumed to be twice

differentiable and hence we need two diagonalisations to achieve the LBL-form. In particular, we have 𝑅𝑘𝑘(𝑡) = 0 and from

(2.1) we have

Δ2𝑅𝑘𝑗, (Δ𝑅𝑘𝑗(𝑡))2 ∈ 𝓁1 and 𝑅𝑘𝑗(𝑡) → 0 as 𝑡→ ∞.

Since the eigenvalues of Λ are distinct and since𝑅𝑘𝑗 = 𝑜(1), the matrix Λ +𝑅 can be diagonalised again with a diagonalising

transformation of the form (1 + 𝐵) with 𝐵𝑘𝑘 = 0 and 𝐵𝑘𝑗 = (𝜆𝑗 − 𝜆𝑘)−1(𝑅)𝑘𝑗 [4]. See [10] where it was also applied in the

case of difference equations. Such a diagonalisation can be repeated and leads to a system in Levinson–Benzaid–Lutz form

with 𝑅 ∈ 𝓁1. After the first diagonalisation, the elements of the remainder term are of the form
Δ𝑓𝑘
𝑓𝑘
𝑥
−1

2
𝑛−𝑘 while the second

diagonalisation results into remainder terms of the form
Δ2𝑓𝑘
𝑓𝑘
𝑥−1
𝑛−𝑘. Here, 𝑓𝑘 = 𝑝𝑘, 𝑞𝑘. It should be noted that the 𝜆𝑘(𝑡) may be

taken as the roots of (𝜆, 𝑧, 𝑡), because the final two diagonalisations create at most summable perturbations of the diagonal.

One, therefore, requires decay conditions of the form

Δ𝑓𝑘
𝑓𝑘

𝑥
−1

2
1 ∈ 𝓁2,

Δ2𝑓𝑘
𝑓𝑘

𝑥−11 ∈ 𝓁1, 𝑓𝑘 = 𝑝𝑘, 𝑞𝑘. (3.12)

Thus by application of Levinson–Benzaid–Lutz Theorem [10], the eigenfunctions of 𝜏 for 𝑧 ∈  are of the form

𝑣𝑘(𝑡, 𝑧) = (𝜚𝑘(𝑡, 𝑧) + 𝑟𝑘(𝑡, 𝑧))
𝑡−1∏
𝑙=𝑎
𝜆𝑘(𝑙, 𝑧) with 𝑟𝑘(𝑡, 𝑧) = 𝑜(1). (3.13)

Here 𝜚𝑘(𝑡, 𝑧) is a suitable eigenvector of 𝑆(𝑡, 𝑧) for the eigenvalue 𝜆𝑘(𝑡, 𝑧).

3.4 Essential and continuous spectrum
In this subsection, we will assume that 𝑛−𝑘 refers to a cluster 𝑛 − 𝑘 of 𝑠-roots of equal magnitude. Since the deficiency index

of the minimal subspace is equal to the number of square summable solutions of (1.1) respectively (2.4), we will denote by

def𝑛−𝑘 the contribution to the deficiency index by the solutions corresponding to the eigenvalues of cluster 𝑛 − 𝑘 which are

actually determined by the 𝑥𝑛−𝑘 root of the polynomial Φ(𝑥, 𝑧).

Theorem 3.5. Let 𝐻0 be the minimal subspace generated by (1.1) and assume that (2.1), (2.2), (3.6) and (3.12) are satisfied
with𝑤(𝑡) = 1 for all 𝑡 ∈ ℕ. Moreover, assume that 𝑛−𝑘 are the clusters of 𝑠-roots of equal magnitude which are in pair. Then

(i) def𝐻0 =
∑𝑛−1
𝑘=0 def𝑛−𝑘,

(ii) 𝜎𝑎𝑐(𝐻) = ℝ of spectral multiplicity less or equal to 𝑛.

