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ABSTRACT 

In the study of rotatable designs, the variance of the estimated response at a point is a 

function of the distance of that point from a particular origin. Group divisible 

Rotatable Designs have been evolved by imposing conditions on the levels of factors 

in a rotatable design. In Group Divisible Third Order Rotatable Designs, the v-factors 

are split into two groups of p and (v-p) factors such that the variance of a response 

estimated at a point is a function of the distances of the projection of the points in 

each of the group from a suitable origin. The purpose of this study was to construct 

Group Divisible Variance-Sum Third Order Rotatable Designs using a balanced 

incomplete block designs. The objectives were, to construct a Group Divisible Third 

Order Rotatable Designs in four, five and its generalization in k-dimensions, to obtain 

a Variance-Sum Group Divisible Third Order Rotatable Designs in four and in five 

dimensions and to obtain (k-1) Group Divisible Third Order Rotatable Designs in 

four, five and its generalization in (k-1) dimensions by rotating designs for one group 

only. Considering a BIBD with parameters  where and k=2, the v-

factors are sub-divided into two groups of factors one of p-dimensions and the other 

 dimensions. A set of design points generated through factorial combination 

was added to suitably chosen sets of points, where the unknown levels were 

determined from the generated design points so as to satisfy the moment conditions. 

The equations obtained were satisfied since there exists a non-negative solution 

forming a v-dimensional Group Divisible Third Order Rotatable Designs with their 

Variance-Sum being a function of the distances for the two groups respectively. In 

conclusion Group Divisible Variance-Sum Third Order Rotatable Designs was 

constructed through BIBDs. The Group Divisible Variance-Sum Third Order 

Rotatable Designs constructed in this study gave less number of design points than the 

corresponding rotatable designs constructed using BIBDs. Further, the number of 

normal equations for estimating the parameter estimates was reduced by adopting this 

method. Other methods on construction of Group Divisible Variance-Sum Third 

Order Rotatable Designs for k number of groups were recommended. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Background Information 

Response surface methodology is a collection of mathematical and statistical 

techniques that are useful for modelling and analysis of problems in which a response 

of interest is influenced by several independent variables. Response Surface 

Methodology is a powerful and efficient mathematical tool widely applied in the 

optimization of industrial and commercial processes. Rotatable designs gives 

information about the response surface equally in all directions and are thus useful 

when no or little prior knowledge is available about the nature of the response surface. 

The main objective of RSM is to optimize a response variable which is influenced by 

several independent variables. Box and Hunter (1957) gave conditions under which 

designs for the exploration of response surfaces would be rotatable. In many 

experimental situations the experimenter is concerned with explaining certain aspects 

of a functional relationship,  

 

Where  is the response variable,  are the independent variables and  

is the uncorrelated random error with mean zero and variance . A function f (.) is 

called response surface or response function and the designs used for the study are 

called response surface designs. Response surface methods are useful where several 

independent variables influence dependent variables. The independent variables are 

often called input or explanatory variables and the dependent variable is often called 

the response variable. 
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1.1 Basic Concepts 

1.1.1 Balanced Incomplete Block (BIB) Designs 

A BIB design is an arrangement of v treatments in b blocks each of size k (<v). 

According to Kempthorne and Hinkelmann (2005), an incomplete block design is said 

to be a balanced incomplete block (BIB) design if the number of replications of all 

pairs of treatments in a design is the same and if it satisfies the following conditions: 

(i) Each treatment occurs at most once in a block 

(ii) Each treatment occurs in exactly r blocks 

(iii) Each pair of treatments occurs together in exactly λ blocks 

The terms   are known as the parameters of BIBD. 

1.1.2 Third order rotatable designs 

Rotatable designs, introduced by Box and Hunter (1957), have the property that the 

variance of the estimated response at any point is a function of the distance of that 

point from the origin of the design and constant on spheres centered at the origin. 

Further, Herzberg (1967) showed that for rotatable designs, the variance between the 

estimated responses at any two points in the factor space is a function of the distances 

of the two points from the centre of the design.  

The conditions under which a design is rotatable were given by Box and Hunter 

(1957). A set of points satisfying the moment conditions are called a rotatable 

arrangement of order three. The arrangement becomes a rotatable design only if it 

forms a non singular third order design and if the points give rise to a non-singular 

)( XX   matrix (Box and Hunter (1957) and Draper (1960)). 

Let X be an (NL) matrix defined as follows 
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If X   is the transpose of X  then  XXN 1
 is the moment matrix of the arrangement 

of N points in V-dimensional factor space. 

Non – singularity conditions (Draper (1960a)) showed that a third order rotatable 

arrangement is a nonsingular third order rotatable design if and only if the points lie on 

two or more spheres centered at the origin of the design. 

1.1.3 Group divisible third order rotatable designs 

Das and Dey (1967) introduced GDSORD by modifying the restrictions on the levels 

of the factors in a second order rotatable design. In these designs the v-dimensional 

space corresponding to v-factors is divided into two mutually orthogonal spaces, one 

of p-dimensional and the other of (v-p) dimensions. They defined the p-dimensional 

space by the first p factors and the other by the remaining (v-p) factors such that the 

design is rotatable for each group when the levels of factors in the other group are 

held constant. As the factors get divided into two groups, thus this might be called 

“Group-Divisible Rotatable Designs” such that for the factors within each group the 

design is rotatable. Given any treatment combination in the v-dimensional space, we 

can visualize the projection of the points  in the first space to be 

 and on the second space to be 
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 Let the distances of the projection of the points in 

each of the subspaces from a suitable origin be  and  respectively. 

1.1.4 Variance-sum group divisible third order rotatable designs 

In rotatable designs, the variance of the estimated response at a point is a function of 

the distance of that point from the design origin. In GDSORD the variance of a 

response estimated at the point  is a function of the distances  for 

group one and  for group two from a suitable origins respectively. Variance-Sum is 

a property of GDTORD, where the sum of the variance of the response estimates in 

the direction of any factor axis in each group of two mutually orthogonal spaces must 

be a function of the distances of the projection of the points in each of the group from 

a suitable origin. 

1.2 Statement of the Problem 

In the design of experiments and planning of field experiments, the experimenter aims 

at cutting down on the cost of running the experiments and optimizing the output. 

Several designs have therefore been constructed. However, there is need for more 

efficient designs in terms of cost and also maximizing the output when running of 

experiments. Construction of rotatable designs gives a desirable property of constant 

variance of the estimated response at a point as a function of the distance of that point 

from the origin of the designs. A different series of response surface designs such as 

Group divisible Rotatable Designs have been introduced. In Group divisible Rotatable 

Designs, the variance of a response estimated at a point equidistant from the centre of 

the designs is a function of the distances of the projection of the points in each of the 

group from a suitable origin. The problem here was to construct a Group Divisible 

Variance Sum Third Order Rotatable Designs through balanced incomplete block 
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designs, this implies that the sum of the variance of the response estimates in the 

direction of any factor axis in each group of mutually orthogonal spaces, one of p-

dimension and the other of (v-p)-dimension at any point must be a function of the 

distances of the projection of the points in each of the group from a suitable origin. 

1.3 Objectives of the Study 

1.3.1 General objective 

To construct a Group Divisible Variance Sum Third Order Rotatable Designs using a 

BIBD. 

1.3.2 The specific objectives 

1. To construct a Group Divisible Third Order Rotatable Designs in four, five 

and in k-dimensions. 

2. To obtain a Variance Sum Group Divisible Third Order Rotatable Designs in 

four and in five dimensions. 

3. To construct a (k-1) Group Divisible Third Order Rotatable Designs in four, 

five and its generalization in (k-1) dimensions by rotating designs for one 

group only. 

1.4 Significance of the Study 

In situations where the experimenter is interested in practical grouping of factors, the 

v-dimensional space is split into two groups of factors of p-dimension and the other of 

(v-p) dimension where the designs within each of the groups are certainly rotatable 

when the levels of factors in the other group are held constant such that the variance 

of the response estimated at the point  equidistant from the centre 

of the designs is a function of the distances of the projection of the points in each of 
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the group from a suitable origin. This study would be desirable since given any 

treatment combination in v-dimensional space, we can visualize the distances of the 

projection of the points in each of the subspaces from a suitable origin where the 

variance- Sum is the function of distances of the projection of the points in each of the 

group from a suitable origin only. The GDVSTORD constructed in this study gave 

less number of design points than the corresponding rotatable designs constructed 

through BIBDs. Further, the number of normal equations for estimating the parameter 

estimates was reduced by adopting this method. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

Adikary and Panda (1984) identified some practical grouping of the set of factors and 

introduced group divisible response surface designs both of second and third order 

and gave  methods  for their construction. Sheshubabu et al (2014) constructed a third 

order slope rotatable designs using a balanced incomplete block designs. Sheshubabu 

et al (2015) introduced a cubic slope rotatable design using balanced incomplete block 

designs in four dimensions. Das and Dey (1967) introduced GDSORD by modifying 

the restrictions on the levels of the factors in a second order rotatable design. In these 

designs the v-dimensional space corresponding to v-factors is divided into two 

mutually orthogonal spaces, one of p-dimensions and the other of (v-p) dimensions. 

Variance-Sum is a property of GDTORD, where the sum of the variance of the 

response estimates in the direction of any factor axis in each group of two mutually 

orthogonal spaces must be a function of the distances  and  from a suitable 

origins for group one and two respectively. 

2.1 Group Divisible Third Order Rotatable Designs 

The study of rotatable designs mainly emphasized on the estimation of absolute 

response. Box and Hunter (1957) introduced rotatable designs for the exploration of 

response surfaces and gave methods for the construction of second order rotatable 

designs (SORD), through geometrical configurations considering the variances of the 

estimated response are constant at points equidistant from the centre of the design, 

conventionally taken to be the origin of factor space after transformation if necessary. 

Later various authors have suggested different methods of constructing SORD. 
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Box and Hunter (1957) introduced rotatable designs for the exploration of response 

surfaces. Many third order rotatable designs have been described in Gardiner et al. 

