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Abstract
TiO2 has many applications for example in opto-electronic devices and therefore 
complementary theoretical investigations are important to explore the full potential 
of  this  material.  The structural  properties  and electronic  band structures  of  TiO2 

(Rutile and Anatase), Cr:TiO2 and Nb:TiO2   have been investigated using ab initio 
methods.  The  structural  properties  were  obtained  using  both  local  density 
approximation (LDA) and generalized gradient  approximation  (GGA) employing 
pseudopotentials  and  plane  wave  basis  sets.  For  the  Rutile  phase  of  TiO2 ,  the 
calculated  band structure,  cohesive  energy,  equilibrium lattice  constant  and bulk 
modulus were found to be in good agreement with other recent calculations and also 
with experimental data. Compared with the Rutile phase, the Anatase had similar 
ground-state properties except for a large band gap of 2.28 eV while Rutile had a 
band gap of 1.89 eV. It was found that  Anatase had a bulk modulus of 171.4 GPa,  
which was smaller than that of Rutile by 18.9 Gpa and hence softer. The calculated 
O-Cr  bonds  lengths  were  between  3.81  Bohr  and  3.946  Bohr,  being  slightly 
stretched with respect to the Ti-O bonds lengths in pure Rutile (3.749 Bohr and 3.81 
Bohr) while for Anatase, the calculated O-Cr bonds were between 3.65 Bohr and 
3.72 Bohr,  which were slightly stretched with respect to the Ti-O bonds in pure 
Anatase (3.58 Bohr and 3.65 Bohr). On doping the Rutile structure with Cr and Nb 
atoms, there was introduction of new states within the band gap, principally between 
8.67 eV and 10.56 eV. These new states were located between 6.663 eV and 8.939 
eV in the Anatase structure. It was also realized that during the 2% doping with Cr 
and Nb, there were fewer new states in the band gap  compared to many new states 
realized during the 4% doping and this happened in both phases, that is, Rutile and 
Anatase.  This  shows  that  a  higher  doping  concentration  of  4% results  in  more 
energy  states  and  hence  more  carriers,  than  in  2%  thus  making  TiO2 a  better 
conductor than either 2% doping or pure TiO2. Also  after doping TiO2 (Anatase and 
Rutile) with either Cr or Nb at 2% and 4%, it was established that there was removal 
of the band gap implying improved conductivity rather significantly compared to 
pure TiO2. More donor bands were observed with the 4% than the 2% doping, which 
also implies improved electrical conductivity. 
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Thesis Outline

This thesis has six chapters. Chapter 1 provides a general review of the material 

properties and structure of TiO2. Statement of the problem, justification of the study 

and research objectives are included in this chapter.

   Chapter 2 is dedicated to literature review on TiO2 on which this work is based.

  Chapter 3 is devoted to computational theory which to a large extent incorporates 

density functional theory upon which this work is based.

  Chapter 4 is devoted to computational methodology used in these calculations. 

Stepwise procedure used in the calculations is discussed in this chapter.

  Chapter  5  is  dedicated  to  results  and  discussions  of  structural  and  electronic 

properties of TiO2. 

   Chapter  6,  a  summary  of  the  results  of  chapter  5  is  provided  followed  by 

deductions, conclusions and recommendations made from the study. Appendices are 

included and are devoted to figures that are too detailed to be included in the main 

text.

   



Chapter  1
 1.0  Introduction

 1.1   Titanium dioxide

Titanium dioxide crystallizes in three major structures, Rutile, Anatase and Brookite 

[1]. Only  Rutile and Anatase phases play a key role in the applications of TiO2 in 

industry.  For the  past  several  decades,  TiO2 has  been extensively studied for  its 

interesting  electric  [1,2],  magnetic  [3],  catalytic  [4]  and  electrochemical  [5] 

properties. Based upon these properties, a variety of technological applications  such 

as  solar  panels  are  possible.  The  potential  for  various  applications  is  seriously 

limited by the wide band gaps of the TiO2 phases (3.2eV for Anatase and 3.0eV for 

Rutile [5]), which confines them to absorb only the ultraviolet (UV) part  (about 4% 

of the solar energy) of the solar spectrum [6] to activate their useful functionalities 

by photo induced charge carriers. To overcome the UV limitations, great efforts have 

been made to reduce the band gap. Indium oxide is one of the oxides which can be 

used in solar panels and collectors but it is very expensive unlike TiO2  which is very 

cheap and very plenty. TiO2 is in abundance in the earth crust as evidenced by its 

discovery world over. TiO2 has been widely used in catalysis, in electrochromism, 

and as a sensor [6]. It has been used as pigmentation for paints and polymers. In 

particular, since about 1971, when Fujishima and Honda reported their work on a 

photo  electrochemical  cell  possessing  an  anode  of  TiO2, [7]  photo  catalysis  has 

developed into a major area of intensive investigation. From that time on, TiO2 has 

continued to hold a dominant position in photocatalysis [8]. TiO2 has many properties 

that are beneficial to  further applications in optoelectronic and other devices. It is 

therefore necessary to have a systematic theoretical investigation on the electronic 

and structural properties of all three phases of TiO2 .
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1.2     Ab initio Studies 

Scientists do a lot of theoretical work as try they to understand their experimental 

results.  They develop the simplest possible theory that explains all the known facts 

in the  world around us, energy and time. Modern science would have got nowhere 

without  careful,  and  often  surprising,  experimental  observations  as  well  as 

theoretical predictions. 

    The best theories not only summarize what is known already but also allow 

predictions  to  be  made about  things  that  have never  been seen before.  Thus,  in 

addition to building theories,  theorists explore their  consequences. This  might be 

done to test how well the theory works in extreme or unusual circumstances, or to 

discover new phenomena. Mathematics on the other hand is the language of theory, 

certainly  in  the  Physical  Sciences,  and  increasingly  in  Biology.  It  is  not  just  a 

descriptive language, but also a tool that allows the theories to be manipulated, 

improved, or even disapproved.  With the advent of modern powerful computers, 

theorists have gained a new research tool. Not only can computers now do many 

mathematical  tasks,  such  as  solving  very  complex  equations,  they  can  also 

manipulate  theories  that  would  be  very  difficult  or  impossible  for  a  traditional 

mathematician  to  handle.  This  compliments  experimental  findings  and  even can 

predict materials that are not yet in existence in the field of material science. As a 

result, electronic structure calculations have become increasingly important in the 

fields of Physics and Chemistry over the last two decades [9], especially with the 

advent of present-day, high-performance computers.  Beginning from an atomistic 

model,  modern  methods  can  provide  the  ground  state  structure  and  a  detailed 

description  of  the  electronic  properties  of  a  system.  The  formulation  and 

development of quantum theory in the first half  of the 21st century has led to a 

revolution  in  our  understanding  of  fundamental  Physics.  Quantum  theory  has 

demonstrated a surprising accuracy and predictive power, and its importance  
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in the pure and applied sciences is virtually unchallenged. The relevant equations to 

be solved are clearly the equations of quantum mechanics if one was to attempt to 

model real processes and real materials. Unfortunately, Schrodinger’s equation, thë  

most fundamental equation of wave function based quantum mechanics, cannot be 

solved analytically for all but the most trivial of systems, most of which are not 

relevant to the world at large. In order to make useful progress, the equations must 

be  solved numerically.  However,  there  are  many flavours  of  electronic  structure 

methods, each offering different balances of accuracy and efficiency. 

1.3  Electronic Structure Calculations

The treatment of electron-electron interactions is the principle source of difficulty; 

the  physical  and  chemical  properties  of  a  system  depend  principally  on  the 

interaction  of  the  electrons  with  each  other  and  with  the  atomic  cores.  These 

interactions cannot easily be separated out or treated without approximation. 

Electronic structure calculations, i.e., numerical solutions of Schrödinger equation 

for a specific system, are distinct from other forms of modeling approaches because 

they are first-principles in  nature [10].  That is,  except through the choice of  the 

researcher, the calculations contain no external parameters other than the most basic 

description of the system. Calculations of this nature enable the study of a system 

without  reference  to  experiment.  Where  a  given  physical  property  is  physically 

inaccessible “such as the binding energy of an atom or molecule deeply embedded in 

a complex host,” the availability of reliable qualitative data is a powerful stimulus. 

    However, the numerical solution of Schrodinger equation remains a difficult task.̈  

Exact  solutions  of  the  equation,  in  general,  can only be solved in  times scaling 

exponentially with system size [10]. This scaling precludes exact calculations for all 

but the smallest and simplest of systems e.g., the hydrogen atom. Approximations 

may be introduced to reduce the equations to a form that can be solved, but at the 

penalty of losing some degree of accuracy and predictive power [11]. 
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The most successful electronic structure methods in current use, i.e., those of density 

functional theory (DFT) and computational chemistry, have been applied to a wide 

range of systems relevant to the real world. In practice, the density functional and 

quantum  chemical  approaches  involve  approximations  for  the  electron-electron 

interactions, limiting the achievable accuracy.

1.4 Statement of the Problem

 This work focuses on the study of  TiO2, Nb:TiO2 as well as Cr:TiO2,  which are a 

special  class  of  known and  new materials  often  used  as  transparent  conducting 

oxides (TCOs) [10] as well as smart windows [10], but still some of their properties 

e.g mechanical, optical and electrical are not yet well understood. Hence sufficient 

theoretical predictions are needed to facilitate an in depth understanding of these 

important materials. 

1.5 Objectives

i)  To determine the mechanical properties of the two phases of pure TiO2  that is,    

      Rutile and Anatase using density functional theory.

ii)   To determine the mechanical properties of Nb and Cr doped Rutile and

      Anatase TiO2 .

iii)  To determine the electronic properties (band structure and density of states )

      of  the undoped  Rutile and Anatase phases, as well as the effects of the Nb and 

     Cr doping   on the same structures.

iv)  To suggest the best doping level for Nb and Cr in TiO2 for use as TCOs .

v)   To investigate magnetic properties of the two phases of TiO2 after doping with 

      Chromium.

1.6  Significance of the Study/Justification
 

TiO2 becomes a TCO when doped with a suitable dopant and in this case the dopant 

of choice is either niobium or chromium. However, the level of doping has only 

been done by trial and error in experimental studies, due to the associated 
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challenges. Through computer modeling, it is possible to determine exactly how 

much doping of  niobium or chromium is  needed to make TiO2 a  suitable  smart 

window or transparent conductor. In addition, it is possible to determine the suitable 

bonding sites for the dopants that give rise to an optimum TCO. This has been made 

possible by the fact that through computer modeling, it is now possible to deal with 

numerical complexity of realistic problems with a high degree of accuracy. This can 

also extend beyond a range of physical quantities for which real-life experiments is 

either  not  feasible  or  non  cost  effective.  With  sufficient  computing  power,  the 

properties of any materials can now be calculated with the only limitation being the 

finite speed and memory of the computer used. 

     DFT offers itself as a method of choice since it works with electron density,  

which  can  be  measured  and  is  easily  understood,  rather  than  the  many  particle 

Schrödinger wave function which is a mathematical entity whose physical meaning 

is not only complicated to work with but also  still controversial [11].

 



Chapter  2

2.0: Literature   Review

2.1   Introduction

The  purpose  of  material  design  modelling  is  partly  the  optimization  of  certain 

specific desirable properties such as transmittance and other critical aspects such as 

manufacturing cost (hence consumer cost) and the stability of these materials under 

different operating conditions. Computational materials design has gone a long way 

in addressing these problems because of its flexibility to investigate and control the 

fabrication of materials of modest complexity. Computer aided molecular designs 

play a major role by providing the relevant structural and energetic properties of 

atoms  that  built  up  the  materials.  Computer  modelling  and  design  of  materials 

combines disciplines such as Theoretical Solid State Physics, Statistical Mechanics 

and Quantum Chemistry. A clear understanding of the underlying concepts, strengths 

and limitations  is  paramount  for  the  designer  to  harvest  full  benefits  from these 

computational methods while avoiding misuse due to lack of expertise. 

          It is not enough for first principles material designers to invent novel materials 

with optimized properties,  such as high bulk moduli.  The materials must also be 

energetically favorable and experimentally attainable with moderate pressure (up to 

5  GPa  for  commercial  viability)  [11].  Computer  simulation  has  been  used  to 

investigate  a  diverse  range  of  materials  such  as  diamond  [12],  and  magnetic 

materials  [3].  In  most  of  these  investigations,  the  method  has  yielded  very 

encouraging results which are comparable to experimental data [11]. 

      There have been many studies of the electronic and structural properties of  TiO 2, 

both of experimental [13-18] and theoretical aspects [19-30]. However, only rutile 

phase has been studied extensively. This is due to the fact that most crystal-growth 

techniques basically yield TiO2  in the rutile phase. Also, rutile has the simplest and 

best known structure. The rutile phase is the most stable form of TiO2 under normal 

6
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conditons,  and unlike anatase, which has an indirect band gap, rutile has a direct 

band gap  that is desirable for a semiconductor [24] . On the experimental side, the 

electronic structure of rutile TiO2 has been studied by various techniques such as 

ultraviolet photo emission spectroscopy (UPS) [10,11], x-ray emission spectroscopy 

(XES) [13],  x-ray photo-emission spectroscopy  (XPS) [14,15],  electron- energy-

loss spectroscopy (EELS) [16,17], and Auger-electron spectroscopy (AUGER) [16]. 

