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ABSTRACT 

In the design and analysis of experiments for estimating statistical models, optimal 

designs allow parameters to be estimated with minimum variance. These designs are 

generated based on a particular optimality criterion and are generally optimal only for 

a specific statistical model. The purpose of this study was to investigate the optimality 

criteria for third order rotatable designs (TORD) constructed from balanced incomplete 

block design (BIBD). Specifically, the study obtained alphabetic optimality criteria for 

specific TORD in three, four, five and six factors. A general method of evaluating 

alphabetic optimality for TORD constructed using BIBD in k-factors was determined. 

Further a compound optimality for D- and T- was evaluated for TORD constructed 

from BIBD. From the existing TORD constructed using BIBD, the design matrix, and 

moment matrix considering full parameter system were used. The existing methods 

were utilized to evaluate alphabetic optimality and DT-optimality for the designs from 

their information matrices. Evaluation of alphabetic optimality was done and D-, A-, 

T-, E-, I- and G- optimal designs were obtained. The study evaluated DT- compound 

optimality and determined DT- optimal design. A general method of evaluating 

alphabetic optimality for TORD constructed from BIBD in k-factors was also 

determined. In conclusion, the study showed that the designs’ optimal values decreased 

with the increase in the number of factors for D-, G- and T- optimality. However, all 

the designs under investigation were found to be E-optimal. The values of DT-

optimality increases as the number of factors increase implying that DT-compound 

optimality is appropriate for design with few factors. The study recommends the 

application of optimum designs in the design and analysis of field experiments 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Response surface methodology (RSM) is a collection of statistical and mathematical 

techniques used to develop, improve and optimize processes. Despite the arguments put 

forward by Mead and Pike (1975), there seems to be a general agreement that the 

concept of response surfaces and designs for their exploration began in the chemical 

industry.  

Classical experimental designs are concerned with comparative experiments, that is, 

experiments in which the primary objective is to compare the effects of various 

treatments and, especially, to estimate treatment contrasts. An exception is the more 

recently developed field of response surface designs in which treatments are various 

combinations of different levels of the factors that are quantitative. Here the main 

objective of the experimenter is usually to estimate the absolute response or the 

parameters of a model providing the relationship between the response and the factors. 

In this context, rotatable designs were introduced by Box and Hunter (1957) in order to 

explore the response surface. Rotatable designs have the nice property that the variance 

of the estimated response is constant at points equidistant from the Centre of the design, 

conventionally taken to be the origin of the factor space. Rotatable designs generate 

information about the response surface equally in all directions and are therefore useful 

when no or little prior knowledge is available about the nature of the response surface.  

In the design of experiments, optimal designs are a class of experimental designs that 

are optimal with respect to some statistical criterion. In practical terms, optimal 

experiments can reduce the costs of experimentation. The optimality of a design 

depends on the statistical model and is assessed with respect to a statistical criterion, 
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which is related to the variance matrix of the estimator. Specifying an appropriate 

model and specifying a suitable criterion function both require an understanding of 

statistical theory and practical knowledge with designing experiments. Designed 

experiments allow the analyst to control the factors thought to be important in 

characterizing or explaining the response variable(s) of the experiment. In the recent 

years there has been dramatic growth in the use of designed experiments, not just in the 

classical industrial, life sciences, and agricultural settings, but in many areas of 

business, such as marketing and financial services. This interest in the design of 

experiments has led to much new research on the subject. There are many types of 

experimental designs in the literature, and there are also many criteria on which 

experimental designs are based. It is critical for an experimenter to understand the 

characteristics and features that should be taken into account when a design is chosen. 

1.2 Basic Concepts  

1.2.1 Rotatability 

The concept of rotatability as a desirable quality of an experimental design was first put 

forward by Box and Hunter in 1957. This property is that the variances of estimates of 

the response made from the least squares estimates of the Taylors series are constant on 

circles, spheres or hyper-spheres about the center of the design. Thus, a rotatable design, 

that is, a design which satisfies this property, could be rotated through any angle around 

its center and the variances of responses estimated from it would be unchanged.  

1.2.2 Balanced incomplete block design 

According to Das and Giri (1986), the precision of the estimate of a treatment effect 

depends on the number of replications of the experiment. That is, the larger the number 

of replications, the more is the precision. If in a block the number of units or plots is 
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smaller than the number of treatments, then the block is said to be incomplete and a 

design constituted of such blocks is called an incomplete block design.  

Different patterns of values of the numbers of replicates of different pairs of treatments 

in a design, have given rise to different types of incomplete block designs. When the 

number of replications of all pairs of treatments in a design is the same, then an 

important series of designs known as balanced incomplete block design is obtained. 

This series of designs ensures equal precisions of the estimates of all pairs of treatments 

effects and it was first devised for agricultural experiments. 

According to Kempthorne and Hinkelmann (2005), an incomplete block design is said 

to be a balanced incomplete block (BIB) design if it satisfies the following conditions: 

(i) The experimental material is divided into b blocks of s units each, different 

treatments being applied to the units in the same block. 

(ii) There are v treatments each of which occurs in r blocks.  

(iii) Any two treatments occur together in exactly λ blocks. 

The quantities v, b, r, s and λ are called the parameters of BIB design. 

The following relations hold among the parameters and even these are only necessary 

conditions for the existence of a BIB design: 

(i) rv=sb 

(ii) λ(v-1)=r(s-1) 

(iii) 𝑟 >λ 

(iv) b≥v 

Also according to Calvin (1954) a doubly balanced incomplete block (DBIB) design is 

an incomplete block design in which each triple of treatments occurs together the same 

number of times in a block. 
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1.2.3 Sequential designs and non-sequential designs 

Third order rotatable designs can be grouped into sequential and non-sequential 

designs. Sequential designs are performed in parts or blocks while non-sequential 

experimentation all the runs must be run at one time to make a rotatable least square 

fitting possible. Draper, (1960) stated that sequential experiments are more useful in 

practice and are economical. Therefore third order rotatable designs may be run 

sequentially in three stages with three or four blocks depending on the model adequacy. 

Normally, the first part consisting of first order is run and the response function is 

approximated using a first order model. If the first order model is found to be adequate, 

as the representation of the unknown function by noting evidence of the goodness of 

fit, the experiment may be terminated at this stage. However, if the first model is found 

to be inadequate, the trials of second order are run and ultimately, proceed to fit a third 

order if a second order model is also found to be inadequate.  The first block may 

contain the k+1 runs, second block containing the second order runs and third block 

containing third order runs. 

1.2.4 Optimal design 

In the designs of experiments, optimal designs are a class of experimental designs that 

are optimal with respect to some statistical criterion. In the design of experiments for 

estimating statistical models, optimal designs allow the parameters to be estimated 

without bias and with minimum variance. A non-optimal design requires a greater 

number of experimental runs to estimate the parameters with the same precision as an 

optimal design. The optimality of a design depends on statistical model and is assessed 

with respect to statistical criterion, which is related to variance-matrix of the estimator. 

Some of the advantages of optimal designs include; reducing the cost of 
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experimentation by allowing models to be estimated with fewer experimental runs and 

optimal designs can accommodate multiple types of factors. 

1.3 Statement of the Problem 

Second order rotatable designs have been studied extensively where construction and 

evaluation of their optimality criteria have been done. A second-order polynomial can 

be used as a local approximation of the response in a small region where, hopefully, 

optimal operating conditions exist. It is appropriate in most of the cases applicable in 

industry, though there are instances when quadratic fit is not sufficiently flexible to 

explain a given response. In such cases, the experimenter needs a third order model that 

involves cubic effects. Construction of the TORD has also been considered widely, 

however, little has been done on evaluation of optimality This study therefore 

considered the existing third order designs constructed through BIBDs to evaluate their 

alphabetic optimality criteria.  

