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ABSTRACT

Malaria remains a leading cause of mortality and morbidity among children under five
and pregnant women in sub-Saharan Africa. It is however preventable and controllable
provided current recommended interventions are properly implemented. Malaria
transmission is highly variable across Kenya because of the different transmission
intensities. The challenges posed by malaria and the targets for a malaria-free world call
for the understanding of malaria dynamics and determining the effective and optimal
strategies for preventing and controlling the spread of malaria. Better utilization of
malaria intervention strategies will ensure the gain in the value for money by developing
a better understanding (and better articulation) of costs and results so that more informed,
evidence-based choices are made. The study formulated and analyzed a deterministic
model for malaria transmission dynamics with four malaria control strategies used in
Kenya namely: Insecticide Treated Nets (ITNs), treatment, Indoor Residual Spraying
(IRS) and Intermittent Prevention Treatment for pregnant women (IPTp). The study
further formulated an optimal control problem and derived expressions for the optimal
control for the malaria model with four control variables, with the aim of minimizing
total mosquito population, infected individuals and exposed individuals while keeping the
cost low for different transmission settings in Kenya. Cost effective analysis of one or all
possible combinations of malaria control strategies for different transmission settings was
carried out to assess the extent to which the intervention strategies were beneficial and
cost effective. Collected data from both published and hospital records (in Kisumu, Kisii,
Chuka and Nyeri representing the four different transmission settings/ epidemiological
zones in Kenya) were used to estimate the parameters for the malaria model. Numerical
simulations were done in the R Statistical Computing platform. Numerical simulations
indicated that malaria control strategies have effect in lowering exposed and infected
members of both human and mosquito population. The most sensitive parameters were
mosquito death rate and mosquito biting rate. The optimal control strategies for malaria
control in both endemic and epidemic-prone areas was the combined use of treatment and
IRS; in seasonal areas it was the use of treatment; and in low risk areas was the use of
ITNs and treatment. The most cost-effective intervention strategies in endemic areas was
the combination of treatment, IRS and IPTp; in epidemic-prone areas it was the use of
treatment and IRS; for seasonal areas it was the use of ITNs and treatment, and for the
low risk areas it was the use of treatment. In order to minimize malaria transmission in
Kenya, the study recommends interventions strategies targeting to reduce mosquito
population and mosquito bitting rates. Strategies targeting to reduce mosquito population
and mosquito biting rates (vector control) such as ITNs and IRS should be implemented.
The study recommends optimal use of treatment and IRS for both endemic and epidemic
prone areas, treatment for seasonal areas, and ITNs and treatment for low risk areas. The
recommended cost effective strategies for malaria control are use of IRS and IPTp for
endemic area, use of treatment and IRS for epidemic-prone areas, use of ITNs and
treatment for seasonal and use of treatment for low risk areas. This study provided useful
tools that can guide policy makers in designing interventions that suits the groups most at
risk for malaria (i.e. under five year-olds and the pregnant women) for different
transmission settings, post-2015 malaria eradication strategies and achievement of the
UN Sustainable Development Goals.
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CHAPTER ONE
INTRODUCTION

1.1 Background Information

Malaria remains the leading cause of mortality and morbidity among the children under
five years of age and the pregnant women in Sub-Saharan Africa (WHO Malaria Report,
2014). These groups are at high risk due to weakened and immature immunity
respectively. The burden is largely in sub-Saharan Africa where 91% of deaths occurred,
with pregnant women and children under five years of age being the most at risk of
infection and adverse outcomes (WHO Malaria Report, 2014). Each year, there are an
estimated 25 million pregnancies in sub-Saharan Africa at risk of malaria, the
consequences of which can be serious for both mother and foetus in terms of morbidity

and mortality.

In Kenya most hospital admissions and deaths from malaria are from children under five
years of age and pregnant women because there immunity is compromised at these levels
of life (DOMC, 2010). Malaria accounts for 30-50% of all outpatient attendance and 20%
of all admissions to health facilities (KNBS & ICF Macro, 2010). Most Kenyans are
vulnerable to malaria because of poverty, inadequate health care infrastructures and low
income of the country. The level of endemicity of malaria in Kenya varies from region to
region and there is a big diversity in risk of malaria infection largely driven by climate

and temperature which includes the effects of altitude.

Malaria is a disease of the blood that is caused by Plasmodium parasite transmitted from
person to person by certain types of mosquitoes and bites of the infected mosquito. The
four parasite species that cause malaria in humans are Plasmodium falciparum,
Plasmodium vivax, Plasmodium malariae and Plasmodium ovale (WHO Malaria Report,
2014). Plasmodium falciparum which causes the severest form of the disease accounts
for 98 percent of all malaria infections in Kenya (DOMC, 2010). After infection, the
parasites called sporozoites travel through the bloodstream to the liver, where they
mature and release another form, the merozoites which then enter the bloodstream and

infect red blood cells. Thereafter, the parasites multiply inside the red blood cells, which



then break open within 48 to 72 hours, infecting more red blood cells. The first symptoms
usually occur 10 days to 4 weeks after infection, though they can appear as early as 8
days or as long as a year after infection (Okosun & Makinde, 2011). Malaria may also be
transmitted from a mother to her unborn infant before or during delivery (congenital

malaria).

Symptoms of malaria include fever and flu-like illness, including shaking chills,
headache, muscle aches, and tiredness. Nausea, vomiting, and diarrhea may also occur.
Malaria may cause anemia and jaundice (yellow coloring of the skin and eyes) because of
the loss of red blood cells. If not promptly treated, the infection can become severe and
may cause kidney failure, seizures, mental confusion, coma, and death. For most people,
symptoms begin 10 days to 4 weeks after infection, although a person may feel ill as
early as 7 days or as late as 1 year later (WHO Malaria Report, 2014; DOMC, 2010).

Malaria transmission is highly variable across Kenya because of the different
transmission intensities driven by climate and temperature. Kenya has four malaria
epidemiological zones (Guerra et al., 2008). The endemic areas of stable malaria have
altitudes ranging from 0 to 1300 meters and these are areas around Lake Victoria in
western Kenya and in the coastal regions. Rainfall, temperature and humidity are the
determinants of the perennial transmission of malaria. The seasonal malaria transmission
are in arid and semi-arid areas of northern and south-eastern parts of Kenya which
experiences short periods of intense malaria transmission during the rainfall seasons.
Temperatures are usually high and water pools created during the rainy season provide
the malaria vectors breeding sites. The malaria epidemic prone areas of western
highlands of Kenya where malaria transmission in the area is seasonal, with considerable
year-to-year variation. The increase in minimum temperatures during the long rains
period favours and sustains vector breeding resulting in increased intensity of malaria
transmission. Low risk malaria areas covers the central highlands of Kenya including
Nairobi. The temperatures are usually too low to allow completion of the sporogonic
cycle of the malaria parasite in the vector. In Kenya, high transmission accounts for 36%,
Low transmission (40%) and malaria free (24%) (WHO Malaria Report, 2014).



Malaria is an entirely preventable and treatable disease, provided the currently
recommended interventions are properly implemented. Controlling malaria transmission
involves interrupting the malaria transmission for specific transmission settings since
malaria is heterogeneous. With the recent conversion of the Millennium Development
Goals (MDGs) to Sustainable Development Goals (SDGs) as part of Global Malaria
Action Plan for a malaria-free world by 2030, reducing malaria is critical to achieving the
SDGs such as ensuring healthy lives and promote well-being for all at all ages. At the
moment several African countries are working towards achieving malaria elimination
(WHO Malaria Report, 2014). Kenya is currently implementing the 2009-2017 National
Malaria Strategy (DOMC, 2009) as part of the health sector programmes within the
framework of the Kenya Vision 2030 long term development blueprints.

Malaria is highly heterogeneous across different settings in Sub-Saharan Africa implying
that different intervention strategies will be most effective in different settings (Guerra et
al., 2008). Prompt access to effective treatment for malaria is unacceptably low in Kenya
due to the socio-economic barriers to accessing health care. The challenges posed by
malaria calls for the effective and optimal strategies for preventing and controlling the
spread of malaria disease. Hence the need to understand the dynamics of malaria disease

transmission.

People living in poor rural areas are confronted with a multitude of barriers when
accessing malaria prevention and treatment. Lack of skilled health personnel and
equipment add to the general burden of poverty; insufficient knowledge about health
care, problems connected to accessing the health facility in time, insufficient initiatives to
prevent malaria attacks, and a general lack of attention to the long term debilitating
effects of a malaria (DOMC, 2010). These challenges call for urgent need for a better
understanding of important parameters in the disease transmission and develop effective

and optimal strategies for prevention and control of the spread of malaria disease.

The current reduction in the number of malaria related cases are due to the scale up
efforts of the current malaria interventions in Kenya but there are few guidelines about
how best to deploy scarce resources for malaria control (DOMC, 2010). Better utilization

of the malaria intervention strategies will ensure the gain the value for money. Value for



money is essentially about maximizing the impact of each money spent. The purpose of
the value for money drive is to develop a better understanding (and better articulation) of
costs and results so that we can make more informed, evidence-based choices. Cost
effectiveness analysis is carried out to inform decision makers on how to determine
where to allocate resources for malaria interventions (Phillips, 2009). Cost-effectiveness
analysis is often used in the field of health services, where it may be inappropriate to
monetize health effect. The most commonly used outcome measure is quality-adjusted
life years (QALY).

The main malaria prevention strategies in pregnancy include the use of intermittent
preventive treatment with anti-malarial medications, as well as the regular and timely use
of long-lasting, insecticide-treated nets (LLITNS). Preventive chemotherapies are key
elements of the comprehensive package of malaria prevention and control measures
recommended by World Health Organization (WHO) (WHO Malaria Report, 2014).
WHO recommended preventive therapies include intermittent preventive treatment of
pregnant women (IPTp), intermittent preventive treatment of infants (IPTi), and seasonal
malaria chemoprevention (SMC). The objective of these interventions is to prevent
malarial illness by maintaining therapeutic drug levels in the blood throughout the period
of greatest malarial risk.

The current reduction in malaria related case in Kenya is attributed to the scale up effort
of the combinations of the several WHO recommended intervention strategies over the
past decades to effectively prevent, diagnose, and treat malaria (DOMC, 2010). They
include vector control through the use of long-lasting insecticide-treated bed nets
(LLITNSs), indoor residual spraying (IRS), chemoprevention for most vulnerable such as
IPTp, confirmation of malaria diagnostics through rapid diagnostics tests (RDTs) and
microscopy for every suspected case and timely treatment with artemisinin-based
combination therapies (ACTs) (WHO Malaria Report, 2014).

WHO recommends IPTp-SP for all pregnant women at each schedule of antenatal care
(ANC) for high transmission settings of Plasmodium falciparum. WHO recommends the
use of ITNs as a measure to reduce the mentioned adverse effects during pregnancy. In
Kenya, the control strategies being used include ITNs/ LLITNs, IRS, IPTp, ACTs



(Diagnosis and Treatment) their levels of effect shows that there is 44% reduction in
childhood mortality (DOMC, 2010). The optimal use of the current malaria intervention
strategies will help reduce malaria transmission and fast track the prospects towards

malaria elimination and eradication.

Mathematical models have become important tools in analyzing the spread and control of
infectious diseases. Mathematical models of epidemiology can be used to understand the
dynamics of the spread of malaria in a population (Koella & Anita, 2003; Okosun &
Makinde, 2011). The mathematical modeling can help in figuring out decisions that are
of significant importance on the outcomes. Mathematical models provide a tool with
which to explore the expected impact of different interventions against malaria, both
individually and in combination, on a range of program endpoints (Okell et al., 2008;
Smith et al., 2009). Ross (1911) developed the first mathematical model for malaria
transmission focusing on mosquito control. Since then several models have been
developed to extend his work (McDonald, 1956; Anderson & May, 1992; Ngwa & Shu,
2000; Koella & Anita, 2003) with some influencing malaria eradication programmes. No
malaria transmission model incorporating interventions strategies for different

transmission settings and for the most at risk groups for malaria exist for Kenya.

Although some of these studies considered different interventions for malaria control, the
effect of IPTp and other malaria control and prevention strategies have not been studied
in an optimal control and cost effectiveness analysis for the most at risk group for
malaria. Mathematical models for malaria intervention in Kenya is the OpenMalaria
simulation model (Stuckey et al., 2014). Optimal control is a branch of mathematics
developed to find optimal ways to control a dynamic system (Pontryagin et al., 1962).
Optimal control is a set of ordinary differential equations describing the paths of the
control variables that minimize the cost function. A control problem includes a cost
functional that is a function of state and cost variables. The optimal control problem is
solved using direct or indirect methods. The direct method uses the optimal functional
and the state system while the indirect method uses an iterative method with a Runge-
Kutta scheme. Rodrigues et al., (2009) explained that the state system with an initial
guess is solved forward in time and then the adjoint system with the transversality

conditions is solved backward in time. The optimal control efforts are carried out to limit



the spread of the disease. Application of optimal control theory can be an important tool
to estimate the efficacy of various policies and control measures and the cost of
implementing them. Since the development of the Pontryagin maximum principle by
Pontryagin et al. (1962), the theory of optimal control has been successfully used in
decision making in various applications. Different mathematical models and optimal
control approaches have been previously used to study the dynamics of transmission and
treatment of infectious diseases such as malaria (Rafikov et al., 2009), Tuberculosis
(Moualeu et al., 2015; Silva & Tores, 2012), HIV (Adams, et al., 2004), and Influenza
(Tchuenche et al., 2011). The application of optimal control in malaria have only used up
to three control measures and the use of four control variable in the optimal control is
limited.

Cost effectiveness analysis is carried out to inform decision makers on how to determine
where to allocate resources for malaria interventions especially when they are limited
(Phillips, 2009). The analysis compares the costs and health effects of an intervention to
assess the extent to which it can be regarded as providing value for money and the choice
of the technique depends on the nature of the benefits specified. The incremental cost-
effectiveness ratio (ICER) has become the common measure for cost effectiveness
analysis and is calculated in order to achieve the goal of comparing the costs and the
effectiveness of the intervention strategies (Okosun et al., 2013; Ridrogues et al., 2014;
White et al., 2011). There is no cost effectiveness analysis done for the optimal malaria
control strategies for different malaria transmission settings in Kenya considering the
most at risks age groups. No cost effectiveness analysis has been done for the IPTp for

the most at risk group of malaria.

The modeling approach presented will explore the potential for current control measures
to reduce malaria transmission in different transmission settings to a low level as laid out
in the control phase of the global elimination framework (Smith & Hay, 2009) while
keeping the cost very low. The result will be illustrated by applying the model to four
well characterized transmission sites in Kenya which represent the full range of

transmission intensity most commonly observed across Africa.



1.2 Statement of the Problem

Malaria is a leading cause of mortality and morbidity among the children under five and
the pregnant women in Kenya. Malaria accounts for accounts for 30-50% of all outpatient
attendance and 20% of all admissions to health facilities in Kenya (DOMC, 2010; WHO
Malaria Report, 2014). Malaria in Kenya is heterogeneous as a result of the different
transmission settings because of the varying intensities. This implies that different
transmission settings will require different malaria intervention strategies. Malaria is
however preventable and controllable provided currently recommended interventions are
properly implemented. There are few guidelines about how best to deploy scarce
resources for malaria control and the need for value of money calls for the cost effective
analysis of malaria interventions. The optimal use of the current malaria intervention
strategies will help reduce malaria transmission, mortality, morbidity, for post 2015
malaria strategies, achievement of Kenyan Vision 2030 and fast-track the prospects

towards malaria elimination and eradication (SDGS).

Mathematical models provide a framework for understanding the dynamics of disease
transmission and can be used to determine the effectiveness and optimal allocation of
different interventions against malaria (McDonald, 1956). Previous studies on
mathematical modelling for malaria transmission dynamics in Kenya (Stuckey et al.,
2012) did not consider the combined effect of ITNs, IRS, and natural death on reducing
the mosquito population, use of IPTp and the most at risk groups. IPTp use has shown to
have effect in reducing mortality among the under-five and the pregnant women who are
the most at risk group for malaria (Hansen et al., 2012) and it’s one of the WHO
recommended preventive therapy for pregnant women in sub-Saharan Africa but has not
been studied in modelling of malaria transmission dynamics for the most at risk groups

for malaria.

Optimal control is a branch of mathematics developed to find optimal ways to control a
dynamic system (Pontryagin et al., 1962). The theory of optimal control has previously
been successfully applied in decision making. Optimal control in malaria intervention has
not been applied to guide the design of malaria interventions strategies for the most at

risk groups for malaria and for the different transmission settings in Kenya. There is little



application of four control variables for different transmission settings in optimal control
theory in malaria control studies. Most optimal control theory malaria interventions
studies have not considered the effect of IPTP and the combined effect of ITNs, IRS, and

natural death in reducing the mosquito population.

Cost effective analysis compares the costs and health effects of an intervention to assess
the extent to which it can be regarded as providing value for money and can help guide
the optimal allocation of malaria intervention resources. The benefits and cost-
effectiveness of malaria control strategies for the most at risk groups for malaria
(pregnant women and the under five children) are less well documented, especially for

different malaria transmission settings in Kenya.

This study therefore investigates the optimal control strategies for minimizing malaria
transmission with four control variables for different transmission settings in Kenya. The
mathematical model for human-vector interactions with malaria control strategies was

used.
1.3 Objective of the Study

1.3.1 General Objective

The general objective of the study was to investigate the optimal control strategies for

minimizing malaria transmission in Kenya using mathematical modeling techniques

1.3.2 Specific Objectives

The specific objectives of the proposed study are:

(i) To formulate and analyze a model for malaria transmission dynamics with four
malaria intervention strategies in Kenya

(i1) To formulate an optimal control problem and derive expressions for the optimal
control for the malaria model with four control variables

(iii)To investigate the impact of the different combinations of malaria control and
propose the optimal control strategies for malaria control for different

transmission settings.



(iv)To carry out cost effective analysis of one or all possible combinations of malaria

control strategies for different transmission settings.

1.4 Scope of the Study

The malaria transmission model with four control strategies based on Susceptible (S) —
Exposed (E) — Infectious (I) — Recovered (R) compartmental structure for humans and
Susceptible (S) — Exposed (E) — Infectious (I) compartmental structure for mosquitoes
was used to illustrate the human-vector interaction and to derive the differential equations

for the analysis of the optimal control.

The basic reproduction number (R,) which is a fundamental parameter governing the
spread of the disease was computed using the next generation operator approach. This
provides the necessary condition for the disease to be eradicated or minimized. The
qualitative analysis of the model was conducted to determine the possibility of existence
and stability of endemic and disease-free equilibria. Sensitivity analysis was carried out
to compute sensitivity indices of the reproduction number which enables us to single out
parameters that have a high impact to the reproduction number R, and which are used to

enhance the intervention strategies.

Pontryagin’s Maximum Principle which uses the Lagrangian and Hamiltonian principles
with respect to a time dependent constant was used to derive the necessary conditions for
the optimal control of malaria disease in order to determine optimal strategies for
controlling the spread of the disease. Data was collected from the literature, Division of
Malaria Control (DOMC), Kenya National Bureau of Statistics, Malaria Indicator Survey
for Kenya, Demographic Health Survey (DHS) for Kenya, World Malaria Report 2014
by the WHO and hospital records (from Kisumu, Kisii, Chuka (Tharaks-Nithi) and Nyeri
counties representing the four different transmission settings/ epidemiological zones in
Kenya). All these collected data guided in the calculations/ estimation of parameter for
the malaria model while the unknown parameters values were assumed. Incremental Cost
Effectiveness Ratio (ICER) was done as part of the cost effective analysis. The computer

package (R Statistical Software) was used for the model simulations.
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1.5 Significance of the Study

The study will be able to evaluate the current intervention strategies and suggest
innovative intervention strategies for different transmission settings with minimum cost.
This will also inform the policy makers, the stakeholders for malaria elimination,
National Malaria Control Programs and global plan for malaria eradication. Specific
generated information will guide on how malaria can be eradicated in Kenya. Knowing
costs and outcomes of alternative control strategies is important to decision makers who
are often faced with the challenge of resource allocation. This will help in investing
resources more strategically and the targeted interventions will reach the most vulnerable
people with no barriers to access. It will also provide policy makers with information on

where resources should be allocated when these are limited.

The findings of this study will contribute to the knowledge gap and add value to the
current literature on malaria transmission dynamics, optimal control and cost
effectiveness analysis of malaria intervention strategies. Scholars and academicians
wishing to carry out research in the area of disease transmission dynamics, optimal
control and cost effectiveness analysis of malaria intervention strategies may use findings

of this study for further research.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Malaria Mathematical Models

Mathematical models of Mosquito-borne pathogen transmission originated with the work
of Ronald Ross (Ross, 1915; McDonald, 1956) and thereafter several models have been
developed to provide insights into effective eradication of malaria. Ross (1911) focused
on mosquito control and showed that mosquito population should be brought to a certain
threshold for malaria disease to be eliminated. MacDonald (1957) analyzed an updated
version of Ross model and highlighted that increasing the mortality of adult mosquito
will be more significant in the control effort of malaria transmission. The Macdonald
model influenced the decision of WHO to launch the Global Malaria Eradication
Programme (GMEP) between 1955 -1969 (McDonald, 1956). The lesson learned from
the GMEP, 1955 - 1969 was that no single strategy can be sufficient to eradicate malaria
in all areas (Najera et al., 2011).

Aron & May (1982) describe the properties of Ross-Mcdonald model, by including the
derivation of the reproductive number, R,. The reproductive number, Ry, is defined as the
number of secondary infections that one infectious person would produce in a fully
susceptible population through the entire duration of the infectious period. Yang (2000)
described a compartmental model where humans follow a Susceptible-Exposed-
Infectious-Recovered-Susceptible (SEIRS) pattern for human and mosquitoes follow a
Susceptible-Exposed-Infectious (SEI) pattern. He further stated that the disease-free
equilibrium is stable for R, < 1 and unstable when R, > 1. Li et al., (2002) derived a
model where humans move through multiple Susceptible-Exposed-Infectious-Recovered
(SEIR) stages, where a history is kept of previous infections. Ngwa & Shu (2000),
extended the works of Ross (1915) and McDonald (1957) to come up with the popular

generalized SEIR malaria model.

IPTp is one of the WHO recommended prevention therapy for the pregnant women. IPTp
has been shown to be effective in reducing maternal and infant mortality that are related

to malaria (Le Port et al., 2011; Parise et al., 1998; Shulman et al., 1999, Rogerson et al.,
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2000). Hansen et al., (2012) showed that IPTp reduced maternal mortality by 3% in low
transmission settings of Uganda.

Several modelling techniques have been previously used for to study malaria
transmission dynamics with intervention strategies. Oduro et al., (2015) modelled malaria
transmission dynamics with interventions using SEIR-SEI but not for different
transmission settings and the at risk groups. The study further did not consider the
combined effect of ITNs, IRS, and natural death on reducing the mosquito population.
Oduro et al., (2012) modelled malaria transmission dynamics but did not consider
malaria interventions, different malaria transmission settings, the most at risks groups and
the combined effect of ITNs, IRS, and natural death on reducing the mosquito population.
Stuckey et al., (2012) showed the malaria simulation model for the western highlands
Kenya without considering the most at risks groups, effect of IPTp and the different
transmission settings in Kenya. King et al., (2012) developed a SEIR-SEI mathematical
model for studying malaria transmission without incorporating the interventions,
considering the different transmission settings and the combined effect of ITNs, IRS, and
natural death on reducing the mosquito population. Griffin et al., (2010) developed model
for malaria transmission dynamics for six different sites in Africa representing the
different transmission settings in Africa but did not consider the effect of IPTp and
stratifying the population to those at risk group of malaria. Other approaches that have
been used to study malaria interventions include Markov Decision Process (Dimitrov et
al., 2012) and the openmalaria software program created by Smith et al., (2008). They
however did not stratify the population by the most at risk groups for malaria and for

different transmission settings.

2.2 Optimal Control

Optimal control is a branch of mathematics developed to find optimal ways to control a
dynamic system (Pontryagin et al., 1962). Optimal control is a set of ordinary differential
equations describing the paths of the control variables that minimize the cost function.
The cost functional equation with weights related to the costs of intervention strategies
and implementation is used. Optimal control functions have been used in the study of

optimal control in order to determine the best intervention methods for vector borne
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disease related to Dengue disease (Rodrigues et al., 2012). The optimal control is
qualitatively derived using Pontryagin’s Maximum Principle or by solving the Hamilton-
Jacobi-Bellman equation. This principle has provided research with suitable conditions
for optimization problems with differential equations as constraints. The aim of the
optimal control problem is to minimize the number of infected humans while keeping the
cost as low as possible. This approach allows studying the most cost-effective
intervention design by generating an implementation design that minimizes an objective
function. The intensity of interventions can be relaxed along time, which is not the case
considered in most models, for which interventions are modeled by constant rates
(Gomes et al., 2007).

Optimal control approach has been applied optimal control theory in controlling
infectious diseases such as tuberculosis (Moualeu et al., 2015; Silva & Torres, 2012).
Adams et al., (2004) used optimal control to examine the role of chemotherapy in
controlling the virus reproduction in HIV patients. Xiefei et al., (2007) applied optimal
control methods to study the outbreak of SARS using Pontryagin’s Maximum Principle
and a genetic algorithm. Zaman et al., (2008) used optimal control to determine the
optimal vaccination strategy to reduce the susceptible and infective individuals for a
general SIR epidemic model. Kbenesh et al., (2009) used optimal control to study a
model for vector-borne diseases with treatment and prevention as control measures. To
the best of the researcher’s knowledge, no such methods have been used in Kenya to
determine the optimal combination of malaria intervention strategies for different malaria

transmission settings and for the most at risk groups for malaria.

Optimal control theory has also been applied in malaria control to assess the impact of
antimalarial control measures by formulating the model as an optimal control problem.
The results of optimal control in malaria interventions are mixed and different. Okosun et
al., (2013) applied optimal control theory to SEIR/SEI malaria model and considered
three malaria preventive measures as control variables (use of treated bednets, spray of
insecticides and treatment of infective humans) and further assessed cost effectiveness of
the interventions. The findings indicated that the most cost-effective strategy for malaria
control was the combination of the spray of insecticides and treatment of infective

individuals. He however did not stratify the population into the under-five and the
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pregnant women who are at risk population for malaria and did not assess the effect of
IPTp and the combination effect of ITN, IRS and natural death on mosquito population
for different malaria transmission settings. Mwamtobe et al., (2014) used three control
variables (IRS, ITNs and treatment) in a SEIR/SEI malaria model and for only one region
in Malawi. The findings indicate that the most cost effective control measure was ITNs
and IRS complemented with timely treatment. The study however did not stratify the
population into under-five and the pregnant women, the effect of IPTp together with the
combined effect of ITN, IRS and natural death on mosquito population was not
investigated. Kim et al., (2012) investigated the optimal control strategy for Plasmodium
vivax malaria transmission in Korea using two control efforts in SEI/SI malaria model
type. The findings show that the cost of reducing the reproduction rate of the mosquito
population was more than that of prevention measures to minimize mosquito-human
contacts. The study did not stratify the population into at risk groups and the effect of
IPTp together with the combined effect of ITN, IRS and natural death on mosquito
mortality was not investigated. Agusto et al., (2012) used three system control variables
(ITN, IRS, treatment) using SEIR/SEI malaria model. The findings indicated that the
combination of the three controls had the highest impact on the control of the disease.
The effect of the combination of ITN, IRS and natural death on mosquito mortality was
however not investigated together and the population was stratified by those at risk age
group and pregnant women. Silva & Torres (2013) presented an optimal control approach
and used only one control variable (use of ITNs) using SI/SI malaria model. The findings
showed the effectiveness of the optimal control interventions. The study did not consider
other malaria control variables such as IRS, treatment and IPTp in addition to the
combined effect of ITN, IRS and natural death on mosquito mortality and stratifying the
population by at most risk group for malaria. Otieno et al., (2014) provided a general
explanation of optimal control using four control variables in which additional control
variable (IPTp) was introduced into the model. IPTp effect in optimal control theory has

not been investigated and this will be done in this study.

