
The Usefulness of Lagrange Multipliers in Everyday Life

Abstract
Lagrange multipliers are a very useful technique in multivariable calculus, but all too
often they are poorly taught and poorly understood. With luck, this overview will help to
make the concept and its applications a bit clearer.One of the most common problems in
calculus is that of finding maxima or minima (in general, “extrema”) of function, but it
is often difficult to find a closed form for the function being extremized. Such difficulties
often arise when one wishes to maximize or minimize a function subject to fixed outside
conditions or constraints. The method of Lagrange multipliers is a powerful tool for
solving this class of problems without the need to explicitly solve the conditions and use
them to eliminate extra variables.

Introduction
Put more simply, its usually not enough to ask, “How do I minimize the aluminium needed to make
this can?” (The answer to that is clearly “Make a really, really small can!”) You need to ask, “How
do I minimize the aluminium whilemaking sure the can will hold 10 liters of milk?” or similarly,
“How do I maximize my factory’s profit given that I only have $15,000 to invest?” Or to take a
more
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sophisticated  example,  “How  quickly  will  the  roller
coaster reach the ground assuming it stays on the track?”
In general, Lagrange multipliers are useful when some of
the variables in the simplest description of a problem are
made redundant by the constraints.

A Classic Example: the “milkmaid problem”
To give a specific, intuitive illustration of this kind of 

problem, we will consider a classic example which I 

believe is known as the “Milkmaid Problem”. It can be 

phrased as follows

M g(x,y) = 0

C

Its milking time at the farm and the milk maid has been
sent to the field to get the day’s milk. She’s in a hurry to
get back for a date with a handsome young goatherd, so



she  wants  to  finish  her  job  as  quickly  as  possible.
However, before she can gather the milk, she has to rinse
out her bucket in the nearby river.
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Just  when she  reaches  point  M, our  heroine  spots  the
cow, way down at point C. Because she is in a hurry, she
wants to take the shortest possible path from where she is
to the river and then to the cow. If the near bank of the
river is a curve satisfying the function(x,y)=0, what is the
shortest path for the milkmaid to take? (To keep things
simple, we assume that the field is flat and uniform and
that all points on the river bank are equally good.)

To put this into more mathematical terms, the milkmaid
wants to find the point P for which the distance d (M,P)
from  M to  P plus the distance d(P,C) from  P to  C is a
minimum (we assume that the field is flat, so a straight
line is the shortest distance between two points). It’s not
quite for that matter  P anywhere on the line between M
and C) we have to impose the constraint that P is a point
on  the riverbank.  Formally,  we  must  minimize  the
function f(P)=d(M,P) + d(P,C), subject to the constraint
that g(P) = 0

Graphical Inspiration for the Method

Our  first  way  thinking  about  this  problem  can  be
obtained  directly  from the  picture  itself.  We’ll  use  an
obscure fact from geometry; for every point P on a given
ellipse, the total distance from one focus of the ellipse to
P and then to the other focus is exactly the same. (You
don’t  need  to  know  where  this  fact  comes  from  to
understand  the  example!  But  you  can  see  it  work  for
yourself by drawing a near-perfect ellipse with the help
of two nails, a pencil and a loop of string.)



In our problem, that means that the milkmaid could get 
to the cow by way of any point on a giveellipse in the 
same amount of time: the ellipse are curves of constant 
f(P).Therefore, to find the desired point P on the river 
bank, we must simply find the smallest ellipse n that 
intersects the curve of the river. Just to be clear, only the 
constant “the f(P)” property is really important the fact 
that these curves are eclipses is just lucky convenience 
(ellipses are easy to
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draw). The same idea will work no matter what space

the curves happen to be.

