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ABSTRACT 

Response Surface Methodology (RSM) is a collection of mathematical and statistical 
techniques useful for the modeling and analysis of problems in which a response of interest 

is influenced by several variables and the objective is to optimize the response. The yield 
results of the twenty four points RSM design permitted a response surface to be fitted 
easily and provided spherical information contours besides the realizations of an optimum 

combination of the fertilizers in rose coco beans, which resulted in economic use of scarce 
resources for optimal production of rose coco beans.  In this study an existing A-optimum 

and D-efficient second order rotatable design in three dimensions was used in the 
production of rose coco beans optimally and efficiently. The general objective of the study 
was to produce rose coco beans (Phaseolus vulgaris) optimally and efficiently using an 

existing A-optimum and D-efficient twenty four points second order rotatable design in 
three dimensions in a greenhouse setting using three inorganic fertilizers, namely, nitrogen, 

phosphorus and potassium. Thus the study was accomplished using the calculus optimum 
value of the free/letter parameter f=1.1072569. The specific objectives were to estimate the 
linear parameters, thereby making available the yield response of rose coco beans at 

calculus optimum value design for the first time. The generalized variance of the estimated 
linear parameters was also obtained, fitted and tested the three models adequacies via lack 

of fit test, and then found the settings of the experimental factors that produces optimal 
response using contour plots to assist visualizes the response surfaces. This study 
demonstrated the importance of statistical methods in the optimal and efficient production 

of rose coco beans. The results showed that the three factors: nitrogen, phosphorus, and 
potassium contributed significantly on the yield of rose coco beans (p<0.05). The 

regression coefficients were determined by employing least squares techniques to predict 
quadratic polynomial models for group 1 greenhouse (GP1G), group 2 greenhouse (GP2G) 
and group 3 greenhouse (GP3G) for the three fertilizer combinations. In GP1G second 

order model was inadequate with a p value of 0.3178, in GP2G and GP3G, the second 
order model was adequate at 1% level of significance with p values of 0.0065 and 0.0034 

respectively. The analysis of variance (ANOVA) of response surface for rose coco yield 
showed that this design was adequate due to satisfactory levels of coefficient of 
determination, R2, 0.6810 (GP1G), 0.6704 (GP2G), and 0.8066 (GP3G) and coefficient 

variation, CV was 13.48, 14.47 and 10.30 for GP1G, GP2G, GP3G respectively. The 
canonical analysis showed that there were saddle points for the three groups, meaning there 

was no unique optimum; therefore ridge analysis was used to overcome the saddle 
problem. The results from ridge analysis provided the maximum yield of 58.78grams, 
48.36grams and 70.25grams in GP1G, GP2G and GP3G respectively for the various 

fertilizer combinations at radii of one. We therefore recommend the use of GP3G design 
since it gave above board the required coefficient of determination (R2=80.66) and the 

maximum yield (70.25grams) was achieved.  
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CHAPTER 1: INTRODUCTION 

1.1 Background Information 

Generally, the objective for agricultural researchers is that, they are in constant search for new 

or improved technologies to increase productivity. The researcher is usually interested in 

finding maximum or optimal yield using minimum cost. For Kenya to meet the needs of its ever 

growing population, then new technologies is inevitable in agricultural fields. Since arable land 

in Kenya is a fraction, there’s need to produce maximally in such areas by utilizing design of an 

experiment like the one in this study. There are two types of supplies for agriculture, 

specifically fertilizer and pesticides. It can be said that the fertilizer is food and pesticides is 

medicine for plants in conventional agriculture (Arjumand, 2013). Soil fertility is diminishing 

gradually due to the erosion, loss of nutrients, accumulation of salts and other toxic elements 

and unbalanced nutrients compensation. Many efforts are being exercised to combat the adverse 

consequences of chemical farming (Faheed, 2008). During the last decades rose coco bean is 

becoming increasingly important legume for human nutrition and a major protein and calorie 

source in the world. The bean crop requires nitrogen in quite high amount in the first stage of 

development for the emergence of the nodules and builds up of the symbiotic nitrogen fixation. 

The amount of nitrogen which symbiotically bound depends on the kind of plant, the efficiency 

of the bacteria inoculated and soil properties (Bildirici and Yilmaz; 2005). Common bean 

(Phaseolus vulgaris), also referred to as dry beans, is an annual leguminous plant that belongs 

to the genus, Phaseolus, with pinnately compound trifoliate large leaves. It is largely a self-

pollinated plant, though cross-pollination is possible if the stigma contacts with pollen coated 

bee when extended. Seeds are non-endospermic and vary greatly in size and colour from the 

small black wild type to the large white, brown, red, black or mottled seeds of cultivars, which 
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are 7-16 mm long (Cobley and Steele, 1976). The common rose coco beans (Phaseolus 

vulgaris) are the most commonly grown grain legumes that come second after maize as a 

subsistence crop (GoK, 2006). They serve as a source of protein which is relatively cheaper 

compared to animal proteins to the majority of the population in Kenya (Karanja et al., 2007). 

Consumption of common bean is high mostly because it is relatively inexpensive compared to 

meat (Pachico, 1993). Common bean plays a strategic role in alleviating malnutrition. Regular 

consumption of common bean is now promoted by health organizations because it reduces the 

risk of diseases such as cancer, diabetes or coronary heart diseases (Leterme and Munoz, 2002). 

This is because common bean is low in fat and is cholesterol free. It is also an appetite 

suppressant because it digests slowly and causes a low sustained increase in blood sugar. Bean 

provides a rich combination of carbohydrates (60-65%), proteins (21-25%), fats (less than 2%), 

vitamins and minerals (Ensminger et al., 1994). In fact, with increasing health concerns, most 

people, especially the urban population are reducing consumption of animal proteins, and 

instead they are turning to pulses such as dry bean due to its low fat content. Hence the rationale 

for emphasis in more bean research is self-evident. The crop also provides farm households and 

traders with incomes and is therefore important from both the food security and income-

generation. Hence there is a need for increased bean production to enhance exports as well as 

satisfies domestic market. It is an important staple food in the diet of people of all income 

categories. The beans are characterized as near perfect food because of their high protein 

content and generous amounts of iron, folic acid, complex carbohydrates and other diet 

essentials. The crop also matures within three months, enabling farmers to plant the crop almost 

three times annually. Therefore, we need to see this important crop doing well, so as to feed and 

supplement the right nutrients to its ever growing consumers.  
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The response surface methodology (RSM) emphasizes on finding a particular treatment 

combination, which causes the maximum or minimum responses. The use of analysis of the 

quadratic response function or RSM is necessary to obtain the optimum level of fertilizer 

requirements. In response surface analysis, the eigenvalues could be used to determine whether 

the solution gives a maximum, minimum or saddle point on the response curve. Moreover, the 

effects of treatment combinations, which have not been carried out in the experiment might still 

be estimated. The regression equation was fitted between the response variable, rose coco yield 

and the three fertilizer treatments, nitrogen (N), phosphorus (P) and potassium (K). The 

expected yield could be described as a continuous function of the application rate factor. When 

the fertilizer application rates are higher or lower than the optimum application rates, they might 

result in a reduction in yields. The purpose of implementing this RSM technique was to 

determine the optimum levels of fertilizer used in order to optimize rose coco yields.  

In any treatment arrangement, we sought a treatment or treatment combination that could be 

used to either reverse existing methodologies, advance the current methods being used in 

farming in order to maximize the yield using the scarce resources available. In this research, the 

investigation geared towards searching the optimum combination of treatment combinations to 

maximize rose coco beans in a greenhouse setting using inorganic fertilizers was highlighted. It 

is seen how different components of fertilizers affect the output of the beans. The study 

therefore was used to determine; the best possible level of the identified fertilizer to maximize 

the yield in rose coco beans. In the technological context, this response surface methodology 

was applied to study the measured yield or output of a system as it varies in response to the 

changing levels of one or more physical input variables. The experimental design aspect deals 
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with the choice of suitable variables and their various levels, and regression analysis enables a 

mathematical form to be fitted to the observations to "model" the varying yields.  

In order to conduct a first-order model, the operating conditions that maximize the yield of rose 

coco beans were studied. There are three independent variables which influence the process 

yield: nitrogen, phosphorus and potassium fertilizers. The low-order polynomial terms has been 

used to describe some part of the response surface. Once the estimated equation was obtained, 

we were able to use statistical techniques to check for the model adequacy. The objective was to 

determine the current levels or settings of the nitrogen, phosphorus and potassium fertilizers 

that resulted in a value of a response that was optimal or close to the optimum. When the first 

order model was inadequate, then second-order model was fitted. With the purpose of exploring 

the second-order model, the statistical modeling techniques to develop an appropriate 

approximating relationship between the yield and the process variables was used. 

 

1.2 Statement of the problem 

The beans are the second commonly grown grain legumes after maize as a subsistence crop.  

Most farmers plant the crop without fertilizers or they apply the available fertilizer without 

considering the plant optimal requirement for the optimal production, when the fertilizer 

application rates are higher or lower than the optimum application rates, reduction in yield is 

experienced. The fertilizers are wasted if the amount applied is more than the optimum rate and 

can be harmful to the soils, (Khamis, 2006). Kenya’s current annual bean production of 

approximately 215,000 MT, barely meets half the annual consumption of 450,000 MT. The 

average production per hectare is 500 kg or less, compared to 1800 to 2000 kg ha-1 potential 

(Africa Agriculture, 2008). The major limitation to bean production in many smallholder farms 
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is declining soil fertility as a result of continuous cropping with minimal inputs or rotation to 

replenish soil nutrients. Furthermore, there is minimal or no optimal use of the required 

inorganic fertilizers. The over use of N (nitrogen) relative to P2O5 (phosphorus) and K2O 

(potassium) has raised concerns in environmental perspective. The phosphorus and potassium 

fertilizers have been in short supply and farmers have been more steadily adopting the use of 

nitrogenous fertilizers because of impressive response. There is evidence that soil P2O5 and K2O 

level are declining. So determining the optimum balance of N, P2O5 and K2O so as to produce 

high yield of rose coco has been of concern that the study tried to address. In the year 2014 and 

2015, maize was majorly affected by a disease which swept the large acreage of farms, thus the 

need to embark on the research for the alternative crop that is rose coco bean. The study was 

geared towards estimating the linear parameters in one of the existing six specific second order 

rotatable designs in three dimensions in which Mutiso J.M.(1998) calculated the calculus 

optimal value to be 1.1072569 for the free/letter parameter (f),  Koech, F.(2016) calculated the 

relative efficiencies for the six designs and their optimality criteria, Koech showed that the 

twenty four point second order rotatable design was the most D-efficient and A-optimal design. 

Therefore, out of these researches we dwelled on the twenty four points, second order rotatable 

design and proceeded to have a practical greenhouse experiment to realize the optimal and 

efficient production of rose coco bean using the three fertilizer components, namely, nitrogen, 

phosphorus and potassium. The study facilitated the estimation of the coefficient β0, β1, β2, β3, 

β11, β22, β33, β12, β13 and β23 in an existing second order rotatable design of twenty four points in 

three dimensions. Achieving the production efficiency of rose coco has not been easy that this 

research tends to employ twenty four points second order rotatable design approach, focusing 

on the area of modeling rose coco yield production and highlighting the respective point of 
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intercept and gradient levels of fertilizer with which the variety of rose coco was capable of 

delivering the yield production efficiency. The study found out how the yields fitted the second 

order model and checked its model adequacy. The purpose of implementing the twenty four 

points’ rotatable design was to determine the optimum levels of fertilizer used in order to 

optimize rose coco yields.  

Therefore the problem was to achieve an optimal and efficient production of rose coco beans 

through the twenty four point second order rotatable design in three dimensions for parameter 

estimation.  

 

1.3 Objectives of the study 

This section highlights the general objective and specific objectives. 

1.3.1 General objective  

The general objective was to produce rose coco beans optimally and efficiently using an 

existing A-optimum and D-efficient twenty four point second order rotatable design in three 

dimensions.  

1.3.2 Specific objectives 

1) To estimate the linear parameters in an existing A-optimum and D-efficient calculus 

optimum value second order rotatable design. 

2) To obtain the generalized variance of the estimated linear parameters. 

3) To fit and test the three models adequacies.  

4) To find the settings of the experimental factors that produces the optimal response. 
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1.4 Significance of the study 

The major nutrients, that is, nitrogen (N), phosphorus (P) and potassium (K) are essential for 

growth and production of bean, (Marschner, 2012). There is unbalanced nutrients compensation 

in the soil. Therefore, the need to determine the optimum balance of N, P and K so as to realize 

the maximum potential yield of rose coco beans. The study focused on the estimated linear 

parameters of a specific twenty four point second order rotatable design in three dimensions for 

the calculus optimal value for the first time, checked the adequacy of the models and obtained 

the generalized variance for the estimated linear parameters. Furthermore, the response surface 

for the optimal response yield of rose coco bean was found for the three groups. The study 

would provide the most reliable advice for policy makers on the right range application of 

fertilizers that are desirable to optimize/maximize the rose coco bean crop production.  

 

1.5 Limitation of the study 

The rose coco beans were planted simultaneously in a greenhouse (15mx10m) to guard soil 

contamination from the subsequent planting, we could have had three planting periods at 

different seasons say January-April, May-August and September-December, or instead built two 

or three greenhouses, this could have allowed the independent variables to be screened to get 

the amount of each component of the fertilizers. The choice of each fertilizer starting point in 

this study was done arbitrarily; there were so many infinite options available at our disposal. 

The top dressing and foliar spray was not applied, only one time initial fertilizer application was 

done during planting and left till harvest was done. 

 

 



8 

 

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

This chapter presents some literature relevant to the study objectives. The subsections included 

are; the rose coco beans production in Kenya, organic and inorganic use of fertilizers, response 

surface methodology, optimal design criteria, D-optimality, Model adequacy. 

 

2.2 The rose coco bean production in Kenya  

Kenya’s current annual bean production of approximately 215,000 metric tonnes (MT), barely 

meets half the annual consumption of 450,000 MT. The average production per hectare is 500 

kg or less, compared to 1800 to 2000 kg ha-1 potential (Africa Agriculture, 2008). The major 

limitation to bean production in many smallholder farms is declining soil fertility as a result of 

continuous cropping with minimal inputs or rotation to replenish soil nutrients. Furthermore, 

there is minimal or no use of the required inorganic fertilizers. Some of the options that are 

currently being pursued to address low soil fertility include integrated use of organic (e.g., crop 

residues, animal manures, agro forestry tree pruning) and inorganic (fertilizers) resources. 

Common beans are grown in pure stands by large scale farmers, but commonly intercropped 

with maize by smallholder farmers (Kimenju, 2004). Like many legumes, beans thrive well in 

sufficiently aerated and well drained soils with a pH of 6.5 - 7.5 because they are very sensitive 

to soil acidity and an optimal amount of organic carbon above 2.4 percent (Baudoin et al., 

2001). The optimum altitude should exceed 1000 m above sea level. Most common bean 

cultivars are short-season crops with a maturity period ranging from 65 to 110 days from 

emergence to physiological maturity, hence two bean harvests per year (Buruchara, 2007).  
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Common bean production in Kenya is mainly in the highlands and the midlands. About 75 

percent of the annual cultivation occurs in four regions, namely: Rift Valley, Western, Nyanza, 

and Eastern Province (Wortmann, 1998). The Rift Valley contributes the biggest share, 

accounting for 33 percent of the national production followed by Nyanza and Western province 

accounting for 22 percent each (Katungi, 2010). Output from the eastern parts of the country 

and the coast is constrained by adverse climatic conditions. Although Kenya has two seasons 

for common bean, a significant number of farmers grow the crop once a year because of adverse 

climatic conditions. In Kenya, some of the Andean beans that are widely cultivated include the 

red mottled (occurring in different local names such as Rose coco or GLP 2 and Nyayo), red 

kidneys (such as Canadian Wonder or GLP 24), purple/gray speckled (locally known as Mwezi 

Moja). Rose coco type is the most widely grown followed by Canadian Wonder type. Rose coco 

and Canadian Wonder type are high yielding but require heavy rains and high soil fertility to 

yield well. Soil fertility is diminishing gradually due to the erosion, loss of nutrients, 

accumulation of salts and other toxic elements and unbalanced nutrients compensation. Rose 

coco bean (Phaseolus vulgaris), is an important legume for human nutrition and a major protein 

and calorie source. Bean production is declining in Kenya due to various factors; virus diseases 

and optimum combination of the needed component of fertilizers are some of the major yield 

reduction factors in bean production. The rose coco hardly meets the demand; therefore the 

need to search for improved methods. 

 

2.3 Organic and inorganic use of fertilizers 

The animal manures are valuable sources of nutrients and the yield- increasing effect of manure 

is well established. Apart from the nutrients in manure, its effects on the improvement of soil 
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organic matter, soil structure and the biological life of the soil are well recognized. There is also 

some evidence that it may contain other growth-promoting substances like natural hormones 

and B vitamins (Leonard, 1986). Plants can only use the nutrients that are in an inorganic form. 

Manure N and P are present in organic and inorganic forms, and are not totally available to 

plants. The organic forms must be mineralized or converted into inorganic forms over time 

before they could be used by plants. The organic manure could then be applied to plants as a 

source of nitrogen, phosphorus and potassium (N, P & K) which are the macro nutrients that 

limit crop growth (Kwabiah, 2003; Wasonga, 2008). The term “organic” describes production 

systems that optimize natural processes. Organic farming systems rely on ecologically-based 

practices such as cultural and biological pest management, and virtually exclude the use of 

synthetic chemicals in crop production and prohibit the use of antibiotics and hormones in 

livestock production. The chemical fertilizers are used in modern agriculture to correct known 

plant-nutrient deficiencies; to provide high levels of nutrition, which aid plants in withstanding 

stress conditions; to maintain optimum soil fertility conditions; and to improve crop quality. 

Adequate fertilization programs supply the amounts of plant nutrients needed to sustain 

maximum net returns (Leonard, 1986). In essence, fertilizers are used to make certain that soil 

fertility is not a limiting factor in crop production. 

 

2.4 Response Surface Methodology 

The response Surface Methodology (RSM) is a collection of mathematical and statistical 

techniques useful for the modeling and analysis of problems in which a response of interest is 

influenced by several variables and the objective is to optimize this response (Montgomery 

2005). In most RSM problems, the form of the relationship between the response and the 
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independent variables is unknown. Thus the first step in RSM is to find a suitable 

approximation for the true functional relationship between the response and the set of 

independent variables which are subject to the control of the scientist or engineer. Usually, a 

low-order polynomial in some region of the independent variables is employed. If the response 

is well modeled by a linear function of the independent variables, then the approximating 

function is the first-order model and if there is curvature in the system, then a polynomial of 

higher degree such as the second order is used. The broad aims of the RSM are to investigate 

the nature of the response surface over a region of interest and to identify operating conditions 

associated with maximum or minimum responses. RSM is a sequential procedure and is 

generally conducted in three phases, as emphasized in (Myers and Montgomery, 2002). Phase 1 

involves the screening of explanatory variables when the number of factors is large or when 

experimentation is expensive to identify those which have a significant effect or the most 

influential  on the response(s) being investigated; phase 2 is concerned with the location of 

optimum operating conditions by conducting a sequence of suitable experiments; and phase 3 

involves the fitting of an appropriate empirical model, usually a second-order polynomial 

model, in order to examine the nature of the response surface in the vicinity of the optimum. In 

order to get the most efficient result in the approximation of polynomials the proper 

experimental design must be used to collect data. Once the data are collected, the method of 

least squares was used to estimate the parameters in the polynomials. The response surface 

analysis was performed by using the fitted surface. The response surface designs are the types 

of designs for fitting response surface. The fundamental methods for quantitative variables 

involve fitting first-order (linear) or second-order (quadratic) functions of the predictors to one 

or more response variables, and then examining the characteristics of the fitted surface to decide 
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what action was appropriate. The β could be estimated by using the least squares method as: β = 

(x'x)-1x'y. The measure of accuracy of the column of estimators, β, is the variance-covariance 

matrix which is defined as; V(β) = σ2(x'x)-1 (Myers, 1971), (Unal, 1996), (Craig, 1978), 

(Mitchell, 1974) where σ2 is the variance of the error. The V(β) matrix is a statistical measure of 

the goodness of fit. The V(β) is a function of (X'X)-1 and therefore, one would want to minimize 

(X'X)-1 to improve the quality of the fit. Statisticians have shown that minimizing (X'X)-1 is 

equivalent to maximizing the determinant of X'X (Mitchell, 1974, Montgomery, 1991, Box and 

Draper, 1974). Therefore, generating a design matrix which enables the construction of a good 

least square approximation model translates to maximizing the determinant of the X'X matrix 

and experimental designs that maximize |X'X| are referred to as D optimal designs (Unal, et al 

1996, Craig, 1978, Box and Draper, 1974) Here, “D” stands for the determinant of the X'X 

matrix associated with the model. This analysis could easily be extended to the quadratic model 

with the same conclusions for D-optimality. 

 

2.4.1 Optimal Design Criteria  

The design optimality criteria are often called the alphabetical optimality criteria because they 

are named by some of the letters of the alphabet. Kiefer and Wolfowitz (1959) were among the 

first authors who developed these optimality criteria. There are many types of optimal criteria 

available to generate experimental designs which include the determinant criterion D-; the 

average-variance criterion A-; the eigenvalue criterion E-; and the trace criterion T-;. 

Concerning optimality, the smallest value among the matrix means is usually taken thus the 

identification of optimality criteria. D-optimum design minimizes the content of the ellipsoidal 

confidence region for the parameter of the linear model. In terms of eigenvalues D-minimizes 
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the generalized variance of the parameter estimates. A-optimality minimizes the sum (or 

average) of the variance of the parameter estimates (Atkinson and Donev 1992). The smallest 

among the criteria determines the optimality for the generalized variance of the parameter 

estimates of the information matrix. These criteria measure the desirability of a design, E- 

reduces the variance of each individual parameter estimate, and T- optimum design is one that 

has not enjoyed much use because of the linearity aspect of the T-criterion. Evaluation of these 

criteria showed that the more homogeneous the design the higher optimal it becomes. The 

ultimate purpose of any optimality criterion is to measure ‘largeness’ of a non-negative definite 

information matrix Csxs. At this point, the specific optimality values of the design by utilizing 

the methods of evaluation of the particular criteria as outlined by Pukelsheim (1993). 

The determinant criterion, D-, sCC
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Cφ  (if C is positive definite) 

The consideration is a three dimensional specific rotatable design of order two. The relation C= 

(K'M-1K)-1 is used for the second order model, where M=1/N(X'X) is the moment matrix. The 

information matrix is utilized in the determination of the optimality criteria and the exact values 

of the criteria. 

 

2.4.2 D-optimality 

When considered historically, D-optimality (Kiefer, 1958) was the first alphabetical optimality 

criterion developed. It is also still among the most popular because of its simple computation, 

and the many available algorithms. In D-optimal designs, the goal is to minimize the 

generalized variance of the regression model parameter estimates. This is achieved by 
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maximizing the determinant of the information matrix, |� ′�|. It turns out that the information 

matrix is inversely proportional to the variance-covariance matrix of the least squares estimates 

of the linear parameters of a model. Thus, by maximizing the information matrix, the 

generalized variance of the model parameters is minimized. The twenty four point second order 

rotatable design is D-optimal. 