2.3 Cost-Effectiveness Analysis

Cost effective analysis compares the costs and health effects of an intervention to assess

the extent to which it can be regarded as providing value for money. White et al., (2011)
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conducted cost effective analysis for malaria interventions through systematic review but
not for different transmission setting and for the at risk groups. Ridrogues et al., (2014)
conducted cost effective analysis using ICER but for TB. Okosun et al., (2013) conducted
cost effective analysis using ICER for three malaria intervention strategies and not for
different transmission settings. He further did not consider the cost effective intervention
strategies for the at risk group i.e. the pregnant and the under five children. No cost
effective analysis of the optimal control strategies for malaria has been done for the at

risk group showing the effect of IPTp and different transmission settings.

The review of the literature shows that IPTp has effect on reducing mortality among the
under-five and the pregnant women who are the most at risk group for malaria. Most
malaria models for analyzing transmission dynamics for malaria with interventions are
the standard SEIR-SEI models. The review also shows that the combined effect of ITNs,
IRS, and natural death in reducing mosquito population has not been demonstrated in
modelling of malaria transmission dynamics. The effect of IPTp which is WHO
recommended preventive therapy for the most at risk group for malaria (pregnant
women) has not been studied as part of modeling transmission dynamics of malaria with

interventions.

The review of literature shows that very few studies have been applying optimal control
theory to malaria transmission models for different transmission settings. Most malaria
models for analyzing effect of interventions in optimal control used the standard SEIR-
SEI models. The combined effect of ITNs, IRS, and natural death on reducing the
mosquito population has not been demonstrated in optimal control theory for malaria
control. There is no cost effectiveness analysis that has been done for the optimal malaria
control strategies for different malaria transmission settings in Kenya considering the

most at risks groups.

The effect of IPTp which is WHO recommended preventive therapy for the most at risk
group for malaria (pregnant women) has not been studied in optimal control theory. No
model for malaria transmission dynamics incorporating interventions strategies exist for
Kenya. No study has been done in Kenya to evaluate the optimal control strategies for

malaria interventions for different transmission settings. No model for malaria
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transmission dynamics incorporating the IPTp exist for Kenya. No malaria dynamics
model with interventions has been stratified by the most at risk groups for malaria (under
five and pregnant women). No optimal control model for four control variables
incorporating the IPTp malaria intervention studies exits for Kenya. No optimal control
model has been stratified by the age group (under five) and specific categories (pregnant
women). No cost effective analysis for the optimal malaria control strategies has been
done for different transmission settings in Kenya. No cost effectiveness analysis has been
done for the WHO recommended malaria control strategies for the most at risk groups for

malaria.

This study formulated and analyzed a model for malaria transmission dynamics which
incorporated four intervention strategies used in Kenya, formulated an optimal control
problem and derived expressions for the optimal control for the malaria model with four
control variables and then use optimal control theory to study the impact of one or all
possible combinations of four malaria control strategies, and carried out cost effective
analysis of one or all possible combinations of the optimal malaria control strategies for

different transmission settings.
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CHAPTER THREE
METHODOLOGY

3.1 Introduction

This chapter illustrates the approach for formulating and analyzing the malaria control
model with intervention strategies. We have a description of the human-vector model,
stating the assumptions and definitions of the various parameters of the model. Analysis
of the proposed model is done. Parameters for the malaria model are described and

sensitivity analysis is also done.

The malaria dynamics model is extended and an optimal control problem is formulated.
We formulate an optimal control model for malaria disease in order to determine optimal
prevention (ITNs, IRS and IPTp) and treatment strategies with minimal implementation
cost. Using Pontryagin maximum principle we derived and analyzed the necessary
conditions for the optimal control of malaria with effective use of ITNs, treatment, IRS
and IPTp.

After using the optimal control to investigate the optimality of the intervention strategies
being practiced at different transmission settings in Kenya, economic evaluation of the
strategies is carried out by performing a cost-effectiveness study to determine the most
cost-effective as one or combination of the four intervention strategies namely, treatment
effort of infected individuals, ITNs, IRS and IPTp

3.2 Formulation of Malaria Model with Intervention Strategies

A deterministic malaria transmission dynamics model with intervention strategies for the
most at risk groups for malaria (under five children and the pregnant women) is
formulated and analyzed. The population under study is subdivided into compartments
according to the individual’s disease status. We consider a seven-dimensional model,
which consists of population of Susceptible S;, , Exposed humans E}, , Infected humans I,
, Recovered humans Rj, , Susceptible mosquitoes S,, , Exposed mosquitoes E,, and
Infected mosquitoes I,,,. The total population sizes at time t for humans and mosquitoes

are denoted by N, (t) and N,,(t) respectively. We employ the SEIRS type model for
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humans to describe a disease with temporary immunity on recovery from infection.
Mosquitoes are assumed not to recover from the parasites so the mosquito population can
be described by the SEI model. In the model we incorporate four time dependent control
measures simultaneously: (i) the use of treated bednets u, (t) , (ii) treatment of infective
humans u, (t) , (iii) spray of insecticides us(t) and (iv) treatment to protect pregnant
women and their new born children: intermittent preventive treatment (IPTp) for
pregnant women u,(t) . The SEIRS/ SEI model were chosen in line with what is known
in the literature on optimal control in malaria interventions as used by Ngwa & Shu
(2000), Mwamtobe et al., (2014), Okosun et al., (2013), and Agusto et al., (2012).

The susceptible pregnant and under five human (S,) are recruited at the rate, A;. They

either die from natural causes (at a rate u,) or move to the exposed class (E;) by

acquiring malaria through contact with infectious mosquitoes at a rate (1 — u,) Belflm Sh
h

or (1 —uy,) Beblm Sy, Where B is the transmission probability per bite, € is the per capita
hw

N
biting rate of mosquitoes, ¢ is the contact rate of vector per human per unit time, u,(t) €
[0,1] is the preventive measure using ITNs, u,(t) € [0,1] is the preventive measure using
IPTp, I,(t) is the infectious mosquitoes at time t, N,(t) is the total number of
individuals (pregnant and under 5) and Ny, (t) is the total number of pregnant women.
Susceptible class S, is divided into whole population (under five years and pregnant
women) being exposed and the population for the pregnant women being exposed.
Exposed individuals move to the infectious class after the development of clinical
symptoms at the rate a;,. Infectious individuals are assumed to recover at a rate b + tu, ,
where b is the rate of spontaneous recovery, u,(t) € [0,1] is the control on treatment of
infected individuals and 7 € [0,1] is the efficacy of treatment. Infectious individuals who
do not recover die at a rate &, + up, - Individuals infected with malaria suffer a disease
induced death (for pregnant and under 5) at rate of &, and natural death y,;. Infected
individuals then progress to partially immune group where upon recovery the partially

immune individual losses immunity at the rate ¥ and becomes susceptible again.

Susceptible mosquitoes (S,,,) are recruited at the rate A,, and acquire malaria infection

(following contact with humans infected with malaria) at the rate 4,,. They either die
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from natural causes (at a rate u,,) or move to the exposed class by acquiring malaria

through contacts with infected humans at a rate (1 —u,) M’I’l

Sm, where A is the

probability for a vector to get infected after biting an infectious human and I, (t) are
individuals infected by malaria at time ¢ . The mosquito population is reduced, due to the
use of insecticides spray, at a rate pus, where uz(t) € [0,1] represents the control due to
IRS and p represents the efficacy of IRS. Mosquito population is also reduced as a result
of natural death (u,,) and at the rate au,, where u,(t) represents the control due to ITNs
and a is the efficacy due to ITNs. Newly infected mosquitoes are moved into the exposed
class (E,,) at a rate a,,, and progresses to the class of symptomatic mosquitoes (I,,). 4,, =

Aj\‘f " is the percapita incidence rate among mosquitoes (force of infection for susceptible

BE¢Im

vectors), and 4, = Is the force of infection for susceptible humans (pregnant and

under 5), A, = B;‘“m
hw

iIs the force of infection for susceptible pregnant humans and Ny,

is the total population for pregnant women. The total population sizes for the human
(pregnant and under 5) is N, (t) = S, (t) + E,(t) + I (t) + R, (t) and for vector is N,,(t) =
Sm@®) + En(t) + 1,(t) .

The model state variables are represented and described in Table 3.1. Table 3.2 presents
and describes the parameters of the model. Table 3.3 represents and describes the malaria

prevention and control strategies practiced in Kenya
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Table 3.1: State variables of the malaria model

Symbol Description

Sp(t) Number of susceptible individuals (pregnant and under 5) at time t
En(t) Number of exposed individuals (pregnant and under 5) at time t
I(t) Number of infectious humans (pregnant and under 5) at time t
Ry (t) Number of recovered humans (pregnant and under 5) at time t
Sm(t) Number of susceptible mosquitoes at time t

En(t) Number of exposed mosquitoes at time t

L, (t) Number of infectious mosquitoes at time ¢t

Ny, (t) Total number of individuals (pregnant and under 5) at time ¢t
Ny (1) Total number of pregnant women at time ¢

N, (1) Total mosquito population at time t

Table 3.2: Prevention and control variables in the model

Symbol Description
u,(t) Preventive measure using insecticide treated bed nets (ITNs)
u,(t) The control effort on treatment of infectious individuals
us(t) Preventing measure using indoor residual spraying (IRS)
Uy (t) Preventive measure using intermittent preventive treatment

for pregnant women (IPTp)
Rate constant due to use of indoor residual spraying
Rate constant due to use of treatment effort

Rate constant due to use of insecticide treated bed nets
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Table 3.3: Description of parameter variables of the malaria model

Parameter Description
¢ Mosquito contact rate with human
€ Mosquito biting rate
B Probability of human getting infected
A Probability of a mosquito getting infected
Un Per capita natural death rate of humans
Um Per capita natural death rate of mosquitoes
Y Per capita rate of loss of immunity by recovered individuals
ap Humans progression rate from exposed to infected
A Mosquitoes progression rate from exposed to infected
Ay Recruitment rate of human by birth and by getting pregnant
A, Recruitment of mosquitoes by birth
On Per capita disease induced death rate for humans (pregnant
and under 5)
b Proportion of spontaneous individual recovery
An Force of infection for susceptible humans (pregnant and under
5) to exposed individuals
Anw Force of infection for susceptible pregnant humans to exposed
individuals
Am Force of infection for susceptible mosquitoes to exposed

mosquitoes

Putting the above formulations and assumptions together gives the following vector-host

model (Figure 3.1).
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Figure 3.1: Malaria model with interventions

The following systems of non-linear differential equations describing the dynamics of

malaria in human and mosquito populations together with interventions

dsy
ar Ap + YRy — (1 —u)ApSy — (1 — ug)ApySp — unSn

dE
d_th = (1 —u)ApSp + (1 — ug)Apy, Sy — (ap + up)Ep

dl
d_th = apEyp — (6p + uply — (b + Tur)ly

dR,
e (b + tux)lp — (Y + pp)Ry

S,

W = Ay — (1- ul))lmsm - (Um +auq + pUB)Sm

dE,,

dt - (1 - ul)/lmsm - amEm - (.um + au, + puS)Em
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dl,,

E = aqmEm — (Um +au, + puB)Im-

(3.1)

3.3 Analysis of the Malaria Model with Intervention Strategies

We will assume that the control parameters are constant so as to determine the basic
reproduction number, steady states and their stability as well as the bifurcation analysis.
We describe the basic properties of the formulated malaria model with control strategies
through mathematical analysis of the model. The model is analyzed to check if malaria
disease can be controlled (eliminated). First, we determine the invariant region to check
whether the SEIR-SEI malaria model is in a biologically feasible region for both human
and mosquito populations and showing that all solutions of equation (3.1) are positive for
all t > 0 and are attracted in that region. Then existence of disease free equilibrium
points, followed by the derivation of the reproduction number. Stability analysis of the
disease free equilibrium is done (local and global). Establishing for the existence of the
endemic equilibrium points is done together with the local and global stability of the
endemic equilibrium point. Lastly, sensitivity analysis of the reproductive number is also

done.

3.3.1 Positive Invariant Region
The total population sizes are N, = S, + E, + I, + R, and N, = S,, + E,,, + I, with
their differential equations

Ny, S, En Iy Ry
R o T T Ay = Splh — N,
ar —at Tat Tac Tae = An T Ontn Hnln

(3.2)

=t T = Ay — N — QU Ny — PUgNin.

(3.3)

The Theorem below shows how the positive invariant region can be obtained
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Theorem 3.1: The solutions of the system (3.1) are feasible for all t > 0 if they enter the

invariant region D = Dy, X D,,
Proof:

Let D, = (S, En, In, Ry Sy Emy Im) € R7 be any solution of the system (3.1) with non-

negative initial conditions.

Assuming the disease does not kill (6, = 0) or in the absence of the disease (malaria),

that is, I, = 0, equation (3.2) becomes

Nh<A UnN,
Nh+,uN A
dt h‘Vh h

(3.4)

Using the differential equation of the form y' + p(t)y = q(t) we have p(t) = u, and
q(t) = Ay. Therefore the integrating factor (IF) for (3.4) is given by

IF = el p®)dt — o[ ppdt — punt
Multiplying both sides of equation (3.4) by e#t give

dN,,

el’tht
dt

+ ,uhNhe“ht < e'uhtAh
i(N eﬂht) < eHntp, .
dt h = h

(3.5)

Integrating both sides of equation (3.5) we have

Nheﬂht = ﬁe”ht +c
Upt

where c is the constant of integration

Ap
Nh :_eﬂht X

Upt
it ot + ce
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Ny = — 4 ce7Hnt,
Unt

Using the initial conditions at t = 0, N, (0)

N(0)<A“+ N,,(0) An
— —) — —
P et ¢ " Unt ¢

A A
Nh < _h+ (Nh(O) ——h> e Hnt,
HUn HUn

(3.6)
Using the theorem of differential inequality (Birkhoff & Rota, 1982), we obtain
Ap
0<N,<—ast - o,
Hn
(3.7)

Therefore, as t — oo in (3.6), the human population N, approaches K = % (that is, Nj, =
h

K = %), the parameter K = Lﬁ is usually called the carrying capacity (Namawejje, 2011).
h h

Consider the feasible region D = D, U D,,, € R} x R3

Hence all feasible solutions set of the human population of the model (3.1) enters the

region

Ri:sh+Eh+Ih+Rh

A
D, = {(Sh,Eh,Ih, Ry) € R%:S, > 0,E, > 0,1, = 0,R, = 0,N,, < u_h}
h

Similarly the feasible solutions set for the model (3.1) is given by

R3:S, + E,, + I,

A
D :{S,E L)ER3:S >0E, >01,>0N, < uL }
m (m m m) + m m m m ,le+au1+pU3

Therefore, the feasible solutions set for the model (3.1) is given by
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D= {(Shy Eh; Ih; Rh; Smi Emi Im) € RZ (Shl Sm) > 0; (Ehl Ihl Rhl Em: Im) = 01 Nh

A A
< —h;Nm < = }
HUn HUm + auy + pus

Therefore, the region D is positively-invariant (i.e. solution remain positive for all times,
(t) and the model (3.1) is biologically, epidemiologically meaningful and mathematically
well-posed in the domain D. Therefore in this model it is sufficient to consider the
dynamics of the flow generated by the model (3.1). In addition, the usual existence,

uniqueness and continuation of results holds for the system

3.3.2 The Positivity of State Variables

It is important to prove that all the state variables remain non-negative for all t > 0 for
the system (3.1).

Theorem 3.2: Let the initial data be {(5,(0),S5,,(0)) >
0, (Ex(0),1,(0), Ry(0), E,,(0),1,,(0)) = 0} € D. Then the solution set
{Sn, En, I, Ry, Sy Emy L 3 (t) Of the system (1) is positive for all t > 0.

Proof:

From the first equation in the model (3.1), we have

ds,
ar Ap + YRy — pupSp — (1 —ug)Ap Sy — (1 — ug)Apy, S

> —upSp — (1 —u A8y, — (1 — ug)Apy Sy
ds
d_th > —(up + (1 —upDA, + (1 — ug)py,)Sh

Using separation of variables and integrating both sides gives
1
550> = [ G (L= )2+ (1= ) )

InS, = —(up + (1 —u)Ay + (1 —uy)Ap, St + ¢

Su(t) = e~ (un+(1-u)Ap+(1-us)ApwSplt+c]



Sp(t) = e~ t(A-u)Ap+(1~u)ApwSHIt ¢ o€
Sp(8) = e~ Unt(-u)An+Q-u)Aw St « g
Sy(t) = K e~ nt1-ud)An+(1-ud)AnwSp)t
Sp(t) = K e~ (ntQ-ud)n+1-u)ApwSp)t
Using the initial conditions: t = 0, S,(0) = K
= Sp(t) = Sh(O)e_(ﬂh+(1—u1)lh+(1—u4)1hwsh)t >0,
Therefore
Sn(t) = Sp(0)e =G+ (Amunht G-ttt > o,
From the second equation,

dE),
a (1 —u)ApSp + (1 — ug) Ay Sy — upEp — anEp

dE,
w T (1 = u)ApSp + (1 — ug)Apw Sy — unEn — apEp = —(up + ap)Ey

1
j_dEh = J _(,Uh + ah)dt
En

In(Ey) = —(up + ap)t +c¢
— Eh(t) = e~ (untap)t+c
En(t) = Ke~(bntanlt
where K = e€.
Therefore
E, = Ep(0)e~Wn+ant > g,
From the third equation we have

dl,
a apEp — (6p + up)ln — (b + Tux)ly

27
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dl

d_th = anEy — (Op + up)ly — (b + tux)ly = —[(6p + pp)ly + (b + tuy)lly
dl,
T —[(8p, + up)lp + (b + Tuy) .

Using separation of variables and integrating both sides gives

1
fmd[h = f _((6h + ,Llh)lh + (b + Tuz))dt

In(1y) = —((5h + u)l, + (b + Tuz))t +c
— I, = e~ l(@rrun)in+(+ruy))t+c]
I, = K e~ [(@nt+un)in+(b+ruz))t]
I, = I,(0)e~[(Gntrnin+®+ru)i]
where K = I,,(0).
I, > [h(O)e—[((6h+uh)1h+(b+ru2))t] > 0.
Similarly, it can be shown that S,,, > 0, E,, > 0,and I, > 0 forall t > 0.

Now it has been established that our model has both the invariant and positivity of
solutions, we can move on to determine the existence of disease free equilibrium point
which will assist in calculating the basic reproduction number using the next generation

operator approach.

3.3.3 Existence and Stability of Steady-state solutions

In this, we assume that the control parameters are constant and determine the basic
reproduction number, the steady state solutions or equilibrium points and their stabilities

as well as the bifurcation behavior of the system.

The E = (S;,, E;,, I, Ry, Sy Em, Iny) 1S the steady-state of the system (3.1) which can be
calculated by setting the right hand side of the model (3.1) to zero, giving us the
following
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Ap + YRy — (1 = up)AnSp — (1 — ug) Ay Sn — UnSp = 0
(1 —u)ApSp + (1 — ug)ApySp — (an + pn)Ep = 0
apEp — (6p + pndln — (b + TUz) ), = 0
(b +tu)ly — W+ pup)Rp =0
Ay — (L —u) A S — (Ui + auq + pu3)Sy, =0
(1 —u)ASm — amEm — (U + auy + puz)Ey, =0
aAmEm — (Um + auy + pu3)l, = 0.
(38)
3.3.4 The Existence of the Trivial Equilibrium point

For as long as the human recruitment term A, and the mosquito recruitment term A,, are
not zero, the population will not be extinct. This implies that there is no trivial
equilibrium point, thus (Sy,, Ef,, I, Ry, Smy Em, Im) # (0,0,0,0,0,0,0).

3.3.5 Disease Free Equilibrium, E,

Disease-free equilibrium points (DFE) are steady state solutions where there is no malaria
in the human population or Plasmodium parasite in the mosquito population. In absence
of the disease, it implies that (Ey, Iy, E, I,) and R, = 0 since there is no disease to

recover from. Forces of infections are also equal to zero. We get
Ap = (up + (1 =u)dAy + (1 — uy)Apy)Sp =0
Ay — ((1 — U )Ay, + (U + auy + pug))S,*n =0
(3.9

which gives
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(,um + au, + puS).

Sm

The disease-free equilibrium point of the malaria model (3.1) is given by,

Ey = (S5, E;, IR, Sk E: 1*)—(Ah 0,0,0 o 00)
0 7 MW Bh T Ty Eme S T P (4 aug + pus)’

(3.10)

which represents the state in which there is no infection (in the absence of malaria) in the

society.

3.3.6 The Basic Reproduction Number R,

We use the next generation operator approach as described by Van den Driessche &
Watmough (2002) to define the basic reproduction number, R, , as the number of
secondary infections that one infectious individual would create over the duration of the
infectious period, provided that everyone else is susceptible. Reproduction number R, is
the threshold for many epidemiology models, it determines whether a disease can invade
a population or not. When R, < 1, each infected individual produces on average less
than one new infected individual, so we would expect the disease to die out. On the other
hand, if R, > 1 each individual produces more than one new infected individual, so we
would expect the disease to spread in the population. This means that the threshold
quantity for eradicating the disease is to reduce the value of R, to value less than one.
The basic reproduction number cannot be determined from the structure of the
mathematical model alone, but depends on the definition of infected and uninfected
compartments. Let us assume that there are n compartments of which the first m

compartments correspond to infected individuals.

Let F; be the rate of appearance of new infections in compartment, V; = V;” — V;*, where
V;* is the rate of transfer of individuals into compartment i by all other means and V™ is

the rate of transfer of individual out of the i*® compartment.
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Rewriting the system (3.1) starting with the infected compartments for both populations;

En, Iy, En, Iy, also from the two populations, then the model system becomes:

dE, (1 —uy)BePSplyn | (1 —uy)BedpSply
= + — UpEp — anEy

dt Ny, Niw

dl,
- anEp — (6p + up)lp — (b + Tux)ly

dE 1 —uy)Aeppl,S
m=( 1)Aedl, B apEm — (U + auy + puz)Ey,

dt N,
dl,
W = amEm - (.um +au; + pu3)1m
dSy (1 —u)PepSply, (1 —uy)BePSyly
Zh A R, — — —
It n+ YRy — unSn N, N,
dR,
Tk (b + tux)l, — upRy — YRy

dSm A (1 — uy)Aedl,S,,
" N,

- (,le + auq + pu3)5m-

(3.11)

From the system (3.11), F; and V; are defined as:

(1 —uy)Bedply, Sy (1 — uy)PePSpln
+
Nh th
F; = 0
' (1 —uy) el Sy
Ny,
0
and
(up + ap)Ey

. (6},_ + HUn +b+ TuZ)Ih - ahEh
(am + Um + au, + puS)Em
(.um +au; + pu3)1m - amEm

i

(3.12)
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The square matrices F and V of order (m x m) is computed by obtaining the Jacobian

matrices of F; and V; , where m is the number of infected classes, defined by F =

oF; av; . .. . . .

[5 (xo)] and V = [5 (xo)] with 1 <i,j <m, such that F is nonnegative, V is a
J i

nonsingular M-matrix and x, is the disease-free equilibrium point (DFE).

The partial derivatives of (3.12) with respect to (I, I,,) and the Jacobian matrix of F;

0 1- LS 1- Sul
o 0 o (L= u)BephnSy | (1= w)BepSuln |
|0 0 Ny, Npy |
F=|0 (—u)legplpSm 0
0 Ny 0 0 J
0 0
(3.13)
o A . « _ M . Am _An
substituting the equilibrium points S;, = e S — N, = o into the
Jacobian matrix of F; we have
| 0 |
|0 0 0 (1—w)Bed+ (1—uy)fed |
F=[0 _(-uw)lepAmmn ¢ 0 |
[0 (.um + au10+ pu3)Ah 0 0 J

Similarly, the partial derivatives of (3.13) with respect to (Ej, I, Ep, I,,) and the

Jacobian matrix of V; is :

(un + an) 0 0 0
V= ap, (6p +up + b +1Uy) 0 0
0 0 Am + Um + AUy + pus 0

0 0 —Qm Um + alUy + pus

(3.14)

The inverse of V is given as

1 0
e 0 0 0o ]
I (un + an) 1 1 0 I
-1 _ ah 0
= Sp+up+b+rtu .
(up + ap) (6, + pp, + b + Tuy) @+ in 2) m + iy + auy +pus 1
0 0 U - -
Um + auqy + pu
0 0 (@m + i + auy +puz) (y + aug +pug) ™" 1P

(3.15)
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We compute the matrix FV 1

0

lo : 0 (1L—w)ped+ (1 - u)ped |

10 (- udAephmpn 0 |

llO (tm + auy + puz)hy 0 0 Jl
0

1 0

T rad 0 0

(up + ay) 1 1
ap

O+ tn + b+

N Gon ¥ a0 G + o+ by O T HE DA U + i + Gy + Pl

l 0 0 Gm U + +au; + pusg J

0 (am + iy + auq + puz) (U, + auy + puz)

== )

0 0

|r 0 0

| an(1 —uy)AepAp,up (1 —uy)AePAmup,

l(:“m + auy + pusz)(up + ap) (Op + up + b + tux) Ay (o + auy + Pus)(5h + pp + b + Tuy)Ap
0

(1 —u)Pedpay, + (1 —uy)peday, (1 —uy)Ped + (1 —uy)fed

o (e + i + ary + pus) (i + ary + pus) ( + auy + pus)

]
|
0 0 |
0 0 }
0 0

0 0

—ay, (b+tuy + pp + 6p)
c d
0 0

Fy-1

S OO Q
oo T

(3.16)

(1-uq)Bepam+(1-uy)Bepam _ (-uq)Bed+(1-uy)Be¢

where a = b=
(Am+pm+aug +pusz) (Um +au, +pus) (Um+au;+pus)

ap(1-u)AePAmn (1-uy)AepAmin

T (umtaug+pus) (up+an) Sptun+b+tu)Ay T (m+aus +pus)(Sp+pp+b+Tuz) A

From (3.16), we can now calculate the eigenvalues to determine the basic reproduction
number R, by taking the spectral radius (dominant eigenvalue) of the matrix FV 1,
The eigenvalues of FV~1 are calculated as J = [FV~1 — AI], we have
0-2 0 a b
0o 0—-2 0 0
c d 0—-1 0
0 0 0 0-21

—
Il
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Therefore |J| = |FV~1 — AI| = 0, we have

o—-a2 O a b 20 a b
yl=| 0 0-4 0 0 4_J0o-200f_,
c d 0—-1 0 c d—410
0 0 0 0-2 0 0 0 -2
0 -4 0 -1 0 a
=—blc d —-A—-4|0 =1 0]|=-b(0)—A(—2>+2ac)=0
0 O 0 c d -1

=2 —-ac)=0=>2%2=00rA%—ac=0

= 1?2 =ac
1= +vac.

Therefore A, = 0,4, = 0,13 = vac and 1, = —ac.
From the four eigenvalues, the dominant eigenvalue of the matrix FV ' is 2 = v/ac.

Therefore the basic reproduction number R, = ac.
Hence

Ro

_ an(1 = uy)AepAmpuy, o (A —u)pepay + (1 —uy)fepay
(i + aug + puz)(up + @) (O + pn + b+ 1U)Ap - (A + i + AUty + puz) (Um + auy + pus)

R = ap(1 —uy)APpAmpup (1 — uy)fepay + an(l — u e Ay un (1 — u)Beday,
0 (i + auq + puz)(pp + ap) (8 + pp + b + TU) AR (A + phan + Qg + PU3) (U, + AUy + PU3)

(3.17)

where

ap
aptip

means the probability that a human will survive the exposed state to become
infectious.

am
am+ﬂm+au1+pu3

is the probability that a mosquito will survive the exposed state to

become infectious.
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amAep(1-uq)
(Hm+aus+puz)(@m+um+au; +pus)

is the number of humans that one mosquito infects
during its infectious lifetime, provided all humans are susceptible.