Theoretical  studies  reported  so  far  are  the  linear  muffin-tin  orbital  (LMTO) 

calculation of poumel-lect, Durham, and Guo [18],  and those using an emperical 

tight-binding method [20,21].  Cluster methods [22,23] have also been applied to 

calculate the electronic structure of rutile. Recently, a detailed study of the structural, 

and  electronic  properties  of  rutile  has  been  carried  out  by  Glassford  and 

Chelikowsky  [24].  They  used   ab  initio soft-core  pseudopotentials  constructed 

according  to  the  Local  -density  approximation  (LDA)  theory  and  a  plane-wave 

basis, and obtained results that are in very good agreement with experiments. They 

followed up with an ab initio calculation of doped rutile TiO2 , and suggested that 

there are induced states within the fundamental band gap [24]. This is consistent 

with  absorption  and  photo  electrochemical  experiments  [30,31],  but  still  some 

questions regarding the role of the induced states as well as their precise location in 

the band gap remain.

        In contrast to the rutile phase, there are few theoretical investigations of the  

anatase  phase  [28,29].  Pseudopotential  Hatree  Fock  and  extended  Auckel  tight-

binding (EHT) calculations were carried out for the anatase phase [21]. The former 

predicted a larger band-gap value, while the  latter gave an estimation of equilibrium 

bond  length  in  anatase  by  a  total-energy  minimum  search.  Lately,  anatase  has 

attracted  a  great  deal  of  interest  in  connection  with  technological  applications 

[32,33]. Both rutile and anatase have been intensively studied for photo catalysis and 

photo  electrochemical  applications,  but  anatase  is  the  phase  more  actively 

investigated for this particular application. It has been pointed out that the fermi 



8

level in anatase is higher than that of rutile by about 0.1 eV [34]. It is also known 

that anatase plays a key role in the injection process of photochemical solar cell with 

high conversion efficiency [35].  Moreover,  it  has been reported that anatase thin 

films have different electrical and optical properties from the rutile thin films [36]. 

The essential difference is that anatase thin films have a smaller electron effective 

mass resulting in a higher mobility for the charge carriers.

2.2  TiO2  

       The two phases of TiO2, that is, Rutile and Anatase form the basis of this study. 

Electronically, the phase of rutile TiO2 is a wide band gap semiconductor with a 

band gap of approximately 3 eV [24]. The valence band is composed of O 2p states, 

while the conduction band consists mainly of contributions from Ti 3d orbitals [37]. 

TiO2 is a semiconductor and the electron-hole pairs created upon solar irradiation 

can be utilized in a number of applications. Initial work by Fujishima and Honda in 

1972 spurred a lot of interest in this area [7]. They (Fujishima and Honda) showed 

that TiO2 could be used in a photo-electrochemical cell to split water into hydrogen 

and oxygen by shining light on a TiO2 electrode. The largest applied research on 

TiO2 today is  its  use  for  photo-assisted  degradation  of  organic  molecules   [38]. 

Applications utilizing this process are, for example, the purification of waste water, 

disinfection  based on  the  anti  bactericidal  properties  of  TiO2,  and  self-cleaning 

coatings used for buildings in urban areas. Another property of TiO2 utilized in the 

self-cleaning  coating  is  the  effect  that  TiO2 surfaces  become  hydrophilic  when 

irradiated with UV-light, causing much of the dirt to simply be washed off when it  

rains.  Titanium  oxide  films  are  widely  studied  and  employed  in  numerous 

applications  because  of  their  useful  properties  including  thermal  and  chemical 

stability.  TCOs attract a lot of attention today owing to their application to solar 

energy  utilization  and  energy  savings,  transparent  electronics  as  well  as  light 

emitting devices [39]. The anatase phase of titanium dioxide with a wider band gap 
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than the rutile phase of approximately 3.2 eV is a transparent dielectric material with 

well  known  photo-catalytic  properties  [4].  There  has  been  numerous  reports  of 

improved transparency in the visible range and increased reflection in the infrared 

range  of  the  solar  spectrum  upon  doping  of  TiO2 with  Nb  [40,41].  A hybrid 

approach, admixing a fraction of the bare exchange from Hartree-Fock, also showed 

accurate structural properties for the Rutile phase with a band gap that is closer to 

experiment, that is, 3.0 eV [24] being reported.



Chapter 3 

3.0 Computational Theory 

3.1  Introduction 

The improvement in the scope and range of studying solid state physics, upgrading 

from semi-empirical descriptions based on qualitative models to thorough systematic 

analysis of quantitative physical properties formed the basis of this work. The work 

was based on the quantum mechanical description of a system as made of interacting 

electrons in the field of atomic nuclei otherwise known as First Principles or  Ab 

initio Calculations  [14].  The  Schrödinger  equation  forms  the  basis  for  all 

quantitative calculations for solid state properties.  Here,  the Hamiltonian for any 

such system is considered to be composed of the kinetic energy, T, of the particles of 

the system as well as the electron and nuclei interaction energy or the potential, V, of  

the system. The reason for the success of computational methods lies in the original 

reformulation of the Schrödinger equation to Kohn-Sham equations coupled with the 

physical insight of the correlation effects of interacting electrons in the vicinity of a 

slowly varying field [42]. The Kohn-Sham equations [43] are easy to solve.

         On microscopic scale, a solid is viewed as a combination of positively charged 

ion cores in a sea of valence electrons. The ground state electronic properties of such 

a  system  can  be  viewed  as  those  of  a  finite,  isolated  system  of  N  interacting 

electrons in an external potential. The external potential considered is that generated 

by a configuration of atomic nuclei, assumed for a time to be fixed point charges. 

The ion cores are composed of nucleus and inner (filled orbitals) electrons. The core 

is huge and moves much slowly relative to the electrons, hence can be treated as a  

classical particle.  The valence electrons on the other hand are too small and fast 

moving, hence treated as quantum particles [9].

Due to screening by the inner electrons, the negatively charged valence electrons 

10
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have  no  allegiance  to  any  particular  ion  core,  so  that  these  free  or  nearly  free  

electrons form a sea of electrons. Only the valence electrons take part in chemical 

reactions and also provides bonding of the solid atoms. The general Hamiltonian for 

the many body system is thus given by:

 H=∑
i
−
ℏ2

2Mi

∇i
2

1
2
∑

ij

Zi Z j e2

 Ri−
R j 
−∑

k

ℏ2

2me

∇ rk
2 

1
2
∑
kl

e2

r k−r l

−∑
k,l

Ze2

r k−
Rl 

 ...(3.1.1)

[44]                           

 where ;   Mi =Mass of the nucleus at position Ri

                 me =mass of an electron located at position ri     

                 Z = atomic number of the atom.

The Schrödinger equation of the system can be summarized as: 
T ionV ion−ionT eV e−e−V e−ion=E   …..................................................(3.1.2) [44]

Solving  equation  3.1.2  for  a  many  particle  system is  impossible.  As  mentioned 

earlier, analytic solutions of the Schrödinger equation are possible for very simple 

systems, while numerically exact solutions can be found for systems of single atoms 

and  molecules.  For  example  the  Schrödinger  equation  of  the  second  simplest 

material system (helium atom) is written as;

−ℏ
2

2M
∇

2
−
ℏ

2

2me

∇1
2
−
ℏ

2

2me

∇2
2R , r1 , r2− 2e2

40∣R−r1∣
−

2e2

40∣R−r2∣


2e2

40∣r1−r2∣  

 ψ R,r1 ,r2 =Eψ R,r1 ,r 2  ,  …...............................................................................(3.1.3) [45] 

where R is the position of the helium nucleus while  r1 and r2 are position of the 

two  electrons. M is  the  mass  of  the  nucleus  and me is  the  electronic  mass,

∇2 ,∇1
2 and ∇2

2 are  the  laplacian  operators  with  respect  to  the  positions  of  the 

nucleus and the two electrons, respectively. This is a three body problem and not a 

two body problem hence separation into center of mass and relative coordinates is 

complicated. The problem is reduced by adiabatic approximation whereby taking

M m≫ e  tends to fix the nucleus at the origin of the spherical coordinates of the 

system. The Schrödinger equation thus becomes,
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−ℏ
2

2m e

∇1
2
∇2

2
r1 , r2−

2e2

40 
1
r1


1
r2 r1 , r2 2e2

40∣r 1−r2∣r1 , r2=Er 1, r2.

…............................................................................................(3.1.4)

The third term on the left hand side is the inter electronic repulsion term and makes 

equation 3.1.4 not solvable exactly. A many particle system has a large number of 

interacting particles, making the interactions rather complex, there by necessitating 

the  use of  approximations in  trying to solve the ground state  properties  of  such 

systems [45,46]. The approximations are achieved by modifying the Hamiltonian 

appropriately so that the   Born-Oppenheimer approximation [47,48], is taken into 

account and that only those electrons not tightly bound to the nucleus (core) have 

effect in the many body problems. The inner filled orbitals are therefore lumped 

together with the nucleus to form the ion cores.

Born- Oppenheimer (Adiabatic approximation) effectively reduces the trivial parts 

of  equation  3.1.1  to  a  simpler  Hamiltonian  in  which  only  the  electrons  are 

considered to participate in the many body problem, thus equation 3.1.1 becomes;

H=∑
i

−ℏ
2

2me

∇r i

2


1
2
∑

i

l
e2

∣ri−r l∣
−∑

i

l
Ze2

∣r i−R l∣
 …............................................... (3.1.5) 

In equation 3.1.5 the first term is the kinetic energy of the electron gas while the  

second term is the repulsive coulombic interaction of electrons and the third term is 

the attractive coulombic interactions of the electrons and ions. Equation 3.1.5 can 

thus be written as;

H= Te-e  +Ve-e – Ve-ion    ….................................................................................. .(3.1.6) 

Since an electron always moves in a field provided by the nucleus which is alien in 

equation 3.1.6, then V e−ion=V ext  i.e., potential energy of electrons in the external 

field is provided by the nuclei. The first and second terms on the RHS of 
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equation  3.1.6  are  system  independent  since  electrons  are  generally 

indistinguishable  while  the  third  term gives  the  system specific  information.  In 

seeking  to  find  solutions  to  such  atomic  and  molecular  systems  using  such  a 

Hamiltonian,  ab initio methods are often used.  By making approximations to the 

Hamiltonian, it  means that we no longer use the all-electron potential (Vae  ),  but 

rather a psuedopotential (Vps). The Vps should be able to perform equally well, just 

like  the  Vae as  argued by nogueira  [32].  By the   derivation of  levy [50],  where 

electrons moving in an external potential Vext are considered, when one  invokes the 

Born-Oppenheimer  approximation,  the  Hamiltonian  of  the  reduced  system 

( pseudopotentials) is given as;  

H=Te−e +V e−e∑
i=1

N

V ext r    …................................................................................(3.1.7)

The quantum mechanical description of a system of N particles is fully described by 

a wavefunctuion  that depends on position of the electrons and nuclei, as well as 

time.  is   determined  by  solving  the  space  and  time  dependent  Schrodinger 

equations.

       HΨ=EΨ   ….......................................................................................................(3.1.8)

   where H is the Hamiltonian of the system and
              E is the eigen value of the corresponding wave function.

3.2   The Jellium  Solid

In  this  solid,  a  set  of  interacting  electrons  is  considered  and  a  rigid  positive 

background that takes no part in the dynamics of the solid system is assumed, that is 

we study the effect of the electrons on the properties of the solid, commonly known 

as (electronic structure)  the only parameter that is retained is the overall electron 

charge density n(r). Electronic structure theory predicts and explains the properties 

of ordinary matter; atoms, molecules, and solids. Among these properties are the 
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total  energy,  valence  electron  density,  the  set  of  equilibrium  positions  (lattice 

constants), the force between atoms or groups of atoms and the time evolution of 

nuclear positions.

3.3 The Hamiltonian

The time independent schrödinger equation for a system of N particles interacting 

via the coulomb interaction is :

       H=E ….....................................................................................3.3.1

        where the Hamiltonian H , is given by equation   

        H=∑
i=1

N

−ℏ
2

2mi

∇i
2

1
2
∑
i=1

N

∑
j≠i

N

Z i

Z j

40∣r i−r j∣  …...................................3.3.2

Here,  is a N-body wavefunction, r denotes spatial positions and Z the charges of 

the individual particles.

   Most physical problems of interest consist of a number of interacting electrons and 

ions. The total number of particles, N , is usually sufficiently large that an exact 

solution cannot be found. Therefore, controlled and well understood approximations 

are  sought to  reduce the  complexity to  a tractable level.  Once the  equations  are 

solved,  a  large number of  properties  may be calculated from the wave function. 

Errors or approximations made in obtaining the wave function will manifest in any 

property  derived  from  the  wave  function.  Where  high  accuracy  is  required, 

considerable attention must therefore be paid to any approximations made.

3.4  The Born-Oppenheimer Approximation 

A common and  very  reasonable  approximation  used  in  the  solution  of  equation 

(3.3.1)  is  the  Born-Oppenheimer  approximation  [41].  In  a  system of  interacting 

electrons and nuclei, there will usually be little momentum transfer between the two 
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types  of  particles  due  to  their  greatly  differing  masses.  The  forces  between  the 

particles are of similar magnitude due to their similar charge. If one then assumes 

that the momenta of the particles are also similar, then the nuclei must have much 

smaller velocities than the electrons due to their far greater mass. On the time-scale 

of nuclear motion, one can therefore consider the electrons to relax to a ground-state 

given  by  the  Hamiltonian  shown  by  equation  (3.3.2)  with  the  nuclei  at  fixed 

locations. This separation of the electronic and nuclear degrees of freedom is known 

as the Born-Oppenheimer approximation. This approximation will be used for the 

remainder of this thesis. However,  it is important to note that this approximation 

does not limit the techniques described to systems of fixed ions. In principle, once 

the electronic configuration is known, the nuclear degrees of freedom could also be 

solved for, giving rise to nuclear motion. In practice Newtonian mechanics using 

forces calculated via quantum mechanics is often sufficient to solve for the motion 

of the nuclei. However, these aspects go beyond the scope of this work so that from 

now on, a simpler version of the many-body Hamiltonian, equation (3.3.2), is used 

that is :

H=∑
i

−1
2
∇ i

2
∑

i
∑


Z r

∣ri−d∣


1
2
∑

i
∑
j≠i

1
∣r i−r j∣


1
2
∑


∑


Z

Z

∣d−d∣
…........3.3.3

where,  the  1st  term  is  the  kinetic  energy,  the  2nd  term  is  the  electron-nuclear 

interaction,  3rd  term is  the  electron-electron  interaction  and  the  4th  term is  the 

nuclear- nuclear interaction term. In this case, the interacting particles have been 

separated into electrons and ions. The terms in the Hamiltonian are now expressed in 

terms of  N electrons  of  charge  −1 at  positions r i  and  ions  of  charge  z  at 

positions d . 