(1959).These designs would usually require more points and hence may not always be 

desirable. New sequential methods have been described in Mutiso and Koske (2005, 

2006). Koske et al (2011) introduced a new method of constructing higher level of 

third order rotatable designs using BIBDS. Mutai et al (2011) studied a new method 

of constructing a k-dimensional Third Order Rotatable Designs using Balanced 

Incomplete Block Designs. 

Das and Dey (1967) independently studied some generalization of SORD and 

introduced Group-Divisible Second Order Rotatable Designs (GDSORD). 

In this study Group Divisible Third Order Rotatable Designs and (k-1) Group 

Divisible Third Order Rotatable Designs through BIBD were introduced. 

2.2 Variance – Sum Group Divisible Third Order Rotatable Designs 

Anjaneyulu et al (2002) introduced and constructed Variance-Sum Group Divisible 

Second Order Slope Rotatable Designs. Anjaneyulu and Narasimham (2011) 

constructed a variance sum second order and third order slope rotatable designs. 

Anjaneyulu et al (2004) stated that any Variance-Sum Third Order Slope Rotatable 

Design is a Third Order Slope Rotatable Design over all directions. Anjaneyulu et al 

(2010) introduced a Variance-Sum Group Divisible Third Order Slope Rotatable 

Designs and gave an attempt of construction using central composite designs. In this 

study a Variance-Sum Group Divisible Third Order Rotatable Designs were 

constructed using BIBDs. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

In this chapter the methods used to achieve each of the specific objectives are 

described. 

3.1 Introduction on designs Construction 

Each point in a design is essentially a combination of the levels of different 

treatments. Taking some unknown levels to be denoted by   corresponding to 

the presence or absence of the treatment respectively, a factorial design in v factors 

say out of these unknown levels was obtained. Thus if there are four factors each at 

two levels denoted by , 16 factorial combinations were obtained. Next 

another design in v factors of the form  where the two levels of each factor are +1 

and -1 was then added. One more set of combinations where any combination of the 

first design is associated with combination of the second design  by 

‘multiplication’ of the levels of the same factors and writing the products in the same 

order was obtained. This method of association of any two combinations of the two 

designs is called ‘multiplication’. Let  denote a BIBD,  denote a 

fractional replicate of  in  levels, in which no interaction with less than five 

factors is confounded. Let  denote the design points generated from 

the transpose of incidence matrix of BIBD where  are the 

 design points generated from BIBD by “multiplication ”and  

( ,0,0,…,0) denotes the design points generated from ( ,0,0...,0) point set, 

( ,0,0,…,0) denote the design points generated from ( ,0,0...,0) point set. By 

choosing an additional unknown combinations  and multiplying with 
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 associate combinations to obtain additional design points to 

form a third order rotatable designs. Then by combining the points above with 

suitably chosen points set of S ( ,0,0...,0), S ( ,0,0...,0)  and S( ,b,b...,b) 

with ,a unique solutions  was then obtained by defining 

 where  and chosen suitably for v factors 

(Huda(1987), Koske et al (2011) and Mutai et al(2011)) where the equations obtained 

are satisfied if there exist a non-negative solution forming a v-dimensional GDTORD. 

Then the unknown levels are determined from equations obtained through the 

generated design points so as to satisfy the moment conditions. 

3.2 Method of Construction of a Group Divisible Third Order Rotatable Designs 

through Balanced Incomplete Block Designs 

The construction of Group Divisible Third Order Rotatable Designs can in many 

occasions be made to depend on known solutions for BIB designs. To construct a 

 GDTORD in v factors, a BIBD with parameters  with 

was considered. This was then divided into two groups of factors, one of p-

dimension and the other  dimension with p 2 and  First the 

transpose of incidence matrix for the -factor BIBD Design with unknown level a and 

zero is written, where a takes the place of 1 in the above incidence matrix which 

generates b combinations. From these design points  combinations was obtained 

each containing  and  zeros.Then by combining the points above with 

suitably chosen points set of S( ,0,0...,0) ,2S( ,0,0...,0) and 2S ( ,b,b...,b) levels with 
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 where  where unique solutions is obtained by defining                 

                                                                                                      (3.2.1) 

 chosen suitably for factors so that . The equations obtained were satisfied if 

there exist a non-negative  forming a v-dimensional GDTORD. 

All the unknown levels are determined by the moment conditions for a Group 

Divisible Third Order Rotatable Designs Anjaneyulu et al. (2004) 

Let ( )if d   be a function of the radius of a rotatable design,  

Where
id  radius and   a scaling parameter. Let 2 2

1

N

i iu

i

d x


 such that  , 

 

1: (i)    for   

      

    (ii)    for   

      

   (iii)    for   

      

2 :( a) (i)    for  for  

                  

(3.2.2) 

         (ii)    for  
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        (iii)    for   

     (b) (i)    for  for  

        

          (ii)     for  

         (iii)    for   

(3)      for   

The above summations are taken over all design points. We have all odd order 

moments equal to Zero in both the groups. 

Non-singularity conditions 

1.                                                                         

             (3.2.3) 

2.  

3.3 Method of obtaining a Variance – Sum Group Divisible Third Order 

Rotatable Designs 

From the design points generated through GDTORD, a Variance-Sum Group 

Divisible Third Order Rotatable Designs in four and in five dimensions were 

obtained. Considering VSGDTORD divided into two Groups, the sum of the variance 

of the response estimates in the direction of any factor axis in each group of mutually 

orthogonal spaces, one of p-dimension and the other of (v-p)-dimension at any point 

must be a function of the distances  and  respectively from the design origin.Let 
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 be a set of N design points and  be the N responses to fit the 

following third order response surface model at a design point. 

' '

' ' ' '

2 2
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The Taylor series approximation is of the form 
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Where y is the response, xi and
'xi  is a p factor group, xj  and

'xj is the ( )v p  factor 

group, 's are the regression coefficients at  both the p factor levels and ( )v p  factor 

levels. For a complete third-order model including the intercept, the total number of 

terms L can be expressed as; 

 3
.

3
k

L



 

Considering the linear model as 

yi= f  (xi)ß+ i  

i=1,2,…n 

This can be expressed in matrix notation as; 

'y x   
 

The vector y  is an n×1 vector of observations; x  is an n×p matrix;   is a p×1 vectors 

of unknown parameters; is an n×1 vector of independently distributed random 
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variables, with mean zero and variance σ2.The experimental region is denoted by χ. 

By the method of least squares the estimates of the parameter ß are to be obtained. 

These are given by  

YXXX '1' )( 
 

Let M  be the moment matrix,  

Where 

 = XX
N

'
1

         (3.3.1) 

 The determinant of M is obtained, which gives the non-singularity conditions for 

third order design to be rotatable. Then the inverse of M is determined which enables 

the variances to be obtained. For a third order full model we have, 

1( ) [ ( ),..., ( )],t t t

vf x f x f x
       (3.3.2)

 

Where v  is the number of factors in a v-dimensional factor space, then we have 
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Thus for a third order design , the partitioned matrix of the moment matrix ( )M   is 

given by 
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( ) ( ) ( ) . . . ( )

( ) . . . . . . .

. . . . . . .

. . . . . . .

( ) ( ) ( ) . . . ( )

v

v

v

v v v vv

M M M M

M M M M

M M M M

M

M M M M

   

   

   



   

 
 
 
 
 

  
 
 
 
 
     (3.3.3)

 

Where ( ) ( ) ( ) ( )t

ij i j

x

M f x f x dx   ( , 1,..., )i j v  corresponding to the partitioning of 

( )tf x . Considering the symmetric designs only we will be in a position to obtain the 

inverse of ( )M  .For a symmetric design , ( )( )ijM i j   are null matrices thus ( )M   

is reduced to a block diagonal matrix of 

11 22( ) { ( ), ( ),..., ( )}.vvM Diag M M M    Note that for a symmetric 

design , 11 22( ), ( ),..., ( )vvM M M   are diagonal matrices and further ( )vvM   in itself 

is a block diagonal matrix given by
 

( )vvM  Diag
1

* *{ ( ),..., ( )},kM M 
                           (3.3.4) 

Where *( ) ( ) ( ) ( ) ( 1,..., ).t

i i i

x

M g x g x dx i k    
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Below is a block diagonal matrix, 

11

22

33

( ) 0 0 . . . 0

0 ( ) 0 . . . 0

0 0 ( ) . . . 0

( ) . . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . ( )vv

M

M

M

M

M











 
 
 
 
 

  
 
 
 
 
      (3.3.5)

 

Where, 

( ) ( ). ( )t

ii i iM f x f x 
         

 (3.3.6)
 

11 1 1( ) ( ). ( )tM f x f x   

1 1

11 1 1( ) ( ( ). ( ))tM f x f x    

22 2 2( ) ( ). ( )tM f x f x   

1 1

22 2 2( ) ( ( ). ( ))tM f x f x    

33 3 3( ) ( ). ( )tM f x f x   

1 1

33 3 3( ) ( ( ). ( ))tM f x f x    

( ) ( ). ( )t

vv v vM f x f x   

1 1( ) ( ( ). ( ))t

vv v vM f x f x    

(1) (2) ( )( ) ( ). ( ) ( ) ( ) ... ( ).t

vv v v vv vv vv vM f x f x M M M       
  (3.3.7)
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Then for a symmetric design ( )M  , it is seen that the variances are given as, 

4

1

( ) ( ).i

i

V V 



 (3.3.8) 

Where 1 x  [ () )]( , iii MV x x   (i=1, 2, 3, 4). 

1  [ ( )]( ) .i i iiiMV f f 
 (3.3.9)

 

1 1 1

1

11  [ (( ) )]V f fM   
 

2 2 2

1

22  [ (( ) )]V f fM     

3 3 3

1

33  [ (( ) )]V f fM   
 

1

)( ()  [ ( )]( ) ' vi ivi iv g M gV    

Where (1) (2) ( )( ) ( ) ... ( )v v v vV V V      

Summing the above variances (3.3.8) we get expression which is a function of 

, '

2 2 2 2

'

' '

,ii j j

i j i j

x x x x
 

  ' '

2 4 4 2 2 4 2 2 2 2 2 2

' ' ' '

, '

'

' ' , ' '

, , .,  i ii i i

i j i

j i i j i j i

i j i j i j i i j

x x x x x x x x x x x x
   

   
 

In order to achieve variance in GDTORD it should be a function of only. 

