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ABSTRACT 

Malaria remains a leading cause of mortality and morbidity among children under five 

and pregnant women in sub-Saharan Africa. It is however preventable and controllable 

provided current recommended interventions are properly implemented. Malaria 

transmission is highly variable across Kenya because of the different transmission 

intensities. The challenges posed by malaria and the targets for a malaria-free world call 

for the understanding of malaria dynamics and determining the effective and optimal 

strategies for preventing and controlling the spread of malaria. Better utilization of 

malaria intervention strategies will ensure the gain in the value for money by developing 

a better understanding (and better articulation) of costs and results so that more informed, 

evidence-based choices are made. The study formulated and analyzed a deterministic 

model for malaria transmission dynamics with four malaria control strategies used in 

Kenya namely: Insecticide Treated Nets (ITNs), treatment, Indoor Residual Spraying 

(IRS) and Intermittent Prevention Treatment for pregnant women (IPTp). The study 

further formulated an optimal control problem and derived expressions for the optimal 

control for the malaria model with four control variables, with the aim of minimizing 

total mosquito population, infected individuals and exposed individuals while keeping the 

cost low for different transmission settings in Kenya. Cost effective analysis of one or all 

possible combinations of malaria control strategies for different transmission settings was 

carried out to assess the extent to which the intervention strategies were beneficial and 

cost effective. Collected data from both published and hospital records (in Kisumu, Kisii, 

Chuka and Nyeri representing the four different transmission settings/ epidemiological 

zones in Kenya) were used to estimate the parameters for the malaria model. Numerical 

simulations were done in the R Statistical Computing platform. Numerical simulations 

indicated that malaria control strategies have effect in lowering exposed and infected 

members of both human and mosquito population. The most sensitive parameters were 

mosquito death rate and mosquito biting rate. The optimal control strategies for malaria 

control in both endemic and epidemic-prone areas was the combined use of treatment and 

IRS; in seasonal areas it was the use of treatment; and in low risk areas was the use of 

ITNs and treatment. The most cost-effective intervention strategies in endemic areas was 

the combination of treatment, IRS and IPTp; in epidemic-prone areas it was the use of 

treatment and IRS; for seasonal areas it was the use of ITNs and treatment, and for the 

low risk areas it was the use of treatment. In order to minimize malaria transmission in 

Kenya, the study recommends interventions strategies targeting to reduce mosquito 

population and mosquito bitting rates. Strategies targeting to reduce mosquito population 

and mosquito biting rates (vector control) such as ITNs and IRS should be implemented. 

The study recommends optimal use of treatment and IRS for both endemic and epidemic 

prone areas, treatment for seasonal areas, and ITNs and treatment for low risk areas. The 

recommended cost effective strategies for malaria control are use of IRS and IPTp for 

endemic area, use of treatment and IRS for epidemic-prone areas, use of ITNs and 

treatment for seasonal and use of treatment for low risk areas. This study provided useful 

tools that can guide policy makers in designing interventions that suits the groups most at 

risk for malaria (i.e. under five year-olds and the pregnant women) for different 

transmission settings, post-2015 malaria eradication strategies and achievement of the 

UN Sustainable Development Goals.   
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Malaria remains the leading cause of mortality and morbidity among the children under 

five years of age and the pregnant women in Sub-Saharan Africa (WHO Malaria Report, 

2014). These groups are at high risk due to weakened and immature immunity 

respectively. The burden is largely in sub-Saharan Africa where 91% of deaths occurred, 

with pregnant women and children under five years of age being the most at risk of 

infection and adverse outcomes (WHO Malaria Report, 2014). Each year, there are an 

estimated 25 million pregnancies in sub-Saharan Africa at risk of malaria, the 

consequences of which can be serious for both mother and foetus in terms of morbidity 

and mortality. 

In Kenya most hospital admissions and deaths from malaria are from children under five 

years of age and pregnant women because there immunity is compromised at these levels 

of life (DOMC, 2010). Malaria accounts for 30-50% of all outpatient attendance and 20% 

of all admissions to health facilities (KNBS & ICF Macro, 2010). Most Kenyans are 

vulnerable to malaria because of poverty, inadequate health care infrastructures and low 

income of the country. The level of endemicity of malaria in Kenya varies from region to 

region and there is a big diversity in risk of malaria infection largely driven by climate 

and temperature which includes the effects of altitude. 

Malaria is a disease of the blood that is caused by Plasmodium parasite transmitted from 

person to person by certain types of mosquitoes and bites of the infected mosquito. The 

four parasite species that cause malaria in humans are Plasmodium falciparum, 

Plasmodium vivax, Plasmodium malariae and Plasmodium ovale (WHO Malaria Report, 

2014). Plasmodium falciparum which causes the severest form of the disease accounts 

for 98 percent of all malaria infections in Kenya (DOMC, 2010). After infection, the 

parasites called sporozoites travel through the bloodstream to the liver, where they 

mature and release another form, the merozoites which then enter the bloodstream and 

infect red blood cells. Thereafter, the parasites multiply inside the red blood cells, which 
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then break open within 48 to 72 hours, infecting more red blood cells. The first symptoms 

usually occur 10 days to 4 weeks after infection, though they can appear as early as 8 

days or as long as a year after infection (Okosun & Makinde, 2011). Malaria may also be 

transmitted from a mother to her unborn infant before or during delivery (congenital 

malaria). 

Symptoms of malaria include fever and flu-like illness, including shaking chills, 

headache, muscle aches, and tiredness. Nausea, vomiting, and diarrhea may also occur. 

Malaria may cause anemia and jaundice (yellow coloring of the skin and eyes) because of 

the loss of red blood cells. If not promptly treated, the infection can become severe and 

may cause kidney failure, seizures, mental confusion, coma, and death. For most people, 

symptoms begin 10 days to 4 weeks after infection, although a person may feel ill as 

early as 7 days or as late as 1 year later (WHO Malaria Report, 2014; DOMC, 2010). 

Malaria transmission is highly variable across Kenya because of the different 

transmission intensities driven by climate and temperature. Kenya has four malaria 

epidemiological zones (Guerra et al., 2008). The endemic areas of stable malaria have 

altitudes ranging from 0 to 1300 meters and these are areas around Lake Victoria in 

western Kenya and in the coastal regions. Rainfall, temperature and humidity are the 

determinants of the perennial transmission of malaria. The seasonal malaria transmission 

are in arid and semi-arid areas of northern and south-eastern parts of Kenya which 

experiences short periods of intense malaria transmission during the rainfall seasons. 

Temperatures are usually high and water pools created during the rainy season provide 

the malaria vectors breeding sites. The malaria epidemic prone areas of western 

highlands of Kenya where malaria transmission in the area is seasonal, with considerable 

year-to-year variation. The increase in minimum temperatures during the long rains 

period favours and sustains vector breeding resulting in increased intensity of malaria 

transmission. Low risk malaria areas covers the central highlands of Kenya including 

Nairobi. The temperatures are usually too low to allow completion of the sporogonic 

cycle of the malaria parasite in the vector. In Kenya, high transmission accounts for 36%, 

Low transmission (40%) and malaria free (24%) (WHO Malaria Report, 2014).  



3 

Malaria is an entirely preventable and treatable disease, provided the currently 

recommended interventions are properly implemented. Controlling malaria transmission 

involves interrupting the malaria transmission for specific transmission settings since 

malaria is heterogeneous. With the recent conversion of the Millennium Development 

Goals (MDGs) to Sustainable Development Goals (SDGs) as part of Global Malaria 

Action Plan for a malaria-free world by 2030, reducing malaria is critical to achieving the 

SDGs such as ensuring healthy lives and promote well-being for all at all ages. At the 

moment several African countries are working towards achieving malaria elimination 

(WHO Malaria Report, 2014). Kenya is currently implementing the 2009-2017 National 

Malaria Strategy (DOMC, 2009) as part of the health sector programmes within the 

framework of the Kenya Vision 2030 long term development blueprints. 