Nonetheless,  this  simplified electronic  Hamiltonian still  remains  very difficult  to 

solve. No analytic solutions exist for general systems with more than one electron. 

Note  that  this  equation  has  been written in  atomic  units  ( e=me=ℏ=40=1 ) 

which are more convenient for quantum mechanical problems and will be used for 
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the remainder of the equations used in this thesis. 

3.5  Hartree  Approximation

   Although  the  Born-Oppenheimer  approximation  considerably  reduces  the 

complexity  of  the  Schrödinger  equation,  the  resulting  electronic  Schrödinger 

equation is still extremely complex, due to the electron-electron interactions. It is 

possible  to  use  wave  functions  which  explicitly  include  inter-electronic  distance 

[42], but this approach is computationally infeasible for all but the smallest systems. 

     A more satisfying solution is to introduce the molecular orbital approximation, 

the simplest  of which is  the independent-particle,  or Hartree,  approximation [43] 

wherein  the  total  wave  function  is  approximated  by  a  product  of  orthonormal 

molecular orbitals (MOs). This idea closely follows the chemists’ view of electrons 

occupying orbitals.  The Hartree approximation assumes that each electron moves 

independently within its own orbital and sees only the average field generated by all 

the other electrons. 

3.6 The Hartree-Fock Approximation

This  was  among  the  first  approaches  towards  solving  real  material  problem 

theoretically  [44].  In  this  approach  the  variational  principle  which  is  given  in 

equation 3.6.1 is considered;

    EHF=min
∫∗H dT

∫∗dT
…...............................................................(3.6.1)

where H is the Born-Oppenheimer Hamiltonian, and  is the wavefunction of the 

system integrated over a spherical region of radius T The lowest energy EHF is the 

electronic  energy  of  the  system called  the  Hartree-Fock  limit.  The  best  energy 

approximation  is  obtained  when  the  calculated  energy(E)  computed  from  the 

guessed wavefunction ψ is an upperbound to the true groundstate energy E0 . i.e

E≥E0 . Full minimization of the energy functional, E [ψ ] , through iterations of 
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self  consistency  with  respect  to  all  allowed  N-electron  wave  functions  (Single 

particle  orbitals)  yields  the  true  groundstate  wavefunction, ψ0 ,  and  ground  state 

energy, E0 ,i.e

                                        E0=minE [ψ ]   …................................................................. (3.6.2)
  

In the Hartree-Fock approximation, an antisymmetric total wavefunction compossed 

of one electron states, ψα r α   (the slater determinant) is considered, which also takes 

care of the Pauli exclusion principle. Each variation in one of the ψα r α   states gives 

an equation for the ''best'' fit  single particle wavefunction and an eigenvalue Eα

corresponding to it. The resulting set of equations called the Hartree-Fock equations 

are however coupled by their dependence on other single particle wavefunctions, 

that is;

[Hr VH E ]∫V ex r ,r '
r dr '

=0 ….................................................(3.6.3) 

where  Hα r  is the Hamiltonian of the electron that separates naturally, V  Hα  is the 

Hartree  potential  felt  by the  α th  electron  due to α 's  interaction  with  all  other 

electrons in the system,  Eα is  the eigenvalue of the corresponding wavefunction

ψα ,V ex is a non-local potential called the exchange potential which takes care of the 

possibility of electrons changing positions (that is,  the antisymmetric nature of the 

wavefunction) 

          V ex=
e2

∣r−r '∣
∑
≠

 r ∗r
'
   ............................................................... (3.6.4)

                               β≡occupied

   To simplify the calculations, one solves the Hartree-Fock equations, using as basis 

set only for those orbitals from each atom whose principal quantum number does not 

exceed the principal number of the atom's valence electrons (that is minimal basis 

set).  Use of minimal basis sets gives only an approximation to the Hartree-Fock 

molecular orbitals. Any wavefunction found by solving the Hartree-Fock equation is 
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called the self consistent field (scf) wavefunction. Only if the basis set is very large 

is a scf wavefunction equal to the Hartree-Fock wavefunction. The Hartree-Fock 

method works well for atoms but fails for solids due to correlation effect which the 

method does not account for. When Hartree-Fock approximation is applied to the 

jellium model, the Hartree potential (repulsive) just cancels the positive background.

In 1930 Fock [49] pointed out that the Hartree wavefunction was invalid as it did not 

satisfy the Pauli exclusion principle which asserts that the wavefunction must be 

antisymmetric with respect to electron interchange [50]. Fock also showed that a 

Hartree  product  could  be  made  antisymmetric  by  appropriately  adding  and 

subtracting all  possible permutations of the Hartree product,  thereby forming the 

Hartree-  Fock  (HF)  wavefunction.  Later,  Slater  showed  that  the  resulting 

wavefunction is simply the determinant of a matrix, called a Slater determinant [51]. 

Hartree-Fock theory  is  one  of  the  simplest  approximate  theories  for  solving  the 

many-body Hamiltonian. It is based on a simple approximation to the true many- 

body wavefunction: that is the wavefunction is given by a single Slater determinant 

of N spin-orbitals

      =
1
N!∣

1x11x2 ....1x N 

2x12x2 ....2x N 

3
⋮

x13
⋮

x2 ....3
⋮

xN 

N x1N x2....N xN 
∣ …...........................................(3.6.5)

where  the  variables x i includes  the  coordinates  of  space  and  spin.  This  simple 

ansatz for the wavefunction, Ψ, captures much of the Physics required for accurate 

solutions of the Hamiltonian. Most importantly, the wavefunction is antisymmetric 

with  respect  to  an  interchange  of  any  two  electron  positions.  This  property  is 

required by the Pauli exclusion principle, i.e.

   x11 , x12 , ...... , x1n=−x12 , x11 , ......., x1n …..........................................(3.6.6)

This wavefunction may be inserted into the Hamiltonian given by equation (3.3.2) 

and an expression for the total energy derived [52–54]. Applying the theorem that 
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the value of a determinant is unchanged by any non-singular linear transformation,

the spin-orbital, ψ, can be chosen to be an orthonormal set. A Lagrange multiplier, 

∈j can then be introduced to impose the condition that the  are normalized, 

and then minimize the Hamiltonian H with respect to  that is 

 

          


 [ H−∑j

 j∫∣j∣
2
dr ]=0 …..............................................................(3.6.7) 

An enormous simplification of the expressions for the orbitals  then results. This 

reduces the Hamiltonian to a set of one-electron equations of the form

     
−1
2
∇

2
ir V ion r i r U ir =iir  ….......................................(3.6.8)

The full Hatree-Fock equation is given by:

ii r =−1
2
∇

2
V ion r ir ∑

j
∫dr ' ∣ jr

'
∣

2

∣r−r '∣
ir −∑

j

 i j∫ dr '
∗

j
r '
ir

'


∣r−r '∣
 jr 

…...................................................................................................................(3.6.9)

 The Hartree-Fock approximation corresponds to the conventional single-electron 

picture of electronic structure,  where the distribution of the N electrons is given 

simply by the sum of the one-electron distributions  ∣2∣ .This  allows concepts 

such as labeling of electrons by angular momenta, but it must be remembered that  

this is an artifact of the initial ansatz and that in some systems modifications are 

required to these ideas. 

    By assuming a single-determinant form for the wave function, the Hartree-Fock 

theory  neglects  correlation  between  electrons.  The  electrons  are  subject  to  an 

average non-local potential arising from the other electrons, which can lead to a poor 

description  of  the  electronic  structure.  Although  qualitatively  correct  in  many 

materials  and  compounds,  Hartree-Fock  theory  is  insufficiently  accurate  for 

quantitative predictions. 
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3.7  Density  Functional  Theory (DFT)

  Density functional theory started in 1926 with the work of Thomas and Fermi. In 

density  functional  theory,  one  does  not  attempt  to  calculate  complicated 

wavefunction ψ x1 ,x2 ,x3 . .. ,xn  and its associated Schrödinger equation, but instead 

one works with the much simpler electron density n(r) and its associated calculation 

regime. DFT is based on the theorem proved in 1964 by Piere Hohenberg and Walter 

Kohn which states that; 

  “The energy and all  other properties of the ground state of a given system are 

uniquely  determined  by  the  ground  state  electron  probability  density  n(r)'  [55]; 

Etot=E[n(r)].” 

    The theory further eliminates the difficulties posed by Hartree-Fock formulation 

by calculating a total energy which takes care of both the exchange and correlation 

effects. Exchange is the reduction of the Coulomb energy of the wave function while 

Correlation is the difference between the many-body energy of an electronic system 

and the energy of the system calculated from the Hartree-Fock approximation of an 

electron gas [56, 57]. In DFT the total energy of the system is thus expressed as a 

functional of the electron density.  DFT as a method determines the ground state 

electronic structure of the system. It is exact in principle, but approximate in practice 

[58]. DFT is preferable for application in the materials science field, since it can 

efficiently handle periodic bulk materials as well as surfaces and interfaces. In the 

DFT  scheme,  the  problem  is  eventually  narrowed  by  solving  the  Kohn-Sham 

equation. In calculations, the pseudopotential plane wave scheme is often chosen to 

increase the efficiency in terms of computing resources [59]. 

    A consequence of this observation is that the expectation value of all operators are 

functionals of the ground state charge density. Kohn and Sham  showed that it is 
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possible to use the functional dependence of the ground state energy on the ground 

state charge density to map the many particle system onto a non-interacting particle 

system. Let H denote the Hamiltonian of a many electron system. The states of well-

defined energy are the eigenstates of H :

Hk r11 ,..... , r NN =Ekk r11 ,..... r NN , ....................(3.7.1)

where k is a complete set of many-electron quantum numbers. 

Because electrons are fermions, the only physical solutions are those wave functions 

that are antisymmetric under exchange of two electron labels i and j: 

r 11 , ..., rii ,... , r j j ,... , rNN =−r1 1, ... ,r j j , ... ,r ii , ..., r NN . …..(3.7.2)

There are N! distinct permutations of the labels 1, 2, . . . , N, whereby all have the 

same  |Ψ|2  .Thus ∣∣2 is  the  probability  to  find  any  electron  with  spin  1 in 

volume element d3 r1 , etc., and

1
N !
∑
1 ..N

∫d3 r1 ...∫d3 rN N !∣r11 ,... , rNN ∣
2
= 〈∣ 〉=1 …..........................(3.7.3)

The  electron  spin  density  n r  can  be  defined  so  that  n r d
3r is  the 

probability of finding an electron with spin   in volume element  d3 r at  r . 

n r  is found by integrating  over the co-ordinates and spins of the (N-1) other 

electrons, that is:

n r =
1

N−1!
∑
2..N

∫ d3 r2...∫ d3r N N!∣r ,r 22 , .., r NN ∣
2

…......................(3.7.4)

            = N ∑
2 ..N

∫ d3r 2..∫ d3r N∣r ,r22 ,.. , r NN ∣
2

….................................(3.7.5)

                ∑

∫d3 rn r =N …......................................................................(3.7.6)

The expectation value of a spin independent external potential is :

 〈 V ext 〉=〈∣∑
i=1

N

V r i∣ 〉=∫d3 rnr V r  …....................................................(3.7.7)

with electronic density n(r) given by:

    nr =n r n r  …...............................................................................(3.7.8)
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The  many-electron  wavefunction  r 11 , ..., r NN  contains  a  great  deal  of 

information - all we could ever have, but more than we usually want. Because it is a 

function of many variables, it is not easy to calculate, store, apply or even think 

about. Often we want no more than the total energy E (and its changes), or perhaps 

also the spin densities n↑ (r) and n↓ (r), for the ground state. 

3.8  Thomas-Fermi-Dirac Model

Thomas and Fermi [60] contributed immensely to the genesis of DFT formalism. 

They  assumed a  uniform non-interacting  electron  gas  in  their  calculations.  This 

assumption made the  Thomas-Fermi (TF) model  lack exchange-correlation terms 

and  therefore  bonding  in  molecules  was  omitted  and  negative  ions  also  were 

unstable. Levine [56] argues that the major sources of error in quantum mechanical 

calculations of ground state molecular properties include the inadequacy of the basis 

set and the neglect or incomplete treatment of the electron correlation. Dirac tried to 

correct  the  anomaly  by  adding  an  exchange  term  to  the  Thomas-Fermi  energy 

functional giving rise to the Thomas-Fermi-Dirac (TFD) model [60] of the energy 

functional. The TFD model failed to work well because it assumed that the potential 

was uniform or varying slowly as was the case with their initial starting point of 

uniform electron gas. 

3.9  Hohenberg-Kohn  Theorem

Hohenberg and Kohn made the operation of DFT a reality. They showed that the 

ground  state  electron  density  (n(r)),  was  sufficient  to  a  good  approximation  to 

determine  the  many  body  total  energy.  They  also  showed  that  there  existed  a 

universal functional FHK[n(r)] such that for a given external potential V(r) the actual 

ground state energy E electronic density n(r) was obtained by minimizing the energy 

functional;   
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   E[n r]=FHK [nr ]∫V r n r d3 r , .......................................(3.9.1) 

with respect to the variations in  n(r) under condition that the number of particles 

N=∫ n r  d3r  within the system remains a constant [61].