1.4 Objectives of the Study 

1.4.1 General objective 

To obtain optimality criteria for third order rotatable designs constructed through 

balanced incomplete block design. 

1.4.2 Specific objectives 

1. To obtain alphabetic optimality for specific third order rotatable designs 

constructed through balanced incomplete block design. 

2. To determine a general method of obtaining alphabetic optimality for third order 

rotatable designs constructed through balanced incomplete block design. 

3. To evaluate DT- compound optimality criterion for third order rotatable designs 

constructed through balanced incomplete block design. 
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1.5 Significance of the Study 

There is need to obtain third order optimal designs in order to deal with inadequacy 

suffered by second order designs. This study focused on obtaining optimal third order 

rotatable designs constructed through BIBDs. Optimal designs obtained will allow 

parameters to be estimated with minimum variance. This study also allows the 

researcher to determine the alphabetic optimality criteria for TORD constructed from 

BIBD at any level of factors. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Several third order designs have been constructed from the concept of rotatability. Das 

and Narasimham (1962 ) constructed many third order rotatable designs by taking 

appropriate combinations of the symmetric point set or the suitably balanced subset 

obtained through balanced incomplete block designs and fractional replication. 

Petersen (1993), Box and Draper (1963) employed this aspect to construct the designs 

for 2nd and 3rd order response models. Similarly, Koske (1984) constructed 4th order 

rotatable designs by utilizing the same aspect. Mutiso (1998) developed theory for the 

optimum estimation of the free parameters in the rotatable design point sets first 

considered by Draper (1960) for which Kosgei (2002) obtained alphabetic optimality 

criteria. Victorbabu (2006) suggested new methods  of  construction  of  three  and  

five-level  modified  second  order  rotatable designs  (SORD)  and  modified  second  

order  slope  rotatable  designs  (SOSRD)  using suitably chosen balanced incomplete 

block designs. Victorbabu (2009) examined in detail different methods of construction 

of modified second order response surface designs, modified second order rotatable 

designs (SORD), modified SORD with equispaced doses (levels) using central 

composite designs, balanced incomplete block designs (BIBD), pairwise balanced 

designs (PBD) and symmetrical unequal block arrangements (SUBA) with two unequal 

block sizes. Victorbabu (2011) studied a new method of construction of second order 

slope rotatable design using balanced incomplete block designs. Some new four 

dimensional third order rotatable designs through balanced incomplete block design 

were constructed by Mutai et al (2012).  
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2.2 Alphabetic Optimality Criteria 

Under design of experiments for estimating statistical models, optimal designs allow 

parameter to be estimated without bias and with minimum variance. A non-optimal 

design requires a greater number of experimental runs to estimate the parameter with 

the same precision as an optimal design. The optimality of a design depends on 

statistical model and is assessed with respect to a statistical criterion, which is related 

to the variance matrix of the estimator. 

Kiefer (1960) stated that the class of rotatable designs is very rich in the sense that 

under many commonly used criteria, such as D-optimality, the optimal designs for 

polynomial regression models over hyper spherical regions may be found within this 

class. It has been recognized in recent years, that even in response surface designs the 

main interest of the experimenter may not always be in the response at individual 

locations. Sometimes, the differences between responses at various locations may be of 

greater interest (Herzberg, 1967). 

G–optimality criterion is "a prediction criterion" introduced by Smith (1918). She gave 

a paper, which states a criterion, and obtains optimal designs for regression problems. 

D–optimality is the most important and popular design criterion in the life applications, 

which was introduced by Wald (1943), it emphasis on the quality of the parameter 

estimates. D-optimality criterion is also known as the determinant criterion. The aim of 

D-optimality is essentially a parameter estimation criterion. 

A–optimality criterion introduced by Chernoff (1953), showed the employed criterion 

of optimality which is the one that involves the use of Fisher's information matrix. 
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E–optimality was introduced by Ehrenfeld (1955). The aim of E-optimality is to 

minimize the maximum variance of all possible normalized linear combinations of 

parameter estimates. 

I–optimality criterion "integrated variance" which is also known as Q–optimality 

criterion was introduced by Fedorov (1972). Q–optimality is also called V or Iv–

optimality and it minimizes the normalized average or integrated prediction variance. 

Kiefer (1975) introduced convex optimality function ∅ on the information matrices and 

proved that balanced incomplete block designs (BIBD) are universally optimal. 

Mukerjee and Huda (1985) also contributed towards optimality design of experiments 

for estimating slopes.  

According to Pukelsheim (2006), real optimality criteria are functions with such 

properties as are appropriate to measure largeness of information matrices. These 

functions have properties that include positively homogenous, super additive, non-

negative, non-constant and upper semi continuous. Such criteria are called information 

functions. Morgan (2007) has been working on design optimality for various classes of 

designs with blocking. When restricting the response surface problem to response 

optimization, we want to select a design that will provide a good fitting model to the 

data, and, in particular, provide reliable parameter estimates, which then can be used 

for precise predictions. Huda (2007) did a study on A- and D- rotatability of two 

dimensional third order designs. He obtained the expression for variance-covariance 

matrix of the estimated axial slopes at a point in the factor space for a symmetric 

balanced two dimensional third order design. Huda went ahead to derive the trace and 

the determinant of the matrix to show that symmetry and balance are not sufficient for 

either A-rotatability or D-rotatability of the design. 
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Keny (2014) constructed optimal second order rotatable designs using balanced 

incomplete block designs (BIBD). She went ahead to examine optimality criteria, 

optimal weights and optimal values of parameter estimates for second order rotatable 

designs. This study focused on obtaining alphabetic optimality criteria for existing third 

order rotatable designs constructed from balanced incomplete block design. 

2.3 Compound Optimality 

There are many statistical aspects to consider in the design of an empirical study. The 

problems include the control of unwanted variation and the internal validity of the 

study. This is among the questions raised by (Cox, 1958 and Cox and Reid, 2000). In 

the context of nested regression models which differ by only one parameter, Dette 

(1993) proposed to use the D1-criterion for model discrimination and the D-criterion 

for precise estimation of the parameters. The resulting compound criterion (a weighted 

geometric mean of D1- and D-efficiencies) is called DD1-criterion. Atkinson (2008) 

introduced DT–optimality which is a combination of D–optimality and T–optimality 

for discriminating between models. It provides a specified balance between model 

discrimination and parameter estimation. Tommasi (2009) proposed the DKL-

optimality criterion, which is a compound criterion given by the weighted geometric 

mean of KL- and D-efficiencies considering the D-criterion as a measure of precision 

in parameter estimation. As a measure of discrimination, however, she has used the KL-

criterion which is useful for model discrimination in a more general context than nested 

regression models with Gaussian homoscedastic errors. The main advantage of the 

DKL-optimality criterion over the other compound criteria is its general applicability. 

The DKL-optimality criterion can be used for any kind of regression models, nested or 

not, with homoscedastic or heteroscedastic errors, which may be Gaussian or not. The 

purpose of the experiment is to find the model and its adequacy. To address the issue 
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of model discrimination and to provide specified balance between model discrimination 

and parameter estimation, the study resolved to obtain compound DT- optimality 

criteria for third order rotatable designs constructed through BIBD. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter outlines the methods used in calculating optimality criteria. The third order 

rotatable designs constructed through BIBD by Mutai (2012) are extended to determine 

optimality. The moment matrices derived from the specific TORD were used to 

determine alphabetic optimality. Matrix laboratory (MATLAB) was used in 

manipulation of matrices. 

3.1.1: Third order moment condition 

These are conditions that must be satisfied by a set of points to form a third order 

rotatable arrangement. They are as follows in (3.1.1) 
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and all other sums of powers and products up to order six are zero, where  ,2NA   
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3.1.2: Non–singularity conditions 

Let X be an (NL) matrix defined as follows 
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If X   is the transpose of X  then  XXN 1  is the moment matrix of the arrangement 

of N points in K-dimensional factor space. 