Malaria is highly heterogeneous across different settings in Sub-Saharan Africa implying 

that different intervention strategies will be most effective in different settings (Guerra et 

al., 2008). Prompt access to effective treatment for malaria is unacceptably low in Kenya 

due to the socio-economic barriers to accessing health care. The challenges posed by 

malaria calls for the effective and optimal strategies for preventing and controlling the 

spread of malaria disease. Hence the need to understand the dynamics of malaria disease 

transmission.  

People living in poor rural areas are confronted with a multitude of barriers when 

accessing malaria prevention and treatment. Lack of skilled health personnel and 

equipment add to the general burden of poverty; insufficient knowledge about health 

care, problems connected to accessing the health facility in time, insufficient initiatives to 

prevent malaria attacks, and a general lack of attention to the long term debilitating 

effects of a malaria (DOMC, 2010). These challenges call for urgent need for a better 

understanding of important parameters in the disease transmission and develop effective 

and optimal strategies for prevention and control of the spread of malaria disease. 

The current reduction in the number of malaria related cases are due to the scale up 

efforts of the current malaria interventions in Kenya but there are few guidelines about 

how best to deploy scarce resources for malaria control (DOMC, 2010). Better utilization 

of the malaria intervention strategies will ensure the gain the value for money. Value for 
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money is essentially about maximizing the impact of each money spent. The purpose of 

the value for money drive is to develop a better understanding (and better articulation) of 

costs and results so that we can make more informed, evidence-based choices. Cost 

effectiveness analysis is carried out to inform decision makers on how to determine 

where to allocate resources for malaria interventions (Phillips, 2009). Cost-effectiveness 

analysis is often used in the field of health services, where it may be inappropriate to 

monetize health effect. The most commonly used outcome measure is quality-adjusted 

life years (QALY). 

The main malaria prevention strategies in pregnancy include the use of intermittent 

preventive treatment with anti-malarial medications, as well as the regular and timely use 

of long-lasting, insecticide-treated nets (LLITNs). Preventive chemotherapies are key 

elements of the comprehensive package of malaria prevention and control measures 

recommended by World Health Organization (WHO) (WHO Malaria Report, 2014). 

WHO recommended preventive therapies include intermittent preventive treatment of 

pregnant women (IPTp), intermittent preventive treatment of infants (IPTi), and seasonal 

malaria chemoprevention (SMC). The objective of these interventions is to prevent 

malarial illness by maintaining therapeutic drug levels in the blood throughout the period 

of greatest malarial risk. 

The current reduction in malaria related case in Kenya is attributed to the scale up effort 

of the combinations of the several WHO recommended intervention strategies over the 

past decades to effectively prevent, diagnose, and treat malaria (DOMC, 2010). They 

include vector control through the use of long-lasting insecticide-treated bed nets 

(LLITNs), indoor residual spraying (IRS), chemoprevention for most vulnerable such as 

IPTp, confirmation of malaria diagnostics through rapid diagnostics tests (RDTs) and 

microscopy for every suspected case and timely treatment with artemisinin-based 

combination therapies (ACTs) (WHO Malaria Report, 2014).  

WHO recommends IPTp-SP for all pregnant women at each schedule of antenatal care 

(ANC) for high transmission settings of Plasmodium falciparum. WHO recommends the 

use of ITNs as a measure to reduce the mentioned adverse effects during pregnancy. In 

Kenya, the control strategies being used include ITNs/ LLITNs, IRS, IPTp, ACTs 



5 

(Diagnosis and Treatment) their levels of effect shows that there is 44% reduction in 

childhood mortality (DOMC, 2010). The optimal use of the current malaria intervention 

strategies will help reduce malaria transmission and fast track the prospects towards 

malaria elimination and eradication. 

Mathematical models have become important tools in analyzing the spread and control of 

infectious diseases. Mathematical models of epidemiology can be used to understand the 

dynamics of the spread of malaria in a population (Koella & Anita, 2003; Okosun & 

Makinde, 2011).  The mathematical modeling can help in figuring out decisions that are 

of significant importance on the outcomes. Mathematical models provide a tool with 

which to explore the expected impact of different interventions against malaria, both 

individually and in combination, on a range of program endpoints (Okell et al., 2008; 

Smith et al., 2009). Ross (1911) developed the first mathematical model for malaria 

transmission focusing on mosquito control. Since then several models have been 

developed to extend his work (McDonald, 1956; Anderson & May, 1992; Ngwa & Shu, 

2000; Koella & Anita, 2003) with some influencing malaria eradication programmes. No 

malaria transmission model incorporating interventions strategies for different 

transmission settings and for the most at risk groups for malaria exist for Kenya.  

Although some of these studies considered different interventions for malaria control, the 

effect of IPTp and other malaria control and prevention strategies have not been studied 

in an optimal control and cost effectiveness analysis for the most at risk group for 

malaria. Mathematical models for malaria intervention in Kenya is the OpenMalaria 

simulation model (Stuckey et al., 2014). Optimal control is a branch of mathematics 

developed to find optimal ways to control a dynamic system (Pontryagin et al., 1962). 

Optimal control is a set of ordinary differential equations describing the paths of the 

control variables that minimize the cost function. A control problem includes a cost 

functional that is a function of state and cost variables. The optimal control problem is 

solved using direct or indirect methods. The direct method uses the optimal functional 

and the state system while the indirect method uses an iterative method with a Runge-

Kutta scheme. Rodrigues et al., (2009) explained that the state system with an initial 

guess is solved forward in time and then the adjoint system with the transversality 

conditions is solved backward in time. The optimal control efforts are carried out to limit 
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the spread of the disease. Application of optimal control theory can be an important tool 

to estimate the efficacy of various policies and control measures and the cost of 

implementing them. Since the development of the Pontryagin maximum principle by 

Pontryagin et al. (1962), the theory of optimal control has been successfully used in 

decision making in various applications. Different mathematical models and optimal 

control approaches have been previously used to study the dynamics of transmission and 

treatment of infectious diseases such as malaria (Rafikov et al., 2009), Tuberculosis 

(Moualeu et al., 2015; Silva & Tores, 2012), HIV (Adams, et al., 2004), and Influenza 

(Tchuenche et al., 2011). The application of optimal control in malaria have only used up 

to three control measures and the use of four control variable in the optimal control is 

limited. 

Cost effectiveness analysis is carried out to inform decision makers on how to determine 

where to allocate resources for malaria interventions especially when they are limited 

(Phillips, 2009). The analysis compares the costs and health effects of an intervention to 

assess the extent to which it can be regarded as providing value for money and the choice 

of the technique depends on the nature of the benefits specified. The incremental cost-

effectiveness ratio (ICER) has become the common measure for cost effectiveness 

analysis and is calculated in order to achieve the goal of comparing the costs and the 

effectiveness of the intervention strategies (Okosun et al., 2013; Ridrogues et al., 2014; 

White et al., 2011). There is no cost effectiveness analysis done for the optimal malaria 

control strategies for different malaria transmission settings in Kenya considering the 

most at risks age groups. No cost effectiveness analysis has been done for the IPTp for 

the most at risk group of malaria. 