Bep(1—us)+Bep(1-uy)

(uptap)(Sptuptb+tuy)

is the number of mosquitoes that one human infects during the
duration of the infectious period, provided all mosquitoes are susceptible.

The threshold parameter R, can be defined as square roots of the product of number of
humans one mosquito infects during its infectious lifetime (R,;) and number of
mosquitoes one human infects during the duration of the infectious period (R,.,)

provided all humans and mosquitoes are susceptible.

Ry = 2V, Ron X Rom

Ry
_ (1 - ul)ﬁapah#h + (1 - u4)ﬂ6¢ah.uh am(l - ul)/1€¢AmHh
(up + ap)(Op +pp + b +1U)Ap (i + auy + puz)?(am + pthy + auy + pus)
(3.18)
where
p = (- uBedany, + (1~ u)bega,
on (up + ap)(6p + pp + b + TUx)Ap
and
am(l - ul)le(pAm.uh
Rom = 2
(Um + auy + puz)?(am, + pm + auy + pusz)
where

ap(1-us)AedpAmpin
(Op+up+b+tuz)Ap

is the number of latent infections produced by a typical infectious

individual during the mean infectious period.
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(1-uq)pepam+(1-uy)fepan
(bm*aus +pus)?(am+um+au, +pus)

is the number of latent infections produced by a
typical infectious mosquitoes during the mean infectious period.

The parameter € and ¢ appear in both expressions because the mosquito biting rate (€)
and mosquito contact rate with human (¢) controls the transmission from humans to

mosquitoes and from mosquitoes to humans.

The basic reproduction number can be used to determine the local stability of the disease

free equilibrium point.

3.3.7 Local Stability Analysis of Disease Free Equilibrium

The local stability of the DFE, E,, can be analyzed using the Jacobian matrix of the
malaria model (3.1) at the disease free equilibrium point. We state and prove the
following theorem (Van den Driessche & Watmough, 2002) to establish the stability of

disease free equilibrium point.

Theorem 3.3

The disease free equilibrium point for system (3.1) is locally asymptotically stable if
Ry < 1.

Proof:

The Jacobian matrix (J) of the malaria model (3.1) with S, = N, — (E, + I, + R,) and

Sm = N, — (Ep, + I,,) at the disease-free equilibrium point is given by

0
|[_(ah T HR) —(6, + pp + b + Tu,) 0 0 (I -u)pep + (1 - u4)/5’eqb]|
a, (b + Tuy) 0 0 0
0 (1_u )/1€¢A _(lp+/-‘h) 0 0
0 1 mHn 0 —(@ + i + auy + puy) 0
| 0 (b + au10+ pus)Ay 0 a, — (U + au; + pus) |
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The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation

|J] — Al = 0.
That is
0
—(@nt it D) (8, + pp + b+ 1uy + 1) 0 0 (A —u)fed + (1 —uy)fed
P (b ¥ wua) - +(L +2) 8 g
| 0 (1~ w)AePAmitn 0 " —(am + pm + auy +puz + 1) 0 |
I 0 (bm + au10+ puz)Ap 0 A, —(hm + auy + pus + 1) |

=0

The third column has diagonal entry, therefore one of the eigenvalues of the Jacobian
matrix is —(y + up).

The remaining eigenvalues can be obtained as follows:

0

—(ap+u,+4) —(8p + pp +b+TU + A) g (1 —w)ped ‘(')‘ (1 —uy)Begp
ap 1-— AepA
0 (A~ u)AepAmptn — (@ + Wy + auy +pus + 1) 0
0 (tm + au10+ puz)Ap ay, —(tm + auy + puz + 1)

=0
(ap +up + D6 + up + b + tuy, + A)(ay, + Uy + auy + pus + 1) (U, + auy + pug
+A)

_ (1- ul)zlezd)zAmﬂhamﬁah + (1 - u4)(1 - ul)/162¢2Atham,Bah
(,um + au, + pu3)Am

(3.19)

To simplify the equation, we let A; = (u,,, + auy + pus), A, = (A, + Uy + au, +
pus),As = (6, + up + b + tuy), A, = (ay + uy) and

_ (1 —uy)?Ae®p* ApupampBan + +(1 — u)(1 — u) AP A pip

Q
(.um + au, + pu3)Am

This implies that

A+A)D)A+A4)A+43)A+A4,)—-Q=0
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/‘{4 +Bll‘{3 +lez +B3A+B4_ =0

(3.20)

where

B, =A,+A; +4,+ A,
B, =A4(A3 + A, + A) + A3(A, + A)) + A4,
By = AyAsAy + AyAsAL + AAL AL + AzALA,
B, = A,A3A,A, — Q.

(3.22)

The expression of R, can be written in terms of A4;

RZ Ay Aty (1 — up)2Pp2€? A+ +(1 — uy)A€2P? A upamBay,
’ ApAsAsAr AT

(3.22)

Routh - Hurwitz Criteria is applied to equation (3.20) to determine whether all roots of

the polynomial (3.20) have negative real parts (Oduro et al., 2015).

Lemma 3.1 (Routh - Hurwitz Criteria): The roots of the characteristic equation has a
negative real parts if and only if all the principal diagonal minors of the Hurwitz matrix

provided B; > 0

For the characteristic polynomial, when n = 4, the Routh-Hurwitz criteria as described
by Flores (2011) are

B, >0,B, >0,B; > 0,B, > 0

B, 1
det(H,) = ( 01 Bz> =B;B, >0

B, 1 0
det(Hg) = <B3 BZ Bl) = BleB3 - B?% > 0 = BlBZ - B3 > 0
0 0 B,
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B, 1 0 0
B; B, By 1
0 B4 Bg BZ
0 0 0 By

det(H4_) ES = B3(BZB1 - B3) - B4_B12 > 0.

We now show that all determinants of Hurwitz matrices are positive, which means that
all the Eigen values of the Jacobian (3.20) have negative real parts implying that DFE

point is stable
det(Hl) = Bl :A4+A3 +A2 +A1 > 0
det(Hz) == Ble

= 34,45(A; + A,) + 34,A1(As + A3) + A2(A5 + A, + A)) + A%(A, + A, + Ay)
+A3(A, + A3+ A) + A2(A, + A3+ A,) >0

det(H,) = B3(B,B; — B3) — B,B}
- B3C + QBIZ - A4_A3A2A1B12 > O
where C = B,B; — Bs.

This means that all determinants of the Hurwitz matrices are positive. Hence all the
eigenvalues of the Jacobian have negative real part, implying that the DFE point is (at

least) locally stable(R, < 1).

Conversely, if R, > 1 it implies that B, < 0 , and since the remaining coefficients
(B1, B, and B3) of the polynomial are positive then all the roots of this polynomial

cannot have negative real parts. Hence, the DFE point is unstable (R, > 1).

3.3.8 Global Stability Analysis of the Disease Free Equilibrium Point

Theorem 3.4. The DFE, E,, of system of equations (3.1) is globally asymptotically stable
if Ry < 1.

Proof:

We consider the following Lyapunov function
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L == ClEh + Czlh + C3Em + C4Im

ap 1

Where ¢; = c, =
L™ (um+aug+pus)(@p+pup) (0+tug+8p+up) ' 2 (Wmt+aus +pus)(b+tug+8p+up) |

1 am+ﬂm+au1+pu3
C3 =—————,C4 = :
(1-uq)epAAy, (1—uq)epAhApmam

Computing the derivative of L along the solution of the system of differential equation
(3.2)

ap

I =
(tm + aug + puz)(ap + up)(b + Uz + 8 + py)
— (an + up)Er]

[(1 —uy)ApSy + (1 — uy)Apy S

1
+
(o + auy + puz) (b + Tuy + 6, + Up)

1
+ (1 —uy)edAh,, [(1 - ul)/lmsm = mEm — (:um +au; + pu3)Em]

Ay + Uy + auy + pug
(1 —upepAhman

i - ap[(1 —u)ApSp + (1 — ug) A Sp — (ap + up)]

(m + atty + pug)(@p + up) (b + Ty + 8y + )|
[ [anEp — (Bp + up)l, — (b + Tuy)]
| (i + awg + puz) (b + Tz + 8 + )| "
[(1 B ul)/lm'sm — AmEm — (.um +au, + puB)]] E
i (1 —uy)epAA,, m
[(am + i + auy + puz) (U, + auy + pu3)] I

(1 - ul)eﬁblAmam "

lapEn — (6p + up)ly — (b + tuy)ly]

[amEm — (i + auy + pug)ly]

_|_

+

_|_

L
_ (am + pm + auy + pus) (y, + auy + pus + 6)
(1 - ul)E(plAmam
o [ ap (1 — uy) APy up (1 — uy)fepam, + ap(l — us )A€y pun (1 — uy) feday,
(Um + auq + puz)(pp + ap) (6 + up + b + TU) A (@ + U + auy + pus) (U + auy + pus)

—1]1h

. _ (@t o + Qs + PUiz) (n + At + Ptz + 63)

L Ry—1]I, <01 if Rp < 1.
= w)epaha, [Ry —1]I, < 0if and only if Ry <

Thus we have established that L < 0 if R, < 1 and the equality L = 0 hold if and only if
Ry=1and E, =1, =E,, =1, =0 . If Ry> 1 then L > 0 when S, (t) and S,,(t) is
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Am
Umtaui+pus

sufficiently close to % and respectively except when E, = I, = E,, = I, =
h

0.

On the boundary when E, =1, =E,, =1,, =0 ; Ny(t) = A, — u,N, and N,,(t) =

Ay — (U + auq + pug) and N (t) — % , Npp(t) — — a5t — oo,
h

Umtaus+pus

Therefore the largest compact invariant D = {(Sy, Ep, In, Rn, Sy Em, Im) € R]: L = 0}
when R, < 1 is the singleton {E,}. By LaSalle’s invariant principle (LaSalle, 1976), E,, is
globally asymptotically stable.

3.3.9 Existence and Stability Analysis of the Endemic Equilibrium Point, E4

Endemic equilibrium points are steady state solutions where the disease persists in the
population (all the state variables are positive). That is, malaria infection will persists in

the population and the endemic equilibrium (E;) of the model is given by
Ey = (S En' I Ry Sin s Bt I
(3.23)
where (S, Ex I Ry, Siv, Efe 1) > 0.
To derive the E;, we have to solve model (3.1) by equating it to zero

(1 —u)BeplnSp (1 — uy)Bedly Sy

Ap + YR, —
h " Ny, N

—UpSp =10

(1 - ul)ﬁedﬂmsh + (1 - u4).3€¢1m5h
Nh th

—(ap +up)Ep, =0

anEp — (0p + up)ly — (b + 1ux)l, =0

(b + tux)ly, — (Y + up)R, =0

1—uqy)Aedl,,S
Am_( 11)\] ¢hm_(#m+au1+pu3)sm:()
h
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(1 - ul)/legblhsm
Ny

— apEym — (.um +au, + puS)Em =0

OnEm — (fm + auy + puz)ly, = 0.
(3.24)

Solving the second equation of (3.1) for E** we have

(1 - ul)ﬁe(pshlm + (1 - u4),8€¢5h1m
Ny, Nhy

—(ap +up)Ep, =0

(1 —uy)Peply + (1 —uy)Pedply, G
Npyw Ny (un + ap) e

Ej =

From the sixth equation of the model (3.1) we have

(1 —uy)Aedpl,, S
Ny,

AmEm — (.um +au; + pu3)Em =0

kk

= (1 —w)apledly
™ Np(@ + o + auy +pug)

(3.25)
From the seventh equation we have

AmEm — (,um +auq + puB)Im =0

am
Iy, = Ey

© (fm t+auy +pug) ™

(3.26)

Substituting equation (3.25) into equation (3.26) for I,;,; gives

. am (1 —uy) el Sy
™ Np(um + aug + puz)(ay + pm + aug + puz)’

(3.27)

From the fifth equation of the model (3.1) we have
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(1 - ul)le(plmsm

A

— (i + auy + puz)Spy, =0

S** _ AmNh
™ = A= uDAely + (Hm + atiy + puz)N,

(3.28)

Substituting (3.28) into equation (3.27) we have

5
_ amAm(]- - ul)/led)l}:*
(i + auy + pu) (@ + fm + awy + puz) (L — u) A€l + Ny (i + atty + puiz) (i + atty + piiz) (@ + fon + aty + puiz)

[ = (1 —uy)(pm + auy + pu3)RomIi*l*
™ (1 = u)Aedli" + Ny (i + auy + pug)’

(3.29)
From the second equation of model (3.1) we have
1—uy)PedpSyl 1—uy)PedpSyl
( 1),3¢hm+( 4)ﬁ¢hm_(ah+ﬂh)Eh=0-
Nh th
Substituting equation (3.29) into the second equation we have
(1 — u)? (i + auy + puz) BePRop ISy
Np(1 —uy)Aeply” + Ny (i + aug + pus)
(1 —uy) (X = uy) (i + auy + puz) BePRomly’ Sy
= — (an + pr)En
Npw (i + auq + pug) + (1 —uy)Aedly,
= 0.
(3.30)

From the third equation of model (3.1) we have
apEp — (6p + upd)lp — (b + Tux)l, = 0

(Op + pp + b+ 1U)I”

* %k —_
E;) =
ap

(3.31)
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Substituting equation (3.31) into equation (3.30) we have

(1 — u)? (i + auy + puz) BePRopm ;" Sy
Np(1 —uy)Aedly” + Ny (um + aug + pus)

(1 —u)(A = ug) (i + auy + puz)BePRomly" Sy’
Ny (U + aug + puz) + (1 — uy)Aeply”
_ (an + pp)(Gp + pp + b+ 1wl 0
ap

Npwan (1 = u1)? (Um + auy + pus)BepRoml;"Sy”
+ Npap (1 —uy) (1 — uy) (U + auq + puz) fePRopm Iy Sy’
— NNy (@n + ) (8p + iy + b + Tu) ;" ((1 = uy) Al
+ Ny (m + auy +puz)) =0

I3 [Npwan (1 = wy)? (i + atty + puz) BepRopm Si’
+ Npap(1 = uy)(1 = uy) (i + auy + puz) fedRoy Sy’
— NNy (@ + up) (8 + ptn + b + 1) (1 — ug) A€l
+ Ny (um + auy +pusz))] = 0.

(3.32)

Hence I;," = 0 or

Npywatn (1 = up) %y + auy + puz) BedRom Sy’
+ Npap (1 —ug)(1 — ug) (i + auy + pusz) fePRomSy”
— NpwNp(an + un) (8p + pup + b + tuy) (1 — uy) Aed Iy

+ Ny (o + auy + pusz)) = 0.
(3.33)

Dividing equation (3.33) by N, (ay, + up) (8, + pp + b + Tu,) We have



Npywan (1 — ug)? (U + auy + pusz) BedRomSr*
Np(ap + pp)(6p + pp + b + TU3)
Npap (1 —ug)(1 — uy) (i + auy + puz) fePRomSy”
Ny (ap + pp) (Um + auy + pus)
- th((l —uy)Aedly” + Np (U, + auy + pu3)) =0

We know that

A
Nh = _h
Un

Npwitnap (1 —ug)?(um + auy + puz) BEGRom Sy
Ap(ap + up)(Op + pp + b + Tuy)
ap(1—uy) (1 —uy) Uy + auy + puz)BePRon Sy
+
(ap + pp)(6p + pp + b + TUy)

— N (1 = wy) A€l + N (i + auy + pus)) = 0.

Ron X Rom (1 — uy)*(um + auy + pus)Npy Sy* i,

+ ap(1 —uy) (1 —uy)(Um + auy + puz)BePRomSy" tn
(ap + up)(Op + pp + b + Tuy)

— Npytn (1 — uy)Aedply” — ApNpy, (U + auy + pus) = 0.

Ron X Rom (1 — uy)*(pm + auy + puz) Ny Sk in

+ anp(1 —uy) (1 —uy) (U + auyg + puz)BePRom Sy 1n
(ap + pp)(Sp + pp + b + TU)

= Npwn(1 — ug)Aedly™ + Ap Ny, (i + auy + pus).

Let Rop, X Rom = R& hence we have

RG(1 — uy)?(um + auy + pus) Ny, Syt

an(1—uy) (1 —uy) (U + aug + puz)fedRom Sy 1n
+
(ap + pp)(6p + pp + b + TU,)

= Npwn(1 — ug)Aedly™ + Ay Ny, (i, + auy + pus).

Which gives

Npwtin (1 — u) A€l + Ap Ny (n, + auy + pus)

45

-
Sh

N RE(L — 1w,)? (i, + @ty + pug) (o + 1) (8 + it + b+ T12) + oy (1 — w) (1 — ) (i + Ay + PU3)BEGRom ity



46

(3.34)
From the fourth equation of model (3.1)
(b+tudly — @+ )R =0
(b + tuy)l}”
R,=——""-
W + pr)
(3.35)
Using the first equation of model (3.1) we can solve for I;,*
1—uy)Pedl,S 1 —uy,)pedpl,S
Ah+1/)Rh—( 1)ﬁ¢mh_( 4)B¢mh_ﬂh5h=0-
Nh th
(3.36)

Substituting equation (3.29), (3.34), and (3.35) into equation (3.36), and solving for I;*

(as an expression of parameters only) through some algebraic manipulation gives

Ap +

(b +Tup) Iy [(1 - u1)ﬁf¢] [ (1 —uy)(pm + auy + pus)Romln’
@+ py) Ny (1 —upAedly” + Ny (u + auy + pus)

y [ Ny ttn (1 — u)Ae@ly” + Ay Ny, (i + auy + pus) ]
ErNpwRE (1 — u1)2(, + auy + pug) (@, + 1,)(8p + i + b+ 11,) + (1 — w) (1 — wy) (U, + AUty + puuz) BeGRom i,

+ [(1 - u4)ﬁ5¢] (1 — ug) (U + auy + pus)Rom Iy’
th (1

— ) A€PL; + Npy (i + atiy + pus)

x [ th.uh(l - u1)le¢l;:* + AhNhW(Hm + auy + pu3) ]
ErNpwRE (1 — u1)2(, + auy + pug) (@, + 1) (8p + i + b+ 11,) + (1= w) (1 — wy) (U, + Aty + puuz) BeGRom i,
—u [ Nyt (1 — up)Aedly” + ApNyy, (n, + auy + pus) ]

" UnNpwRE(1 = 1) (y + atty + puz)(@y + ) (Sp + i + b + 7u5) + @ (1 — u) (1 — uy) (o + @ty + puz)BedRomity

=0

which can be written as
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W + ) Ap[un N R (1 — u1)? (i + auy + puz)(@n + pp) (O + pp + b + 1up)
+ap(1 = ug) (1 = w) (i + auy + puz) BePRomitn][(1 — uy) A€l
+ Np(Um + auy + pug)|Npy, Ny + (b
+ Tu) I [Up Npw RE (1 — ug)? (i + auy + pus) (ap, + 1) (8p + pp + b
+ tuy) + ap (1 — ug) (1 —uy) (U + auy
+ puz) BEPRomun][(1 — uy) APl + Ny (i + atty + pus)[Npyw Ny
+ @+ ) [ —u)Bed][(1 — uy) (i + auy
+ pus) RomIp 1 INpwitn (1 — ug)Aeply” + ApNpy (U + auy + pus)INpy
+ @+ u) (1 — ug)Bed](1 — ug) (U + auy
+ puz) RomIp 1 [Nwwtn (1 — ug)Aeply” + ApNpy (m + auy + pus) Ny
= (@ + p) i [Nnwtin (1 — ug) Aeply”
+ ApNnw (U + auy + pus)][(1 — uy)Aedly” + Np(um + auy
+ puz)|NpwNp = 0

or
A + B +C =0.

(3.37)

where

A=+ pp)Ap[nNpw R (1 — u)? (U + auy + pug)(ay + pp) (8p + pp + b + TU,)
+ap(1—ug) (1 — up) (i + auy + puz) BedRompin][(1 — uy) Aeply”
+ Ny (i + auy + puz)[Npyw Ny + (b
+ tu) Iy [ Npw RG (1 — 1) ? (i, + auy + puz) @y + ) (8p + pp + b
+1uy) + ap (1 —uy)(1 —uy) (U, + auy
+ puz) BePRomun][(1 — ur)Aeply” + Ny (um + auy + pus)INpw Ny,

B =@+ pun) (1 —u)Bed][(1 — uy) (i + auy
+ puz)Rom IR 1 [INpwn (1 — ug)Aeply” + ApNpy (Ui + auy + pus)INpy
+ @+ pp) (1 — u)Bep][(1 — ug) (um + auy
+ puz)Rom !y 1 [Nnwhn (1 — uy)A€ply” + ApNpy (m + auy + pus)]Ny
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C =+ pr)un[Npwun(1 —uy)Aedply™ + ApNpy, (i + aug + pusz)|[(1 — uy)Aedly”
+ Np(um + auy + puz)]Npyw Ny

We use the quadratic formula to find the roots of equation (3.37)

B —b + Vb2 — 4ac

x 2a
Which gives
I —B ++VB2 — 4AC
h— 24
_—B+\/B2—4ac —B — VB2 — 4qc
= 24 or 24
B —B+\/BZ—4ac_ —B—\/BZ—4ac_
B 24 B 24 B

Hence substituting @ as the value of I;, in model (3.1) gives,

Si*
_ Npwitn (1 — ug)Aed® + Ay Ny, (i + auy + pus)
UnNpwRE(1 — uy )2 ( + auy + puz)(ay + pp) (6p + ptn + b + 1) + @ (1 — ) (1 — wy)) (Um + auy + pus)BedRomity,

Ey
_ (1 —u)Bed + (1 — u)Ped) (1 — uy) (y + au, + Pus)Rqu)]
Niw Ny (i + @) (1 — uy)Aed® + Ny (, + auy + pus))

% [ Nyt (1 — w1 )JAEPD + Ay Ny, (i + auy + pus) ]
UnNpwRE(1 = 1) (ty, + auy + puz) @y, + i) 8y + i + b + 1uz) + (1 — u) (1 — uy) (U + @ty + puz)BedRomity

I =®
_ [ ah((l —uy)fep + (1 — u4).[’)6¢)(1 = Uy) (U + aUy + PU3) Ry, P
(8n + tp + b + Ty Ny Ny (i + @) (1 — 1) Aedp® + Ny, (, + auy + puss))

y [ Ny iy, (1 — uyJAEPD + Ay Ny, (i + auy + pus) ] >0
HnNuw R (1 = u1)2 (i, + auy + pug) (@, + pp) (6p + ptp + b + 11) + @ (1= wy) (1 — uy) ( + @y + priz)BedRomitn| —

Ry
_ [ (b + tuy)ay (1 — uy)Ped + (1 — uy)Bed) (1 — uy) (U + auy + puz)Ropm®
(up + )8y, + pp + b + TU) Ny Ny, (1, + ah)((l —uy)Aep® + Ny (4, + au, + pu3))

[ Niwitn (1 = u) AP + Ay Npyy (i + ariy + pus) ]
UnNpwRE(1 = 1) (ty + atty + puz) @y + ) 8y + i + b + 1) + 0y (1 — u) (1 — uy) (U + @ty + puz) BeRomity
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S** _ AmNh
™ (1 —uy)Aedd + (U, + auy + pusy)Ny,

_ (1 —up)apded((1 — ug)(ftm + aty + puz)Rom P)Am Ny,
Ny (@ + i + auy + puz) (1 — u)Aed® + Ny (i + ariy + puz)) (1 — uy)Aep® + (i, + auy + pus)Ny,)

ok
En

[ = (1 —uy) (U + auy + puz)Rop, ®
™ (1 —uy)Aep® + Ny (uyy, + auy + pug)

From the quadratic equation (3.37) we analyze the possibility of multiple equilibria. It is
important to note that the coefficient A is always positive with B and C having different
signs. We realize that C is positive if R, is less than unity, and B is negative if R, is

greater than R,.
It follows that:

(i) There is a unique endemic equilibrium if B < 0 and € = 0 or B2 — 4AC = 0,
(i) There is a unique endemic equilibrium if € < 0 (i.e. Ry > 1);
(iii) There are two endemic equilibria if C > 0,B < 0 and B? — 4AC > 0,

(iv) There are no endemic equilibria otherwise.

Note that the hypotheses C > 0 is equivalentto R, < 1
Hence the endemic equilibrium points have been determined
The results of this section can be summarized in the following Theorem

Theorem 3.5: If R, < 1, the E, is an equilibrium of the system (3.1) and it is locally
asymptotically stable. Furthermore, there exist an endemic equilibrium if conditions (i)
are satisfied, or two endemic equilibria if conditions (iii) are satisfied. If R, > 1, then E,

is unstable and there exist a unique endemic equilibrium.

The item (iii) indicates the possibility of backward bifurcation in the model (3.1) when
R, < 1. In the next section we will prove the occurrence of multiple equilibria for Ry < 1
comes from the backward bifurcation and this will give information on the local stability
of the endemic equilibria. We will also prove that if R, > 1, then the unique endemic

equilibrium is globally asymptotically stable in the interior of D.
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3.3.10 Local Stability Analysis of the Endemic Equilibrium

The stability analysis of the endemic equilibrium of the model (3.1) can be analyzed
using the Centre Manifold Theory (Castilo-Chavez & Song, 2004) where we carry out
bifurcation analysis of the system (1) at R, = 1. We consider a transmission rate S as

bifurcation parameter ¥ so that R, = 1.

We intend to determine the stability of the endemic equilibrium and to investigate the
possibility of the existence of backward bifurcation due to existence of multiple
equilibrium and reinfection (The possible presence of two endemic equilibria shown in
Remark 1, Case (iii)). Bifurcation makes the control of disease to be difficult.

To apply the theory, we introduce dimensionless state variables into the system (3.1).

The system of equations (3.1) can be written as

dSh (1 - ul)ﬁed)shlm (1 - u4)ﬁ6¢5h1m
—=A Ry, — 1, S, — -
dt n+ YR = HnSh N, Ny

dEp _ (1 —w)BePSnlm 4 (1 —uy)BePSplm

—uyEy — apyE
dt N, Ny, UpEp — ApLp
di,
- anEp — (Op + up)ly — (b + 1uy)ly
dR,
a (b + tux)l, — upRy — YRy

dSm A (1 — uy)Aedl, S,
e ™" N,

- (,le + au, + pu3)Sm

dEm (1 —uy)AePl Sy,
at N,

- amEm - (:um +au; + pUB)Em

dl,,
E = By — (/’Lm +au, + pu3)1m-

(3.38)
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Letx, =S, x;, = Ep, x3 =1y, x4 = Rp, X5 = Sy, X6 = Eppyand x;, = [,
Therefore system (3.1) is written in vector form as

dx;
dt

= H(X;)

Where X; = (xq, X3, ..., x;)T and H; = (hy, hy, ..., h;)T are transposed matrices and N;, =

Ln \ith w* = g
Un

dx 1—u)¥Ydxx 1—u,))Y*ox-x
—1:Ah+¢x4—#h5h—( 1) ¢71.Uh_( 4) ¢71Hh:
dt Ay Ay

h

dx, _ (1 —u)W¥ Px,x,up N (1 —ug) ¥V dpx,x,up

— (up + ap)xy = h,

dt Ay A
dxs
v =a;x, — (6 +up + b+ tUy)X3 = hy
dx
d_t4 = b+ tuy)xz — (Up +P)x4 = hy
dx 1—u)ledxsx
_5=Am_( 1) ¢35‘uh—(llm+au1+l)u3)x5=h5
dt Ay

dxe _ (1 —uy)Aedxsxspy
dt Ay,

— (ay + um + auy + puz)xe = hg

dx,
dr = ayx6 — (Um + auy + puz)x; = hy

(3.39)

The following theorem is used to analyze the dynamics of the model (3.39)
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Theorem 3.6

Consider the following general system of ordinary differential equation with a parameter
¥ (Castilo-Chavez & Song, 2004; Gumel & Song, 2008)

dx_

7 h(x,¥),h:R"* x R — R and heC?*(R" X R)

Where 0 is an equilibrium point of the system (that is, h(0, ¥) = 0 for all ¥) and

1. A=D,h(0,0) = (3—3’: (0,0)) Is the linearization matrix of the system around the

equilibrium 0 with ¥ evaluated at 0.

2. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real
parts.

3. Matrix A has a nonnegative right eigenvector w and a left eigenvector v

corresponding to the zero eigenvalue.

Let h;, be the k" component of h and

>, " 00)
a= vew;w; —— (0,
kij=1 K Jaxiaxj

and

n 92h,
b = Zk,izlvkwi m (0,0)

Then, the local dynamics of the system (1) around the equilibrium point (0,0) is totally

determined by the sign of a and b.

i. a>0,b>0. When¥ <0 with |¥| « 1,0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < ¥ « 1,0 is unstable and
there exists a negative, locally asymptotically stable equilibrium.

ii. a<0,b<0. When¥ <0 with |¥| « 0,1 is unstable; when 0 < ¥ « 1,0 is

locally asymptotically stable, and there exist a positive unstable equilibrium.
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iii. a>0,b<0.When ¥ < 0 with || «< 0,1 is unstable, and there exist a locally
asymptotically stable negative equilibrium; when 0 < ¥ « 1,0 is stable, and a
positive unstable equilibrium appears.

iv. a<0,b>0.When ¥ changes from negative to positive, 0 changes its stability
from stable to unstable. Correspondingly a negative unstable equilibrium

becomes positive and locally asymptotically stable.

If a > 0 and b > 0, then a backward bifurcation occurs at ¥ = 0.

Let W* be the bifurcation parameter, the system (3.39) is linearized at disease free

equilibrium point when g = W* with R, = 1

Thus W* can be solved from (3.39) when g = W* with R, = 1. Thus ¥* can be solved
from (3.17) when

ahamAm.uh(]- - ul)qu-l)zéﬁ/1 + ahamAm.uh(l - ul)(l - u4)¢262ﬂ
RO = 2
Ap(pus + auy + pm)?(pn + @) (Pus + um + aug + @) (U + 6p + b + 1U,)
AU Ampin (1 — u1)?P?€BA + apamBpun (1 —u) (1 — uy)p?e?p

12 =
Ap(pus + auy + pm)?(pn + a1) (Pus + um + aug + @) (U + 6p + b + 1U,)

_ Aoz + aty + ) (U + @) (PUs + o + A1ty + @) (U + 8 + b + TUp)

lp*
ahamAm:uh(l - ul)quze/l + ahamAmHh(l - ul)(l - u4)¢262

The Jacobian matrix of (3.1) calculated at W* is given by

0

—up 0 s 0 ) " 0 0 —yreg

0 —ap—pp, On~HA—DTTU g 0 0 Yreg

0 an b+ tu, 0 0 0 0
| 0 0 —(1 —w)AepAmpty, —p, — 1 0 0 0 |
| © 0 Ay (o + auq + pug) 0 —(um + auy + pus) 0 0 |

8 0 (1 —u)AepAppn 0 0 —@m — #"i_ au; — pus 0

0 Ap (U + auy + pug) 0 Am ~Hm — aAUq — puz
0
(3.40)

A right eigen vector associated with the eigen value zero isw = (wy, wy, ..., wy).

We get the following system
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—upw1 +Ypw, —¥pw; =0
—(an + pp)w, + ¥ opw; =0
apwy, — (6 + up + b + tuy)ws; =0
(b + tuz)ws — (up + PIwy =0

—(1 — uy)AepApipws
Ap(um + auy + pus)

— ws(phn + auy +puz) =0

(1 — uy)AepAppws
Ap(pm + auy + pus)

— (A + U + auy + puz)we =0

—amWe — Wy (U, + auy + pus) = 0.
(3.41)

Solving the system (3.41), the Jacobian matrix of (3.1) at W* has the following right

eigenvector

Yw, — ¥epw,

W1 =
Un
Yepw,
WZ =
ap + Up
apWy
w3

:b+Tu2+yh+6h

(b + tuy)wsy
w, = ——
* un + ¢

_ —(1 —uy)AepApppws
Ap (i + auy + pus)?

Wg

_ (1 —uy)AePApupws3
Ap (U + auy + pusz) (@, + Uy + auy + pus)

We

A We >0

W- =
7 lm + auy + pug

(3.42)
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The left eigenvectors satisfying v.w = 1 is v = (vq, vy, ..., 7).

To find these left eigenvector associated with the eigenvalue 0 at ¥*, the matrix (3.40)

should be transposed to give J;.f;

/—#h 0 0 0 8 8 0 \

0 —an—py an 0 (1 —u)AedApmpty — —(1 = u)AedA ity — (1 = u) Aty ©

0 0 -8, —pp—b—1u, b+1U, 0
l Y 0 0 T/ Aplim Aplbim 0 l

0 0 0 0 0 0 0
k 0 0 0 0 “hn 0 am)

—* * —Qp — Um —

Yo w9 0 0 0 0 Um
(3.43)
We have the following system
—ppvy =0
(1 — uy)AePAunvs
(=8, — up, — b —tuy) + v3(b + TU,) —
3( h Auh T 2) 3( T 2) Ah(‘um + aul + pu3)
(1 — uy)AepApppvs
Ap(um + auy + pug)
(1 — uy)AePAmpnve
=v3(=6p —up — b —TUy) + =
3(=0n = ity R WR——
Yv; — (p +PIve =0
—(tm + auqg + puz)vs =0
—(ay + Uy + auy + pus)vg + v, =0
—l'p*E(Pvl + ‘P*E(Pvz - (,um + au1 + pu3)v7 = O

(3.44)

Solving the system, the left eigenvector is given by
171 == O

VU3

Cap +

(%)

_ V(1 — uy)AEPA iy,
Ap(py + aug + puz) (=6, —up — b — 1U,)

U3



17420
U5:0

Am V7

UG =
—Um — Ay — AUy — PU3

_ Yepv,
o + auy + pus’

Uy

The sign of a and b is computed as indicated in the theorem

¢W4 - lp* E¢W7
Hn

wq =

Yepw,
ap + Up

w»

_ ApW3
b+ tuy + up + 8,

w3

(b + tuy)ws
w, = ——
* un + ¢

_ —(1 —uy)AepApppws
Ap(um + auy + pus)?

Wg

(1 —u)AePApppws

W =

© 7 An(im + auy + pus) (@, + o + auy + pus)

amW6

W7 =
Um T auq + pus
7.71 = O
apVU3
172 -
ap + Up
V6(1 - ul)le(bAmlflh

U3

v4,=0

 Ap(y + auy + puz) (=6, —up — b — Twy)

56

(3.45)
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USZO

Am V7

—Hm — m — AUy — PU3

1.76:

_ Yepv,
 pm +aug +pus’

Uy

For the system (3.39), the associated non-zero second order partial derivatives (at DFE)

are given by

0%h, _ —Q—u)¥epup (1 —u)¥edun
0x,0x, Ap Ay

0%y —(L—u)Wepm (1= ug)edpn
aX3ax7 Ah Ah

0%he  —(1—uy)Aepuy
Oxg0x3 Ay,

0%he  —(1—uy)Aepuy
0x,0x3 Ay, '

Considering only the non-zero components of left eigen vector, it follows that

3 2

92h,, ’ 92h,
a= ) vz oo 00+ ) v 5 (0,0
ki, j=2 v ki, j=6 v

3 2 2

b—z 0" (00)+z7: 0P (0,0)
N VieWi axlaxj ’ ViWi axlax] T

k,i=2 k,ji=6

Since v; = v, = vg =0 for k = 1,4,5 then k = 2,3,6,7 should be considered. That is,
the following functions will be used to compute a and b

_ (1 —u)¥ dx,
Ap

h, pn(Np — x5 — x3) — (up + ap)x;

(1 —uy)¥* Ppupx;Np . (1 —u))¥* pupx,x; _ (1 —u))¥Y* pupxyx3
Ap Ap Ap

= (Up + ap)x;
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_ (1 —uy)Aepxspp (N, — x6 —

*7) - ((llm + pus) + am)xe

h
_ (1 —uy)AepupxsNpy, _ (1 —uy)) V" Pupxsx; _ (1 — uy)Aedppxexs
Ap Ap Ap
(1 —uy)Aepupx,x
T (@t s +pus)e,

Computing the sign a and b as indicated in the theorem.
Considering only the non-zero components of left eigen vector, it follows that

0%h, d%h, 0%hg 0%h,
A = VuyWoWy; ——— + Uy W3W; ——— + VgWgW3 ——— + VgW,; W3
0x,0x, 0x30x, 0xg0x5

0x,0x5

_ (‘(1 —u)¥epu, (1- u4)Lp*€¢lih>
= Vr,Wowy -
Ap Ap
(—(1 —u)¥epu, (1- u4)‘P*€¢Mh>
+ vowaw, -
Ap Ap
(—(1 - ul)/ledwh) (—(1 - ul)/ledmfl)
+ vgWeW3 + vgWo W3
Ap Ap
a
— oow [_(1 —uy)Vepu, — (1 - u4)lp*€¢llh] ([ Yrew,
2n7 Ap (ap + 1n)

n ApW )
(b + tuy + up + )

—(1- ul)/leqbuh] <[ (1 —uy)AepupAmws ]
Ap Ap(um + auy + puz)(@m + pm + auy + pus)

+ VW3 [

Ap W3
+| )
(fim + auy + pus)

The partial derivatives that are not zero when calculating b are

oh, —(1—uy)epxix; _ (1 — uy)epx;xy

oy A, A

0%h, =1 —uy)epxy (1 —uy)epxy _
0x70y, B Ap Ap -

o.
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Therefore
b=v,w,e¢p >0
so that b is always positive.

Therefore the following result is established:

Theorem 3.7

The model (3.1) exhibits backward bifurcation at R, = 1 whenever a > 0 and b > 0 and
Ry < 1.

Whenever a < 0 and b > 0 then model (3.1) exhibits a forward bifurcation at R, = 1.

3.3.11 Global Stability Analysis of the Endemic Equilibrium

Global stability results for the endemic equilibrium can be obtained when it is unique and
whenever it exists. We have established in theorem 3.5 that if R, > 1 implies the

existence and uniqueness of the endemic equilibrium.

The global behavior of the endemic equilibrium of the model (3.1) when it exists is
explored by proving that such an equilibrium is globally asymptotic stable in the interior
of the feasible region D. We will use the geometric approach to global stability as
described by Li & Muldowney (1996). The following conditions are required for the
global stability of the endemic equilibrium, E;: (i) the uniqueness of E; in the interior of
D; (ii) the existence of an absorbing compact set in the interior of D; and (iii) the

fulfillment of a Bendixson criterion (i.e. the inequality (2a)).

Theorem 3.8: If Ry > 1, then the unique endemic equilibrium of the malaria model (3.1)

is globally asymptotically stable in the interior of D.
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Proof.

The general method considered is the one developed by Li & Muldowney (1996).

Consider the autonomous dynamical system:
x = f(x)
(1a)

where f:D - R",D c R™ open set and simply connected and f € CD. Let x* be an
equilibrium of (1a), i.e. f(x*) = 0 . We recall that x* is said to be globally stable in D if

it is locally stable and all trajectories in D converge to x*
Assume that the following hypotheses hold:

(H,) there exists a compact absorbing set K c D;

(H,) the equation (1a) has a unique equilibrium x* in D

The basic idea of this method is that if the equilibrium x* is (locally) stable, then the
global stability is assured provided that (H;) — (H,) hold and no non-constant periodic

solution of (1a) exists.

Bendixson criterion

Li and Muldowney (1996) showed that if (H;) — (H,) hold and (1a) satisfies a Bendixson
criterion that is robust under C local e —perturbations of f at all non-equilibrium non-
wandering points for (1a), then x* is globally stable in D provided it is stable. Then, a
new Bendixson criterion robust under C local € —perturbation and based on the use of

the Lozinskii“ measure is introduced.

A function g € C(D = R™) is called C local e —perturbations of f at x, € D if there
exists an open neighbourhood U of x, in D such that the support supp(f — g) € U and

|f = 9glc <e,where |f —glc = sup{lf (x) — 9| + |f(x) — gx(x)|: x € D}.

A point x, € D is said to be non-wandering for (1a) if for any neighborhood U of x, in D

and there exists arbitrary large t such that U n x(t,U) # ¢.

Let P(x) bea (Z) X (121) matrix-valued function that is C on D and consider
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B = PP~ 4+ pji2lp~1

where the matrix Pr is

T
s, = (PI9.) G = Py £

And J2| is the second additive compound matrix of the Jacobian matrix, J, i.e. J(x) =

n
2

survey on compound matrices and their relations to differential equations as described by

Df (x). Generally speaking, for an x n matrix j = (J;;), /'"? isa (721) X ( ) matrix (for a

Muldowney (1990) and in the special case n = 3, one has

J11 + /22 J23 —J13
]IZI = J23 Ji1 + /33 J12
—J31 J21 J22 +J33

Consider Lozinskii measure £ of B with respect to a vector norm |.| in R® | N =§

(Martin Jr, 1974)

|1+ hB| -1

L(B) = lim h

It is proved in (Li & Muldowney, 1996) that if (H;) and (H,) hold, condition

1 t
lim Supsup—J L (B(x(s, xo))) ds <0

t—oo xg€ED t 0
(2a)

guarantees that there are no orbits giving rise to a simple closed rectifiable curve in D
which is invariant for (1a), i.e. periodic orbits, homoclinic orbits, heteroclinic cycles. In
particular, condition (2a) is proved to be a robust Bendixson criterion for (1a). Besides,
it is remarked that under the assumptions (H,) — (H,), condition (2a) also implies the

local stability of x*.

As a consequence, the following theorem holds (Li & Muldowney,1996):
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Theorem: Assume that conditions (H;) — (H,) hold. Then x* is globally asymptotically
stable in D provided that a function P(x) and a Lozinskii™ measure L exist such that

condition (a2) is satisfied.

For system (3.1), under the assumption of R, > 1, satisfies conditions (H;) — (H,), the
existence of the endemic equilibrium has also been shown and the instability of DFE
implies the uniform persistence (Freedman et al., 1994) i.e. there exists a constant ¢ > 0
such that any solutions (S, (t), I (t), I, (t)) with (S, (0),1,(0),I,,,(0)) in the interior of

D satisfies:
min {gim inf Sh(t),gim inf I,(t), tlim inf I, (t), }

The uniform persistence together with boundedness of D, is equivalent to the existence of
a compact set in the interior of D which is absorbing for (2) (Hutson & Schmitt, 1992).
Thus, (H,) is verified. Moreover, E; is the only equilibrium in the interior of D, so that

(H,) is also verified.

It remains to find conditions for which the Bendixson criterion given by (2a) is verified.
To this aim, let us begin by observing that from the Jacobian matrix (3.16) associated

with a general solution (Sy, I, I,,) of reduced system (3.1), we get the second additive

compound matrix J!2!:

T (S, Iy 1)

—aq1 [5P) (1 —u)epBS, + (1 — uy)epBS,
= (1 - ul)equ(Nm —E, - Im) —dz; _6}1
0 (A —u)epply, + (1 —uy)edPln, —asz
where

a1 = U +ap + (1 —u)eppfl, + (1 —uy)epBl,, + up + 6, + b + tu,

a;z; = (1 —u)epfSy + (1 — uy)efPSy
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Azp = pip + 6 + (1 —w)edpfly + (1 — ug)epBly, + (1 — uy)ePAl, + pup, + auy
+ pus

Agz = M+ py + auy + puz + (1 —uedaly + (1 — u)edfly, + (1 — uy)epply,
where m = (Am /i + auy + puz)/ (A /).

Choose now matrix P(x) = P(S,In, In) = diag(1,In/l;p, In/1n). Then PP~! =
diag(0, /Iy — Iy /I, In/In — Im/I), and the matrix B = PrP~1 + PJI2IP~1 can be

written in block form as

B B
B = [ 11 12]
By1 B

Where

By1 = —(un + an + (1 —u)epBly + (1 — uy)€pPlm + pp + b + Uy + 65)
I I
Biz = |((1 ~w)edpsh + (1~ u)edps,).- 1, (1~ up)epSy

Ly
+ (1 — uy)epBSp.—

h
B21 [(1 - ul)EA(;bIm(N m)(lh/lm)]
ioi
| W o
1 Im
Il(l —Uy)EPPBly — (1 —uy)edfly — (1 — ug)edaly _h -7 a33J|

The vector norm |. | in R2 is here chosen to be

|(x,y,2)| = max{|x|, |yl, |z]}.

Let o(.) denote the Lozinskii measure with respect to this norm. Using the method of

estimating o (.) in (Li & Muldowney, 1996), we have

o(B) < sup{g1, 92} = sup{oy(B11) + |B12l, 01(By;) + |Baql }

where
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|B1,| and |B,,| are matrix norms with respect to the L vector norm and o; denotes the
Lozinskii measure with respect to L norm . Since B, is a scalar, its Lozinskii measure

with respect to any norm in R is equal to B, ;.
Therefore
01(B11) = —(un + an + (1 —uy)ePPln + (1 — wy)€dfly, + up + b + tuy + 63)

L, I
01(B32) = max £
Ih Im

- (.uh +ap + (1 - ul)eqbﬁlm + (1 - u4)e¢ﬁlm + (1 - ul)ed)/uh + U

L I
+au, + pu3):i - Iﬁ — (1 —w)epfly, — (1 —uy)edppfly,
m

— (1 —u)epAly — pup — 6y — b — Tuy — Py — AUy — Pu3}

L I
01(B22) = i - ﬁ
- (.uh +ap + (1- ul)ed)ﬁlm +(1- u4)6¢.3[m +(1- ul)Ed)/Uh + Um
+ auy + pus)
I,
1Byl = ((1 —uy)epBSy + (1 — u4)6¢35h)-z
Iy
|321| = (1 - u1)6¢/1(Nm - Em - Im)-l_
m
Therefore

g1=—(up +ap + (1 —u)epfly, + (1 —uy)edfly, + up + 6 + b + tuy)

1
+ ((1 —wuyepBSy + (1 — u4)e¢/>’sh)f

(3.46)

In Iy Iy

g> = (1 —uy)epA(N,, — E, — Im)'l_ + -
m h m

— (up + ap + py, + auqy + pus + (1 — uy)epaly).
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(3.47)
We rewrite the last two equations of system (3.1) for I, and I,,, as
Iy I
E = ((1 —u)ePBS, + (1 — u4)6¢ﬁsh)-E — (up + 8p + b + TUy)
(3.48)
Im Iy
I_ = (1 - u1)6¢/1(Nm —Em — Im)-I_ — Um — auy — puz.
m m
(3.49)
Substituting equation (3.48) into (3.46) and (3.49) into (3.47) we have
In
9:1(8) = I (un + an + (1 —uyedPfly + (1 —uy)edpfly)
(3.50)

;
g:(t) = i — (up + ap + (1 — u)epAl, + (1 — wy)epBly, + (1 — uy)edBly).

(3.51)

For the uniform persistence constant > 0 , there exists a time T, > 0 independent of

x(0) € K, the compact absorbing set, such that
I,(t) > ¢
I,(t) > ¢

fort > T, we have

p
g1(®) < i— (un + ap + (1 — wy)epBe + (1 — uy)epfe)

y
g.(t) < ﬁ — (un + an + (1 —wyeple).
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Relations (3.50) and (3.51) imply
In
o(B) Sl——ufort>TO
h

where

u=min{u, + ap + (1 —uepfe + (1 —uy)epfe, up + an + (1 —uy)epel.
Along each solution (S, (t), I (t), L,,(t)) to (1) with (5,(0),1,(0),1,,(0)) € K where K

is the compact absorbing set, we have for t > T,

1ft (B)d <1fT° (B)ds + 12 _ L= To
kN A (S N

which implies g, <“/2 < 0 . This proves that the unique endemic equilibrium is

globally asymptotically stable whenever it exist. Thus completing the proof.

3.3.12 Sensitivity Analysis

Sensitivity analysis of the basic reproductive number is conducted to assess the relative
impact of each of parameters to the disease transmission and prevalence by calculating
the sensitivity index of the basic reproductive number to the model’s parameters.
Sensitivity analysis is commonly used to determine the robustness of model predictions
to parameter values since there are errors in data collection and the presumed parameter

values.

This will enable us to determine which of the controls causes the most reduction in R,
and determine the control measure that is the most effective in controlling malaria
transmission. The normalized forward sensitivity index of the reproduction number with
respect to these parameters given in Table 3.1 is computed. The index measures the
relative change in a variable with respect to relative changes in parameters. The analysis
of these indices will help to determine which parameter is more crucial for disease

transmission and prevalence.
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Definition
The normalized forward sensitivity index of a variable, h , that depends on a parameter, [

, Is defined as (Chitnis et al., 2008) : & = - X ‘;—'Z . This process is carried out for all the

L
h
parameters in the expression for R,.

Therefore the sensitivity index of R, on parameter a;, is given as

1
ap _ ap(pup + ap)?

R 1
R, o
1 11 1 11
dR, ap=2(Up + ap)2 X 5 — ap2(up + ap)2 X 5
day (un + an)
which gives
1 1 11 1 11
£ ap(up + ap)? y ap=2(Up + ap)z X 5 — apZ(Up + ap)z X 5
h ah% (un + an) '
Therefore
fR0 _ Hn
o 2(an + p)

The sensitivity index of the other parameters are given by

Ro _ puz + Uy + au,
“m 2y + pus + auy + W)

Ro _ —Hm(20m + 3 + au; +pus))
o 2(am + pm + aug + pus) (i + aug + pus)
o _ ~5,
Sn Z(b + Tu, + 5h + ,Llh)
Ry _ —b

b _2(b+‘tu2+6h+,uh)



68

Re _ —Hh +apby +apb + aptu,
Ko 2(pn + Op + b+ Tup) (U + an)

Sensitivity indices for the control parameters

Ry _ _—H
ol
Ro _ Tl

Yz 2(up + €+ b+ ty)

Ro _ —p(Bpusz + 3u,, + auy + 2a,,)us
2 2(pus + auy + ) (PUs + ey + )

Ry _ _ 4
(1w

The positive sign of the index shows that an increase in the value of the parameter results
into an increase in the value of R, and decrease in the value of the parameter results into
the decrease in the value of R,. The negative sign of the index shows that an increase in
the values of the parameter will result to a decrease in the value of R, and a decrease in
the value of the parameter will result to increase in the value of R, . The magnitudes of

the indices are used to compare and determine sensitivity of the parameters of the model.

In the next section, we apply the optimal control method using Pontryagin’s Maximum
Principle to determine the best strategy for minimizing malaria transmission in the

population.

3.4 Analysis of Optimal Control of Malaria Model with Intervention

Strategies

We consider the case of time-dependent control variables. The malaria dynamics model
is extended and an optimal control problem is formulated. We formulate an optimal
control model for malaria disease in order to determine optimal malaria control strategies

(ITNs, IRS, IPTp and treatment) with minimal implementation cost.
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For the optimal control problem of the given system, we consider the control variables
u(t) = (uq, uy, us,uy)eU relative to the state variables Sy, Ey, I, Ry, Sy Em, LyWhere

control variables are bounded and measured with.

U = {(uy, uy, us, uy )€U is Lebsegue measurable on [0,1],0 < u;(t) < 1,t €

[0,T],i = 1,2,3,4. }. We define the objective function as

](ull uZ, U3, U4) = T Ale + Azlh + A3Eh + l(Blu% + Bzu% + B:;u_% + B4u2) dt
0 2

subject to
ds,
ar Ap + YRy, — (1 —u)ApSy — (1 — ug)ApySp — unSn
dE),
w T (1 —u)ApSp + (1 — uy)Any Sy — (ap + up)Ey
dl,
a apEp — (6p + up)ln — (b + Ul
dR,
Tk (b + tu)ly, — (Y + up)Ry
ds,,
dr = Am — (1 = u) S — (i + auy + puz)Sp,
dE,,
F = (1 - ul)/lmsm — amEy — (,le +au, + pu3)Em
dl
d_;n = amEy — (.um +au; + puB)Im

S,(0) = 0,E,(0) = 0,1,(0) = 0,R,(0) > 0,5,,(0) = 0,E,,(0) > 0,1,,(0) > 0.

(3.52)

In the objective function T is the final time, quantities A;,A, and A; are weights
constants of the total mosquito population, infected individuals and exposed individuals
respectively, while B;, B,, B; and B, are weight constants for use with ITNs, treatment
effort, IRS and IPTp efforts respectively. The total mosquito population (N,, = S,, +

E,, + I,,) is part of the objective function because it is affected by the use of IRS and
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ITNs. In addition, E, and I, are included in the objective function because individuals in
these classes are affected by the use of ITNs, IPTps and treatment respectively. A
quadratic cost on the controls was chosen in line with what is known in the literature on
epidemic optimal controls for malaria (Okosun et al., 2013; Mwamtobe et al., 2014). The
cost of implementing personal protection using ITNs is B,u?, treatment of infected
individuals is B,uZ, spraying of houses with IRS is B;u2 and preventive method of IPTp
is B,uZ. A linear function has been chosen for the cost incurred by exposed individuals
A3Ej |, infected individuals, 4,1, and the mosquito population, A;N,, . A quadratic form

is used for the cost on the controls B,u?, B,u3, B;u? and B,u3, such that the terms
%Blu%,éBzug,%Bﬂg and %B4u§ describe the cost associated with the ITNs, treatment,

mosquito control (IRS) and chemoprevention (IPTp) respectively.

Our aim with the given objective function is to minimize the number of latent humans
En(t) and infected humans [I,(t)  while minimizing the cost of control
uy (t), uy(t), uz(t) and u,(t) . We select to model the control efforts via a linear
combination of quadratic terms and the constants which represents a measure of the
relative cost of the interventions over [0, 1]. We seek an optimal control uj, u;, uz and u,
such that

](u;t u;) u;, uji-) = min ](uli uZI u3l u4-)
Uq,Up, U3, U U

(3.53)

Where U is the set of measurable functions defined from [0, T] onto [0,1] subject to

system (3.1) and appropriate initial conditions.

Pontryagin’s Maximum Principle is used to solve this optimal control problem and the
derivation of necessary conditions that an optimal control must satisfy (Pontryagin et al.,
1962). Pontryagin’s Maximum Principle converts the state system (3.1) and objective
function (3.52) into a problem of minimizing pointwise the Langragian, L , and

Hamiltonian, H , with respect to u,, u,, u; and u, .
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3.4.1 Existence of Optimal Control Problem

The existence of an optimal control can be proved by using the theorem given in Fleming
and Rishel (1975). It can be clearly seen that the system of Equation (3.1) is bounded
from above by a linear system. According to the result in (Fleming & Rishel, 1975), the

solution exists if the following hypotheses are met:
(H,) : The set of controls and corresponding state variables is nonempty.
(H,) : The control set,U , is convex and closed.

(Hs3) : Right hand side of each equation in (3.1) is continuous, bounded above by a sum
of the bounded control and state, and can be written as a linear function of u with

coefficients depending on time and state.

(H,) : There exist constants c;,c, > 0 and 8 > 1 such that the integrand L(y, u, t) of the

objective functional J is convex and satisfies

B
Ly, u,t) = ey (lug|? + luz® + luzl? + [ug|®)z — c,.