Gardiner et al, (1959) derived the following non-singularity conditions of the moment 

matrix. 

2

2

4




>

2K

K
 

           

               (3.1.2) 

4

2
2

4

26






K

K




 

These are conditions required for a third order arrangement of points to form a TORD. 

3.2 Alphabetic Optimality criteria for TORD constructed through BIBD  

The study utilized the moment matrices in three, four, five and six factors to obtain 

alphabetic optimality criteria for specific third order rotatable designs constructed 

through BIBD. 
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3.2.1 The moment matrix of TORD constructed through BIBD in three factors  

From an existing )0,1,2,2,3,3(  srbvBIBD  a third order rotatable 

design in three dimensions with 60 points was obtained as; 

D1=S(𝑎  𝑎  0)+S(𝑏  𝑏  𝑏)+S(
2


  

2


  0)+2𝑆(𝑑  𝑑  𝑑)+2S(   0  0)  

  where 𝑎2 = 0.421716𝜌2 , 𝑏2 = 0.367743686𝜌2 , 𝑑2 = 0.064475339𝜌2  and 𝜌 = 1  0.70710678 

 

The third order model in three factors is given by  

𝑦(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽11𝑥1
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽22𝑥2

2 + 𝛽23𝑥2𝑥3

+ 𝛽33𝑥3
2 + 𝛽111𝑥1

3 + 𝛽112𝑥1
2𝑥2 + 𝛽113𝑥1

2𝑥3 + 𝛽122𝑥2
2𝑥1 + 𝛽123𝑥1𝑥2𝑥3

+ 𝛽133𝑥3
2𝑥1 + 𝛽222𝑥2

3 + 𝛽223𝑥2
2𝑥3 + 𝛽233𝑥3

2𝑥2 + 𝛽333𝑥3
3 

The third order model with three factors has 20 terms and 

𝑋′ = [1, 𝑥1
2, … , 𝑥3

2, 𝑥1𝑥2, … , 𝑥1𝑥2𝑥3, 𝑥1, 𝑥1
3, 𝑥1𝑥2

2, 𝑥1𝑥3
2, … , 𝑥3

3, 𝑥3𝑥1
2, 𝑥3𝑥2

2] 

Thus, the moment matrix, 𝑀 = 𝑁−1(𝑋′𝑋), of a TORD in three factors is as follows; 

 

𝑀3(20×20)=

[
 
 
 
 
 
 
𝐺  0     0   0  0  0  0

0  I4    0  0  0  0

0  0  0 I6   0  0  0

0  0  0   0  𝐾31  0  0  
0  0  0  0  0  𝐾32  0
0  0  0  0  0  0  𝐾33 ]

 
 
 
 
 
 

       

             (3.2.1) 

The sub-matrices of 𝑀3 are as follows 

 

𝑮(𝟒×𝟒) =[

1            0.2558  0.2558  0.2558
0.2558  0.1428  0.0476   0.0476
0.2558  0.0476  0.1428  0.0476
0.2558  0.0476  0.0476  0.1428 

] 
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I4 (𝟑×𝟑)
 =[

0.0476 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0.0476

] 

  

I6
(𝟏×𝟏)

 =[0.0067] 

𝐾31(𝟒×𝟒) = 𝐾32(𝟒×𝟒) = 𝐾33(𝟒×𝟒) = [

0.2558  0.1429  0.0476     0.0476
0.1429    0.1005    0.0201   0.0201
0.0476    0.0201    0.0201   0.0067
0.0476    0.0201   0.0067   0.0201

] 

The moment matrix (𝑀3)(3.2.1) was utilized in determining the alphabetic optimality 

criteria for TORD constructed through BIBD for three factors. 

3.2.2 The moment matrix of TORD constructed through BIBD in four factors  

From an existing )0,1,2,3,6,4(  srbvBIBD  a third order rotatable 

design in four dimensions with 120 points was obtained as; 

D2 = S(𝑎  𝑎  0  0)+S(𝑏  𝑏  𝑏  𝑏)+S(
2


  

2


  0 0)+2𝑆(𝑑  𝑑  𝑑  𝑑)+3S(   0  0  0)  

  where 𝑎2 = 629960524.0 𝜌2 , 𝑏2 = 359780535.0 𝜌2 , 𝑑2 = 067259838.0 𝜌2  and 𝜌 = 1  0.70710678 

 

The third order model in four factors is given by  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽11𝑥1
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽14𝑥1𝑥4

+ 𝛽22𝑥2
2 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4 + 𝛽33𝑥3

2 + 𝛽34𝑥3𝑥4 + 𝛽44𝑥4
2 + 𝛽111𝑥1

3

+ 𝛽112𝑥1
2𝑥2 + 𝛽113𝑥1

2𝑥3 + 𝛽114𝑥1
2𝑥4 + 𝛽122𝑥2

2𝑥1 + 𝛽123𝑥1𝑥2𝑥3

+ 𝛽124𝑥1𝑥2𝑥4 + 𝛽133𝑥3
2𝑥1 + 𝛽134𝑥1𝑥3𝑥4 + 𝛽144𝑥4

2𝑥1 + 𝛽222𝑥2
3

+ 𝛽223𝑥2
2𝑥3 + 𝛽224𝑥2

2𝑥4 + 𝛽233𝑥3
2𝑥2 + 𝛽234𝑥2𝑥3𝑥4 + 𝛽244𝑥4

2𝑥2

+ 𝛽333𝑥3
3 + 𝛽334𝑥3

2𝑥4 + 𝛽344𝑥4
2𝑥3 + 𝛽444𝑥4

3 
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Where the terms are 35 in the model and 

 

𝑋′ = 

[1, 𝑥1
2, … , 𝑥4

2, 𝑥1𝑥2, … , 𝑥3𝑥4, 𝑥1𝑥2𝑥3, … , 𝑥2𝑥3𝑥4, 𝑥1, 𝑥1
3, 𝑥1𝑥2

2, … , 𝑥1𝑥4
2, … , 𝑥4, 𝑥4

3, 𝑥4𝑥1
2, … , 𝑥4𝑥3

2] 

Thus, the moment matrix, 𝑀 = 𝑁−1(𝑋′𝑋), of a TORD in four factors is as follows; 

𝑀4(35×35)=

[
 
 
 
 
 
 
 

𝐺  0     0   0  0  0  0  0

0  I4    0  0  0  0  0

0  0  0 I6   0  0  0  0

0  0  0   0   𝐾41  0  0  0  
0  0  0  0  0  𝐾42  0  0
0  0  0  0  0  0  𝐾43  0
0  0  0  0  0  0  0   𝐾44 ]

 
 
 
 
 
 
 

      

 (3.2.2) 

The sub-matrices of 𝑀4 are; 

 

𝐺(5×5)=

[
 
 
 
 
1.0000  0.2289  0.2289  0.2289  0.2289
0.2289  0.1332  0.0444  0.0444  0.0444
0.2289  0.0444  0.1332  0.0444  0.0444
0.2289  0.0444  0.0444  0.1332  0.0444
0.2289  0.0444  0.0444  0.0444  0.1332]

 
 
 
 

 

 

I4 (6×6)
 = [

0.0444 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0.0444

] 

 

 

I6
(4×4)

 =[
0.0063 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0.0063

] 

 

𝐾41 = 𝐾42 = 𝐾43 = 𝐾44=

[
 
 
 
 
0.2289  0.1332  0.0444  0.0444 0.0444
0.1332  0.0945  0.0189  0.0189 0.0189
0.0444  0.0189  0.0189  0.0063  0.0063
0.0444  0.0189  0.0063  0.0189  0.0063
0.0444  0.0189  0.0063  0.0063  0.0189  ]

 
 
 
 

 