 

3.10  Kohn-Sham (K-S) Theorems

Kohn and Sham revolutionized DFT to make it a practical tool for everyday analysis 

of material properties by their interpretation of the exchange-correlation energy, Exc .  

Exc is  a  term  where  all  the  inescapable  complexity  of  the  many-body  problem 

(contribution  from  the  non-classic  electrostatic  interaction  and  the  difference 

between the true kinetic energy  T and the non-interacting one  Ts are included) is 

found to be a small fraction of the total energy which can be approximated well [62]. 

The fundamental assumption of Kohn and Sham is to introduce a reference system 

of non-interacting electrons in an external potential Vks(r) such that the ground state 

charge density for this problem is  n(r) that enters the Hohenberg-Kohn functional. 

The K-S theorem uses  a  fictitious  reference  system (denoted by subscripts)  that 

contains the same number of electrons  n as the true atom we are dealing with, but 

that differs from the real atom in the sense that;

i. The  electrons  in  the  reference  system  do  not  exert  forces  on  one 

another.

ii. Each  electron  i(i=1,2,3,....,n)  in  the  reference  system experiences  a 

potential  energy  Vs (r) where Vs(r)  is  the  same  function  for  each 

electron and is such as to make the electron probability density n(r) in 

the real atom, n r≈V sr  .

To  allow for  spin  and  Pauli  exclusion  principle  antisymmetry  requirements,  the 

ground state wave function of the reference system is the Slater determinant of the 

spin orbitals, one for each electron. 
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Each spin-orbital is the product of spatial orbitals θi
ks  and a spin function. The K-S 

spatial orbitals i
ks are eigenfunctions of the K-S hamiltonian hi

ks . 

                          hi
ksθ i

ks =εi
ksθ i

ks ,   ….................................................................(3.10.1) 

           

where ε i
ks is the K-S orbital energy. Each K-S orbital holds two electrons of opposite 

spin.  In  this  theory  the  Hartree-Fock  energy  Ex
HF  was  replaced  by  the  density 

functional  Exc n n  while  the  non-local  HF  exchange  potential  V x
n r,r'  was 

replaced by the local exchange-correlation potential V xc
n r,r'   as a component of the 

self  consistent  effective  potential  V eff
n r  . They  suggested  a  highly  non-local 

functional  that  was giving the  major  part  of  kinetic  energy,  which is  the  'single 

particle' KE, Ts [n(r)] for electrons without mutual coulomb repulsion in their ground 

state under the action of an external potential, such that their ground state density 

was n(r). The Kohn-Sham density functional theory therefore reduces the quantum 

mechanical problem to a self consistent, one-electron form, in a way that is exact but 

requires an approximation in practice. They came up with the K-S orbitals φ i which 

formed a wave function that described exactly a system containing N non-interacting 

electrons.  The  total  Hamiltonian  of  the  reference  system  is  the  sum  of  the 

Hamiltonian of the individual electrons, i.e., 

     H s=
−h2

2m
∑
i= 1

n

∇ i
2∑

i= 1

n

V s r ≡∑
i=1

n

h i
ks ,   …....................................................(3.10.2) 

where

        hi
ks=

−h2

2m
∇ i

2+V s r   …................................................................…............. (3.10.3) 

and  hi
ks  is the one-electron K-S Hamiltonian
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The  K-S  equations  are  the  Euler-Lagrange  equations  for  the  constrained 

minimization of the K-S functional [62]. The search for the ground state can also 

proceed via the direct minimization of the full functional;

    E [ψ i ]=∑
i= 1

n

−1
2 ∫ψ∗

i
ψ i r  dr+EH [n r  ] +Exc [n ] r ∫V xc r  [n r  ] dr,  …........(3.10.4) 

with  respect  to  the  n  auxiliary  orbitals  ψ i , with  the  proper  constrains  of 
orthonormality        
        〈i∣ j 〉=ij and charge density conservation.

3.11  Local Density Approximation (LDA)

In the Local density approximation (LDA), the value of E xc [n r  ] is approximated 

by the exchange-correlation energy of an electron in a homogeneous electron gas of 

the same density n(r)  that is:

        E xc
LDA [nr  ]=∫ xc n r  nr d r  …....................................................(3.11.1)

     The LDA is often surprisingly accurate and for systems with slowly varying 

charge densities, it generally gives very good results. The failings of the LDA are 

now well established since it has a tendency to favor more homogeneous systems 

and over-binds molecules and solids.  In  weakly bonded systems these errors are 

exaggerated and bond lengths are too short. In systems where the LDA works well, 

often those mostly consisting of sp bonds, geometries are good and bond lengths as 

well as angles are accurate to within a few percent. Quantities such as the dielectric 

and piezoelectric  constant  are  approximated  to  be  10% larger  than  experimental 

values [63]. 

     The principle advantage of DFT-LDA over methods such as Hartree-Fock is that 

where  the  LDA works  well  (correlation  effects  are  well  accounted  for)  many 

experimentally relevant physical properties can be determined to a useful level of 

accuracy. Difficulties arise where it is not clear whether the LDA is applicable or 



26

not. For example, although the LDA performs well in bulk group-IV semiconductors 

it is not immediately clear how well it performs at surfaces of these materials. 

3.11.1  Limitations and Improvements of LDA 

  

    Despite the remarkable success of the LDA, its limitations mean that care must 

always be taken in its application. For systems where the density varies slowly, the 

LDA tends to perform well, and chemical trends are well reproduced. In strongly 

correlated systems where an independent particle picture breaks down, the LDA is 

very inaccurate. For example, the transition metal oxides XO (X=Fe,Mn,Ni) are all 

Mott insulators, but the LDA predicts that they are either semiconductors or metals. 

     In addition, LDA finds the wrong ground state for many simpler cases.  For 

example, the LDA finds the wrong ground state for the titanium atom. The LDA 

does not account for van der Waals bonding, and gives a very poor description of 

hydrogen bonding. These phenomena are essential for most of Biochemistry. For 

example, the structure of DNA depends critically on hydrogen bonding, as do the 

changes in the structure of most molecules on solvation.  An obvious approach to 

improving the LDA is to include gradient corrections, by making Exc  a functional 

of the density and its gradient, i.e, the so called generalized gradient approximation 

(GGA).

3.12 Generalized   Gradient   Approximation    (GGA)

   To improve the accuracy and performance of DFT, fluctuation of electron density 

has to be accounted for using the GGA, an approach proposed by Perdew and Wang 

in 1991 [63]. The use of GGA instead of LDA has been found to reduce errors of 

atomization energies of standard sets of small molecules, consisting of light atoms 

by factors of 3-5, the remaining errors being typically (2-3) kcal/mol, which is about 

twice as high compared to the 'best' current wave function methods [64]. GGA 
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depends only on the density and its derivative, thereby  making it easy to evaluate 

them. It has been observed that while Hartree-Fock underbinds atoms in a molecule 

and local spin density approximation, LSDA, over binds them; GGA achieves better 

accuracies with regard to binding energies [64].   

3.13  The Perdew, Burke, Ernzerhof (PBE) Exchange -Correlation
           Functional 

  The PBE-GGA exchange-correlation functional was developed by Perdew, Burke 

and Ernzerhof [60]. When used in calculation of bond lengths, it has the tendency to 

over estimate the bond length with a mean error  (me) and a mean absolute error 

(mae) just below 0.01 Å [64] which is a bit poor functional compared to LDA that 

gives a mean error of 0.001 Å . In the calculation of say bond energies, PBE is 

among the  most  popular  functionals  because  it  has  been known to  significantly 

reduce the mean absolute error to the nearly desired chemical accuracy of better than 

1 kcal/mol or 50 meV/atom [65]. It was chosen in this study because its construction 

ensures  that  it  retains  a  number  of  physical  features  in  both the  correlation  and 

exchange  parts.  It  is  also  suited to  the  system (strongly  localized system) being 

investigated  in  this  work.  PBE  pseudo  potentials  were  therefore  used  for  all 

calculations reported in this work. 

3.14  Basis  Set 

  In  describing  a  periodic  solid,  we introduce periodic  boundary conditions  that 

eliminate or reduce the finite size errors in the description of perfect bulk crystals (a 

system  with  some  degree  of  periodicity)  [65].  The  Schrödinger  equation,  with 

appropriate  Hamiltonian  describing  an  infinite  system,  gives  the  Bloch  wave 

functions  and  energy  eigenvalues.  The  Bloch  wave  functions  fulfills  periodic 

boundary conditions [66]. The induced periodicity in the external potential makes 

the Hamiltonian operator to commute with the set of translation operators identified 



28

by the periodic boundary conditions, where the set of common eigenstates for these 

operators is Bloch's Theorem which is represented by equation 3.14.1;

 

             ψ H
r  =ψnk r  =ek . runk r  ,   …......................................................... (3.14.1) 

where ψnk r    is the wave function of the crystal, k is the wave vector and unk r  has 

the periodicity of the unit cell. The infinite wave function of an extended system is 

then represented with these periodic boundary conditions by a finite number of wave 

functions for each wave vector  k, spanning the infinite set of k-points inside the 

Brillouin zone (BZ).  The periodicity  of  unk(r)  is  exploited when representing the 

wave function with the discrete basis of plane waves (that are an orthogonal and 

complete set).

         

          〈r∣KG∣〉=
1


e i KG . r
  …..................................................................   (3.14.2) 

  Where  is the volume of the unit cell.

 Completeness can naturally be introduced by selecting the finite set of plane waves 

for which ∣KG∣2≤Ecut .  The expectation value for the kinetic energy of a wave 

function on the basis of plane waves is calculated efficiently in reciprocal space:

    nk r =∑
G

cnk G ei KG . r⇒ 〈nk r ∣−∇
2∣nk r 〉=∑

G

cnk ,G
2 ∣KG∣

2

…...........(3.14.3) 

while the action of the local pseudo potential is expressed in real space. This implies 

that the kinetic energy operator is diagonal in reciprocal space while the external 

potential  is  diagonal  in  real  space.  Computationally,  it  is  more  convenient  to 

calculate these expectation values in the representation for which they are diagonal, 
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switching back and forth from one representation (the Fourier coefficients cnk, G) to 

the other (The wave function  ψnk r  on a grid in real space) via the Fast Fourier 

Transforms [67] .

3.15  Plane Wave Basis Set

Each  wave  function  ψ is  usually  expanded  in  a  set  of  (non-orthogonal)  basis 
function  j (r) that is,
                     

                             r =∑
j

c j jr  …..............................................................(3.15.1)

  

and the best wave functions  are determined by a Raleigh-Ritz procedure using the 

variational principle  which leads to a generalized eigenvalue problem [68]. In trying 

to solve first principles problems, one seeks to find the coefficient c'iq (see equation 

3.15.2) in order to express the wave function ψq  in a given basis set ψ i
n . This may 

be written as;

        q=∑
i=1

L

c iq
'
i

n ,      …................................................................................. (3.15.2) 

where c'iq is a number of a function having infinite dimensions and hence L, which 

needs to be large is instead infinite. In solving a real problem, we try to find a basis 

set that can generate a function that is close to c'iq.  An efficient (a basis set that 

describes the function accurately ) and unbiased (one that does not carry too many 

properties from the basis set) basis is more preferable. Plane wave basis sets fit these 

requirements well. In addition to their simplicity and being unbiased, plane waves 

are also suited in many applications. A typical plane wave can be expressed as;

        k
n r=∑

K

n , k

ck ei Kk  .r ….........................................................................(3.15.3) 

Since it is impossible to work with an infinite basis set, the set of all k need to be 

limited, with k≤kmax which corresponds to a sphere with radius kmax centered at 
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origin of the reciprocal space. All the reciprocal lattice vectors within the sphere are 

taken into the basis set. This is normally achieved by using the free electron energy 

corresponding to kmax called the cut-off energy Ecut which is calculated from equation 

3.15.4.

                    Ecut=
ℏ2kmax

2 
2me

  ….............................................................................. (3.15.4)

                                                                                

3.16  Pseudopotential    Approximation

  In  order  to  improve  computational  efficiency,  pseudo  potentials  ( V ps )  are 

normally used to replace the core electrons of the atoms with an effective potential. 

It  is  generally well  known that  only the valence electrons actively participate in 

determining both the physical and chemical properties of molecules and solids. It is 

for  this  reason  that  the  pseudo  potential  approximation  is  introduced.  In  this 

approach,  the core electrons are assumed to be fixed and the ion-ion interaction 

considered to be purely electrostatic. The pseudo-potential approximation uses this 

fact to eliminate the need to include the atomic core states and the strong nuclear 

potentials that are both responsible for binding them. Pseudo potential replaces the 

strong nuclear potential with a weaker “pseudo-potential” which acts on a set of 

pseudo wave functions  rather  than the  true  valence wave functions.  The pseudo 

potential approximation aims at decoupling the small and computationally expensive 

length  scales typical of core electrons, confined around each nucleus, from those of 

the interacting gas of valence electrons, which are responsible for the majority of 

structural  and  chemical  properties.  A pseudo  potential  approximation  therefore 

provides  an  excellent  method  to  determine  the  fundamental  role  played  by  the 

valence electrons in the electronic structure problem. Normally, inner electrons are 

tightly  bound  around  each  atomic  nucleus  and  are  largely  unperturbed  by  the 

environment surrounding their atom. Moreover, the wave functions vary rapidly near 
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the nucleus, but far from the nucleus, the wave functions are smooth. The valence 

properties of atoms are determined primarily by the wave functions outside the core. 

The electronic density of the core nc cancels itself and hence is considered frozen in 

motion but provides a boundary condition on the wave functions outside the core 

region. 