In order to confirm the above hypotheses, a result given by Lukes (1982) is used to
establish the existence of solutions of state system (3.1). Since the coefficients are
bounded, (H;) is satisfied. The solutions are bounded, hence the control set satisfies (H,)
as well. The system is bilinear in u,, u,, us, u, hence, the right hand side of (3.1) satisfies
the condition (H3) (since the solutions are bounded). Note that the integrand of the

objective functional is convex. The last condition is also satisfied.

The state and the control variables of the system (3.1) are non-negative values and non-
empty. The control set U is closed and convex. The integrand of the objective cost
function J expressed by (3.52) is a convex function of (u,,u,, us,u,) on the control set
U . The Lipschitz property of the state system with respect to the state variables is
satisfied since the state solutions are bounded. It can easily be shown that there exist

positive numbers &, &, and a constant € > 1 such that
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1
Ale + AZIh + A3Eh + E (Blu% + Bzu% + B3u§ + B4_ui)
= E1(|u1|2 + |u2|2 + |u3|2 + |u4|2)€/2 &
where &;,&, > 0,A4,,A,,B;,B,,B3,B, > 0and € > 1.

This concludes existence of an optimal control since the state variables are bounded.

Hence we have the following Theorem:

Theorem 3.9: Given the objective functional J(uy,u,, usz, uy) = fOT (Ale + Ayl +

ASE, + %(Bluf + Byus + Byu3 + B4uﬁ)) dt where U = {(uq,uy, uz,uy)|0 <
Uy, Up, Uz, Uy < 1,0 <y (t) <1,t €[0,T],i = 1,2,3,4.} subject to Equations (3.1) with
initial conditions, then there exists an optimal control u* = (uj,u3, u3,u;) such that

](uir UZ; u§! U,Z) = mUin](uli Uz, Us, u4)'

Lagrangian for a problem discusses how the techniques come and Hamiltonian helps in
solving for the adjoint variable. In order to find an optimal solution, first we find the
Lagrangian and Hamiltonian for the optimal control problem (3.52). The Lagrangian of

the optimal problem is given by
L(Ih'Ehr Nm' ul'u2fu3'u4)
1
= Ale + Az]h + A3Eh + E (Blu% + Bzu% + B3u?2’ + B4_uZ)
We need to find the minimal value of the Lagrangian. To do this, we define the
Hamiltonian H for the control problem which consists of the integrand of the objective

function (Lagrangian, L ) and the inner product of the right hand sides of the state

equations and the co-state variables or adjoint variables (4, 1,, A3, A4, A5, A4, A7) @S

dEy dl, dRp, dSm dE, dlpy,

ds,
HepL+a ny g @on ) Sny g n g Som o, Eom o S
thgr ey T T s e Y

Taking X = (S, Ew, I, Ry, Sy Empy L) » U = (uq, Uy, usz, uy) and
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A = (A4, 15,13, A4, 45, A6, A7) We obtain the Hamiltonian given by

H(X,U,A) = L(Ip, Ep, Ny, Uq, Uy, Uz, Uy)
+ A1[An + YRy — (1 — ug) A Sp — (1 — Ua) AnwSh — UnSnl
+ A2[(1 = u ) ApSh + (1 — ug) ApwSp — (an + pn)Ep]
+ AzlanEn — (6 + un)ln — (b + Tuz)ly]
+ A[(b + Tux) Iy — (Y + pp) Ry
+ As[Ap — (1 = u ) A S — (U + auy + puz) Syl
+ Al (1 — u ) A S — OmEm — (U + auy + pu3)Ep,|
+ AylamEm — (U + auy + pus)ly,].

(3.54)

3.4.2 The Optimality System

In order to find the necessary conditions for this optimal control, we apply the

Pontryagin’s Maximum Principle (Lenhart & Workman, 2007) as follows:

If ui, u3, u3,uy is an optimal solution of an optimal control problem, then there exists a
nontrivial vector function A(t) = (4,(¢t), 4,(t), ..., A,(t)) satisfying the following

conditions
The state equation is

dx  OH(t uj, u3,u3, uy, A(L))
dt oA '

The optimality condition

0= OH(t,uj, u;, uz, uy, A(t))
B ou

and the adjoint equation

d_ OH(t,u,u3,u3,u3, A(0))
dt 0x

Now, we apply the necessary conditions to the Hamiltonian.



74

Theorem 3.10: Given the optimal controls wuj,uj,u3,u; and solutions
St En Iy, Ry, Sy Em, Iy Of the corresponding state system (3.1), there exist adjoint
variables 1,, 1,, 13, A4, A5, A4, A, Satisfying

dA, OH

_d_t = E =(1- ul)ﬂh(lz - 11) +(1- u4)lhw(12 — A1) — updy

dl, OH

_Ezazah(%_/lz)_ﬂh/lz + Az

dl; OH
_E:a—lhz (b+ru2)ﬂ4—(b+‘[u2 +,uh+6h)l3+A2 -

(1_u1)/16¢5m 1
N, ) >

1-— AedS,,
+ <( ullv)h € >’16

dA, 0H

—E—EZIP/M—(M‘H/J)/M

dAs _ OH

~a " as, (1 —u) (A6 = A5) Ay — (m + auy + puz)ds + 4,

dAs  OH

T4t B, am(d7 = A¢) = (lm + Aty + puz)de + Ay

dA;  OH

= = @y + pus)y + 4,

(1 —uy)PepS, (1 —uy)PedSy
+<_ Ne N )Al

(1 —w)PedSy, (1 —uy)PedSy
+ < N, + Ny )/12

(3.55)
with transversality conditions
A1(T) = 2,(T) = A3(T) = 2,(T) = A5(T) = A4(T) = 1,(T) = 0.
(3.56)

Furthermore uj, u3, u3, u, are represented by
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] Ay — ADALSH + (A — A5) A S + aSiAs + aEmdg + aly Ay
u; = max{0,min| 1, B
1

(A3 — /14)1;;)}

u; = max {O, min (1, B,

Pp(AsSm + AgEp, +/17I,’;l)>}

u; = max {0 mm( B,

(A, — /11)lhw51’;)}.

— max {0, (
u4 max{ min B4

(3.57)

Proof:

To determine the adjoint equations and the transversality conditions we use the
Hamiltonian H . The Hamiltonian function, H, is differentiated with respect to

Sn En, In, Ry, S, Emy @nd I, . The adjoint/ costate equation is given by

dA, oH
_E = E = (1 - ul)lh(lz - Al) + (1 - u4)/1hw(/12 —_ Al) —_ ‘uhll
dlz J0H
- dt (7Eh ah(l3 - AZ) ,uhlz + A3
dl 0H 1 —uy)ledS
ats _ =B +tu)ly — (b +TUy +up + )+ A, — ( 1)AEPS As
dat ol m
(1 - ul)AE(pSm
i < N )%
dl, OH
Tdt  oR, YA — (un + P,
dA J0H
dts aS (1 ul)(}'6 - AS)ATH - (.um + auq + pU3)AS + A1

_dls _ OH

T aE = am(A; — Ag) — (Um + auy + puz)de + A4
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dA, OH
T al. = —(um + auy + puz)d; + Ay
< (1—-uy)PedpS, (1- u4)56¢5h>
+ - - Al
Ny, Npw
1-— S 1-— S
4 <( uy) PEPSy +( uy)fed h) 1,
Nh th

with transversality conditions

/11(71) = /12(T) = /13(T) = /14(T) = /15(T) = /16(T) = /17(T) = 0.

Using the optimality conditions we have and the property of the control space U.

In order to minimize Hamiltonian, H , with respect to the controls at the optimal controls,
H , is differentiated with respect to u,, u,, u3 and u, on the set U, and the solution for the

optimal control point is obtained after equating to zero. This is the optimality condition.

. 9H oH oH oH . .
Solving T 0, e 0, Fie 0, and vl 0, evaluating at the optimal control on the

interior of the control set, where 0 < u; < 1, for i = 1,2,3,4, and letting S, = S}, Ej, =
Ep In =15, Ry, =Ry, Sy = S, Em = Epy , and L, = I, yields

oH
= Bitty + hAsSi — 202 + AsAmSm — aSpAs — abmds — aldy = 0
1
aH * * *
a_uq = Bzuz - Tl3lh + TA4Ih = 0
aH * * * *
P = Bsuz — PAsSm — PAEm — A7l =0
Uus
oH i} i}
—— = Byuy + Apw oSy — A ApwSp = 0
du,
for which
% (AZ - Al)AhS}t + (A6 - As)lms:n + aS;nls + aE:nA6 + al:nﬂq
u =

By
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(A3 — Ay

uz = BZ
. PAsSpm + A6Em + A7)
u; = B
. (A2 = A1) Sy
uy = :

B,
(3.58)

By applying the boundary condition of each control, the solution of Equation (3.58)

becomes

) { , ( (A2 = ADASh + (A6 — As) A S + aSpds + aEpdg + aI;,*1/17>}
uy = max40,min| 1,

B,

. { . ( (13 —M)h’i)}
u, = maxi0, min 1,B—
2

. _ { . ( P(AsSm + A6Em +/171{%))}
uz; = maxi0,min|(1, B
3

. . (A2 = A1) ApwSh
u, = max,0,min|1, B .
4

We achieve the uniqueness of the optimal control for small T due to the prior
boundedness of the state and adjoint functions and the resulting Lipschitz structure of the
ordinary differential equations. The uniqueness of the optimal control trails from the
uniqueness of the optimal system, which consists of state equation (3.1), the adjoint/
costate equation (3.55), and initial conditions at ¢ = 0, boundary conditions (3.56) with

characterization of the optimal control (3.57).

Hence the state and optimal control can be calculated using the optimality system. Hence
using the fact that the second derivatives of the Lagrangian with respect to u,, u,, u; and
Uy, respectively, are positive indicates that the optimal problem is a minimum at controls

uj, uy, uz and uy .
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The optimality system is solved using the forward-backward fourth order Runge-Kutta
scheme in R statistical Computing platform (R Development Core Team, 2011). The
optimal strategy is obtained by solving the state and adjoint systems and the
transversality conditions. First we start to solve the state (3.1) using the Runge-Kutta
fourth order forward in time with a guess for the controls u,,u,,u; and u, over the
simulated time. Then, using the current iteration of the state equations with the initial
guess for the controls, the adjoint/ costate equations in system (3.55) are solved by a
backward method with the transversality conditions (3.56). Then the controls are updated
by using a convex combination of the previous controls and the value from the
characterizations (3.57). This process is repeated and iterations stopped if the values of
the unknowns at the previous iterations are very close to the ones at the present iterations
(Lenhart & Workman, 2007).

In the next section we look at cost effective analysis by using optimal control theory by

developing the objective function and the corresponding Hamiltonian equation.

3.5 Cost Effectiveness Analysis of Optimal Malaria Control Strategies

After using the optimal control to investigate the optimality of the intervention strategies
being practiced at different transmission settings in Kenya, economic evaluation of the
strategies is carried out by performing a cost-effectiveness study to determine the most
cost-effective as one or combination of the four intervention strategies namely, treatment
effort of infected individuals, ITNs, IRS and IPTp. Cost-effectiveness analysis is
undertaken in order to assess the extent to which the intervention strategies are beneficial
and cost effective. The aim is to maximize the level of benefits (health effects) relative to
the level of resources available as shown by Okosun et al., (2013). The appraisal of the
difference between the costs and health outcomes of the considered intervention
strategies will help to achieve the purpose of this study. The health-care effects of the
intervention strategies campaigned in the community are maximized under minimal
resources. Since the intervention strategies being practiced in the community are
mutually exclusive interventions, it is essential to use incremental cost-effectiveness

ratios (ICER). The ICER is calculated in order to achieve the goal of comparing the costs
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and the effectiveness of the intervention strategies. We start by performing economic

evaluation of the intervention strategies then use the ICER.

3.5.1 Economic Evaluation

The economic evaluation of all four intervention techniques is evaluated in which
effectiveness and cost-effectiveness of the interventions are investigated in order to
minimize or eradicate malaria disease in the area under study. The following cost

objective function is used

E.(uq,up,us,u3)

Ty
min f [b1u1 () (Sh (D) + S (6) + Ern (D) +1 (1))
(u1,uz,u3,us)€U J

+ byTuy (D1, (1) + bspus (6) (Sm () + Ep () +1, (D))
+ by (6)(Sp (D) + Ep(t))]e~*tdt

(3.59)

subject to the system of differential equations (3.1), where b; denotes the per capita cost
of ITNs (u,); b, denotes the per capita cost of treating an individual with malaria (u,), b3
represents the per capita area cost of IRS effort (u3) and spraying houses and b,

represents the use of IPTp among the pregnant women (u,).

The compartments of the model which are highly affected by the use of ITNs, IPTp, and
treatment are the susceptible, latent and infected individuals, hence the inclusion of these
in the cost function. Part of objective function uses the sprayed houses (IRS) which
affects the whole mosquito population. The discount rate of 3-5% has been exponentially

considered with a parameter ¢. The Lagrangian of the cost objective function is
Ly = [byus (£)(Sh () + En(t) + S (t) + Epn () +1 (£)) + boTuz (D)1,(2)
+ bapuz () (S (t) + Eny () +1 (1)) + baua () (S () + Ep(1))]e ¢
Then the Hamiltonian equation with Lagrangian, state variables and adjoint variables is

Hy =Lyt 2550y 9En g @l 5. AR o B 5. B o i
T 2dt 3dt *dt S dt 6 dt 7 dt
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The developed corresponding Hamiltonian equation is as follows:

Hp = [byug (©) (Sp(©) + En(t) + Spu(t) + Eny () +1,,(0)) + bytu, (0)1,(2)
+ b3puz (0) (S (0) + En () +1n(6)) + bauy(Sp(8) + En(t))]e~¢*

1 —u)Bepl, (£)S 1 —w,)Bedl,(£)S
+{Ah_( u)ﬁ@ OS(0) ( u)lfvf:qb(t)(t) O ¢ o

+ l/)Rh(t)}ﬂ’{

4 {(1 — u)BePln (£)Sh (1) 4 (1 — uy)Bedplin (£)Sh(£)

N (D NG) ~ anbn()

- uhEh(t)}/l’é + {apEp(t) — (b + Tuy + up + 6p) 1L (1)}13
+{(b + Tux) I, (1) — (un + PIRL (D31,

1 — u) el (£)S,,
i g - SO a4 g2

N {(1 — uy) APl () S (t)
Np(t)

+ {amEm(t) — (Um + auy + puz)ln (0347

— (am + Uy + auy + pu3)Em(t)}lz

(3.60)

where A7, 15, A5, A3, 15, Ag and A5 denote the marginal value linked to their corresponding
classes. The A; where i = (1,2, ...,7) represent the changes in the objective value of an
optimal solution of an optimization problem by relaxing the constraint by one unit
(Pontryagin et al., 1964). These can be calculated by using Pontryagin’s Maximum
Principle as we did previously and give

dA;  9H, dy  0H, dA;  OH, dA; _ 0H,

dt S,  dt  0E, dt  dl,’ dt  0R,

di;  OH, dX,  OH, dX,  0H,
at  9S,,’ dt  0E, dt 09I,

Hence using the Hamiltonian equation (3.60) gives
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dAj 0H, ot ot . * *
E = _a_Sh = —b1u1€ ot — b4u4€ ¢ + (1 - ul)lhll + (1 - U4)){hw){1 + l’lh){l
— (1 —up)ApA; — (1 — uy) Ay, A5.
dxr; d0H, ot ot i . .
e —E = —bu;e %" — byue ™ + apd; + upd; — apl;
dAs 0H
d;’ = _Wb = —b,tuze = + (b + Tuy + py + S5 — (b + U A5
h
(1 —uy)AedpSy, (1 —uy)AedpSy,
+ < Nh /15 - Nh /16
dA; J0H,, . i
it = 9R, —PA1 + (up + YP)A;
dAx 0H
d_t5 = _as_b = —bju e~ — bypuze Pt + (1 — u ) ApAs + (U + auq + puz) A
m
-(1- ul)lm/lz
dAg 0H, ot ot . .
T - 3R - —byu e — bypuze™ " + (apy, + Uy + auy + puz)dg + audg
m
- amA;
di; 0H, ot ot .
ar 9L —byuse™%" — bspuze™®" + (i + auy + puz)ly
m
1—u)fedS 1—uy)BedS
_|_<( 1)ﬁ¢h+( 4).8¢h>/11
Nh th
(1 —uy)BepSy, (1 —uy)PedSy
+ - - Az.
Nh th

Each intervention strategy is assessed by developing the Hamiltonian equation thereafter

the economic tool will be employed.

3.5.1.1 Economic Evaluation of ITNs

The prevention parameter for the ITNs is denoted by u, (t) . The Hamiltonian equation,

H, , is differentiated with respect to u, to obtain
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oty _ —b1 7% (Sp (1) + Ep(t) + Sp(t) + En(O)+1, (D) + PedlnSh (A2 — A1)
ouq Nn

Aegly,

h

+ (A — As)

S5+ a(SpAs + Ep AL+ 1,25)

in which £22m% (25— 20) + (A6 — 25) 222 55, + (S + Ey s + [, A7) is the total
h h

marginal benefit due to the use of ITNs while ble"‘pt(Sh(t)+Eh(t)+Sm(t)+
Em(t)+1m(t)) is the marginal cost of acquiring the ITNs. The equivalency of the

marginal cost and marginal benefit leads one to achieve the optimal policy.
Hence;

u ()

(o i ble‘9"f(5h+Eh+Sm+Em+Im)>ﬂd)mh( )+ (g — A9) d’ B st b a(SpAl + EmAl + LnA3)

[)’6(1)1 Sh /1 Cb h
Np,

=1(0,1) if be " (S,+E,+Sp+E,+1,) = =2 + (Mg — As) —— Sy + a(Sp At + Ep A + I A5) .

epl,S,
lkl if ble“"t(Sh+Eh+Sm+Em+Im)<ﬁdl)vm R =) + (g — As) d”‘s + a(SpAs + EmAl + LnA3)
h

(3.61)

The third equation of (3.61), shows that if this is achieved then the total marginal benefit
of using ITNs is more than the total marginal cost; hence the gain of optimal malaria
prevention. Then we can conclude that the susceptible and exposed individuals should
best (effectively) use this prevention strategy in order to fight the epidemic. On the other
hand, few susceptible and exposed individuals will use ITNs if the marginal cost is more
than the marginal benefit. The effective use of this strategy will lead to achieve the
optimal policy which says that increasing the use of ITNs increases the number of

susceptible humans and uninfected mosquitoes.

3.4.1.2 Economic Evaluation of Treatment Effort of Infected Individuals

Here the control parameter for treatment of infectious individuals is given by u,(t) . The

Hamiltonian equation, Hy, (3.60) is differentiated with respect to u,(t) , giving;
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0H, _ i i
T —b,tlhe™ % + 1l (A, — A3)

in which b,tl, is the marginal cost and tI,(1; — A3) is the marginal benefit of treating
infectious individuals. Hence,
0 if bytle ®t >, (A —2%)

u,(t) =4(0,1) if bytle™? =1l (A, — 13%).
1 if bytle ®t <1l (A — 23)

(3.62)

The optimal policy is to guarantee that the marginal costs for being treated is equal to the
marginal benefit for the individuals being treated. Therefore, from (3.62) all infected
individuals must look for full treatment if the marginal benefit, I;,(A, — A5) , must be
greater than the marginal cost, b,tI,e~¢¢, for being treated. Otherwise, only few infected

individuals will look for treatment.

3.5.1.3 Economic Evaluation of IRS

Insecticide residual spraying (IRS) prevention parameter in the system (3.1) and in the
Hamiltonian equation, Hy, , (3.60) is uz(t) . Then differentiating H, with respect to u;

gives

oH
E)_ub = bsp(Sm + Em + I)e ™%t — p(SmAl + Ep Al + IA3)
3

where bs;p(S,, + E;, + I,) is the marginal cost for IRS and p(S,, Az + EpAg + Ly A7) is
the marginal benefit for using the sprayed houses. Furthermore, it can be deduced that the
optimal policy for a sprayed house is given by

0 if bsp(Spm+ Em + L)e % > p(Spds + Epdg + LyA%)

Us (t) = (0,1) if b3p(5m + E, + Im)e_(pt = p(SmI’Sc + Emlz + Im/w) .
1 if bsp(Sy+Ep + Ip)e Pt < p(Spis + EAy + LyA%)

(3.63)
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The spraying of insecticides against mosquitoes is optimal for malaria disease control if
the marginal cost b;p(S,, + En, + L), is less than the marginal benefit, p(S,,Az +
EnAg + LnA%)).

In addition, we will quantitatively analyze the marginal benefit and marginal costs of the

four interventions.

3.5.1.4 Economic Evaluation of IPTp

Intermittent Preventive Treatment (IPTp) prevention parameter in the system (3.1) and in
the Hamiltonian equation, Hy, (3.60) is u,(t). Then differentiating H,with respect to u,

gives

0H epl,S
—2 = _pe (S, + Ep) +M
ouy, hw

(42 —41)
in which %(A‘{ — A}) is the total marginal benefit due to the use of IPTp while

bye~%'(S, + Ep,) is the marginal cost of acquiring the IPTp. The equivalency of the

marginal cost and marginal benefit leads one to achieve the optimal policy.

Hence;
L,S
r O lf b4e_(pt(5h+Eh) >M(AE _A;)
th
edl.S
u,(t) =<(00,1) if be® (S, +E,) = % 43 —11).
hw
edl.S
1 if bae (S, + En) < LSS G 2oy
\ Npw

(3.64)

Numerical simulations are done to show the impact of the shadow prices (marginal value/
cost) and marginal benefits by evaluating the shadow prices at the start of the malaria
epidemic and as a function of the numbers of recovered or protected at the time of
outbreak (susceptible human beings).
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3.5.2 Analysis of Optimal Control

We consider the objective function

JQuta g, Us, Ug) = [ (Ay Ny + Agly + AsEp, + (Byud + Bou3 + Bsu3 + Byud))e ¢tdt
(3.65)

subject to

ds
d_th = Ah + ll}Rh — (1 - ul))thh - (1 - u4))lhw5h - iuhSh

dE
d_th = (1 —u)ApSp + (1 — wg) ApwySp — (an + up)En
dl,
P anEyp — (6p + up)ly — (b + tur)ly
dRy,
Tk (b + tu)ly — (P + up)Ry
dsS,,
W = Ay — (1- ul)/lmsm - (.um +au; + pu3)5m
dE,,
F = (1 - ul)/lmsm —amE, — (,le +auq + pu3)Em
dl
d_;n = amEpy — (.um +au, + pu3)1m

and the total cost at time t is given by
T
C = f [byuy (Sp + Sy + Ep+1Ly) + byuy Iy + bsus (S, + Ep 1)
0

+ b4U4(Sh + Eh)]dt
(3.66)

where A4, A,, A3, B, By, Bs, B, are desired positive weights on the benefits of preventing

infection and exposure plus total mosquito population. Here, we assume that there is no
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linear relationship between the coverage of these interventions and their corresponding
costs, hence we choose a quadratic cost on the controls in keeping with what is in other
literature on cost of control of epidemics (Adams et al., 2004; Okosun et al., 2013;
Mwamtobe et al., 2014; Joshi, 2002). Our goal with the given objective function is to
minimize the number of infected humans, exposed humans and total mosquito population
while minimizing the cost of control u, (t), u,(t), us(t) and u,(t). We seek an optimal

control uj, uz, u3z and u, such that

J(ui, uz,uz,uy) = min J(uq, uy, us, uy)
ul,uz,u3,u4€U

(3.67)
where U is the set of measurable functions defined from [0, T'] onto [0,1].

The necessary conditions that an optimal control must satisfy come from the Pontryagin’s
Maximum Principle (Pontryagin et al., 1962). This consists in minimizing, with respect

to (uq, uy, us, Uy).

Forming the Hamiltonian from the objective function (3.65) subject to equations (3.1)
and (3.66)

H = (A1Ny, + Azl + A3E + (Byu? + Byu? + Byul + Byul))e %t
+{An + YRy — (1 = u)ASh — (1 — ua) AnwSn — #nSn}ta
+{(1 = u)ASn + (1 — u) Anw S — (an + un)En}i,
+{anEn — (6n + p)ln — (b + TUz) I} A3
+{(b +1u)ly — (Y + ) Rp}Ay
+ {Ap — (1 —u)ApSm — (U + auy + pu3) Sy iis
+{(1 —up)An S — amEm — (b + auy + puz)E g
+{amEm — (U + auy + puz) i,
+ {[b1u1 (Sp + S + Epy 1) + bouyly + baug (S, + Epy+1y)
+ bauy(Sp + En) 3 e

(3.68)

where 14, 1,, 15, 44, A5, A¢ and A, are the adjoint variables or co-state variables given by

the following system:
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dA, O0H . . . .
E = _6_5h =(1- u1)/1h/11 + (1 - u4)/1hw/11 + upAl — 1- u1)/1h/12

— (1 — ug)ApwA; — Ac(bruyg + byuy)

dl,  OH ) , ,
YT 35, = —Az + apd; + pupd; — apds — Ac(byuy + byuy)

dl;  oH
=——=—A, + (b + tuy + pp + 6p)A3 — (b + TUx) Ay — Acbyu,

dc  aly,
(1 - ul)ﬂed)sm (1 - ul)/led)sm
¥ ( Ny )AS - ( Ny >A6

dhy _ _OH _ A+ (up + )2,
dt_aRh_wl tn + )2,
dAs 0H . x .
—=——=—-A; + (1 —u)Apls + (U + auy + puz)Ac — (1 — u A
dt oS
— Ac(byuy + bzus)
dAg OH . X .
E = —E = _Al + aml6 + (am + #m + aul + pu3)/16 - amA7
— Ac(byuy + bzus)
dA, J0H «
—_— ——= —A1 + (,um + auq + pu3)/17 - lc(b1U1 + b3u3)
dt al,,
1—uy)PepS 1-— S
. (( DBegS, | (1-up)peg h> N
Nh NhW
( (1 —uy)PedpS, (11— u4)ﬁ€¢5h>
+( - - A2
Nh NhW
dAc
L
dt

(3.69)

By applying Pontryagin’s Maximum Principle (Pontryagin et al., 1962) and the existence

result for the optimal control from Fleming & Rishel (1975), we obtain
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Proposition 1: The optimal control (uj, u;, u3, uy) that minimizes J(uq, u,, ug, u,) over

U is given by

u; = max{0,min| 1, T
1

) . (t(A5 — AT} + AchyI})e®t
u, = max{0,min| 1, 5
2

. ] (p(/lsS;‘;l + AgEp + A7 1) + Acbs(Sy, + Ey + 1,*,1))6""t
u; = max{0,min| 1, B
3

(o (1 Bo = A A S+ Achy(Si + Ep)
Uy, = maxyv,mn , 2B4_e_‘»0t

(3.70)

where 14, 1,, 13, A4, 15, A¢ and A, are the adjoint variables or co-state variables satisfying

(3.69) and the following transversality conditions:
M(T) = 22(T) = A3(T) = A4(T) = A5(T) = 46(T) = A;(T) = Ac(T) = 0.
(3.71)

Proof: From Fleming and Rishel (1975), the existence of an optimal control is a
consequence of the convexity of the integrand of ] with respect to u,, u,, us, u,, a priori
boundedness of the state variables, and the Lipschitz property of the state system with
respect to the state variables. The differential equations governing the adjoint variables
are obtained by differentiation of the Hamiltonian function, evaluated at the optimal
control. Then the adjoint system can be written as,

_OH

0=—
Juy

= —uS2B,e~%t + (A — A)AS; + (A — As) A4Sty + aSiuds + aEjp g

+ alpA; + Acb1(S), + Sp)

0H
0= ou, u52B; — (v(ds — A1 + Acbylp)e?t
2

oH
0= 5= U§2B3 — (D(AsSin + A6Em + A7Ii) + Acbs(Siy + gy + 1) ) et
3



89

0H
0= E = —u$2B,e %" — (Ay — A)AwSh + Acba(Sy + Ef)
4

Due to the a priori boundedness of the solutions of both the state and adjoint equations
and the resulting Lipschitz structure of these equations, we obtain the uniqueness of the
optimality system ((3.69) — (3.71)) for small T.