The focus of D-optimality is an estimation of model parameters through good attributes of the 

moment matrix, which is defined as 
'

M
N

=
X X

 
where X'X is the information matrix, and N, the 

total number of runs, is used as a penalty for larger designs. D-optimality requires one to 

maximize the determinant of the moment matrix, that is, a D-optimal design is the design, D*, 

in the design space W such that the determinant of M, | ( *) | | ( ) |DM D Max M D∈Ω= Under the 

standard normality assumptions, |X'X| is inversely proportional to the square of the volume of 

the confidence region for the regression coefficients. The larger the determinant of X'X then 

better the estimation of the model parameters.  

 

2.5 Model adequacy 

The large value of R2 does not necessarily imply that the regression model is good one, adding a 

variable to the model always increases R2, regardless of whether the additional variable is 

statistically significant or not. Thus, it is possible for models that have large values of R2 to 

yield poor predictions of new observations or estimates of the mean response. Because R2 

always increases as we add terms to the model, some regression model builders prefer to use an 

adjusted R2 statistic defined as 
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In general, the adjusted R2 statistic is not always increasing as variables are added to the model. 

In fact, when unnecessary terms are added, the value of 
2

adjR often decreases. When R2 and 
2

adjR

differ dramatically, there is a good chance that non-significant terms have been included in the 

model. We are frequently interested in testing hypotheses on the individual unknown 

parameters. Such tests would be useful in determining the value of each of the regressor 

variables in the response surface model. For example, the model might be more effective with 

the inclusion of additional variables, or perhaps with the deletion of one or more of the variables 

already in the model. Adding a variable to the regression model always causes the sum of 

squares for regression to increase and the error sum of squares to decrease. We must decide 

whether the increase in the regression sum of squares is sufficient to warrant using the 

additional variable in the model. Furthermore, adding an unimportant variable to the model can 

actually increase the mean square error, thereby decreasing the usefulness of the model (Carley 

et al, 2004). 

The significant terms in the model were found by analysis of variance (ANOVA) for each 

response. The significance was judged by determining the probability level that the F-statistic 

calculated from the data was less than 5%. The model adequacies were checked by R2, adjusted-

R2. The analysis included examining normal probability plots. The maximization and 

minimization of the polynomials thus fitted was usually performed by the mapping of the fitted 

responses.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter gives explanations on how each one of the four specific objectives were achieved. 

The research was done with the combination of independent treatment factors of inorganic 

fertilizers to check how factors influence the optimal yield of rose coco beans. The experiment 

was carried out in a greenhouse of size 15m x 10m during the period of February and July 2016 

on the twenty four points second order rotatable design in three dimensions.  

 

3.2 Estimation of the linear parameters in an existing A-optimum and D-efficient calculus 

optimum value second order rotatable design. 

This section gives the twenty four points’ calculus optimum value experimental design, 

screening experiment, experiment layout, planting rose coco beans and the method of 

estimating the parameters. 

 

3.2.1 Twenty Four Points Calculus Optimum Value Experimental Design 

The design of twenty four points second order rotatable design has the free parameter(s) f which 

has been determined using differential calculus by Mutiso J.M (1998). The study was geared 

towards estimation of the linear parameters in one of the existing six specific second order 

rotatable designs in three dimensions in which Mutiso J.M (1998) calculated the calculus 

optimal value to be 1.1072569 for the free/letter parameter, the other values of c1 and c2 were 

given as 0.7829487 and 1.2735263 respectively. We went further to obtain the yield for the 

calculus optimal value design in the greenhouse setting after which linear parameters were 
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estimated. We consider a set of twenty four point’s rotatable designs as highlighted by Mutiso 

(1998) and Koske et al (2008) is given as: 

D1 = [
1

2
G(f, f, 0) + 

1

4
 G(c1, 0, 0) + 

1

4
 G(c2, 0, 0)]      (3.1) 

Table 3. 1: Twenty four point second order rotatable design in three dimensions. 

1)   -f    -f     0 

2)    f    - f     0 

3)   -f     f     0 

4)    f     f     0 

5)   -f     0   -f 

6)   -f     0    f 

7)    f     0   - f 

8)    f     0     f 

9)    0   -f    -f 

10)    0   -f     f   

11)    0    f    - f 

12)    0    f     f 

13)    c1    0    0 

14)   -c1    0    0 

15)   0      0    c1 

16)   0      0    -c1  

17)    0     c1    0 

18)    0    -c1    0 

 

19)   c2    0      0 

20)  –c2    0     0 

21)    0     0     c2 

22)    0     0    -c2  

23)    0     c2     0 

24)    0     -c2    0 

 

 

3.2.2 Screening experiment 

The critical preliminary step was the screening stage at which we sought to identify the key list 

of factors that influence the bean production process. The goal of a screening experiment was to 

identify those factors which had an influence on the response, and then work with those 

significant factors in the study. The three straight fertilizers (nitrogen, phosphorus and 

potassium) of inorganic were screened, to determine the amount each could contribute to 
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optimal yield of rose coco beans. Each one of the straight inorganic fertilizer was applied at the 

following amounts; 10grams, 20grams, 30grams, 40grams, and 50grams per hole to rose coco 

plant. We then checked what level of inorganic fertilizer gave maximum yield independently. 

Thereafter, the constructed rotatable design of twenty four points was used to find out the 

maximum optimal combination of the treatment factors.  

 

3.2.3 Experiment Layout 

This section gives the experimental layout of GP1G, GP2G and GP3G using the inorganic 

fertilizers. 

 

3.2.3.1 Layout of calculus optimum value design 

The rose coco beans were subjected to inorganic fertilizers N, P, K at different levels of a 

twenty four point second order rotatable design according to table 3.1. Therefore, each of the 

three groups (that is, GP1G, GP2G and GP3G) was given three replications each, for example in 

GP1G  we had GP1GA, GP1GB and GP1GC. 

 

3.2.3.2 Group 1 Greenhouse-(GP1G) 

In GP1G a combination of 10grams of nitrogen, 20grams of phosphorus and 30grams of 

potassium were the initial fertilizers applied to rose coco beans and acted as the center point. 

This group was given the straight N, P & K fertilizers, such that GP1GA, GP1GB and GP1GC 

were the three replications with each having twenty four rose coco plants. 
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3.2.3.3 Group 2 Greenhouse-(GP2G) 

In GP2G a combination of 20grams of nitrogen, 30grams of phosphorus and 40grams of 

potassium were the initial fertilizers applied to rose coco beans and acted as the center point. 

This group was given the straight N, P & K fertilizers, such that GP2GA, GP2GB and GP2GC 

were the three replications with each having twenty four rose coco plants. 

 

3.2.3.4 Group 3 Greenhouse-(GP3G) 

In GP3G a combination of 30grams of nitrogen, 40grams of phosphorus and 50grams of 

potassium were the initial fertilizers applied to rose coco beans and acted as the center point. 

This group was given the straight N, P & K fertilizers, such that GP3GA, GP3GB and GP3GC 

were the three replications with each having twenty four rose coco plants. 

In the study some of the cases (plants) were lost due to some environmental factors such as 

drying up or any other cause, so dead plants were replaced to allow the study to go on. The 

yields for the rose coco plant that died after one month from the day of planting were not 

obtained. 

 

3.2.4 Planting Rose coco Beans 

In the greenhouse, organic matter on the soil surface was cleared, and then prepared by Jembe 

ploughing followed by harrowing until fine tillage was obtained. The rose coco had three block 

groups with each group having three replications of twenty four design points. Certified, viable 

and uniform seeds of rose coco beans were planted in the plots in February 2016. Beans were 

planted as a pure stand in a greenhouse. Before planting, the bean seeds were dressed with 

Aldrin at the rate of 5g per kg of seeds, to control soil pests especially bean fly 
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(Melanargromyza phaseoli). Furadan (5% carbofuran) were applied at a rate of 2g m-1 in the 

bean rows at sowing to control cutworms (Agrotis ipsilon). The bean seeds were surface 

sterilized using 3% sodium hypochlorite and pre-germinated on a nutrient free agar media 

before planting. Bean plant population density was 24 plants per line, meaning 72 plants per 

block of three replications (75 cm between row spacing and an intra-row spacing of 30 cm). All 

the plots were given a drip irrigation using drip line pipes. The plots received inorganic 

fertilizers at different combination.  The inorganic fertilizers (nitrogen, phosphorus, potassium) 

combinations were applied in each experimental unit before planting two seeds (pre-

germinated) of rose coco beans, and one week after germination, they were thinned to one plant 

per experimental unit. The twenty four rose coco bean plants per plot were retained after 

thinning. The first weeding was carried out on the greenhouse at two weeks after emergence. 

The second weeding was carried out four weeks later. The third weeding was done before 

flowering six weeks later, no other supplement were added either by top dressing or foliar 

spray. 

 

3.2.5 Data collection 

The harvesting of each rose coco plant was carried out after 85 days in stages to ensure pods 

mature well and it was done in a timely manner to avoid self-explosion, the harvest was placed 

in labeled white polythene bags. The yield of each harvest was weighed using sensitive 

weighing scale. Careful recording of the harvest was done to ensure correct yield for each rose 

coco plant crop was captured. The labeling was to assist for easy administration and 

management of the plants and the yields. The bean pods were shelled and grains dried to 12.5% 
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moisture content, after which weighing was done for each rose coco plant and yield recorded in 

grams for further analysis.  

 

3.2.6 Method of estimating the parameters 

In order to get the most efficient result in the approximation of polynomials the proper 

experimental design must be used to collect data. Once the data are collected, the method of 

least squares was used to estimate the parameters in the polynomials. The representation y = xβ 

+ ε was given where y is a vector of observations, ε is the vector of errors, x is the design matrix 

and β is a vector of unknown model coefficients. The design matrix was a set of combinations 

of the values of the coded variables, which specifies the settings of the design parameters to be 

performed during experimentation. The β could be estimated by using the least squares method 

as: β = (x'x)-1x'y. 

 

3.3 Obtaining the generalized variance of the estimated linear parameters 

This section gives residual sum of squares and variance of parameter estimates. 

 

3.3.1 Residual sum of squares and variance  

The method of least squares produces an unbiased estimator of the parameter β in the multiple 

linear regression models. The important parameter was the sum of squares of the residuals 

2 2

1 1

ˆ( ) '
n n

i i i

i i

SSE y y e
= =

= − = =∑ ∑ e e          (3.2) 

Because X'Xb = X'y, we could have a computational formula for SSE : 

SSE = y'y – b'X'y           (3.3) 

equation 3.3 is called the error or the residual sum of squares. 
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The unbiased estimator of σ2 is 

2 SSE

n p
σ =

−
           (3.4) 

where n is a number of observations and p is a number of unknown parameters. Optimal 

experimental designs are a class of experimental designs that is optimal with respect to some 

statistical criterion of choice. The statistical criterion is in relation to any type of variance that is 

minimized, such as the generalized variance in the model parameter estimates or variance in 

predicted values of the response variable. Optimizing with respect to some statistical criterion 

allows the parameters to be estimated without bias with minimum variance or increase the 

precision of predicted values. The goal of optimal design was to eliminate the option of 

conducting a non-optimal experimental design, which would result in an increased number of 

experimental runs to estimate parameters with the same amount of precision compared to an 

optimal design (Wikipedia contributors). In general, each of the criteria deal with some aspect 

of either generalized variance of the model parameters or with the variance of predicted values.  

 

3.4 Fitting and testing the three models adequacies 

This section gives the design of fitting the first order model, the second order model, the model 

adequacy and residual analysis. 

 

3.4.1 Design of fitting the first-order model  

In most RSM problems, the true response function is unknown; we therefore need to 

approximate the response function. In order to develop an appropriate approximation for 

response function, we model the data by starting with a first-order polynomial. When the 

response could be defined by a linear function of independent variables, that is, there is no 



23 

 

curvature then the approximating function is a first-order model. The linear regression model 

with k independent variables takes the form; 

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi, (i = 1, 2, 3, ..., n) 

  
i 0 i

1

y   
k

i ij

i

xβ β ε
=

= + +∑          (3.5) 

The parameter βi measures the expected change in response y per unit increase in xi when the 

other independent variables are held constant.  

The eventual objective of RSM is to determine the optimum operating conditions for the 

system, or to determine a region of the factor space in which the operating specifications are 

satisfied. The general model relationship with X1, X2,..., Xk independent variables is given by 

y = f(X1 ,X2 ,...,Xk) + ε ;          (3.6) 

where the form of the true response function f is unknown, and ε is a term that represents other 

sources of variability not accounted for in f. Usually ε includes effects such as measurement 

error in the response, background noise, the effect of other variables, and so on. Usually ε is 

treated as a statistical error, often assuming it to have a normal distribution with mean zero and 

variance σ 2. Then 

E(y) =  y  = E [f (X1 ,X2 ,...,Xk )] + E (ε) = f (X1 ,X2 ,...,Xk );     (3.7) 

The variables X1, X2,..., Xk in equation (3.7) are usually called the natural variables, because 

they are expressed in the natural units of measurement. In much RSM work it is convenient to 

transform the natural variables to coded variables x1, x2,..., xk, which are usually defined to be 

dimensionless with mean zero and the same standard deviation (Myers et al. 1989). In terms of 

the coded variables, the response function (3.7) is written as 

 ̂y  = f ( x1 , x2 ,..., xk);           (3.8) 
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The successful use of RSM is critically dependent upon the experimenter’s ability to develop a 

suitable approximation for f, because the form of the true response function f is unknown, we 

must approximate it. Usually a low-order polynomial in some relatively small region of the 

independent variable space is appropriate. In many cases, either a first-order or a second order 

model is used. The first-order model is likely to be appropriate when the experimenter is 

interested in approximating the true response surface over a relatively small region of the 

independent variable space in a location where there is little curvature in f. In the case of three 

independent variables, the first-order model in terms of the coded variables is 

 ̂y  = β0 + β1x1 + β2x2 + β3x3;          (3.9) 

The form of the first-order model in equation (3.9) is sometimes called a main effects model, 

because it includes only the main effects of the three variables x1, x2 and x3. If there is an 

interaction between these variables, it can be added to the model easily as follows: 

 ̂y  = βo + β1x1 + β2x2 + β3x3 + β12x1x2+ β13x1x3 + β23x2x3     (3.10) 

This is the model with interaction. The addition of the interaction term introduces curvature into 

the response function. When the curvature in the true response surface is strong enough then the 

first-order model is inadequate. A second-order model is likely required in these situations.  

The general expected first-order model is given by; 

 ̂y  = βo + β1 x1 + β2 x2 + ... + βk xk        (3.11) 

The low and high factor settings are coded as negative and positive, the midpoint coded as 0.  

Finally, let’s note that there is a close connection between RSM and linear regression analysis. 

For example, consider the model 

y = β0 + β1x1 + β2x2+...+ βkxk +ε        (3.12) 

The β’s are a set of unknown parameters. 
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 The experimenter tries to quantify the relationship between a set of k predictor variables X' = 

(X1, X2,…, Xk) and the response variable y. Often the goal of the experiment has been to 

maximize or minimize E(y), the expected value of the response. In most cases, the Xi are 

transformed into coded x i by (Xi–Xi0)/(sc)i i=1,2,…,k where Xi0 and (sc)i> 0  are the centering 

and scaling constants, respectively.  

The model in equation 3.5 could be represented in matrix form as; 

Y = Xβ + ε            (3.13) 

In which 
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where, 

Y is an (n × 1) vector of observations, 

X is an (n × k) design matrix, 

β is a (k × 1) vector of unknown parameters, and 

ε is a (n × 1) vector of independently identically distributed random variables with mean zero 

and variance σ2, (Montgomery 2005). 

When the X'X is invertible, that is, there’s a determinant, then the linear system of equation 

(3.13) has a unique least squares solution given by; 

1ˆ ( ' ) 'β −= X X X y           (3.15) 

The total sum of squares is 
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2

21 1

1

( )

SST '
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i in
i i

i

i

y y
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n n

= =

=

= − = −
∑ ∑

∑        (3.16) 

 

3.4.2 The second-order model 

With the purpose of exploring the second-order model, we intend to use a statistical modeling to 

develop an appropriate approximating relationship between the yield and the process variables: 

the nitrogen, phosphorus and potassium of inorganic fertilizers. We fitted a first order model, 

and then we justify it with the second-order model. The second-order model is very flexible; 

consequently we could experiment with a wide variety of functional forms. The method of least 

squares was used to estimate the parameters. Once an appropriate approximating model was 

obtained, it was analyzed to determine the optimum conditions. When we found curvature in the 

response surface the first-order model was insufficient. The second-order model was useful in 

approximating a portion of the true response surface with curvature. The second-order model 

includes all the terms in the first-order model, and quadratic and cross product terms. It is 

usually represented as 

2 2

0 1 1 2 2 11 1 12 1 2 13 1 3 1, 1... ... ...k k kk k k k k ky x x x x x x x x x x xβ β β β β β β β β ε− −= + + + + + + + + + + + +  or  

y = β0 + 
1

k

i=
∑βixi + 

k

i

∑βiix
2

x i  + ∑ ij i jx x
i j
β

<∑  + ε      (3.17) 

where βi is an unknown parameter and ε is a random error. 

The general expected second-order model is given by; 

2

0

2

 y
k k k

i i ii i ij i j

i i i j

x x x xβ β β β
< =

= + + +∑ ∑ ∑∑        (3.18) 
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where  y is the measured response, β0 is the intercept term, βi are the linear coefficients, βij is the 

logarithmic coefficient, βii are the quadratic  coefficients and  ix  are the coded independent 

variables.  

In the case of three variables, the second-order model is given by: 

 ̂y  = βo + β1x1 + β2x2 + β3x3 + β11x
2
1 + β22x

2
2 + β33x

2
3+ β12x1x2+ β13x1x3+β23x2x3  (3.19) 

Where,  is the response variable (dependent variable), β0 is intercept (constant), β1, β2 and β3 

are linear coefficients, β12, β13, and β23 are interaction coefficients, β11, β22 and β33 are quadratic 

coefficients and x1,x2,x3, x
2

1, x
2

2, x
2

3, x1x2 , x1x3 and x2x3 are the level of coded independent 

variables. This model would likely be useful as an approximation to the true response surface in 

a relatively small region. The second-order model is widely used in response surface 

methodology for several reasons: 

1. The second-order model is very flexible. It can take on a wide variety of functional forms, so 

it often works well as an approximation to the true response surface. 

2. It is easy to estimate the parameters (the β’s) in the second-order model. The method of least 

squares could be used for this purpose. 

3. There is considerable practical experience indicating that second-order models work well in 

solving real response surface problems. 

Often, a second order model fit to the experimental data, including all linear, quadratic and 

cross product terms for the x i. The second order model, usually fits by ordinary least squares is 

represented for a single response yu, u=1,…, N . Experimental data were fitted to, a first and 

second-order polynomial model to obtain the regression coefficients. The yield of rose coco  

beans was taken as the dependent response variable. The data obtained from rose coco on 

response variables were subjected to the analysis of variance (ANOVA). The mean values of the 

ŷ
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triplicate trials were fitted to a second-order polynomial according to twenty four point second 

order rotatable design. 

 

3.4.3 Model adequacy checking 

The goodness of the fit of the developed regression models was tested. It is always necessary to: 

1. Examine the fitted model to ensure that it provides an adequate approximation to the true 

system; 2. Verify that none of the least squares regression assumptions are violated. We 

consider several techniques for checking model adequacy this includes: the lack-of-fit 

significance, coefficient of determination, R
2
, coefficient of variation (CV), mean square error 

(MSE) and model significance were used to judge adequacy of model fit.  The statistical 

significance of the model equation was determined by Fisher’s test value (p value) and 

significance of each coefficient was determined using t-test, and the extent of variance that 

could be explained by the model was determined by the multiple coefficient of determination, R 

squared (R
2
) value, this assess the fitness of the polynomial model (Myers et al, 2008). When R

2
 

approaches unity, the better the empirical model fits the actual data. The smaller the value of R
2
, 

the less relevant the dependent variables in the model have in explaining the behavior variation 

(Little and Hill, 1978).  In general, the R
2
 measures percentage of the variation of y around y  

that is explained by the regression equation.  

Then the coefficient of multiple determination, R
2
 is defined as 

2
1 E

T

SS
R

SS
= −            (3.20) 

From inspection of the analysis of variance identity (equation 3.20) we could see that 0 ≤ R
2
 ≤ 

1. One can gauge the fit of the model using the R
2
, which is usually defined as the proportion of 

variance of the response that could be explained by the independent variables. The higher values 
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of R
2
 are generally taken to indicate a better model. In fact, though, when the R

2
 is low there are 

two possible conclusions. The first is that the independent variables and the dependent variables 

have very little relation to each other; the second is that the model fit is poor. Further, there are 

a number of possible causes of this poor fit, some outliers; an incorrect form of the independent 

variables; may be even incorrect assumptions about the errors. The errors may not be normally 

distributed, or indeed the independent variables may not be fixed. To confound the issues 

further, the low R
2
 may be any combination of the above aspects (Simpson P. et al, 2004). 

According to Myers et al (2008), for a good fit of a model, the correlation coefficient should be 

at least 0.80. 

 

3.4.4 The residual analysis 

The residuals from the least squares fit, defined by ei=yi- ŷi, i = 1, 2,…, n, play an important role 

in judging model adequacy.  The PRESS computes and displays the predicted residual sum of 

squares (PRESS) statistic for each dependent variable in the model. The large difference 

between the ordinary residual and the PRESS residual indicates a point where the model fits the 

data well, but a model built without that point predicts poorer. The significant terms in the 

model was found by analysis of variance (ANOVA) for each response. Significance was judged 

by determining the probability level that the F-statistic calculated from the data is less than 5%. 

The model adequacies were checked by R
2
 and the prediction error sum of squares (PRESS). A 

good model has a large predicted R
2
, and a low PRESS. This analysis included examining 

diagnostic plots such as normal probability plots. To analyze the multiple regression and 

variance, develop a regression equation between variables and response and numerically 
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optimize the procedure; the SAS statistical package (version 9.0, SAS Institute Inc., Cary, NC, 

USA) was employed. 

 

3.5 The settings of the experimental factors that produces the optimal response 

The experiment was run using the optimum values for the variables given by response 

optimization in order to validate the predicted optimum values of variable response of the rose  

coco. The rose coco beans were labeled in the greenhouse to facilitate the identification during 

the entire procedure. The average yield was computed for GP1G, GP2G and GP3G. The SAS 

software was used to generate the critical value of the responses and also to generate response 

surfaces, while holding one variable constant in the second-order polynomial model. The R-

software was used to come up with contour plots. Canonical analysis (K huri and Cornell, 1996) 

was carried out to determine the location and nature of the stationary point of the model. When 

the results showed a saddle point in response surfaces the ridge analysis of SAS RSREG 

procedure was employed to compute the estimated ridge of the maximum response for 

increasing radii from the center of original design. The fitted polynomial equations were 

generated to response surface and contour plots so as to visualize the relationship between the 

response and experimental levels of each factor. The regression analysis and contour graphs 

were obtained by using SAS software (Version 9.3, SAS Institute, Cary, NC) and R-software.  