The moment matrix (𝑀4)(3.2.2) was utilized in determining the alphabetic optimality 

criteria for TORD constructed through BIBD for four factors. 
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3.2.3 The moment matrix of TORD constructed through BIBD in five factors  

From an existing )0,1,2,4,10,5(  srbvBIBD  a third order rotatable 

design in five dimensions with 248 points was obtained as; 

D3 = 𝑆( 𝑎  𝑎  0 0 0) + 𝑆( 𝑏  𝑏  𝑏  𝑏 𝑏)+ 𝑆 ( 
𝜌

√2
  

𝜌

√2
  0 0 0)+ 

3𝑆( 𝑑  𝑑  𝑑  𝑑 𝑑)+ 4𝑆( 𝜌  0  0  0 0) 

  where 𝑎2 = 536893346.0 𝜌2 , 𝑏2 = 0. 285053845. 𝜌2 , 𝑑2 = 183393832.0 𝜌2  and 𝜌 = 1  0.70710678 

 

The third order model in five factors is given by  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽11𝑥1
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3

+ 𝛽14𝑥1𝑥4 + 𝛽15𝑥1𝑥5 + 𝛽22𝑥2
2 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4 + 𝛽25𝑥2𝑥5

+ 𝛽33𝑥3
2 + 𝛽34𝑥3𝑥4 + 𝛽35𝑥3𝑥5 + 𝛽44𝑥4

2 + 𝛽45𝑥4𝑥5 + 𝛽55𝑥5
2 + 𝛽111𝑥1

3

+ 𝛽112𝑥1
2𝑥2 + 𝛽113𝑥1

2𝑥3 + 𝛽114𝑥1
2𝑥4 + 𝛽115𝑥1

2𝑥5 + 𝛽122𝑥2
2𝑥1

+ 𝛽123𝑥1𝑥2𝑥3 + 𝛽124𝑥1𝑥2𝑥4 + 𝛽125𝑥1𝑥2𝑥5 + 𝛽133𝑥3
2𝑥1 + 𝛽134𝑥1𝑥3𝑥4

+ 𝛽135𝑥1𝑥3𝑥5 + 𝛽144𝑥4
2𝑥1 + 𝛽145𝑥1𝑥4𝑥5 + 𝛽155𝑥5

2𝑥1 + 𝛽222𝑥2
3

+ 𝛽223𝑥2
2𝑥3 + 𝛽224𝑥2

2𝑥4 + 𝛽225𝑥2
2𝑥5 + 𝛽233𝑥3

2𝑥2 + 𝛽234𝑥2𝑥3𝑥4

+ 𝛽235𝑥2𝑥3𝑥5 + 𝛽244𝑥4
2𝑥2 + 𝛽245𝑥2𝑥4𝑥5 + 𝛽255𝑥5

2𝑥2 + 𝛽333𝑥3
3

+ 𝛽334𝑥3
2𝑥4 + 𝛽335𝑥3

2𝑥5 + 𝛽344𝑥4
2𝑥3 + 𝛽345𝑥3𝑥4𝑥5 + 𝛽355𝑥5

2𝑥3

+ 𝛽444𝑥4
3 + 𝛽445𝑥4

2𝑥5 + 𝛽455𝑥5
2𝑥4 + 𝛽555𝑥5

3 

The third order model with five factors has 56 terms and 

𝑋′ =

[1, 𝑥1
2, … , 𝑥5

2, 𝑥1𝑥2, … , 𝑥4𝑥5, 𝑥1𝑥2𝑥3, … , 𝑥3𝑥4𝑥5, 𝑥1, 𝑥1
3, 𝑥1𝑥2

2, … , 𝑥1𝑥5
2, … , 𝑥5, 𝑥5

3, 𝑥5𝑥1
2, … , 𝑥5𝑥4

2]
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Thus, the moment matrix,𝑀 = 𝑁−1(𝑋′𝑋), of a TORD in five factors is as follows; 

𝑀5(56∗56)=

[
 
 
 
 
 
 
 
 

𝐺  0     0   0  0  0  0  0  0

0  I4    0  0  0  0  0  0

0  0  0 I6   0  0  0  0  0

0  0  0   0   𝐾51  0  0  0  0  
0  0  0  0  0  𝐾52  0  0  0
0  0  0  0  0  0  𝐾53  0  0
0  0  0  0  0  0  0   𝐾54  0
0  0  0  0  0  0  0  0  𝐾55 ]

 
 
 
 
 
 
 
 

            (3.2.3) 

The sub-matrices of 𝑀5 are; 

 

𝐺(6×6)=

[
 
 
 
 
 
1.0000  0.2249  0.2249  0.2249  0.2249  0.2249
0.2249  0.1146  0.0382  0.0382  0.0382  0.0382
0.2249  0.0382  0.1146  0.0382  0.0382  0.0382
0.2249  0.0382  0.0382  0.1146  0.0382  0.0382
0.2249  0.0382  0.0382  0.0382 0.1146  0.0382
0.2289  0.0382  0.0382  0.0382  0.0382  0.1146  ]

 
 
 
 
 

 

 

I4 (10×10)
= [

0.0382 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0.0382

] 

 

I6
(10×10)

= [
0.0054 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0.0054

] 

 

𝐾51 = 𝐾52 = 𝐾53 = 𝐾54 = 𝐾55=

[
 
 
 
 
 
0.2249  0.1146  0.0382  0.0382  0.0382  0.0382
0.1146  0.0806  0.0162  0.0162  0.0162  0.0162
0.0382  0.0162  0.0162  0.0054   0.0054   0.0054
0.0382  0.0162   0.0054  0.0162   0.0054   0.0054
0.0382 0.0162   0.0054   0.0054 0.0162   0.0054
0.0382  0.0162   0.0054   0.0054   0.0054  0.0162]

 
 
 
 
 

 

The moment matrix (𝑀5)(3.2.3) was utilized in determining the alphabetic optimality 

criteria for TORD constructed through BIBD for five factors. 

3.2.4 The moment matrix of TORD constructed through BIBD in six factors  

From an existing )0,1,2,5,15,6(  srbvBIBD  a third order rotatable 

design in six dimensions with 372 points was obtained as; 
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D4=S(a a 0 0 0 0) + S(b b b b b b) + S(
𝜌

√2
  

𝜌

√2
 0 0 0 0) + 2S(d d d d d d) + 5S(𝜌 0 0 0 0 0) 

  where 𝑎2 = 040041912.1 𝜌2 , 𝑏2 = 0.283229057𝜌2 , 𝑑2 = 201415924.0 𝜌2  and 𝜌 = 1  0.70710678 

The third order model in six factors is given by  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽11𝑥1
2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3

+ 𝛽14𝑥1𝑥4 + 𝛽15𝑥1𝑥5 + 𝛽16𝑥1𝑥6 + 𝛽22𝑥2
2 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4