The restriction on the length of time interval [0,T] is common in control problems
(Okosun et al., 2013; Felippe de Souza et al., 2000; Joshi, 2002), it guarantees the
uniqueness of the optimality system.

By standard control arguments involving the bounds on the controls, we conclude that

0ifué <0 0ifuS <0 0ifu$ <0
u =< ufifo<ui<1l,u;=<5usif0<us<1,uj=<ufif0<u§<1,
lifuf=0 lifus =0 lifus=>0
Oifu; <0
uy, = ufifo<uf<1.
lifu;=0

The optimal control is obtained by solving the optimality system ((3.69) — (3.71)). An
iterative scheme is used for solving the optimality system. We start by solving the state
equations with a guess for the controls over the simulated time using fourth order Runge—
Kutta scheme. Because of the transversality conditions (3.70), the adjoint equations are
solved by the backward fourth order Runge—Kutta scheme using the current iterations
solutions of the state equation. Then the controls are updated by using a convex
combination of the previous controls and the value from the characterizations (3.70). This
process is repeated and iterations stopped if the values of the unknowns at the previous
iterations are very close to the ones at the present iterations (Lenhart & Workman, 2007).

Parameter values from Table 4.1 are used for the numerical simulation.
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3.5.3 Cost-Effectiveness Analysis

The intervention strategies in practice are mutually exclusive interventions, therefore it is
essential to use incremental cost-effectiveness ratios. Mutually exclusive interventions
occur where the implementation of one intervention results in changes to the cost and
effects of the other. The incremental cost-effectiveness ratio (ICER) is calculated in order
to achieve the goal of comparing the costs and the effectiveness of the intervention

strategies.

The ICER is mostly defined as the additional cost per additional health outcome (effect).
It provides a means of comparing interventions across various disease status and

interventions strategies being implemented in the community or in the nation.

The different intervention measures are compared to determine which provides a most
cost-effective control to malaria disease. ICER required the ranking of the alternative
intervention strategies according to their effectiveness on the basis of securing maximum

effect rather than considering cost.

Then one intervention strategy was compared with the next less effective alternative

intervention strategy when relating two or more competing intervention strategies.

We use a more classical approach to analyze the cost-effectiveness of the 15 alternative
strategies by using the ICER in Okosun et al., (2013). ICER is applied to achieve the goal
of comparing the costs and the health outcomes of two alternative intervention strategies
that compete for the same resources. It is generally described as the additional cost per
additional health outcomes. The ICER numerator includes the differences in the
intervention strategy costs, averted disease costs, costs of prevented cases and averted
productivity losses if applicable. The ICER denominator is the differences in health
effects (e.g. total number of infections averted, number of susceptibility cases prevented).

ICER is given by

Cost of Intervention Q — Cost of Intervention P
Effect of Intervention Q — Ef fect of Intervention P

ICER for Q =

where P and Q are the two intervention strategies being compared in this case, and the

effect or benefits in health status are measured in terms of quality-adjusted life years
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(QALYs) gained or lost. Alternatives that are more expensive and less ineffective are
then excluded. This is done after simulating the optimal control model and then ranking
strategies in order of increasing effectiveness measured as the total infections averted.
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CHAPTER FOUR
RESULTS AND DISCUSSION

4.1 Numerical Results for Malaria Model with Intervention Strategies

In this section the model is solved using Runge-Kutta fourth order scheme in R Statistical
computing platform (R Development Core Team, 2011). The aim is to verify some of the
analytical results on the stability of system (3.1).

4.1.1 Summary of Data

Data was collected from the literature, Division of Malaria Control (DOMC), Kenya
National Bureau of Statistics, Malaria Indicator Survey for Kenya, Demographic Health
Survey (DHS) for Kenya, WHO websites and hospital records (from Kisumu, Kisii,
Chuka (Tharaka-Nithi) and Nyeri counties representing the four different transmission
settings/ epidemiological zones in Kenya). All these collected data guided in the
calculations/ estimation of parameter for the malaria model (3.1) while some values were

assumed.

4.1.2 Parameter Values for Malaria Transmission Model

The parameters in the model (3.1) were estimated using clinical malaria data and
demographics statistics of Kenya. Those that were not available were obtained from
literature published by researchers in malaria endemic countries which have similar
environmental conditions compare to Kenya. The total population for pregnant women in
Kisumu in 2015 is 266343, Kisii is 324658, Chuka (Tharaka Nithi) is 94857 and Nyeri is
200216 (based on census 2009 estimates) (KNBS, 2010). The total number of children
under five in Kisumu is 173826, Kisii is 210,435, Chuka is 52975 and Nyeri is 90487
(based on census 2009 estimates). The population growth rate per year is 2.1% for
Kisumu, 2.1% for Kisii, 2.0% for Tharaka Nithi and 1.3% for Nyeri. The population of
pregnant women was estimated as the population for the fertility/ reproductive age (15-49
years). Furthermore, Life expectancy at birth in 2014 is 51years for Kisumu, 59 years for
Kisii, 64 years for Tharaka Nithi and 60 years for Nyeri (KNBS Estimates based on 2009
Census). We estimate that it will take 7 days for human to recover from malaria infection
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through chemotherapy and the incubation period of malaria in humans is from 10 to 14
days as per the National Guidelines for Diagnosis, Treatment and Prevention of Malaria
in Kenya (DOMC, 2010). Disease induced deaths/ mortality was calculated based on
information from hospital records and KDHS. Finally, the probability of transmission of
malaria infection from infectious humans to susceptible mosquitoes is estimated to be
0.42 and we also assume that person who has completely recovered from malaria will
lose his/her malaria acquired immunity after 3 months based on information received

from medical malaria researchers in Kenya.

Gimnig et al., (2003) provided quarterly data for the average number of Anopheles
gambiae and Anopheles funestus mosquitoes in a region of Western Kenya (Asembo).
From this data, Chitnis (2005) used an estimate of 2 Anopheles gambiae and 0.8
Anopheles funestus mosquitoes per house for his PhD thesis in high malaria transmission
areas; therefore we can also conservatively estimate that we have 10 female Anopheles
mosquitoes in each house in Kenya and hence the number of the female Anopheles
mosquito population for each region is approximated by multiplying the population by
10. We use an estimate of 0.40 bites on humans per mosquito per day in Kenya. The
estimation of biting includes both, the dependence on the mosquito's gonotrophic cycle
(the number of days a mosquito requires to produce eggs before it searches for a blood
meal again), and the dependence on the mosquito's anthropophilic rate (the mosquito's
preference for human blood as opposed to other mammalian blood). The probability of
transmission of infection from an infectious mosquito to a susceptible human is estimated
to be 0.0655. Latent period in mosquitoes is estimated to be 11 days for malaria endemic
areas (Chitnis, 2005) and finally, the life expectancy of an adult anopheles mosquito is
assumed to be 25 days considering mortality of mosquitoes due to indoor residual

spraying, mosquito coils and insecticide-treated bed nets.

The rate of human infection and rate of mosquito being infected by feeding on blood
meal and the disease induced death were varied to represent the different transmission

settings/ epidemiological zones in Kenya.

Table 4.1 provides a summary of the estimated values of all parameters.
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Table 4.1: Parameter values for the full malaria model

Parameter Estimated Value Source

Endemic Epidemic Seasonal Low risk

Un 0.00005447 0.00004644 0.00004281 0.00004566 KNBS (2010)

Um 0.04 Estimated
ap 0.07143 Estimated
A 0.0909 Chitnis (2005)
A 0.42 Estimated
0.0655 Estimated
€ 0.2 Kbenesh et al.,
(2009)
Y 0.01095 Estimated

Ap 0.00000575 0.00000575 0.00000548 0.00000438 KNBS (2015)

A, 0.071 Niger & Gumel
(2008)

b 0.005 Chiyaka et al.,
(2008)

T 0.5 Assumed

Sn 0.05 KNBS & ICF
Macro (2010)

p 0.25 Assumed

a 0.25 Assumed

¢ 0.502 Kbenesh et al.,
(2009)

An 0.00000149 0.00000123 0.00000445 0.00000226 Estimated
Anw 0.00000247 0.00000203 0.00000693 0.00000328 Estimated
Am 0.00000048 0.00000394 0.00000143 0.00000073 Estimated
Ny, 440169 535093 147832 290703 KNBS (2010)
Npw 266343 324658 94857 200216 KNBS (2010)
Np, 4401690 5350930 1478320 2907030  Estimated
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In addition the effect of the different intervention strategies are estimated as: u; =
0.0904, u, = 0.165, u; = 0.076, u, = 0.035. The initial state variables are constant
across all the epidemiological zones and are chosen as S,(0) = 700 , E,(0) = 250 ,
1,(0) =0, R,(0) = 00, S,,(0) = 5000, E,,(0) = 500, and I,,,(0) = 100.

4.1.3 Sensitivity Indices of R,

Numerical simulations are carried out to for the different parameters impacting on the
reproduction number. The resulting sensitivity indices of R, to the different parameters in

the model is presented in the Table 3.5.

The most sensitive parameter to R, across all the epidemiological zones is the mosquito’s

natural death rate, p,, , (§,° = —1.07211) followed by the mosquito biting rate, € ,

(&% = 1) and the mosquito contact rate with humans, ¢,

Its evident that an increase (or decrease) in mosquito biting rate, € , by 10% increases or
decreases R, by 10%. On the other hand an increase (or decrease) in mosquito death rate
Um by 10% decreases (or increases) R, by 10%. It’s suggested that strategies that can be
applied in controlling and eradicating malaria are to target mosquito biting rate, mosquito
contact rate with humans and mosquito death rates.

Further, this is followed by the transmission probability per bite from infectious human to
susceptible mosquito, A , the transmission probability of infection to humans per bite, S ,

and the recruitment rate of mosquitoes, A,,,. Other key parameters include the recruitment
rate of individuals, A,. With 552 = 0.00038817, the progression rate of individuals from

the exposed to infectious malaria state, «;, , is the least sensitive.
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Table 4.2: Sensitivity indices (S1) of R, to parameters for the malaria model

Parameter Sensitivity Indices

Endemic Seasonal Epidemic Low risk
Un —0.0402531 —0.0402531 —0.0402531 —0.0402531
Um —-1.07211 —-1.07211 —-1.07211 —-1.07211
ap 0.00038817 0.00038817 0.00038817 0.00038817
A, 0.22445 0.22445 0.22445 0.22445
A 0.5 0.5 0.5 0.5
B 0.5 0.5 0.5 0.5
€ 1 1 1 1
Ay —0.4980 —0.4980 —0.4980 —0.4980
A, 0.5 0.5 0.5 0.5
b —0.01818 —0.02048 —0.01639 —0.02563
T —0.322497 —0.322497 —0.322497 —0.322497
O, —0.13695 —0.10336 —-011321 —0.03508
) 1 1 1 1

Sensitivity analysis showed that the most sensitive parameters were mosquito biting rate
(e) and mosquito death rate (u,,,) (Mwamtobe et al., 2014; Agusto et al., 2012; Oduro et
al., 2015). This shows that reducing mosquito deaths and biting rates plays an important
role in reducing malaria transmission in Kenya. This can be achieved through use of IRS
and ITNs which are regarded as vector control measures (Mwamtobe et al., 2014; Agusto
et al., 2012; Oduro et al., 2015). These findings agree with Oduro et al., (2015) who also
stated that combinations of control strategies would result in reducing infected mosquito
and human population. This may be attributed to the fact that malaria is spared by a bite
of an infected mosquito and hence reducing infected mosquito will have impact on the
spread of the disease.
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Therefore, interventions strategies which targets to reduce mosquito population should be
implemented. This will help to reduce the mosquito biting rates and transmission from

infectious mosquitoes and humans.

4.1.4 Numerical Simulations

Numerical simulation using the fourth order Range-Kutta method in R Statistical
Computing platform is use to solve the malaria model (3.1) using the initial state
variables and the parameter values from table (4.1). This will help study the numerically
the behavior of the system (3.1). The malaria model 3.1 was simulated when there was no
any intervention strategies and when there were the intervention strategies. The
simulation was generated in a hundred and forty days’ time to show the effect of these

intervention strategies on the infected humans and mosquito populations.

4.1.4.1 Dynamics of Human Population of Malaria Model without Intervention

Strategies

The simulation of the malaria model with intervention strategies was simulated to find
out the dynamics of the disease in the population when there were no intervention

strategies.
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Figure 4.1: Simulations showing the dynamics of human population of malaria
model without intervention strategies across all transmission settings

In the absence of the interventions strategies, the susceptible population decreases (Figure
4.1). This explains that the susceptible population will continue being exposed to the
disease and as such exposed population will increase. The infected population increases
due to the increase in the exposure to the disease. This supports the theorem that disease
is endemic when R, > 1. The recovered population decreases as a result of the presence

of the disease in the society in which no intervention strategies are being practiced.

The existence of multiple endemic equilibria emphasizes the fact that R, < 1 is not
sufficient to eradicate disease from the population and the need to lower R, much below
one to make the disease free equilibrium to be stable globally. R, must further reduced

below new R; in order to avoid endemic states and guarantee the eradication. These
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findings agree with Chitnis et al., (2006) and Wan & Cui (2009) who showed the
possibility of backward bifurcation. Malaria transmission therefore can be reduced by
deployment of different combinations of malaria control strategies (Mwamtobe et al.,
2014; Agusto et al., 2012; Oduro et al., 2015).

4.1.4.2 Dynamics of Human Population with Intervention Strategies

We simulated malaria model with intervention strategies to find the dynamics of human
and mosquito populations as shown in Figure 4.2 and Figure 4.3 below. It is observed
that the control strategy leads to decrease in the number of infected human (I,). The
uncontrollable case leads to a decrease in the number of infected mosquitoes (1,,,), while

the control strategy lead to decrease in the infected number.

The number of S}, increases as the exposed and infected human population decreases due

to positive effect of the intervention strategies being implemented (Figure 4.2).
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Figure 4.2: Simulations showing the dynamics of human population with
intervention strategies across all transmission settings
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Figure 4.3: Simulations showing the effect of intervention strategies on mosquito
population across all transmission settings

Figure 4.3 shows that S,,, , E,, and I,,, increases with time when there are no intervention

strategies but reduces when there are intervention strategies. This confirms the role of

intervention strategies in reducing mosquito population.

The effect on the number of infected humans, mosquito population and exposed humans

were compared in situations where there were no intervention/ control variable versus

when there were the intervention variables. Numerical simulations were used to confirm

the analytic results and to explore the behavior of the formulated model. The findings
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from our study showed that when there were no intervention strategies the numbers of
exposed and infected humans and mosquitoes increases while when there were
interventions then the number in the classes increase. This is comparable to the findings
from Griffin et al., (2010) who found that for the use of LLINs, IRS coupled with mass
screening and treatment would result in the reduction of parasitic prevalence to below
1%. The results confirm the roles that the control strategies have in lowering the exposed
and infected classes of mosquito and human populations. This is because malaria control

strategies have effect on minimizing transmission of malaria.

Our study was slightly different from other modeling approach for malaria transmission
with intervention strategies (Okosun et al., 2013; Mwamtobe et al., 2014) in that we
considered the most at risk group (the pregnant and the under five children) and can be
applied to different transmission settings for malaria. We also considered the use of IPTp
as an intervention strategy for the pregnant women which is recommended by WHO
(WHO, 2014). This study provided a useful tool for assessing the effectiveness and the

potential impact of the intervention strategies in minimizing malaria transmission.

Since this is the first ever modeling and simulation of four malaria intervention strategies
in free R statistical computing platform, more future testing and refinement of the model
together with simulation with data form other representative settings should be done to
improve the results and the model. This modeling approach can be extended to optimal
control theory and cost effectiveness analysis to assess the cost aspect and health benefits

of the interventions strategies being practiced in Kenya.

Mathematical models provide a framework for understanding disease dynamics which
forms the basis of designing and analyzing the potential impact of intervention strategies.
This modeling approach can guide the post-2015 malaria eradication strategies and the

achievement of the Sustainable Development Goals.

4.2 Numerical Results on Optimal Control Analysis

In this section we discuss the method and present the results obtained from solving the

optimality system numerically using the parameter values in Table 4.1. The initial state
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variables for the different epidemiological zones fixed with values S,(0) = 700 |,
E,(0) =250, I,(0) =0, R,(0) =0, S,,(0) = 5000 , E,,(0) =500, and I,,(0) =
100 . The following weight factors were also fixed for the different epidemiological
scenarios as By =20 ,B, =65 ,B;=10,B, =10, A; =100, A, =92 ,and 4, =
20. These factors were used for our model numerical simulation purposes on which there
IS no significant meaning attached. We balance the host populations and control functions
in the cost function 3.52 by choosing weight constant values because the magnitudes of
the host populations and control functions are on different scales. It is assumed that the
weight factor of A; < A, < A;. We assign the weight factor u; when using ITNs greater

than the weight factors for treatment u, , IRS u; and IPTp u,.

The effect of the several optimal control strategies on the spread of malaria is
investigated numerically. We compare the numerical results from the simulation using
one control and various combinations of two, three and four control strategies. This was
done by comparing when there were no any intervention strategies and when there were
the intervention strategies. There are 15 different control strategies for each of the four
different epidemiological zones in Kenya that are explored. We use the case of endemic
zone with the case of one control variable, two control variables, three control variables

and all the four control variables are in use for the illustration purpose.

Results of only one intervention strategies for the 4 epidemiological zones for the
different combinations of the control strategies are shown in Figure 4.4 — Figure 4.18.
Part (a) represents the endemic situation, part (b) represent the epidemic situation, part (c)
represent the seasonal situation and part (d) represent the low risk situation. In each of the
cases, the results in Figure 4.1 — 4.15 shows a significant difference in I,, and I,,, with the
control strategy compared to I, and I,,, without the control strategy. It is observed that
the control strategy leads to decrease in the number of infected human (I). The
uncontrollable case leads to a decrease in the number of infected mosquitoes (1,,,), while
the control strategy lead to decrease in the infected number. The control profiles shows
the upper bound time for each strategy for each settings before dropping to the lower

bound.
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The control profile shows the upper bound time for each strategy for each of the

transmission setting before dropping to the lower bound. The time at which its dropping

shows the time at which the intervention effect is being felt in reducing the number of

infectious humans and mosquito population.

Results of only one intervention strategies for the 4 epidemiological zones

a. Optimal protection using ITN

Only the control (u;) on ITNs is used to optimize the objective function J, while the

control on treatment (u,), the control on IRS (u3) and control on IPTp (u,) are set to

Zero.
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Figure 4.4: Simulations of the model showing the effect of ITNs only on the spread
of malaria for the different transmission settings

b. Optimal treatment

Only the control (u,) on treatment is used to optimize the objective function J, while the

control on ITNs (u,), the control on IRS (u3) and control on IPTp (u,) are set to zero.
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Figure 4.5: Simulations of the model showing the effect of treatment only on the
spread of malaria for the different transmission settings
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Only the control (u3) on IRS is used to optimize the objective function J, while the

control on treatment (u,), the control on ITNs (u;) and control on IPTp (u,) are set to

Zero.
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Figure 4.6: Simulations of the model showing the effect of IRS only on the spread of
malaria for the different transmission settings

d. Optimal IPTp

Only the control (u,) on IPTp is used to optimize the objective function J, while the

control on treatment (u,), the control on IRS (u3) and control on ITNs (u,) are set to

Zero.
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Figure 4.7: Simulations of the model showing the effect of IPTp only on the spread
of malaria for the different transmission settings

Results of combining 2 intervention strategies for the 4 epidemiological zones

a. Optimal ITNs and treatment

With this strategy, the control on ITNs (u,) and the treatment (u,) are used to optimize
the objective function J while setting the control on IRS (u3) and control on IPTp (u,) to
zero. The control u, is at the upper bound all the time, while control on treatment u,
starts and remain at upper bound for 48 days before dropping gradually to the lower
bound. The results shows that with ITNs coverage of 100% for 140 days (all the time)
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and treatment coverage of 100% for 48 days, the disease incidence will be greatly

reduced.
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Figure 4.8: Simulations of the model showing the effect of ITNs and treatment on
the spread of malaria for the different transmission settings

b. Optimal ITN and IRS

With this strategy, the control on ITNs (u;) and the IRS (u3) are used to optimize the

objective function J while setting the control on treatment (u,) and control on IPTp (u,)

to zero.
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Figure 4.9: Simulations of the model showing the effect of ITNs and IRS on the
spread of malaria for the different transmission settings

c. Optimal ITN and IPTp

With this strategy, the control on ITNs (u,) and IPTp (u,) are used to optimize the

objective function J while setting the control on treatment (u,) and control on IRS (u3) to

Zero.
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Figure 4.10: Simulations of the model showing the effect of ITNs and IPTp on the
spread of malaria for the different transmission settings

d. Optimal Treatment and IRS

With this strategy, the control on treatment (u,) and the IRS (u5) are used to optimize the

objective function J while setting the control on ITNs (u;) and control on IPTp (u,) to

Zero.
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Figure 4.11: Simulations of the model showing the effect of treatment and IRS on
the spread of malaria for the different transmission settings

e. Optimal Treatment and IPTp

With this strategy, the control on treatment (u,) and the IPTp (u,) are used to optimize

the objective function J while setting the control on IRS (u3) and control on ITNs (u,) to

Zero.
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Figure 4.12: Simulations of the model showing the effect of treatment and IPTp on
the spread of malaria for the different transmission settings

f. Optimal IRS and IPTp

With this strategy, the control on IRS (u3) and the IPTp (u,) are used to optimize the

objective function J while setting the control on treatment (u,) and control on ITNs (u;)

to zero.
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Figure 4.13: Simulations of the model showing the effect of IRS and IPTp on the
spread of malaria for the different transmission settings

Results of combining three intervention strategies for the 4 epidemiological zones

a. Optimal ITN, treatment and IRS

Figure 4.11 shows the simulation of the model whereby ITN control (u,), treatment
control (u,), and IRS control (u3) are used to optimize the objective function J, while
IPTp control (u,) is set to zero. The control profile suggest that the control on ITN (u,)
to be at the upper bound until the final time (140 days) while the control on treatment
(u,) to be at the upper bound for 10 days. The optimal IRS is at the upper bound until 48
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days before dropping gradually to the lower bound. Therefore an effective IRS use and

treatment will be beneficial to the community for the control of malaria disease.

— no intervention

— no intervention

— ul=1,u2=1,u3=1u4=0 — ul=1u2=1u3=1,us=0
120
15
50
e g
F 10 =
£ =
2 S e0
= =
2 =
= D
2 B
= &
=
30
04 LR
0 100 o 50 100
time time
1.00
0.75
@
= variable
=3
= utl=1
5050 —uz=1
£ uz=1
O

0.25

50
Time(days)

(a)

— no intervention

— no intervention

— ut=1,u2=1,u3=1,u4=0 — ut=1,u2=1,u3=1,ud=0
120
15
50
@ z
= 2
= =1
g0 El
= 2 20
o =
ko =
= o
2 k=
= 2
E
30
04 0
] 100 o 50 100
time time
1.00
0.75
@
= variable
=3
a ul=1
i 0.50 JE—
5 uz=1
O

0.25

50
Time(days)

(b)

100



125

— ne intenvention — ne interventien — no intervention — no intervention

— ul=tuZ=1u3=1us=0 — ul=1.u2=1,u3=1.u4=0 — ul=1,u2=1,u3=1,u4=0 — ul=1,u2=1,u3=1,u4=0
120 120
1
15
50 20
= £ 2 g
E10 E IS E
5 g, S04 g
= S &0 = S 80
=2 = = =
= o = o
= @ =1 o
= 2
£ H £ 2
- E - E
20 20
o o (] |
o 0 100 ] o 100 o ) 100 o 0 100
time time time time
1.00 1.00
0.75 075
= . @
= variable = wariable
= S
= ul=1 = ut =1
ga.n =1 5050 J—
s uz=1 5 uz=1
=] =]
0.25 025
) \ vood
o 50 100 0 50 100
Time(days) Time(days)

(©) (d)

Figure 4.14: Simulations of the model showing the effect of ITNs, treatment and IRS
on the spread of malaria for the different transmission settings

b. Optimal ITN, treatment and IPTp

In this case ITNs control (u,), treatment control (u,), and IPTp control (u,) are used to

optimize the objective function /, while IRS control (u3) is set to zero.
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Figure 4.15: Simulations of the model showing the effect of ITNs, treatment and
IPTp on the spread of malaria for the different transmission settings

c. Optimal ITN, IRS and IPTp

In this case ITNs control (u,), IRS control (us3), and IPTp control (u,) are used to

optimize the objective function J, while treatment control (u,) is set to zero.
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Figure 4.16: Simulations of the model showing the effect of ITNs, IRS and IPTp on
the spread of malaria for the different transmission settings

d. Optimal Treatment, IRS and IPTp

In this case ITNs control (u,), IRS control (us3), and IPTp control (u,) are used to

optimize the objective function J, while treatment control (u,) is set to zero.
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Figure 4.17: Simulations of the model showing the effect of treatment, IRS and IPTp
on the spread of malaria for the different transmission settings

Results of combining the four intervention strategies for the 4 epidemiological zones

a. Optimal ITN, treatment, IRS and IPTp

In this case all the control function ITNs control (u,), treatment control (u,), IRS control
(uz) and IPTp control (u,) are used to optimize the objective function J. The control
profile suggest that the control on ITN (u,) and on IPTp (u,) to be at the upper bound
until the final time (140 days) while the control on IRS (u3) to be at the upper bound for
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10 days. The optimal treatment is at the upper bound until 48 days before dropping
gradually to the lower bound. Therefore an effective IRS use and treatment will be

beneficial to the community for the control of malaria disease (Figure 4.18).
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Figure 4.18: Simulations of the model showing the effect of ITNs, treatment, IRS
and IPTp on the spread of malaria for the different transmission settings

Based on the findings for the highest number of infections being inverted at a lower cost,

it is evident that the combined use of treatment and IRS reduces the infected human and

mosquito population faster at a lower cost for the endemic settings (105 infections at

$368.258). For the epidemic prone settings the use of treatment and IRS (111.03

infections at $388.6051) has more impact in reducing the infected human and mosquito

population. For seasonal areas much impact will be felt when treatment are used
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(115.6983 infections at $231.3967). For the low risk areas, the use ITNs and treatment
(119.0659 infections at 595.32) will be sufficient to reduce infected human and mosquito
population. This is deduced from the intervention which takes shorter time to start
reducing the number of infected mosquitoes and humans. It takes much effort/ scale up to

reduce more infections in the endemic areas compared to the low risk areas.

In the optimal control problem considered, we use one control at a time and the
combination of two controls at a time or three at a time or all four while setting the
other(s) to zero to investigate and compare the effects of the control strategies on malaria
eradication. This was different from what was investigated by Mwamtobe et al., (2014),
Okosun et al., (2013), Kim et al., (2012) where only three, three and two malaria control
measures respectively were used. Numerical results indicate that the optimal control
strategies for malaria control in endemic areas that an effective IRS use and treatment
will be beneficial to the community for the control of malaria disease (infected human
and mosquito population) faster at a lower cost for the endemic settings. This is slightly
different from the findings of Agusto et al., (2012) who found that the combination of the
personal protection, treatment and insecticides spray had the highest impact on the
control of the disease. This could be in endemic settings both preventive and treatment
measures work better which implies that the effect of protection using IRS is better.
Griffin et al., (2010) found that use of treatment, LLITNs and IRS with high levels
coverage would result in reducing malaria transmission for high settings though the study
did not consider the cost aspect.