 

3.5.1 Coding the factor variables 

For the results of the canonical and ridge analyses to be interpretable, the values of different 

factor variables should be comparable. This is because the canonical and ridge analyses of the 

response surface are not invariant with respect to differences in scale and location of the factor 
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variables. The analysis of variance is not affected by these changes. Although the actual 

predicted surface does not change, its parameterization does. The usual solution to this problem 

is to code each factor variable so that its minimum in the experiment is –1 and its maximum is 1 

and to carry through the analysis with the coded values instead of the original ones. This 

practice has the added benefit of making 1 a reasonable boundary radius for the ridge analysis 

since 1 represents approximately the edge of the experimental region. By default, PROC 

RSREG computes the linear transformation to perform this coding as the data are initially read 

in, and the canonical and ridge analyses are performed on the model fit to the coded data. The 

actual form of the coding operation for each value of a variable is given by: 
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The second-order models illustrate quadratic surfaces such as minimum, maximum and saddle. 

The graphical visualization is very helpful in understanding the second-order response surface. 

Specifically, contour plots can help characterize the shape of the surface and locate the optimum 

response roughly. 

 

3.5.2 The stationary point 

The sign of the stationary point is determined from the signs of the eigenvalues of the matrix B. 

The standard quadratic model could be written in matrix notation as:-  
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0
ˆ ' 'y β ε= + + +x b x Bx

       
                  (3.22) 

where x is a fixed combination of the levels of the k input variables, 0β̂ , b and B contains 

estimates of the intercept, linear and second order coefficients, respectively. 
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x'= [x1, x2, ..., xk] and B is the k x k symmetric matrix and ε is the random error. The stationary 

point is the combination of design variables where the surface is at either a maximum or a 

minimum in all directions. If the stationary point is a maximum in some direction and minimum 

in another direction, then the stationary point is a saddle point. When the surface curves in one 

direction, but is fairly constant in another direction, then this type of surface is called ridge 

system (Oehlert, 2000). The stationary point could be found by using matrix algebra. The fitted 

second-order model in matrix form is as follows: 

0
ˆˆ ' 'y β= + +x b x Bx

          (3.24)
 

The derivative of ŷ  with respect to the elements of the vector x is   

ˆ
2

y
x

x

∂
= +

∂
b B             (3.25) 

Therefore, setting the derivative vector to 0 yields the stationary point of the system: 

11

2
sx

−= − B b
           (3.26) 
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This might be a maximum, minimum, or a saddle point of the fitted surface. The eigenvalues 

(call them λs) and eigenvectors of B are the key to characterizing the shape. The xs are a point 

of maximum if all λ's are negative, the point of minimum if all λ's are positive and saddle point 

if λ's are of mixed sign. 

Where 
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b is a (3x1) vector of the first-order regression coefficients and B is a (3x3) symmetric matrix 

whose main diagonal elements are the quadratic coefficients and whose off-diagonal elements 

are one-half the mixed quadratic coefficients (Montgomery, 2005).  The estimated response 

value at the stationary point is  

'

0

1ˆˆ
2

s sy xβ= + b
          (3.28) 

 

3.5.3 The canonical analysis 

Canonical analysis is a mathematical approach used to examine the overall shape of the 

response surface and to determine if the estimated response point is a maximum, minimum or a 

saddle point. If the stationary point is a maximum or minimum, a corresponding increase or 

decrease results in the response. In the case of a saddle point, the response may increase or 

decrease when we move away from the stationary point, depending on which direction is taken.  

The eigenvalues and eigenvectors of the matrix of second-order characterize the shape of the 

response surface. The eigenvectors point in the directions of principal orientation of the surface, 

and the signs and magnitudes of the associated eigenvalues give the shape of the surface in 
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these directions. Positive eigenvalues indicate directions of upward curvature, and negative 

eigenvalues indicate directions of downward curvature. The larger an eigenvalue is in absolute 

value, the more pronounced is the curvature of the response surface in the associated direction. 

Often, all the coefficients of an eigenvector except for one are relatively small, indicating that 

the vector points roughly along the axis associated with the factor corresponding to the single 

large coefficient. In this case, the canonical analysis could be used to determine the relative 

sensitivity of the predicted response surface to variations in that factor (SAS user guide 2013). 

 

3.5.4 The ridge analysis 

Ridge analysis in RSM is a contour-based technique for investigating a quadratic response 

surface. It is a search for a new stationary point SR on a given radius R such that the second 

order model has a minimum at this stationary point. Then, the maximum or minimum response 

value at different locations from the design center could be determined by comparing each 

‘constrained’ stationary point (Myers and Montgomery 2002 and Khuri and Cornell 1996). This 

procedure of RIDGE was conducted by the SAS program (SAS, version 9.0). A RIDGE 

statement computes the ridge of optimum response. The ridge starts at a given point x0, and the 

point on the ridge at radius R from x0 is the collection of factor settings that optimizes the 

predicted response at this radius. The ridge analysis could be used as a tool to help interpret an 

existing response surface or to indicate the direction in which further experimentation should be 

performed. The default starting point, x0, has each coordinate equal to the point midway 

between the highest and lowest values of the factor in the design. The default radii at which the 

ridge is computed are 0, 0.1, ..., 0.9, 1. If the ridge analysis is based on the response surface fit 

to coded values for the factor variables, then these results in a ridge that starts at the point with a 
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coded zero value for each coordinate and extends toward, but not beyond, the edge of the range 

of experimentation. Alternatively, both the center point of the ridge and the radii at which it is 

to be computed could be specified. The starting point should be well inside the range of 

experimentation. The coded radii give the distances from the ridge starting point at which to 

compute the optimal (SAS user guide 2013). 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the results and discussions of the study in line with the four specific 

objectives. 

4.2 Estimation of the linear parameters in an existing A-optimum and D-efficient calculus 

optimum value second order rotatable design 

This section gives the data collected on rose coco beans, twenty four points rotatable design of 

coded levels and natural levels with the yields of rose coco beans for GP1G, GP2G and GP3G. 

Table 4. 1: The yield of 30 rose coco beans with straight fertilizers: nitrogen, phosphorus and 

potassium. 

 

ROSE COCO YIELD UNDER INDIVIDUAL 

FERTILIZER: N, P, K. 

FERTILIZERS 

IN GRAMS Potassium (K) Phosphorus (P) Nitrogen (N) 

10 38 52 25 

20 30 65 25 

30 30 45 25 

40 30 40 24 

50 50 70 20 

60 25 48 12 

70 25 50 20 

80 25 40 25 

90 20 42 26 

100 15 45 15 
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The table 4.1 shows the rose coco yield of the straight fertilizers, nitrogen, phosphorus and 

potassium. Each of the fertilizers was initially started with 10grams then increased by 10grams 

up to 100grams for each rose coco plant. 

Table 4. 2:  Descriptive Analysis of straight fertilizers of N, P and K on rose coco beans mean 
yield. 

Descriptives 

Weight rose coco 

 

N Mean Std. Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

Potassium (K) 10 28.8000 9.71597 3.07246 21.8496 35.7504 15.00 50.00 

Phosphorus (P) 10 49.7000 10.25291 3.24226 42.3655 57.0345 40.00 70.00 

Nitrogen(N) 10 21.7000 4.85455 1.53514 18.2273 25.1727 12.00 26.00 

Total 30 33.4000 14.67487 2.67925 27.9203 38.8797 12.00 70.00 

 

Table 4.2 shows that phosphorus has more influence on the rose coco beans followed by 

potassium then nitrogen. 

 

Table 4. 3: Analysis of variance for the yield of rose coco beans on straight fertilizers of N, P 

and K of table 4.1. 

ANOVA 

Weight rosecoco 

 Sum of Squares df Mean Square F Sig. 

Between Groups 4237.400 2 2118.700 28.491 .000 

Within Groups 2007.800 27 74.363   

Total 6245.200 29    
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In table 4.3 the p=0. 000 is less than α=0. 05, therefore, we reject the null hypothesis that states 

that the nitrogen, phosphorus and potassium has the same effects on rose coco beans and 

conclude that the treatments differ significantly, meaning that all the three fertilizers do not have 

the same effects on the rose coco beans. 

Means Plots 

 
Figure 4. 1: The plot of mean of yield of rose coco beans under each of the three fertilizers; N, 

P, K. 
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Figure 4. 2: The yield of rose coco beans under each of the three straight fertilizers; N, P, K of 

table 4.1. 

Figure 4.2 shows the effect of individual fertilizers applied to rose coco  beans. The fertilizers 

were applied once during the planting period and no other kind of fertilizers was applied after 

the initial application. Weeding and pest control was done. The phosphorus fertilizer had more 

influence on rose coco bean followed by potassium and then nitrogen. 

 

4.2.2 Twenty four points rotatable design of coded levels and natural levels with the yields 

of rose coco beans-GP1G 

The x1u, x2u and x3u are coded values while Ψ1u, Ψ2u and Ψ3u are natural values-GP1G. The 

natural values (Ψiu) of fertilizers N, P, K, were measured using a sensitive weighing scale and 
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applied to rose coco beans in a greenhouse which gave the observed yield-yi. Predicted yield ŷ

was calculated using a second order model of GP1G (equation 4.54). 

Table 4. 4: The 24-point’s rotatable design of coded levels and natural levels with the yield of 

rose coco beans-GP1G at the ratio 10:20:30 of N: P: K fertilizers. 

 (x1u x2u x3u) Ψ1u Ψ2u Ψ3u Observed 

Yield- yi 

Predicted 

yie ld- ŷ  

1.1072569 1.1072569 0 10.553628 20.332177 30 63 56.4342 

-1.1072569 1.1072569 0 9.446372 20.332177 30 71 61.1068 

1.1072569 -1.1072569 0 10.553628 19.667823 30 35 35.8807 

-1.1072569 -1.1072569 0 9.446372 19.667823 30 56 53.5533 

1.1072569 0 1.1072569 10.553628 20 31.107257 37 44.3546 

-1.1072569 0 1.1072569 9.446372 20 31.107257 62 69.5273 

1.1072569 0 -1.1072569 10.553628 20 28.892743 57 55.7932 

-1.1072569 0 -1.1072569 9.446372 20 28.892743 54 52.9659 

0 1.1072569 1.1072569 10 20.332177 31.107257 52 55.3883 

0 -1.1072569 1.1072569 10 19.667823 31.107257 52 47.8349 

0 1.1072569 -1.1072569 10 20.332177 28.892743 53 59.3270 

0 -1.1072569 -1.1072569 10 19.667823 28.892743 40 38.7735 

0.7829487 0 0 10.391474 20 30 43 45.8615 

-0.7829487 0 0 9.608526 20 30 58 53.7617 

0 0 0.7829487 10 20 30.782949 58 50.0108 

0 0 -0.7829487 10 20 29.217051 42 48.1996 

0 0.7829487 0 10 20.234885 30 48 52.1156 

0 -0.7829487 0 10 19.765115 30 44 42.1783 
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1.2735263 0 0 10.636763 20 30 50 47.3699 

-1.2735263 0 0 9.363237 20 30 53 60.2203 

0 0 1.2735263 10 20 31.273526 60 53.3991 

0 0 -1.2735263 10 20 28.726474 56 50.4532 

0 1.2735263 0 10 20.382058 30 52 54.8270 

0 -1.2735263 0 10 19.617942 30 32 38.6632 

 

4.2.2.1The three replication yield of twenty four points second order rotatable design, 

Group 1-GP1G 

Table 4.5 below shows the three replication yields of twenty four points rose coco beans (from 

table 4.4) under fertilizers 10grams of nitrogen, 20grams of phosphorus and 30grams of 

potassium. 

Table 4. 5: The yield of 24-points rose coco beans (from table 4.4) under fertilizers at the ratio 

of 10grams of nitrogen, 20grams of phosphorus and 30grams of potassium 

  

N:P:K 

  

  

10:20:30 

  Bean 

No. 

GP1GA 

Yield 

GP1GB 

Yield 

GP1GC 

Yield 

AVERAGE YIELD 

GP1G 

1 41 48 100 63 

2 13 170 30 71 

3 20 35 50 35 

4 20 88 60 56 

5 63 20 28 37 
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6 76 70 40 62 

7 76 60 35 57 

8 42 75 45 54 

9 84 32 40 52 

10 38 58 60 52 

11 34 60 65 53 

12 50 40 30 40 

13 27 70 32 43 

14 70 70 34 58 

15 _ 36 80 58 

16 83 15 28 42 

17 56 50 38 48 

18 32 50 50 44 

19 53 55 42 50 

20 65 42 52 53 

21 42 98 40 60 

22 28 95 45 56 

23 41 40 75 52 

24 41 30 25 32 

  GP1G-10grams nitrogen, 20grams phosphorus, 30grams potassium 

 

Blank space indicated by a dash, the rose coco plant died so no yield 

was obtained. 
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4.2.3 Twenty four points rotatable design of coded levels and natural levels with the yield 

of rose coco beans-GP2G 

The x1u, x2u and x3u are coded values while Ψ1u, Ψ2u and Ψ3u are natural values-GP2G. The 

natural values (Ψiu) of fertilizers N, P, K, were measured using a sensitive weighing scale and 

planted in a greenhouse which gave the observed yield-yi. Predicted yield ŷ was calculated 

using a second order model of GP2G (equation 4.62). 

Table 4. 6: The 24-point’s rotatable design of coded levels and natural levels with the yield of 

rose coco beans GP2G at the ratio of 20:30:40 N: P: K fertilizers. 

(x1u x2u x3u) Ψ1u Ψ2u Ψ3u Observed 

Yield- yi 

Predicted 

yie ld- ŷ  

1.1072569 1.1072569 0 20.553628 30.332177 40 49 53.3803 

-1.1072569 1.1072569 0 19.446372 30.332177 40 30 35.1918 

1.1072569 -1.1072569 0 20.553628 29.667823 40 44 39.9260 

-1.1072569 -1.1072569 0 19.446372 29.667823 40 55 51.7374 

1.1072569 0 1.1072569 20.553628 30 41.107257 59 55.9145 

-1.1072569 0 1.1072569 19.446372 30 41.107257 53 45.7260 

1.1072569 0 -1.1072569 20.553628 30 38.892743 37 42.8240 

-1.1072569 0 -1.1072569 19.446372 30 38.892743 45 46.6354 

0 1.1072569 1.1072569 20 30.332177 41.107257 64 58.5578 

0 -1.1072569 1.1072569 20 29.667823 41.107257 56 57.6034 

0 1.1072569 -1.1072569 20 30.332177 38.892743 57 49.9673 

0 -1.1072569 -1.1072569 20 29.667823 38.892743 54 54.0129 
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0.7829487 0 0 20.391474 30 40 34 37.6742 

-0.7829487 0 0 19.608526 30 40 39 35.4195 

0 0 0.7829487 20 30 40.782949 37 43.6884 

0 0 -0.7829487 20 30 39.217051 42 39.3817 

0 0.7829487 0 20 30.234885 40 47 39.6306 

0 -0.7829487 0 20 29.765115 40 47 40.7235 

1.2735263 0 0 20.636763 30 40 44 39.0672 

-1.2735263 0 0 19.363237 30 40 30 35.3998 

0 0 1.2735263 20 30 41.273526 46 53.9337 

0 0 -1.2735263 20 30 38.726474 46 46.9286 

0 1.2735263 0 20 30.382058 40 41 45.9492 

0 -1.2735263 0 20 29.617942 40 41 47.7269 

 

4.2.3.1 The three replication yield of twenty four points second order rotatable design, 

Group 2-GP2G 

Table 4.7 below shows the three replication yields of twenty four points rotatable design of rose 

coco beans (from table 4.6) under fertilizers at the ratio of 20grams of nitrogen, 30 grams of 

phosphorus and 40 grams of potassium. 

Table 4. 7: The yield of 24-points rose coco beans (from table 4.6) under fertilizers at the ratio 

of 20 grams of nitrogen, 30 grams of phosphorus and 40 grams of potassium 

 

 

 

N:P:K 

   

 

20:30:40 
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Bean 

No. GP2GA GP2GB GP2GC 

AVERAGE YIELD 

GP2G 

1 42 60 45 49 

2 47 18 25 30 

3 40 62 30 44 

4 60 35 70 55 

5 36 82 _ 59 

6 51 50 58 53 

7 69 22 20 37 

8 73 20 42 45 

9 75 72 45 64 

10 58 58 52 56 

11 51 65 55 57 

12 72 50 40 54 

13 22 32 48 34 

14 50 32 35 39 

15 43 18 50 37 

16 36 35 55 42 

17 46 55 40 47 

18 56 35 50 47 

19 32 58 42 44 

20 30 40 20 30 

21 77 21 40 46 
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22 60 60 18 46 

23 44 38 41 41 

24 31 60 32 41 

 GP2G-20 grams Nitrogen, 30 grams Phosphorus, 40 grams Potassium 

 Blank space indicated by a dash, the rose coco plant died, so no yield 

was obtained. 

4.2.4 Twenty four points rotatable design of coded levels and natural levels with the yield 

of rose coco beans-GP3G 

The x1u, x2u and x3u are coded values while Ψ1u, Ψ2u and Ψ3u are natural values-GP3G. The 

natural values (Ψiu) of fertilizers N, P, K, were measured using a sensitive weighing scale and 

planted in a greenhouse which gave the observed yield-yi. Predicted yield ŷ was calculated 

using a second order model of GP3G (equation 4.67). 

Table 4. 8: The 24-point's rotatable design of coded levels and natural levels with the yield of 

rose coco beans-GP3G at the ratio of 30:40:50 N: P: K fertilizers. 

 (x1u x2u x3u) Ψ1u Ψ2u Ψ3u Observed 

Yield- yi 

Predicted 

yie ld- ŷ  

1.1072569 1.1072569 0 30.553628 40.332177 50 47 53.3952 

-1.1072569 1.1072569 0 29.446372 40.332177 50 82 75.6594 

1.1072569 -1.1072569 0 30.553628 39.667823 50 68 75.4937 

-1.1072569 -1.1072569 0 29.446372 39.667823 50 50 44.7579 

1.1072569 0 1.1072569 30.553628 40 51.107257 69 63.6074 

-1.1072569 0 1.1072569 29.446372 40 51.107257 53 59.8717 

1.1072569 0 -1.1072569 30.553628 40 48.892743 87 78.5079 
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-1.1072569 0 -1.1072569 29.446372 40 48.892743 70 73.7722 

0 1.1072569 1.1072569 30 40.332177 51.107257 67 60.8035 

0 -1.1072569 1.1072569 30 39.667823 51.107257 73 67.9020 

0 1.1072569 -1.1072569 30 40.332177 48.892743 84 86.7041 

0 -1.1072569 -1.1072569 30 39.667823 48.892743 67 70.8025 

0.7829487 0 0 30.391474 40 50 60 55.2395 

-0.7829487 0 0 29.608526 40 50 51 52.2443 

0 0 0.7829487 30 40 50.782949 51 53.2638 

0 0 -0.7829487 30 40 49.217051 72 63.4465 

0 0.7829487 0 30 40.234885 50 51 56.6047 

0 -0.7829487 0 30 39.765115 50 54 53.4924 

1.2735263 0 0 30.636763 40 50 57 59.4536 

-1.2735263 0 0 29.363237 40 50 55 54.5818 

0 0 1.2735263 30 40 51.273526 55 60.9417 

0 0 -1.2735263 30 40 48.726474 75 77.5047 

0 1.2735263 0 30 40.382058 50 63 63.0059 

0 -1.2735263 0 30 39.617942 50 58 57.9435 

 

4.2.4.1 The three replication yield of twenty four point second order rotatable design, 

Group 3-GP3G 

Table 4.9 shows the three replication yields of twenty four rose coco beans (from table 4.8) 

under fertilizers at the ratio of 30 grams of nitrogen, 40 grams of phosphorus and 50 grams of 

potassium. 
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Table 4. 9: The yield of 24-points rose coco bean (from table 4.8) under fertilizers at the ratio of 

30 grams of Nitrogen, 40 grams of Phosphorus and 50 grams of potassium 

 

 

N:P:K 

   

 

30:40:50 

  

Bean No. GP3GA GP3GB GP3GC 

AVERAGE 

YIELD GP3G 

1 61 40 40 47 

2 136 40 70 82 

3 84 80 40 68 

4 72 38 40 50 

5 77 80 50 69 

6 67 48 44 53 

7 93 80 88 87 

8 82 60 68 70 

9 21 100 80 67 

10 80 58 81 73 

11 100 80 72 84 

12 _ 72 62 67 

13 78 70 32 60 

14 58 65 30 51 

15 71 50 32 51 

16 64 74 78 72 
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17 78 50 25 51 

18 67 55 40 54 

19 60 75 36 57 

20 32 68 65 55 

21 65 55 45 55 

22 60 125 40 75 

23 67 80 42 63 

24 64 80 30 58 

 
GP3G-30grams nitrogen, 40grams phosphorus, 50grams potassium 

 Blank space indicated by a dash, the rose coco  plant died, so no 
yield was obtained. 

 
Below is a figure 4.3 that shows the summary graph for the twenty four rose coco beans average 

yield for the three groups. 

 

Figure 4. 3: The average yield of rose coco bean for the three groups. 
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We saw in figure 4.3 that GP3G has the highest yield, the two groups GP1G and GP2G are 

more less the same, GP1G being slightly higher than GP2G. 

 

4.2.5 Parameter estimation for the first order model  

This section gives linear parameters of first order models for GP1G, GP2G and GP3G. The 

design matrix X is given as in equation (3.14) and the equation (4.1) is obtained. 

0 1 2 3                                                             

1 1.1072569 1.1072569 0

1 1.1072569 1.1072569 0

1 1.1072569 1.1072569 0

1 1.1072569 1.1072569 0

1 1.1072569 0 1.1072569

1 1.1072569 0 1.1072569

1 1.1

x x x x

X

−

−

− −

−

=

072569 0 1.1072569

1 1.1072569 0 1.1072569

1 0 1.1072569 1.1072569

1 0 1.1072569 1.1072569

1 0 1.1072569 1.1072569

1 0 1.1072569 1.1072569

1 0.7829487 0 0

1 0.7829487 0 0

1 0 0 0.7829487

1 0 0 0.7829487

1 0 0.7829487 0

1 0 0.7829487 0

1 1

−

− −

−

−

− −

−

−

−

.2735263 0 0

1 1.2735263 0 0

1 0 0 1.2735263

1 0 0 1.2735263

1 0 1.2735263 0

1 0 1.2735263 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 
 

− 
 
 

−          (4.1) 
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The first-order model with three independent variables was expressed as in equation (3.9). On 

fitting the model in equation (3.9) to the data, the parameter estimates are derived.  