     The many body problem is projected for the valence electrons into an effective 

energy-dependent Hamiltonian, where the nuclear attraction is largely screened by a 

repulsive term that mimics the effects of the orthogonality constraints,  otherwise 

known  as  cancellation  theorem  [69].  A pseudo  potential  is  much  weaker  and 

smoother than the original Coulombic potential. However, pseudopotentials which 

performs equally well as the all-electron potentials are preferred. In this work, the 

Vps used  were  ultrasoft.  These  are  pseudopotentials  that  partially  release  the 

constraint of norm conservation while imposing at the same time the matching of the 

scattering properties on broader range of energies. The pseudopotentials allows for 

improved transferability and much increased smoothness, introducing a mechanism 

of charge augmentations to restore norm-conservation and hence the proper balance 

of valence charge density in the core region [70].   

3.16.1  Norm-conserving pseudo-potential

  These treat core electrons explicitly that is they simplify them. The movement of 

the core electrons is not periodic, therefore we try to normalize by use of norm-

conserving pseudo-potential. Normalization makes the movement of the electrons 

periodic, so that it can have a Gaussian distribution. This distribution allows faster 

convergence.  When  using  these  pseudo-potentials,  the  default  value  of  charge 

density cut-off (ecut 'rho') is used. If reduced or increased a bit it causes noise in the 

system especially on the forces and stress.
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3.16.2  Ultrasoft pseudo-potential

The original distribution of electrons in the core is Gaussian. If one was to carry out 

calculations using this type of distribution, there will be need for many plane waves. 

Introduction  of  ultrasoft  pseudo-potential  reduces  the  number  of  plane  waves, 

therefore  convergence  will  be  faster.  Ultrasoft  pseudopotentials  offers  a  faster 

convergence  than  norm-conserving  pseudo-potential.  When  using  this  pseudo-

potential, a larger value than the default value of charge density cut-off (ecut 'rho') is 

desirable and a value that is, 8 to 12 times greater than the plane wave cut off energy 

(ecut 'wfc'), is often used.

 

                         



Chapter 4 

4.0  Computational Methodology 

4.1   Introduction 

Density  functional  theory  (DFT)  was  used  in  this  study.  Some of  the  important 

materials can be studied rather accurately using computational tools. It is this need 

for quicker  yet cheap means of materials analysis  that  this study is  intended to 

address.

All  the calculations in this  work were done using  the Quantum Espresso (Q.E) 

computer code [71], which is a multi-purpose, multi-platform software for ab initio 

calculations  of  periodic  and  disordered  condensed  matter  systems.  Quantum 

Espresso stands for  Quantum-opEn-Source Package for Research in Electronics,  

Simulations and Optimization. Within the DFT formalism, the code can be used to 

simulate  a  wide  range  of  materials  including  crystalline  solids,  molecules  and 

surfaces quite easily. It uses plane wave basis sets for the expansion of the electronic 

wave  function,  a  pseudopotential  description  of  the  electron-ion  interaction  and 

density functional theory (DFT) for the description of electron-electron interactions. 

In this work, calculations were done on parallel and serial computers owing to the 

flexibility of the package to run on different platforms, including simple stand-alone 

computers.

The  electron-ion  potential  was  described   by  means  of  Vanderbilt's  ultrasoft 

pseudopotentials   (USPP)  [70].  USPP are  transferable  and smooth as  mentioned 

earlier, ensuring rapid convergence in the calculated total energy of the system and 

by extension achieves rapid convergence of the system properties with respect to an 

increase in the plane wave basis set.  Transferability  means the pseudopotentials 

scatter the incoming wavefunction as closely as possible to the original  potential 

over a wide range of energies and phases. This implies that the pseudopotential can 

33
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work for all  matter states of the elements under different environments.  Softness 

means that only a manageable number of plane waves are needed. The PBE form of 

the GGA pseudopotential was used to treat the exchange and correlation energies in 

electronic structure calculations, due to the  reason explained in section 3.13. In this 

study the  Cohesive energy was calculated using the following formula;    

  Ecoh=−[Ebulk−N Eatom ] /N , where Ebulk is the total energy of the bulk matrix,

 Eatom is the energy of an isolated free atom and N is the number of atoms in the 

unit cell which was used in optimizing bulk TiO2 .

 

 4.2    K-point sampling

Electronic states are allowed only at a set of k-points determined by the boundary 

conditions  that  apply  to  the  bulk  solid.  The  density  of  allowed  k-points  is 

proportional to the volume of the solid. The infinite number of electrons in the solid 

are accounted for by an infinite number of k-points,  but only a finite number of 

electronic states are occupied at each k-point. The Bloch theorem which considers 

periodicity,  changes  the  problem of  calculating  an  infinite  number  of  electronic 

wave functions to one of calculating a finite number of electronic  wave functions at 

infinite number of k-points. The occupied states at each k-point contribute to the 

electronic  potential  in  the  bulk solid  so that,  in  principle,  an infinite  number of 

calculations are needed to compute this potential. Electronic wave functions at k-

points that are very close together will be almost identical. It is possible therefore to 

represent  the  electronic  wave  functions  over  a  region  of  k-space  by  the  wave 

functions at a single k-point. In this case, the electronic states at only a finite number 

of k-points are required to calculate the electronic potential and hence determine  the 

total energy of the solid.

In  this  study,  the  special  k-points  were  generated  automatically  using  the 

Monkhorst-Pack scheme [72]. Monkhorst-Pack scheme ensures that the irreducible 

part of the Brillouin Zone (IBZ) is integrated over a set (mesh) of uniformly spaced 
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k-points. Following a rigorous optimization process, the k-points grid were varied 

over a wide range of values (2x2x2 to 8x8x8) since transition metals like Ti are 

known to require large k-point grids. 

4.3   Minimization of the Kohn-Sham Energy Functional

To perform a total energy pseudopotential calculation, it was necessary to find the 

electronic states that minimize the Kohn-Sham energy functional. Payne et al [73] 

argue  that  there  is  an  infinite  number  of  K-S  Hamiltonians,  each  of  which  has 

different set of eigenstates. One of these sets of eigenstates, the set generated by the 

self-consistent  K-S  Hamiltonian,  minimizes  the  K-S  energy  functional.  The  K-S 

energy functional has a single well-defined energy minimum [74]. In the iteration 

process within Q.E code the calculated minimum energy was compared to the Harris 

Foulkes  energy  for  the  different  systems  to  show how accurate  the  system had 

converged. Diagonalization was done using the Davidson diagonalization and the 

conjugate gradient method  [73]. 

        

 4.4:  The Self Consistent Field (scf) Cycle

The  key  solution  in  computational  methods  is  the  solution  of  the  Kohn-Sham 
equation 4.4.1,

         Hψi r =[−1
2
∇ 2+V eff ]ψ i r  =εiψ i r  ,  ….................................................... (4.4.1) 

 

where                      V eff =V ion r +V H [n r  ]+V XC [n r  ] ,  …...............................(4.4.2)
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and the hamiltonian operator H contains the kinetic energy operator and an effective 

potential,Veff(r), using the convention that e=me=ℏ=1. Veff depends on the electron 

density  n(r), which can be obtained from the wave function  ψ i , but obviously ψ i

itself depends on Veff(r) and thus n(r). 

    An iterative solution of the K-S equation must be found by fixed point iteration, 

that is,  starting with some initial guess for  n(r)  and then iterating until  the input 

electron density,  n(r)  and output electron density,  n'(r),  becomes nearly the same 

(within a threshold, Ecut). This is called the self consistent field (scf) procedure [76] 

and it's summarized in the flow chart of figure 4.1. The flow chart shows how to 

solve Kohn-Sham equations for a set of fixed nuclear (ionic) positions. The periodic 

system is defined by making an initial guess of the fictitious atoms' wavefunction 

basing on the atomic number  (Z) and atomic mass (A)  which corresponds to the 

properties  of  the  true  atoms  under  investigation.  Optimized  parameters  such  as 

cutoff energy Ecut and sampled k-points are then included. The trial density is picked 

by specifying the charge density cutoff (ecutrho) which also depends on the type of 

pseudo potential to be used. The solid is built by specifying the atomic positions in 

the cell, the type of atoms, the bravais lattice and lattice constant. To deal with the 

problem caused by  coulombic  potential  of  the  nucleus  on  the  electrons,  pseudo 

potentials to be used are specified. The type of pseudo potential used determines the 

exchange-correlation  solution  to  be  obtained.  Solution  of  the  single-particle  K-S 

equations was then worked by running the input computer script using an executable 

command that calculates the Hamiltonian and potential (new electron density). The 

calculation works iteratively until it converges to the desired energy of the system. 

At convergence the system has the lowest energy possible and the forces on atoms 

are minimal. This was achieved by setting the convergence threshold that is 10 -6 Ry. 

A typical  input  file  used  for  determining  structural  properties  of  Rutile  TiO2 is 

shown in appendix D.  The K-S equations have to be solved iteratively,  thus the 

corresponding eigenvalue problem does not need to be solved exactly at the 
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beginning of the scf cycle, but an approximate solution is sufficient as long as it 

does not affect the convergence of the scf procedure. The changes in the eigenvalue 

problem becomes smaller and smaller once the scf procedure is nearly converged 

since effective potential (Veff) will hardly change anymore. 

 

                                                             

                                    

  

  

  

                             

                   

                           

                                                                      Yes

  

Figure 4.1: Flow chart describing the computational procedure for the calculation of 

a solid's total energy using conventional matrix diagonalization [75]. 

V nuc Known/Constructed

Initial guess n(r)

Calculate V H [n ] & V xc [n ]

V eff r=V nucr V H r V xcr 

Hir =[
−1
2
∇

2
V eff r ]ir =iir 

Calculate new n(r)= ∑
i
∣ir ∣

2

Self-Consistent?

Generate

new n(r)

Problem  solved!  Can  now  Calculate  energy, 
forces.
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An electronic charge density n(r) that  gives the minimum energy, that is, minimizes 

the energy is guessed. The density which is a function of r is computed and then it is 

used as  another  function for  computing  the  Hartree  potential  and the  exchange-

correlation potential. The result of V H r , V xc r  and  V nuc r gives the effective 

potential V eff r .

 Therefore, the Hamiltonian of the system is equal to V eff rK.E that is:

       Hir =[
−1
2
∇

2
V eff r ]ir =iir 

 where i is the minimum energy.

   On normalization one obtains;

 〈∣H∣ 〉=E0 〈∣ 〉 but  〈∣〉=1 on  normalization.  Its  the  guessed  charge 

density n(r) that gives us E0 . Therefore ; n r∝E0 .

This  shows  that  the  guessed  density  and  the  calculated  density  are  the  same 

indicating that self consistence has been achieved. The  energy, forces etc. can then 

be calculated. If the calculated density and the guessed density are not the same, a 

new guess for the density is made based on the previous step's charge density, and 

the whole process is repeated until self consistence is achieved.

     



Chapter  5

5.0 Results and Discussions

5.1 Structural Properties

Figures 1(a) and (b) shows the optimized electronic structures of pure TiO2,   while 

figures 2(a) and 2(b) shows both super cells of Rutile and Anatase  phases of TiO2 

doped with 2% Cr. 

                          (a)                                                                     (b)

Fig. 1: Optimized electronic structures of TiO2 (a) Rutile      (b) Anatase.

  

(a) Rutile                                                            (b) Anatase

Fig. 2: TiO2 doped with 2% Cr (a) Rutile structure  (b) Anatase structure.

39
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 (a) Rutile                                                         (b) Anatase

Fig. 3: TiO2 doped with 2% Nb. (a) Rutile structure  (b) Anatase structure. 

Figures 3(a) and (b) shows rutile and anatase TiO2 phases doped with 2% Nb, at a 

substitutional site,  respectively.  In fig.  2,  one Ti atom was substituted with a Cr 

atom. To avoid surface effects, the substitution was done inside the super cell, since 

this work was primarily on bulk properties. The same was done in fig. 3, but now a 

Ti atom was substituted with a Nb atom. The Rutile and Anatase supercells contain 

48 atoms, and were created using a software known as VESTA [81].  2% doping 

was arrived at by dividing one atom (dopant) by the total number of atoms in the 

supercell then multiplying by 100.

(a) Rutile structure of TiO2.                                      (b) Anatase structure of TiO2.

Fig. 4: Rutile and Anatase phases of TiO2 after doping with 4% Cr at substitutional 

sites.
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 (a) Rutile structure of TiO2.                                             (b) Anatase structure of TiO2.

Figure  5:  Rutile  and  Anatase  phases  of  TiO2 after  doping  with  4%  Nb  at 

substitutional sites.

Figures 4 (a) and (b) show the two phases of TiO2, that is, Rutile and Anatase doped 

with 4% Cr while figures 5(a) and (b) show the same structures but this time round 

doped with 4% Nb. In fig. 4, two Ti atoms were substituted with two Cr atoms, to  

achieve  a  4%  doping.  The  same  was  done  in  fig.  5,  but  now  Ti  atoms  were 

substituted with Nb. The structural properties obtained from the relaxed systems of 

undoped TiO2   shown in figures 1(a) and (b) are given in Table 1. The bond lengths 

and bond angles were determined by viewing the relaxed structures using XcrysDen 

[76].  Bond  lengths  play  a  significant  part  in  the  understanding  of  the  bonding 

mechanism in the compounds investigated.