Proof. The difference equation (1.1) is converted into its first order system using quasi-differences (2.3) [29]. Thus the appro-
priate minimal subspace generated by (1.1) respectively (2.3) can be determined just like in Section 2. In order to determine the
deficiency indices of 𝐻0, we apply asymptotic summation as outlined in Levinson–Benzaid–Lutz theorem. This implies that we
compute the eigenvalues of the matrix 𝑆(𝑡, 𝑧), establish the 𝑧-uniform dichotomy condition, diagonalise the system and finally,
the forms of the eigensolutions. These have been explained in the Sections 3.1–3.3 above and hence we do the analysis based
on the 𝑥𝑛−𝑘 roots of the polynomial Φ(𝑥, 𝑧), 𝑘 = 0, 1,… , 𝑛 − 1, though one can calculate explicitly, the approximate values
of the 𝜆 roots of the matrix 𝑆(𝑡, 𝑧). If 𝑥𝑛−𝑘 is negative, then the associated 𝑠(𝑛−𝑘)±-roots are in complex conjugate pairs with
non-zero imaginary parts. These will lead to 𝜆(𝑛−𝑘)±-roots such that if ∣ 𝜆(𝑛−𝑘)+ ∣> 1 then ∣ 𝜆(𝑛−𝑘)− ∣< 1 therefore resulting into
one non-square summable and one square summable solutions respectively irrespective of the 𝑧-uniforn dichotomy condition.
To see this, we need to show that one of the eigensolutions associated with 𝑠(𝑛−𝑘)±-roots is bounded while the other one is not.
Therefore let 𝑠(𝑛−𝑘)± = 𝛼𝑛−𝑘 ± 𝑖𝛽𝑛−𝑘 where 𝛼𝑛−𝑘, 𝛽𝑛−𝑘 ∈ ℝ, 𝛽𝑛−𝑘 > 0. Using the form of solutions in (3.13), we approximate the
value of ‖𝜈𝑘(𝑡, 𝑧)‖2 as 𝑡→ ∞. In order to evaluate

∏𝑡−1
𝑙=𝑎 ∣ 𝜆𝑘(𝑙, 𝑧) ∣

2, take logarithms and use Euler summation formula to get

ln
𝑡−1∏
𝑙=𝑎

∣ 𝜆𝑘(𝑙, 𝑧) ∣2≈ −2
𝑡−1∑
𝑙=𝑎
𝛽𝑛−𝑘(𝑙, 𝑧).
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Thus one has modulo some constant factor that

‖𝜈𝑘(., 𝑧)‖2 ≈ ∫
∞

𝑎

𝜚𝑘(𝑡, 𝑧) exp
(
−2∫

𝑡

𝑎

𝛽𝑛−𝑘(𝑙, 𝑧)𝑑𝑙
)
𝑑𝑡

where 𝜚𝑘(𝑡, 𝑧) is a suitable eigenvector. This norm is bounded and converges to a unique limit as 𝑡→ ∞ for 𝛽𝑛−𝑘 > 0. The
analysis for −𝛽𝑛−𝑘 is done in a similar way.

Since the number of square summable solutions contribute to the deficiency indices [23,28], an 𝑥𝑛−𝑘-root of this nature
contributes only (1, 1) to the deficiency indices. But if 𝑥𝑛−𝑘 is positive, then the associated 𝑠(𝑛−𝑘)±-roots are real leading to
𝜆(𝑛−𝑘)±-roots with the property ∣ 𝜆(𝑛−𝑘)+ ∣≈ 1 and ∣ 𝜆(𝑛−𝑘)− ∣≈ 1. In this case, the 𝑧-uniform dichotomy condition follows from
Theorem 3.4 and is proved off the real axis. The square summability of the associated eigensolutions will depend on the correction

terms of 𝑥(𝑛−𝑘) respectively 𝑠(𝑛−𝑘)-roots which are of the form
(
𝜕Φ(𝑥,𝑧)
𝜕𝑥

)−1
for 𝑥𝑛−𝑘 and

(
𝜕Φ(𝑥,𝑧)
𝜕𝑥

)−1
2 for 𝑠𝑛−𝑘 both evaluated

at 𝑥𝑛−𝑘. Here, we will concentrate on the correction terms of 𝑠𝑛−𝑘-roots only since it will give more information on whether

the two eigensolutions of the 𝑥𝑛−𝑘-root are square summable or only one of them. Thus in terms of magnitude,
(
𝜕Φ(𝑥,𝑧)
𝜕𝑥

)−1
2 is

aproximately

∣ 𝑝𝑘 + 𝑞𝑘 ∣
𝑛−𝑘−2

2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣
−𝑛+𝑘+1

2 .