+ 𝛽25𝑥2𝑥5 + 𝛽26𝑥2𝑥6 + 𝛽33𝑥3
2 + 𝛽34𝑥3𝑥4 + 𝛽35𝑥3𝑥5 + 𝛽36𝑥3𝑥6

+ 𝛽44𝑥4
2 + 𝛽45𝑥4𝑥5 + 𝛽46𝑥4𝑥6 + 𝛽55𝑥5

2 + 𝛽56𝑥5𝑥6 + 𝛽66𝑥6
2 + 𝛽111𝑥1

3

+ 𝛽112𝑥1
2𝑥2 + 𝛽113𝑥1

2𝑥3 + 𝛽114𝑥1
2𝑥4 + 𝛽115𝑥1

2𝑥5 + 𝛽116𝑥1
2𝑥6

+ 𝛽122𝑥2
2𝑥1 + 𝛽123𝑥1𝑥2𝑥3 + 𝛽124𝑥1𝑥2𝑥4 + 𝛽125𝑥1𝑥2𝑥5 + 𝛽126𝑥1𝑥2𝑥6

+ 𝛽133𝑥3
2𝑥1 + 𝛽134𝑥1𝑥3𝑥4 + 𝛽135𝑥1𝑥3𝑥5 + 𝛽136𝑥1𝑥3𝑥6 + 𝛽144𝑥4

2𝑥1

+ 𝛽145𝑥1𝑥4𝑥5 + 𝛽146𝑥1𝑥4𝑥6 + 𝛽155𝑥5
2𝑥1 + 𝛽156𝑥1𝑥5𝑥6 + 𝛽166𝑥6

2𝑥1

+ 𝛽222𝑥2
3 + 𝛽223𝑥2

2𝑥3 + 𝛽224𝑥2
2𝑥4 + 𝛽225𝑥2

2𝑥5 + 𝛽226𝑥2
2𝑥6

+ 𝛽233𝑥3
2𝑥2 + 𝛽234𝑥2𝑥3𝑥4 + 𝛽235𝑥2𝑥3𝑥5 + 𝛽236𝑥2𝑥3𝑥6 + 𝛽244𝑥4

2𝑥2

+ 𝛽245𝑥2𝑥4𝑥5 + 𝛽246𝑥2𝑥4𝑥6 + 𝛽255𝑥5
2𝑥2 + 𝛽256𝑥2𝑥5𝑥6 + 𝛽266𝑥6

2𝑥2

+ 𝛽333𝑥3
3 + 𝛽334𝑥3

2𝑥4 + 𝛽335𝑥3
2𝑥5 + 𝛽336𝑥3

2𝑥6 + 𝛽344𝑥4
2𝑥3

+ 𝛽345𝑥3𝑥4𝑥5 + 𝛽346𝑥3𝑥4𝑥6 + 𝛽355𝑥5
2𝑥3 + 𝛽356𝑥3𝑥5𝑥6 + 𝛽366𝑥6

2𝑥3

+ 𝛽444𝑥4
3 + 𝛽445𝑥4

2𝑥5 + 𝛽446𝑥4
2𝑥6 + 𝛽455𝑥5

2𝑥4 + 𝛽456𝑥4𝑥5𝑥6

+ 𝛽466𝑥6
2𝑥4 + 𝛽555𝑥5

3 + 𝛽556𝑥5
2𝑥6 + 𝛽566𝑥6

2𝑥5 + 𝛽666𝑥6
3 

Where the number of terms in the model is 84 and 

𝑋′ = 

[1, 𝑥1
2, … , 𝑥6

2, 𝑥1𝑥2, … , 𝑥5𝑥6, 𝑥1𝑥2𝑥3, … , 𝑥4𝑥5𝑥6, 𝑥1, 𝑥1
3, 𝑥1𝑥2

2, … , 𝑥1𝑥6
2, … , 𝑥6, 𝑥6

3, 𝑥6𝑥1
2, … , 𝑥6𝑥5

2] 
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Thus, the moment matrix, 𝑀 = 𝑁−1(𝑋′𝑋), of a TORD in six factors is as follows; 

 

𝑀6(84×84)=

[
 
 
 
 
 
 
 
 
 

𝐺  0     0   0  0  0  0  0  0  0

0  I4    0  0  0  0  0  0  0

0  0  0 I6   0  0  0  0  0  0

0  0  0   0   𝐾61  0  0  0  0  0  
0  0  0  0  0  𝐾62  0  0  0  0
0  0  0  0  0  0  𝐾63  0  0  0
0  0  0  0  0  0  0   𝐾64  0  0
0  0  0  0  0  0  0  0  𝐾65  0
0  0  0  0  0  0  0  0  0   𝐾66 ]

 
 
 
 
 
 
 
 
 

                      (3.2.4) 

The sub-matrices of 𝑀6 are; 

𝐺(7×7)=

[
 
 
 
 
 
 
1.0000  0.2277  0.2277  0.2277  0.2277  0.2277  0.2277
0.2277  0.1263  0.0421  0.0421  0.0421  0.0421  0.0421
0.2277  0.0421  0.1263  0.0421  0.0421  0.0421  0.0421
0.2277  0.0421  0.0421  0.1263  0.0421  0.0421  0.0421
0.2277  0.0421  0.0421  0.0421  0.1263  0.0421  0.0421
0.2277  0.0421  0.0421  0.0421  0.0421  0.1263  0.0421
0.2277  0.0421  0.0421  0.0421  0.0421  0.0421  0.1263]

 
 
 
 
 
 

 

 

I4 (15×15)
= [

0.0421 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0.0421

] 

 

I6
(20×20)

= [
0.0067 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0.0067

] 

 

𝐾61 = 𝐾62 = 𝐾63 = 𝐾64 = 𝐾65 =

𝐾66=

[
 
 
 
 
 
 
0.2277  0.1263  0.0421   0.0421  0.0421  0.0421  0.0421
0.1263  0.1005  0.0201  0.0201  0.0201  0.0201  0.0201
 0.0421  0.0201  0.0201  0.0067  0.0067  0.0067  0.0067 
 0.0421  0.0201   0.0067  0.0201   0.0067  0.0067  0.0067
 0.0421  0.0201   0.0067   0.0067  0.0201  0.0067  0.0067
 0.0421  0.0201  0.0067  0.0067  0.0067  0.0201  0.0067  
 0.0421  0.0201  0.0067  0.0067  0.0067  0.0067  0.0201  ]

 
 
 
 
 
 

 

 

The moment matrix (𝑀6)(3.2.4) was utilized in determining the alphabetic optimality 

criteria for TORD constructed through BIBD for six factors. 
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The alphabetic optimality criteria that were evaluated by this study are the Determinant 

criterion D-, the Average variance criterion A-, the Eigenvalue criterion, the E- , the 

trace, T-criterion, I-optimality criteria and G-optimality criteria. These are the methods 

proposed by Pukelshiem (2006). These alphabetic optimality criteria are variance 

related criteria. In obtaining the D-, A-, T- and E- , M is the moment matrix given by 

𝑀 = 𝑁−1(𝑋′𝑋) and 𝑆 is the number of parameters of interest. 

3.2.5 Determinant (D-criterion) 

To determine D-optimality for the designs considered, the determinant criterion was 

evaluated as follows; 

0 (M) = [det (𝑀)]1/s        (3.2.5) 

The determinant criterion ∅(𝐶) differs from the determinant det(C) by taking the sth 

root. 

3.2.6 Average variance (A-criterion) 

The average variance criterion 1 (M) is determined as;   

1 (M)=

1

11











traceM

s
 if C is positive definite    (3.2.6) 

This is the average of the standardized variances of the optimal estimators for the scalar 

parameter systems c1 , …,cs  formed from the columns of K. 

3.2.7 The smallest eigenvalue (E- criterion) 

The smallest eigenvalue criterion was obtained as follows 

 (M)= )((min) M         (3.2.7) 
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This criterion involves the evaluation of the smallest eigenvalue. It is the same as 

minimizing the largest eigenvalue of the moment matrix. This criterion plays a crucial 

role in the admissibility investigations. 

3.2.8 Trace (T-criterion)  

The evaluation of the trace criterion is given by 

  (M)= )(
1

Mtrace
s

        (3.2.8) 

3.2.9 G-optimality criterion 

This criterion is concerned with prediction variance. The aim of G-optimality is to have 

a good prediction at a particular location in the design. To attain this variance function, 

the scaled prediction variance (SPV) is defined as; 

 Nvar 
[𝑣𝑎𝑟�̂�]

𝜎2
 =𝑋(𝑋𝐼𝑋)−1𝑋𝐼       (3.2.9) 

Where 𝑋 is vector of coordinates of points in the region of interest expanded to model 

form. That is 

𝑋𝐼 = [1, 𝑥1 …𝑥𝑘 , 𝑥1
2 …𝑥𝑘

2, 𝑥1
3 …𝑥𝑘

3𝑥1, 𝑥1𝑥2…𝑥𝑘−1𝑥𝑘, 𝑥1𝑥2𝑥3 …𝑥𝑘−2𝑥𝑘−1𝑥𝑘] 

 𝜎2 is the process variance which is assumed to be 1. 