The findings shows that for the epidemic prone areas, the optimal control strategy for
reducing the infected human and mosquito population was the use of treatment and IRS.
This is slightly different from Agusto et al., (2012) findings on resource limited settings
in which the study recommended the use of personal protection and insecticides. This
was further different from the findings of Mwamtobe et al., (2014) who noted that the
prevention strategies (use of ITNs and IRS) lead to the reduction of both the mosquito
population and infected human individuals. This is because in epidemic areas emphasis is

usually more placed on preventive strategies.
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The results shows that for seasonal areas much impact will be felt when treatment are
used which is different from Mwamtobe et al., (2014) who recommended IRS and ITNS.
This also comparable to Kim et al., (2012) findings that mosquito-reduction strategies is
more effective than personal protection. This is because in seasonal areas malaria
transmission is usually not so high and hence if the mosquito reduction strategies can be
implemented then malaria transmission can be reduced. Griffin et al., (2010) found that
for the high seasonal transmission settings the use of LLITNSs, IRS and treatment would

help reduce the transmission of malaria.

The results shows that for the low risk areas, just the use ITNs and treatment will be
sufficient to reduce infected human and mosquito population. This is comparable to Silva
& Torres (2013) who found the optimal use of ITNS would prevent malaria transmission
same to Kim et al., (2012). The findings are comparable to by Griffin et al., (2010). In
low transmission areas prevention strategies seems to be better because the population is

not infected.

These findings supports the WHO concerns on the capability of only one intervention
strategy in reducing malaria transmission. The findings are however applicable to the
designing of intervention strategies for malaria especially when costs aspects are of
concern. This modeling approach also addresses effectiveness of the recommended
intervention for at risk group of malaria (pregnant women) by the WHO. The modeling
approach has also been implemented in the R statistical computing platform which is free

statistical software.

Optimal control approach can help provide Information on the optimal malaria
intervention strategies that can be tailored to specific transmission patterns of malaria
when costs of interventions are also considered. This will provide basis for informed
decision making about malaria control, guide the post-2015 malaria eradication strategies
and the achievement of the Sustainable Development Goals and hence the path towards

malaria elimination.
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4.3 Numerical Results on Cost Effectiveness Analysis

The data collected on the parameters of the model representing different epidemiological
zones (transmission settings) in Kenya are summarized in Table 4.1. The rate of human
infection and rate of mosquito being infected by feeding on blood meal and the disease
induced death were varied to represent the different transmission settings/
epidemiological zones in Kenya. In addition the effect of the different intervention
strategies are estimated as: u; = 0.0904, u, = 0.165, u; = 0.076, u, = 0.035 and the
cost of intervention are for: u; = $2.5 -5, u, = $2.5, u; = $1.5, u, = $2.5 . The
initial state variables are constant across all the epidemiological zones and are chosen as
$,(0) =700 , E,(0) = 250, I,(0) =0, R,(0) =0, S,,(0) = 5000 , E,,(0) = 500 ,
and I,,(0) =100 . The values of N, =800 and N, = 240. The discount ¢ =

3 5
/365~ /365 %-

4.3.1 Numerical Simulations of the Economic Evaluations of the Malaria Model

Numerical simulations showing the impact of the shadow prices (marginal value/ cost)
and marginal benefits by evaluating the shadow prices at the start of the malaria epidemic
and as a function of the numbers of recovered or protected at the time of outbreak

(susceptible human beings).

The marginal cost and effect of the intervention strategies for the four different malaria

transmission settings are simulated and the results are shown in Figure 4.19.



137

ul=1,u2=1,u3=1,ud=1

(1]
Egﬂ{l Shadow prices
= Susceptible
= &DD
[=1 Exposed
=]
300 -
E Infectious
“ {l r_ T T
o 50 ) 100
time
_ ul=1,u2=1,u3=1,ud4=1
=]
o @ 12s
&=
"5_%11%
S @ 1075
= @ -
% 1050 “e = 4 4 4w owm ".-...--hntcilt-
T T L] T T
4] 50 100 150 200
H
ul=1,u2=1,u3=1,u4=1
2 10000 Marginal benefits
7]
% TE00 —|ITMs
; 000 — Treatment
S osp0 IRS
=
g o L - — IPTp
T T T
1] 50 100

time

Figure 4.19: Numerical simulations of the economic evaluations of the malaria
model across all transmission settings

Across all the transmission settings, it’s observed that the marginal value (shadow price)
of I, is much less damaging than the marginal values of E; and S, (Figure 4.19). The
shadow price on the susceptible humans are increasing overtime while the shadow prices
of exposed starts dropping at t=5 days and shadow prices on infected starts dropping at t=
3 days. It’s also observed that across all the settings, the shadow price on S, starts at
higher positive values, increases and stabilizes at higher prices closer to the total
susceptible population. As more individuals recover from the disease the cost of the
disease is still higher. It’s further observed that across all the transmission settings, the
marginal benefit of use of treatment is much smaller than the marginal benefit of IPTp,
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ITNs and IRS in that order. Smaller amounts of treatment are needed compared to IPTp,

ITNs and IRS in that order to be able to eliminate the disease.

4.3.2 Numerical Simulation of the Optimal Malaria Control Strategies and Cost-

Effectiveness Analysis

Numerical simulations are further done to show the infections averted and the cost
associated with the infections averted by the intervention strategies for the four different
transmission settings. Rankings of the number infections averted (effectiveness) is then

done so that ICER can be applied.

For the different transmission settings we compute the optimal solution for the 15
strategies and their associated effectiveness E (infections averted) which is the difference
between the numbers of infections when there is no intervention and when there are
interventions. The strategies were classified as follows: ITN only (Strategy A), treatment
only (Strategy B), IRS only (Strategy C), IPTp only (Strategy D), treatment and ITNs
(Strategy E), ITNs and IRS (Strategy F), ITNs and IPTp (Strategy G), treatment and IRS
(Strategy H), treatment and IPTp (Strategy 1), IPTp and IRS (Strategy J), ITNs, treatment
and IRS (Strategy K), ITNs, treatment and IPTp (Strategy L), ITNs, IRS and IPTp
(Strategy M), IRS, treatment and IPTp (Strategy N), ITNs, treatment, IRS and IPTp
(Strategy O). Based on the model simulation results, the strategies practiced in Kenya for

different epidemiological settings were ranked in the order of increasing effectiveness.

The infections averted and cost of the intervention used is used to determine the cost-
effectiveness of different combinations of the four intervention strategies. We determined
the total cost of the combined intervention strategies and the infections averted for
different transmission settings. Interventions that didn’t have any effectiveness were
dropped. The ICER for every two competing strategies for each epidemiological scenario
is calculated and this shows the cost effectiveness for each strategy. The cost-
effectiveness calculations are further verified using the computation of incremental cost-
effectiveness ratios in table form for each epidemiological zone in order to have a

complete overview of the outcome.
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4.3.2.1 Simulation Results on Effectiveness for the Endemic Region

The Table 4.3 below summarizes the ranking of simulation results on the effectiveness
(infections averted) and the total costs by the different strategies for endemic scenario in
Kenya.

Table 4.3: Intervention strategies and its corresponding infections averted plus cost
for Endemic region

Strategies Infections averted Cost

C 0.0000121135 0.00001817024
A 1.687 5.0613

F 1.6871 7.59196
G 3.68444 20.2644

M 3.6876 4.337343
D 5.35895 13.339738
J 5.368965 21.47586

I 101.7332 57.7995

N 101.7393 610.4358
L 102.8135 771.1012
O 102.818 925.3622
B 105.2167 210.4334
H 105.2167 368.2585
E 106.301 531.5846

K 106.3167 691.0584
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The ICER for every two competing strategies was calculated and the results are presented
in table 4.4.

Table 4.4: Incremental cost-effectiveness ratios of all combined strategies for
Endemic region

Strategy Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]
/IAE]
C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999
A 1.687 5.0613 5.06128183 1.686987887  3.000189
F 1.6871 7.59196 2.53066 0.000099999 25306.6
G 3.68444 20.2644 12.67244 1.99734 6.344658
M 3.6876 4.337343 -15.927057 0.00316 -5040.21
D 5.35895 13.339738 9.002395 1.67135 5.386301
J 5.368965 21.47586 8.136122 0.010015 812.3936
| 101.7332 57.7995 36.32364 96.364235 0.376941
N 101.7393 610.4358 552.6363 0.0061 90596.11
L 102.8135 771.1012 160.6654 1.0742 149.5675
O 102.818 925.3622 154.261 0.0045 34280.22
B 105.2167 210.4334 -714.9288 2.3987 -298.048
H 105.2167 368.2585 157.8251 0 Inf
E 106.301 531.5846 163.3261 1.0843 150.6281

K 106.3167 691.0584 159.4738 0.0157 10157.57
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Alternatives that are more expensive and less ineffective are excluded (A, F, D, J, N, O
and H). These are the strategies that have higher ICER when compared. Having excluded
strategy A, F, D, J, N, O and H, ICERs are recalculated for the remaining strategies (C,
G, M, |, L, B, E and K) and are shown in Table 4.5.

Table 4.5: Exclusion of more costly and less effective intervention strategies for
Endemic region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]
/IAE]
C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999
G 3.68444 20.2644 20.26438183 3.684427887  5.500008
M 3.6876 4.337343 -15.927057 0.00316 -5040.21
I 101.7332 57.7995 53.462157 98.0456 0.545278
L 102.8135 771.1012 713.3017 1.0803 660.2811
B 105.2167 210.4334 -560.6678 2.4032 -233.301
E 106.301 531.5846 321.1512 1.0843 296.183
K 106.3167 691.0584 322.7999 1.1 293.4545

The dominated strategies (G, I, L and K) are then excluded and the ICERs are
recalculated again (Table 4.6). These are the strategies that have higher ICER when
compared
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Table 4.6: Exclusion of dominated alternative intervention strategies for Endemic
region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]

/[AE]

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999

M 3.6876 4.337343 4.33732483 3.687587887 1.176196

B 105.2167 210.4334 206.096057 101.5291 2.029921

E 106.301 531.5846 321.1512 1.0843 296.183

In Table 4.6 the most cost effective quadrant will be strategy M and strategy B and in
deciding between them the size of the available budget must be brought to bear. Strategy
M is the combination of ITNs, IRS and IPTp while strategy B is the use of treatment
only.

4.3.2.2 Simulation Results on Effectiveness for the Epidemic prone Region

The Table 4.7 below summarizes the simulation results on the effectiveness (infections

averted) and the total costs by the different strategies for endemic scenario in Kenya.
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Table 4.7: Intervention strategies and its corresponding infections averted plus cost
for Epidemic prone region

Strategies Infections averted Cost

C 0.0000136 0.0000204639
F 0.173697 0.78166366
M 0.3772208 2.640546

G 0.3773461 2.0754

D 0.5507769 1.376942

J 0.5509108 2.203643

B 11.0302 222.0604

A 17.369998 5210994

N 110.6783 664.07

I 110.6784 498.053

0 110.7885 997.0963

L 110.7889 830.917

H 111.03 388.6051

K 111.1405 722.4134

E 111.1409 555.7043

The ICER for every two competing strategies was calculated and the results are presented
in table 4.8.
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Table 4.8: Incremental cost-effectiveness ratios of all combined strategies for
Epidemic region

Strategy Strategy Cost ($) Incremental Incremental ICER

effects [E] cost [AC] effect [AE]

[C] [AC]/[AE]

C 0.0000136  0.0000204639 0.0000204639 0.0000136  1.504699
F 0.173697 0.78166366  0.781643196 0.1736834  4.500391
M 0.3772208  2.640546 1.85888234  0.2035238  9.133489
G 0.3773461  2.0754 -0.565146 0.0001253 -4510.34
D 0.5507769  1.376942 -0.698458 0.1734308 -4.0273
J 0.5509108  2.203643 0.826701 0.0001339 6174.018
B 11.0302 222.0604 219.856757 10.4792892 20.98012
A 17.369998  52.10994 -169.95046 6.339798 -26.8069
N 110.6783 664.07 611.96006 93.308302 6.558474
I 110.6784 498.053 -166.017 0.0001 -1660170
0 110.7885 997.0963 499.0433 0.1101 4532.637
L 110.7889 830.917 -166.1793 0.0004 -415448
H 111.03 388.6051 -442.3119 0.2411 -1834.56
K 111.1405 722.4134 333.8083 0.1105 3020.89
E 111.1409 555.7043 -166.7091 0.0004 -416773
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Alternatives that are more expensive and less ineffective are excluded. Having excluded

strategy F, M, J, B, N, O and K, ICERs are recalculated for the remaining strategies (C,
G,D, A I, L, HandE) and are shown in Table 4.9.

Table 4.9: Exclusion of more costly and less effective intervention strategies for

Epidemic region

Strategy Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]/[AE]

C 0.0000136  0.0000204639 0.0000204639 0.0000136 1.504699
G 0.3773461  2.0754 2.075379536  0.3773325  5.500135
D 0.5507769  1.376942 -0.698458 0.1734308  -4.0273
A 17.369998  52.10994 50.732998 16.8192211 3.01637

I 110.6784 498.053 445.94306 03.308402  4.779238
L 110.7889 830.917 332.864 0.1105 3012.344
H 111.03 388.6051 -442.3119 0.2411 -1834.56
E 111.1409 555.7043 167.0992 0.1109 1506.756

The dominated strategies (G, A, L and E) are then excluded and the ICERs are

recalculated again (Table 4.10).
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Table 4.10: Exclusion of dominated alternative intervention strategies for Epidemic
region

Strategy Strategy Cost ($) Incremental Incremental  ICER
effects [E] cost [AC] effect [AE]
[C] [AC]/[AE]
C 0.0000136  0.0000204639 0.0000204639 0.0000136 1.504699
D 0.5507769  1.376942 1.376921536  0.5507633 2.500024
I 110.6784 498.053 496.676058 110.1276231 4.510004
H 111.03 388.6051 -109.4479 0.3516 -311.285

In Table 4.10 the most cost effective quadrant will be strategy C and strategy H and in
deciding between them the size of the available budget must be brought to consideration.
Strategy H is the combination of treatment and IRS while strategy C is the use of IRS

only.

4.3.2.3 Simulation Results on Effectiveness for the Seasonal Region

The Table 4.11 below summarizes the simulation results on the effectiveness (infections

averted) and the total costs by the different strategies for endemic scenario in Kenya.
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Table 4.11: Intervention strategies and its corresponding infections averted plus cost
for Seasonal region

Strategies Infections averted Cost

C 0.00003463761 0.00005195642
F 0.0640685 0.2883082
A 0.06416182 0.1924855
G 0.1331041 0.7324025
M 0.1332328 0.9326293
D 0.1972578 0.493144
J 0.1973375 0.7893501
I 115.5753 520.0888
N 115.5754 693.4524
L 115.6155 867.1166
O 115.6157 1040.541
B 115.6983 231.3967
H 115.6985 404.9447
E 115.7387 578.6933
K 115.7387 752.3019

The ICER for every two competing strategies was calculated and the results are presented
in table 4.12.
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Table 4.12: Incremental cost-effectiveness ratios of all combined strategies for
Seasonal region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]
/[AE]
C 0.00003463761 0.00005195642 0.00005195642 0.00003463761 1.5
F 0.0640685 0.2883082 0.288256244 0.064033862 4501622
A 0.06416182 0.1924855 -0.0958227 9.332E-05 -1026.82
G 0.1331041 0.7324025 0.539917 0.06894228 7.831435
M 0.1332328 0.9326293 0.2002268 0.0001287 1555.764
D 0.1972578 0.493144 -0.4394853 0.064025 -6.86428
J 0.1973375 0.7893501 0.2962061 7.97E-05 3716.513
I 115.5753 520.0888 519.2994499 115.3779625 4.500855
N 115.5754 693.4524 173.3636 0.0001 1733636
L 115.6155 867.1166 173.6642 0.0401 4330.778
O 115.6157 1040.541 173.4244 0.0002 867122
B 115.6983 231.3967 -809.1443 0.0826 -9795.94
H 115.6985 404.9447 173.548 0.0002 867740
E 115.7387 578.6933 173.7486 0.0402 4322.104

K 115.7387 752.3019 173.6086 0 Inf
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Alternatives that are more expensive and less ineffective are excluded. Having excluded
strategy F, G, M, J, N, O, H and K, the ICERs are recalculated for the remaining
strategies (C, A, D, I, L, B and E) and are shown in Table 4.13.

Table 4.13: Exclusion of more costly and less effective intervention strategies for
Seasonal region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]

/[AE]

C 0.00003463761 0.00005195642 0.00005195642 0.00003463761 1.5

A 0.06416182 0.1924855 0.192433544 0.064127182 3.000811

D 0.1972578 0.493144 0.3006585 0.13309598 2.25896

I 115.5753 520.0888 519.595656 115.3780422 4.503419

L 115.6155 867.1166 347.0278 0.0402 8632.532

B 115.6983 231.3967 -635.7199 0.0828 -71677.78

E 115.7387 578.6933 347.2966 0.0404 8596.45

The dominated strategies (A, I, and L) are then excluded and the ICERs are recalculated
again (Table 4.14).
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Table 4.14: Exclusion of dominated alternative intervention strategies for Seasonal
region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]

/[AE]

C 0.00003463761 0.00005195642 0.00005195642 0.00003463761 1.5

D 0.1972578 0.493144 0.493092044 0.197223162 2.500173

B 115.6983 231.3967 230.903556 115.5010422 1.999147

E 115.7387 578.6933 347.2966 0.0404 8596.45

In Table 4.14 the most cost effective quadrant will be strategy C and strategy B and in
deciding between them the size of the available budget must be brought to consideration.

Strategy B is the use of treatment only while strategy C is the use of IRS only.

4.3.2.4 Simulation Results on Effectiveness for the Low risk Region

The Table 4.15 below summarizes the simulation results on the effectiveness (infections

averted) and the total costs by the different strategies for low risk region in Kenya.
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Table 4.15: Intervention strategies and its corresponding infections averted plus cost
for low risk region

Strategies Infections averted Cost

C 0.0000485669 0.00007285036
M 0.00104092 0.007286437
G 0.001050199 0.005776093
D 0.001090816 0.00272704
J 0.001139414 0.004557057
F 0.002131766 0.009592945
A 0.002141062 0.06423186

I 119.0639 535.7877

N 119.0641 714.3848

B 119.0646 238.1291

H 119.0647 416.7266

L 119.0653 892.9895

0 119.0656 1071.59

E 119.0659 595.3293

K 119.0662 773.9302

The ICER for every two competing strategies was calculated and the results are presented
in table 4.16.
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Table 4.16: Incremental cost-effectiveness ratios of all combined strategies for Low

risk region
Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]
/[AE]
C 0.0000485669 0.00007285036 0.00007285036 0.0000485669 1.5
M 0.00104092 0.007286437 0.007213587 0.000992353 7.269173
G 0.001050199  0.005776093 -0.001510344  0.000009295978 -162.77
D 0.001090816  0.00272704 -0.003049053  4.0.000040617 -75.0684
J 0.001139414  0.004557057 0.001830017 0.000048598 37.65622
F 0.002131766  0.009592945 0.005035888 0.000992352 5.074699
A 0.002141062 0.06423186 0.054638915 0.000009296 5877.68
I 119.0639 535.7877 535.7234681 119.0617589 4.499543
N 119.0641 714.3848 178.5971 0.0002 892985.5
B 119.0646 238.1291 -476.2557 0.0005 -952511
H 119.0647 416.7266 178.5975 0.0001 1785975
L 119.0653 892.9895 476.2629 0.0006 793771.5
O 119.0656 1071.59 178.6005 0.0003 595335
E 119.0659 595.3293 -476.2607 0.0003 -1587536
K 119.0662 773.9302 178.6009 0.0003 595336.3

Alternatives that are more expensive and less ineffective are excluded. Having excluded

strategy M, D, J, A, N, H and O, then the ICERs are recalculated for the remaining
strategies (C, G, F, I, B, L, E and K) and are shown in Table 4.17.
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Table 4.17: Exclusion of more costly and less effective intervention strategies for

Low risk region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]

/[AE]

C 0.0000485669 0.00007285036 0.00007285036 0.0000485669 1.5

G 0.001050199 0.005776093 0.005703243 0.001001632  5.69395

F 0.002131766  0.009592945 0.003816852 0.001081567  3.529002

I 119.0639 535.7877 535.7781071 119.0617682  4.500001

B 119.0646 238.1291 -297.6586 0.0007 -425227

L 119.0653 892.9895 654.8604 0.0007 935514.9

E 119.0659 595.3293 -297.6602 0.0006 -496100

K 119.0662 773.9302 178.6009 0.0003 595336.3

The dominated strategies (G, I, L, K) are then excluded and the ICERs are recalculated

again (Table 4.18).
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Table 4.18: Exclusion of dominated alternative intervention strategies for Low risk
region

Strategy  Strategy Cost ($) Incremental Incremental ICER
effects [E] cost [AC] effect [AE]
[C] [AC]
/[AE]

C 0.0000485669 0.00007285036 0.00007285036 0.0000485669 1.5
F 0.002131766  0.009592945 0.009520095 0.002083199  4.56994
B 119.0646 238.1291 238.1195071 119.0624682  1.999954
E 119.0659 595.3293 357.2002 0.0013 274769.4

In Table 4.18 the most cost effective quadrant will be strategy C and strategy B and in
deciding between them the size of the available budget must be brought to consideration.

Strategy B is the use of treatment only while strategy C is the use of IRS only.

The cost-effectiveness analysis of one or all possible combinations of malaria control
strategies for the optimal control problem has been done for the different transmission
settings using ICER based on the findings of the simulation optimal control model. The
findings indicated that the most cost effective intervention strategies in endemic areas and
the endemic region is the combination of ITNs, IRS, and IPTp was the most cost-
effective of all the combined strategies developed in this study for malaria disease control
and prevention. This finding is different from the findings of Okosun et al., (2013), who
found that the combination of the spray of insecticides and treatment of infective
individuals were the cost effective strategies. This may be due to the fact that in our study
we considered the at most risk groups while in the Okusun et al., (2013) they considered
whole population. The findings shows that preventive measures tends to have a greater
health benefit in a cost effective or economical manner in minimizing malaria
transmission for the most at risk groups. Stuckey et al., (2014) showed that increasing
coverage of vector control interventions (preventive strategies) had a larger simulated

impact compared to adding treatment measures.
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Our results show that for the epidemic prone areas the cost effective strategy was the
combination of the treatment and IRS which agrees with Okosun et al., (2013). This is
because the combination of the preventive and treatment actions tend to be more effective
in the reduction of parasitic prevalence to below 1% (Griffin et al., 2010). This is due to
the fact that infected mosquito population is reduced by IRS and the infected human

population is reduced via the treatment.

For seasonal areas, the findings of this study showed that the combination ITNs and
treatment would be the most cost effective intervention strategy to reduce malaria
transmission among the under-five and the pregnant women. This is slightly different
with the findings of Griffin et al (2010) who found that for the high seasonal transmission
settings the use of LLITNs, IRS and treatment would help reduce the transmission of

malaria.

The results showed that for the low risk areas is the use of treatment only. These findings
were different from Hansen et al., (2012) who found that the most cost effective strategy

was the use of ITNs alone in Uganda low transmission settings.

The result confirms the role which the four intervention strategies are playing in order to
eradicate or minimize the spreading of the malaria disease among the at risk groups. The
policy implications of these findings are that different transmission settings require
different interventions that are health beneficial and cost effective. The results can guide
decision makers in making more informed and evidence-based choices on the health
resources being allocated. These findings may help inform the development of guidelines
for prevention of malaria among the under-five and the pregnant women in different

transmission settings in Kenya as well as in other African countries.

Mathematical models can help in getting Information on the optimal malaria intervention
strategies tailored to specific transmission patterns of malaria. This will provide basis for
informed decision making about malaria control that are beneficial and cost effective and

hence the path towards malaria elimination.



156

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, a malaria transmission dynamics model (using a deterministic system of
nonlinear ordinary differential equations) incorporating intervention strategies being
practiced in Kenya was formulated and analyzed. The aim was to investigate the effect of
these control strategies in minimizing malaria transmission in Kenya among the most at
risk group of malaria (children under-five years of age and the pregnant women) for
different transmission settings in Kenya which represents the different transmission
settings across Africa. Interventions considered were those recommended by WHO for
the most at risk group for malaria i.e. the use of insecticide treated bednets (ITNSs),
treatment, Indoor Residual Spray (IRS) and Intermittent Preventive Treatment for

Pregnant women (IPTp).

We assumed that the control parameters are constant so as to determine the basic
reproduction number, steady states and their stability as well as the bifurcation analysis.
From the analysis of the malaria model with intervention strategies, there exists a domain
where the model is epidemiologically and mathematically well-posed and that if R, < 1,
the disease cannot survive in the Kenya (different epidemiological zones). The disease
free equilibrium is globally asymptotically stable if Ry, < 1. The model may exhibit a
backward bifurcation (a situation where disease free and endemic equilibrium coexist) at
R, = 1 implying the existence of multiple endemic equilibria for R, < 1 . However, If
R, = 1, the model admits a unique endemic equilibrium which is globally asymptotically
stable in the interior of the feasible region D . The most sensitive parameters were
mosquito biting rate (e) and mosquito death rate (u,,). Control measures have effect in
lowering exposed and infected members of both human and mosquito population. When
there are no intervention strategies put in place the number of exposed and infected

classes for humans and mosquitoes increases and decreases when there are interventions.

The study formulated and performed optimal control analysis for malaria model with

intervention strategies from which we considered the time dependent controls. Using
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Pontryagin maximum principle we derived and analyzed the necessary conditions for the
optimal control of malaria with effective use of ITNs, treatment, IRS and IPTp. Using the
optimal control approach, we can conclude that, according to our model, the optimal
control strategies for malaria control in endemic areas that an effective IRS use and
treatment will be beneficial to the community for the control of malaria disease (infected
human and mosquito population) faster at a lower cost for the endemic settings. For the
epidemic prone areas, the optimal control strategy for reducing the infected human and
mosquito population was the use of treatment and IRS. For seasonal areas much impact
will be felt when treatment and for the low risk areas, just the use ITNs and treatment will

be sufficient to reduce infected human and mosquito population.

In assessing the cost effectiveness of the optimal control strategies for malaria, we can
conclude that for the endemic regions the combination of ITNs, IRS, and IPTp is the
most cost-effective of all the combined strategies developed in this study for malaria
disease control and prevention; for the epidemic prone areas is the combination of the
treatment, and IRS; for seasonal areas is the combination ITNs plus treatment; and for

the low risk areas is the use of treatment only.

Mathematical models can help provide basis for informed decision making about malaria
control that are beneficial and cost effective and hence the path towards malaria
elimination. Control programs that follow these strategies can effectively reduce the

spread of malaria disease in different malaria transmission settings in Kenya.

5.2 Recommendations

Policy makers have to be informed about the research results. The following

recommendations should be considered

1. Combination of malaria control strategies plays a bigger role in reducing malaria
transmission, the study recommends scale up of intervention strategies being used
in Kenya around those who are at most risk of malaria/ exposed to malaria in

different transmission settings.
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2. Strategies targeting to reduce mosquito population and mosquito biting rates
(vector control) such as ITNs and IRS should be implemented since they are
proving to be effective in reducing transmission of malaria in Kenya. There will
be need for the National Control Programme to create awareness on mosquito
reduction strategies.

3. The recommended optimal control strategies are the combined use of treatment
and IRS for endemic areas; use of treatment and IRS for endemic regions; use of
treatment for seasonal areas; and use of ITNs and treatment for low risk areas.
These are the strategies that will minimize malaria transmission at minimum cost

4. The recommended cost effective strategies are the combination of ITNs, IRS and
IPTp for endemic areas; use of treatment and IRS for epidemic prone areas; use of
ITNs and treatment for seasonal areas; and use of treatment only for low risk
areas. These are the strategies which produces health improvements in the most

cost effective way for different epidemiological zones.

5.3 Future Work

The proposed model has some limitations. We did not consider immigrants into the
susceptible population. Hence the inclusion of immigrants in the model would
supplement on the information that would be used on which intervention strategy to

prioritize to specific groups.