If ∣ 𝑝𝑘 + 𝑞𝑘 ∣
𝑛−𝑘−2

2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣
−𝑛+𝑘+1

2 is summable, then all the eigensolutions associated with 𝑠(𝑛−𝑘)±-roots are square
summable and hence the 𝑥𝑛−𝑘-root contributes (2, 2) to the deficiency indices. But if this term is not summable, then the 𝑥𝑛−𝑘
contributes (1, 1) to the deficiency indices. The deficiency indices of the minimal subspace generated by (1.1) is the total sum of
the contributions from the 𝑥𝑛−𝑘 roots 𝑘 = 0, 1, 2,… , 𝑛 − 1.

If 𝑥𝑛−𝑘 is positive and ∣ 𝑝𝑘 + 𝑞𝑘 ∣
𝑛−𝑘−2

2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣
−𝑛+𝑘+1

2 is not summable, one of the eigensolutions will be losing its
square summability as Im 𝑧 → 0+ and such eigensolutions contribute to absolutely continuous spectrum. The number of eigen-
solutions with such behaviour from all the 𝑥𝑛−𝑘-roots equals to the spectral multiplicity of the absolutely continuous spectrum
and this can be determined from the rank of the 𝑀-matrix [25,29].

Here, it suffices to show that Im 𝑀(𝑧) exists non-trivially. Now let 𝐹 (., 𝑧) be a 𝑛 by 2𝑛 system of square summable eigenfunc-
tions which satisfy the 𝑀,𝑁- boundary conditions at 𝑎 and ∞ and define the 𝑀-matrix as given in [25] by

⟨𝐹 (., 𝑧), 𝐹 (., 𝑧′)⟩(𝑧̄ − 𝑧′) =𝑀∗(𝑧) −𝑀(𝑧′)

whose extension to discrete setting is given in [29, Theorem 6.3]. Thus for 𝑧 = 𝑧0 + 𝑖𝜂, 𝑧0 ∈ ℝ, one obtains

Im 𝑀(𝑧) = lim
𝜂→0+

Im 𝑀(𝑧0 + 𝑖𝜂) = lim
𝜂→0+

𝜂⟨𝐹 (., 𝑧0 + 𝑖𝜂), 𝐹 (., 𝑧0 + 𝑖𝜂)⟩.
This is computed for those solutions that lose their square summability as 𝜂 → 0+. In such a case, let such solution be from
the (𝑛 − 𝑗) cluster, then it implies that the 𝑠(𝑛−𝑗)±-roots are real and hence the corresponding 𝜆-roots have absolute value
approximately equal to 1. The square summability is determined by the corresponding correction term given by

∣ 𝑝𝑗 + 𝑞𝑗 ∣
𝑛−𝑗−2

2 ∣ 𝑝𝑗+1 + 𝑞𝑗+1 ∣
−𝑛+𝑗+1

2 .