Therefore need the interactions 

2 2 2 2

' '

' '

,i i j j

i i j j

x x x x
 

 
2 4 4 2 2 4

' ' ', ,i i i i j jx x x x x x 4 2 2 2 2 2 2 2 2 2 2 2 2 2

' ' ' '

, ' ' ',

' an, d,  , ,
i j i

j j i j j i j j i i j j

i

i

i

j

j

x x x x x x x x x x x x x x
 

    

are cancelled. 

All the interactions are equated to zero so as to have a function of only. 

Then at the point xχ the response is 

 

V( ŷ (x))= f   (x) ̂          (3.3.10). 
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With variances for the two groups being 

V( ŷ ( ))=σ 2
f  ( ) ( 'X X)-1 f ( )      (3.3.11).  

V( ŷ ( ))=σ 2
f  ( ) ( 'X X)-1 f ( )      (3.3.12) 

 The variance Sum is the function of distances  as shown below 

,  

Where  ,  

 being the distances of the projections of the points in p dimensional and (v 

– p) dimensional spaces from a suitable origin. The variance   is a function of 

distance  only and variance   is a function of distance  only from the 

design origin. Thus the considered response surface is a v-dimensional Variance - 

Sum Group Divisible Third Order Rotatable Designs. 

3.4 Method of Construction of a (k-1) Group Divisible Third Order Rotatable 

Designs through Balanced Incomplete Block Designs. 

To construct a  GDTORD in v factors we consider a BIBD with parameters 

 with , this was then divided into two groups of factors, one of p-

dimension and the other  dimension with p 2 and We first start 

by writing the transpose of incidence matrix of the v factors BIBD Design with 

unknown level a and zero, where a takes the place of 1 in the above matrix which 

generates b combinations. In each combination there will be  and  zeros. 

From these design points we get  combinations each containing  and  

zeros.Then by combining the points above with their suitably chosen points set of 

2S( ,0,0...,0) , S( , ,0...,0) and S ( ,b,b...,b) levels with for   
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where unique solutions is obtained by defining    (3.4.1)  

chosen suitably for v factors so that . The equations obtained are satisfied if 

there exist a non-negative t forming a v-dimensional (k-1) GDTORD. 

All the unknown levels are determined by the moment conditions for a Group 

Divisible Third Order Rotatable Designs Anjaneyulu et al. (2004)) where the factors 

for  group is held constant and all odd order moment for group one equal to 

Zero. 

1: (i)    for   and  

    (ii)    for     and          

                (3.4.2) 

   (iii)   for   

2 :( a)(i)   for for ,  

               for  

     (b) (i)      for  for     

          (ii)   for   

(3)     for   

Non-singularity conditions 

3.  

       (3.4.3) 

4.  

The above summations are taken over all design points. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 Introduction 

This chapter presents the results and discussions for the study.  

4.1 Construction of GDTORD through BIBD in four dimensions 

Consider unreduced BIBD with parameters  

which is then split to form two groups of two factors each. Let  denotes the   

factor BIBD given as  

 

Where  

Then the number of blocks for a four factor BIBD is given as  

14

42

23

31

43

21

 

In this case we have four factors however we combine two factors each at a time. 

Associate combination of for two factors each at two levels is given as; 

1 1

1 1

1 1

1 1





   

Therefore every factor is varied in four number of ways. Six combinations each varied 

four times we have    

 design points by multiplication. 
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The Set for four factors is given by  

1 2 3 4

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a





 





 





 





 





 





                                              (4.1*) 

 

In the set above we have design points for both groups. 
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Rotating the p-factor group for a four factor BIBD 

The additional chosen sets of points for 2-factor group are; 

Set and  

1 2 3 4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

c

c

c

c

d

d

d

d

d

d

d

d











                (4.1**)

 

In a p-factor group the levels of (v-p) factors are all zeros. 

 Rotating the (v-p)-factor group for a four factor BIBD 

Set  and  additional sets of points for a 2 factor group are. 

 

1 2 3 4

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

c

c

c

c

d

d

d

d

d

d

d

d











                      (4.1***)

 

All the factors of p dimensions are denoted by zeroes. 
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An additional 2S was then added which gave an additional 32 design 

points so as to satisfy the symmetric conditions for Group Divisible Third Order 

Designs. 























































































bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

bbbb

               (4.1****)
 

 The total number of points is therefore given by; 

                                               

(4.1.1) 

From (3.2.2) we have the following equations from a p-factor group;  
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 From (3.2.2) we have the following equations generated from a (v-p)-factor group; 

  

  

  

  

  

We have same simultaneous equations for both groups for the above sets.  

                                                  (4.1.2) 

              (4.1.3) 

                                      (4.1.4) 

 

                                   

Solving the three equations simultaneously, we have  

(4.1.3)-7(4.1.4) given as  

                                                                (4.1.5) 

(4.1.3)-3(4.1.4) we have 

                                                             (4.1.6) 

From (4.1.2) we have 

  

Let  where  then equations are satisfied if there is a non-negative  such 

that a  gives a real solution. 



25 
 

  

        (4.1.7) 

 From (4.1.6) we have 

  

                                                                                           (4.1.8) 

Dividing the cube of (4.1.7) by the square of (4.1.8) we have 

  

  

  

  

         (4.1*****) 

Thus there exists a real solution t in the range  

Using (4.1*****) the following were obtained,   

  

  

  

  

Taking the square root in both sides we have  

  then 
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4.2 Construction of GDTORD through BIBD in five dimensions 

Consider unreduced BIBD with parameters  

where the  factors are divided into  factors for group one and  factors for group 

two. Let  denotes the   factor BIBD as shown, 

  

Where  

Where the  design plan of   blocks is given by; 

25

14

53

42

31

15

54

43

32

21

 

Associate combination of  is given by  

1 1

1 1

1 1

1 1





 

 

For ten combinations each varied four numbers of ways we have  

 Design points. 
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1 2 3 4 5

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a





 





 





 





 





 





 





 





 

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

a

a a

a a

a a

a a

a a

a a





 





                                                                                         

(4.2*)
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This gave 40 design points for both groups. 

Rotating the 2-factor group for a five factor BIBD 

The additional chosen sets of points for p-factor group are; 

Set and two sets of (d 0 0 0) p-factors 

( )

1 2 3 4 5

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

p factors v p factors

c

c

c

c

d

d

d

d

d

d

d

d













                                                 (4.2**)

 

Rotating the 3-factor group for a five factor BIBD 

The additional chosen sets of points for factor group are; 

Set and two sets of (d 0 0 0)  p-factors 
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1 2 3 4 5

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c

c

c

c

c

c

d

d

d

d

d

d

d

d

d

d

d

d



















                                                                                  (4.2***)

 

Another balanced subset of these sets of level  is added to provide a 

rotatable design.   

 Gave 32 points 

 Gave 64 points 
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b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b











 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

   

   b b

b b b b b

b b b b b

b b b b b

b b b b b



   

   

   

           (4.2****)

 

 gave 64 design points 

N= (4.2*) + (4.2**) + (4.2***) +2(4.2****) =134 design points        (4.2.1) 
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Utilizing the moment conditions given in (3.2.2) we have the following equations for a 

p-factor group, 

  

  

  

  

  

Utilizing the moment conditions given in (3.2.2) we have the following equations for a 

(v-p)-factor group, 

  

  

  

  

  

The p-factor group and the (v-p)-factor group had the same simultaneous equations. 

Therefore the Solutions for unknown constants are achieved by solving the 

simultaneous equations. 

  

                                       (4.2.2) 

  

                                                                   (4.2.3) 
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                                                                 (4.2.4) 

  

Solving the three equations simultaneously, we have 

(4.2.3)-7(4.2.4) 

  

                                                             (4.2.5) 

From (4.2.3)-4(4.2.4) we have 

                                                                                     (4.2.6) 

Substituting the value of  in (4.2.2) above we have 

  

  

  

Let  where  

  

  

  

                                                                                  (4.2.7) 

From (4.2.6) we have 

  

                                                                                                              

(4.2.8) 

Dividing the cube of (4.2.7) by the square of (4.2.8) we have 
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 and                                                                                   (4.2*****) 

Since  we take the value  

From equation (4.2*****) we obtained, 

  

  

  

4.3 GDTORD in k-factors 

Here a generalization of a GDTORD in k-factors was considered such that the non-

negative solution of  where   was achieved as shown below.  

 

4.4 Variance Sum Group Divisible Third order rotatable designs 

4.4.1 Variance Sum Group Divisible Third order rotatable designs in four 

dimensions 

From the 80 design points in (4.1.1) of a four dimensional GDTORD generated 

through BIB designs we got the moment matrix of a four dimensional GDTORD to be 

Moment matrix 
'1

M x x
N

  

Where 80N   design points 
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Let
1 2 3, 4, ,x x x x , be the factors in a four dimensional design where V =4 and 1 2,x x  

forms the p factor group whereas  3 4,x x  forms the (v-p) factor group. 