M P

The image at right shows a sequence of ellipses of larger
and larger size whose forces are  M and  C, ending with
the one that is just tangent to the riverbank. This is a very
significant word! It is obvious from the picture that the
“perfect” ellipse and the river are truly tangential to each
other  at  the  ideal  point  P. More  mathematically,  this
means that the normal vector to the ellipse is in the same
direction as  the normal  vector  to the riverbank.  A few
minutes’ thought  about  pictures  like this  will  convince
you that this fact is not specific to this problem; it is a
general property whenever you have constraints. And that
is  the  insight  that  leads  us  to  the  method of  Lagrange
multipliers.



The Mathematics of Lagrange Multipliers

In multivariable calculus, the gradient of a function h 
(written
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h) is a normal vector to a curve (in two dimensions) or a

surface (in higher dimensions) on which h is constant: 

n=

h (P). The length of the normal vector doesn’t matter: 

any constant multiple of

hP is also a normal vector. In our case, we have two 

functions, whose vectors are parallel,

∆f(P)= )= f(P) –  g (P)

The  unknown constant  multiplier  is  necessary  because

the magnitudes of the two gradients may P be different.

(Remrmber, all we know is that their directions are the

same.)

In D dimensions,  we now have D+1 equations in D+1
unknowns. D of the unknowns are the coordinates of P
(e.g  x,y,  and  z  for  D=3),  and  the  other  is  the  new
unknown  constant   ..  The  equation  for  the  gradients
derived  above  is  a  vector  equation,  so  it  proviydes  D
equations of constraint. I once got stuck on an exam at
this  point,  dont  let  this  happen  to  you!  The  original
constraint  equation g(P)=0 is  the  final  equation  of  the
system. Thus, in general, a unique solution exists.

As in many maximum/minimum problems, cases do exist
with  mulitple  solutions.  There  can  even  be  an  infinite
number  of  solutions  if  the  constraints  are  particularly
degenerate; imagine if the milkmaid and the cow were
both already standing right at the bank of a straight river,
for  example.  In  many  cases,  the  actual  value  of  the



Lagrange multiplier  isn't  intresting,  but  there are  some
situations  in  which  it  can  give  useful  information  (as
discussed below).

That's it; thats all there is to Lagrange multipliers. Just

set  the gradient of the function you want to extremize

equal to the gradient of the constraint function. You'll get

a vector's worth of (algebraic)
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equations,  and  together  with  the  original  constraint

equation they determine the solution.

A formal mathematical inspiration

There is  another  way to think of  Lagrange multipliers
that may be more helpful in some situations and that can
provide  a  better  way  to  remember  the  details  of  the
technique  (particularly  with  multiple  constraints  as
described below). Once again, we start with a function
f(P) that we wish to extremize a function in multivariable
calculus is to set  f(P)=0. How can we put this condition
together with the constraint that we have?

One answer is to add a new variable to the problem, and

to define a new function to extremize:

F(P,    f(P)-  g(P)

Some references call this f “THE Lagrangian function” I

am  not  familiar  with  that  usage,  although  it  must  be

related  to  the  somewhat  similar  “Lagrangian”  used  in

advanced physics.)

We next set

F (P,) =0, but keep in mind that the gradient is now D + 1
dimensional: one of its components is a partial derivative
with respect to .  If you set this new component of the
gradient  equal  to  zero,  you get  the constraint  equation
g(P)=0. Meanwhile, the old components of the gradient
treat as a constant, so it just pulls through. Thus the other



D equations are precisely the D equations found in the
graphical approach above.

As  presented  here,  this  is  a  just  a  trick  to  help  you
reconstruct the equations you need. However, for those
who go on to use Lagrange multipliers in the calculus of
variations, this is generally the most
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useful  approach.  I  suspect  that  it  is  in  fact  very
fundamental;  my  comments  about  the  meaning  of  the
multiplier below are a step toward exploring it in more
depth, but I have never spent the time to work out the
details.

Several Constraints at Once

If you have more than one constraint, all you need to do
is to replace the right hand side of the equation with the
sum of  the  gradients  of  each  constraint  function,  each
with  its  own  (different)  Lagrange  multiplier.  This  is
usually only relevant in at least three dimensions (since
two constraints in two dimensions generally intersect at
isolated points).