Again taking Euler logarithmic summation formula as before we get

‖𝜈𝑗(., 𝑧)‖2 ≈ ∫
∞

𝑎

𝜚𝑗(𝑡, 𝑧) exp

{
−1
2
𝜂 ∫

𝑡−1

𝑎

∣ 𝑝𝑗 + 𝑞𝑗 ∣
𝑛−𝑗−2

2 ∣ 𝑝𝑗+1 + 𝑞𝑗+1 ∣
−𝑛+𝑗+1

2 (𝑙, 𝑧)𝑑𝑙

}
𝑑𝑡

where 𝜚𝑗(𝑡, 𝑧) is a suitable eigenvector. Hence lim𝜂→0+ ‖𝜈𝑗(., 𝜂)‖2 exists nontrivially because of (3.6) and consequently Im 𝑀(𝑧)
is non-trivial. The results of [25] can then be applied to extend these results to 𝑎 = 0. Since each positive 𝑥𝑛−𝑘-root can only have
one such eigensolution, the spectral multiplicity of the self adjoint subspace extension cannot be more than 𝑛. The coefficients
are allowed to be unbounded with various signs and therefore 𝜎𝑎𝑐(𝐻) = ℝ of spectral multiplicity less or equal to 𝑛. □

Remark 3.6. The results of Theorem 3.5 can be extended to a cluster of any even number of 𝑠-roots since only half of
those solutions associated with real 𝑠-roots will contribute to the absolutely continuous spectrum and therefore the spectral
multiplicity.
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Generally, to decide that a real number 𝑧 is an eigenvalue of 𝐻 requires that the solution 𝑦̂ in the equation (𝜏 − 𝑧)𝑦̂ = 0
satisfies all the boundary conditions. This is not always easy. Therefore, one can easily make general statements about essential

spectrum of 𝐻 . Suppose that 𝑦̂ is a solution of (𝜏 − 𝑧)𝑦̂ = 0, 𝑧 = 𝑧0 + 𝑖𝜂, 𝑧0, 𝜂 ∈ ℝ, 𝜂 > 0 for small 𝜂 > 0, such that 𝑦̂ loses its

square summability as 𝜂 → 0+, then 𝑧 is in the essential spectrum of 𝐻 . This is the only possible way to determine whether

𝑧 ∈ 𝜎𝑒𝑠𝑠(𝐻) since 𝜏𝑦̂(𝑡) (1.1) is a finite order difference equation and as such 𝑧 cannot be an eigenvalue of infinite multiplicity.

Note that all self-adjoint extension subspaces 𝐻 have the same essential spectrum. We thus have the following result:

Theorem 3.7. Assume all the conditions in Theorem 3.5 are satisfied. Moreover, assume a that some of the 𝑠-roots of (3.4) are
real, then def𝐻0 = (𝑛̃, 𝑛̃), 𝑛̃ > 𝑛 if the correction term ∣ 𝑝𝑘 + 𝑞𝑘 ∣

𝑛−𝑘−2
2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣

−𝑛+𝑘+1
2 of their cluster is summable and

𝜎𝑒𝑠𝑠(𝐻) ≠ ∅.

Proof. Suppose that some 𝑠-roots of the polynomial 𝑄(𝑠, 𝑧) in (3.4) of a particular cluster 𝑛−𝑘 are real, then these 𝑠-roots
will contribute (2, 2) to the deficiency indices if ∣ 𝑝𝑘 + 𝑞𝑘 ∣

𝑛−𝑘−2
2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣

−𝑛+𝑘+1
2 is summable. As a result, an application

of Theorem 3.5 (i) leads to deficiency indices that are more than 𝑛 both in the upper and lower half-planes. Let these deficiency
indices be (𝑛̃, 𝑛̃) where 𝑛̃ > 𝑛. It follows that 𝐻0 has self-adjoint extension subspaces with extra boundary conditions at infinity
defined by (2.9). It remains to show that for any solution 𝑦̂ that solves the equation (𝜏 − 𝑧)𝑦̂ = 0 as 𝜂 → 0+ is not an eigenvalue.
Assume that 𝑧 ∉ 𝜎(𝐻), then 𝑧 is in the resolvent of 𝐻 and also in the resolvent of the minimal subspace 𝐻0 which is an 𝑛-
dimensional restriction of the maximal subspace 𝐻̃ at 0. This leads to the relation

(𝑛̃, 𝑛̃) = def𝐻0 =
(
dim ((

𝐻̃∗ − 𝑧
)
𝑦
)
, dim ((

𝐻̃∗ − 𝑧
)
𝑦
))