Other preventive measures that may help to eliminate the existence of mosquitoes such as

eradicating breeding grounds for mosquitoes also need to be considered.

Since this is the first ever modeling, simulation, optimal control and cost effectiveness
analysis of malaria intervention strategies in free R statistical computing platform, future
testing and refinement of the model together with simulation with data from amore

designed study from other representative settings should be done to improve the results.

Future studies may explore the use of stochastic models to understand the malaria
dynamics which was not covered by our study. Bayesian approaches may also be

explored to cater for the uncertainties of the parameters.
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The model can be extended to include other environmental effect impacting on the spread
of malaria such as climatic change, temperature, rainfall and humidity. These factors may
affect some parameters that have been included in the malaria model such as birth rate of
mosquito population among others.
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APPENDICES

APPENDIX I: R CODES

#ODE solution in R
library (ggplot2)
library(gridExtra)
library (deSolve)

#Model
Lorenz<-function(t, state, parameters) {
with(as.list(c(state, parameters)), {
# rate of change
dS<- v+w*R-(1l-ul) *x*S-(1-ud) *g*S-z*S
dE<- (1-ul)*x*S-(1-ud)*g*S- (n+z) *E
dI<- n*E-(g+z)*I- (b+f*u2)*I
dR<- (b+f*u2)*I-(w+z)*R
dX<- m-(1-ul) *d*X- (eta*ul+p*u3) *X
dyY<- (1-ul)*d*X-k*Y-(eta*ul+p*u3) *Y
dz<- k*Y- (et+a*ul+p*u3) *Z
# return the rate of change
list(c(ds, dE, dI, dR, dX, dY, dz))
}) # end with(as.list...

#Parameters

parameters <- c(v=0.2320, w=0.0014, x=0.0001045,
g=0.0003485, z=0.0000457, n=0.058, g=0.05, b=0.5, £=0.5,
m=0.071, d=0.00001130, e=0.1429,k=0.0556, a=0.5, p=0.85)

#Initial conditions
state <- c¢(S=700, E=250, I=0, R=0, X=5000, Y=500, Z=100)

#Interventions
interventions <- ¢ (ul=0.0904 ,u2=0.165, u3=0.076, u4=0.035)

Us<-expand.grid(ul=0:1,u2=0:1,u3=0:1,u4=0:1)
#Time specification

times <-seqg(0,140,by=1)
length (times)

#Model Intergration
FHAFHHFHHF A A S A S S AAHAA



169

Us<-
expand.grid(ul=c(0,0.1),u2=c(0,0.3),u3=c(0,0.7),ud4=c(0,0.51
))

outlist<-1list ()

for(i in l:nrow(Us)) {
outlist[[i]]<-as.data.frame (ode (y=state,times=times,

method="0de45", func=Lorenz,parms=c (parameters,Us[i,])))

}

for(i in 2:nrow(Us)) {
datl<-outlist[[1]][,
dat2<-outlist[[i]]I[
datl$int<-1
dat2$int<-2
dat<-rbind(datl,dat?2)

C("time", "I"’ "Z") :|
,C("time", "I"’ "Z") :|

UU<-Us [1i, ]

dat$Sint<-factor (dat$int, labels=c ("no
intervention",paste (pastelO ("u",1:4),"=", (Us[i,]1>0)*1, sep=""
,collapse = ",")))

plotl<-

ggplot (dat, aes (x=time, y=I,colour=int))+geom line ()+theme cl
assic () +theme (legend.position="top", legend.direction
="vertical”)+

scale color manual ("",values=c("red","blue"))+labs (y="Infec
ted humans")

plot2<-
ggplot (dat, aes (x=time, y=7,colour=int) ) +geom line ()+theme cl
assic () +theme (legend.position="top", legend.direction

="vertical") +

scale color manual ("",values=c("red","blue"))+labs (y="Infec
ted Mosquitoes")

png (file=pastel (paste(c ("ul", "u2","u3","ud"),"=",00, sep="",

collapse = ","),".png"))
grid.arrange (plotl,plot2,nrow=1)
dev.off ()

}

# dev.off ()

infectionlist<-matrix (NA, nrow=nrow (Us),ncol=2)
for(i in l:nrow(Us)) {



infectionlist[i, 1<~
c(all=sum(outlist[[i]] 1,
sum(outlist[[i]][,"I"]))
}
infectiondata<-as.data.frame (infectionlist)
names (infectiondata)<-c ("Incidence","Difference")

labs<-NULL
for(i in l:nrow(Us)) {

labs[i]<-
paste (pasteO("u",1:4),"=", (Us[i,]1>0)*1,sep="",collapse
"’")

}

infectiondataScomb<-labs

###O0Optimal control
iz TS S EEEEEEE TS EEEEEEEEEEEEEEEE
rm(list=1s())
library(ggplot2)
library(gridExtra)
library(deSolve)
library (reshape?)
#The Lorenz function
Lorenz2<-function(t, state, parameters) {
with(as.list(c(state, parameters)), {
# rate of change
#Optimal control equation
ul<-(max (0, min (1, (((L2-L1) *x*S+ (Lo-
L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/bl))))*ul_
u2<-(max (0, min (1, ((£* (L3-L4)*I)/b2)))
u3<-(max (0, min (1, ((p*X*L5+Y*L6+Z*L7) /
ud<-(max (0, min (1, ((L2-L1)*g*S/b)))) *u

) *u2
p3)))) *u3_
4_
dL1<-(-(1-ul)*x*L1-(1-ud)*g*Ll-z*L1+(1-ul) *x*L2+(1-
ud) *q*L2) * (1)
dL2<-(a3-(n+z) *L2+L3*n)
dL3<-(a2-(g+z) *L3- (b+f*u2) *L3+L4* (b+f*u2))
dL4<- (w*L1l- (w+z) *L4)
dL5<— (
(
(

- (1-ul) *d*L5- (e+a*ul+p*u3) *L5+ (1-ul) *d*Lo6+al)
dL6<- (- (k) *L6- (eta*ul+p*u3) *L6+k*L7+al)
dL7<- (- (et+ta*ul+p*u3d) *L7+al)

dS<- v+w*R-(1-ul)*x*S-(1-u4) *g*S-z*S
dE<- (1-ul) *x*S-(1-ud) *g*S- (n+z) *E

170

"I"] ) ,dlffzsum(outllst[ [l] ] [’ "In] ) _
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dI<- n*E-(g+z)*I-(b+f*u2)*I

dR<- (btf*u2)*I-(w+tz)*R

dX<- m-(1-ul) *d*X- (eta*ul+p*u3) *X

dY<- (1-ul)*d*X-k*Y-(eta*ul+p*u3) *Y

dZ<- k*Y-(eta*ul+p*u3) *7Z

# return the rate of change

list (c(ds, dE, ar, dR, ax, ay,
dz,dLnl,drLz2,dL3,dL4,dL5,dL6,dL7))

}) # end with(as.list...

}

#Parameters
parameters <- c(v=0.2320, w=0.0014, x=0.0001045,
g=0.0003485, z=0.0000457, n=0.058,

g=0.05, b=0.5, £f=0.5, m=0.071,
d=0.00001130, e=0.1429,k=0.0556, a=0.5,al=20, p=0.85,

c=0.6,3=0.35,1=0.09,1w=0.015,a3=100,

a2=92,bl1=20,b2=65,b3=10,b4=10,1=0.833

)

#Initial conditions

state <- ¢ (S=700, E=250, I=00, R=00, X=5000, Y=500,
z=100,L1=100,L2=0.02,L3=0.025,L4=000,L5=0000,L6=000,L7=0.04
5)

#Time specification

times <-seqg(0,140,by=1)
length (times)

#Model Intergration
Us<-expand.grid(ul =0:1,u2 =0:1,u3 =0:1,u4 =0:1)

outlist<-1list ()

for(i in l:nrow (Us)) {
outlist[[i]]<-as.data.frame (ode (y=state,times=times,

method="o0de45", func=Lorenz2,parms=c (parameters,Us[i,])))

}
str (outlist)

maxm<-NULL
cost<-NULL
comb<-NULL
costs<-c(3.0,2.0,1.5,2.5)
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for(i in l:nrow(Us)) {
maxm[i]<-

match (max (outlist[[i]][,"I"]),outlist[[4i]1][,"I"])
comb[i]<-
paste (pastelO ("u",1:4),"=", (Us[i,]>0)*1,sep="",collapse =

"’")

cost[i]<-sum((Us[i,]1>0)*costs)

}

maxm_ dat<-data.frame (comb,maxm)

for(i in 2:nrow(Us)) {
datl<-outlist[[1]11,
dat2<-outlist[[1i]]1]

c("time", "y, "7 ]
,c("time", "I", "7 ]
datlSint<-1
dat2$int<-2

dat<-rbind(datl,dat?2)

UU<-Us[1i, ]

dat$int<-factor (dat$int, labels=c ("no
intervention",paste (pasteO("u",1:4),"=", (Us[i,]>0)*1, sep=""
,collapse = ",")))

plotl<-

ggplot (dat, aes (x=time, y=I,colour=int))+geom line ()+theme cl
assic () +theme (legend.position="top", legend.direction
="vertical”)+

scale color manual ("",values=c("red","blue"))+labs (y="Infec
ted humans")
plot2<-
ggplot (dat, aes (x=time, y=7, colour=int) ) +geom line ()+theme cl
assic () +theme (legend.position="top", legend.direction
="vertical")+

scale color manual ("",values=c("red", "blue"))+labs (y="Infec
ted Mosquitoes")

png (file=pastel (paste (c ("ul", "u2","u3","u4d"),"=",00, sep="",

collapse = ","),".png"))
grid.arrange (plotl,plot2,nrow=1)
dev.off ()

infectionlist<-matrix (NA, nrow=nrow (Us),ncol=2)
for(i in l:nrow(Us)) {



173

infectionlist[i, 1<~
c(all=sum(outlist[[i]] 1,
sum(outlist[[i]][,"I"]))
}
infectiondata<-as.data.frame (infectionlist)
names (infectiondata)<-c ("Incidence","Difference")

"I"] ) ,dlffzsum(outllst[ [l] ] [’ "In] ) _

labs<-NULL
for(i in l:nrow(Us)) {

labs[i]<-
paste (pasteO("u",1:4),"=", (Us[i,]1>0)*1,sep="",collapse =
"’")

}

infectiondata$comb<-labs
infectiondata$cost<-cost
infectiondata$cost diff<-

with (infectiondata, cost*Difference)

infectiondata<-dplyr::arrange (infectiondata,Difference)

infectiondata$icer<-NA

infectiondata$diff cost<-NA

infectiondata$diff effect<-NA

for(i in 2:nrow(Us)) {
infectiondata$diff cost[i]<-

with (infectiondata, (cost diff[i]-cost diff[i-1]))
infectiondata$Sdiff effect[i]<-

with (infectiondata, (Difference[i]-Differencel[i-1]))
infectiondataSicer[i]<-with(infectiondata, (cost diff[i]-

cost_diff[i—l])/(Difference[i]—Difference[i—l]))

}

tab<-

infectiondatal,c("comb","cost diff","Difference","diff cost
","diff effect","icer")]

tab<-tab[tab$icer<O0, ]

tabS$icer<-NA
tabSdiff cost<-NA
tabSdiff effect<-NA
for(i in 2:nrow(tab)) {
tab$diff cost[i]<-with(tab, (cost diff[i]-cost diff[i-1]))
tabSdiff effect[i]<-with(tab, (Difference[i]-Difference[i-
11))
tabSicer[i]<-with(tab, (cost diff[i]-cost diff[i-
1])/(Difference[i]-Difference[i-1]))
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}
tab<-tab[tab$icer<0, ]

tab$icer<-NA
tab$diff cost<-NA
tabSdiff effect<-NA
for(i in 2:nrow(tab)) {
tabSdiff cost[i]<-with(tab, (cost diff[i]-cost diff[i-1]))
tabSdiff effect[i]<-with(tab, (Difference[i]-Difference[i-
11))
tabSicer[i]<-with(tab, (cost diff[i]-cost diff[i-
1])/(Difference[i]-Difference[1i-1]))
}

R R R R Rk R EE LR EEE
ul<-(max (0, min (1, (((L2-L1) *x*S+ (L6-

L5) *d*X+a*X*L5+a*Y*L6+a*Z+L7) /bl)))) *ul
u2<-(max (0, min (1, ((£*(L3-L4)*I)/b2))))*u2
u3<-(max (0, min (1, ((P*X*L5+Y*L6+Z2*L7) /b3)))) *u3d
u4<-(max (0, min (1, ((L2-L1)*g*S/b)))) *ud

outlist2<-outlist
for(i in l:length(outlist2)) {

# outlist2[[1]]["ul"]<-NA

if (Usf[i,"ul "]) outlist2[[i]] ["ul"]l<-
with(c(as.list (outlist2[[i]]),as.list (parameters)),pmax (0,p
min(l, (((L2-L1)*x*S+ (Lo6-
L5) *d*X+a*X*L5+a*Y*Lo+a*z+L7) /bl))))

if (Us[i,"u2 "]) outlist2[[i]] ["u2"]<-
with(c(as.list(outlist2[[i]]),as.list (parameters)),pmax(0,p
min (1, ((£*(L3-L4)*I)/b2))))*Us[i,"u2 "]

if(Us[i,"u3 "]) outlist2[[i]] ["u3"]<-
with(c(as.list (outlist2[[i]]),as.list (parameters)),pmax(0,p
min (1, ((p*X*L5+Y*L6+Z*L7) /b3))))

1f(Us[1i,"ud "1]) outlist2[[1]]["ud"]<-
with(c(as.list(outlist2[[i]]),as.list (parameters)),pmax(0,p
min (1, ((L2-L1) *g*S/b))))

14

}

#pdf (file="us.pdf")

for(i in 2:1length(outlist2)) {
cols<-names (outlist2[[i]])
cols2<-cols[!grepl ("u",cols)]
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dat temp<-melt (outlist2[[i]],id=cols2)

dat temp$variable<-pasteO (dat temp$variable," = 1")
dat temp$variable<-as.factor(dat tempS$variable)
plot<-

ggplot (dat temp, aes (x=time, y=value, colour=variable))+geom 1
ine ()
plot<-plot+labs (x="Time (days)", y="Control
profile")+theme classic()
# plot<-plot+scale colour manual ("",values=l:sum(Us[i,]))
print (plot)
png (file=pastel ("figure ",i,".png"))
print (plot)
dev.off ()
}

#dev.off ()

####Cost effectiveness analysis
#H#######cost effectiveness analysis
m(list=1s())

library(ggplot2)

library(gridExtra)

library(deSolve)

library (reshape?2)

o~ o~~~

#Costate function
Lorenz2<-function(t, state, parameters) {
with(as.list(c(state, parameters)), {
# rate of change
#Optimal control equation
ul<-(max (0, min (1, ( ((L2-L1) *x*S+ (L6-

L5) *d*X+a*X*L5+a*Y*L6+a*Z+L7) /bl)))) *ul _
u2<-(max (0, min (1, ((£* (L3-L4)*I)/b2))))*
u3<-(max (0, min (1, ((P*X*L5+Y*L6+Z*L7) /b3
ud<- (max (0, min (1, ((L2-L1) *g*S/b)))) *u 4

u2
))))*u3_

dL1<-(-bl*ul*exp (-phi)-bd4*ul*exp (-phi)-(1-ul) *x*L1-(1-
ud) *g*Ll1-z*L1+ (1-ul) *x*L2+ (1-ud) *g*L2) * (1)

dL2<- (-bl*ul*exp (-phi)-b4*ul*exp (-phi) +a3-
(n+z) *L24L3*n)

dL3<- (-b2*u2*f*exp (-phi)+ta2-(g+z) *L3-
(b+f*u2) *L3+L4* (b+f*u2))

dL4<- (w*Ll-(w+z) *L4)

dL5<- (-bl*ul*exp (-phi) -b3*p*u3*exp (-phi) - (1-ul) *d*L5-
(eta*ul+p*ul) *L5+ (1-ul) *d*Le6+al)
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dL6<- (-bl*ul*exp (-phi)-b3*p*u3*exp (-phi) - (k) *L6-
(eta*ul+p*ul) *Lo+k*L7+al)

dL7<- (-bl*ul*exp (-phi) -b3*p*ul3*exp (-phi) -
(eta*ul+p*u3l) *L7+al)

dS<- v+w*R-(1l-ul) *x*S-(1-ud) *g*S-z*S
dE<- (1-ul)*x*3-(1-ud)*g*S- (n+z)*E
dI<- n*E-(g+z)*I- (b+f*u2)*I

dR<- (b+f*u2)*I-(w+z)*R

dX<- m-(1-ul) *d*X- (eta*ul+p*u3) *X
dY<- (1l-ul)*d*X-k*Y-(eta*ul+p*u3) *Y
dz<- k*Y- (eta*ul+p*u3) *Z

# return the rate of change
list (c(ds, dE, dI, dR, dx, dy,
dz,dLl1l,dL2,dL3,dr4,dLs5,dLe,dL7))
}) # end with(as.list...
}

#Parameters
parameters <- c(v=0.2320, w=0.0014, x=0.0001045,
g=0.0003485, z=0.0000457, n=0.058,

g=0.05, b=0.5, £=0.5, m=0.071,
d=0.00001130, e=0.1429,k=0.0556, a=0.5,al=20, p=0.85,
c=0.6,3J=0.35,1=0.09,1w=0.015,a3=100,phi=3,
a2=92,bl1=20,b2=65,b3=10,b4=10,1=0.833
)

#Initial conditions

state <- ¢ (S=700, E=250, I=00, R=00, X=5000, Y=500,
z=100,L1=100,L2=0.02,L3=0.025,L4=000,L5=0000,L6=000,L7=0.04
5)

#Time specification
#0.01 daily intervals. R's function seq() creates the time
sequence.

times <-seqg(0,140,by=1)
length (times)

#Model Intergration
Us<-expand.grid(ul =0:1,u2 =0:1,u3 =0:1,u4 =0:1)
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outlist<-1list ()

for(i in l:nrow (Us)) {
outlist[[i]]<-as.data.frame (ode (y=state,times=times,

method="0de45", func=Lorenz?2,parms=c (parameters,Us([i,])))

}

maxm<-NULL

cost<-NULL

comb<-NULL

costs<-c¢(3.0,2.0,1.5,2.5)

for(i in l:nrow (Us)) {
maxm[i]<-

match (max (outlist[[1]][,"I"]),outlist[[1]1][,"I"])
comb[i]<-

paste (pasteO("u",1:4),"=", (Us[i,]1>0)*1,sep="",collapse

")

cost[i]<-sum((Us[i,]>0)*costs)

}

maxm dat<-data.frame (comb,maxm)

for(i in 2:nrow(Us)) {
datl<-outlist[[11]T[,
dat2<-outlist[[i]]]

c("time", "I", "7 ]
,c("time", "I, "7 ]
datlSint<-1
dat2Sint<-2

dat<-rbind(datl,dat?)

UU<-Us|[1i,]

dat$int<-factor (dat$int, labels=c ("no
intervention",paste (pastelO("u",1:4),"=", (Us[1,]>0)*1, sep=""
;,collapse = ",")))

plotl<-

ggplot (dat, aes (x=time, y=I,colour=int))+geom line ()+theme cl
assic () +theme (legend.position="top", legend.direction
="vertical")+

scale color manual ("",values=c("red", "blue"))+labs (y="Infec
ted humans")
plot2<-
ggplot (dat, aes (x=time, y=7,colour=int))+geom line ()+theme cl
assic () ttheme (legend.position="top", legend.direction
="vertical")+

scale color manual ("",values=c("red","blue"))+labs (y="Infec
ted Mosquitoes")
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png (file=pastel (paste (c ("ul", "u2","u3","ud"),"=",0U0, sep="",
collapse = ","),".png"))

grid.arrange (plotl,plot2,nrow=1)

dev.off ()

}
# dev.off ()

infectionlist<-matrix (NA, nrow=nrow (Us),ncol=2)
for(i in l:nrow(Us)) {
infectionlist[i, 1<~
c(all=sum(outlist[[1i]1] I,
sum (outlist [[i]][,"I"]))
}
infectiondata<-as.data.frame (infectionlist)
names (infectiondata)<-c ("Incidence","Difference")

"I"]),diff=sum(outlist[[1]][,"I"])~-

labs<-NULL
for(i in l:nrow(Us)) {

labs[i]<-
paste (pastelO ("u",1:4),"=", (Us[i,]1>0)*1,sep="",collapse =
1A 1A )
14

}

infectiondata$comb<-labs
infectiondata$cost<-cost
infectiondata$cost diff<-

with (infectiondata, cost*Difference)

infectiondata<-dplyr::arrange (infectiondata,Difference)

infectiondata$icer<-NA

infectiondata$Sdiff cost<-NA

infectiondata$diff effect<-NA

for(i in 2:nrow (Us)) {
infectiondata$Sdiff cost[i]<-

with (infectiondata, (cost diff[i]-cost diff[i-1]))
infectiondata$diff effect[i]<-

with (infectiondata, (Difference[i]-Difference[i-11]))
infectiondataS$icer[i]<-with(infectiondata, (cost diff[i]-

cost_diff[i—l])/(Difference[i]—Difference[i—l]))

}

tab<-
infectiondatal[,c("comb", "cost diff","Difference","diff cost
","diff_effect","icer")]

tab<-tab[tab$icer<0, ]
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tab$icer<-NA
tab$diff cost<-NA
tabSdiff effect<-NA
for(i in 2:nrow(tab)) {
tab$diff cost[i]<-with(tab, (cost diff[i]-cost diff[i-1]))
tab$diff effect[i]<-with(tab, (Difference[i]-Difference[i-
11))
tabSicer[i]<-with(tab, (cost diff[i]-cost diff[i-
1])/(Difference[i]-Difference[1i-1]))
}

tab<-tab[tab$icer<0, ]

tabS$icer<-NA
tabSdiff cost<-NA
tabSdiff effect<-NA
for(i in 2:nrow(tab)) {
tabSdiff cost[i]<-with(tab, (cost diff[i]-cost diff[i-1]))
tabSdiff effect[i]<-with(tab, (Difference[i]-Difference[i-
11))
tabSicer[i]<-with(tab, (cost diff[i]-cost diff[i-
1])/ (Difference[i]-Difference[i-1]))
}

###control profile

ul<-(max (0, min (1, ( ((L2-L1) *x*S+ (L6-

L5) *d*X+a*X*L5+a*Y*L6+a*Z+L7) /bl)))) *ul
u2<—(max(0,min(l,((f*(L3—L4)*I)/b2))))*u2

u3<- (max (0, min (1, ((P*X*L5+Y*L6+Z*L7) /b3)))) *u3_
ud<-(max (0, min (1, ((L2-L1)*g*S/b)))) *u4d_

outlist2<-outlist
for(i in l:length(outlist2)) {

# outlist2[[1]]["ul"]<-NA

if(Us[i,"ul "]) outlist2([[1]]["ul"]l<-
with(c(as.list (outlist2[[i]]),as.list (parameters)),pmax(0,p
min(l, (((L2-L1)*x*S+ (Lo-
L5) *d*X+a*X*L5+a*Y*L6+a*z+L7) /bl))))

if(Usf[i,"u2 "J) outlist2[[i]] ["u2"]<-
with(c(as.list (outlist2[[i]]),as.list (parameters)),pmax(0,p
min (1, ((£*(L3-L4)*I)/b2))))*Us[i,"u2 "]

if(Us[i,"u3 "]) outlist2([[41]]["u3"]<-
with(c(as.list (outlist2[[i]]),as.list (parameters)),pmax(0,p
min (1, ((p*X*L5+Y*L6+Z*L7) /b3))))
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if(Us[i,"ud "]) outlist2[[1]]["ud"]<-
with(c(as.list (outlist2[[i]]),as.list (parameters)),pmax(0,p
min (1, ((L2-L1)*g*S/b))))

}

for(i in 2:length(outlist2)) {
cols<-names (outlist2[[i]])
cols2<-cols|[!grepl ("u",cols) ]
dat temp<-melt (outlist2[[i]],id=cols2)

dat tempSvariable<-pasteO (dat temp$Svariable," = 1")
dat tempSvariable<-as.factor (dat tempSvariable)
plot<-

ggplot (dat temp, aes (x=time, y=value, colour=variable))+geom 1
ine ()
plot<-plot+labs (x="Time (days)", y="Control
profile")+theme classic()
# plot<-plot+scale colour manual ("",values=l:sum(Us[i,]))
print (plot)
png (file=pastel ("figure ",1i,".png"))
print (plot)
dev.off ()

###shadow prices
outlist3<-outlist
for(i in l:length(outlist3)) {

outlist3[[i]] ["sps"]<-
with(c(as.list(outlist3[[i]]),as.list(parameters)),bl*S* (ex
p (-phi) ) +b4*S* (exp (-phi)))

outlist3[[1i]] ["spe"]<-
with(c(as.list(outlist3[[i]]),as.list(parameters)),bl*E* (ex
p (-phi) ) +b4*E* (exp (-phi)))

outlist3[[1]]["spi"]l<-
with(c(as.list(outlist3[[i]]),as.list(parameters)),b2*I* (ex
p (-phi)))
}

#plot shadow prices against time in one plot
pdf (file="shadow prices.pdf")
for(i in l:length(outlist3)) {
data<-outlist3[[1]]
data<-melt (datal,c("time","sps", "spe","spi")],id="time")
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plot<-
ggplot (data, aes (x=time, y=value, colour=variable))+geom line (
)

plot<-
plot+labs (title=paste (pastel("u",1:4),"=", (Us[i,]1>0)*1, sep=
"",Collapse — n’n))

print (plot)
}

dev.off ()
#plot shadow prices on Sh against Rh in one plot

pdf (file="shadow prices against Rh.pdf")
for(i in l:length(outlist3)) {
data<-outlist3[[i]]
# data<-
melt (datal[,c("time", "sps", "spe", "spi™) ], id="time")
plot<-ggplot (data, aes (x=R, y=sps) ) +tgeom point ()
plot<-
plot+labs (title=paste (pastel("u",1:4),"=", (Us[i,]1>0)*1, sep=
"",collapse — n,n))
print (plot)

}

dev.off ()

###marginal benefit

mbul<-x* (L1-L2) + (L6-L5) *d*X+a* (X*L5+Y*L6+2*17)
mbu2<-f*I* (L4-13)

mbu3<-p* (X*L5+Y*L6+2*L7)

mbu4<-g* (L2-L1)

outlistd<-outlist
for(i in l:length(outlist4)) {

outlistd[[i]] ["mbul"]<-
with(c(as.list(outlist4[[i]]),as.list (parameters)),x* (L1-
L2)+ (L6-L5) *d*X+a* (X*L5+Y*L6+Z*L7))

outlistd[[i]] ["mbu2"]<-
with(c(as.list (outlist4[[i]]),as.list (parameters)),f*I* (L4~
L3))

outlistd[[i]] ["mbu3"]<-
with(c(as.list (outlist4[[i]]),as.list (parameters)),p* (X*L5+
Y*Lo+2*1L7))

outlistd[[i]] ["mbud"]<-
with(c(as.list (outlist4[[i]]),as.list (parameters)),g* (L2~
L1))
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}

#plot marginal benefits of (itn, treatment, irs, iptp)
against time in one plot

pdf (file="marginal benefits.pdf")
for(i in l:length(outlist3)) {

data<-outlistd4[[1]]

data<-
melt (datal[,c("time", "mbul", "mbu2", "mbu3", "mbu4d")],id="time"
)

plot<-
ggplot (data, aes (x=time, y=value, colour=variable))+geom line (
)

plot<-
plot+labs (title=paste (pastel("u",1:4),"=", (Us[i,]1>0)*1, sep=
"",collapse = ","))

print (plot)
}

dev.off ()
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