 

4.2.5.1 Linear parameters of first-order model for GP1G 

The model parameter estimates are calculated using the least squares method. In matrix 

notation, the least squares estimates of the model parameters are:- 

( ) 1ˆ ' '
−

=β X X X Y .          (4.2) 

In order to find the least squares estimates, calculate (�′�)-1 and �′� : 

 

24 0 0 0

0 14.2779 0 0
( ' )

0 0 14.2779 0

0 0 0 14.2779

X X

 
 
 =
 
 
 

 1

0.0417 0 0 0

0 0.0700 0 0
( ' )

0 0 0.0700 0

0 0 0 0.0700

X X
−

 
 
 =
 
 
 

1228

72
( ' )

90.6

16.5

X Y

 
 − =
 
 
   

(4.3)                                         

Thus, the least squares estimates of the parameters for the experimental model are; 

    1

1

51.1667

5.0452
ˆ ( ' ) '

6.3461

1.1566

GP GB X X X Y
−

 
 − = =
 
 
          (4.4) 

4.2.5.2 Linear parameters of first-order model for GP2G 

We fit first-order model of GP2G with three independent variables. On fitting the model to the 

data, we derive the parameter estimates as indicated below. In order to find the least square 

estimates, we calculated (�′�)-1 (given in equation 4.3) and �′� using equation (4.1), then 

equation (4.2) is given as follows: 
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1097

20.6
( ' )

10

39.3

X Y

 
 
 =
 −
 
 

                                                 1

2

45.7083

1.4399
ˆ ( ' ) '

0.6980

2.7503

GP GB X X X Y
−

 
 
 = =
 −
 
   (4.5) 

4.2.5.3 Linear parameters of first-order model for GP3G 

In order to find the parameter estimates for first-order model of GP3G, we calculated (�′�)-1 

(given in equation 4.3) and �′� using equation (4.1), then equation (4.2) is given as follows: 

1519

27.3
( ' )

28.4

92.8

X Y

 
 
 =
 
 − 

                                      1

3

63.2917

1.9127
ˆ ( ' ) '

1.9876

6.5028

GP GB X X X Y
−

 
 
 = =
 
 −     (4.6)

 

 

4.2.6 Parameter estimation for the second order model. 

This section found the second order parameter estimates for GP1G, GP2G and GP3G. The 

method of least squares was also used to estimate the regression coefficients; the X below is the 

design matrix for rose coco bean. 
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2 2 2

0 1 2 3 1 1 3 1 2 1 3 2 3                                                                                                                                                          

1 1.1072569 1.107

x x x x x x x xx x x x x

X =

2569 0 1.226018 1.226018 0 1.226018 0 0

1 1.1072569 1.1072569 0 1.226018 1.226018 0 1.226018 0 0

1 1.1072569 1.1072569 0 1.226018 1.226018 0 1.226018 0 0

1 1.1072569 1.1072569 0 1.226018 1.226018 0 1.226018 0 0

1 1.1072569 0 1.1072569 1

− −

− −

− −

.226018 0 1.226018 0 1.226018 0

1 1.1072569 0 1.1072569 1.226018 0 1.226018 0 1.226018 0

1 1.1072569 0 1.1072569 1.226018 0 1.226018 0 1.226018 0

1 1.1072569 0 1.1072569 1.226018 0 1.226018 0 1.226018 0

1 0 1.1072569 1.1072569 0 1.2260

− −

− −

− −

18 1.226018 0 0 1.226018

1 0 1.1072569 1.1072569 0 1.226018 1.226018 0 0 1.226018

1 0 1.1072569 1.1072569 0 1.226018 1.226018 0 0 1.226018

1 0 1.1072569 1.1072569 0 1.226018 1.226018 0 0 1.226018

1 0.7829487 0 0 0.613009 0 0 0 0 0

1 0.7829

− −

− −

− −

− 487 0 0 0.613009 0 0 0 0 0

1 0 0 0.7829487 0 0 0.613009 0 0 0

1 0 0 0.7829487 0 0 0.613009 0 0 0

1 0 0.7829487 0 0 0.613009 0 0 0 0

1 0 0.7829487 0 0 0.613009 0 0 0 0

1 1.2735263 0 0 1.621869 0 0 0 0 0

1 1.2735263 0 0 1.621869 0 0 0 0 0

1 0 0 1.2735263 0 0 1.621869 0 0 0

1 0 0

−

−

−

−1.2735263 0 0 1.621869 0 0 0

1 0 1.2735263 0 0 1.621869 0 0 0 0

1 0 1.2735263 0 0 1.621869 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−  
                                    (4.7) 
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24 0 0 0 14.2779 14.2779 14.2779 0 0 0

0 14.2779 0 0 0 0 0 0 0 0

0 0 14.2779 0 0 0 0 0 0 0

0 0 0 14.2779 0 0 0 0 0 0

14.2779 0 0 0 18.0374 6.0125 6.0125 0 0 0
( ' )

14.2779 0 0 0 6.0125 18.0374 6.0125 0 0 0

14.2779 0 0 0 6.0125 6.0125 18.0374 0 0 0

0 0 0 0 0 0 0 6.0125 0 0

0 0 0 0 0 0

X X =

0 0 6.0125 0

0 0 0 0 0 0 0 0 0 6.0125

 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

 

1

0.2735 0 0 0 0.1299 0.1299 0.1299 0 0 0

0 0.0700 0 0 0 0 0 0 0

0 0 0.0700 0 0 0 0 0 0

0 0 0 0.0700 0 0 0 0 0 0

0.1299 0 0 0 0.1282 0.0451 0.0451 0 0 0
( ' )

0.1299 0 0 0 0.0451 0.1282 0.0451 0 0 0

0.1299 0 0 0 0.0451 0.0451 0.1282 0 0 0

0 0 0 0 0 0 0 0.1663 0 0

0 0 0 0 0 0 0 0

X X
−

− − −

−
=
−

−

0.1663 0

0 0 0 0 0 0 0 0 0 0.1663

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (4.8) 

 

4.2.6.1 The parameter estimation for GP1G     

1

122.8

72

90.6

16.5

762.3
( ' )         hence

710

748.4

15.9

34.3

15.9

GP GX Y

 
 − 
 
 
 
 

=  
 
 
 
 
 − 
 − 

  
1

1

47.3911

5.0452

6.3461

1.1566

3.9485ˆ ( ' ) '
0.3983

2.7962

2.6509

5.7095

2.6509

GP GB X X X Y
−

 
 − 
 
 
 
 

= =  
− 
 
 
 
 − 
 −  (4.9)
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4.2.6.2 The parameter estimation for GP2G 

The equation (4.8) is obtained using the design matrix X given in equation (4.7) then GP2G is 

given as:-  

2

1097

20.6

10

39.3

620.8
( ' )         hence

692.1

718.7

36.8

17.2

6.1

GP GX Y

 
 
 
 −
 
 
 

=  
 
 
 
 
 
 
     

1

2

36.1296

1.4399

0.6980

2.7503

0.6806ˆ ( ' ) '
6.6025

8.8179

6.1174

2.8548

1.0196

GP GB X X X Y
−

 
 
 
 −
 
 
 

= =  
 
 
 
 
 
 
     (4.10) 

 

4.2.6.3 The parameter estimation for GP3G 

The equation (4.8) is obtained using the design matrix X given in equation (4.7) then GP3G is 

given as:-  

3

1519

27.3

28.4

92.8

894.6
( ' )      hence

920.2

985.1

65

1.2

28.2

GP GX Y

 
 
 
 
 
− 
 

=  
 
 
 
− 

 − 
 −    

1

3

51.7514

1.9127

1.9876

6.5028

3.2471ˆ ( ' ) '
5.3785

10.7726

10.8073

0.2039

4.6900

GP GB X X X Y
−

 
 
 
 
 
− 

 
= =  

 
 
 
− 
 − 
 −    (4.11)
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4.3 Obtaining the generalized variance of the estimated linear parameters 

This section deals with the residual variance, first order model variance-covariance and the 

second order model variance-covariance. 

 

4.3.1 Residual variance 

This section gives the residual variance for GP1G, GP2G and GP3G. 

 

4.3.1.1 The residual variance for GP1G 

Using table 4.4 the residuals are given as;
 

ˆ .i ie y y y= − = −Xβ  

Residuals =estimated errors= ˆi ie y y y= − = − Xβ = [ 6.5658    9.8932   -0.8807    2.4467   -

7.3546   -7.5273    1.2068    1.0341   -3.3883    4.1651   -6.3270    1.2265   -2.8615    4.2383    

7.9892     -6.1996   -4.1156    1.8217    2.6301   -7.2203    6.6009    5.5468   -2.8270   -6.6632]' 

MSE=var(e)=(e'*e)/n-p= 665.8369/14=47.5598      (4.12) 

 

4.3.1.2 The residual variance for GP2G 

Using table 4.6 the residual variance for GP2G was calculated as below. 

Residuals =estimated errors= ˆi ie y y y= − = − Xβ =[-4.3804   -5.1918    4.0740    3.2626    

3.0855    7.2740   -5.8240   -1.6354    5.4422   -1.6034    7.0327   -0.0129   -3.6742    3.5805   -

6.6884    2.6183    7.3694    6.2765    4.9328   -5.3998   -7.9337   -0.9286   -4.9492   -6.7269]' 

MSE=var(e)=(e'*e)/n-p= 612.7118/14=43.7651      (4.13) 

 

4.3.1.3 The residual variance for GP3G 

Using table 4.8 residual variance for GP3G was calculated as below. 
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Residuals=estimated errors= ˆi ie y y y= − = − Xβ =[-6.3952    6.3406   -7.4937    5.2421    5.3926   

-6.8717    8.4921   -3.7722    6.1965    5.0980   -2.7041   -3.8025    4.7605   -1.2443   -2.2638    

8.5535   -5.6047    0.5076   -2.4536    0.4182   -5.9417   -2.5047   -0.0059    0.0565]'    

Residual variance: MSE=�var( )e =(e'*e)/n-p= 595.4813 /14=42.5344   (4.14) 

 

4.3.2 First order model variance-covariance 

This section gives the first order variance for the parameter estimates and variance-covariance 

for the three groups. 

 

4.3.2.1 The variance-covariance for GP1G 

2

ˆ ˆ ˆˆ ˆ' ' ' ' ' ' ' ' 64920 63790 1130

1130
ˆ 56.5

24 4

SSE y y y y y y X X y y X y

SSE
MSE

n p

β β β

σ

= − = − = − = − =

= = = =
− −   (4.15) 

2 1ˆ ˆvar( ) [ ' ]

2.3542 0 0 0

0 3.9572 0 0

0 0 3.9572 0

0 0 0 3.9572

X Xβ σ −= =

 
 
 
 
 
          

(4.16) 

The variance of all regression model parameter estimates is found as follows:  

( ) ( )2ˆ (   )V diagonal elements ofβ σ
−

=
1

XX  

Therefore, 0
ˆ( ) 2.3542V β = , 

1 2 3( ) ( ) ( ) 3.9572V V Vβ β β= = =  
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4.3.2.2 The variance-covariance for GP2G 

2

ˆ ˆ ˆˆ ˆ' ' ' ' ' ' ' ' 52001 50287 1714

1714
ˆ 85.7

24 4

SSE y y y y y y X X y y X y

SSE
MSE

n p

β β β

σ

= − = − = − = − =

= = = =
− −   (4.17)

 

2 1ˆvar( ) [ ' ]

3.5708 0 0 0

0 6.0023 0 0

0 0 6.0023 0

0 0 0 6.0023

X Xβ σ −= =

 
 
 
 
 
          (4.18)

 

The variance of all regression model parameter estimates is found as follows:  

( ) ( )2ˆ (   )V diagonal elements ofβ σ
−

=
1

XX  

Therefore, 0
ˆ( ) 3.5708V β = , 

1 2 3( ) ( ) ( ) 6.0023V V Vβ β β= = = . 

 

4.3.2.3 The variance-covariance for GP3G 

2

ˆ ˆ ˆˆ ˆ' ' ' ' ' ' ' ' 99219 96852 2367

2367
ˆ 118.35

24 4

SSE y y y y y y X X y y X y

SSE
MSE

n p

β β β

σ

= − = − = − = − =

= = = =
− −   (4.19)

 

2 1ˆvar( ) [ ' ]

4.9312 0 0 0

0 8.2890 0 0

0 0 8.2890 0

0 0 0 8.2890

X Xβ σ −= =

 
 
 
 
 
          (4.20)

 

The variance of all regression model parameter estimates was found as follows:  

( ) ( )2ˆ (   )V diagonal elements ofβ σ
−

=
1

XX  
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Therefore, 0
ˆ( ) 4.9312V β = , 

1 2 3( ) ( ) ( ) 8.2890V V Vβ β β= = = . 

 

4.3.3 The second order model variance-covariance 

This section deals with the second order standard error and variance-covariance for the three 

groups. 

 

4.3.3.1 The standard error, variance-covariance for GP1G 

2

ˆ ˆ ˆˆ ˆ' ' ' ' ' ' ' ' 64920 64254 666

666
ˆ 47.5714

24 10

SSE y y y y y y X X y y X y

SSE

n p

β β β

σ

= − = − = − = − =

= = =
− −   (4.21) 

The covariance matrix of the least squares estimator depends on the variance of the disturbances 

and on the derivative matrix X. 

2 1ˆvar( ) [ ' ]

13.0102 0 0 0 6.1791 6.1791 6.1791 0 0 0

0 3.3318 0 0 0 0 0 0 0 0

0 0 3.3318 0 0 0 0 0 0 0

0 0 0 3.3318 0 0 0 0 0 0

6.1791 0 0 0 6.0996 2.1435 2.1435 0 0 0

6.1791 0 0 0 2.1435 6.0996 2.1435 0 0 0

6.1791 0 0 0 2.1435 2.1435 6.0996 0 0 0

0 0 0 0 0 0 0 7.9

X Xβ σ −= =

− − −

−

−

−

121 0 0

0 0 0 0 0 0 0 0 7.9121 0

0 0 0 0 0 0 0 0 0 7.9121

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (4.22)

 

The variance of all regression model parameter estimates wass found as follows:  

( ) ( )2ˆ (   )V diagonal elements ofβ σ
−

=
1

XX  
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Therefore, 0
ˆ( ) 13.0102V β = , 1 2 3

ˆ ˆ ˆ( ) ( ) ( ) 3.3318V V Vβ β β= = =

11 22 33
ˆ ˆ ˆ( ) ( ) ( ) 6.0996V V Vβ β β= = = , 12 13 23

ˆ ˆ ˆ( ) ( ) ( ) 7.9121V V Vβ β β= = =
   (4.23)

 

 

4.3.3.2 The standard error, variance-covariance for GP2G 

2

ˆ ˆ ˆˆ ˆ' ' ' ' ' ' ' ' 52001 51388 613

613
ˆ 43.7857

24 10

SSE y y y y y y X X y y X y

SSE

n p

β β β

σ

= − = − = − = − =

= = =
− −    

(4.24)
 

2 1ˆvar( ) [ ' ]

11.9748 0 0 0 5.6874 5.6874 5.6874 0 0 0

0 3.0667 0 0 0 0 0 0 0 0

0 0 3.0667 0 0 0 0 0 0 0

0 0 0 3.0667 0 0 0 0 0 0

5.6874 0 0 0 5.6142 1.9729 1.9729 0 0 0

5.6874 0 0 0 1.9729 5.6142 1.9729 0 0 0

5.6874 0 0 0 1.9729 1.9729 5.6142 0 0 0

0 0 0 0 0 0 0 7.2

X Xβ σ −= =

− − −

−

−

−

825 0 0

0 0 0 0 0 0 0 0 7.2825 0

0 0 0 0 0 0 0 0 0 7.2825

 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (4.25)

 

The variance of all regression model parameter estimates was found as follows:  

( ) ( )2ˆ (   )V diagonal elements ofβ σ
−

=
1

XX  

Therefore, 0
ˆ( ) 11.9748V β = , 1 2 3

ˆ ˆ ˆ( ) ( ) ( ) 3.0667V V Vβ β β= = = , 

11 22 33
ˆ ˆ ˆ( ) ( ) ( ) 5.6142V V Vβ β β= = = , 12 13 23

ˆ ˆ ˆ( ) ( ) ( ) 7.2825V V Vβ β β= = =  
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4.3.3.3 The standard error, variance-covariance for GP3G 

2

ˆ ˆ ˆˆ ˆ' ' ' ' ' ' ' ' 99219 98624 595

595
ˆ 42.5

24 10

SSE y y y y y y X X y y X y

SSE

n p

β β β

σ

= − = − = − = − =

= = =
− −   (4.26) 

2 1ˆvar( ) [ ' ]

11.6232 0 0 0 5.5204 5.5204 5.5204 0 0 0

0 2.9766 0 0 0 0 0 0 0 0

0 0 2.9766 0 0 0 0 0 0 0

0 0 0 2.9766 0 0 0 0 0 0

5.5204 0 0 0 5.4493 1.9150 1.9150 0 0 0

5.5204 0 0 0 1.9150 5.4493 1.9150 0 0 0

5.5204 0 0 0 1.9150 1.9150 5.4493 0 0 0

0 0 0 0 0 0 0 7.0

X Xβ σ −= =

− − −

−

−

−

686 0 0

0 0 0 0 0 0 0 0 7.0686 0

0 0 0 0 0 0 0 0 0 7.0686

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    (4.27) 

The variance of all regression model parameter estimates was found as follows:  

( ) ( )2ˆ (   )V diagonal elements ofβ σ
−

=
1

XX  

Therefore, 0
ˆ( ) 11.6232V β = , 1 2 3

ˆ ˆ ˆ( ) ( ) ( ) 2.9766V V Vβ β β= = = , 

11 22 33
ˆ ˆ ˆ( ) ( ) ( ) 5.4493V V Vβ β β= = = , 12 13 23

ˆ ˆ ˆ( ) ( ) ( ) 7.0686V V Vβ β β= = =  

4.4 Fitting and testing the three models adequacies 

This section fits first order and second order models for the three groups, tests the significance 

of parameter estimates, analyses the variance, lack of fit and coefficient of determinations. 

 

4.4.1 The first-Order Model  

The first-order model with three independent variables is expressed as: 
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 ̂y  = βo + β1x1 + β2x2 + β3x3;          (4.28) 

where: 

 ̂y  represents the predicted response where, in this research, is the yield amount of rose coco 

bean in grams. 

β0 is the mean response, that is the amount of rose coco beans when all the explanatory factors 

are zero. 

β1 is the parameter associated with the nitrogen fertilizer. 

β2 is the parameter associated with the phosphorus fertilizer. 

β3 is the parameter associated with the potassium fertilizer. 

x1 represents the observed yield on the rose coco bean under nitrogen at seven levels. 

x2 is the effect of phosphorus on rose coco beans, which has been controlled at seven levels. 

x3 is the effect of potassium on rose coco beans, which has been controlled at seven levels. 

When there was a curvature in the response surface, then a higher degree polynomial was used. 

In any model, the levels of each factor are independent of the levels of other factors. The 

method of least square was used to estimate the parameters in the polynomials in which the 

response surface analysis was performed by using the fitted surface. 

 

4.4.1.1 The first-orde r model fitting for GP1G 

The first order regression equation for GP1G is given as in equation (4.4). 

1 1 2 3
ˆ 51.1667 5.0452 6.3461 1.1566GP GY X X X= − + +

      (4.29)
 

In GP1G the first order model was significant (p=0.0057) at 1%. The nitrogen (p=0.0196) and 

phosphorus (p=0.0046) were also significant factors, potassium fertilizer at 30grams is not 

contributing significantly to the rose coco yield. The coefficient of determination, R2=45.87% is 
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below 50% so the response is not well explained by the factors chosen though the combined 

linear factors are significant.  

 

4.4.1.2 The first-orde r model fitting for GP2G 

Therefore the first order regression equation for GP2G is given as equation (4.5); 

2 1 2 3
ˆ 45.7083 1.4399 0.6980 2.7503GP GY X X X= + − +

  
    (4.30) 

In GP2G the first order model is insignificant (p=0.6462). The nitrogen, phosphorus and 

potassium are not significant factors. The R2=7.78%, this is very low far much below, so the 

response is not well explained by the factors chosen in the first order model. 

 

4.4.1.3 The first-orde r model fitting for GP3G 

Therefore the first order regression equation for GP3G is given as 

3 1 2 3
ˆ 63.2917 1.9127 1.9876 6.5028GP GY X X X= + + −

  
    (4.31) 

In GP3G the first order model is insignificant (p=0.1454). The nitrogen and phosphorus are 

insignificant factors, potassium (p=0.0352) is significant. The R2=23.14%, this is below 50% so 

the response is not well explained by the factors chosen in the first order model confirming its 

insignificance. 

 

4.4.2 The Analysis of variance of GP1G  

The total sum of squares is given as; 

2

2 21 1

1

( )

SST ' '

n n

i in
i i

i

i

y y

y y y y y ny
n n

= =

=

= − = − = −
∑ ∑

∑
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         = 64920-24x51.16672  = 2087.2515       (4.32) 

and the sum of squares due to regression is give as 

2ˆ ' 'SSR X y nyβ= −  

       = 63790-62832.7485 = 957.2515        (4.33) 

The sum of squares due to error is 

ˆ' ' 'SSE y y X yβ= −  

   = 64920-63790=1130         (4.34) 

which verifies that 

SST = SSR + SSE.           (4.35) 

Using the result of the equations (4.32), (4.33) and (4.34) the analysis of variance table 

generated from this model is as follows: 

Table 4. 10: The Analysis of Variance table first order for GP1G. 

Source of 

variation 

Degrees of 

freedom 

Sum of squares Mean sum of 

squares 

Variance ratio 

Regression 3 957.2515 319.0838 5.65 

Error 20 1130 56.5  

Total 23 2087.2515   

                Sum of Squared Residuals          1129.79190 

                Predicted Residual SS (PRESS)     1672.86356 

 

4.4.2.1 The test of significance in regression-GP1G 

A good estimated regression model should explain the variation of the dependent variable in the 

sample. However, there are certain tests of hypotheses about the model parameters that could 
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help the experimenter in measuring the effectiveness of the model. The first of all these tests 

requires the error term ei’s to be normally, identically and independently distributed with mean 

zero and variance σ2. In order to check this assumption, the normal probability of residuals for 

the rose coco beans yield is graphed as shown in figure 4.4. 

 

4.4.2.2 Normal probability plot of the residuals GP1G 

 

Figure 4. 4: The Normal Probability Plot of GP1G. 

The residuals plot in figure 4.4 is approximately along a straight line, thus the normality 

assumption is satisfied. It is important to note that the error term is the difference between the 

observed value yi and the corresponding fitted value ŷ i , that is, ei = yi − ŷ i as shown in table 

4.4. As a result of this assumption, observations yi are also normally, identically and 

independently distributed. 
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4.4.2.3 The test of significance of the model 

As a result of the normality assumption being satisfied, observations yi are also normally, 

identically and independently distributed. Therefore, the test for the significance of the 

regression could be applied to determine the relationship between the dependent variable y and 

independent variables X1, X2, X3. The hypotheses are; 

H0: β1 = β2 = β3 = 0, against 

H1: βi ≠ 0 for at least one i. 