= (𝑛, 𝑛)

which is a contradiction. But since 𝑧 is not an eigenvalue of 𝐻 because the solution 𝑦̂ that solves (𝜏 − 𝑧)𝑦̂ = 0 will not satisfy
all the boundary conditions as 𝜂 → 0+, it follows that 𝑧 ∈ 𝜎𝑒𝑠𝑠(𝐻). □

The results in Theorem 3.7 show that the solutions that lose their square summability as 𝜂 → 0+ contributes also to the

essential spectrum. The result can be extended by defining 𝜏𝑦̂ on 𝓁2(ℤ) using decomposition theorem techniques of two point

interface [6,7]. This has also been extended to the discrete setting in [10]. If (1.1) is defined on 𝓁2(ℤ), then the situation is quite

different. In this case the decomposition method studied by Behncke and Hinton [6,7] can be used. The methods of [6,7,28,29]

show that the classical decomposition method can be applied not only in the computation of the deficiency indices but can also

be extended to derive spectral results. In this particular case, we will follow the techniques used in [28] since they are closer to

our workings.

Define (1.1) on 𝓁2(ℤ) and write ℤ = 𝐼1 ∪ 𝐼2 where 𝐼1 = (−∞, 0] and 𝐼2 = [0,∞). Each interval is a set of integral values.

Now let 𝐻̂0 be the minimal subspace generated by (1.1) on 𝓁2(ℤ). The deficiency indices of 𝐻̂0 will be equal to the sum of the

deficiency indices of the minimal subspaces generated by (1.1) when defined on 𝓁2(𝐼1) and 𝓁2(𝐼2). If𝐻01 and𝐻02 are minimal

subspaces generated by (1.1) on 𝓁2(𝐼1) and 𝓁2(𝐼2) respectively, then

def 𝐻̂0 = def 𝐻̂01 + def𝐻02.

As a result, we obtain the following results.

Theorem 3.8. Let 𝜏𝑦̂ in (1.1) be defined on 𝓁2(ℤ). Suppose that 𝐻̂0 is the minimal subspace generated and assume that all
the conditions in Theorem 3.5 are satisfied. Then def 𝐻̂0 = (𝑝, 𝑝), 2𝑛 < 𝑝 < 4𝑛 if there exists 𝑠-roots which are real from cluster
𝑛−𝑘 and ∣ 𝑝𝑘 + 𝑞𝑘 ∣

𝑛−𝑘−2
2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣

−𝑛+𝑘+1
2 is summable . The essential spectrum of its self-adjoint subspace extension is

non-empty.

Proof. Let 𝐻̂0 be the minimal subspace generated by (1.1) on 𝓁2(ℤ). Thus def 𝐻̂0 = 2
∑𝑛−1
𝑘=0 def𝑛−𝑘 as a result of contribution

of def𝐻01 and def𝐻02 which are equal by application of the results of Theorem 3.5. Since there exists 𝑠-roots which are real
from cluster 𝑛−𝑘 and because ∣ 𝑝𝑘 + 𝑞𝑘 ∣

𝑛−𝑘−2
2 ⋅ ∣ 𝑝𝑘+1 + 𝑞𝑘+1 ∣

−𝑛+𝑘+1
2 is summable, all the eigensolutions associated with these

roots will be square summable so long as Im 𝑧 > 0. The other clusters with no pure real roots will contribute to equal number of
square and non-square summable solutions since roots with non-zero imaginary parts are always in complex conjugate pairs.
It follows that dim ker 𝐻̂0 > 2𝑛 and therefore def 𝐻̂0 = (𝑝, 𝑝) where 2𝑛 < 𝑝 < 4𝑛. Thus by imposing boundary conditions both
at −∞ and also at ∞, there exist two square matrices 𝑀 and 𝑁 of order 𝑝 − 2𝑛 with the conditions:

rank(𝑀,𝑁) = 𝑝 − 2𝑛, 𝑀Φ𝑡𝑟1𝑀
∗ −𝑁Φ∗

2𝑁
∗ = 0
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where Φ1 and Φ2 are invertible matrices of order 𝑝 − 2𝑛 with square summable solutions satisfying boundary conditions at −∞
and ∞ respectively. In such a case the selfadjoint subspace extension of 𝐻̂0 exists. Let us denote this space by 𝐻̂ . 𝐻̂ is defined
by