The modeling approach presented will explore the potential for current control measures 

to reduce malaria transmission in different transmission settings to a low level as laid out 

in the control phase of the global elimination framework (Smith & Hay, 2009) while 

keeping the cost very low. The result will be illustrated by applying the model to four 

well characterized transmission sites in Kenya which represent the full range of 

transmission intensity most commonly observed across Africa.  
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1.2 Statement of the Problem 

Malaria is a leading cause of mortality and morbidity among the children under five and 

the pregnant women in Kenya. Malaria accounts for accounts for 30-50% of all outpatient 

attendance and 20% of all admissions to health facilities in Kenya (DOMC, 2010; WHO 

Malaria Report, 2014). Malaria in Kenya is heterogeneous as a result of the different 

transmission settings because of the varying intensities. This implies that different 

transmission settings will require different malaria intervention strategies. Malaria is 

however preventable and controllable provided currently recommended interventions are 

properly implemented. There are few guidelines about how best to deploy scarce 

resources for malaria control and the need for value of money calls for the cost effective 

analysis of malaria interventions. The optimal use of the current malaria intervention 

strategies will help reduce malaria transmission, mortality, morbidity, for post 2015 

malaria strategies, achievement of Kenyan Vision 2030 and fast-track the prospects 

towards malaria elimination and eradication (SDGs).   

Mathematical models provide a framework for understanding the dynamics of disease 

transmission and can be used to determine the effectiveness and optimal allocation of 

different interventions against malaria (McDonald, 1956). Previous studies on 

mathematical modelling for malaria transmission dynamics in Kenya (Stuckey et al., 

2012) did not consider the combined effect of ITNs, IRS, and natural death on reducing 

the mosquito population, use of IPTp and the most at risk groups. IPTp use has shown to 

have effect in reducing mortality among the under-five and the pregnant women who are 

the most at risk group for malaria (Hansen et al., 2012) and it’s one of the WHO 

recommended preventive therapy for pregnant women in sub-Saharan Africa but has not 

been studied in modelling of malaria transmission dynamics for the most at risk groups 

for malaria. 

Optimal control is a branch of mathematics developed to find optimal ways to control a 

dynamic system (Pontryagin et al., 1962). The theory of optimal control has previously 

been successfully applied in decision making. Optimal control in malaria intervention has 

not been applied to guide the design of malaria interventions strategies for the most at 

risk groups for malaria and for the different transmission settings in Kenya. There is little 
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application of four control variables for different transmission settings in optimal control 

theory in malaria control studies. Most optimal control theory malaria interventions 

studies have not considered the effect of IPTP and the combined effect of ITNs, IRS, and 

natural death in reducing the mosquito population. 

Cost effective analysis compares the costs and health effects of an intervention to assess 

the extent to which it can be regarded as providing value for money and can help guide 

the optimal allocation of malaria intervention resources. The benefits and cost-

effectiveness of malaria control strategies for the most at risk groups for malaria 

(pregnant women and the under five children) are less well documented, especially for 

different malaria transmission settings in Kenya. 

This study therefore investigates the optimal control strategies for minimizing malaria 

transmission with four control variables for different transmission settings in Kenya. The 

mathematical model for human-vector interactions with malaria control strategies was 

used. 

1.3 Objective of the Study 

1.3.1 General Objective 

The general objective of the study was to investigate the optimal control strategies for 

minimizing malaria transmission in Kenya using mathematical modeling techniques  

1.3.2 Specific Objectives 

The specific objectives of the proposed study are: 

(i) To formulate and analyze a model for malaria transmission dynamics with four 

malaria intervention strategies in Kenya 

(ii) To formulate an optimal control problem and derive expressions for the optimal 

control for the malaria model with four control variables 

(iii)To investigate the impact of the different combinations of malaria control and 

propose the optimal control strategies for malaria control for different 

transmission settings.  
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(iv) To carry out cost effective analysis of one or all possible combinations of malaria 

control strategies for different transmission settings. 

1.4 Scope of the Study 

The malaria transmission model with four control strategies based on Susceptible (S) – 

Exposed (E) – Infectious (I) – Recovered (R) compartmental structure for humans and 

Susceptible (S) – Exposed (E) – Infectious (I) compartmental structure for mosquitoes 

was used to illustrate the human-vector interaction and to derive the differential equations 

for the analysis of the optimal control.  

The basic reproduction number (𝑅0) which is a fundamental parameter governing the 

spread of the disease was computed using the next generation operator approach. This 

provides the necessary condition for the disease to be eradicated or minimized. The 

qualitative analysis of the model was conducted to determine the possibility of existence 

and stability of endemic and disease-free equilibria. Sensitivity analysis was carried out 

to compute sensitivity indices of the reproduction number which enables us to single out 

parameters that have a high impact to the reproduction number 𝑅0 and which are used to 

enhance the intervention strategies. 

Pontryagin’s Maximum Principle which uses the Lagrangian and Hamiltonian principles 

with respect to a time dependent constant was used to derive the necessary conditions for 

the optimal control of malaria disease in order to determine optimal strategies for 

controlling the spread of the disease. Data was collected from the literature, Division of 

Malaria Control (DOMC), Kenya National Bureau of Statistics, Malaria Indicator Survey 

for Kenya, Demographic Health Survey (DHS) for Kenya, World Malaria Report 2014 

by the WHO and hospital records (from Kisumu, Kisii, Chuka (Tharaks-Nithi) and Nyeri 

counties representing the four different transmission settings/ epidemiological zones in 

Kenya). All these collected data guided in the calculations/ estimation of parameter for 

the malaria model while the unknown parameters values were assumed. Incremental Cost 

Effectiveness Ratio (ICER) was done as part of the cost effective analysis. The computer 

package (R Statistical Software) was used for the model simulations.  
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1.5 Significance of the Study 

The study will be able to evaluate the current intervention strategies and suggest 

innovative intervention strategies for different transmission settings with minimum cost. 

This will also inform the policy makers, the stakeholders for malaria elimination, 

National Malaria Control Programs and global plan for malaria eradication. Specific 

generated information will guide on how malaria can be eradicated in Kenya. Knowing 

costs and outcomes of alternative control strategies is important to decision makers who 

are often faced with the challenge of resource allocation. This will help in investing 

resources more strategically and the targeted interventions will reach the most vulnerable 

people with no barriers to access. It will also provide policy makers with information on 

where resources should be allocated when these are limited. 

The findings of this study will contribute to the knowledge gap and add value to the 

current literature on malaria transmission dynamics, optimal control and cost 

effectiveness analysis of malaria intervention strategies. Scholars and academicians 

wishing to carry out research in the area of disease transmission dynamics, optimal 

control and cost effectiveness analysis of malaria intervention strategies may use findings 

of this study for further research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Malaria Mathematical Models 

Mathematical models of Mosquito-borne pathogen transmission originated with the work 

of Ronald Ross (Ross, 1915; McDonald, 1956) and thereafter several models have been 

developed to provide insights into effective eradication of malaria. Ross (1911) focused 

on mosquito control and showed that mosquito population should be brought to a certain 

threshold for malaria disease to be eliminated. MacDonald (1957) analyzed an updated 

version of Ross model and highlighted that increasing the mortality of adult mosquito 

will be more significant in the control effort of malaria transmission. The Macdonald 

model influenced the decision of WHO to launch the Global Malaria Eradication 

Programme (GMEP) between 1955 -1969 (McDonald, 1956). The lesson learned from 

the GMEP, 1955 - 1969 was that no single strategy can be sufficient to eradicate malaria 

in all areas (Najera et al., 2011). 