From the analysis of variance table 4.10, Fc = 5.65. Comparing this value with the F-table value 

F0.05, 3, 20 = 3.10, we found out that there was a significant statistical evidence to reject the null 

hypothesis. It implies that at least one of the independent variables, nitrogen, phosphorus or 

potassium, contributes significantly to the model, therefore the first order model was adequate 

for GP1G. Further tests were carried out on the parameters β1, β2 and β3 in order to identify the 

variable that significantly contributes to the model. 

 

4.4.2.4 The test of significance of parameter estimates in first orde r model 

The hypothesis test was used to gain a rough idea of the importance of the treatment effects. In 

order to determine whether given variables were justified to be included or excluded from the 

model, the test of hypotheses for the individual regression coefficients were undertaken as 

follows: 

4.4.2.5 Test for β1  

Hypothesis 

H0: β1 = 0, against 

H1: β1 ≠ 0. 
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The standard error for 1β̂  (S.E 1β̂ ), was found by use of the fact that Cov( β̂ ) = MSE(X'X)-1. 

Thus, using the results in table 4.10 and the diagonal element of (X′X)−1corresponding to this 

parameter estimate in equation (4.16), the standard error is given as, 

S.E 1β̂ = (3.9572)1/2 =1.98927 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼

          (4.36)

 

tc=-5.0452/1.9887=-2.5362 

while t0.025,20 = 2.086. 

Since −tα/2 < tc < tα/2, we reject the null hypothesis, thus the parameter was significant and the 

predictor variable-nitrogen (X1) was required in explaining the variation of the rose coco yield 

at   α = 0.05 in the first order model.   

4.4.2.6 Test for β2  

Hypothesis 

H0: β2 = 0, against 

H1: β2 ≠ 0. 

The standard error of the parameter estimate, 2β̂  given by, 

S.E 2β̂ =(3.9572)1/2 =1.98927 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼

          (4.37)

 

tc=6.3461/1.9887=3.1902 
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Since −tα/2 < tc < tα/2, we reject the null hypothesis, thus the parameter was significant and the 

predictor variable-phosphorus (X2) was required in explaining the variation of the rose coco 

yield at α = 0.05 in the first order model.   

4.4.2.7 Test for β3  

Hypothesis 

H0: β3 = 0, against 

H1: β3 ≠ 0. 

The standard error of the parameter estimate, 3β̂  is given as; 

S.E 2β̂ = (3.9572)1/2 =1.98927 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼

          (4.38)

 

tc=1.1566/1.9887=0.5814 

Since −tα/2 < tc < tα/2, we do not reject the null hypothesis, thus the parameter was insignificant 

and the predictor variable-potassium (X3) was not individually important in explaining the 

variation of the rose coco yield at α = 0.05 in the first order model.   

The coefficient of multiple determination is given as;     

2 1     E

T

SS
R or

SS
= −

 

2 957.2515
0.4586

2087.2515

SSR
R

SST
= = =

        (4.39)
 

which indicates that 45.86 % of the variation of the rose coco yield was accounted for by the 

model, which was below half (50%) to justify the correct relationship between the predictors 

and the response. The R2 measures how well estimated model fits the data. When R2 is closer to 
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the 100%, the better the estimation of the regression equation fits the sample data. The first 

order model for GP1G 1 1 2 3
ˆ 51.1667 5.0452 6.3461 1.1566GP GY X X X= − + + was significant 

(p<0.05). The N and P contribute significantly to the model. K was insignificant. So the model 

with significant terms only is 1 1 2
ˆ 51.1667 5.0452 6.3461GP GY X X= − +  

 

4.4.3 The analysis of variance of GP2G  

The sum of squares due to total is given as 

2
'SST y y ny= −  

         = 52001-24x45.7082  =1859.6897       (4.40) 

and the sum of squares due to regression was give as 

2ˆ ' 'SSR X y nyβ= −  

       = 50287-50141.3103=145.6897        (4.41) 

The sum of squares due to error is 

ˆ' ' 'SSe y y X yβ= −  

   = 52001-50287=1714         (4.42) 

which verifies that 

SST = SSR + SSE.           (4.43) 

Using the result of the equations (4.40), (4.41) and (4.42) the analysis of variance table 

generated from this model is as follows: 
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Table 4. 11: The Analysis of Variance table first order for GP2G. 

Source of 

variation 

Degrees of 

freedom 

Sum of squares Mean sum of 

squares 

Variance ratio 

Regression 3 145.6897 48.5632 0.567 

Error 20 1714 85.7  

Total 23 1859.6897   

 

4.4.3.1 The test of significance in regression-GP2G 

In order to check this assumption, the normal probability of residuals for the rose coco beans 

yield is graph as shown in Figure 4.5. 

 

4.4.3.2 Normal probability plot of the residuals GP2G 

 

Figure 4. 5: The Normal Probability Plot of GP2G. 
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The residuals plot in figure 4.5 is approximately along a straight line, thus the normality 

assumption is satisfied.  

4.4.3.3 The test of significance of the model 

As a result of the normality assumption being satisfied, observations yi are also normally, 

identically and independently distributed. Therefore, the test for the significance of the 

regression could be applied to determine if the relationship between the dependent variable y 

and independent variables X1, X2, X3 exists. The hypotheses are, 

H0: β1 = β2 = β3 = 0, against 

H1: βi ≠ 0 for at least one i. 

From the analysis of variance table 4.11, Fc = 0.567. Comparing this value with the F-table 

value F0.05, 3, 20 = 3.10, we find that we do not reject the null hypothesis. It implies that the 

independent variables, nitrogen, phosphorus or potassium, contributes insignificantly to the 

model, therefore the first order model is inadequate for GP2G. We now do not carry out further 

tests on the parameters β1, β2 and β3 in order to identify the variable that significantly 

contributes to the model. 

The coefficient of multiple determination is given as; 

2 145.6897
0.0783

1859.6897
R = =

         (4.44)
 

which indicates that 7.83 % of the variation of the rose coco yield was accounted for by the 

model, which was a very low value to justify the correct relationship between the predictors and 

the response. We test the first order model and it was insignificant (p=0.6462). The first order 

model was given by this equation:-  

2 1 2 3
ˆ 45.7083 1.4399 0.6980 2.7503GP GY X X X= + − +       (4.45) 
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4.4.4 The analysis of variance of GP3G  

The sum of squares due to total was given as 

2
'SST y y ny= −  

         = 99219-24x63.29172  =3078.8571       (4.46) 

and the sum of squares due to regression was given as; 

2ˆ ' 'SSR X y nyβ= −  

       = 96852-24x63.29172=711.8571        (4.47) 

The sum of squares due to error is 

ˆ' ' 'SSE y y X yβ= −  

   = 99219-96852=2367         (4.48) 

which verifies that 

SST = SSR + SSE.           (4.49) 

Using the result of the equations (4.46), (4.47) and (4.48) the analysis of variance table 

generated from this model was as follows: 

Table 4. 12: The Analysis of Variance table first order for GP3G. 

Source of 

variation 

Degrees of 

freedom 

Sum of squares Mean sum of 

squares 

Variance ratio 

Regression 3 711.8571 237.2857 2.005 

Error 20 2367 118.35  

Total 23 3078.8571   

 



73 

 

4.4.4.1 The test for significance in regression-GP3G 

In order to check this assumption, the normal probability of residuals for the rose coco beans 

yield was graph as shown in figure 4.6. 

 

4.4.4.2 Normal probability plot of the residuals GP3G 

 

Figure 4. 6: The Normal probability plot for GP3G. 

The residuals plot in figure 4.6 was approximately along a straight line, thus the normality 

assumption is satisfied.  

 

4.4.4.3 The test of significance of the model 

As a result of the normality assumption being satisfied, observations yi are also normally, 

identically and independently distributed. Therefore, the test for the significance of the 

regression could be applied to determine if the relationship between the dependent variable y 

and independent variables X1, X2, X3 exists. The hypotheses are, 
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H0: β1 = β2 = β3 = 0, against 

H1: βi ≠ 0 for at least one i. 

From the analysis of variance table 4.12, Fc = 2.005. Comparing this value with the F-table 

value F0.05, 3, 20 = 3.10, we found out that we do not reject the null hypothesis. It implies that the 

independent variables, nitrogen, phosphorus or potassium, contributes insignificantly to the 

model, therefore the first order model is inadequate for GP3G.  

Therefore, there was no need to go further tests on the parameters β1, β2 and β3 in order to 

identify the variable that significantly contribute to the model. 

The coefficient of multiple determination was given as; 

2 711.8571
0.2312

3078.8571
R = =

         (4.50)
 

which indicates that 23.12 % of the variation of the rose coco yield was accounted for by the 

first order model, which was a rather low value to justify the correct relationship between the 

predictors and the response. If we test the first order model it was insignificant (p=0.1454). The 

first order model was given by this equation:-  

3 1 2 3
ˆ 63.2917 1.9127 1.9876 6.5028GP GY X X X= + + −

      (4.51) 

 

4.4.5 Design for fitting the second-orde r model-GP1G 

This section fits the second order model, test the significance of parameter estimates in second 

order model and lack of fit for the three replicates of GP1G. 

 

4.4.5.1 Fitting of the second-order model 

The second-order polynomial model for three factors was used to fit the data given below: 
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3 3 2 3

2

0

1 1 1 1

ˆ
i i ii i ij i j

i i i j i

Y x x x xβ β β β
= = = = +

= + + +∑ ∑ ∑∑        (4.52) 

where Ŷ  is the predicted response used as a dependent variable; xi are the coded levels of 

independent variables; β0 intercept; βi the linear terms coefficients; βii the quadratic terms 

coefficients and βij the interaction terms coefficients. 

We explore the second order model fit to verify and explore the curvature if it exists. The 

second-order model includes all the terms in the first-order model plus all quadratic terms and 

all cross product terms. The model was expressed as with three independent variables: 

Y= βo + β1x1 + β2x2 + β3x3 + β11x2
1 + β22x2

2 + β33x2
3+ β12x1x2+ β13x1x3+β23x2x3+e      (4.53) 

The fitted second order model in terms of coded factors for GP1G in equation (4.9) is given as: 

2 2 2

1 1 2 3 1 2 3

1 2 1 3 2 3

ˆ 47.3911 5.0452 6.3461 1.1566 3.9485 0.3983 2.7962

             2.6509 5.7095 2.6509

GP GY X X X X X X

X X X X X X

= − + + + − +

+ − −
    (4.54) 

 

4.4.5.2 The test of significance of parameter estimates in second order model 

We undertook the test of hypotheses for the individual regression coefficients as follows to see 

its significance on the model: 

4.4.5.3 Test for βi 

Hypothesis 

H0: βi = 0, for i=1,2,3 against 

H1 : βi ≠ 0 . 

The standard error for ˆ
iβ , S.E ˆ

iβ , was found by using the 

Cov( β̂ ) = MSE(X'X)-1. Thus, using the equation (4.22) the diagonal element of 2σ̂ (X'X)-1 the 

standard error is given as, S.E ˆ
iβ =(3.3318)1/2 =1.8253 
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( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼  

tn=-5.0452/1.8253=-2.7640 

tp=6.3461/1.8253=3.4767         (4.55) 

tk=1.1566/1.8253=0.6336 

Since −tα/2 < tc < tα/2, we reject the null hypothesis of nitrogen and phosphorus, thus the 

parameters are significant and the predictor variables-nitrogen and phosphorus are required in 

explaining the variation of the rose coco yield at α = 0.05. The potassium fertilizer was 

insignificant. 

4.4.5.4 Test for βi i 

Hypothesis 

H0: βii = 0, against 

H1: βii ≠ 0. 

The standard error of the parameter estimate, ˆ
iiβ  given as; 

S.E ˆ
iiβ = (6.0996)1/2 =2.4697 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼  

tn
2=3.9485/2.4697=1.5988 

tp
2=-0.3983/2.4697=-0.1613         (4.56) 

tk
2=2.7962/2.4697=1.1322 

Since −tα/2 < tc < tα/2, we accept the null hypothesis, thus the parameters were insignificant and 

the predictor quadratic variables of nitrogen, phosphorus and potassium were not required in 

explaining the variation of the rose coco yield at α = 0.05.   
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4.4.5.5 Test for βij 

Hypothesis 

H0: βij = 0, against 

H1: βij ≠ 0 . 

The standard error of the parameter estimate, ˆ
ijβ  given as; 

S.E ˆ
ijβ =(7.9121)1/2 =2.8128 

( , )

ˆ

ˆvar( )

i
c n p

i

t t α

β

β
−= ∼  

tnp=2.6509/2.8128=0.9424 

tnk=-5.7095/2.8128=-2.0298         (4.57) 

tpk=-2.6509/2.8128=-0.9424 

Since −tα/2 < tc < tα/2, we accept the null hypothesis, thus the parameters were insignificant and 

the predictor interactions variables of nitrogen and phosphorus, nitrogen and potassium, 

phosphorus and potassium were not required in explaining the variation of the rose coco yield at 

α = 0.05. 

Table 4. 13: The ANOVA results on the three replicate of rose coco beans-GP1G. 

                 Df  Sum Sq   Mean Sq  F value   Pr(>F) 

FO(N, P, K)      3    2816    938.57    1.3969   0.2522 

TWI(N, P, K)    3     842    280.50    0.4175   0.7411 

PQ(N, P, K)      3     925    308.30    0.4589   0.7120 

Residuals        62   41656    671.88                

Lack of fit      14    1962    140.13    0.1694   0.9996 

Pure error       48   39695    826.97                

Table 4.13 comes from the three replicates in GP1G to show the subdivision of residuals into 

lack of fit and pure error.  
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Table 4. 14: The ANOVA results in the fertilizer concentration on rose coco beans-GP1G 

                             Type I Sum 

Regression           DF      of Squares    Mean Sq     R-Square     F Value   Pr > F 

First Order           3      957.541428    319.18     0.4587       6.71    0.0049 

Pure Quadratic        3      183.455066     61.15     0.0879       1.29    0.3178 

Two-Factor Interaction3      280.500000     93.50      0.1344       1.97    0.1655 

Residuals           14      665.84         47.56                 

Lack of fit         14      665.84         47.56                 

Pure error            0     0.00                         

Total Model           9     1421.496494           0.6810       3.32    0.0219 

Coefficient of variation (CV)=13.48, coefficient determination (R2)=0.6810, Adjusted 

R-squared =0.4759 correlation coefficient (r)=0.8252, root MSE=6.896359, response 

mean=51.166667, PRESS=2488.850781 

Table 4.14 shows the results of the averaged data of the three replicates in GP1G that is why the 

pure error is zero because pure error emanates from replicated values (center points). The 

statistical testing of the model was done by the Fisher’s statistical test for analysis of variance 

(ANOVA) and the results as shown in table 4.14 indicates that there was no significant effect of 

the quadratic components and cross products. However, the total second order model was 

significant at 0.05 (p=0.0219). The analysis of variance (F-test) showed that the first model fits 

well with the experimental data. The Coefficient of variation (C.V.) is a measure expressing the 

standard deviation as a percentage of the mean (Thomas and Nelson, 1996). It indicates the 

degree of precision with which the treatments are compared.  The higher the value of the 

coefficient of variation (CV), the lower the reliability of the experiment, lower values of CV 

indicated a very high degree of precision and a good deal of reliability of the experimental 

values. Here, a lower value of CV (13.48) indicates the greater reliability of the experiment. The 

goodness of fit of the model was checked by the coefficient of determination (R2) and 

correlation coefficient (R). The closer value of R (correlation coefficient) to 1, the better the 
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correlation between the experimental and predicted values. Here, the value of R (0.8252) for 

equation (4.54) being close to 1 indicated a close agreement between the experimental results 

and the theoretical values predicted by the model equation. The R2 of quadratic equation was 

68.10% with mean response of 51.1667 grams of rose coco beans, implying that R2 in GP1G of 

second order model explain 68.10% of  the variation in the model than R2=45.87% of the first 

order model. The model was adequate to express the actual relationship between the response 

and significant variables, with a satisfactory coefficient of determination (R2=0.6810), which 

indicated 68.10% of the variability in the response could be explained by the second-order 

polynomial predictive equation (4.54), which means that the model was unable to explain only 

31.9% of the total variations, quadratic model was insignificant having N and P significant 

factors.  

Table 4. 15: The estimated effects & coefficients of the empirical model for GP1G 

                                                     Standard 

              Parameter    DF        Estimate           Error    t Value    Pr > |t| 

 

              Intercept     1       47.391125        3.606523      13.14      <.0001*** 

              N             1       -5.045204        1.825105      -2.76      0.0152* 

              P             1        6.346081        1.825105       3.48      0.0037** 

              K             1        1.156615        1.825105       0.63      0.5365 

              N*N           1        3.948538        2.469426       1.60      0.1321 

              P*N           1        2.650859        2.812504       0.94      0.3619 

              P*P           1       -0.398323        2.469426      -0.16      0.8742 

              K*N           1       -5.709542        2.812504      -2.03      0.0618● 

              K*P           1       -2.650859        2.812504      -0.94      0.3619 

              K*K           1        2.796168        2.469426       1.13      0.2765 

 

Signif. codes:‘***’significant at 0.001,‘**’significant at 0.01,‘*’significant at 0.05,        

‘●’significant at 0.1,‘ ’ significant at 1. 
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Table 4.15 lists the regression coefficients and the corresponding p-values for the second-order 

polynomial model given as in equation (4.54) as: 

2 2 2

1 1 2 3 1 2 3

1 2 1 3 2 3

ˆ 47.3911 5.0452 6.3461 1.1566 3.9485 0.3983 2.7962

             2.6509 5.7095 2.6509

GP GY X X X X X X

X X X X X X

= − + + + − +

+ − −
 

The GP1GŶ is the predicted response for rose coco beans in group 1. The results presented in 

Table 4.15 suggest that linear effects of nitrogen and phosphorus were primary determining 

factors on the rose coco beans yield as these had the largest coefficients. The interaction effect 

N*K was a secondary determining factor and those other terms of the model showed no 

significant effect on the yield. The positive coefficient, P, enhances the yield the most. 

However, all the other terms N and N*K had negative coefficients. The X1 represent Nitrogen 

(N), X2 represent Phosphorus (P), X3 represents Potassium (K). 

The significance of each coefficient was determined by the student’s t-test and p-value, which 

are in table 4.15. The larger the magnitude of t-test and smaller p-value, the more significant the 

corresponding coefficients. It can be seen in table 4.15 that the regression coefficients of the 

linear terms of nitrogen and phosphorus N(0.0152) and P(0.0037), respectively) had significant 

effects on the yield (p-value <0.05) and the interaction terms in K*N (potassium and nitrogen-

(0.0618)) is marginally significant. Among these, P was significant at the 1% significance level, 

while N was significant at the 5% level.  

Table 4. 16: The Analysis of Variance Table for N,P,K in 2nd order model- GP1G. 

                                       Sum of 

                Factor     DF         Squares     Mean Square    F Value    Pr > F 

 

                N           4      723.277182      180.819295       3.80    0.0270 

                P           4      660.747662      165.186916       3.47    0.0360 

                K           4      318.328520       79.582130       1.67    0.2118 

We saw that in GP1G ANOVA nitrogen and phosphorus are significant factors at p<0.05. 

Potassium was not significant at α=0.05 level of significance.  
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4.4.5.6 The lack-of-fit test for the three replicates GP1G 

Lack-of-fit tests were performed on the fitted models. The lack-of-fit test compares the variation 

around the model with pure variation within replicated observations using the results of table 

4.1. The lack of fit measures the adequacy of the quadratic response surface model. 

Table 4. 17: The lack of fit test for second order model-GP1G. 

                                           Sum of 

            Residual           DF         Squares     Mean Square    F Value    Pr > F 

 

            Lack of Fit        14     2073.344319      148.096023       0.19    0.9993 

            Pure Error         48     37619         783.722222 

            Total Error        62     39692            640.193726 

 

The lack of fit of the model was insignificant indicating that the second order model fits the data 

adequately. This is when the three replicates in group one (GP1G) is used. 

 

4.4.6 Design for fitting the second-orde r model-GP2G 

A second-order polynomial model for three factors was used to fit the data of GP2G using the 

model in equation (4.52). We explore the second order model fit to verify and explore the 

curvature if it exists. The second-order model includes all the terms in the first-order model plus 

all quadratic terms and all cross product terms. The model was expressed as with three 

independent variables as given by equation (4.52). 

 

4.4.6.1 The test of significance of parameter estimates in second order model 

We undertook the test of hypotheses for the individual regression coefficients as follows to see 

its significance on the model: 
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4.4.6.2 Test for βi 

Hypothesis 

H0: βi = 0, for i=1,2,3 against 

H1: βi ≠ 0. 

The standard error for ˆ
iβ , S.E ˆ

iβ , is found by use of the fact that 

Cov( β̂ ) = MSE(X'X)-1. Thus, using the equation (4.25) the diagonal element of 2σ̂ (X'X)-1 the 

standard error is given as, S.E ˆ
iβ = (3.0667)1/2 =1.7512 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼

          (4.58)

 

tn=1.4399/1.7512=0.8222 

tp=-0.6980/1.7512=-0.3986         (4.59) 

tk=2.7503/1.7512=1.5705 

Since −tα/2 < tc < tα/2, we do not reject the null hypothesis, thus the parameters are insignificant 

and the predictor variables-nitrogen, phosphorus and potassium are not required in explaining 

the variation of the rose coco yield at α = 0.05.   

4.4.6.3 Test for βi i 

Hypothesis 

H0: βii = 0, against 

H1: βii ≠ 0 . 

The standard error of the parameter estimate, ˆ
iiβ  is using equation (4.25), 

S.E ˆ
iiβ = (5.6142)1/2 =2.3694 
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( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼  

tn
2=0.6806/2.3694=0.2872 

tp
2=6.6025/2.3694=2.7865         (4.60) 

tk
2=8.8179/2.3694=3.7215 

Since −tα/2 < tc < tα/2, we reject the null hypothesis of quadratic of P and K, thus the parameter 

are significant and the predictor quadratic variables of phosphorus and potassium are  required 

in explaining the variation of the rose coco yield at α = 0.05.  The quadratic of nitrogen was 

insignificant. 

4.4.6.4 Test for βij 

Hypothesis 

H0: βij = 0, against 

H1: βij ≠ 0 . 

The standard error for the parameter estimate, ˆ
ijβ  is using equation (4.25), 

S.E ˆ
ijβ = (7.2825)1/2 =2.6986 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼  

tnp=6.1174/2.6986=2.2669 

tnk=2.8548/2.6986=1.0579         (4.61) 

tpk=1.0196/2.6986=0.3778 

Since −tα/2 < tc < tα/2, we reject the null hypothesis of N*P, thus the parameter was significant 

and the predictor variable-N*P was important in explaining the variation of the rose coco yield 

at α = 0.05 others are insignificant.   
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Table 4. 18: The ANOVA results on the three replicate of rose coco beans-GP2G. 

                 Df   Sum Sq   Mean Sq  F value   Pr(>F) 

FO(N, P, K)     3     85.5     28.49    0.1041   0.95740 

TWI(N, P, K)    3    717.8    239.28   0.8739   0.45953 

PQ(N, P, K)     3   2354.8   784.92   2.8669   0.04364 

Residuals        62  16975.1   273.79                 

Lack of fit      14   1962.4   140.17   0.4482   0.94877 

Pure error       48  15012.7   312.76                 

The table 4.18 comes from the three replicates in GP2G to show the subdivision of residuals 

into lack of fit and pure error. 