Following (3.3.2) , for the full third order model in four factors we have,  

1 2 3 4( ) [ ( ), ( ), ( ), ( )],t t t t tf x f x f x f x f x  

Where 2 2 2 2

1 1 2 3 4( ) (1, , , , ),tf x x x x x 2 1 2 1 3 1 4 2 3 2 4 3 4( ) ( , , , , , ),tf x x x x x x x x x x x x x

3 1 2 3 1 2 4 1 3 4 2 3 4( ) ( , , , ) andtf x x x x x x x x x x x x x
 

4 1 4( ) ( ( ),..., ( ))t t tf x g x g x Where 3 2 2 2

1 1 1 1 2 1 3 1 4( ) ( , , , , )tg x x x x x x x x x ,

3 2 2 2

2 2 2 2 1 2 3 2 4( ) ( , , , , )tg x x x x x x x x x 3 2 2 2

3 3 3 3 1 3 2 3 4( ) ( , , , , )tg x x x x x x x x x and 

3 2 2 2

4 4 4 4 1 4 2 4 3( ) ( , , , , )tg x x x x x x x x x
 

Thus for a third order design , from (3.3.3) the partitioned matrix of the moment 

matrix ( )M   is given by,

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

M M M M

M M M M
M

M M M M

M M M M

   

   


   

   

 
 
 
 
 
    

 

Where ( ) ( ) ( ) ( )t

ij i j

x

M f x f x dx   ( , 1,...,4)i j   corresponding to the partitioning of 

( ).tf x  Considering the symmetric designs matrix only, the inverse of ( )M  was 

obtained. For a symmetric design , ( )( )ijM i j   are null matrices thus ( )M   is 

reduced to a block diagonal matrix of 

11 22 33 44( ) { ( ), ( ), ( ), ( )}.M Diag M M M M     Note that for a symmetric 

design , 11 22 33 44( ), ( ), ( ), ( )M M M M    are diagonal matrices and further 44 ( )M  in 

itself is a block diagonal matrix given by
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44 ( )M  Diag
1

* *{ ( ),..., ( )},kM M 
       

 

where *( ) ( ) ( ) ( ) ( 1,..., ).t

i i i

x

M g x g x dx i k  
 

A block diagonal matrix in four factors becomes, 

11

22

33

44

( ) 0 0 0

0 ( ) 0 0
( )

0 0 ( ) 0

0 0 0 ( )

M

M
M

M

M










 
 
 
 
 
   

From (3.3.4)   we have, 

2 2 2 2

1 2 3 4

2 4 2 2 2 2 2 2
1 1 1 2 1 3 1 4

2 2 2 22 4 2 2 2 2
11 1 1 1 2 3 42 2 2 3 2 4

2 4 2 2
3 3 3 4

2 4
4 4

1 1

( ) ( ). ( ) 1 .

( )

t

x x x x

x x x x x x x x

M f x f x x x x xx x x x x x

x x x x

x symm x



  
  
  
         
  
     

 

2
4 4 2 4 2 4 2 4 2

2 2 2 2
4 2 4 2 4 2 4 2

1 2 2 2
11 4 2 4 2 4 22

4 2 4 2 2
4 2 4 2

2
4 24

1
11

8 2 2 2 2

3
1

( ) 3
[6 4 ][2 ]

3

3

16.2933 3.8040 3.8040 3.8040 3.8040

3.8040 1.4689 0.

( )

M

symm

M

        

       

      
  

   

 







    
 

    
 

    
  

  
  

   





7720 0.7720 0.7720

3.8040 0.7720 1.4689 0.7720 0.7720

3.8040 0.7720 0.7720 1.4689 0.7720

3.8040 0.7720 0.7720 0.7720 1.4689

 
 
 
 
 
 
  

 

 

1 2

1 3

1 4

22 2 2 1 2 1 3 1 4 2 3 2 4 3 4

2 3

2 4

3 4

( ) ( ). ( )t

x x

x x

x x
M f x f x x x x x x x x x x x x x

x x

x x

x x



 
 
 
 

   
 
 
 
  
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4

4

4

4

4

4

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

symm













 
 
 
 

  
 
 
 
  

 

 

22

0.7175 0 0 0 0 0

0 0.7175 0 0 0 0

0 0 0.7175 0 0 0
( )

0 0 0 0.7175 0 0

0 0 0 0 0.7175 0

0 0 0 0 0 0.7175

M 

 
 
 
 

  
 
 
 
   

 

4

4

41

22

4

4

4

1
0 0 0 0 0

1
0 0 0 0

1
0 0 0

( )
1

0 0

1
0

1

M

symm
















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1

22

1.3938 0 0 0 0 0

0 1.3938 0 0 0 0

0 0 1.3938 0 0 0
( )

0 0 0 1.3938 0 0

0 0 0 0 1.3938 0

0 0 0 0 0 1.3938

M 

 
 
 
 

  
 
 
 
   

1 2 3 6

1 2 4 6

33 1 2 3 1 2 4 1 3 4 2 3 4

1 3 4 6

2 3 4 6

0 0 0

0 0
( ) [ , , , ]=

0

( )

x x x

x x x
M x x x x x x x x x x x x

x x x

x x x symm










   
   
   
   
   
   

. 
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33

0.4000 0 0 0

0 0.4000 0 0
( )

0 0 0.4000 0

0 0 0 0.4000

M 

 
 
 
 
 
 

 

6

61

33

6

6

1
0 0 0

2.5000 0 0 01
0 0

0 2.5000 0 0
( )

1 0 0 2.5000 0
0

0 0 0 2.5000

1
( )

M

symm












 
 
 
   
   
    
   
   

  
 
 
 

 

 

44 4 4 44(1) 44(2) 44(3) 44(4)( ) ( ). ( ) ( ) ( ) ( ) ( )tM f x f x M M M M        
 from (3.3.4) 

1

3

1

3 2 2 22

44(1) 1 1 1 1 1 2 1 3 1 41 2

2

1 3

2

1 4

( ) ( ) ( )t

x

x

M g x g x x x x x x x x xx x

x x

x x



 
 
 

     
 
 
  

 
2 4 2 2 2 2 2 2

1 1 1 2 1 3 1 4

6 4 2 4 2 4 2

1 1 2 1 3 1 4

2 4 2 2 2 2 2 2

1 2 1 2 3 1 2 4

2 4 2 2 2

1 3 1 3 4

2 4

1 4

x x x x x x x x

x x x x x x x

x x x x x x x x

x x x x x

symm x x

 
 
 
 
 
 
 
 

2 4 4 4 4

6 6 6 6

6 6 6

6 6

6

3

15 3 3 3

3

3

3symm

    

   

  

 



 
 
 
 
 
 
    

 44 1

1.0051 2.1524 0.7175 0.7175 0.7175

2.1524 6.0000 1.2000 1.2000 1.2000

( ) 0.7175 1.2000 1.2000 0.4000 0.4000

0.7175 1.2000 0.4000 1.2000 0.4000

0.7175 1.2000 0.4000 0.4000 1.2000

M 

 
 
 
 
 
 
    

2
6 6 4 6 4 6 4 6 4

2 2 2 2
6 2 4 4 6 2 4 6 2 4 6 2

1 2 2 2
44 6 2 4 4 6 2 4 6 2

2 2
6 2 4 4 6 2

2
6 2 4

36 6 6 6 6

3 3( ) 3( ) 3( )
1

( ) 15 9 3( ) 3( )

15 9 3( )

15 9

M
K

symm

        

           

         

     

  



    
 

    
 

    
 

  
    
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Where K is the determinant of (3.3.1) 

K 2

6 6 2 4[6 ][8 6 ]      

 
1

44 1

25.0824 5.6237 5.6239 5.6239 5.6239

5.6237 1.5213 1.1047 1.1047 1.1047

( ) 5.6239 1.1047 2.3547 1.1047 1.1047

5.6239 1.1047 1.1047 2.3547 1.1047

5.6239 1.1047 1.1047 1.1047 2.3547

M 

    
 

 
  
 
 
  

  

The design space is divided into the p- factor and (v-p) factor space satisfying 

and with the corresponding variances  ˆ[ ( )]iV y x  and 

 ˆ[ ( )]jV y x respectively, thus the design is called a Variance-Sum Group Divisible 

third order rotatable design 

Determining the Variance  ˆ[ ( )]iVar y x  for p dimensional space 

 For a symmetric design ( )M  , from (3.3.3)  it is seen that variances for 2-factor 

group is given as, 

2 2

1 2

2 2 2 4 2 2

11 1 1 1 1 2 1 1 2

2 4

2 2

1 1

( ) ( ). ( ) 1 .

( )

t

x x

M f x f x x x x x x x

x symm x



  
          
     

 

11

1.0000 1.0051 1.0051

( ) 1.0051 2.1524 0.7175

1.0051 0.7175 2.1524

M 

 
 


 
     generated by a MATLAB software.

 

1
11

3.3780 1.1830 1.1830

( ) 1.1830 0.9370 0.2401

1.1830 0.2401 0.9370

M 

  
 

 
 
  

 

   2 2

22 2 2 1 2 1 2 1 2( ) ( ). ( )tM f x f x x x x x x x        
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22 ( )M  =
0.7175 0

0 0

 
 
 

 

1

22 ( )M  
1.3938 0

0 0

 
 
 

 

2 4 2 2

1 1 1 1 2

3 3 2 6 4 2

44(1) 1 1 1 1 1 1 2 1 1 2

2 2 4

1 2 1 2

( ) ( ) ( )t

x x x x x

M g x g x x x x x x x x x

x x symm x x



  
          
     

 

2 4 4

6 6

6

3

15 3

3symm

  

 



 
 


 
  

 

44(1)

1.0051 2.1524 0.7175

( ) 2.1524 6.0000 1.2000

0.7175 1.2000 1.2000

M 

 
 


 
  

 

1
44(1)

6.7973 2.0320 2.0321

( ) 2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

M 

  
 

 
 
  

 

2 4 2 2

2 2 2 2 1

3 3 2 6 4 2

44(2) 2 2 2 2 2 2 1 2 2 1

2 2 4

2 1 2 1

( ) ( ) ( )t

x x x x x

M g x g x x x x x x x x x

x x symm x x



  
          
     

 

2 4 4

6 6

6

3

15 3

3symm

  

 



 
 


 
  

 

44(2)

1.0051 2.1524 0.7175

( ) 2.1524 6.0000 1.2000

0.7175 1.2000 1.2000

M 

 
 


 
  

 

1
44(2)

6.7973 2.0320 2.0321

( ) 2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

M 

  
 

 
 
  
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From (3.3.7)   we had, 

   2 2 2

11 1 2 1

2

2

3.3780 1.1830 1.1830 1

1 1.1830 0.9370 0.2401

1.1830 0.2401 0.9370

V x x x

x



    
   

 
   
      

 

 Let  1

11 ( )M  be represented by

a b b

b c d

b d c

 
 
 
  

such that 

   2 2 2

11 1 2 1

2

2

1

1

a b b

V x x b c d x

b d c x



   
   

 
   
      

 

 

2 2 2 2 2 2 2

1 2 1 2 1 2 1

2

1

1

a bx bx b cx dx b dx cx x

x

 
          
  

 