Again,  it  is  easy  to  understand  this  graphically.  [My
thanks  to  Eric  Ojard  for  suggesting  this  approach].
Consider  the  example  shown  at  right:  the  solution  is
constrained to lied on the brown plane (as an equation,
“g(P)  =0”)  and  also  to  lie  on  the  purple  ellipsoid
(“h(P)=0”). For both to be true, the solution must lie on
the black ellipse where the two intersect. The important
observation is that both normal vectors are perpendicular



to the intersection curve at each point. In fact, any vector
perpendicular to it can be written as a linear combination
of  the  two  normal  vectors.  (Assuming  the  two  are
linearly  independent!  If  not,  the  two  constraints  may
already  give  a  specific  solution  in  our  example  this
would happen if the
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plane  constraint  was  exactly  tangent  to  the  ellipsoid

constraint at a single point.)

The significance of this becomes clear when we consider
a three dimensional analogue of the milk maid problem.
The  pink ellisoids  at  right  all  have  the  same two foci
(which are faintly visible as black dots in the middle),
and represent surfaces of constant total distance for travel
from one focus to the surface and back to the other. As in
two dimensions,  the optimal  ellipsoid is  tangent  to  the
constraint  curve  and  consequently  its  normal  vector  is
perpendicular  to  the  combined  constraint  (as  shown).
Thus  the  normal  vector  can  be  written  as  a  linear
combination  of  the  normal  vectors  of  the  constraint
surfaces. In equations, this statement reads

f(P) = g(P) + h(P).

just as described above. The generalization to more 

constraints and higher dimensions is exactly the same.

The meaning of the multiplier

As  a  final  note,  I'll  say  a  few  words  about  what  the
Lagrange multiplier  “means” in ways inspired by both



physics  and  economics.  In  our  mostly  geometrical
discussion so far, was just an artificial variable that lets
us  compare  the  directions  of  the  gradients  without
worrying about their magnitudes. But in cases where the
function
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f(P) and the constraint g(P) have specific meanings, the

Lagrange multiplier often has an identifiable significance

as well.

One example of this is inspired by the physics of forces
and potential energy. In the formal approach based on the
combined  “Lagrangian  function”  F(P,  )  described  two
sections  above,  the  constraint  function  g(P)  can  be
thought of as “competing” with the desired function f(P)
to “pull” the point  P to its minimum or maximum. The
Lagrange multiplier can be thought of as a measure of
how hard g(P) has to pull in order to make those “forces”
balance out on the constraint surface. (This generalizes
naturally to multiple constraints, which typically “pull” in
different directions.)  And in fact,  that  word “forces” is
very  significant:  in  physics  based  on  Lagrange
multipliers  in  the  calculus  of  variations  (as  described
below) this analogy turns out to be literally true, is the
force of constraint.

Application

The Lagrange multiplier  has meaning in  economics as
well.  If  you're  maximizing  profit  subject  to  a  limited
resource,  is  that  resource's  marginal  value  (sometimes
called the “shadow price” of the resource). Specifically,
the value of the Lagrange Multiplier is the rate at which
the  optimal  value  of  the  function  f(P)  changes  if  you
change the constraint.

To express this mathematically (following the approach
of  this  economics-inspired tutorial  by Martin  Osborne)



write  the  constraint  in  the  form “g(P)=g  (x,y)=c?  For
some constant  c.  (This  is  mathematically  equivalent  to
our usual g(P)=0, but allows us to easily describe a whole
family of constraints. Also, I am writing this in terms of
just  two  coordinates  x  and  y  for  clarity,  but  the
generalization to more is straightforward). For any given
value of c, we can use Lagrange multipliers to find the
optimal value of f(P) and the point where it occurs. Call
that optimal value fo, occurring at coordinates (x0 , y0
and with Lagrange multiplier . The answers
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we get will depend on what value we used for c in the

constraint,  so we can think of these as functions of c:

f0(c), x0 (c) etc.