Aron & May (1982) describe the properties of Ross-Mcdonald model, by including the 

derivation of the reproductive number, 𝑅0. The reproductive number, 𝑅0, is defined as the 

number of secondary infections that one infectious person would produce in a fully 

susceptible population through the entire duration of the infectious period.  Yang (2000) 

described a compartmental model where humans follow a Susceptible-Exposed-

Infectious-Recovered-Susceptible (SEIRS) pattern for human and mosquitoes follow a 

Susceptible-Exposed-Infectious (SEI) pattern. He further stated that the disease-free 

equilibrium is stable for 𝑅0 < 1 and unstable when 𝑅0 > 1. Li et al., (2002) derived a 

model where humans move through multiple Susceptible-Exposed-Infectious-Recovered 

(SEIR) stages, where a history is kept of previous infections. Ngwa & Shu (2000), 

extended the works of Ross (1915) and McDonald (1957) to come up with the popular 

generalized SEIR malaria model.  

IPTp is one of the WHO recommended prevention therapy for the pregnant women. IPTp 

has been shown to be effective in reducing maternal and infant mortality that are related 

to malaria (Le Port et al., 2011; Parise et al., 1998; Shulman et al., 1999, Rogerson et al., 
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2000). Hansen et al., (2012) showed that IPTp reduced maternal mortality by 3% in low 

transmission settings of Uganda. 

Several modelling techniques have been previously used for to study malaria 

transmission dynamics with intervention strategies. Oduro et al., (2015) modelled malaria 

transmission dynamics with interventions using SEIR-SEI but not for different 

transmission settings and the at risk groups. The study further did not consider the 

combined effect of ITNs, IRS, and natural death on reducing the mosquito population. 

Oduro et al., (2012) modelled malaria transmission dynamics but did not consider 

malaria interventions, different malaria transmission settings, the most at risks groups and 

the combined effect of ITNs, IRS, and natural death on reducing the mosquito population. 

Stuckey et al., (2012) showed the malaria simulation model for the western highlands 

Kenya without considering the most at risks groups, effect of IPTp and the different 

transmission settings in Kenya. King et al., (2012) developed a SEIR-SEI mathematical 

model for studying malaria transmission without incorporating the interventions, 

considering the different transmission settings and the combined effect of ITNs, IRS, and 

natural death on reducing the mosquito population. Griffin et al., (2010) developed model 

for malaria transmission dynamics for six different sites in Africa representing the 

different transmission settings in Africa but did not consider the effect of IPTp and 

stratifying the population to those at risk group of malaria. Other approaches that have 

been used to study malaria interventions include Markov Decision Process (Dimitrov et 

al., 2012) and the openmalaria software program created by Smith et al., (2008). They 

however did not stratify the population by the most at risk groups for malaria and for 

different transmission settings.  

2.2 Optimal Control 

Optimal control is a branch of mathematics developed to find optimal ways to control a 

dynamic system (Pontryagin et al., 1962). Optimal control is a set of ordinary differential 

equations describing the paths of the control variables that minimize the cost function. 

The cost functional equation with weights related to the costs of intervention strategies 

and implementation is used. Optimal control functions have been used in the study of 

optimal control in order to determine the best intervention methods for vector borne 
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disease related to Dengue disease (Rodrigues et al., 2012). The optimal control is 

qualitatively derived using Pontryagin’s Maximum Principle or by solving the Hamilton-

Jacobi-Bellman equation. This principle has provided research with suitable conditions 

for optimization problems with differential equations as constraints. The aim of the 

optimal control problem is to minimize the number of infected humans while keeping the 

cost as low as possible. This approach allows studying the most cost-effective 

intervention design by generating an implementation design that minimizes an objective 

function. The intensity of interventions can be relaxed along time, which is not the case 

considered in most models, for which interventions are modeled by constant rates 

(Gomes et al., 2007).  

Optimal control approach has been applied optimal control theory in controlling 

infectious diseases such as tuberculosis (Moualeu et al., 2015; Silva & Torres, 2012). 

Adams et al., (2004) used optimal control to examine the role of chemotherapy in 

controlling the virus reproduction in HIV patients. Xiefei et al., (2007) applied optimal 

control methods to study the outbreak of SARS using Pontryagin’s Maximum Principle 

and a genetic algorithm. Zaman et al., (2008) used optimal control to determine the 

optimal vaccination strategy to reduce the susceptible and infective individuals for a 

general SIR epidemic model. Kbenesh et al., (2009) used optimal control to study a 

model for vector-borne diseases with treatment and prevention as control measures. To 

the best of the researcher’s knowledge, no such methods have been used in Kenya to 

determine the optimal combination of malaria intervention strategies for different malaria 

transmission settings and for the most at risk groups for malaria.  

Optimal control theory has also been applied in malaria control to assess the impact of 

antimalarial control measures by formulating the model as an optimal control problem. 

The results of optimal control in malaria interventions are mixed and different. Okosun et 

al., (2013) applied optimal control theory to SEIR/SEI malaria model and considered 

three malaria preventive measures as control variables (use of treated bednets, spray of 

insecticides and treatment of infective humans) and further assessed cost effectiveness of 

the interventions. The findings indicated that the most cost-effective strategy for malaria 

control was the combination of the spray of insecticides and treatment of infective 

individuals. He however did not stratify the population into the under-five and the 
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pregnant women who are at risk population for malaria and did not assess the effect of 

IPTp and the combination effect of ITN, IRS and natural death on mosquito population 

for different malaria transmission settings. Mwamtobe et al., (2014) used three control 

variables (IRS, ITNs and treatment) in a SEIR/SEI malaria model and for only one region 

in Malawi. The findings indicate that the most cost effective control measure was ITNs 

and IRS complemented with timely treatment. The study however did not stratify the 

population into under-five and the pregnant women, the effect of IPTp together with the 

combined effect of ITN, IRS and natural death on mosquito population was not 

investigated. Kim et al., (2012) investigated the optimal control strategy for Plasmodium 

vivax malaria transmission in Korea using two control efforts in SEI/SI malaria model 

type. The findings show that the cost of reducing the reproduction rate of the mosquito 

population was more than that of prevention measures to minimize mosquito-human 

contacts. The study did not stratify the population into at risk groups and the effect of 

IPTp together with the combined effect of ITN, IRS and natural death on mosquito 

mortality was not investigated. Agusto et al., (2012) used three system control variables 

(ITN, IRS, treatment) using SEIR/SEI malaria model. The findings indicated that the 

combination of the three controls had the highest impact on the control of the disease. 

The effect of the combination of ITN, IRS and natural death on mosquito mortality was 

however not investigated together and the population was stratified by those at risk age 

group and pregnant women. Silva & Torres (2013) presented an optimal control approach 

and used only one control variable (use of ITNs) using SI/SI malaria model. The findings 

showed the effectiveness of the optimal control interventions. The study did not consider 

other malaria control variables such as IRS, treatment and IPTp in addition to the 

combined effect of ITN, IRS and natural death on mosquito mortality and stratifying the 

population by at most risk group for malaria. Otieno et al., (2014) provided a general 

explanation of optimal control using four control variables in which additional control 

variable (IPTp) was introduced into the model. IPTp effect in optimal control theory has 

not been investigated and this will be done in this study.  

2.3 Cost-Effectiveness Analysis 

Cost effective analysis compares the costs and health effects of an intervention to assess 

the extent to which it can be regarded as providing value for money. White et al., (2011) 
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conducted cost effective analysis for malaria interventions through systematic review but 

not for different transmission setting and for the at risk groups. Ridrogues et al., (2014) 

conducted cost effective analysis using ICER but for TB. Okosun et al., (2013) conducted 

cost effective analysis using ICER for three malaria intervention strategies and not for 

different transmission settings. He further did not consider the cost effective intervention 

strategies for the at risk group i.e. the pregnant and the under five children. No cost 

effective analysis of the optimal control strategies for malaria has been done for the at 

risk group showing the effect of IPTp and different transmission settings. 