  2 2 4 4 2 2

11 1 2 1 2 1 23.3780 2.3660 2.3660 0.9370 0.9370 0.4802V x x x x x x          

1

22 2 222  [ (( ) )]V f fM     

     22 1 2 1 2

1.3938 0

0 0
V x x x x

 
  

 
 

Let  1

22 ( )M  be represented by
0

0 0

n 
 
 

such that 

     22 1 2 1 2

1.3938 0

0 0
V x x x x

 
  

 
 

  2 2

22 1 21.3938V x x      

' 1

1 44(1)44(1 1)  g  [ ( )]( ) gV M     
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 
1

3 2 3

44(1) 1 1 1 2 1

2

1 2

6.7973 2.0320 2.0321

2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

x

V x x x x x

x x



    
          
      

 

 Let  1

44(1) ( )M  be represented by

e f g

f h k

g k l

 
 
 
  

such that 

 
1

3 3 2

44(1) 1 1 1 1 2

2

1 2

x e f g

V x f h k x x x x

x x g k l



   
          
      

 

 
1

3 2 3 2 3 2 3

44(1) 1 1 1 2 1 1 1 2 1 1 1 2 1

2

1 2

x

V ex fx gx x fx hx kx x gx kx lx x x

x x



 
           
  

 

  2 4 6 2 2 4 2 2 4

44(1) 1 1 1 1 2 1 2 1 26.7973 4.0640 0.8158 4.0642 0.7984 1.6492V x x x x x x x x x        

 

' 1

2 44(2)44(2 2)  g  [ ( )]( ) gV M     

 
2

3 2 3

44(2) 2 2 2 1 2

2

2 1

6.7973 2.0320 2.0321

2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

x

V x x x x x

x x



    
          
      

 

 Let  1

44(2) ( )M  be represented by

e f g

f h k

g k l

 
 
 
  

such that 

 
2

3 2 3

44(2) 2 2 2 1 2

2

2 1

e f g x

V x x x x f h k x

g k l x x



   
          
      

 

 
1

3 2 3 2 3 2 3

44(2) 2 2 2 1 2 2 2 1 2 2 2 1 1

2

1 2

x

V ex fx gx x fx hx kx x gx kx lx x x

x x



 
           
  
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  2 4 6 2 2 4 2 2 4

44(2) 2 2 2 2 1 2 1 2 16.7973 4.0640 0.8158 4.0642 0.7984 1.6492V x x x x x x x x x        

 

From (3.3.8)   we have the variance  
2

1

ˆ[ ( )] ( )i iV y x V x  

 
2

1

ˆ[ ( )] ( )i iV y x V x 
2 2 4 4 2 2

1 2 1 2 1 23.3780 2.3660 2.3660 0.9370 0.9370 0.4802x x x x x x     + 2 2

1 21.3938x x +

2 4 6 2 2 4 2 2 4

1 1 1 1 2 1 2 1 26.7973 4.0640 0.8158 4.0642 0.7984 1.6492x x x x x x x x x      
2 4 6 2 2 4 2 2 4

2 2 2 2 1 2 1 2 16.7973 4.0640 0.8158 4.0642 0.7984 1.6492x x x x x x x x x         

Summing the above variances we get expression which is a function of 

1 2

2 2 4 2 4 2

1 2 1 2

2 2

2 1, , ,, x x x xx x x x   
 

In order to achieve the variance in GDTORD, the variance should be a function 

of
1 2

2 2,x x  only. Therefore we need to cancel the 

interactions 1 2

2 2 4 2 4 2

1 2 2 1, ,x x x x x x  
 

We get all the above interactions be equated to zero so as to have functions 

of 1 2

2 2,x x  only. Then from (3.3.11) we had, 

   2 2 4 6 2 4 6

0 1 1 1 2 2 2
ˆ[ ( )] 3.3780 4.4313 3.1270 .8158 4.4313 3.1270 .8158iV y x x x x x x x x      

 

Let  such that 

 ˆ[ ( )]iV y x = f ( ) only. 
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Determining the Variance  ˆ[ ( )]jVar y x  for (v-p) dimensional space 

For a symmetric design ( )M  , it is seen that variances for (v-p)-factor group as 

from (3.3.3)   as generated through the help of a MATLAB software were, 

2 2

3 4

2 2 2 4 2 2

11 1 1 3 3 4 3 3 4

2 4

4 4

1 1

( ) ( ). ( ) 1 .

( )

t

x x

M f x f x x x x x x x

x symm x



  
          
     

 

11

1.0000 1.0051 1.0051

( ) 1.0051 2.1524 0.7175

1.0051 0.7175 2.1524

M 

 
 


 
  

 

1
11

3.3780 1.1830 1.1830

( ) 1.1830 0.9370 0.2401

1.1830 0.2401 0.9370

M 

  
 

 
 
  

 

   2 2

22 2 2 3 4 3 4 3 4( ) ( ). ( )tM f x f x x x x x x x        

22 ( )M  =
0.7175 0

0 0

 
 
 

 

1

22 ( )M  
1.3938 0

0 0

 
 
 

 

2 4 2 2

3 3 3 3 4

3 3 2 6 4 2

44(3) 1 1 3 3 3 3 4 3 3 4

2 2 4

3 4 3 4

( ) ( ) ( )t

x x x x x

M g x g x x x x x x x x x

x x symm x x



  
          
     

 

2 4 4

6 6

6

3

15 3

3symm

  

 



 
 


 
  
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44(3)

1.0051 2.1524 0.7175

( ) 2.1524 6.0000 1.2000

0.7175 1.2000 1.2000

M 

 
 


 
  

 

1
44(3)

6.7973 2.0320 2.0321

( ) 2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

M 

  
 

 
 
  

 

2 4 2 2

4 4 4 4 3

3 3 2 6 4 2

44(4) 1 1 4 4 4 4 3 4 4 3

2 2 4

4 3 4 3

( ) ( ) ( )t

x x x x x

M g x g x x x x x x x x x

x x symm x x



  
          
     

 

2 4 4

6 6

6

3

15 3

3symm

  

 



 
 


 
  

 

44(4)

1.0051 2.1524 0.7175

( ) 2.1524 6.0000 1.2000

0.7175 1.2000 1.2000

M 

 
 


 
  

 

1
44(4)

6.7973 2.0320 2.0321

( ) 2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

M 

  
 

 
 
  

 

From (3.3.6)   we have, 

   2 2 2

11 3 4 3

2

4

3.3780 1.1830 1.1830 1

1 1.1830 0.9370 0.2401

1.1830 0.2401 0.9370

V x x x

x



    
   

 
   
      

 

 Let  1

11 ( )M  be represented by

a b b

b c d

b d c

 
 
 
  

such that 

   2 2 2

11 3 4 3

2

4

1

1

a b b

V x x b c d x

b d c x



   
   

 
   
      
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2 2 2 2 2 2 2

3 4 3 4 3 4 3

2

4

1

a bx bx b cx dx b dx cx x

x

 
          
  

 

  2 2 4 4 2 2

11 3 4 3 4 3 43.3780 2.3660 2.3660 .9370 .9370 .4802V x x x x x x          

From (3.3.9) we had,
 

     22 3 4 3 4

1.3938 0

0 0
V x x x x

 
  

 
 

Let  1

22 ( )M  be represented by
0

0 0

n 
 
 

such that 

     22 3 4 3 4

1.3938 0

0 0
V x x x x

 
  

 
 

  2 2

22 3 41.3938V x x      

' 1

344 4 ) 33) 4((3  [ ( )]( ) g M gV     

 
3

3 2 3

44(3) 3 3 3 4 3

2

3 4

6.7973 2.0320 2.0321

2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

x

V x x x x x

x x



    
          
      

 

 Let  1

44(3) ( )M  be represented by

e f g

f h k

g k l

 
 
 
  

such that 

 
3

3 3 2

44(3) 3 3 3 3 4

2

3 4

x e f g

V x f h k x x x x

x x g k l



   
          
      
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 
3

3 2 3 2 3 2 3

44(3) 3 3 3 4 3 3 3 4 3 3 3 4 3

2

3 4

x

V ex fx gx x fx hx kx x gx kx lx x x

x x



 
           
  

 

  2 4 6 2 2 4 2 2 4

44(3) 3 3 3 3 4 3 4 3 46.7973 4.0640 .8158 4.0642 .7984 1.6492V x x x x x x x x x          

' 1

444 4 ) 44) 4((4  [ ( )]( ) g M gV     

 
4

3 2 3

44(4) 4 4 4 3 4

2

4 3

6.7973 2.0320 2.0321

2.0320 0.8158 0.3992

2.0321 0.3992 1.6492

x

V x x x x x

x x



    
          
      

 

 Let  1

44(4) ( )M  be represented by

e f g

f h k

g k l

 
 
 
  

such that 

 
4

3 3 2

44(4) 4 4 4 4 3

2

4 3

x e f g

V x f h k x x x x

x x g k l



   
          
      

 

 
4

3 2 3 2 3 2 3

44(4) 4 4 4 3 4 4 4 3 4 4 4 3 4

2

4 3

x

V ex fx gx x fx hx kx x gx kx lx x x

x x



 
           
    

  2 4 6 2 2 4 2 2 4

44(4) 4 4 4 4 3 4 3 4 36.7973 4.0640 .8158 4.0642 .7984 1.6492V x x x x x x x x x          

From (3.3.8)  the variance  
4

3

ˆ[ ( )] ( )j jV y x V x  

 
4

3

ˆ[ ( )] ( )j jV y x V x  2 2 4 4 2 2

3 4 3 4 3 42 2 2a bx bx cx cx dx x     + 2 2

3 4nx x +

2 4 6 2 2 4 2 2 4

3 3 3 3 4 3 4 3 42 2 2ex fx hx gx x kx x lx x     + 2 4 6 2 2 4 2 2 4

4 4 4 4 3 4 3 4 32 2 2ex fx hx gx x kx x lx x      
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Summing the above variances we get expression which is a function of 