Table 4. 19: The ANOVA results in the fertilizer concentration on rose coco beans-GP2G. 

                            Type I Sum 

Regression          DF      of Squares  mean sq   R-Square    F Value    Pr > F 

First Order          3      144.555104  48.185    0.0778       1.10    0.3815 

Pure Quadratic       3      821.441245  273.814   0.4419       6.26    0.0065 

Two-Factor Interaction3     280.250000  93.417    0.1508       2.13    0.1417 

Residuals          14      612.71      43.765                 

Lack of fit        14      612.71      43.765                 

Pure error           0        0.00                         

Total Model          9     1246.246349      0.6704       3.16    0.0264 

Coefficient of variation (CV)=14.47, coefficient determination (R2)=0.6704, Adjusted 

R-squared =0.4585, correlation coefficient (r)=0.8188, root MSE=6.615523, response 

mean=45.708333, PRESS=2091.1898012 

 

Table 4.19 is the results of the averaged data of the three replicates in GP2G. In the table, the 

combined quadratic terms are significant at 1% with a p-value of 0.0065 also the total model 

was significant at 5% with a p value of 0.0264. We tested the first order model it was 

insignificant (p=0.3815). Linear and cross product terms were not significant, which 

corresponds to the fact that the quadratic model for GP2G was appropriate. Therefore, the 

analysis of variance (F-test) showed that the second order model fits well with the experimental 

data in GP2G. The R2 of quadratic equation was 67.04% with mean response of 45.7083 grams 
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of rose coco beans, implying that R2 in GP2G of second order model explain 67.04% of  the 

variation in the model than R2=7. 83% of the first order model. The model was adequate to 

express the actual relationship between the response and significant variables, with a 

satisfactory coefficient of determination (R2=0.6704), which indicated 67.04% of the variability 

in the response could be explained by the second-order polynomial predictive equation (4.62), 

meaning that the model was unable to explain 32.96% of the total variations. The value of R 

(0.8188) for equation (4.62) being close to 1 indicated a close agreement between the 

experimental results and the theoretical values predicted by the model equation.  

Table 4. 20: The estimated effects & coefficients of the empirical model for GP2G. 

                                                     Standard 

              Parameter    DF        Estimate           Error    t Value    Pr > |t| 

 

              Intercept     1       36.129616        3.459657      10.44      <.0001*** 

              N             1        1.439859        1.750782       0.82      0.4246 

              P             1       -0.697954        1.750782      -0.40      0.6962 

              K             1        2.750284        1.750782       1.57      0.1385 

              N*N           1        0.680614        2.368865       0.29      0.7781 

              P*N           1        6.117366        2.697972       2.27      0.0397* 

              P*P           1        6.602530        2.368865       2.79      0.0145* 

              K*N           1        2.854771        2.697972       1.06      0.3079 

              K*P           1        1.019561        2.697972       0.38      0.7112 

              K*K           1        8.817910        2.368865       3.72      0.0023** 

 

 

Signif. codes:‘***’significant at 0.001,‘**’significant at 0.01,‘*’significant at 0.05,        

‘●’significant at 0.1,‘ ’ significant at 1. 

 

Table 4.20 lists the regression coefficients and the corresponding p-values for the second-order 

polynomial model given as in equation 4.62 as: 

2 2 2

2 1 2 3 1 2 3

1 2 1 3 2 3

ˆ 36.1296 1.4399 0.6980 2.7503 0.6806 6.6025 8.8179

             6.1174 2.8548 1.0196

GP GY X X X X X X

X X X X X X

= + − + + + +

+ + +
  (4.62)

 

The GP2GŶ is the predicted response for rose coco beans in group 2. The results presented in 

Table 4.20 suggest that quadratic effects of phosphorus (p=0.0145) and potassium (p=0.0023), 

the interaction effect N*P (p=0.0397) are significant factors on the rose coco bean, among 

these, K2 is significant at the 1% significance level, while P2 and N*P are significant at the 5% 

level, those other terms of the model showed no significant effect on the yield. The positive 
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coefficient of P2 (quadratic phosphorus) K2 (quadratic potassium), N*P enhance the yield since 

they are the largest coefficients in the model equation (4.62). The X1 represent Nitrogen (N), X2 

represent Phosphorus (P), X3 represents Potassium (K). Table 4.20 suggests that quadratic 

effects of phosphorus (P2), potassium (K2) and interaction N*P were the determining significant 

factors on the rose coco bean yield as these had the more or less the same coefficients and those 

other terms of the model showed no significant effect on the yield. The P2, K2 and N*P showed 

the positive coefficient, meaning all the three (quadratic phosphorus, quadratic potassium and 

nitrogen and phosphorus combined) enhance the rose coco yield.   

 

4.4.6.5 The lack of fit for the three replicates in GP2G 

Lack-of-fit tests were performed on the fitted models. The lack-of-fit test compares the variation 

around the model with pure variation within replicated observations using the results of table 

4.5.  

Table 4. 21: The lack of fit test for GP2G. 

                                           Sum of 

            Residual           DF         Squares     Mean Square    F Value    Pr > F 

 

            Lack of Fit        14     1838.135953      131.295425       0.50    0.9236 

            Pure Error         48           12692      264.416667 

            Total Error        62           14530      234.357031 

The lack of fit of the model was insignificant, so the second order model was adequate for the 

experiments of GP2G. 

Table 4. 22: The Analysis of Variance Table for N,P,K in 2nd order model- GP2G. 

                                       Sum of 

                Factor     DF         Squares     Mean Square    F Value    Pr > F 

 

                N           4      307.213714       76.803429       1.75    0.1941 

                P           4      578.197324      144.549331       3.30    0.0420 

                K           4      769.676867      192.419217       4.40    0.0165 
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In table 4.22, the phosphorus and potassium were significant factors at 5% level of significance. 

Nitrogen was not significant at the 5 % level of significance.  

 

4.4.7 Design for fitting the second-orde r model GP3G 

The second-order polynomial model for three factors was used to fit the data of GP3G using the 

model equation (4.52). The model was expressed as with three independent variables as given 

by equation (4.53). 

 

4.4.7.1 The test of significance of parameter estimates in second order model 

The hypothesis test was used to gain a rough idea of the importance of the treatment effects. In 

order to determine whether given variables are justified to be included or excluded from the 

model, we undertook the test of hypotheses for the individual regression coefficients as follows: 

4.4.7.2 Test for βi 

Hypothesis 

H0: βi = 0, for i=1,2,3 against 

H1: βi ≠ 0 . 

The standard error for ˆ
iβ , S.E ˆ

iβ , was found by use of the fact that 

Cov( β̂ ) = MSE(X'X)-1. Thus, using the equation (4.27) the diagonal element of 2σ̂ (X'X)-1 the 

standard error was given as, S.E ˆ
iβ = S.E ˆ

iβ =(2.9766)1/2 =1.7253 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼

          (4.63)

 

tn=1.9127/1.7253=1.1086 
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tp=1.9876/1.7253=1.1520         (4.64) 

tk=-6.5028/1.7253=-3.7691 

Since −tα/2 < tc < tα/2, we do not reject the null hypothesis of N and P, thus the parameters were 

insignificant and the predictor variables-nitrogen and phosphorus was not required in explaining 

the variation of the rose coco yield at α = 0.05. We reject the null hypothesis of K, thus the 

parameter was significant and the predictor variables-potassium was required in explaining the 

variation of the rose coco yield at α = 0.05.   

4.4.7.3 Test for βi i 

Hypothesis 

H0: βii = 0, against 

H1: βii ≠ 0. 

The standard error of the parameter estimate, ˆ
iiβ  using equation (4.27), 

S.E ˆ
iiβ =(5.4493)1/2 =2.3344 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼  

tn
2=3.2471/2.3344=0.2872 

tp
2=5.3785/2.3344=2.7865         (4.65) 

tk
2=10.7726/2.3344=3.7215 

Since −tα/2 < tc < tα/2, we reject the null hypothesis of quadratic of P and K, thus the parameters 

were significant and the predictor quadratic variables of phosphorus and potassium were  

required in explaining the variation of the rose coco yield at α = 0.05.  The quadratic effect of 

nitrogen was insignificant. 
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4.4.7.4 Test for βij 

Hypothesis 

H0: βij = 0, against 

H1: βij ≠ 0 . 

The standard error of the parameter estimate, ˆ
ijβ using equation (4.27), 

S.E ˆ
ijβ =(7.0686)1/2 =2.6587 

( , )

ˆ

ˆvar( )

i
n p

i

t t α

β

β
−= ∼  

tnp=-10.8073/2.6587=-4.0649 

tnk=-0.2039/2.6587=-0.0767         (4.66) 

tpk=-4.6900/2.6587=-1.7640 

Since −tα/2 < tc < tα/2, we reject the null hypothesis of NP, thus the parameter was significant and 

the predictor variable-N*P was important in explaining the variation of the rose coco yield at α 

= 0.05, others were insignificant.   

Table 4. 23: The ANOVA results on the three replicate of rose coco beans-GP3G. 

                Df   Sum Sq   Mean Sq  F value   Pr(>F) 

FO(N, P, K)     3   1724.2   574.75   1.1641   0.33070 

TWI(N, P, K)    3   3648.8   1216.28   2.4634   0.07072 

PQ(N, P, K)     3   1875.1   625.05   1.2659   0.29388 

Residuals       62  30612.4   493.75                 

Lack of fit     14   2925.7   208.98   0.3623   0.97935 

Pure error      48  27686.7   576.81                 

The table 4.23 comes from the three replicates in GP3G to show the subdivision of residuals 

into lack of fit and pure error. 

Table 4. 24: The ANOVA results in the fertilizer concentration on rose coco bean-GP3G. 

                            Type I Sum 
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Regression          DF      of Squares Mean Sq     R-Square    F Value   Pr > F 

First Order          3      712.400678  237.467    0.2314       5.58    0.0099 

Pure Quadratic       3      936.326222  312.109    0.3041       7.34    0.0034 

Two-Factor Interaction3     834.750000  278.250    0.2711       6.54    0.0054 

Residuals          14      595.48       42.534                 

Lack of fit        14      595.48       42.534                 

Pure error           0    0.00                         

Total Model          9     2483.476900           0.8066       6.49    0.0011 

Coefficient of variation (CV)= 10.3044, coefficient determination (R2)= 0.8066, 

Adjusted R-squared =0.6823, correlation coefficient (r)=0.8981, root MSE=6.521839, 

response mean=63.291667, PRESS=2645.6089489 

Table 4.24 is the results of the averaged data of the three replicates in GP3G. The statistical 

testing of the model was done by the Fisher’s statistical test for analysis of variance (ANOVA) 

and the results are shown in table 4.24. In the table 4.24, all the linear (p=0.0099), quadratic 

(p=0.0034) and cross product (p=0.0054) terms were significant at 1%; therefore the total model 

was significant with p values of 0.0011.The second order model for GP3G was highly 

significant. The analysis of variance (F-test) showed that the second model fits well with the 

experimental data. The goodness of fit of the model can be checked by the determination 

coefficient (R2) and correlation coefficient (r). The determination coefficient (R2) implies that 

the sample variation of 80.66% with mean response of 63.2917gms of rose coco bean 

production was attributed to the independent variables, and about 19.34% of the total variation 

couldn’t be explained by the model, implying that R2 in GP3G of second order model explain 

80.66% of the variation in the model than R2=23.12% of first order model in equation (4.50). 

The closer the value of R (correlation coefficient) to one, the better the correlation between the 

experimental and predicted values. Here, the value of R (0.8981) for equation (4.67) being close 

to 1 indicated a close agreement between the experimental results and the theoretical values 

predicted by the model equation.  
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Table 4. 25: The estimated effects & coefficients of the empirical model for GP3G. 

                                             Standard 

              Parameter    DF        Estimate           Error    t Value    Pr > |t| 

 

              Intercept     1       51.751435        3.410664      15.17      <.0001*** 

              N             1        1.912726        1.725989       1.11      0.2865 

              P             1        1.987578        1.725989       1.15      0.2688 

              K             1       -6.502796        1.725989      -3.77      0.0021** 

              N*N           1        3.247054        2.335319       1.39      0.1861 

              P*N           1      -10.807347        2.659765      -4.06      0.0012** 

              P*P           1        5.378536        2.335319       2.30      0.0371* 

              K*N           1       -0.203912        2.659765      -0.08      0.9400 

              K*P           1       -4.689981        2.659765      -1.76      0.0997
●
 

              K*K           1       10.772613        2.335319       4.61      0.0004*** 

 

Signif. codes:‘***’significant at 0.001,‘**’significant at 0.01,‘*’significant at 0.05,        

‘●’significant at 0.1,‘ ’ significant at 1. 

 

Table 4.25 lists the regression coefficients and the corresponding p-values for the second-order 

polynomial model given as in eq. 4.67 as: 

2 2 2

3 1 2 3 1 2 3

1 2 1 3 2 3

ˆ 51.7514 1.9127 1.9876 6.5028 3.2471 5.3785 10.7726

             10.8073 0.2039 4.6900

GP GY X X X X X X

X X X X X X

= + + − + + +

− − −  

(4.67) 

The GP3GŶ is the predicted response for rose coco beans in group 3. The regression coefficients of 

the linear term for potassium (p=0.0021) have significant effects on the yield (p-value <0.05), 

the quadratic P2 (p=0.0371) and K2 (p=0.0004) have significant effects on the yield and the 

interaction terms in N*P (nitrogen and phosphorus, p=0.0012) is significant. Among these, K, 

K2 (quadratic potassium), N*P was significant at the 1% significance level, while P2 (quadratic 

phosphorus) was significant at the 5% level, those other terms of the model showed no 

significant effect on the yield. The positive coefficients of P2, K2 enhance the yield since they 

are the largest coefficients in the model equation (4.67). The largest negative coefficient of K 

and NP minimizes the yield of rose coco at their respective fertilizer input.  The X1 represents 

Nitrogen (N), X2 represents Phosphorus (P), X3 represents Potassium (K). 

This suggests that Potassium (K), quadratic effects of phosphorus (P2), quadratic effects of 

potassium (K2) and interaction N*P were the determining significant factors on the rose coco 
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beans yield as these had the largest coefficients and those other terms of the model showed no 

significant effect on the yield. 

 

4.4.7.5 The lack of Fit for the three replicates in GP3G 

Lack-of-fit tests were performed on the fitted models. The lack-of-fit test compares the variation 

around the model with pure variation within replicated observations using the results of table 

4.9.  

Table 4. 26: The lack of fit test for GP3G. 

                                           Sum of 

            Residual           DF         Squares     Mean Square    F Value    Pr > F 

            Lack of Fit        14     1786.444300      127.603164       0.25    0.9968 

            Pure Error         48           24694      514.458333 

            Total Error        62           26480      427.103940 

The lack of fit of the model was insignificant, so the second order model was adequate for the 

experiments of GP3G. 

Table 4. 27: The Analysis of Variance Table for N,P,K in 2nd order model- GP3G. 

                                       Sum of 

                Factor     DF         Squares     Mean Square    F Value    Pr > F 

 

                N           4      836.965298      209.241325       4.92    0.0109 

                P           4     1116.523540      279.130885       6.56    0.0034 

                K           4     1641.346675      410.336669       9.65    0.0006 

We saw in the table 4.27 that all the three N, P, K are significant factors at 5% level of 

significance.  

 

 



93 

 

4.5 Finding the settings of the experimental factors that produces the optimal response 

This section gives the three dimensional surfaces and contour plots, canonical analysis, 

stationary points and the ridge analysis. 

 

4.5.1 Three dimensional surfaces and contour plots  

This section illustrates the three dimensional surfaces and contour plots for the three groups. 

 

4.5.1.1 Three dimensional surfaces and contour plots of GP1G 

Graphical visualization of contour plots helps in understanding the second-order response 

surface. Specifically, three dimensional surface plots and their accompanying contour plots help 

characterize the shape of the surface and through this we are able to approximately locate the 

optimum response. Using the fit of the second-order model we illustrate quadratic response 

surfaces such as minimum, maximum, ridge, and saddle point in the case that an optimum exits, 

then this point is a stationary point. 
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Figure 4.7 a: The response surface plots for the treatments of nitrogen and phosphorus fertilizer 

concentrations in GP1G. 

The N and P are significant, maximum yield of 71.81grams was achieved with lower levels of N 

and higher P, also high N and high P still gave higher yield of around 60grams.  
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The contour plot is a two-dimensional and the third design variable must be held constant to 

construct the graph. The contour plot for nitrogen and phosphorus when potassium is held 

constant was given as: 

 

Figure 4.7a 1: The contour plot for nitrogen and phosphorus fertilizers in GP1G of 4.7a. 

In the figure 4.7a 1 the maximum yield of 60gram per rose coco yield was obtained by reducing 

the nitrogen input from the center of 10grams and increasing the phosphorus to the maximum 

scale from the centre point of 20grams. 
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Figure 4.7 b: The response surface plots for the treatments of nitrogen and potassium fertilizer 

concentrations in GP1G. 

In figure 4.7b, high yield of 62.56grams was noticed when we have low levels of nitrogen and 

high level of potassium, as well high yield with high levels of nitrogen and low levels of 

potassium.
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The contour plot for nitrogen and potassium when phosphorus was held constant is given as: 

 

Figure 4.7a 2: The contour plot of nitrogen and potassium fertilizers in GP1G of 4.7b. 

In the figure 4.7a 2 the maximum yield of 70grams was obtained by reducing the nitrogen 

fertilizer input to the lowest scale from the centre point 10grams and increasing the potassium to 

the maximum scale from the centre point of 30grams. 
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Figure 4.7 c: The response surface plots for the treatments of phosphorus and potassium 

fertilizer concentrations in GP1G. 

In the figure 4.7c, we saw high yield of 55.54grams under high levels of phosphorus from the 

center point of 20grams and under low levels of potassium fertilizer from the center point 

30grams, we saw also high yield with high level of phosphorus with high level of potassium.
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The contour plot for phosphorus and potassium when nitrogen was held constant is given as: 

 

Figure 4.7a 3: The contour plot of phosphorus and potassium fertilizers in GP1G of 4.7c. 

In the figure 4.7a 3 the maximum yield of 60grams is obtained by increasing the phosphorus to 

the maximum scale from the center point 20grams and reducing the potassium to the lowest 

scale from the centre point of 30grams. 
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4.5.1.2 Three dimensional surfaces and contour plots of GP2G 

 

 

Figure 4.8 a: The response surface plots for the treatments of nitrogen and phosphorus fertilizer 

concentrations in GP2G. 

In the figure 4.8a, maximum yield of 53.95grams is achieved with lower levels of N and lower 

levels of P, also a yield of about 52grams with high N and high P.  
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The contour plot is a two-dimensional and the third design variable must be held constant to 

construct the graph. The contour plot for nitrogen and phosphorus when potassium was held 

constant is given as: 

 

Figure 4.8 b 1: The contour plot of nitrogen and phosphorus fertilizers in GP2G of 4.8a. 

In the figure 4.8 b 1 the maximum yield of 56grams per rose coco plant was obtained by 

lowering the nitrogen input from the center of 20grams and reducing the phosphorus to the 

lower scale from the centre point of 30grams, also a yield of 58grams is obtained by getting 

nitrogen and phosphorus at maximum scale. 
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Figure 4.8 b: The response surface plots for the treatments of nitrogen and potassium fertilizer 

concentrations in GP2G. 

In figure 4.8b, high yield of 60.88grams was noticed when we have high levels of nitrogen from 

the center point of 20grams and high level of potassium from the center point of 40grams.
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The contour plot for nitrogen and potassium when phosphorus was held constant is given as: 

 

Figure 4.8 b 2: The contour plot of nitrogen and potassium fertilizers in GP2G of 4.8b. 

In the figure 4.8 b 2 the maximum yield of 60grams was obtained by increasing the nitrogen 

fertilizer input to the highest scale from the centre point 20grams and increasing the potassium 

to the maximum scale from the centre point of 40grams. 
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Figure 4.8 c: The response surface plots for the treatments of phosphorus and potassium 

fertilizer concentrations in GP2G. 

In the figure 4.8c maximum yield of 64.72grams of rose coco beans was achieved by high 

levels from the centre point of 30grams of phosphorus and higher levels from the centre point of 

40grams of potassium fertilizers. 
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The contour plot for phosphorus and potassium when nitrogen was held constant is given as: 

 

Figure 4.8 b 3: The contour plot of phosphorus and potassium fertilizers in GP2G of 4.8c. 

In the figure 4.8 b 3, the maximum yield of 62grams was obtained by increasing the phosphorus 

to the maximum scale from the center point 30grams and increasing the potassium to the 

highest scale from the centre point of 40grams. 
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4.5.1.3 Three dimensional surfaces and contour plots of GP3G 

 

 

Figure 4.9 a: The response surface plots for the treatments of nitrogen and phosphorus fertilizer 

concentrations in GP3G. 

In the figure 4.9a, maximum yield of 78grams was achieved with lower levels of nitrogen and 

higher levels of phosphorus, also a yield of about 71grams with high nitrogen and low 

phosphorus.  
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The contour plot is a two-dimensional and the third design variable must be held constant to 

construct the graph. The contour plot for nitrogen and phosphorus when potassium was held 

constant is given as: 

 

Figure 4.9 c 1: The contour plot of nitrogen and phosphorus fertilizers in GP3G of 4.9a. 

In the figure 4.9 c 1 the maximum yield of 80gram per rose coco plant was obtained by 

lowering the nitrogen input from the center of 30grams and increasing the phosphorus to the 

higher scale from the centre point of 40grams, the same maximum yield of 80grams was 

obtained by higher nitrogen and lower phosphorus. 
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Figure 4.9 b: The response surface plots for the treatments of nitrogen and potassium fertilizer 

concentrations in GP3G. 

In figure 4.9b , high yield of 84.42grams was obtained when we have high level of nitrogen 

from the center point of 30grams and low level of potassium from the center point of 50grams.
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The contour plot for nitrogen and potassium when phosphorus was held constant is given as: 

  

Figure 4.9 c 2: The contour plot of nitrogen and potassium fertilizers in GP3G of 4.9b. 

In the figure 4.9 c 2, the maximum yield of 85grams was obtained by increasing the nitrogen 

fertilizer input to the highest scale from the centre point 30grams and reducing the potassium to 

the lowest scale from the centre point of 50grams. 
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Figure 4.9 c: The response surface plots for the treatments of phosphorus and potassium 

fertilizer concentrations in GP3G. 

In the figure 4.9c  maximum yield of 88.83grams of rose coco beans was achieved by high 

levels of phosphorus from the centre point of 40grams and low level of potassium fertilizers 

from the centre point of 50grams. 
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The contour plot for phosphorus and potassium when nitrogen was held constant is given as: 

 

Figure 4.9 c 3: The contour plot of phosphorus and potassium fertilizers in GP3G 4.9c. 