The scaled prediction variance (SPV) provides a measure of precision of the estimated 

response at any point in the design space. 

3.2.10 Integrated variance (IV) (I-optimality criteria) 

I-optimality, which minimizes the normalized average or integrated prediction 

variances, is defined as follows; 
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I= 
𝑛

𝜎2 ∫ 𝑣𝑎𝑟�̂�(𝑥)𝑑𝜇(𝑥)
𝑅

       (3.2.10) 

Where R is the region of interest (modelling region) 

            𝜇 is uniform measure on R with total measure=1. 

This integral simplifies to give 

                  I= trace{𝑀𝑀−1} 

3.3 The Generalized Alphabetic Optimality Criteria 

To determine the general method of obtaining alphabetic optimality criteria for TORD 

constructed from BIBD, the study required a general moment matrix. 

3.3.1 The moment matrix of TORD constructed from BIBD in k factors  

From an existing BIBD (v=k, b, r=k-1, s, λ, 𝜇) a third order rotatable design in k 

dimensions with 4[k (k+1) +2k]   points was obtained as;   

Dk =S(a,a,0,. . .,0)+S(b, b, . . .,b)+S(
𝜌

√2
, 

𝜌

√2
, 0, … ,0)+3S(d,d,. . .,d)+4S(𝜌,0,. . .,0),where 

3
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The value of t is evaluated as follows; 
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  0.70710678 

The general third order design can be expressed as; 

lujuiu

k

lji

ijljuiu

k

i

k

ji

ijiui xxxxxx  
 


11 1

   , where u=1, 2,…, N   

with parameters  

0 11 22 1 2 12 1,, , ,..., , , ,..., , ,...,kk k k k         

, 𝛽111, … , 𝛽𝑘𝑘𝑘,𝛽112, … , 𝛽𝑘−1𝑘−1𝑘, 𝛽122, … , 𝛽𝑘−1𝑘𝑘, 𝛽123, … , 𝛽𝑘−2𝑘−1𝑘 

 

The model will be 

     y X  


   

where y = (y1, y2, …, yN)/ is an N 1 vector of response values. 

 X = (x1, x2, …, xN)/ is an n k model matrix or matrix of observation  

   = is a k 1 vector of parameter and 

   = is an n 1 vector of errors and where the random errors su ' are 

independently and identically distributed with mean 0 and variance 2 , that is,  

 E( 0) u , var ( 2)  u and cov ( 0),
/
uu   

The independent variables 𝑥1, 𝑥2, … , 𝑥𝑘 have been coded so that  

∑ 𝑥1𝑢
2 = ∑ 𝑥2𝑢

2 = ⋯ = ∑ 𝑥𝑘𝑢
2 = 𝑁

𝑁

𝑢=1

𝑁

𝑢=1

𝑁

𝑢=1

 

To standardize the moment matrix for ease in further investigation, each term is a 

moment of independent variables i.e. the term in the column headed by 𝑥2
2 and the row 

labeled 𝑥2
2 is a fourth moment of 𝑥2. 

That is; 

1

𝑁
∑ 𝑥2𝑢

4 = 3
4

𝑁

𝑢=1
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And the term in the column headed by 𝑥1𝑥2
2 and the row, 𝑥1

3, is a sixth order mixed 

moment of both 𝑥1 and 𝑥2, i.e. 

1

𝑁
∑ 𝑥1𝑢

4 𝑥2𝑢
2 = 3

6

𝑁

𝑢=1

 

Thus, the moment matrix  𝑁−1(𝑋′𝑋) (according to Gardiner et al (1959)), of a rotatable 

design of order 3 in k factors can be written as follows in (3.3.1) 

Where  

𝑋′

= [
1, 𝑥1

2, … , 𝑥𝑘
2, 𝑥1𝑥2, … , 𝑥(𝑘−1)𝑥(𝑘), 𝑥1𝑥2𝑥3, … , 𝑥(𝑘−2)𝑥(𝑘−1)𝑥(𝑘), 𝑥1, 𝑥1

3,

𝑥1𝑥2
2, … , 𝑥1𝑥(𝑘)

2 , … , 𝑥(𝑘), 𝑥(𝑘)
3 , 𝑥(𝑘)𝑥1

2, … , 𝑥𝑘𝑥(𝑘−1)
2 ] 

 

 𝑀
[3+𝑘

𝑘
]×[3+𝑘

𝑘
]
=
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(3.3.1)       

in which the submatrices are defined as follows  
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The general third order moment matrix (𝑀𝑘) (3.3.1) was used to determine the general 

alphabetic optimality criteria as follows; 

1. The general determinant criterion is given by the product of the sub-matrices. 

∅0𝑀𝑘 = KIIG 64         (3.3.2) 

2. The general smallest eigenvalue criterion  

∅−∞𝑀𝑘 = 𝜆𝑚𝑖𝑛[𝑀𝑘] 

                   =|𝑀𝑘 − 𝜆𝐼
[3+𝑘

𝑘
]∗[3+𝑘

𝑘
]
|     (3.3.3) 

3. The general trace criterion 

Considering the  general moment matrix (𝑀𝑘), the trace of a matrix is given as 

the sum of all the elements in the principal diagonal, thus the generalized trace 

criterion will be given by; 

∅−∞(𝑀𝑘) =
1

𝑆
[𝑡𝑟𝑎𝑐𝑒 𝑀𝑘]      (3.3.4)  

4. The generalized average variance criterion is given by; 

∅−1(𝑀𝑘)= [
1

𝑆
𝑡𝑟𝑎𝑐𝑒 (𝑀𝑘)

−1]
−1

     (3.3.5) 

3.4 The DT- Optimality Criterion 

This method was proposed by Atkinson (2008). It is a combination of D–optimality and 

T–optimality. It provides a specified balance between model discrimination and 

parameter estimation. The criterion to be maximized is 

 𝜙𝐷𝑇(𝜉) = (1 − 𝑘) log Δ2( 𝜉) + (
𝐾

𝑝
) log  |𝑀1(𝜉)|  (3.4.1)  

 Where 𝜙𝐷𝑇(𝜉)  is a convex combination of two design criteria, the first criterion is 

log Δ2( 𝜉) , the logarithm of the T–optimality and the second is D–optimality. Then the 

design which maximizes the above criterion is called DT–optimum and is denoted 

by𝜉𝐷𝑇
∗  . 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter the alphabetic optimality criteria for specific TORD in three, four, five, 

six and k dimensions are presented. Further, the compound optimality comprising of 

D- and T-optimality criteria is evaluated for the designs in three, four, five and six 

dimensions.  

4.2 Alphabetic optimality criteria 

Alphabetic optimality criteria under the study are variance related criteria since they 

address the minimization of the variance associated with the estimation of the model. 

The smallest value is picked as it determines the optimality. 

4.2.1 Particular criteria for three dimensional TORD constructed through BIBD 

Utilizing the moment matrix (3.2.1), the alphabetic optimality criteria D-, A-, E-, T-, 

G- and I- for three dimensional TORD constructed from BIBD were obtained from the 

expressions in (3.2.5), (3.2.6), (3.2.7), (3.2.8), (3.2.9) and (3.2.1.1) respectively and 

presented in the table 4.2.1. 

Table 4.2.1: Alphabetic optimality criteria for three dimensional TORD 

constructed through BIBD 

Optimality 

criteria 

D-criteria A-criteria E-criteria T-criteria G-criteria I-criteria 

values 0.03583 55.338 0.0031 0.1383 0.2263 49.5917 

 

E- Criterion is the best criteria for TORD in three factors constructed through BIBD. 