  Table  1  shows  that  there  is  a  very  close  relation  between  calculated  and 

experimental values with the largest deviation being seen in the energy band gap 

calculation. This deviation is however well known and it is attributed to the fact that 

local density approximation (LDA) or generalized gradient approximation (GGA) 

tends  to  under  estimate  the  fundamental  gap  in  certain  cases,  due  to  the 

approximations  made  in  the  exchange-correlation  functionals  [60].  The  lattice 

constant was nonetheless found to be very near to the experimental value (+1.4% for 

Rutile phase and -1.9% for Anatase phase) while the bulk modulus and cohesive 

energy were smaller than the experimental values. This indicates under binding of 

the Ti and O atoms in TiO2, which can be improved by using GW methods [77] or 
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including the Hubbard term that is DFT+U [77], both of which were beyond the 

scope of this study. Looking at other DFT studies, one notices the trends mentioned 

earlier in the properties of TiO2, with no particular trend being followed by either the 

Anatase or Rutile phases.

Table  1:  DFT-GGA Mechanical  and Electronic  properties  of  Rutile  and Anatase 

phases  of  undoped  TiO2 obtained  after  relaxing  the  two  phases.  Percentage 

deviations are given relative to experimental values.

Parameter Calculated 
value

Experime
ntal value

Other DFT values % Deviation from
expt. value

Lattice  Constant,a0 

(Bohr)
Rutile 
Anatase

8.80
7.15

8.68 [7]
7.29 [9]

8.79 [22]
6.98 [81]

+1.4
 -1.9

Bulk  Modulus,  Bo 

Gpa
Rutile
Anatase

209.3
171.4

216.0 [7]
179.0 [9]

240 [22]
272.11 [81]

-3.1
-4.2

Band gap (eV)
Rutile
Anatase

1.89
2.28

3.0 [7]
3.2 [9]

2.0 [22]
1.948 [81]

-37
-28

Cohesive  energy 
(eV/atom)
Rutile
Anatase

19.92
20.22

22.52 [10]
22.54 [10]

21.44 [82]
21.54 [82]

-11.5
-10.3

C/a
Rutile
Anatase

0.635
2.56

0.644 [22]
2.514 [9]

0.637 [22]
2.565 [81]

-1.4
+1.8
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The values obtained in this study are ground-state results and they don't differ much 

from results  obtained at  room temperature  because  TiO2 is  a  solid  and a  slight 

change in temperature does not affect the structure of solids significantly, for their 

atoms are closely packed. The calculated lattice parameters are in good agreement 

with  available  experimental  values,  while  the  computed  bulk  modulus  of  these 

technologically  important  materials  have been determined and found to compare 

quite well with those of other first principle calculations, though differing somewhat 

from experimental values due to the reasons already discussed before.

  Table 1 shows that  the c/a parameters  for both phases of TiO2 were also well 

reproduced  in  these  calculations  compared  to  experimental  findings.  Percentage 

deviation of between -1.4% for the Rutile phase and +1.8% for the Anatase phase 

were obtained.

Table 2: DFT-GGA  calculated and experimental bond lengths of the two phases of

              undoped TiO2. The percentage deviation is given relative to the 

              corresponding experimental value.

Calculated value Experiment value % Deviation

Bond lengths (Bohr)

Rutile        Ti-O

Anatase     Ti-O

7.2

6.9

7.1 [7]

7.03 [9]

+1.4

 -1.8

Table 2 shows that the calculated values of Ti-O bonds in Rutile were slightly longer 

than the experimental ones by ~1.4%, but less than experimental value in anatase by 

about -1.8%. Such deviations could be attributed to the atomic arrangement in each 

of the two phases. Table 3 shows the percentage deviation of bond lengths after 

doping compared to calculated bond lengths before doping.
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Table 3: DFT-GGA calculated bond lengths (Bohr) before and after 2% and 4% Cr 

doping  of  the  two  phases  of  TiO2. Percentage  deviations  are  given  relative  to 

calculated values of pure TiO2 .

Before After % Deviation

Bond lengths (Bohr)

Rutile-2% Cr

Anatase-2% Cr

Rutile-4% Cr

Anatase-4% Cr

Ti-O = 7.2

Ti-O = 6.9

Ti-O = 7.2

Ti-O = 6.9

O-Ti = 7.45

O-Cr = 7.46

O-Ti = 7.02

O-Cr  = 7.05

O-Ti = 7.32

O-Cr = 7.46

O-Ti = 6.95

O-Cr =7.05

+3.6

+3.7

+1.7

+2.17

+1.8

+3.7

+0.7

+2.17

Table 3 shows that the Ti-O bond lengths after Cr doping in both phases are slightly 

elongated than the Ti-O bond lengths before doping hence slightly weaker. This can 

be attributed to the fact that Cr has a smaller radius compared to Ti , that is, Cr has  

an  atomic  radius  of 1.28 Å while  Ti  has  an  atomic  radius  of 1.40 Å . The 

calculated O-Cr bonds lengths shown in Table 3 were between 7.02 Bohr and 7.46 

Bohr, being slightly longer than the Ti-O bonds lengths in pure Rutile (6.9 Bohr and 

7.19  Bohr).  Therefore  replacing  a  Ti  atom with  a  Cr  atom only  induces  slight 

structural changes. Table 4 shows that  there is a very close relation between the 

calculated and experimental values of the bond angles of the two pure phases of 

TiO2.  This suggests that the structure was preserved after relaxation. Table 5 shows 

the percentage deviation of bond angles after doping compared to calculated bond 

angles before doping.
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Table 4:  DFT-GGA  calculated and experimental bond angles of the two phases of

                undoped TiO2 .             

Calculated value Experimental  value % Deviation

Bond angles (degrees)

Rutile :  Ti-O-Ti

             

               O-Ti-O

98.17

130.92

81.83

90.00

98.96

130.52

81.03

90.00

-0.8

+0.3

+0.9

0

Anatase

       Ti-O-Ti

        

       O-Ti-O

156.08

101.96

78.07

92.44

156.56

101.72

78.28

92.36

-0.3

-0.2

-0.2

-0.08

Table  5 shows that  on doping the two phases  with Cr,  the  bond angles  reduced 

slightly with all showing negative deviations of between -4.7% and 0% compared to 

the undoped structures. Again, this can be attributed to the smaller atomic radius of 

Cr  compared  to  that  of  Ti,  as  mentioned  before.  Table  6  shows  the  percentage 

deviation of bond lengths after doping the two phases of  TiO2 with Nb compared to 

the calculated bond lengths before doping.
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Table 5: DFT-GGA calculated bond angles before and after 4% Cr doping of the two

              phases of TiO2 .

Before After % Deviation

Bond angles (degrees)

Rutile

      Ti-O-Ti

     

     O-Ti-O

98.17

130.92

81.83

90.00

Ti-O-Ti = 96.66

              = 129.64

Cr-O-Cr = 130.89

O-Ti-O = 77.94

             = 87.38

O-Cr-O = 90.00

-1.5

-0.9

-4.7

-2.9

Anatase

       Ti-O-Ti

       

       O-Ti-O

156.08

101.96

78.07

92.44

Ti-O-Ti = 154.82

              = 100.49

Cr-O-Cr = 155.33

O-Ti-O  = 76.91

               = 91.94

O-Cr-O  =  92.41

-0.8

-1.4

-1.4

-0.5

Table 6 shows that the O-Nb bond lengths in both phases were slightly longer than 

the corresponding Ti-O bond lengths and that there is a general elongation of the 

bond lengths following the introduction of Nb. This again may be attributed to the 

fact that Nb has a smaller atomic radius compared to Ti , that is, Nb has an atomic 

radius of 1.32 Å while Ti has an atomic radius of 1.40 Å . However,  the atomic 

radii of the two atoms are not significantly different, indicating that no significant 

strain is introduced in the structure upon doping with Nb with bond lengths varying 

by 2.8-3.1%. 



47

Table 6: Calculated DFT-GGA bond lengths before and after 2% and 4% Nb doping 

of the two phases of TiO2.

Before After % Deviation

Bond lengths (Bohr)

Rutile-2% Nb

Anatase-2% Nb

Rutile-4% Nb

Anatase-4% Nb

Ti-O = 7.2

Ti-O = 6.9

Ti-O = 7.2

Ti-O = 6.9

O-Ti = 7.27

O-Nb = 7.40

O-Ti = 7.00

O-Nb = 7.10

O-Ti = 7.21

O-Nb =7.40

O-Ti = 7.00

O-Nb =7.12

+1.1

+2.9

+1.4

+2.8

+0.3

+2.9

+1.4

+3.1

   Table 7 shows that on doping the two phases with Nb, the bond angles reduced 

slightly just like in the case of doping with Cr. Again, this can be attributed to the 

smaller atomic radius of Nb compared to that of Ti. The value of the calculated bulk 

modulus and the pressure coefficient B' was 209 GPa and 6.11, respectively, for the 

undoped rutile phase. These are in approximate agreement with the experimental 

values of 216 GPa and 6.76 [22] respectively, except for the slight underestimation 

in the predicted values. Glassford and Chelikowsky [22,23] used DFT and  computer 

code  VASP and  obtained  the  values  of  B0 and  B' to  be  240  GPa  and  4.63, 

respectively.
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Table 7: Calculated DFT-GGA bond angles before and after 4%Nb doping of the

              two phases of TiO2.

Before After % Deviation

Bond angles (degrees)

Rutile

      Ti-O-Ti

     

 O-Ti-O

98.17

130.92

81.83

90.00

Ti-O-Ti = 97.75

             = 128.28

Nb-O-Nb =130.7

O-Ti-O = 79.31

              = 87.56

O-Nb-O =90.00

-0.43

-2.0

-3.0

-2.7

Anatase

       Ti-O-Ti

        

      O-Ti-O

156.08

101.96

78.07

92.44

Ti-O-Ti =156.05

              =100.58

Nb-O-Nb =156.06

O-Ti-O  = 76.91

               = 90.94

O-Nb-O = 90.22

-0.02

-1.4

-1.5

-1.6

           

   Overall, while B0 depends to some extent on the choice of the equation of states, 

the pressure coefficient B' is naturally less accurate than B0, both experimentally and 

theoretically. 

    Cohesive energy, Ecoh , is the energy needed to separate the condensed matter 

into it's constituent isolated (free) atoms. In the bulk material, cohesive energy may 

be used as a theoretical pointer to the formation energy of the crystal. 



49

5.2: Electronic properties

Fig. 6(a) shows the band structure and density of states (DOS) of undoped Rutile 

structure, while Fig. 6(b) shows the band structure and density of states of undoped 

Anatase structure.                             

   Fig. 6(a): Band structure and PDOS of undoped TiO2 Rutile structure.

Fig. 6 (a) shows a direct band gap of 1.89 eV  at R for pure TiO2 in the Rutile 

structure while Fig. 6 (b) shows an indirect band gap of 2.28 eV, from  to R. In 

both cases, there is a strong correlation between the features of the PDOS and those 

of band structures. States near the top of the valence band and in the conduction 
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band  are  dominated  by  O_2p  and  Ti_3d  orbitals  while  those  at  higher  binding 

energies centred about -17 eV for both Rutile and Anatase phases are due to O_1s 

and Ti_3d orbitals.

Fig. 6(b): Band structure and PDOS of undoped TiO2 Anatase structure. 

5.2.1: Projected density of states (PDOS)  and Band structure (BS)  for 2% and

           4% doping of rutile TiO2 with Cr.

  

   A Chromium ion has a valence of +3, that is, Cr3+ giving rise to p-type doping in 

TiO2. In this structure, a 48 atom super cell was created using VESTA (Visualization 

system  for  Electronic  Structure  Analysis)  program.  A Cr  atom  was  used  as  a 

substitute for Ti atom in the 2x2x2 TiO2 super cell. The super cell was then relaxed 

with the relaxation showing only slight atomic displacements,  indicating that  the 

incorporation of Cr atom in the Ti sites yielded little strain to the neighbouring O 

atoms. 
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Fig. 7(a): Band structure (Bs) and PDOS of dopant for 2%  doping of Rutile with Cr.

The computed PDOS and BS for 2% and 4% doping of Rutile with Cr are shown in 

fig. 7(a) and fig. 7(b). Only states for the dopant (Cr) are shown for the PDOS. A 

comparison of these with those of the undoped rutile indicate that states within the 

band gap were introduced upon doping, and that the band gap closed too, showing 

that rutile becomes a conductor on doping. Also figures 7(a) and 7(b)  shows the 

states due to the dopant in shaded (red) curves, while those due to Ti and O atoms 

are shown in solid curves.
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Fig. 7(b): Band structure and PDOS of dopant for 4%  doping of Rutile with Cr.

Fig. 7(a) shows the bands for Cr which are responsible in closing the gap seen in 

pure TiO2 during a 2% doping. It clearly shows that the states lie exactly in the band 

gap. Comparing fig. 7(a) and fig. 7(b), it is seen very clearly that there are many red 

(dashed) bands in the band gap of fig. 7(b) due to the Cr dopant, in the case of 4% 

doping. This is because  fig. 7(b) is plotted from a higher charge density of 4% Cr 

doping and hence has a higher doping level. Also, the bands in fig. 7(b) are closely 

spaced compared to the bands in fig. 7(a). Cr_3d states are found in the valence and 

conduction bands of Rutile TiO2 following 2 and 4% doping.
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5.2.2: Band Structure (BS) and Projected density of States (PDOS) for 2% and 

4% doping of Rutile TiO2 with Nb.

A similar approach was followed for 2% and 4% doping of Rutile with Nb and 
results obtained are shown in figures 7(c) and 7(d).

 

Fig. 7(c): Band structure and PDOS of dopant for 2%  doping of Rutile TiO2 with 

               Nb.
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Fig. 7(d): Band structure and PDOS of dopant for 4%  doping of Rutile TiO2 with 

               Nb.