The review of the literature shows that IPTp has effect on reducing mortality among the 

under-five and the pregnant women who are the most at risk group for malaria. Most 

malaria models for analyzing transmission dynamics for malaria with interventions are 

the standard SEIR-SEI models. The review also shows that the combined effect of ITNs, 

IRS, and natural death in reducing mosquito population has not been demonstrated in 

modelling of malaria transmission dynamics. The effect of IPTp which is WHO 

recommended preventive therapy for the most at risk group for malaria (pregnant 

women) has not been studied as part of modeling transmission dynamics of malaria with 

interventions. 

The review of literature shows that very few studies have been applying optimal control 

theory to malaria transmission models for different transmission settings. Most malaria 

models for analyzing effect of interventions in optimal control used the standard SEIR-

SEI models. The combined effect of ITNs, IRS, and natural death on reducing the 

mosquito population has not been demonstrated in optimal control theory for malaria 

control. There is no cost effectiveness analysis that has been done for the optimal malaria 

control strategies for different malaria transmission settings in Kenya considering the 

most at risks groups. 

The effect of IPTp which is WHO recommended preventive therapy for the most at risk 

group for malaria (pregnant women) has not been studied in optimal control theory. No 

model for malaria transmission dynamics incorporating interventions strategies exist for 

Kenya. No study has been done in Kenya to evaluate the optimal control strategies for 

malaria interventions for different transmission settings. No model for malaria 
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transmission dynamics incorporating the IPTp exist for Kenya. No malaria dynamics 

model with interventions has been stratified by the most at risk groups for malaria (under 

five and pregnant women). No optimal control model for four control variables 

incorporating the IPTp malaria intervention studies exits for Kenya. No optimal control 

model has been stratified by the age group (under five) and specific categories (pregnant 

women). No cost effective analysis for the optimal malaria control strategies has been 

done for different transmission settings in Kenya. No cost effectiveness analysis has been 

done for the WHO recommended malaria control strategies for the most at risk groups for 

malaria. 

This study formulated and analyzed a model for malaria transmission dynamics which 

incorporated four intervention strategies used in Kenya, formulated an optimal control 

problem and derived expressions for the optimal control for the malaria model with four 

control variables and then use optimal control theory to study the impact of one or all 

possible combinations of four malaria control strategies, and carried out cost effective 

analysis of one or all possible combinations of the optimal malaria control strategies for 

different transmission settings. 

 

  



17 

CHAPTER THREE  

METHODOLOGY  

3.1 Introduction 

This chapter illustrates the approach for formulating and analyzing the malaria control 

model with intervention strategies. We have a description of the human-vector model, 

stating the assumptions and definitions of the various parameters of the model. Analysis 

of the proposed model is done. Parameters for the malaria model are described and 

sensitivity analysis is also done. 

The malaria dynamics model is extended and an optimal control problem is formulated. 

We formulate an optimal control model for malaria disease in order to determine optimal 

prevention (ITNs, IRS and IPTp) and treatment strategies with minimal implementation 

cost. Using Pontryagin maximum principle we derived and analyzed the necessary 

conditions for the optimal control of malaria with effective use of ITNs, treatment, IRS 

and IPTp.  

After using the optimal control to investigate the optimality of the intervention strategies 

being practiced at different transmission settings in Kenya, economic evaluation of the 

strategies is carried out by performing a cost-effectiveness study to determine the most 

cost-effective as one or combination of the four intervention strategies namely, treatment 

effort of infected individuals, ITNs, IRS and IPTp 

3.2 Formulation of Malaria Model with Intervention Strategies  

A deterministic malaria transmission dynamics model with intervention strategies for the 

most at risk groups for malaria (under five children and the pregnant women) is 

formulated and analyzed. The population under study is subdivided into compartments 

according to the individual’s disease status. We consider a seven-dimensional model, 

which consists of population of Susceptible 𝑆ℎ , Exposed humans 𝐸ℎ , Infected humans 𝐼ℎ 

, Recovered humans 𝑅ℎ , Susceptible mosquitoes 𝑆𝑚 , Exposed mosquitoes 𝐸𝑚 and 

Infected mosquitoes 𝐼𝑚. The total population sizes at time 𝑡 for humans and mosquitoes 

are denoted by 𝑁ℎ(𝑡) and 𝑁𝑚(𝑡) respectively. We employ the SEIRS type model for 
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humans to describe a disease with temporary immunity on recovery from infection. 

Mosquitoes are assumed not to recover from the parasites so the mosquito population can 

be described by the SEI model. In the model we incorporate four time dependent control 

measures simultaneously: (i) the use of treated bednets 𝑢1(𝑡) , (ii) treatment of infective 

humans 𝑢2(𝑡) , (iii) spray of insecticides 𝑢3(𝑡) and (iv) treatment to protect pregnant 

women and their new born children: intermittent preventive treatment (IPTp) for 

pregnant women 𝑢4(𝑡) . The SEIRS/ SEI model were chosen in line with what is known 

in the literature on optimal control in malaria interventions as used by Ngwa & Shu 

(2000), Mwamtobe et al., (2014), Okosun et al., (2013), and Agusto et al., (2012). 

The susceptible pregnant and under five human (𝑆ℎ) are recruited at the rate, Λℎ. They 

either die from natural causes (at a rate 𝜇ℎ) or move to the exposed class (𝐸ℎ) by 

acquiring malaria through contact with infectious mosquitoes at a rate (1 − 𝑢1)
𝛽𝜖𝜙𝐼𝑚

𝑁ℎ
𝑆ℎ 

or (1 − 𝑢4)
𝛽𝜖𝜙𝐼𝑚

𝑁ℎ𝑤
𝑆ℎ, where  𝛽 is the transmission probability per bite, 𝜖 is the per capita 

biting rate of mosquitoes, 𝜙 is the contact rate of vector per human per unit time, 𝑢1(𝑡) ∈

[0,1] is the preventive measure using ITNs, 𝑢4(𝑡) ∈ [0,1] is the preventive measure using 

IPTp,  𝐼𝑚(𝑡) is the infectious mosquitoes at time 𝑡, 𝑁ℎ(𝑡) is the total number of 

individuals (pregnant and under 5) and 𝑁ℎ𝑤(𝑡) is the total number of pregnant women. 

Susceptible class 𝑆ℎ is divided into whole population (under five years and pregnant 

women) being exposed and the population for the pregnant women being exposed. 

Exposed individuals move to the infectious class after the development of clinical 

symptoms at the rate 𝛼ℎ. Infectious individuals are assumed to recover at a rate  𝑏 + 𝜏𝑢2 , 

where 𝑏 is the rate of spontaneous recovery, 𝑢2(𝑡) ∈ [0,1] is the control on treatment of 

infected individuals and 𝜏 ∈ [0,1] is the efficacy of treatment. Infectious individuals who 

do not recover die at a rate  𝛿ℎ + 𝜇ℎ . Individuals infected with malaria suffer a disease 

induced death (for pregnant and under 5) at rate of 𝛿ℎ, and natural death 𝜇ℎ. Infected 

individuals then progress to partially immune group where upon recovery the partially 

immune individual losses immunity at the rate 𝜓 and becomes susceptible again.  