To find how the optimal value changes when you change
the constraint, just take the derivative: df0/dc. Of course,
f(P) only depends on c because the optimal coordinates
(x0 ,  y0)  depend on c:  we could  write  it  as  f0(x0(c),
y0(c). So we have to use the (multi variable) chain rule:

df0/dc=f0 /x0 dx0

In the final step, I've suggestively written this as a dot
product between the gradient of f and the derivatives of
the coordinate vector. So here's the clever trick: use the
lagrange multiplier equation to substitutef= g:

df0/dc=f0 /x0 dx0

But  the  constraint  function  is  always equal  to  c,  so

dg/dc=1. Thus, df/dc = . That is, the Lagrange multiplier

is the rate of change of the optimal value with respect to

changes in the constraint.

This is a powerful result, but be careful when using it! In
particular,  you have  to  make  sure  that  your  constraint
function is written in just the right way. You would get
the exact same optimal value whether you wrote “g(x,y)=
x  +  y=0”  or  “g(x,y)=  -2x  -2y=  0”,  but  the  resulting
Lagrange multipliers would be quite different.

Example of Lagrange Multipliier in Action
A box of minimal surface area



What  shape  should  a  rectangle  box  with  a  specific
volume (in three dimensions) be in order to minimize its
surface area? (Question like this are very important for
business that want to save money on packing materials.)
Some people may be able to guess the answer intuitively,
but we can prove it using Lagrange multipliers.
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Let the lengths of the box’s edges be x, y and z. then the
constrains of volume is simply g(x, y, z) = xyz-V=0, and
the function to minimize is f(x, y, z)=2(xy+xz+yz). The
method is straightforward to apply:

2<y+z, x+z, x+y>= f(x,y,z) = g(x,y,z)= <yz, xz, xy>

(The angle bracket notation <a, b, c> is my favorite way
to  denote  a  vector).  Now  just  solve  those  three
equational; the solution is x=y=z=4/ . We could eliminate
from the problem by using xyz=V, but we don't need to:
it is ready clear that the optimal shape is a cube.

The closest approach of a line to a point

This  example  isn't  the  perfect  illustration  of  where
Lagrange multipliers are useful, since it is fairly easy to
solve without them and not all that convenient to solve
with them. But it's a very simple idea and because of a
dumb mistake on my part it was the first example that I
applied the technique to.

When I first took multivariable calculus (and before we
learned about Lagrange multipliers) my teacher showed
the  example of  finding the  point  P =<x,  y> on a  line
(y=mx+b) that was closest to a given a point Q = <x0 ,
y0 > The function to minimize is of course

d(P, Q) = sqrt[(x-x0 )2 =sqrt[(x-x0 ) + (y-y ) ]

(Here, “sqrt” means square root, of course; that's hard to

draw in plain text).



The teacher went through the problem on the board in the
most direct way (I'll  explain it  later)  but it  was taking
him a while  and I  was a little bored,  so I  idly started
working the problem myself while he talked. I just leapt
in and set d(x,y) = 0 so

<x-x , y-y >sqrt[(x-x ) + y-y = <0,0>
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and thus x=x and y=y . My mistake here is obvious, so I
won't  blame you for  having a  laugh at  my expense:  I
forgot to impose the constraint that <x,y> be on the line!
(In my defense, I wasn't really focusing on what I was
doing, since I was listening to lecture at the same time)>
I felt a little silly, but I didn't think much more about it.