𝐻̂ =

⎧⎪⎪⎨⎪⎪⎩
(𝑦̃, 𝑔̃) ∈ 𝐻̃ ∶ 𝑀

⎛⎜⎜⎜⎜⎝
(𝑦̃, 𝑦11)(−∞)
(𝑦̃, 𝑦12)(−∞)

⋮
(𝑦̃, 𝑦1𝑝−2𝑛)(−∞)

⎞⎟⎟⎟⎟⎠
−𝑁

⎛⎜⎜⎜⎜⎝
(𝑦̃, 𝑦21)(∞)
(𝑦̃, 𝑦22)(∞)

⋮
(𝑦̃, 𝑦2𝑝−2𝑛)(∞)

⎞⎟⎟⎟⎟⎠
= 0

⎫⎪⎪⎬⎪⎪⎭
.

Here, 𝑦𝑘𝑗 ∈ Φ𝑘, 𝑘 = 1, 2 and 𝑗 = 1,… , 𝑝 − 2𝑛.The remaining part of the proof follow closely that of Theorem 3.5. Becuase
(1.1) is defined on the whole of ℤ and moreover the coefficients are unbounded, the essential spectrum is the whole of ℝ with
spectral multiplicity equal to the number of eigensolutions that lose thier square summability as Im 𝑧 → 0. □

The following example reinforces the results of Theorem 3.5.

Example 3.9. Consider the following eighth order symmetric difference equation with weight function 𝑤(𝑡) = 1:

𝜏𝑦̂(𝑡) =
4∑
𝑘=0

(−1)𝑘Δ𝑘
[
𝑝𝑘(𝑡)Δ𝑘𝑦̂(𝑡 − 𝑘)

]
− 𝑖

4∑
𝑗=𝑖

(−1)𝑗
[
Δ𝑗−1(𝑞𝑗(𝑡)Δ𝑗 𝑦̂(𝑡 − 𝑗)) + (Δ𝑗(𝑞𝑗(𝑡)Δ𝑗−1𝑦̂(𝑡 − 𝑗 + 1))

]
.

We solve the equation 𝜏𝑦̂(𝑡) = 𝑧𝑦̂(𝑡). Then the associated Φ(𝑥, 𝑧) polynomial is of the form

Φ(𝑥, 𝑧) = (𝑝0 − 𝑧)𝑥4 + 4(𝑝1 + 𝑞1)𝑥3 + 16(𝑝2 + 𝑞2)𝑥2 + 64(𝑝3 + 𝑞3)𝑥 + 256(𝑝4 + 𝑞4). (3.14)

The analysis will be done for four clusters each of a pair of 𝑠-roots of equal magnitude. Now assume that

∣ 𝑝0 ∣∣ 𝑝2 + 𝑞2 ∣= 𝑜
(
∣ 𝑝1 + 𝑞1 ∣2

)
,

∣ 𝑝1 + 𝑞1 ∣∣ 𝑝3 + 𝑞3 ∣= 𝑜
(
∣ 𝑝2 + 𝑞2 ∣2

)
and

∣ 𝑝2 + 𝑞2 ∣∣ 𝑝4 + 𝑞4 ∣= 𝑜
(
∣ 𝑝3 + 𝑞3 ∣2

)
.