Susceptible mosquitoes (𝑆𝑚) are recruited at the rate Λ𝑚 and acquire malaria infection 

(following contact with humans infected with malaria) at the rate 𝜆𝑚. They either die 
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from natural causes (at a rate 𝜇𝑚) or move to the exposed class by acquiring malaria 

through contacts with infected humans at a rate (1 − 𝑢1)
𝜆ϵϕ𝐼ℎ

𝑁ℎ
𝑆𝑚, where 𝜆 is the 

probability for a vector to get infected after biting an infectious human and 𝐼ℎ(𝑡) are 

individuals infected by malaria at time 𝑡 . The mosquito population is reduced, due to the 

use of insecticides spray, at a rate 𝑝𝑢3, where 𝑢3(𝑡)  ∈ [0,1]  represents the control due to 

IRS and 𝑝 represents the efficacy of IRS. Mosquito population is also reduced as a result 

of natural death (𝜇𝑚) and at the rate 𝑎𝑢1, where 𝑢1(𝑡)  represents the control due to ITNs 

and 𝑎 is the efficacy due to ITNs. Newly infected mosquitoes are moved into the exposed 

class (𝐸𝑚) at a rate 𝛼𝑚 and progresses to the class of symptomatic mosquitoes (𝐼𝑚). 𝜆𝑚 =

𝜆𝜖𝜙𝐼ℎ

𝑁ℎ
 is the percapita incidence rate among mosquitoes (force of infection for susceptible 

vectors), and  𝜆ℎ =
𝛽𝜖𝜙𝐼𝑚

𝑁ℎ
 is the force of infection for susceptible humans (pregnant and 

under 5),  𝜆ℎ𝑤 =
𝛽𝜖𝜙𝐼𝑚

𝑁ℎ𝑤
 is the force of infection for susceptible pregnant humans and 𝑁ℎ𝑤 

is the total population for pregnant women. The total population sizes for the human 

(pregnant and under 5) is 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) and for vector is 𝑁𝑚(𝑡) =

𝑆𝑚(𝑡) + 𝐸𝑚(𝑡) + 𝐼𝑚(𝑡) . 

 The model state variables are represented and described in Table 3.1. Table 3.2 presents 

and describes the parameters of the model. Table 3.3 represents and describes the malaria 

prevention and control strategies practiced in Kenya 
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Table 3.1: State variables of the malaria model 

Symbol Description   

𝑆ℎ(𝑡) Number of susceptible individuals (pregnant and under 5) at time t 

𝐸ℎ(𝑡) Number of exposed individuals (pregnant and under 5) at time t 

𝐼ℎ(𝑡) Number of infectious humans (pregnant and under 5) at time 𝑡 

𝑅ℎ(𝑡) Number of recovered humans (pregnant and under 5) at time 𝑡 

𝑆𝑚(𝑡) Number of susceptible mosquitoes at time 𝑡 

𝐸𝑚(𝑡) Number of exposed mosquitoes at time 𝑡 

𝐼𝑚(𝑡) Number of infectious mosquitoes at time 𝑡 

𝑁ℎ(𝑡) Total number of individuals (pregnant and under 5) at time 𝑡 

𝑁ℎ𝑤(𝑡) Total number of pregnant women at time 𝑡 

𝑁𝑚(𝑡) Total mosquito population at time 𝑡 

 

 

Table 3.2: Prevention and control variables in the model 

Symbol Description  

𝑢1(𝑡) Preventive measure using insecticide treated bed nets (ITNs) 

𝑢2(𝑡) The control effort on treatment of infectious individuals 

𝑢3(𝑡) Preventing measure using indoor residual spraying (IRS) 

𝑢4(𝑡) Preventive measure using intermittent preventive treatment 

for pregnant women (IPTp) 

𝑝 Rate constant due to use of indoor residual spraying 

𝜏 Rate constant due to use of treatment effort 

𝑎 Rate constant due to use of insecticide treated bed nets 
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Table 3.3: Description of parameter variables of the malaria model 

Parameter Description  

𝜙 Mosquito contact rate with human 

𝜖 Mosquito biting rate 

𝛽 Probability of human getting infected 

𝜆 Probability of a mosquito getting infected 

𝜇ℎ Per capita natural death rate of humans 

𝜇𝑚 Per capita natural death rate of mosquitoes 

𝜓 Per capita rate of loss of immunity by recovered individuals 

𝛼ℎ Humans progression rate from exposed to infected 

𝛼𝑚 Mosquitoes progression rate from exposed to infected 

Λℎ Recruitment rate of human by birth and by getting pregnant 

Λ𝑚 Recruitment of mosquitoes by birth 

𝛿ℎ Per capita disease induced death rate for humans (pregnant 

and under 5) 

𝑏 Proportion of spontaneous individual recovery 

𝜆ℎ Force of infection for susceptible humans (pregnant and under 

5) to exposed individuals  

𝜆ℎ𝑤 Force of infection for susceptible pregnant humans to exposed 

individuals 

𝜆𝑚 Force of infection for susceptible mosquitoes to exposed 

mosquitoes 

 

 

Putting the above formulations and assumptions together gives the following vector-host 

model (Figure 3.1). 
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      𝜓𝑅ℎ  

  (1 − 𝑢1)𝜆ℎ𝑆ℎ  

    Λℎ                            𝛼ℎ𝐸ℎ                    (𝑏 + 𝜏𝑢2)𝐼ℎ 

   (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ 

 𝜇ℎ𝑆ℎ 𝛽       𝜇ℎ𝐸ℎ                      (𝛿ℎ + 𝜇ℎ)𝐼ℎ     𝜇ℎ𝑅ℎ 

         𝜆 

             𝛼𝑚𝐸𝑚    (1 − 𝑢1)𝜆𝑚𝑆𝑚  Λ𝑚 

 

 

 𝑎𝑢1𝐼𝑚 + 𝑝𝑢3𝐼𝑚 + 𝜇𝑚𝐼𝑚 𝑎𝑢1𝐸𝑚 + 𝑝𝑢3𝐸𝑚 + 𝜇𝑚𝐸𝑚  𝑎𝑢1𝑆𝑚 + 𝑝𝑢3𝑆𝑚 + 𝜇𝑚𝑆𝑚  

Figure 3.1: Malaria model with interventions 

 

The following systems of non-linear differential equations describing the dynamics of 

malaria in human and mosquito populations together with interventions 

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝑆ℎ 

𝑑𝐸ℎ
𝑑𝑡

= (1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ 

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ 

𝑑𝑅ℎ
𝑑𝑡

= (𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ 

𝑑𝑆𝑚
𝑑𝑡

= Λ𝑚 − (1 − 𝑢1)𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 

𝑑𝐸𝑚
𝑑𝑡

=  (1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 

𝑆ℎ 𝐸ℎ 𝐼ℎ 𝑅ℎ 

𝐼𝑚 𝐸𝑚 𝑆𝑚 
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𝑑𝐼𝑚
𝑑𝑡

= 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚. 

           (3.1) 

 

3.3 Analysis of the Malaria Model with Intervention Strategies 

We will assume that the control parameters are constant so as to determine the basic 

reproduction number, steady states and their stability as well as the bifurcation analysis. 

We describe the basic properties of the formulated malaria model with control strategies 

through mathematical analysis of the model. The model is analyzed to check if malaria 

disease can be controlled (eliminated). First, we determine the invariant region to check 

whether the SEIR-SEI malaria model is in a biologically feasible region for both human 

and mosquito populations and showing that all solutions of equation (3.1) are positive for 

all 𝑡 ≥ 0 and are attracted in that region. Then existence of disease free equilibrium 

points, followed by the derivation of the reproduction number. Stability analysis of the 

disease free equilibrium is done (local and global). Establishing for the existence of the 

endemic equilibrium points is done together with the local and global stability of the 

endemic equilibrium point. Lastly, sensitivity analysis of the reproductive number is also 

done.  