In the figure 4.9 c 3, the maximum yield of 95grams was obtained by increasing the phosphorus 

to the maximum scale from the center point 40grams and reducing the potassium to the lowest 

scale from the centre point of 50grams. 
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4.5.2 The canonical analysis  

This section gives the canonical analysis for the three groups. 

 

4.5.2.1 The canonical analysis of GP1G 

We determined the setting for optimal and efficient production of rose coco beans using 

canonical analysis. Canonical analysis is used to predict the shape of the curve generated by the 

model. The canonical analysis in table 4.28 and figure 4.7a, 4.7b and 4.7c of the GP1G response 

surface indicates that the predicted response surfaces are saddle points. The coded eigenvalues 

are λ1=6.770341, λ2=0.483456 and λ3=-0.907415. The eigenvalue of 6.770341 shows that the 

valley orientation of the saddle was more curved, eigenvalue 0.4834566 shows that the valley 

orientation of the saddle was less curved, the less hilly orientation was with an eigenvalue of –

0.967415. The coefficients of the associated eigenvectors show that the valley was more aligned 

with nitrogen, a less valley with potassium and the hill with phosphorus. Because the canonical 

analysis resulted in a saddle point, the estimated surface does not have a unique optimum. The 

surface was more sensitive to the changes of nitrogen compared to fertilizers of K. The results 

from these saddle point indicated that under natural values 10.978780gms of N, 20.991461gms 

of P and 33.358334gms of K fertilizer were needed to achieve the saddle point bean yield of 

54.88gms per rose coco plant. 

Table 4. 28: The Canonical Analysis of Response Surface, Eigenvectors and Eigenvalues-

GP1G. 

                              Canonical Analysis of Response Surface 

 

                                                    Critical 

                                      Factor           Value 

 

                                      N             1.957550 

                                      P             3.304884 

                                      K             3.358325 

 

                          Predicted value at stationary point: 54.881682 
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                                                   Eigenvectors 

                    Eigenvalues               N               P               K 

 

                       6.770341        0.744195        0.251973       -0.618614 

                       0.483456        0.658879       -0.124703        0.741841 

                      -0.907415       -0.109781        0.959666        0.258823 

 

                                Stationary point is a saddle point 

 

4.5.2.2 The canonical analysis of GP2G 

Table 4. 29: The Canonical Analysis of Response Surface, Eigenvectors and Eigenvalues-

GP2G. 

                              Canonical Analysis of Response Surface 

 

                                                    Critical 

                                      Factor           Value 

 

                                      N             0.769867 

                                      P            -0.283395 

                                      K            -0.264186 

 

                          Predicted value at stationary point: 36.419471 

 

 

                                                   Eigenvectors 

                    Eigenvalues               N               P               K 

 

                       9.570182        0.288816        0.443430        0.848502 

                       7.278125        0.265859        0.814266       -0.516033 

                      -0.747253        0.919731       -0.374620       -0.117284 

 

                                Stationary point is a saddle point 

The canonical analysis table 4.29 and figure 4.8a, 4.8b and 4.8c of response surfaces indicates 

that the predicted response surface was shaped a saddle point. The coded eigenvalues are 

λ1=9.570182, λ2=7.278125 and λ3=-0.747253.  The eigenvalue of 9.570182 shows that the 

valley orientation of the saddle was more curved, eigenvalue 7.278125 shows that the valley 

orientation of the saddle was less curved, the less hilly orientation was with an eigenvalue of –

0.747253. The coefficients of the associated eigenvectors show that the valley was more aligned 

with potassium, a less valley with phosphorus and the hill with nitrogen. Because the canonical 

analysis resulted in a saddle point, the estimated surface does not have a unique optimum. The 

results from these indicated that under natural values 20.384936gms of  N, 29.914981gms of P 

and 39.735813gms of K fertilizer were needed to achieve the saddle point of rose coco bean 

yield of 36.42gms per plant. The positive signs of the eigenvalues for P and K fertilizers 
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indicated the directions of upward curvature. The largest eigenvalue (in absolute) for the N 

fertilizer, means that the N fertilizer was more pronounced and the curvature of the response 

surface was in the associated direction. So in GP1G and GP2G nitrogen shows mixed reaction 

of upward curvature and downward curvature respectively. 

 

4.5.2.3 The canonical analysis of GP3G 

Table 4. 30: The Canonical Analysis of Response Surface, Eigenvectors and Eigenvalues-

GP3G. 

                              Canonical Analysis of Response Surface 

 

                                                    Critical 

                                      Factor           Value 

 

                                      N             0.444188 

                                      P             0.436329 

                                      K             0.401005 

 

                          Predicted value at stationary point: 51.306032 

 

 

                                                   Eigenvectors 

                    Eigenvalues               N               P               K 

 

                      12.224838        0.298898       -0.511793        0.805437 

                       8.574872       -0.586456        0.567316        0.578120 

                      -1.401508        0.752814        0.645152        0.130574 

 

                                Stationary point is a saddle point 

The canonical analysis table 4.30 and figure 4.9a, 4.9b and 4.9c of response surface indicates 

that the predicted response surface was shaped a saddle point. The coded eigenvalues are 

λ1=12.224838, λ2=8.574872 and λ3=-1.401508.  The eigenvalue of 12.224838 shows that the 

valley orientation of the saddle was more curved, eigenvalue 8.574872 shows that the valley 

orientation of the saddle was less curved, the less hilly orientation was with an eigenvalue of 

1.401508. The coefficients of the associated eigenvectors show that the valley in both of the 

first two was more aligned with potassium and the hilly with nitrogen. Because the canonical 

analysis resulted in a saddle point, the estimated surface does not have a unique optimum. The 

surface was more sensitive to the changes in amount of K & P, compared to fertilizers of N. The 
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results from these indicated that under natural values 30.222094gms of N, 40.130899gms of P 

and 50.401005gms of K fertilizer were needed to achieve the saddle point of rose coco bean 

yield of 51.31gms per plant.  

 

4.5.3 The stationary points 

This section gives the stationary points for the three groups. 

 

4.5.3.1 The stationary point-GP1G 

The stationary point can be found by using matrix algebra. The fitted second-order model in 

matrix form is: 

0
ˆˆ ' 'y x x xβ= + +b B  

The derivative of ŷ  with respect to the elements of the vector x is   

ˆ
2

y
x

x

∂
= +

∂
b B   

Therefore, setting the derivative vector to 0 yields the stationary point: 

11

2
sx −= − B b

 

This could be a maximum, minimum, or a saddle point of the fitted surface. The eigenvalues 

(call them λs here) and eigenvectors of B are the key to characterizing the shape. The xs is a 

point of maximum if all λ's are negative, the point of minimum if all λ's are positive and saddle 

point if λ's are of mixed sign. 
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Where 

1

2

3

ˆ

ˆ

ˆ

β

β

β

 
 

=  
 
  

b     and  

11 12 13

22 23

33

1 1ˆ ˆ ˆ
2 2

1ˆ ˆ
2

ˆsym

β β β

β β

β

 
 
 
 =  
 
 
  

B

      

(4.68) 

b is a (3x1) vector of the first-order regression coefficients and B is a (3x3) symmetric matrix 

whose main diagonal elements are the quadratic coefficients and whose off-diagonal elements 

are one-half the mixed quadratic coefficients (Montgomery, 2005).  The estimated response 

value at the stationary point is  

'

0

1ˆˆ
2

s sy xβ= + b
          

(4.69) 

Therefore, locating stationary points for the yield-GP1G 

5.0452

6.3461

1.1566

− 
 =  
  

b   

3.9485 1.32545 2.85475

1.32545 0.3983 1.32545

2.85475 1.32545 2.7962

− 
 = − − 
 − − 

B   1

0.9663 0.0261 0.9742

0.0313 0.9733 0.4932

0.9717 0.4880 1.1184

−

− 
 = − − − 
 − 

B

            

(4.70) 

The stationary point using the equation 

11

2
sx −= − B b  is 

1.9571

3.2946

3.3530

sx

 
 =  
              

(4.71)

 

We can find the natural values of nitrogen, phosphorus and potassium using the stationary 

points from table 4.28. 

1 10
1.9571

0.5

uψ −
=  ,  

1 10.97855uψ =  , 2 20
3.2946

0.3

uψ −
= , 

2 20.98838uψ =
   

(4.72) 
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3 30
3.353

1

uψ −
= , 

3 33.353uψ =  

Using the equation 0
ˆˆ ' 'y x x xβ= + +b B , we found out that estimated maximum response yield of 

rose coco bean at the stationary point was 

ˆ 54.88 gramsY =  

Thus, it could be concluded that this level of main factors setting resulted in saddle optimum 

yield for the rose coco bean for the given amount of predictor variables. The maximum yield of 

rose coco bean is obtained when under this combination of fertilizers in GP1G 

1 10
0.850004

0.5

uψ −
− =  ,  

1 9.574998uψ =  , 2 20
0.157611

0.3

uψ −
= , 

2 20 .0472833uψ =
 

(4.73) 

3 30
0.502645

1

uψ −
= , 

3 30.502645uψ =  

Therefore, we can obtain a maximum yield of 58.68gms per rose coco bean with a combination 

of 9.57gms nitrogen, 20.05gms phosphorus and 30.50gms potassium fertilizers. 

 

4.5.3.2 The stationary point-GP2G 

Locating stationary points for the yield-GP2G was given as; 

1.4399

0.6980

2.7503

 
 = − 
  

b   

0.6806 3.0587 1.4274

3.0587 6.6025 0.5098

1.4274 0.5098 8.8179

 
 =  
  

B     1

1.1135 0.5042 0.1511

0.5042 0.0762 0.0772

0.1511 0.0772 0.0934

−

− 
 = − − 
 − 

B (4.74) 

The stationary point using the equation 

11

2
sx −= − B b  is 

0.7699

0.2834

0.2642

sx

 
 = − 
 −            

(4.75) 
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This was a saddle point since it showed mixed signs of λ's. 

We could find the natural values of nitrogen, phosphorus and potassium fertilizers using the 

stationary point from table 4.29. 

2 20
0.7699

0.5

uψ −
=  ,  

1 20.38495uψ =  , 2 30
0.2834

0.3

uψ −
− = , 

2 29.91498uψ =  

3 40
0.2642

1

uψ −
− = , 

3 39.7358uψ =
        

(4.76) 

Using the equation 0
ˆˆ ' 'y x x xβ= + +b B , we can find that estimated maximum response yield of 

rose coco bean at the stationary point was 

ˆ 36.4Y gm=  

Thus, it could be concluded that this level of main factors setting results in best optimum yield 

for the rose coco beans. The maximum yield of rose coco beans was obtained when under this 

combination of fertilizers in GP2G 

1 20
0.270935

0.5

uψ −
=  ,  

1 20.1354675uψ =  , 2 30
0.226583

0.3

uψ −
= , 

2 30.0679749uψ =  

3 40
0.935550

1

uψ −
= , 

3 40 .935550uψ =
       

(4.77) 

Therefore, we can obtain a maximum yield of 48.36gms per rose coco beans with a 

combination 20.14gms nitrogen, 30.07gms phosphorus and 40.94gms potassium fertilizers. 

 

4.5.3.3 The stationary point-GP3G 

Locating stationary points for the yield-GP3G 

1.9127

1.9876

6.5028

 
 =  
 − 

b

3.2471 5.40365 0.10195

5.40365 5.3785 2.3450

.10195 2.3450 10.7726

− − 
 = − − 
 − − 

B     1

0.3570 0.3979 0.0900

0.3979 0.2380 0.0556

0.0900 0.0556 0.0799

−

− − − 
 = − − − 
 − − 

B
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(4.78) 

The stationary point using the equation 

11

2
sx −= − B b  is 

0.4442

0.4363

0.4010

sx

 
 =  
              

(4.79) 

We could find the natural values of nitrogen, phosphorus and potassium using the stationary 

points from table 4.30. 

2 30
0.4442

0.5

uψ −
=  ,  

1 30.2221uψ =  , 2 40
0.4363

0.3

uψ −
= , 

2 40.13089uψ =
   

(4.80) 

3 50
0.4010

1

uψ −
= , 

3 50.4010uψ =  

Using the equation 0
ˆˆ ' 'y x x xβ= + +b B , we can find that estimated maximum response yield of 

rose coco beans at the stationary point was 

ˆ 51.31Y grams=  

Thus, it can be concluded that this level of main factors setting results in best optimum yield for 

the rose coco bean. 

The maximum yield of rose coco bean was obtained when under this combination of fertilizers 

in GP3G 

1 30
0.077342

0.5

uψ −
− =  ,  

1 29.961329uψ =  , 2 40
0.365469

0.3

uψ −
= , 

2 40.1096407uψ =  

3 50
0.927605

1

uψ −
− = , 

3 49 .072395uψ =
       

(4.81) 
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Therefore, we obtained a maximum yield of 70.25gms per rose coco bean with a combination 

of 29.96gms nitrogen, 40.11gms phosphorus and 49.07gms potassium fertilizers. 

 

4.5.4 The ridge analysis  

A RIDGE statement computes the ridge of optimum response. The ridge starts at a given point 

x0, and the point on the ridge at radius R from x0 is the collection of factor settings that 

optimizes the predicted response at this radius. The ridge analysis can be used as a tool to help 

interpret an existing response surface or to indicate the direction in which further 

experimentation should be performed. The default starting point, x0, has each coordinate equal 

to the point midway between the highest and lowest values of the factor in the design. The 

default radii at which the ridge is computed are 0, 0.1, ..., 0.9, 1. If the ridge analysis is based on 

the response surface fit to coded values for the factor variables, then this result in a ridge that 

starts at the point with a coded zero value for each coordinate and extends toward, but not 

beyond, the edge of the range of experimentation. Alternatively, both the center point of the 

ridge and the radii at which it is to be computed can be specified. The starting point should be 

well inside the range of experimentation. The coded radii give the distances from the ridge 

starting point at which to compute the optimal (SAS User Guide 2013).  Ridge analysis was 

performed to determine the critical levels of the design variables that produce the maximum 

response. 

 

4.5.4.1 The ridge analysis –GP1G 

The ridge analysis was performed to determine the critical levels of the design variables that 

produce the maximum and minimum response. 
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Table 4. 31: The Estimated Ridge of Minimum Response for Variable YIELD-GP1G. 

                   Estimated        Standard                    Factor Values 

      Radius        Response           Error               N               P               K 

 

         0.0       47.391125        3.606523               0               0               0 

         0.1       46.573422        3.594075        0.057896       -0.080662       -0.011904 

         0.2       45.753978        3.557499        0.109534       -0.166041       -0.020805 

         0.3       44.928378        3.499176        0.156344       -0.254479       -0.028228 

         0.4       44.093828        3.423340        0.199358       -0.345000       -0.035092 

         0.5       43.248466        3.336481        0.239315       -0.437000       -0.041945 

         0.6       42.390993        3.247865        0.276746       -0.530094       -0.049111 

         0.7       41.520461        3.170067        0.312049       -0.624021       -0.056779 

         0.8       40.636149        3.119186        0.345525       -0.718596       -0.065057 

         0.9       39.737496        3.114224        0.377413       -0.813685       -0.073998 

         1.0       38.824051        3.175047        0.407901       -0.909188       -0.083625 

 

 

Table 4. 32: The Estimated Ridge of Maximum Response for Variable YIELD-GP1G. 

                   Estimated        Standard                    Factor Values 

      Radius        Response           Error               N               P               K 

 

         0.0       47.391125        3.606523              0               0               0 

         0.1       48.214348        3.594075       -0.065957        0.073143        0.017314 

         0.2       49.055109        3.557499       -0.141593        0.134455        0.043284 

         0.3       49.931933        3.499176       -0.226741        0.179101        0.080692 

         0.4       50.868599        3.423340       -0.318150        0.205031        0.129395 

         0.5       51.888533        3.336481       -0.411298        0.214920        0.186128 

         0.6       53.009694        3.247865       -0.503250        0.213572        0.247237 

         0.7       54.243860        3.170067       -0.592995        0.205018        0.310362 

         0.8       55.598337        3.119186       -0.680503        0.191884        0.374295 

         0.9       57.077682        3.114224       -0.766061        0.175760        0.438473 

         1.0       58.684816        3.175047       -0.850004        0.157611        0.502645 
 

4.5.4.2 The ridge analysis-GP2G 

The ridge analysis was performed to determine the critical levels of the design variables that 

produce the maximum and minimum response. 

Table 4. 33: The Estimated Ridge of Minimum Response for Variable YIELD-GP2G. 

                   Estimated        Standard                    Factor Values 

      Radius        Response           Error               N               P               K 

 

         0.0       36.129616        3.459657               0               0               0 

         0.1       35.873343        3.447716       -0.065440        0.034219       -0.067429 

         0.2       35.682881        3.412629       -0.160534        0.079533       -0.088901 

         0.3       35.501614        3.356681       -0.258543        0.122718       -0.089978 

         0.4       35.313422        3.283933       -0.354944        0.163818       -0.084724 

         0.5       35.113822        3.200611       -0.450083        0.203742       -0.076907 

         0.6       34.901149        3.115604       -0.544396        0.242973       -0.067807 

         0.7       34.674645        3.040974       -0.638159        0.281766       -0.057969 

         0.8       34.433913        2.992165       -0.731544        0.320266       -0.047669 

         0.9       34.178724        2.987405       -0.824658        0.358560       -0.037059 

         1.0       33.908940        3.045751       -0.917572        0.396704       -0.026231 

 
 

Table 4. 34: The Estimated Ridge of Maximum Response for Variable YIELD-GP2G. 

                   Estimated        Standard                    Factor Values 

      Radius        Response           Error               N               P               K 



122 

 

 

         0.0       36.129616        3.459657               0               0               0 

         0.1       36.527378        3.447716        0.034989       -0.011132        0.093015 

         0.2       37.097337        3.412629        0.061455       -0.006476        0.190214 

         0.3       37.848386        3.356681        0.086399        0.008282        0.287170 

         0.4       38.784290        3.283933        0.111471        0.029901        0.382988 

         0.5       39.907098        3.200611        0.137023        0.056351        0.477545 

         0.6       41.218069        3.115604        0.163074        0.086296        0.570929 

         0.7       42.718028        3.040974        0.189561        0.118833        0.663284 

         0.8       44.407541        2.992165        0.216410        0.153337        0.754755 

         0.9       46.287011        2.987405        0.243552        0.189361        0.845473 

         1.0       48.356732        3.045751        0.270935        0.226583        0.935550 
 

4.5.4.3 The ridge analysis-GP3G 

The ridge analysis was performed to determine the critical levels of the design variables that 

produce the maximum and minimum response. 

Table 4. 35: The Estimated Ridge of Minimum Response for Variable YIELD-GP3G. 

                   Estimated        Standard                    Factor Values 

      Radius        Response           Error               N               P               K 

 

         0.0       51.751435        3.410664               0               0               0 

         0.1       51.142673        3.398892       -0.038479       -0.031963        0.086589 

         0.2       50.696721        3.364302       -0.106285       -0.080759        0.148935 

         0.3       50.337171        3.309146       -0.193912       -0.147243        0.175264 

         0.4       49.998756        3.237429       -0.282585       -0.218021        0.180589 

         0.5       49.653355        3.155286       -0.368113       -0.288100        0.177458 

         0.6       49.290454        3.071483       -0.451052       -0.357014        0.170567 

         0.7       48.905533        2.997910       -0.532192       -0.424991        0.161723 

         0.8       48.496347        2.949793       -0.612079       -0.492276        0.151737 

         0.9       48.061651        2.945100       -0.691071       -0.559047        0.141024 

         1.0       47.600701        3.002620       -0.769404       -0.625432        0.129819 

 

 

 

Table 4. 36: The Estimated Ridge of Maximum Response for Variable YIELD-GP3G. 

                   Estimated        Standard                    Factor Values 

      Radius        Response           Error               N               P               K 

 

         0.0       51.751435        3.410664               0               0               0 

         0.1       52.563118        3.398892        0.019147        0.027378       -0.094254 

         0.2       53.593652        3.364302        0.026607        0.055878       -0.190184 

         0.3       54.850777        3.309146        0.026256        0.087039       -0.285893 

         0.4       56.339123        3.237429        0.020297        0.121001       -0.380719 

         0.5       58.061791        3.155286        0.010145        0.157476       -0.474445 

         0.6       60.020980        3.071483       -0.003227        0.196086       -0.567045 

         0.7       62.218302        2.997910       -0.019119        0.236473       -0.658571 

         0.8       64.654972        2.949793       -0.037012        0.278327       -0.749109 

         0.9       67.331915        2.945100       -0.056519        0.321394       -0.838756 

         1.0       70.249853        3.002620       -0.077342        0.365469       -0.927605 

 

In general the ridge analysis estimated maximum response for the variable yield was 58.68gms, 

48.36gms and 70.25gms for GP1G, GP2G and GP3G respectively at nitrogen of 9.57gms, 

phosphorus of 20.05gms and potassium of 30.50gms for GP1G, nitrogen of 20.14gms, 
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phosphorus of 30.07gms and potassium of 40.94gms for GP2G and nitrogen of 29.96gms, 

phosphorus of 40.11gms and potassium of 49.07gms for GP3G.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This chapter presents conclusions and recommendations in line with the four specific 

objectives.  

 

5.2 Estimation of the linear parameters in an existing A-optimum and D-efficient calculus 

optimum value second order rotatable design 

The study was able to estimate the parameter coefficient successfully for the three groups. 

Below is the table 5.1 showing the parameter coefficients obtained and their p-values. 

Table 5. 1: Regression coefficients of predicted second order polynomial models for the 

response of GP1G, GP2G and GP3G. 

Coefficients GP1G 

(p-value) 

GP2G 

(p-value) 

GP3G 

(p-value) 

β0 intercept 47.391125 

(0.0001) 

36.129616 

(0.0001) 

51.751435 

(0.0001) 

Linear    

β1        (N) -5.045204 

(0.0152) 

1.439859 

(0.4246) 

1.912726 

(0.2865) 

β2        (P) 6.346081 

(0.0035) 

-0.697954 

(0.6962) 

1.987578 

(0.2688) 

β3        (K) 1.156615 

(0.5365) 

2.750284 

(0.1385) 

-6.502796 

(0.0021) 

Quadratic    

β11      (N
2
) 3.948538 0.680614 3.247054 
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(0.1321) (0.7781) (0.1861) 

β22      (P
2
) -0.398323 

(0.8742) 

6.602530 

(0.0145) 

5.378536 

(0.0371) 

β33      (K
2
) 2.796168 

(0.2765) 

8.817910 

(0.0023) 

10.772613 

(0.0004) 

Cross product    

β12      (N*P) 2.650859 

(0.3619) 

6.117366 

(0.0397) 

-10.807347 

(0.0012) 

β13      (N*K) -5.709542 

(0.0618) 

2.854771 

(0.3079) 

-0.203912 

(0.9400) 

β23      (P*K) -2.650859 

(0.3619) 

1.019561 

(0.7112) 

-4.689981 

(0.0997) 

R
2
 68.10% 67.04% 80.66% 

Adjusted R
2
 47.59% 45.85% 68.23% 

Sum of squared 

residuals 

666 613 595 

Coefficient of 

variation 

13.4782 14.4733 10.3044 

PRESS 2488 2091 2645 

p -the probability 0.0219 0.0264 0.0011 

   N=nitrogen fertilizer; P=phosphorus fertilizer; K=potassium fertilizer 

We saw in the three groups, that is, GP1G, GP2G and GP3G there was a large difference 

between ordinary residual and PRESS residual meaning the second order models fitted the data 

well. 
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5.3 Obtaining the generalized variance of the estimated linear parameters 

In the table 5.2 the variance under first order models for the three groups (GP1G, GP2G, GP3G) 

are increasing, but for the second order models they are decreasing implying that second order 

models fitted the data appropriately. 