That means E-criteria is more optimal since it addresses minimization of variance more 

than the other criteria. D- Criterion is the second best criterion. 
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4.2.2 Particular criteria for four dimensional TORD through BIBD 

Utilizing the moment matrix (3.2.2), the alphabetic optimality criteria D-, A-, E-, T-, 

G- and I- for four dimensional TORD constructed from BIBD were obtained from the 

expressions in (3.2.5), (3.2.6), (3.2.7), (3.2.8), (3.2.9) and (3.2.1.1) respectively and 

presented in the table 4.2.2. 

Table 4.2.2: Alphabetic optimality criteria for four dimensional TORD 

constructed through BIBD 

Optimality 

criteria 

D-criteria A-

criteria 

E-

criteria 

T-

criteria 

G-

criteria 

I-criteria 

values 0.02455 117.0680 0.0063 0.0956 0.1442 -51454.9846 

 

E- Criterion is the best criteria for TORD in four factors constructed through BIBD. 

That means E-criterion is more optimal since it addresses minimization of variance 

more than the other criteria. D- Criterion is the second best criteria. 

4.2.3 Particular criteria for five dimensional TORD constructed through BIBD 

Utilizing the moment matrix (3.2.3), the alphabetic optimality criteria D-, A-, E-, T-, 

G- and I- for five dimensional TORD constructed from BIBD were obtained from the 

expressions in (3.2.5), (3.2.6), (3.2.7), (3.2.8), (3.2.9) and (3.2.1.1) respectively and 

presented in table 4.2.3 below. 

Table 4.2.3: Alphabetic optimality criteria for five dimensional TORD constructed 

through BIBD. 

Optimality 

criteria 

D-criteria A-

criteria 

E-criteria T-criteria G-

criteria 

I-criteria 

values 0.01939 216.188 0.0033 0.0689 0.1273 176.014 
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E- Criterion is the best criteria for TORD in five factors constructed through BIBD. 

That means E-criterion is more optimal since it addresses minimization of variance 

more than the other criteria. D- Criterion is the second best criteria. 

4.2.4 Particular criteria for six dimensional TORD constructed through BIBD 

 

Utilizing the moment matrix (3.2.4), the alphabetic optimality criteria D-, A-, E-, T-, 

G- and I- for six dimensional TORD constructed from BIBD were obtained from the 

expressions in (3.2.5), (3.2.6), (3.2.7), (3.2.8), (3.2.9) and (3.2.1.1) respectively and 

presented in the table 4.2.4. 

Table 4.2. 4 : Alphabetic optimality criteria for six dimensional TORD constructed 

from BIBD 

Optimality 

criteria 

D-criteria A-

criteria 

E-criteria T-criteria G-

criteria 

I-criteria 

values 0.0203 428.022 0.0033 0.0607 0.1005 205.639 

 

E- Criterion is the best criteria for TORD in six factors constructed through BIBD. That 

means E-criterion is more optimal since it addresses minimization of variance more 

than the other criteria. D- Criterion is the second best criteria. 

Table 4.2.5 gives the summary of particular criteria for the four designs. From the table 

E-Criterion is the best criteria for the four designs. 
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Table 4.2.5 : A summary of particular criteria for the four designs 

Design D A T E I G 

𝑫𝟏 0.03583 55.338 0.1383 0.0031 49.5917 0.2263 

𝑫𝟐 0.02455 117.0680 0.0956 0.0063 -51454.9846 0.1442 

𝑫𝟑 0.01939 216.188 0.0689 0.0033 176.014 0.1273 

𝑫𝟒 0.0203 428.022 0.0607 0.0033 205.639 0.1005 

 

The behavior of this the optimal values on different factors can be visualized well in 

figure 4.2 

 

Figure 1 :  Graph of optimal values vs number of factors 

 

Evaluation of alphabetic optimality was done and D-, A-, T-, E-, I- and G- optimal 

designs were obtained. From the above results, it shows that at three factors all the 

designs are less optimal. All the designs are relatively optimal for E- and D- criterion. 

For G- and T- criteria the designs gets optimal at four factors and even more optimal as 

the number of factors increase. In general the designs becomes more optimal in all the 

criteria as the number of factors increase. 
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4.3 Optimality criteria for k- dimensional TORD constructed through BIBD 

The general third order moment matrix given in (3.3.1) was utilized in determining 

the general alphabetic optimality criteria.   

4.3.1 Generalized determinant criterion 

The determinant |𝑴𝒌| is given by the product of KIIG 64   

Having obtained the determinant for 3, 4, 5 and six factors, the study obtained the 

determinant for k-factors. To establish a trend the determinant for each sub-matrix in 

each factor is obtained as shown in table 4.3.1 below. 

Table 4.3 1: General determinant of each sub-matrix for different factors 

 

Sub-

matrix 

3-factors 4-factors 5-factors 

𝐺 20
4

3
− 12

2

2


4

2
 48

4

4
− 32

2

2


4

2
 112

4

5
− 80

2

2


4

2
 

4I  
4

3
 

4

6
 

4

10
 

6I                       6  
6

4
 

6

10
 

𝐾 84
2


6

3

− 60
4

2


6

2
 

192
2


6

4

− 144
4

2


6

3
 

432
2


6

5

− 336
4

2


6

4
 

 

The determinant for each sub-matrix for k-factors is obtained as shown in table 4.3.2 

below 
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Table 4.3 2 : General determinant of each sub-matrix for k-factors 

 k-factors 

G  (2
4
)
𝑘−1

[(𝑘 + 2)
4
− 𝑘

2

2
] 

4I  


4

[𝑘
2
]
 

6I  


6

[𝑘
3
]
 

K  
{3(2

6
)
𝑘−1

[(𝑘 + 4)
6


2
− (𝑘 + 2)

4

2
]}

𝑘

 

 

The generalized determinant criterion is given by 

∅𝟎𝑪𝒌(𝑴) = (2
4
)
𝑘−1

[(𝑘 + 2)
4
− 𝑘

2

2

] 
4

[𝑘
2
]


6

[𝑘
3
]

{3 (2
6
)
𝑘−1

[(𝑘 + 4)
6


2
− (𝑘 + 2)

4

2

]}

𝑘

 

 

4.3.2 Generalized Trace-criterion 

Considering the moment matrix M, the trace of a matrix is given as the sum of all the 

elements in the principal diagonal, thus the generalized trace criterion is be given by 

∅1𝐶𝑘(𝑀) =
1

𝑆
[𝑡𝑟𝑎𝑐𝑒 𝐶𝑘(𝑀)]  

= 
1

[𝐾+3
𝐾

]
{1 + 𝑘(3

4
) + 

4
[
𝑘
2
] + 

6
[
𝑘
3
] + 𝑘[

2
+ 15

6
+ (𝑘 − 1)3

6
]} 

 

4.3.3 Generalized average variance criterion 

The generalized variance criterion is given by 

∅−1𝐶𝑘(𝑀)= [
1

𝑆
𝑡𝑟𝑎𝑐𝑒 𝐶𝑘(𝑀)−1]

−1

 

=[
1

[𝐾+3
𝐾

]
{1 + 𝑘(3

4
) + 

4
[
𝑘
2
] + 

6
[
𝑘
3
] + 𝑘[

2
+ 15

6
+ (𝑘 − 1)3

6
]}

−1

]

−1

 

 



34 
 

 
 

4.3.4 Generalized smallest eigenvalue criterion  

The smallest eigenvalue criterion is obtained as 

∅−∞𝐶𝑘(𝑀) = 𝜆𝑚𝑖𝑛[𝐶𝑘(𝑀)] 

                    =|𝐶𝑘(𝑀) − 𝜆𝐼
[3+𝑘

𝑘
]×[3+𝑘

𝑘
]
| 

where it produces a kth-degree polynomial , called characteristic polynomial, where 

)det()( AIk n    

0... 1

2

2

1

1  



nn

nn

n kkkk  . 