2 2 4 4

3 4 3 4 3

2

4

2 2 2

3 4, , , ,x x xx x x x x   
 

In order to achieve the variance in GDTORD, the variance should be a function 

of
3 4

2 2,x x  only. Therefore we need to cancel the 

interactions 3 3

2 2 4 2 4 2

3 4 4 4, ,x x x x x x  
 

We get all the above interactions be equated to zero so as to have functions 

of
3 4

2 2,x x  only. Then from (3.3.12) we had, 

   2 2 4 6 2 4 6

0 3 3 3 4 4 4
ˆ[ ( )] 3.3780 4.4313 3.1270 .8158 4.4313 3.1270 .8158jV y x x x x x x x x      

 

Let  such that 

 ˆ[ ( )]jV y x = f ( ) only 

With variances for the two groups being 

V( ŷ ( ))=σ
2

f  ( )( 'X X)-1  if x
 

   2 2 4 6 2 4 6

0 1 1 1 2 2 2
ˆ[ ( )] 3.3780 4.4313 3.1270 .8158 4.4313 3.1270 .8158iV y x x x x x x x x      

 

 ˆ[ ( )]iV y x = f ( )  

V( ŷ ( ))=σ
2

f  ( )( 'X X1)-1  jf x
 

   2 2 4 6 2 4 6

0 3 3 3 4 4 4
ˆ[ ( )] 3.3780 4.4313 3.1270 .8158 4.4313 3.1270 .8158jV y x x x x x x x x      

 

 ˆ[ ( )]jV y x = f ( ) 
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At the point xχ the predicted response is  

V( ŷ (x))= f   (x) ̂  

The variance-sum  is as shown 

   

 

2 2 4 6 2 4 6

0 1 1 1 2 2 2

2 2 4 6 2 4 6

0 3 3 3 4 4 4

ˆ[ ( ] 3.3780 4.4313 3.1270 .8158 4.4313 3.1270 .8158

3.3780 4.4313 3.1270 .8158 4.4313 3.1270 .8158

V y x x x x x x x x

x x x x x x x

       

     

 

,  

Thus the variance Sum is the function of distances only. 

 is the distances of the projections of the points in p dimensional and (v – p) 

dimensional spaces respectively from a suitable origin. The variance   is a 

function of distance  and variance   is a function of distance  from the 

design origin. Thus the considered response surface is a Variance - Sum Group 

Divisible Third Order Rotatable Designs in four dimensions.  

4.4.2 Variance Sum Group Divisible Third order rotatable designs in five 

dimensions 

Moment matrix for five factors 

From the 134 design points of a five dimensional GDTORD constructed through BIB 

designs we got the moment matrix of a five dimensional GDTORD to be 

Moment matrix 
'1

134
M x x  

Where 134N   design points 
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Let 1 2,x x  be the p factor group 3 4,x x and 5x  be the  v p  factor group, from (3.3.1)   

we have for the full third order model in five factors as, 

           1 2 3 4 5, , , ,t t t t t tf x f x f x f x f x f x   

Where 

   2 2 2 2 2

1 1 2 3 4 51, , , , ,tf x x x x x x  

   2 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5

tf x x x x x x x x x x x x x x x x x x x x x  

   3 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

tf x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

 

   3 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

tf x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

 

   4 1 2 3 4 1 2 4 5 1 3 4 5 2 3 4 5

tf x x x x x x x x x x x x x x x x x  

      

   

5 1 5

3 2 2 2 2

1 1 1 1 2 1 3 1 4 1 5

,...,t t t

t

f x g x g x

g x x x x x x x x x x x




 

   3 2 2 2 2

2 2 2 2 1 2 3 2 4 2 5

tg x x x x x x x x x x x  

   3 2 2 2 2

3 3 3 3 1 3 2 3 4 3 5

tg x x x x x x x x x x x  

   3 2 2 2 2

4 4 4 4 1 4 2 4 3 4 5

tg x x x x x x x x x x x  

   3 2 2 2 2

5 5 5 5 1 5 2 5 3 5 4

tg x x x x x x x x x x x  

         1 2 3 4 5

t t t t tg x g x g x g x g x     

   '1
M x x

N
  is a moment matrix configuration of N points in a v dimensional 

factor space. 

For a design to be rotatable  1 'N x x must be satisfied 

Where N  is the total number of design points in a five dimensional factor space. 

Then from (3.3.2)   we have the moment matrix as,  
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 

         
         
         
         
         

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

M M M M M

M M M M M

M M M M M M

M M M M M

M M M M M

    

    

     

    

    

 
 
 
 
 
 
 
 

 

For a symmetric design  M  is reduced to a diagonal matrix only. 

 

 
 

 
 

 

11

22

33

44

55

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

M

M

M M

M

M





 





 
 
 
 
 
 
 
   

From (3.3.6)   we have, 

2 2 2 2 2

1 2 3 4 5

2 4 2 2 2 2 2 2 2 2
1 1 1 2 1 3 1 4 1 5

2 4 2 2 2 2 2 2
2 2 2 2 2 2 2 2 3 2 4 2 5

11 1 1 1 2 3 4 52 4 2 2 2 2
3 3 3 4 3 5

2 4 2 2
4 4 4 5

2 4
5 5

1 1

( ) ( ). ( ) 1 .

( )

t

x x x x x

x x x x x x x x x x

x x x x x x x x
M f x f x x x x x x

x x x x x x

x symm x x x

x x



  
  
  
  

        
  
  
  

      

 

2 2 2 2 2

4 4 4 4 4

4 4 4 4

4 4 4

4 4

4

1

3

3

3

( ) 3

3

symm

    

    

   

  

 



 
 
 
 

  
 
 
 
  

 

11

1.0000 1.0199 1.0199 1.0199 1.0199 1.0199

1.0199 2.3355 0.7785 0.7785 0.7785 0.7785

1.0199 0.7785 2.3355 0.7785 0.7785 0.7785
( )

1.0199 0.7785 0.7785 2.3355 0.7785 0.7785

1.0199 0.7785 0.7785 0.7785 2.3355 0.7785

1.0199 0.7785 0

M  

.7785 0.7785 0.7785 2.3355

 
 
 
 
 
 
 
 
 
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2
4 4 2 4 2 4 2 4 2 4 2

2 2 2 2 2
4 2 4 2 4 2 4 2 4 2

2 2 2 2
4 2 4 2 4 2 4 21

11 2 2 2 2
4 2 4 4 2 4 2 4 2

2 2
4 2 4 2

2
4 2

1
11

8 2 2 2 2 2

3

31
( )

[6 4 ][2 ] 3

3

3

21.9600 4.

( )

M

symm

M

          

         

       


        

   

 







     
 

     
 

    
  

    
  
 
  





1101 4.1101 4.1101 4.1101 4.1101

4.1101 1.3198 0.6775 0.6775 0.6775 0.6775

4.1101 0.6775 1.3198 0.6775 0.6775 0.6775

4.1101 0.6775 0.6775 1.3198 0.6775 0.6775

4.1101 0.6775 0.6775 0.6775 1.3198 0.6775

4.1101 0.6775 0.6775 0

   









 .6775 0.6775 1.3198

 
 
 
 
 
 
 
 
  

 

 

1 2

1 3

1 4

1 5

2 3

22 2 2 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5

2 4

2 5

3 4

3 5

4 5

( ) ( ). ( )t

x x

x x

x x

x x

x x
M f x f x x x x x x x x x x x x x x x x x x x x x

x x

x x

x x

x x

x x



 
 
 
 
 
 
 

   
 
 
 
 
 
 
  

 

4

4

4

4

4

4

4

4

4

4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

symm





















 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 

 



52 
 

22

0.7785 0 0 0 0 0 0 0 0 0

0.7785 0 0 0 0 0 0 0 0

0.7785 0 0 0 0 0 0 0

0.7785 0 0 0 0 0 0

0.7785 0 0 0 0 0
( )

0.7785 0 0 0 0

0.7785 0 0 0

0.7785 0 0

0.7785 0

0.7785

M
symm



 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 

1

22

1.2845 0 0 0 0 0 0 0 0 0

1.2845 0 0 0 0 0 0 0 0

1.2845 0 0 0 0 0 0 0

1.2845 0 0 0 0 0 0

1.2845 0 0 0 0 0
( )

1.2845 0 0 0 0

1.2845 0 0 0

1.2845 0 0

1.2845 0

1.2845

M
symm



 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 

 

 



53 
 

1 2 3

1 2 4

1 2 5

1 3 4

1 3 5

33 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

1 4 5

2 3 4

2 3 5

2 4 5

3 4 5

6

6

6

6

( ) [ ]

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

( )

=

x x x

x x x

x x x

x x x

x x x
M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x

x x x

x x x

x x x

x x x

symm











 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

6

6

6

6

6

6

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0













 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

33

0.4776 0 0 0 0 0 0 0 0 0

0.4776 0 0 0 0 0 0 0 0

0.4776 0 0 0 0 0 0 0

( ) 0.4776 0 0 0 0 0 0

0.4776 0 0 0 0 0
( )=

0.4776 0 0 0 0

0.4776 0 0 0

0.4776 0 0

0.4776 0

0.4776

symm

M 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

1

33

2.0938 0 0 0 0 0 0 0 0 0

2.0938 0 0 0 0 0 0 0 0

2.0938 0 0 0 0 0 0 0

( ) 2.0938 0 0 0 0 0 0

2.0938 0 0 0 0 0
( )=

2.0938 0 0 0 0

2.0938 0 0 0

2.0938 0 0

2.0938 0

2.0938

symm

M 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 



54 
 

44

0.4776 0 0 0 0

0 0.4776 0 0 0

( ) 0 0 0.4776 0 0

0 0 0 0.4776 0

0 0 0 0 0.4776

M 

 
 
 
 
 
 
  

 

 

1

44

2.0938 0 0 0 0

0 2.0938 0 0 0

( ) 0 0 2.0938 0 0

0 0 0 2.0938 0

0 0 0 0 2.0938

M 

 
 
 
 
 
 
  

 

 

51

1.0199 2.3355 0.7785 0.7785 0.7785 0.7785

2.3355 7.1643 1.4328 1.4328 1.4328 1.4328

0.7785 1.4328 1.4328 0.4776 0.4776 0.4776
( )