Table 5. 2: The eigenvalues, predicted rose coco yield at the stationary points, and uncoded 

critical values of fertilizer levels. 

 Fertili

zer 

Eigenvalue 

(λ) 

Natural 

critical 

value 

Variance,

σ
2
.First 

order 

model 

Variance,

σ
2
.Secon

d order 

model 

Predicted rose 

coco yield at 

stationary 

point 

Estimated 

Ridge of 

Maximum 

Response for 

rose coco 

YIELD 

GP1G N 6.770341 10.978780 

56.5 47.5714 

54.88gms 58.78gms 

P 0.483456 20.991461 

K -0.907415 33.358334 

        

GP2G N 9.570182 20.384936 

85.7 43.7857 

36.42gms 48.36gms 

P 7.278125 29.914981 

K -0.747253 39.735813 

        

GP3G N 12.224838 30.222094 

118.35 42.5 

51.31gms 70.25gms 

P 8.574872 40.130899 

K -1.401508 50.401005 
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5.4 Fitting and testing the three model adequacies 

The analysis of variance (ANOVA) of response surface for rose coco yield showed that the 

twenty four second order rotatable designs was adequate due to satisfactory levels of coefficient 

of determinations, R2 (0.68, 0.67, 0.81) for the three cases GP1G, GP2G and GP3G respectively 

and coefficient of variations (CV, 13.48, 14.47 and 10.30 respectively). Generally, high values 

of CV indicate that experimental design developed was inadequate. In addition, linear, quadratic 

and cross product terms were all found to be significant at 1% for the GP3G. On the other hand, 

quadratic was highly significant for GP2G whereas GP1G was significant only on the linear 

terms. However, for the three groups total model was significant at 5% ((p = 0.0219, 0.0264 and 

0.0011, respectively). The results showed GP2G and GP3G fitted the second order models well 

for the rose coco yield using the three fertilizer treatments, nitrogen (N), phosphorus (P) and 

potassium (K).  

Table 5. 3: The analysis of variance of the factors and the critical values of the rose coco yield 

response. 

Independent 

variablesa 

Analysis of variance Critical values 

d.f Sum of squares Mean square F-value P-value Coded Uncoded 

GP1G        

N 4 723.277182 180.819295 3.80 0.0270 1.957550 10.978780 

P 4 660.747662 165.186916 3.47 0.0360 3.304884 20.991461 

K 4 318.328520 79.582130 1.67 0.2118 3.358325 33.358334 

GP2G        

N 4 307.213714 76.803429 1.75 0.1941 0.769867 20.384936 

P 4 578.197324 144.549331 3.30 0.0420 -0.283395 29.914981 

K 4 769.676867 192.419217 4.40 0.0165 -0.264186 39.735813 
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GP3G        

N 4 836.965298 209.241325 4.92 0.0109 0.444188 30.222094 

P 4 1116.523540 279.130885 6.56 0.0034 0.436329 40.130899 

K 4 1641.346675 410.336669 9.65 0.0006 0.401005 50.401005 

aN=nitrogen fertilizer;  P=phosphorus fertilizer; K=potassium fertilizer 

In GP3G the coefficient of determination, R2
 for the fitted model was 80.03%, which means that 

80.03% of the total variability of the system was explained by the chosen factors N, P, K 

meaning investigation further need to be done on other pertinent factor components of fertilizers 

required by the rose coco plant for the coefficient of determination to increase to say 99.9%. 

 

5.5 Finding the settings of the experimental factors that produce the optimal response 

Graphics and visualization techniques are some of the best tools for understanding response 

surfaces, for which this research work utilized in the expounding of the nature and shape of the 

response surface generated from the fitted first order and second order models for the three 

groups. We visualize mountain and valleys of the second order response surface of rose coco 

beans for GP1G, GP2G and GP3G each at two combinations of fertilizers N, P, K. The 

curvature showed in GP2G and GP3G validated the second order model because it fitted the 

data well. Contour plots showing the contours of the surface, that is, curves of N, P, K pairs that 

have the same response value were generated which depicts the pattern and nature of the 

combination of the predictive factors, nitrogen, phosphorus and potassium fertilizer 

concentration of the rose coco beans yield.   

The eigenvalues were used to determine whether the solution gave a maximum, minimum or 

saddle point on the response curve. The 3-dimensional response surface plots were a good way 

to visualize the fertilizer interaction. The canonical analysis of response surface for all groups, 
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that is, GP1G, GP2G and GP3G indicated that the stationary points were saddle points, 

implying that in the experimental region there were no maximum or minimum points. The study 

uses the ridge analysis as an alternative solution to overcome the saddle point problem. Ridge 

analyses were performed (table 5.1) to determine the critical levels of the design variables that 

could produce a maximum response.  

Table 5. 4: Canonical analysis based on coded and actual values, eigenvalues and eigenvectors 

for the three groups. 

  Canonical Analysis  

 Coded values  Eigenvectors Remark 

  Eigenvalues N P K  

GP1G Coded values 

 

6.770341 0.744195 0.251973 -0.618614 Saddle 

point 0.483456 0.658879 -0.124703 0.741841 

-0.907415 -0.109781 0.959666 0.258823 

Uncoded/natural 

values 

21.655306 0.869293 0.353108 -0.345898 

0.740548 0.400775 -0.093898 0.911352 

-8.231376 -0.289326 0.930859 0.223142 

GP2G Coded values 

 

9.570182 0.288816 0.443430 0.848502 Saddle 

point 7.278125 0.265859 0.814266 -0.516033 

-0.747253 0.919731 -0.374620 -0.117284 

Uncoded/natural 

values 

78.906109 0.259596 0.965120 0.033973 

9.186905 0.175457 -0.081729 0.981089 

-3.191124 0.949644 -0.248726 -0.190554 

GP3G Coded values 

 

12.224838 0.298898 -0.511793 0.805437 Saddle 

point 8.574872 -0.586456 0.567316 0.578120 

-1.401508 0.752814 0.645152 0.130574 

Uncoded/natural 79.989081 -0.471069 0.876678 -0.097616 
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values 10.972726 -0.236146 -0.018711 0.971537 

-7.439426 0.849899 0.480713 0.215839 

 

Table 5.4 displays the eigenvalues and eigenvectors. The canonical analysis indicates that the 

directions of principal orientation for the predicted response surface are along the axes 

associated with the three factors. In GP1G uncoded values, the largest eigenvalue (21.655306) 

corresponds to the eigenvector (0.869293, 0.353108, -0.345898), the largest component of 

which (0.869293) is associated with N; similarly, the second- largest eigenvalue in absolute       

(-8.231376) is associated with P. The third eigenvalue (0.740548), associated with K. The coded 

form of the canonical analysis indicates that the estimated response surface is at a saddle point, 

in uncoded terms, the model predicts that the yield of rose coco saddles when N=10.978780 

grams, P=20.991461 grams, and K=33.358334 grams of fertilizers. In GP2G uncoded values, 

the largest eigenvalue (78.906109) corresponds to the eigenvector (0.259596, 0.965120, 

0.033973), the largest component of which (0.965120) is associated with P; similarly, the 

second- largest eigenvalue (9.186905) is associated with K. The third eigenvalue (-3.191124), 

associated with N. The coded form of the canonical analysis indicates that the estimated 

response surface is at a saddle point, in uncoded terms, the model predicts that the yield of rose 

coco saddles when N=20.384936grams, P=29.914981grams, and K=39.735813grams. In GP3G 

uncoded values, the largest eigenvalue (79.989081) corresponds to the eigenvector (-0.471069, 

0.876678, -0.097616), the largest component of which (0.876678) is associated with P; 

similarly, the second- largest eigenvalue (10.972726) is associated with K. The third eigenvalue 

(-7.439426), associated with N. The coded form of the canonical analysis indicates that the 

estimated response surface is at a saddle point, in uncoded terms, the model predicts that the 

yield of rose coco saddles when N=30.222094grams, P=40.130899grams, and 
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K=50.401005grams. In this canonical analysis, we saw that in GP1G the curvature is upward, 

was much more sensitive to nitrogen at 10gms for both coded and uncoded, in GP2G the 

upward curvature, that is, valley orientation was inclined to potassium at 40gms for coded but 

inclined to phosphorus for uncoded and in the GP3G was a valley orientation inclines towards 

potassium but inclined to phosphorus for uncoded. On the hilly or downward curvature is in 

GP1G, GP2G and GP3G are inclined to phosphorus at 20grams, nitrogen at 20grams and 

nitrogen at 30grams respectively. The optimal values all the three variables (nitrogen, 

phosphorus and potassium) for optimal production of rose coco beans predicted in GP1G 

(54.88grams) by the model were: nitrogen fertilizers at 10.98grams; phosphorus fertilizer at 

20.99gms; potassium fertilizer at 33.36grams. The production of 36.4grams was achieved in 

GP2G with 20.38grams nitrogen fertilizer, 29.91gram phosphorus fertilizer and 39.74grams 

potassium fertilizer. In GP3G the production of 51.3grams was achieved with 30.22grams 

nitrogen, 40.13grams phosphorus and 50.40grams potassium fertilizers, this means that we have 

to be cautious with the specific amount of each fertilizer applied to rose coco plant because it 

might be affecting the effectiveness of the other fertilizers variable component as shown by the 

mean yield for the three groups after steadily increasing the fertilizers linearly.  

The stationary points of all the three groups were the saddle points, indicating that optimum 

conditions for GP1G, GP2G and GP3G did not exist in the experimental range. It was found in 

the current study that three factors, nitrogen concentration, phosphorus concentration and 

potassium concentration, were important fertilizers for the rose coco beans yield.  

Since analysis of the surface response revealed that the stationary point for all the three groups 

was saddled points. Hence, the study used ridge analysis to offer an alternative solution for the 

saddle problem. Under the three combinations of the fertilizers, nitrogen 9.57grams, phosphorus 
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20.05grams and potassium 30.50grams, 58.68grams of rose coco yield was obtained in GP1G, 

nitrogen 20.14grams, phosphorus 30.07grams and potassium 40.94grams, 48.36grams of rose 

coco yield was obtained in GP2G and nitrogen 29.96grams, phosphorus  40.11grams and 

potassium is 49.07grams, 70.25grams of rose coco yield was obtained in GP3G. The results 

from this study show that a twenty four-points second order rotatable design was one of the 

suitable methods to optimize the best operating conditions in multi- factor operating 

environment for the purpose of obtaining maximum rose coco beans yield. The study has 

demonstrated the applicability of the twenty four points, second order rotatable design for the 

optimal and efficient production of rose coco beans. Among the three tests that are GP1G, 

GP2G and GP3G, we saw that GP3G is more desirable for further researches and acted as a 

starting point for farmers to plant rose coco beans so as to achieved the optimal/maximum 

potential yield. We therefore recommend the use of GP3G since it gave the above board the 

required coefficient of determination, R2 of 80.66%, and the maximum yield of 70.25grams was 

achieved. With the use of N, P and K fertilizers in this research study design, if adopted the 

farmers have a high potentiality to increase their yields or even triple the rose coco yield in the 

study area. Furthermore, this research can be extended to the area where beans are grown and a 

preliminary research of this kind should be conducted to ascertain the initial starting point for 

the inorganic fertilizers. The ministry of agriculture in Kenya should focus more researches of 

this kind, such that production using inorganic fertilizers (N, P, K) concentration matches the 

crop and the soil requirements of the rose coco beans in the growing areas for maximum yield 

to be realized. The research needs to be tried in the open field with the found optimal fertilizer 

combinations to see its performance. The yield of rose coco beans decreases as we increase the 

phosphorus fertilizer, more investigations need to be done to ascertain the amount of nitrogen 
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and potassium fertilizer needed for the effectiveness of the phosphorus fertilizer. The 

investigation also needs to be done if the certain amount of each component of the fertilizer 

affects the effectiveness of each other on the yield of rose coco beans. 

 

5.6 Recommendation for further research 

The randomization of the initial fertilizer application is advisable because in this research; a 

linear increment of the fertilizers was used in the order of N, P then K, therefore, thorough 

repetitive screening of all the fertilizer components needs to be done to ascertain the right initial 

amount of fertilizers that could achieve maximum yield. The optimal output of rose coco beans 

needs to be obtained when the free/letter parameter (f) assumes a unit value, then a comparison 

can be done with the current study of calculus optimum value and determine which one gives 

the best estimates among the two. 
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APPENDIX 1 

1.1 The codes for generating the response surfaces using SAS software 

GP1G 
DATA RP; 

INPUT N P K YIELD; 

title 'Surface plot of rose coco yield vs Nitrogen, Phosphorus'; 

CARDS; 

1.1072569 1.1072569 0 63 

-1.1072569 1.1072569 0 71 

1.1072569 -1.1072569 0 35 

-1.1072569 -1.1072569 0 56 

1.1072569 0 1.1072569 37 

-1.1072569 0 1.1072569 62 

1.1072569 0 -1.1072569 57 

-1.1072569 0 -1.1072569 54 

0 1.1072569 1.1072569 52 

0 -1.1072569 1.1072569 52 

0 1.1072569 -1.1072569 53 

0 -1.1072569 -1.1072569 40 

0.7829487 0 0 43 

-0.7829487 0 0 58 

0 0 0.7829487 58 

0 0 -0.7829487 42 

0 0.7829487 0 48 

0 -0.7829487 0 44 

1.2735263 0 0 50 

-1.2735263 0 0 53 

0 0 1.2735263 60 

0 0 -1.2735263 56 

0 1.2735263 0 52 

0 -1.2735263 0 32 

; 

proc g3grid data=rp out=out1; 

grid N*P=yield / join spline 

smooth=.1 

axis1=-1.28 to 1.28 by 0.05 

axis2=-1.28 to 1.28 by 0.05; 

run; quit; 

 

proc g3grid data=rp out=rpgrid; 

grid N*P=yield/join spline 

smooth=.1 

axis1=-1.28 to 1.28 by 0.1 

axis2=-1.28 to 1.28 by 0.1; 

run; 

         

proc g3d data=out1; 

note j=N f=K "fertilizer used: " 

j=n c=red "Nitrogen " 

j=n c=red "Phosphorus "; 

plot N*P=Yield/ctext=blue cbottom=red  

ctop=green rotate=45 zmin=0 zmax=1.0 xticknum=5 yticknum=5 style=3 grid; 

label N='Nitrogen' P='Phosphorus' K='Potassium'; 

run; quit; 
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GP1G 
DATA RP; 

INPUT N P K YIELD; 

title 'Surface plot of rose coco yield vs Phosphorus, Potassium'; 

CARDS; 

1.1072569 1.1072569 0 63 

-1.1072569 1.1072569 0 71 

1.1072569 -1.1072569 0 35 

-1.1072569 -1.1072569 0 56 

1.1072569 0 1.1072569 37 

-1.1072569 0 1.1072569 62 

1.1072569 0 -1.1072569 57 

-1.1072569 0 -1.1072569 54 

0 1.1072569 1.1072569 52 

0 -1.1072569 1.1072569 52 

0 1.1072569 -1.1072569 53 

0 -1.1072569 -1.1072569 40 

0.7829487 0 0 43 

-0.7829487 0 0 58 

0 0 0.7829487 58 

0 0 -0.7829487 42 

0 0.7829487 0 48 

0 -0.7829487 0 44 

1.2735263 0 0 50 

-1.2735263 0 0 53 

0 0 1.2735263 60 

0 0 -1.2735263 56 

0 1.2735263 0 52 

0 -1.2735263 0 32 

; 

proc g3grid data=rp out=out1; 

grid P*K=yield / join spline 

smooth=.1 

axis1=-1.28 to 1.28 by 0.05 

axis2=-1.28 to 1.28 by 0.05; 

run; quit; 

 

proc g3grid data=rp out=rpgrid; 

grid P*K=yield/join spline 

smooth=.1 

axis1=-1.28 to 1.28 by 0.1 

axis2=-1.28 to 1.28 by 0.1; 

run; 

         

proc g3d data=out1; 

note j=P f=N "fertilizer used: " 

j=n c=red "Phosphorus " 

j=n c=red "Potassium "; 

plot P*K=Yield/ctext=blue cbottom=red  

ctop=green rotate=45 zmin=0 zmax=1.0 xticknum=5 yticknum=5 style=3 grid; 

label N='Nitrogen' P='Phosphorus' K='Potassium'; 

run; quit; 
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GP1G 
DATA RP; 

INPUT N P K YIELD; 

title 'Surface plot of rose coco yield vs Phosphorus, Potassium'; 

CARDS; 

1.1072569 1.1072569 0 63 

-1.1072569 1.1072569 0 71 

1.1072569 -1.1072569 0 35 

-1.1072569 -1.1072569 0 56 

1.1072569 0 1.1072569 37 

-1.1072569 0 1.1072569 62 

1.1072569 0 -1.1072569 57 

-1.1072569 0 -1.1072569 54 

0 1.1072569 1.1072569 52 

0 -1.1072569 1.1072569 52 

0 1.1072569 -1.1072569 53 

0 -1.1072569 -1.1072569 40 

0.7829487 0 0 43 

-0.7829487 0 0 58 

0 0 0.7829487 58 

0 0 -0.7829487 42 

0 0.7829487 0 48 

0 -0.7829487 0 44 

1.2735263 0 0 50 

-1.2735263 0 0 53 

0 0 1.2735263 60 

0 0 -1.2735263 56 

0 1.2735263 0 52 

0 -1.2735263 0 32 

; 

proc g3grid data=rp out=out1; 

grid P*K=yield / join spline 

smooth=.1 

axis1=-1.28 to 1.28 by 0.01 

axis2=-1.28 to 1.28 by 0.01; 

run; quit; 

 

proc g3grid data=rp out=rpgrid; 

grid P*K=yield/join spline 

smooth=.1 

axis1=-1.28 to 1.28 by 0.1 

axis2=-1.28 to 1.28 by 0.1; 

run; 

         

proc g3d data=out1; 

note j=P f=N "fertilizer used: " 

j=n c=red "Phosphorus " 

j=n c=red "Potassium "; 

plot P*K=Yield/ctext=blue cbottom=red  

ctop=green rotate=45 zmin=0 zmax=1.0 xticknum=5 yticknum=5 style=3 grid; 

label N='Nitrogen' P='Phosphorus' K='Potassium'; 

run; quit; 
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1.2 The codes for generating the contour plots using R software 

 

GP3G 

x1 (or N) x2 (or P) x3 (or K) y1 y2 y3 

1.1072569 1.1072569 0 63 49 47 

-1.1072569 1.1072569 0 71 30 82 

1.1072569 -1.1072569 0 35 44 68 

-1.1072569 -1.1072569 0 56 55 50 

1.1072569 0 1.1072569 37 59 69 

-1.1072569 0 1.1072569 62 53 53 

1.1072569 0 -1.1072569 57 37 87 

-1.1072569 0 -1.1072569 54 45 70 

0 1.1072569 1.1072569 52 64 67 

0 -1.1072569 1.1072569 52 56 73 

0 1.1072569 -1.1072569 53 57 84 

0 -1.1072569 -1.1072569 40 54 67 

0.7829487 0 0 43 34 60 

-0.7829487 0 0 58 39 51 

0 0 0.7829487 58 37 51 

0 0 -0.7829487 42 42 72 

0 0.7829487 0 48 47 51 

0 -0.7829487 0 44 47 54 

1.2735263 0 0 50 44 57 

-1.2735263 0 0 53 30 55 

0 0 1.2735263 60 46 55 

0 0 -1.2735263 56 46 75 

0 1.2735263 0 52 41 63 

0 -1.2735263 0 32 41 58 

 

data<-read.csv("D:\\mut\\PhD moi Research\\Research Ph.D Thesis\\yieldrosecoco.csv") 

attach(data) 

names(data) 

 

library(rsm) 

 

model1<-rsm(y1~SO(N,P,K),data=data) 

summary(model1) 

 

model2<-rsm(y2~SO(N,P,K),data=data) 

summary(model2) 

 

model3<-rsm(y3~SO(N,P,K),data=data) 

summary(model3) 

 

par(mfrow=c(1,3)) 

persp(model1,~N+P+K) 

 

par(mfrow=c(1,3)) 

persp(model2,~N+P+K) 
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par(mfrow=c(1,3)) 

persp(model3,~N+P+K) 

 

par(mfrow=c(1,3)) 

contour(model1,~N+P+K) 

 

par(mfrow=c(1,3)) 

contour(model2,~N+P+K) 

 

par(mfrow=c(1,3)) 

contour(model3,~N+P+K) 

 

par(mfrow=c(1,1)) 

contour(model3,~N+P) 
 

1.3 The codes for generating the Ridge Analysis using SAS software 

 

GP3G 
DATA RP; 

INPUT N P K YIELD; 

CARDS; 

1.1072569 1.1072569 0 47 

-1.1072569 1.1072569 0 82 

1.1072569 -1.1072569 0 68 

-1.1072569 -1.1072569 0 50 

1.1072569 0 1.1072569 69 

-1.1072569 0 1.1072569 53 

1.1072569 0 -1.1072569 87 

-1.1072569 0 -1.1072569 70 

0 1.1072569 1.1072569 67 

0 -1.1072569 1.1072569 73 

0 1.1072569 -1.1072569 84 

0 -1.1072569 -1.1072569 67 

0.7829487 0 0 60 

-0.7829487 0 0 51 

0 0 0.7829487 51 

0 0 -0.7829487 72 

0 0.7829487 0 51 

0 -0.7829487 0 54 

1.2735263 0 0 57 

-1.2735263 0 0 55 

0 0 1.2735263 55 

0 0 -1.2735263 75 

0 1.2735263 0 63 

0 -1.2735263 0 58 

; 

PROC RSREG; 

MODEL YIELD = N P K/LACKFIT NOCODE PRESS; 

ridge max min; 

title 'Rose coco beans analysis'; 

RUN; 
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1.4 Greenhouse photos 

Constructed greenhouse for rose coco beans Mr. Elias assisting to fix drip line pipes 

Rose coco beans three weeks after planting Rose coco beans four week after planting 

Rose coco beans six weeks after planting The rose coco beans starting to flower 
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The rose coco beans in flowering stages 
 

The rose coco beans in flowering stages 

The rose coco beans have some developed pods 
 

A climbing rose coco plant support with a string 

Rose coco beans have fully develop pods 
 

Rose coco beans has fully develop pods 
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Some rose coco beans starts to ripe 
 

Some rose coco beans starts to dry up 

Harvested beans in white labeled polythene bags Showing each rose coco bean harvested per plant 

Rose coco beans on polythene bags 
 

Dried rose coco beans 

 