A niobium atom has a valency of 5+, that is, Nb5+ and it normally induces n-type 

conductivity  in  TiO2.  Doping  rutile  with  Nb  was  done  so  that  there  can  be 

comparison between Cr (p-type) doping and  Nb doping (n-type). It was realized that 

during both p-type and n-type doping, the 4% doping resulted in more free carriers 

thus making TiO2 a better conductor than either 2% doping or pure TiO2. Indeed, 

figures 7(c) and 7(d) confirm earlier results in 7(a) and 7(b) that a 4% doping with 

either Nb or Cr makes Rutile TiO2 a better conductor than the 2% doping level. The 

bands responsible for closing the gap during 2% and 4% doping of anatase with Nb 

are shown in appendix B (Figures B.1 and B.2). 
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5.2.3: Band Structure (BS) and Projected density of states (PDOS) for 2% and 

4% doping of Anatase with Cr.

Figures 8(a) and 8(b) show the band structure and PDOS obtained after doping the 

Anatase phase of TiO2 with Nb at doping levels of 2 and 4%, respectively.

Fig. 8(a): Band structure and PDOS of dopant for 2% doping of Anatase with Cr. 

Fig. 8(b): Band structure and PDOS of dopant for 4% doping of Anatase with Cr.
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   As noted before, the slightly smaller ionic radius of Cr than that of Ti does not give 

much strain to the structure. Therefore replacing a Ti atom with a Cr atom only 

induces slight structural changes in Anatase just like in Rutile, and it's thus a suitable 

dopant structurally. As discussed earlier in Rutile, 4% doping of Anatase with Cr 

produces more bands of Cr in the band gap than the 2% doping, making 4% doping 

a better  conductor than 2%. The Cr bands responsible for filling the band gap are 

shown using the red colour (dashed) lines in figures 7(a) and 7(b). Figures 7(a) and 

7(b) shows clearly the role of the dopant when compared with figure 6(a). The red 

(dashed) bands are states due to Cr (dopant). The black bands are due to Ti and O 

atoms, and they don't appear in the band gap, showing that the band gap was closed 

by the introduction of Cr atoms in the TiO2 matrix. Comparing bands and PDOS of 

4% doping of Cr in Rutile and in Anatase, Anatase appears to have more bands than 

Rutile, due to the fact that the  unit cell of Rutile has 6 atoms while that of Anatase 

has 12 atoms thus resulting in more bands. 2% and 4% doping of Anatase with Nb 

was also done and similar results to those in Cr doping were obtained. The band 

structures and PDOS representing this are shown in appendix B (figures B.1 and 

B.2). In order to determine the orbitals that were responsible for different states in 

the density of states plots, these were deconvoluted as shown in figures 9(a) to 9(c), 

for undoped Rutile TiO2.
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Fig. 9(a): Projected density of states (PDOS) of undoped Rutile structure.

Figure 9(a) shows PDOS for undoped rutile TiO2, which shows clearly a band gap of 

1.89 eV, that  is  smaller than the experimentaly observed band gap of 3.0 eV as 

mentioned earlier due to the reasons alluded to ealier. Inspite of this, the PDOS do 

predict  the  correct  insulating properties  of  pure  TiO2 which is  observed through 

experimental  investigations.  The  overlap  in  the  conduction  and  valence  bands 

following  Nb doping  indicates  that  TiO2:Nb  can  be  categorized  as  a  metal.  On 

doping with Nb which is Nb5+, there is induction of n-type conductivity in TiO2 . 

This  shows  there  are  extra  free  electrons,  therefore  the  EF is  somewhat  shifted 

upwards towards the conduction band.  

   Figure  9(a)  further  shows that  the  upper valence band is  composed of  O_2p 

orbitals with a non-negligible contribution from Ti_3d orbitals. The valence band 

has a width of 5.62 eV which is in good agreement with the experimental value of 
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5.4 eV [45]. The  O_1s band located at higher binding energies approximately -16 

eV below the fermi level is 1.94 eV wide which is also in good agreement with 

experimental value of 1.9 eV [45]. The difference in energy between O_1s states 

centered at approximately -16 eV and the minimum of the conduction band (CB) is 

17.98 eV, which is again in agreement with  other calculated values of 17.0 eV [22] 

and 17.3 eV [43], and the experimental value of 16-18 eV [16]. The conduction band 

states near the energy gap  consists of two sets of  Ti_3d bands and has a narrow 

width of 5.9 eV.  Kowalczyk [45] reported an energy separation of 1.9 eV between 

the two major features in the conduction band. Such a double-peak structure is quite 

evident in the calculated PDOS in fig.9(a).  For the  rutile phase, this double-peak 

feature has it's origin in the separation between the non bonding and bonding O_2p 

states.  The two distinct CB  parts have widths of 2.6 and 3.3 eV centered at 3.0 eV 

and 6.0 eV, respectively above the Fermi level.

      Glassford and Chelikowsky [22] and also Sorantin and Schwarz [43] attributed 

this feature to crystal-field splitting of the Ti_3d band states. Their calculated widths 

for these CB's features were  2.9 and 3.3 eV and 2.6 and 2.9 eV, respectively, both of 

which show good agreement with values obtained in this study (2.6 and 3.3 eV). The 

calculated Ti_3d PDOS in figure 9(a) for Rutile shows that the separation between 

the centroids of the two peaks in the CB is about 2.7 eV. This is in close agreement 

with the experimental peak spacing of 2.5 eV [15].  The PDOS also suggest  that 

there is a substantial degree of hybridization between O_2p and Ti_3d in both the 

CB and VB regions, indicating strong interactions between Ti and O atoms in rutile 

TiO2. It also means that the excitation across the band gap involves both O_2p and 

Ti_3d states. Figure 9(b) compares PDOS of Ti_d and Nb_d states for the Rutile 

phase. Only 4% doping of Rutile TiO2 with Nb is shown, since this was found to 

have more bands than 2% doping and hence more suitable doping level. The Nb_4d 

orbital spreads over the entire region of the conduction band, implying that Nb is 

strongly hybridized with Ti and O. Nb-doped rutile TiO2 shows a different behavior 
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from the  hybridization  in  the  Anatase  structure  (fig  10(b)),  that  is  formation  of 

shallow Nb-impurity states and semiconductive carrier transport with d /dT0

[12]. 

Figure 9(b):  Calculated Rutile  PDOS before doping (upper panel)  and PDOS of 

dopant (4% Nb) (lower panel).

    

  According  to  the  present  GGA calculations  for  TiO2:Nb,  the  bottom  of  the 

conduction band consists of Ti_3d and Nb_4d orbitals. As seen in figure 9(b), Nb-

doping  in  Rutile  does  not  affect  the  shape  of  conduction  band,  indicating  that 

TiO2:Nb is well described by rigid band model [66]. It is important to note that the 

conductivity  in  Rutile  is  due  to  delocalization  of  Ti_3d  states,  and  electrons 

generated by Nb doping fills the Ti_3d-nature conduction band, which is nearly 
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parabolic.  As shown in figure  9(b),  the states responsible  for  closing the energy 

band gap during the 4% doping of Rutile with Nb atoms are the Nb_4d states and 

non-negligible Nb_1s states. On doping with Nb which is Nb5+, there is induction of 

n-type  conductivity  in  TiO2,  which  can  be  determined experimentaly  using  Hall 

effect measurements. 

  As mentioned earlier, this shows there is an extra free electron, therefore the EF is 

shifted  upwards  towards  the  conduction  band  leading  to  introduction  of  a 

delocalized donor states which are similar to the conduction band states. During 4% 

Nb-doping of Rutile, there are no significant dopant states below -2 eV and beyond 

8eV (see fig. 9(b)). This is a confirmation that the dopant states appear around the 

energy band gap. The plot representing PDOS of 2% Nb-doping of Rutile is shown 

in figure B.3 in appendix B. Since Nb5+ gives an n-type doping, it was also necessary 

to  see  the  behavior  of  PDOS  due  to  a  p-type  doping,  which  was  done  by 

investigation of PDOS created during Rutile doping with Cr3+ . 

Figure 9(c): Calculated PDOS of Rutile TiO2 (upper panel) and PDOS of dopant 

(4% Cr) (lower panel). 
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Fig. 9(c) shows the PDOS of Rutile TiO2 after doping it with 4% Cr. Notice that the 

intensity of the dopant is small compared to that of O or Ti due to the small number 

of Cr atoms added. On doping with  Cr3+ there was induction of p-type conductivity 

in  TiO2.  This  shows  there  is  introduction  of  holes  (positive  carriers)  leading  to 

introduction of swallow acceptor states. During this p-type doping, the holes act as 

vacancies  and on interaction  with an electron,  recombination occurs.  The  Cr_3d 

orbitals as well as Cr_2p orbitals spreads over the entire region of the conduction 

band, implying that Cr is strongly hybridized with Ti and O atoms within TiO2 . 

According  to  the  present  GGA  calculations  for  TiO2:Cr,  the  bottom  of  the 

conduction band consists  of Ti_3d,  Cr_3d and non-negligible Cr_2p orbitals.  As 

seen in figure 9(c), Cr-doping to Rutile does not affect the shape of conduction band, 

indicating that TiO2:Cr is well described by the rigid band model just like in the case 

of Nb doping in TiO2. It is important to note that the conductivity in rutile is due to 

delocalization of Ti_3d states,  and holes generated by Cr doping fills  the Ti_3d-

nature conduction band, which is nearly parabolic. As shown in figure 9(c), and as 

mentioned before, the states responsible for closing the band gap during the 4% 

doping of Rutile with Cr are the Cr_3d states and non-negligible Cr_2p states. These 

states  appear  exactly  within  the  band  gap  of  the  undoped  rutile  structure. 

Investigations of the formation of PDOS in 2% Cr-doping of Rutile were carried out 

and results were also in agreement with those of 4% Cr-doping of Rutile (see fig. B4 

in appendix B). During 4% Cr-doping of Rutile, there were no dopant states below 

-2 eV and beyond 13 eV (see fig. 9c) which is a much broader band than in the case  

of Nb doping. This is yet another confirmation that the dopant states appear around 

the energy band gap. 

    Unlike Rutile, the calculated energy band gap of 2.28 eV for Anatase is indirect, 

with the bottom of the CB being at R and the top of the VB is at  (see fig. 6(b)). 

The reported experimental band gap value of 3.2 eV for anatase [46] is 0.2 eV larger 

than that of Rutile. This is consistent with  the  findings of this study, which shows 



62

the gap for anatase being larger than that of rutile by 0.39 eV. The upper valence 

band of anatase is composed of O_2p orbitals with a non-negligible contribution 

from Ti_3d orbitals  (see fig 10(a)).  It  has a width of 5.17 eV which is  in good 

agreement with experimental value of 4.95 eV [45]. This study also showed that the 

upper VB width of anatase (5.17 eV) is less than that of Rutile by 0.45 eV. The O_1s 

valence band located at higher binding energies and centered at approximately -17 

eV below the Fermi level is 1.76 eV wide, and is also narrower than that of Rutile,  

and lies 17.88 eV below the CB minimum (see fig 10(a)).

Figure 10(a): PDOS of undoped Anatase structure.

The conduction band states immediately above the energy gap consists of two sets of 

Ti_3d bands and has a width of 5.05 eV. The general features of the VB PDOS for 

Anatase are quite similar to those of Rutile. In particular comparing the PDOS of 
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Anatase  shown in  fig.  10  (a)  with  those  of  Rutile  shown in  fig.  9(a),  the  only 

apparent difference appears to be the fact that the double-peak feature in the case of 

Anatase is less distinct, than in Rutile especially for the lower peak. Figure 10(a) 

shows PDOS for  undoped anatase TiO2 which are related to  the band structure 

shown in figure 6(b). The figure clearly exhibits a band gap of 2.28 eV, which is 

smaller than the experimentally observed value of 3.2 eV. Such underestimation of 

energy band gaps  is  well-known in DFT calculations  due to  the  approximations 

made in the theory. The wide band gap of 2.28 eV, reflects insulating behaviour of 

pure Anatase TiO2. Total PDOS profiles for 2%  and 4% doping of Anatase TiO2 

with Nb are shown in figures B.1 and B.2, that is, in appendix B, where the central 

Ti atom in the super cell is substituted for Nb, corresponding to 2% doping. Notably, 

EF is located inside the conduction band as a result of Nb doping, indicating that 

TiO2:Nb can be categorized as a metal. 

Fig. 10(b):  Calculated PDOS for Anatase TiO2  before doping (upper panel) and 

PDOS  the of dopant (4%Nb) (lower panel).
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Figure 10(b) compares PDOS of pure TiO2 and those from Nb dopant states for the 

Anatase phase of TiO2. The Nb_4d orbitals  spreads over the entire region of the 

conduction  band,  implying  that  Nb  is  strongly  hybridized  with  Ti  and  O. 

Furthermore, electron charge density distribution around Ti and Nb atoms coincide 

well with each other, being another evidence for the strong hybridization between Ti 

and Nb. These results might explain the high solubility of Nb into Anatase, up to 

~20% [42].  As  a  consequence  of  the  strong Ti-Nb hybridization,  each  Nb atom 

releases one electron to the conduction band, being consistent with experimentally 

observed high ionization efficiency of  more than 90% and resulting high carrier 

density exceeding 1021 cm-3 [85]. It is interesting to note that the hybridization is a 

characteristic feature to the Anatase structure. Indeed, Nb-doped rutile TiO2 shows 

different behavior, that is, formation of shallow Nb-impurity states.

   According  to  the  present  GGA calculation  for  TiO2:Nb,  the  bottom  of  the 

conduction band consists of Ti_3d and Nb_4d orbitals, and EF lies at 0.49 eV from 

the bottom of the conduction band indicating n-type conductivity. As seen in figure 

10(b),  Nb-doping  in  Anatase  does  not  affect  the  shape  of  conduction  band, 

indicating that TiO2:Nb is well described by rigid band model. As shown in figure 

10(b),  the  states  responsible  for  closing  the  band gap  during  the  4% doping of 

Anatase with Nb are the Nb_4d states and non-negligible Nb_1s states. These states 

appear exactly within the band gap of the undoped Anatase structure. PDOS in 2% 

Nb-doping of Anatase were also considered in this study, and the results were found 

to be in agreement with those of 4% Nb-doping of Anatase except for the intensity 

of the states and a few number of bands introduced (see fig. B1 appendix B).
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Figure 10(c): Calculated  Anatase PDOS before doping  (upper panel) and PDOS of 

dopant (4% Cr) (lower panel).