Happily, we learned about Lagrange multipliers the very
next week and I immediately saw that my mistake had
been a perfect introduction to the technique. We write the
equation of the line as g(x,y)= y-mx -b=0, so g(x,y) = <-
m,1>. So we just  set  the to gradients equal (up to the
usual factor of ),giving

<x-x , y-y >/sqrt[(x-x ) + (y-y )]= <-m, 1>

The  second  component  of  this  equation  is  just  an
equation for , so we can substitute that value for into the
first component equation. The denominators are the same
and  cancel,  leaving  just  (x-x  )=  -  m(y-y).  Finally,  we
substitute y=mx+b, giving x-x =-m x-mb + mb
+ my , so we come to the final answer: x=(x + my -mb)/ )

m + 1). And thus

y=(mx + m y + b)(?(m + 1)

So  what  did  my  teacher  actually  do?  He  used  the

equestion  of  the  line  to  substitute  y  for  x  in  d(P,  Q)

which left us with an “easy” single variable function to

deal with...but a rather complicated on:



d(p,Q)=sqrt[(x-x) + (mx + b-Y)]

To  solve  the  problem  from  the  point,  you  take  the

derivative and set it equal to zero as usual. It's a bit of

pain,  since  the  function  is  a  mess,  but  the  answer  is

xx=(x+my-mb)/(m + 1.

That's exactly what we got earlier, so both methods seem
to work. In

414



10
th

 AIC Symposium 1: Peer Reviewed Papers

this  case.  The  second  method  may  be  a  little  faster

(though I didn't show you all of the work), but in more

complicated  problems  Lagrange  multipliers  are  often

much easier than the direct approach.

Lagrange multipliers in the calculus of variations (often
in  physics).  This  section  will  be brief,  in  part  because
most readers have probably never heard of the calculus of
variations.  Many people first  see this  idea in advanced
classes that cover Lagrangian mechanics and that will be
the perspective taken here(in particular, I will use names
inspired by physics). If you don't already know the basics
of this subject (specifically, the Eler-Lagrange equations)
you'll probably want to just skip this section.

The calculus of variations is essentially an extension of
calculus  to  the  case  where  the  basic  variables  are  not
simple numbers x (which can be though of as position)
but  functions  x  (which  in  physics  corresponds  to  a
position  that  changes  in  time)  Rather  than  seeking the
numbers  x  that  extremize  a  function  f(x)  we  seek  the
functions x(t) that extremize the integral (dt) of a function
L[x(t), x(t), t] where x ( t) are the time derivatives of x
(t).  (The reason we have to  integrate  first  is  to  get  an
ordinary  number  out:  we  know  what  “minimum”  and
“minimum” mean for numbers,  but there could be any
number of definitions of those concepts for functions). In
most cases, we integrate between fixed values t and t and
we hold the values  x(t)  and x(t)  fixed.  In  physics  that
means  that  the  initial  and  final  positions  are  held



constant,  we're  intrested  finding  the”best”  path  to  get
between them; L defines what we mean by “best”).

The solutions to this problem can be shown to satisfy the

Euler-Lagrange equations (I have suppressed the “(t)” in

the functions x (t):

(Note that the derivative d/dt is a total derivative, while

the derivatives with respect to and are “partials” at least

formally.
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Imposing constraints on this process is often essential. In
physics, it is common for an object to be constrained on
some track or surface, or for various coordinates to be
related  (like  position  and  angle  when  a  wheel  rolls
without  slipping  as  discussed  below).  To  do  this,  we
follow a simple generalization of the procedure we used
in ordinary calculus. First, we write the constraint as a
function  set  equal  to  zero:g(x,  t)=0.  (Constraints  that
necessarily involve the derivatives of x often cannot be
solved). And second, we add a term to the function L that
is multiplied by a new function (t): L [x,x, t] + (t)g(x,t)

From  here,  we  proceed  exactly  as  you  expect:  (t)  is
treated as another coordinate function, just as was treated
as  an  additional  coordinate  in  ordinary  calculus.  The
Euler-Lagrange equations are then written as

This  can  be  generalized  to  the  case  of  multiple
constraints precisely as before, by introducing additional
Lagrange  multiplier  functions  like  .  There  are  further
generalizations possible to cases where the constraints (s)
are linear combinations of derivatives of the coordinates
(rather than the coordinates themselves) but I won't go
into that much detail here.