Then ∣ 𝑥1 ∣≈ 4
|||| 𝑝4+𝑞4𝑝3+𝑞3

||||, ∣ 𝑥2 ∣≈ 4
|||| 𝑝3+𝑞3𝑝2+𝑞2

||||, ∣ 𝑥3 ∣≈ 4
|||| 𝑝2+𝑞2𝑝1+𝑞1

||||, and ∣ 𝑥4 ∣≈ 4
|||| 𝑝1+𝑞1𝑝0

||||
(i) Thus assume that 𝑝𝑘 + 𝑞𝑘 all have the same sign, then all 𝑥𝑘, 𝑘 = 1, 2, 3, 4, are negative and all the 𝑠𝑘± are complex with

non-zero imaginary parts. Since if a complex number is a root of a polynomial, then its complex conjugate is also a root
of the same polynomial, there will be four square summable and four non-square summable eigensolutions irrespective of
uniform dichotomy condition. def𝐻0 = (4, 4) and the square summable eigensolutions are 𝑧-uniformly square summable.
The spectrum of the self adjoint subspace extension consists only of the eigenvalues thus 𝜎(𝐻) is pure discrete.

(ii) Suppose that the signs of the pair 𝑝𝑘 + 𝑞𝑘 and 𝑝𝑘−1 + 𝑞𝑘−1 for all 𝑘 = 1, 2, 3, 4, 𝑞0 = 0 and 𝑝0 = 𝑝0 − 𝑧 are different, then
all 𝑥𝑘 are positive and therefore all 𝑠𝑘± roots are real. The 𝑧-uniform dichotomy condition is proved off the real axis
and follows from Theorem 3.3. The correction terms of the 𝑥𝑘 respectively 𝑠𝑘± play an important role in determining the

deficiency indices as well as the existence of the absolutely continuous spectrum. These terms are approximately
(
𝜕Φ(𝑥,𝑧)
𝜕𝑥

)−1
and

(
𝜕Φ(𝑥,𝑧)
𝜕𝑥

)−1
2 for 𝑥𝑘 and 𝑠𝑘± roots respectively. On approximation, these terms are given by ∣ 𝑝3 + 𝑞3 ∣

− 1
2 for the 𝑠1±

and 𝑠2± roots, ∣ 𝑝1 + 𝑞1 ∣
1
2 ∣ 𝑝2 + 𝑞2 ∣−1 for 𝑠3± and ∣ 𝑝0 ∣∣ 𝑝1 + 𝑞1 ∣

− 3
2 for 𝑠4±. The contribution of 𝑥𝑘 roots to the deficiency

index are as follows
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𝑥1 and 𝑥2 ∣ 𝑝3 + 𝑞3 ∣
− 1

2 summable (2, 2)
” ∣ 𝑝3 + 𝑞3 ∣

− 1
2 non-summable (1, 1)

𝑥3 ∣ 𝑝1 + 𝑞1 ∣
1
2 ∣ 𝑝2 + 𝑞2 ∣−1 summable (2, 2)

” ∣ 𝑝1 + 𝑞1 ∣
1
2 ∣ 𝑝2 + 𝑞2 ∣−1 non-summabe (1, 1)

𝑥4 ∣ 𝑝0 ∣∣ 𝑝1 + 𝑞1 ∣
− 3

2 summable (2, 2)
” ∣ 𝑝0 ∣∣ 𝑝1 + 𝑞1 ∣

− 3
2 non-summabe (1, 1)

Here Cont. to def 𝐻0 means contribution to deficiency indices.
The above table gives various combinations of deficiency indices and spectral multiplicities. For example, if
∣ 𝑝0 ∣∣ 𝑝1 + 𝑞1 ∣

− 3
2 and ∣ 𝑝3 + 𝑞3 ∣

− 1
2 are summable while ∣ 𝑝1 + 𝑞1 ∣

1
2 ∣ 𝑝2 + 𝑞2 ∣−1 is not summable, the def 𝐻0 = (7, 7) and

the spectrum is discrete. But as Im 𝑧 → 0, three eigensolutions from 𝑥1, 𝑥2 and 𝑥4 roots lose their square summability
and contributes to absolutely continuous spectrum leading to def 𝐻0 = (4, 4) and 𝜎𝑎𝑐(𝐻) = ℝ of multiplicity three. Other
combinations can easily be constructed from the above table.
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