Figure 10(c) compares PDOS of pure TiO2 and the states after incorporation of Cr 

into the Anatase phase. This figure shows that the Cr_3d states spreads over the 

entire region of the conduction band, implying that Cr is strongly hybridized with Ti 

and O.  Furthermore,  electron  energy states  distribution  around Ti  and Cr  atoms 

coincides well with each other along the conduction band, being another support for 

the strong hybridization between Ti, Cr and O. 
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Again,  its  important  to  emphasize  that  Cr-doped  Rutile  TiO2 shows  different 

behaviour from Cr-doped Anatase TiO2, that is, formation of shallow Cr-impurity 

states and semi conductive carrier transport with d /dT0 [45].

   According  to  the  present  GGA calculations  for  TiO2:Cr,  the  bottom  of  the 

conduction band consists of predominantly Ti_3d and Cr_3d orbitals. As shown in 

figure 10(c), the states responsible for closing the band gap during the 4% doping of 

Anatase with Cr are mainly Cr_3d states.  These states appear exactly within the 

energy band gap of the undoped anatase structure. Investigations on the PDOS for 

2% Cr-doping of Anatase were carried out and results were in agreement with those 

already discussed for 4% Cr-doping of anatase. The plot representing PDOS of 2% 

Cr-doping of Anatase is shown in figure B.6 in appendix B. 

5.2.4:  Magnetic properties

Cr is magnetic, and on doping Rutile or Anatase TiO2 with Cr, there is need to check 

whether the two phases become magnetic too. This was done by carrying out Spin 

polarization before and after doping. No magnetic properties were investigated in 

the case of Nb doping since it is not magnetic. The results obtained are shown in 

figures 11(a) and (b) for the undoped rutile and doped Rutile  TiO2,  respectively. 

Figure 11(a) clearly shows that the spin up states are exactly the same as spin down 

states, indicating   that pure Rutile TiO2 is non magnetic. This is confirmed by the 

fact that both the total magnetization and the absolute magnetization are zero (see 

Table 8).
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Figure 11(a): Spin polarization for undoped bulk Rutile TiO2. 

After doping Rutile with Cr, spin polarization was also carried out on the doped cell. 

Again, spin up states were found to be exactly the same as spin down states (figure 

11(b)), showing that Cr doping did not induce any magnetic effects into Rutile TiO2 .

Table 8: Total and absolute magnetization for pure and Cr3+ doped Rutile TiO2

Before  Cr  doping After  Cr  doping

Total magnetization 0.00 Bohr mag/cell  0.00 Bohr mag/cell

Absolute magnetization 0.00 Bohr mag/cell  0.00 Bohr mag/cell
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Figure 11(b): Spin polarization states for Cr doped Rutile TiO2.

Comparing figures 11(a) and 11(b) one notices that there are more states (both spin 

up  and  spin  down)  upon  the  inclusion  of  Cr  in  the  TiO2 matrix.  It  is  reported 

elsewhere that doping Anatase with Cr does not induce a magnetic effect [88].



Chapter 6

6.0: Conclusions and Recommendations

6.1: Conclusion

  The calculated results e.g the lattice constant were found to be consistent with 

experimental  findings  and  they  showed   good  agreement  with  other  theoretical 

predictions. The present calculation is based on the density functional theory which 

is strictly valid only for the ground state. Results of first principle studies of the 

electronic and structural properties of Rutile and Anatase phases of TiO2 have been 

presented in this study. These have been compared with experimental results where 

available.  A basis  optimization  procedure  has  been  implemented  in  the  present 

calculation. 

   For ground state properties, a number of important electronic parameters such as 

band gaps and density of states have been obtained. Except for the band gap values,  

the ground state properties for the two phases are close e.g the cohesive energy. The 

Rutile structure was found to have a narrow band gap of 1.89 eV (direct), while 

Anatase had an indirect band gap of 2.28 eV.  It is well known that this results is an 

underestimation of band gaps for semiconductors and insulators, because a single 

exchange-correlation  potential  is  inadequate  for  an  insulating  system  where  the 

exchange-correlation potential is likely to be discontinuous across the gap [54,55]. 

   From comparison of Nb, Cr and Ti projected density of states, it is concluded that 

Ti_3d, Cr_3d and Nb_4d states are strongly hybridized with each other to form d-

nature conduction band. O_1s, Cr_1s and Nb_1s states are insignificant, given that 

they are core states. Substituted Nb atoms are ionized and release electrons into the 

hybridized conduction band. Nb and Cr doping does not essentially affect the band 

dispersion, and thus  the effective electron mass. These results provide consistent 

interpretation  on  the  remarkable  features  of  TiO2:Nb and TiO2:Cr  ,  that  is,  high 

carrier density of the order of 1021 cm-3  [86]    
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  This study has established that a 4% doping of TiO2 (Anatase and Rutile) with 

either  Cr  or  Nb  results  in  the  removal  of  the  band  gap  implying  improved 

conductivity rather significantly compared to pure TiO2.  More donor bands were 

observed  with  the  4% than  the  2% doping,  which   implies  improved  electrical 

conductivity. The conductivity in anatase TiO2 phase is more enhanced compared to 

rutile. The two elements that is Cr and Nb are recommended as suitable dopants in 

TiO2. The study also showed that n-type doping of TiO2 causes the shifting of Fermi 

level upwards towards the conduction band while p-type doping of TiO2 causes the 

shifting of Fermi level downwards towards the valence band. 

  Inclusion of either Cr or Nb into the TiO2 matrix did not change the structural 

properties much, with bond lengths varying between 0.3-1.4% after adding Nb and 

between 0.7-3.7% after adding Cr. It was also established that doping Rutile with Cr 

did not induce any magnetic effect.

6.2: Recommendations

The best doping level for TiO2 is 4% for both Cr and Nb, at substitutional  sites but 

higher doping levels may be considered although these may distort the structure. To 

overcome  the  problem  of  under  estimation  of  band  gaps,  the  GGA+U  pseudo 

potentials should be used, where U is the Hubbard term, although they are not easily 

available  and  they  are  also  computationally  expensive.  There  are  other  two 

approaches to enlarge the band gap. One is to apply the self interacting correction 

(SIC). In this model, the unphysical self interaction in the Hartree term is  removed 

by an orbital-by-orbital correction to the exchange-correlation potential. The SIC for 

insulators is generally applied to the VB only and can significantly improve the band 

gap  values  in  large  gap  insulators  [56-58].  The  other  is  the  Green's  function 

formalism to  study  the  self  energy  term of  quasi  particles  in  the  many particle 

systems. This approach has been quite successful, especially in semiconductors [59-

63].  This  comprehensive  study  of  TiO2 phases  will  be  helpful  for  further 

investigations of the properties of defects.
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APPENDICES

Appendix  A

Structural  Optimizations

In order to get the optimized lattice constant, the data was fitted to Birch-Murnaghan 

equation of state (equation A.1.1) [79,80] and the minimum value of the fitted curve 

produced  the  required  relaxed  bulk  lattice  constant  as  shown  in  fig.  A.1.  The 

minimum energy occurred at a value of a0 =8.8Bohr which was very close to the 

experimental value as shown by the respective deviations.
 

8.5 8.6 8.7 8.8 8.9 9.0 9.1
-362.340

-362.335

-362.330

-362.325

-362.320

-362.315

-362.310

-362.305

-362.300

-362.295

E
n
er

g
y
 (

R
y
)

Lattice Constant (Bohr)

  alat vs etot

 Fig. A.1: Total energy against lattice parameter of bulk Rutile TiO2  as obtained 

                using  PBE-GGA  functional.

Using the calculated lattice parameter of 8.8Bohr, the k-points were then optimized. 

By fixing the cutoff energy at 30Ry which is a small value that does not make the 

calculation computationally expensive during the test runs, the k-points were varied 

from a 2x2x2 grid to higher values of 9x9x9. The value of minimum energies were 

obtained with respect to the corresponding k-point grids, and then plotted. As shown 

in figure A.2 the converged k-point mesh was 8x8x8, a value that corresponded to 

the minimum energy of -362.338Ry. This value of k-points was 
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then used in all subsequent calculations involving bulk TiO2 .

      Employing the converged lattice parameter and k-points, the cutoff energy (Ecut ) 

was then optimized. The results of converged total energy are summarized in figure 

A.3.             
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Fig. A.2: Total energy against k-points of bulk Rutile TiO2 obtained using 

              PBE-GGA functionals.

Just like for lattice constant and k-points, this cut off energy was used in all the 

calculations reported in this work. Rutile TiO2 has a tetragonal structure therefore 'a' 

is equal to 'b' but not equal to 'c'. There was need to calculate the c/a ratio, as shown 

in  figure  A.4.  Regarding  the  bulk  modulus,  usually  it  effectively  measures  the 

curvature of the energy versus volume curve about the relaxed volume. In this work, 

it was calculated by fitting the Birch-Murnaghan equation of state [71,72] within the 

Q.E  code,  which  performs  a  least  squares  fit  to  the  calculated  points.  The 

programme extracts the equilibrium lattice constant ao ,the bulk modulus Bo and the 
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pressure derivative of bulk modulus B'o .The Murnaghan equation of state is given 

by equation

   EV =E0
B0V 

B0
'
−1 [B0

' 1−V 0

V  
V 0

V  
B0

'−1

] …...................................(A.1.1)

where, V0 and E0 are the equilibrium volume and energy, respectively, B0 the bulk 

modulus while B0
' is it's derivative with respect to pressure. In real applications bulk 

modulus is a measure of the stiffness of a material described mathematically using 

equation

B=V 0

∂P
∂V 

…............................................................................................(A.1.2)
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 Fig. A.3:   Total energy against the cut off energy obtained for bulk Rutile TiO2 

                  using DFT, PBE-GGA  calculations.
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Fig. A.4: Total energy against  c/a of bulk Rutile using DFT PBE-GGA calculations.
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Fig. A.5: Total energy against lattice parameter of bulk Anatase as obtained using  

            DFT  PBE-GGA calculations.
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Fig. A.6: Total energy against k-points of bulk Anatase obtained using DFT PBE-

              GGA calculations.
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   Fig. A.7: Total energy against the cut off energy obtained for bulk Anatase using   

                 DFT PBE-GGA caculations.
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Fig. A.8: Total energy against c/a of bulk Anatase TiO2 using DFT PBE-GGA

              calculations.



Appendix  B

Density of states and band structures

Fig. B.1:  Dopant states for 2% doping of bulk TiO2 Anatase with Nb.
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 Fig. B.2:  Dopant states for 4% doping of  bulk TiO2 Anatase with Nb.
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Fig. B.3: Calculated PDOS for Rutile TiO2 before doping (upper panel) and PDOS 

of the dopant (2% Nb) (lower panel).
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Fig. B.4: Calculated PDOS for Rutile TiO2 before doping (upper panel) and PDOS 

of the dopant (2% Cr) (lower panel). 

Fig. B.5: Calculated PDOS for Anatase TiO2 before doping (upper panel) and PDOS 

              of the dopant (2% Nb) (lower panel).
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Fig. B.6: Calculated PDOS for Anatase before doping (upper panel) and PDOS of 

the dopant (2% Cr) (lower panel).
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Publications and Conference Presentations of this Work 

C.1  Conference

1. W. M. Mulwa, N. W. Makau  and G. O. Amolo, 1st Inaugural Conference 

    on Nanotechnology and material science development, Kenyatta University, 

    Kenya, 18th -21st  July 2012.

2. K.K. Korir, W.M.Mulwa, P.B. Kandie, N.W.Makau and G.O.Amolo, proceedings 

   of the  4th National conference on Dissemination of Research results and exhibition 

    of innovations, pg 510-519, 3rd to 6th May 2011 (KICC), Nairobi.

3. W. M. Mulwa, N. W. Makau and G. O. Amolo, Workshop on Materials for 

    Renewable Energy Applications, International Center for Theoretical Physics 

    (ICTP), Trieste, Italy, 17th -21st October 2011.
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Appendix  D

Rutile TiO2 inputfile
&CONTROL 
     restart_mode='from_scratch', 
     calculation='scf', 
     pseudo_dir='/home/winnie/espresso-4.2/pseudo', 
     prefix = 'TiOsc_exc2', 
     tstress =.t., 
     tprnfor =.t., 
     nstep = 1000, 
/ 
&SYSTEM 
     ibrav=6, 
     celldm(1)= 8.7, 
     celldm(3)= 0.631833, 
     nat=  6, ntyp= 2, 
     ecutwfc = 30,
     occupations='smearing', 
     smearing='marzari-vanderbilt', 
     degauss=0.05, 
/ 
&ELECTRONS 
      mixing_mode = 'plain', 
      mixing_beta = 0.7, 
      conv_thr = 1.0d-6,      
/ 
ATOMIC_SPECIES 
  Ti 47.867 Ti.pbe-sp-van_ak.UPF 
  O 15.9994 O.pbe-van_ak.UPF 

ATOMIC_POSITIONS {crystal} 
Ti       0.000000000   0.000000000   0.000000000 
Ti       0.500000000   0.500000000   0.500000000 
O        0.305413244   0.305413244   0.000000000 
O        0.805413244   0.194586756   0.500000000 
O       -0.305413244  -0.305413244   0.000000000 
O       -0.805413244  -0.194586756   0.500000000 

K_POINTS automatic 

 4 4 4 0 0 0
89