As mentioned in the calculus section, the meaning of the
Lagrange multiplier function in this case is surprisingly
well-defined and can be quite useful. It turns out that Q =
(t)(  g/ X) is precisely the force required to impose the
constraint g(x ,t)  (in th “direction” of x) This  is  fairly
natural: the constraint term ( g) added to the Lagrangian
plays the same role as a (negative) potential energy -V



constraint,  so we can  compute  the  resulting  force  as(-
Vconstr)= g in something reminiscent of the usual way.
Thus, for example, Lagrange multipliers can be used to
calculate the force you would feel while riding a roller
coaster.  If  you  want  this  information,  Lagrange
multipliers are one of the best ways to get it.
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An example: Rolling without slipping

One of the simplest applications of Lagrange multipliers
in  the  calculus  of  variations  is  a  ball  (or  other  round
object)  rolling  down  a  slope  without  slipping  in  one
dimension. (As usual a problem this simple can probably
be  solved  just  as  easier  by  other  means,  but  it  still
illustrates the idea.) Let the ball have mass M, moment of
inertia I, and radius R and let the angle of the slope be α.
We choose the coordinate x to point up the slope and the
coordinate to show rotation in the direction that would
naturally go in that same direction, so that the “rolling
without  slipping”  conditions  is  x=R  .  Both  x  and  are
functions of time, x(t) and (t), but for clarity I will not
write that dependence explicitly.

In general, the kinetic energy T of an object undergoing
both translational and rotational motion is T=1/2 M(x) +



½ I( ). (As before, the prime(‘) denotes a time derivative,
so this  is  a  function of  velocity  and angular  velocity).
Meanwhile, the potential energy V of
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the ball can be written as V=Mgh=Mgx sin . Thus, the

Lagrangian for the system is

L=T-V=1/2 M(x) + ½ I(θ ) – Mgx sin

If  we  solved  the  Euler  Lagrange  equations  for  this
Lagrangian as it stands, we could find that x(t) described
the ball sliding down the slope with constant acceleration
in  the  absence  of  friction  while  (t)  described  the  ball
rotating  with  constant  angular  velocity:  the  rotational
motion  and  translational  motion  are  completely
independent  (and  no  torques  act  on  the  system).  To
impose the condition of rolling without slipping, we use
a Lagrange multiplier function (t) to force the constraint
function G(x, θ,t)=x-R to vanish:

L=1/2 M(x1)2 + ½ I( θ1 )2 –Mgx sin + (x-R )

(That is multiplying the constraint function, as usual). We

now find the Euler-Lagrange equations for each of the

three  functions  of  time:  x,  θ  and  .  Respectively,  the

results are:

Mx” + Mg sin α - =0

I θ“+ R + 0, and

X–R θ=0

It is then straight forward to solve for the three 

“unknowns” in these equations:

X”= -g sin α MR (MR + 1)



θ" = -g sin α MR/ (MR + 1)

=Mg sin α 1/(MR + 1).

The first two equations give the constant acceleration and
angular acceleration experienced as the ball rolls down 
slope. And the
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equation for is used in finding the forces that implement

the constraint in the problem. Specifically, these are the

force and torque due to friction felt by the ball:

Fx = ∂G/∂x=Mg sin α I/(MR2 + 1)

t= ∂G/∂θ =-RM sin α 1/(MR2 + 1)

Looking at  these  results,  we can  see that  the  force  of
friction is positive: it points in the +x direction (up the
hill)  which  means  that  it  is  slowing  down  the
translational motion. But the torque is negative: It acts in
the  direction  corresponding  to  rolling  down  the  hill,
which means that the speed of rotation increases as the
ball rolls down. That is exactly what we would expect!

As a final note, you may be worried that we would get
different answers for the forces of constraint if we just
normalized the constraint function G(x, θ , t) differently
(for example, if we set G=2 x – 2 Rθ ). Happily, that will
not end up affecting the final answers at all. A change in
normalization for G will  lead to a different answer for
(e.g.  exactly  half  of  what  we  found  above),  but  the
products  of  and  the  derivatives  of  G  will  remain  the
same.
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