0.7785 1.4328 0.4776 1.4328 0.4776 0.4776

0.7785 1.4328 0.4776 0.4776 1.4328 0.4776

0.7785 1.4328 0

M  

.4776 0.4776 0.4776 1.4328

 
 
 
 
 
 
 
 
 

 

1

51

30.2992 5.4873 5.4874 5.4874 5.4874 5.4874

5.4873 1.2264 0.8775 0.8775 0.8775 0.8775

5.4874 0.8775 1.9244 0.8775 0.8775 0.8775
( )

5.4874 0.8775 0.4776 1.9244 0.8775 0.8775

5.4874 0.8775 0.8775 0.8775 1.9244 0.8775

M 

    










5.4874 0.8775 0.8775 0.8775 0.8775 1.9244

 
 
 
 
 
 
 
 
 

 

From (3.3.4) we have 51 52 53 54 55( ) ( ) ( ) ( ) ( )M M M M M       
 

Determining the Variance  ˆ[ ( )]iVar y x  for p dimensional space 

For a symmetric design ( )m  , from (3.3.3) it is seen that variances for 2-factor group 

is given as, 
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From (3.3.6)   we have, 
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5.7472 3.1226 0.5986

i iV y x V x x x x x x x

x x x x x x x x x x x

x x x

         

           

   



2 2 4 2 2 4

2 1 2 1 2 13.1226 0.4994 1.2965x x x x x x   

Summing the above variances we get expression which is a function of
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In order to achieve the variance in GDTORD, the variance should be a function 

of
1 2

2 2,x x  only. Therefore we need to cancel the 

interactions 1 2

2 2 4 2 4 2

1 2 2 1, ,x x x x x x  
 

We get all the above interactions be equated to zero so as to have functions 
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Determining Variance  ˆ[ ( )]jV y x  for (v-p) dimensional space 

For a symmetric design ( )M  , from (3.3.3)  it is seen that variance for (v-p)-factor 

group is given as, 

2 2 2

3 4 5

2 4 2 2 2 2
3 2 2 2 3 3 4 3 5

11 1 1 3 4 52 4 2 2
4 4 4 5

2 4
5 5

1 1

( ) ( ). ( ) 1 .
( )

t

x x x

x x x x x x
M f x f x x x x

x symm x x x

x x



  
  
          
  
    

 

11

1.0000 1.0199 1.0199 1.0199

1.0199 2.3355 0.7785 0.7785
( )

1.0199 0.7785 2.3355 0.7785

1.0199 0.7785 0.7785 2.3355

M 

 
 
 
 
 
 

 

1
11

5.0441 1.3217 1.3217 1.3217

1.3217 0.8601 0.2179 0.2179
( )

1.3217 0.2179 0.8601 0.2179

1.3217 0.2179 0.2179 0.8601

M 

   
 

 
 
 
 

 

 
3 4

22 2 2 3 5 3 4 3 5 4 5

4 5

( ) ( ). ( )t

x x

M f x f x x x x x x x x x

x x



 
 

 
 
  

 

22 ( )M  =

0.7785 0 0

0 0.7785 0

0 0 0.7785

 
 
 
  

 

1

22

1.2845 0 0

( ) 0 1.2845 0

0 0 1.2845

M 

 
 


 
  

 

   2 2 2

33 3 4 5 3 4 5 3 4 5( )M x x x x x x x x x       
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33

0.4776 0
( )

0 0
M 

 
  
 

 

1

33

2.0938 0
( )

0 0
M   

  
 

 

2 4 2 2 2 2
3 3 3 3 4 3 5

3 6 4 2 4 2
3 3 2 2 3 3 4 3 5

55(3) 3 3 3 3 3 4 3 52 2 4 2 2 2
3 4 3 4 3 4 5

2 2 4
3 5 3 5

( ) ( ) ( )t

x x x x x x x

x x x x x x
M g x g x x x x x x x

x x symm x x x x x

x x x x



  
  
          
  
    

 

2 4 4 4

6 6 6

6 6

6

3

15 3 3

3

3

symm

   

  

 



 
 
 
 
 
 

 

55(3)

1.0199 2.3355 0.7785 0.7785

2.3355 7.1643 1.4328 1.4328
( )

0.7785 1.4328 1.4328 0.4776

0.7785 1.4328 0.4776 1.4328

M 

 
 
 
 
 
 

 

1
55(3)

8.8050 2.0502 2.0503 2.0503

2.0502 0.6768 0.3279 0.3279
( )

2.0503 0.3279 1.3747 0.3279

2.0503 0.3279 0.3279 1.3747

M 

   
 

 
 
 
 

 

2 4 2 2 2 2
4 4 4 4 3 4 5

3 6 4 2 4 2
4 3 2 2 4 4 3 4 5

55(4) 4 4 4 4 4 3 4 52 2 4 2 2 2
4 3 4 3 4 3 5

2 2 4
4 5 4 5

( ) ( ) ( )t

x x x x x x x

x x x x x x
M g x g x x x x x x x

x x symm x x x x x

x x x x



  
  
          
  
    

 

2 4 4 4

6 6 6

6 6

6

3

15 3 3

3

3

symm

   

  

 



 
 
 
 
 
 
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55(4)

1.0199 2.3355 0.7785 0.7785

2.3355 7.1643 1.4328 1.4328
( )

0.7785 1.4328 1.4328 0.4776

0.7785 1.4328 0.4776 1.4328

M 

 
 
 
 
 
 

 

1
55(4)

8.8050 2.0502 2.0503 2.0503

2.0502 0.6768 0.3279 0.3279
( )

2.0503 0.3279 1.3747 0.3279

2.0503 0.3279 0.3279 1.3747

M 

   
 

 
 
 
 

 

2 4 2 2 2 2
5 5 5 5 3 5 4

3 6 4 2 4 2
5 3 2 2 5 5 3 5 4

55(5) 5 5 5 5 5 3 5 42 2 4 2 2 2
5 3 5 3 5 3 4

2 2 4
5 4 5 4

( ) ( ) ( )t

x x x x x x x

x x x x x x
M g x g x x x x x x x

x x symm x x x x x

x x x x



  
  
          
  
    

 

2 4 4 4

6 6 6

6 6

6

3

15 3 3

3

3

symm

   

  

 



 
 
 
 
 
 

 

 

1
55(5)

8.8050 2.0502 2.0503 2.0503

2.0502 0.6768 0.3279 0.3279
( )

2.0503 0.3279 1.3747 0.3279

2.0503 0.3279 0.3279 1.3747

M 

   
 

 
 
 
 

 

From (3.3.6)  we have 

   
2

32 2 2

11 3 4 5 2

4

2

5

15.0441 1.3217 1.3217 1.3217

1.3217 0.8601 0.2179 0.2179
1

1.3217 0.2179 0.8601 0.2179

1.3217 0.2179 0.2179 0.8601

x
V x x x

x

x



     
  


  
  
  

   

 

 Let  1

11 ( )M  be represented by

a b b b

b c d d

b d c d

b d d c

 
 
 
 
 
 

such that 
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   
2

32 2 2

11 3 4 5 2

4

2

5

1

1

a b b b

xb c d d
V x x x

xb d c d

xb d d c



  
  
  
  
  

   

 

 

=

2

32 2 2 2 2 2 2 2 2 2 2 2

3 4 5 3 4 5 3 4 5 3 4 5 2

4

2

5

1

x
a bx bx bx b cx dx dx b dx cx dx b dx dx cx

x

x

 
 
                
 
 

 

  2 4 2 2 2 2

11 3 3 3 4 3 5

2 4 2 2 2 4

4 4 4 5 5 5

5.0441 2.6434 0.8601 0.4358 0.4358

2.6434 0.8601 0.4358 2.6434 0.8601

V x x x x x x

x x x x x x



 
 

     
      

 

1

22 2 222  [ (( ) )]V f fM     

   
3 4

22 3 4 3 5 4 5 3 5

4 5

1.2845 0 0

0 1.2845 0

0 0 1.2845

x x

V x x x x x x x x

x x



   
   


   
      

 

Let  1

22 ( )M  be represented by

0 0

0 0

0 0

n

n

n

 
 
 
  

such that 

   
3 4

22 3 4 3 5 4 5 3 5

4 5

0 0

0 0

0 0

n x x

V x x x x x x n x x

n x x



   
   


   
      

 

  2 2 2 2 2 2

22 3 4 3 5 4 51.2845 1.2845 1.2845V x x x x x x       

1

33 3 333  [ (( ) )]V f fM     
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   33 3 4 5 3 4 5

2.0938 0
( )

0 0
V x x x x x x

 
  

 
 

Let  1

33 ( )M  be represented by
0

0 0

p 
 
 

such that 

   33 3 4 5 3 4 5

0
( )

0 0

p
V x x x x x x

 
  

 
 

2 2 2

33 3 4 5( ) 2.0938V x x x      

' 1

355 5 ) 33) 5((3  [ ( )]( ) g M gV     

 

3

3

33 2 2

55(3) 3 3 3 4 3 5 2

3 4

2

3 5

8.8050 2.0502 2.0503 2.0503

2.0502 0.6768 0.3279 0.3279

2.0503 0.3279 1.3747 0.3279

2.0503 0.3279 0.3279 1.3747

x

x
V x x x x x x

x x

x x



     
  


        
  

   

 

 Let  1

55(3) ( )M  be represented by

e f g g

f h k k

g k l k

g k k l

 
 
 
 
 
 

such that 

 

3

3

33 2 2

55(3) 3 3 3 4 3 5 2

3 4

2

3 5

xe f g g

xf h k k
V x x x x x x

x xg k l k

x xg k k l



  
  
        
  

   

 

3 2 2 2 2 6

3 3 3 4 3 5 3

4 2 4 2 2 4 2 4 2 2 2

3 4 3 5 3 4 3 5 3 4 5

8.8050 4.1004 4.1006 4.1006 0.6768

0.6558 0.6558 1.3747 1.3747 2

x x x x x x x

x x x x x x x x x x x

    

    
 

Cancelling all the interactions by equating them to zero we have, 

  3 6

55(3) 3 3 3( 2 )V ex fx hx     
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' 1

4 55(4)55(4) 4 [( ) ( )]gV M g   

 