 

The k roots k ,...,, 21  of this equation are called the eigenvalues of M. 

 

|

|

|

[
 
 
 
 
 
 
 
 
 
𝜆  0  0  0  0  0  0

0  𝜆  0  0  0  0  0

0  0  𝜆  0  0  0  0

0  0  0  𝜆  0  0  0

0  0  0  0  𝜆  0  0

0  0  0  0  0  ⋱   0

0  0  0  0  0  0  𝜆 ]
 
 
 
 
 
 
 
 
 

[𝑘+3
𝑘

][𝑘+3
𝑘

]

−

[
 
 
 
 
 
 
 
 
𝐺  0     0   0  0  0  0  0

0  I4    0  0  0  0  0

0  0  0 I6   0  0  0  0

0  0  0   0   1K   0  0  0  

0  0  0  0  0  2K   0  0

0  0  0  0  0  0  ⋱ 0
0  0  0  0  0  0  0   𝐾𝑘 ]

 
 
 
 
 
 
 
 

[𝑘+3
𝑘

][𝑘+3
𝑘

]

|

|

|

= 0  

The eigenvalues of each sub-matrix are obtained as follows 

|𝜆𝐼(𝑘+1)(𝑘+1) − 𝐺(𝑘+1)(𝑘+1)|
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We have 𝜆4𝐼 as, 

|𝜆𝐼
[𝑘
2
]
− 𝜆4𝐼[𝑘

2
]
|=

4

4

4

..)(

..

..

0...

0...0













symmetric

=0 

                        =(𝜆 − 𝜆4)
[𝑘
2
]
 

We have 𝜆6𝐼 as, 

|𝜆𝐼
[𝑘
3
]
− 𝜆6𝐼[𝑘

3
]
|=

6

6

6

..)(

..

..

0...

0...0













symmetric

=0 

                       =(𝜆 − 𝜆6)
[𝑘
3
]
 

We have K as, 

|𝜆𝐼(𝑘+1)(𝑘+1) − 𝐾(𝑘+1)(𝑘+1)|=

|

|

|

6

66

666

4442

3

..)(

..

..

...3

3...315
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The generalized smallest eigenvalue criterion for third order in k-factors is given by 

(𝜆 − 𝜆4)
[𝑘
2
] = |𝐶𝑘(𝑀) − 𝜆𝐼

[3+𝑘
𝑘

]∗[3+𝑘
𝑘

]
| 
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4.4 DT- optimality criterion for third order rotatable designs constructed from 

BIBD 

The criterion to be maximized is given by expression (3.4.1). 

DT- compound optimality criterion for third order rotatable designs constructed from 

balanced incomplete block design was evaluated. Results were obtained as shown in 

table 4.4.1. 

Table 4.4. 1 : DT-compound optimality for the four designs 

Design DT-optimality 

D1 1.5015 

D2 2.8746 

D3 4.4942 

D4 5.9632 

The values of the DT- compound optimality versus the number of factors can be 

visualized well in figure 2. 

 

Figure 2 : DT-compound optimality values vs number of factors 
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DT- compound optimality was evaluated and a DT- optimal design determined. The 

values of DT-optimality increases as the number of factors increase. The design D1 

(three factors) is DT-optimum, that is, the design is 𝜉𝐷𝑇
∗ . It is evident that compound 

DT- optimality is appropriate for designs with few factors, that is the fewer the factors 

the optimal the design. 

4.5: Numerical Example 

 

A central composite rotatable design with 6 center-point replications was set up to 

investigate the effects of three fertilizer ingredients on the yield of snap beans. The 

fertilizer ingredients and actual amounts applied were nitrogen (N), from 0.94 to 6.29 

kg/plot; phosphoric acid (P2O5) , from 0.59 to 2.97 kg/plot; and potash (K2O) , from 

0.60 to 4.22 kg/plot. The response of interest, y, is the average yield in pounds per plot 

of snap beans. The coded variables, x1, x2, x3, are given by 

 

   𝑋1 =
𝑁−3.62

1.59
,    𝑋2 =

𝑃2𝑂5−1.78

0.71
,    𝑋3 =

𝐾2𝑂−2.42

1.07
 

 

The values 3.62, 1.78 and 2.42 kg/plot represent the centres of the values of nitrogen, 

phosphoric and potash respectively. 

The design settings (in coded form) and corresponding response values are given in 

Table 1 [15]: We note that the design is rotatable since the axial parameter value 

is α=F1/4=1.682,, where F=8 is the number of points in the factorial portion of this 

CCD. The region R is therefore spherical with a radius = 1.682. 

In this example, the predicted response is 
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𝑦 = 10.61 + 0.43𝑥1 + 1.89𝑥2 + 1.23𝑥3 + 0.71𝑥1
2 + 0.94𝑥1𝑥2 + 0.87𝑥1𝑥3 + 0.21𝑥2

2

+ 0.23𝑥2𝑥3 + 0.15𝑥3
2 − 2.11𝑥1

3 + 1.76𝑥1
2𝑥2 + 0.67𝑥1

2𝑥3 + 0.98𝑥2
2𝑥1

+ 0.87𝑥1𝑥2𝑥3 − 1.47𝑥3
2𝑥1 + 2.33𝑥2

3 + 1.48𝑥2
2𝑥3 − 0.45𝑥3

2𝑥2

+ 2.08𝑥3
3 

 

x1 x2 x3 N P2O5 K2O Yield 

-1 -1 -1 2.03 1.07 1.35 11.28 

1 -1 -1 5.21 1.07 1.35 8.44 

-1 1 -1 2.03 2.49 1.35 13.19 

1 1 -1 5.21 2.49 1.35 7.71 

-1 -1 1 2.03 1.07 3.49 8.94 

1 -1 1 5.21 1.07 3.49 10.9 

-1 1 1 2.03 2.49 3.49 11.85 

1 1 1 5.21 2.49 3.49 11.03 

-1.682 0 0 0.94 1.78 2.42 8.26 

1.682 0 0 6.29 1.78 2.42 7.87 

0 -1.682 0 3.62 0.59 2.42 12.08 

0 1.682 0 3.62 2.97 2.42 11.06 

0 0 -1.682 3.62 1.78 0.6 7.98 

0 0 1.682 3.62 1.78 4.22 10.43 

0 0 0 3.62 1.78 2.42 10.14 

0 0 0 3.62 1.78 2.42 10.22 

0 0 0 3.62 1.78 2.42 10.53 

0 0 0 3.62 1.78 2.42 9.5 

0 0 0 3.62 1.78 2.42 11.53 

0 0 0 3.62 1.78 2.42 11.02 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMENDATION 

 

5.1 Introduction 

This chapter gives conclusion and recommendations based on the objectives of the 

study. The implications of the main findings based on the study are also stated in this 

chapter. For further research this chapter gives what is considered to be gap left out by 

the study which would need further investigation through research. 

5.2 Conclusion 

The alphabetic optimality criteria are very useful in designing of experiment. The study 

shows that all designs optimal values decrease with the increase in the number of factors 

for D-, G- and T- optimality.  All the designs under consideration in the study were 

found to be E optimal, therefore E- optimality criterion is the best for third order 

rotatable designs in three, four, five and six factors. 

A general method of evaluating alphabetic optimality for TORD constructed through 

BIBD in k factors was determined. 

Compound DT- optimality was obtained. The values of DT-optimality increases as the 

number of factors increase. The design D1 (three factors) is DT-optimum, that is, the 

design is 𝜉𝐷𝑇
∗ . It is evident that compound DT- optimality is appropriate for designs 

with few factors, that is the fewer the factors the optimal the design. 

5.3 Recommendation  

Rotatable designs constructed from BIBD for second and third order have been 

constructed and their optimality determined. The study also recommends the 

application of the designs in the design and analysis of field experiments.  
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