4

3

43 2 2

55(4) 4 4 4 3 4 5 2

4 3

2

4 5

8.8050 2.0502 2.0503 2.0503

2.0502 0.6768 0.3279 0.3279

2.0503 0.3279 1.3747 0.3279

2.0503 0.3279 0.3279 1.3747

x

x
V x x x x x x

x x

x x



     
  


        
  

   

 

 Let  1

55(4) ( )M  be represented by

e f g g

f h k k

g k l k

g k k l

 
 
 
 
 
 

such that 

 

4

3

43 2 2

55(4) 4 4 4 3 4 5 2

4 3

2

4 5

xe f g g

xf h k k
V x x x x x x

x xg k l k

x xg k k l



  
  
        
  

   

 

  3 2 2 2 2 6

55(4) 4 4 4 3 4 5 4

4 2 4 2 2 4 2 4 2 2 2

4 3 4 5 4 3 4 5 4 3 5

8.8050 4.1004 4.1006 4.1006 0.6768

0.6558 0.6558 1.3747 1.3747 2

V x x x x x x x

x x x x x x x x x x x

     

    
 

Cancelling all the interactions by equating them to zero we have, 

  3 6

55(4) 4 4 4(8.8050 4.1004 0.6768 )V x x x     

' 1

555 5 ) 55) 5((5  [ ( )]( ) g M gV     

 

5

3

53 2 2

55(5) 5 5 5 3 5 4 2

5 3

2

5 4

8.8050 2.0502 2.0503 2.0503

2.0502 0.6768 0.3279 0.3279

2.0503 0.3279 1.3747 0.3279

2.0503 0.3279 0.3279 1.3747

x

x
V x x x x x x

x x

x x



     
  


        
  

   

 

 Let  1

55(5) ( )M  be represented by

e f g g

f h k k

g k l k

g k k l

 
 
 
 
 
 

such that 
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 

5

3

53 2 2

55(5) 5 5 5 3 5 4 2

5 3

2

5 4

xe f g g

xf h k k
V x x x x x x

x xg k l k

x xg k k l



  
  
        
  

   

 

3 2 2 2 2 6

5 5 5 3 5 4 5

4 2 4 2 2 4 2 4 2 2 2

5 3 5 4 5 3 5 4 5 3 4

8.8050 4.1004 4.1006 4.1006 0.6768

0.6558 0.6558 1.3747 1.3747 2

x x x x x x x

x x x x x x x x x x x

    

      

Cancelling all the interactions by equating them to zero we have, 

  3 6

55(5) 5 5 5(8.8050 4.1004 0.6768 )V x x x     

From (3.3.5) the variance  
5

3

ˆ[ ( )] ( )j jV y x V x  

 
5

2 4 2 2 2 2 2 4 2 2

3 3 3 4 3 5 4 4 4 5

3

2 4 2 2 2 2 2 2 2 2 2 3

5 5 3 4 3 5 4 5 3 4 5 3 3

2 2 2 2 6 4 2 4 2 2 4 2 4

3 4 3 5 3 3 4 3 5 3 4 3 5

2 2 2

3 4 5 3

ˆ[ ( )] ( ) 2 2 2 2 2

2 2

2 2 2 2

2 2

j jV y x V x a bx cx dx x dx x bx cx dx x

bx cx nx x nx x nx x px x x ex fx

gx x gx x hx kx x kx x lx x lx x

x x x ex f

        

        

     

  



3 2 2 2 2 6

3 3 4 3 5 3

4 2 4 2 2 4 2 4 2 2 2 3

3 4 3 5 3 4 3 5 3 4 5 4 4

2 2 2 2 6 4 2 4 2 2 4 2 4 2 2 2

4 3 4 5 4 4 3 4 5 4 3 4 5 4 3 5

3 2 2 2 2 6 4 2 4 2

5 5 5 3 5 4 5 5 3 5 4

2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2

x gx x gx x hx

kx x kx x lx x lx x x x x ex fx

gx x gx x hx kx x kx x lx x lx x x x x

ex fx gx x gx x hx kx x kx x

  

       

      

      

2 4 2 4 2 2 2

5 3 5 4 5 3 42lx x lx x x x x



 

 

Summing the above variances we get expression which is a function of 

2 2 2 2 42 2 2 2 4 4 2 2

3 4 5 3 4 3 5, 4 3

2 2

4 5 4 5

2

3 4 5, , , , , ,,x x x x xx x x x x x x x xx x        In order to 

achieve variance in GDTORD, the variance should be a function 

of 2 2

3 4 5

2, ,x x x  only. Therefore we need to cancel the 

interactions 2 2 2 2 4 4 4 2 2

3 4 3 5, 4 3 4 5 4 5 3

2

4

2 2

5

2, , , , ,x x x x x x x x xx x x x     
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We get all the above interactions be equated to zero so as to have functions 

of 2 2

3 4 5

2, ,x x x  only. Then from (3.3.8) we had, 

 
2 2 4 6 2 4 65
0 3 3 3 4 4 4

2 4 6
3 5 5 5

(2 ) (2 ) (2 ) (2 )
ˆ[ ( )]

(2 ) (2 )
j

ax b e x f c x hx b e x f c x hx
V y x

b e x f c x hx

           
       

  

Let  such that 

 ˆ[ ( )]jV y x = f ( ) only 

At the point xχ the predicted response is  

V( ŷ (x))= f   (x) ̂  

The variance sum is as shown 

 ˆ[ ( )]V y x  ( 2 2 4 6 2 4 6

0 1 1 1 2 2 2(2 ) (2 ) (2 ) (2 )ax b e x f c x hx b e x f c x hx          +

2 2 4 6 2 4 6 2 4 6

0 3 3 3 4 4 4 5 5 5(2 ) (2 ) (2 ) (2 ) (2 ) (2 )ax b e x f c x hx b e x f c x hx b e x f c x hx               ) 

,  

Thus the variance Sum is the function of distances only. 

 is the distances of the projections of the points in p dimensional and (v – p) 

dimensional spaces respectively from a suitable origin. The variance   is a 

function of distance  and variance   is a function of distance  from the 

design origin. Thus the considered response surface is a Variance - Sum Group 

Divisible Third Order Rotatable Designs in five dimensions. 
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4.5 Construction of (k-1) GDTORD through BIBD 

4.5.1 Construction of (k-1) GDTORD through BIBD in four dimensions 

Consider unreduced BIBD with parameters  

which is then split to form two groups of factors one of -factors and  factor where 

 and Here we consider rotating p- factor group designs only where 

a set  of S( , , ...,0)  added to suitably chosen points set of 2S( ,0,0...,0) , 

S( , ,0...,0) as shown 
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Another set of S (b bb b) is added to satisfy rotatability. 
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







       (4.5.1**)
 

 

A set of 16 design points added. 

N = (4.5.1*) + (4.5.1**) = 48 design points                                                               

(4.5.1***) 

Normal equations are 

  

      (4.5.1.1) 

  

      (4.5.1.2) 

  

        (4.5.1.3) 

Solving the three equations simultaneously we have (4.5.1.2)-7 (4.5.1.3) gave, 

  

         (4.5.1.4) 
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From (4.5.1.2) -2(4.5.1.3) gave, 

  

        (4.5.1.5) 

Substituting the value of c in (4.5.1.1) we have  

  

  

  

Collecting the like terms we have  

  

  

Let  for  

  

  

                                  (4.5.1.6) 

From (4.5.1.3) we have 
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       (4.5.1.7) 

Dividing the cube of (4.5.1.6) by the square of (4.5.1.7) we have 

  

  

  

  

  

                                                 (4.5.1****) 

Thus the non -negative solution exist 

  

  

  

  

  

  

  

Upon substituting the value of (4.5.1****) gave, 
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4.5.2 Construction of (k-1) GDTORD through BIBD in five dimensions 

Consider unreduced BIBD with parameters  

where the  factors are divided into two groups of factors and factor respectively 

where  and .Here we consider rotating 4- factor group designs only 

where a set  of S( , , ...,0)  added to suitably chosen points set of 2S( ,0,0...,0) , 

S( , ,0...,0) as shown, 
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Another set of  is added to satisfy the conditions for rotatability 
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N= (4.5.2*)+(4.5.2**)+(4.5.2***) +(4.5.2****) = 88 points              (4.5.2*****)  
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Normal equations were, 

  

  

  

  

  

  

                                                                          (4.5.2.1) 

  

                        (4.5.2.2) 

  

                                                                                (4.5.2.3) 

Solving the three equations simultaneously,  

(4.5.2.2)-7(4.5.2.3) gave 

  

                                                                           (4.5.2.4) 

  

  

  

  

Equation (4.5.2.2)-3(4.5.2.3) gave, 

  

                                                                           (4.5.2.5) 
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Substituting the value of c in (4.5.2.1) we have 

  

  

  

Let  for  we have 

  

  

                                                 (4.5.2.6) 

From equation (4.5.2.3) we have  

  

  

                                            (4.5.2.7) 

Dividing (4.5.2.6) cubed by the square of (4.5.2.7) 
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Solutions are; 

  

  

  

 and  

 

4.5.3 (k-1) GDTORD in (k-1) dimensions 

Here we consider a generalization of (k-1) GDTORD in (k-1) dimensions such that 

the non-negative solution of  where   is achieved as shown below. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.0 Introduction 

This chapter gives the conclusions and recommendations derived from the results. 

5.1 Conclusion 

A group divisible third order rotatable designs in four, five and in k- dimensions was 

constructed using a balanced incomplete block designs and the design points 

generated from the four and five dimensional GDTORD were used to obtain a 

Variance- Sum group divisible third order rotatable designs in four and in  five 

dimensions respectively. In addition a (k-1) Group Divisible Third order rotatable 

design was also constructed using BIBD by rotating the factors for one particular 

group only. 

5.2 Recommendation 

From the study findings, the study recommends the application of these designs 

constructed using BIBDs which gave less design points thus cutting down on the cost 

of experimentation and also gave reduced number of normal equations for estimating 

the parameter estimates. For further research, other methods on construction of a 

Group divisible Variance sum TORD for k number of groups is recommended and the 

Construction of a Group divisible Variance -Sum TORD using three balanced 

incomplete block designs is also recommended. 
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