3.3.1 Positive Invariant Region 

The total population sizes are 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑅ℎ and 𝑁𝑚 = 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚 with 

their differential equations 

𝑁ℎ
𝑑𝑡
=
𝑆ℎ
𝑑𝑡
+
𝐸ℎ
𝑑𝑡
+
𝐼ℎ
𝑑𝑡
+
𝑅ℎ
𝑑𝑡
= Λℎ − 𝛿ℎ𝐼ℎ − 𝜇ℎ𝑁ℎ, 

(3.2)  

𝑁𝑚
𝑑𝑡

=
𝑆𝑚
𝑑𝑡
+
𝐸𝑚
𝑑𝑡
+
𝐼𝑚
𝑑𝑡
= Λ𝑚 − 𝜇𝑚𝑁𝑚 − 𝑎𝑢1𝑁𝑚 − 𝑝𝑢3𝑁𝑚. 

(3.3) 

The Theorem below shows how the positive invariant region can be obtained 
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Theorem 3.1: The solutions of the system (3.1) are feasible for all 𝑡 > 0 if they enter the 

invariant region 𝐷 = 𝐷ℎ × 𝐷𝑚 

Proof: 

Let 𝐷ℎ = (𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ 𝑅+
7  be any solution of the system (3.1) with non-

negative initial conditions. 

Assuming the disease does not kill (𝛿ℎ = 0) or in the absence of the disease (malaria), 

that is, 𝐼ℎ = 0, equation (3.2) becomes 

𝑑𝑁ℎ
𝑑𝑡

≤ Λℎ − 𝜇ℎ𝑁ℎ 

𝑑𝑁ℎ
𝑑𝑡

+ 𝜇ℎ𝑁ℎ ≤ Λℎ. 

           (3.4) 

Using the differential equation of the form 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡) we have 𝑝(𝑡) = 𝜇ℎ and 

𝑞(𝑡) = Λℎ. Therefore the integrating factor (IF) for (3.4) is given by 

𝐼𝐹 = 𝑒∫𝑝(𝑡)𝑑𝑡 = 𝑒∫𝜇ℎ𝑑𝑡 = 𝑒𝜇ℎ𝑡. 

Multiplying both sides of equation (3.4) by 𝑒𝜇ℎ𝑡 give 

𝑒𝜇ℎ𝑡
𝑑𝑁ℎ
𝑑𝑡

+ 𝜇ℎ𝑁ℎ𝑒
𝜇ℎ𝑡 ≤ 𝑒𝜇ℎ𝑡Λℎ 

𝑑

𝑑𝑡
(𝑁ℎ𝑒

𝜇ℎ𝑡) ≤ 𝑒𝜇ℎ𝑡Λℎ. 

           (3.5) 

Integrating both sides of equation (3.5) we have 

𝑁ℎ𝑒
𝜇ℎ𝑡 =

Λℎ
𝜇ℎ𝑡

𝑒𝜇ℎ𝑡 + 𝑐 

where 𝑐 is the constant of integration 

𝑁ℎ =
Λℎ
𝜇ℎ𝑡

𝑒𝜇ℎ𝑡 ×
1

𝑒𝜇ℎ𝑡
+ 𝑐𝑒𝜇ℎ𝑡 
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𝑁ℎ =
Λℎ
𝜇ℎ𝑡

+ 𝑐𝑒−𝜇ℎ𝑡. 

Using the initial conditions at 𝑡 = 0, 𝑁ℎ(0) 

𝑁ℎ(0) ≤
Λℎ
𝜇ℎ𝑡

+ 𝑐 → 𝑁ℎ(0) −
Λℎ
𝜇ℎ𝑡

≤ 𝑐 

𝑁ℎ ≤
Λℎ
𝜇ℎ
+ (𝑁ℎ(0) −

Λℎ
𝜇ℎ
) 𝑒−𝜇ℎ𝑡. 

           (3.6) 

Using the theorem of differential inequality (Birkhoff & Rota, 1982), we obtain 

0 ≤ 𝑁ℎ ≤
Λℎ
𝜇ℎ
 𝑎𝑠 𝑡 → ∞. 

           (3.7) 

Therefore, as 𝑡 → ∞ in (3.6), the human population 𝑁ℎ approaches 𝐾 =
Λℎ

𝜇ℎ
 (that is, 𝑁ℎ →

𝐾 =
Λℎ

𝜇ℎ
), the parameter 𝐾 =

Λℎ

𝜇ℎ
 is usually called the carrying capacity (Namawejje, 2011). 

Consider the feasible region 𝐷 = 𝐷ℎ ∪ 𝐷𝑚 ⊂ ℝ+
4 ×ℝ+

3  

Hence all feasible solutions set of the human population of the model (3.1) enters the 

region 

ℝ+
4 : 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑅ℎ  

𝐷ℎ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ) ∈ 𝑅+
4 : 𝑆ℎ > 0, 𝐸ℎ ≥ 0, 𝐼ℎ ≥ 0, 𝑅ℎ ≥ 0,𝑁ℎ ≤

Λℎ
𝜇ℎ
}. 

Similarly the feasible solutions set for the model (3.1) is given by 

ℝ+
3 : 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚 

𝐷𝑚 = {(𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ 𝑅+
3 : 𝑆𝑚 > 0, 𝐸𝑚 ≥ 0, 𝐼𝑚 ≥ 0,𝑁𝑚 ≤

Λ𝑚
𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3

}. 

Therefore, the feasible solutions set for the model (3.1) is given by 
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𝐷 = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ 𝑅+
7 : (𝑆ℎ, 𝑆𝑚) > 0, (𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝐸𝑚, 𝐼𝑚) ≥ 0;𝑁ℎ

≤
Λℎ
𝜇ℎ
; 𝑁𝑚 ≤

Λ𝑚
𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3

}. 

Therefore, the region 𝐷 is positively-invariant (i.e. solution remain positive for all times, 

(𝑡) and the model (3.1) is biologically, epidemiologically meaningful and mathematically 

well-posed in the domain 𝐷. Therefore in this model it is sufficient to consider the 

dynamics of the flow generated by the model (3.1). In addition, the usual existence, 

uniqueness and continuation of results holds for the system 

3.3.2 The Positivity of State Variables 

It is important to prove that all the state variables remain non-negative for all 𝑡 ≥ 0  for 

the system (3.1). 

Theorem 3.2: Let the initial data be {(𝑆ℎ(0), 𝑆𝑚(0)) >

0, (𝐸ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 𝐸𝑚(0), 𝐼𝑚(0)) ≥ 0} ∈ 𝐷. Then the solution set 

{𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚}(𝑡) of the system (1) is positive for all 𝑡 > 0. 

Proof: 

From the first equation in the model (3.1), we have  

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − 𝜇ℎ𝑆ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ

≥ −𝜇ℎ𝑆ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ 

𝑑𝑆ℎ
𝑑𝑡

≥ −(𝜇ℎ + (1 − 𝑢1)𝜆ℎ + (1 − 𝑢4)𝜆ℎ𝑤)𝑆ℎ. 

Using separation of variables and integrating both sides gives 

1

𝑆ℎ
𝑑𝑆ℎ ≥ −∫(𝜇ℎ + (1 − 𝑢1)𝜆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑑𝑡 

𝑙𝑛𝑆ℎ ≥ −(𝜇ℎ + (1 − 𝑢1)𝜆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡 + 𝑐 

𝑆ℎ(𝑡) = 𝑒
[−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡+𝑐] 
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𝑆ℎ(𝑡) = 𝑒
−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡 × 𝑒𝑐 

𝑆ℎ(𝑡) = 𝑒
−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡 × 𝐾 

𝑆ℎ(𝑡) = 𝐾𝑒
−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡 

𝑆ℎ(𝑡) ≥ 𝐾𝑒
−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡. 

Using the initial conditions: 𝑡 = 0, 𝑆ℎ(0) ≥ 𝐾 

⟹ 𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡 ≥ 0. 

Therefore 

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−(𝜇ℎ+(1−𝑢1)𝜆ℎ+(1−𝑢4)𝜆ℎ𝑤𝑆ℎ)𝑡 ≥ 0. 

From the second equation, 

𝑑𝐸ℎ
𝑑𝑡

= (1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝐸ℎ − 𝛼ℎ𝐸ℎ 

𝑑𝐸ℎ
𝑑𝑡

= (1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝐸ℎ − 𝛼ℎ𝐸ℎ ≥ −(𝜇ℎ + 𝛼ℎ)𝐸ℎ 

∫
1

𝐸ℎ
𝑑𝐸ℎ ≥ ∫−(𝜇ℎ + 𝛼ℎ)𝑑𝑡 

ln(𝐸ℎ) ≥ −(𝜇ℎ + 𝛼ℎ)𝑡 + 𝑐 

⟹ 𝐸ℎ(𝑡) = 𝑒−(𝜇ℎ+𝛼ℎ)𝑡+𝑐 

𝐸ℎ(𝑡) = 𝐾𝑒
−(𝜇ℎ+𝛼ℎ)𝑡 

where 𝐾 = 𝑒𝑐 . 

Therefore 

𝐸ℎ ≥ 𝐸ℎ(0)𝑒
−(𝜇ℎ+𝛼ℎ)𝑡 ≥ 0. 

From the third equation we have 

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ 
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𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ ≥ −[(𝛿ℎ + 𝜇ℎ)𝐼ℎ + (𝑏 + 𝜏𝑢2)]𝐼ℎ 

𝑑𝐼ℎ
𝑑𝑡

≥ −[(𝛿ℎ + 𝜇ℎ)𝐼ℎ + (𝑏 + 𝜏𝑢2)]𝐼ℎ. 

Using separation of variables and integrating both sides gives 

∫
1

𝐼 + ℎ
𝑑𝐼ℎ ≥ ∫−((𝛿ℎ + 𝜇ℎ)𝐼ℎ + (𝑏 + 𝜏𝑢2))𝑑𝑡 

ln(𝐼ℎ) ≥ −((𝛿ℎ + 𝜇ℎ)𝐼ℎ + (𝑏 + 𝜏𝑢2))𝑡 + 𝑐 

⟹ 𝐼ℎ = 𝑒−[((𝛿ℎ+𝜇ℎ)𝐼ℎ+(𝑏+𝜏𝑢2))𝑡+𝑐] 

𝐼ℎ ≥ 𝐾𝑒
−[((𝛿ℎ+𝜇ℎ)𝐼ℎ+(𝑏+𝜏𝑢2))𝑡] 

𝐼ℎ ≥ 𝐼ℎ(0)𝑒
−[((𝛿ℎ+𝜇ℎ)𝐼ℎ+(𝑏+𝜏𝑢2))𝑡] 

where 𝐾 = 𝐼ℎ(0). 

𝐼ℎ ≥ 𝐼ℎ(0)𝑒
−[((𝛿ℎ+𝜇ℎ)𝐼ℎ+(𝑏+𝜏𝑢2))𝑡] ≥ 0. 

Similarly, it can be shown that 𝑆𝑚 > 0 , 𝐸𝑚 > 0 , and 𝐼𝑚 > 0 for all 𝑡 > 0. 

Now it has been established that our model has both the invariant and positivity of 

solutions, we can move on to determine the existence of disease free equilibrium point 

which will assist in calculating the basic reproduction number using the next generation 

operator approach. 

 

3.3.3 Existence and Stability of Steady-state solutions 

In this, we assume that the control parameters are constant and determine the basic 

reproduction number, the steady state solutions or equilibrium points and their stabilities 

as well as the bifurcation behavior of the system.  

The 𝐸 = (𝑆ℎ
∗ , 𝐸ℎ

∗, 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑚
∗ , 𝐸𝑚

∗ , 𝐼𝑚
∗ ) is the steady-state of the system (3.1) which can be 

calculated by setting the right hand side of the model (3.1) to zero, giving us the 

following 
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Λℎ + 𝜓𝑅ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝑆ℎ = 0 

(1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0 

𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ = 0 

(𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ = 0 

Λ𝑚 − (1 − 𝑢1)𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 = 0 

(1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 = 0 

𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 = 0. 

           (3.8) 

3.3.4 The Existence of the Trivial Equilibrium point 

For as long as the human recruitment term Λℎ and the mosquito recruitment term Λ𝑚 are 

not zero, the population will not be extinct. This implies that there is no trivial 

equilibrium point, thus (𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑚
∗ , 𝐸𝑚

∗ , 𝐼𝑚
∗ ) ≠ (0,0,0,0,0,0,0). 

 

3.3.5 Disease Free Equilibrium, 𝑬𝟎 

Disease-free equilibrium points (DFE) are steady state solutions where there is no malaria 

in the human population or Plasmodium parasite in the mosquito population. In absence 

of the disease, it implies that (𝐸ℎ, 𝐼ℎ, 𝐸𝑚, 𝐼𝑚) and 𝑅ℎ = 0 since there is no disease to 

recover from. Forces of infections are also equal to zero. We get 

Λℎ − (𝜇ℎ + (1 − 𝑢1)𝜆ℎ + (1 − 𝑢4)𝜆ℎ𝑤)𝑆ℎ
∗ = 0 

Λ𝑚 − ((1 − 𝑢1)𝜆𝑚 + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))𝑆𝑚
∗ = 0 

           (3.9) 

which gives 

𝑆ℎ
∗ =

Λℎ
𝜇ℎ
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𝑆𝑚
∗ =

Λ𝑚
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

. 

The disease-free equilibrium point of the malaria model (3.1) is given by, 

𝐸0 = (𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑚
∗ , 𝐸𝑚

∗ , 𝐼𝑚
∗ ) = (

Λℎ
𝜇ℎ
, 0,0,0,

Λ𝑚
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

, 0,0) 

           (3.10) 

which represents the state in which there is no infection (in the absence of malaria) in the 

society. 

 

3.3.6 The Basic Reproduction Number 𝑹𝟎 

We use the next generation operator approach as described by Van den Driessche & 

Watmough  (2002) to define the basic reproduction number, 𝑅0 , as the number of 

secondary infections that one infectious individual would create over the duration of the 

infectious period, provided that everyone else is susceptible. Reproduction number 𝑅0 is 

the threshold for many epidemiology models, it determines whether a disease can invade 

a population or not. When 𝑅0 < 1 , each infected individual produces on average less 

than one new infected individual, so we would expect the disease to die out. On the other 

hand, if 𝑅0 > 1 each individual produces more than one new infected individual, so we 

would expect the disease to spread in the population. This means that the threshold 

quantity for eradicating the disease is to reduce the value of 𝑅0 to value less than one. 

The basic reproduction number cannot be determined from the structure of the 

mathematical model alone, but depends on the definition of infected and uninfected 

compartments. Let us assume that there are 𝑛 compartments of which the first 𝑚 

compartments correspond to infected individuals. 

Let ℱ𝑖 be the rate of appearance of new infections in compartment, 𝑉𝑖 = 𝑉𝑖
− − 𝑉𝑖

+, where 

𝑉𝑖
+ is the rate of transfer of individuals into compartment 𝑖 by all other means and 𝑉𝑖

− is 

the rate of transfer of individual out of the 𝑖𝑡ℎ compartment.  
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Rewriting the system (3.1) starting with the infected compartments for both populations; 

𝐸ℎ, 𝐼ℎ, 𝐸𝑚, 𝐼𝑚 also from the two populations, then the model system becomes: 

𝑑𝐸ℎ
𝑑𝑡

=
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
− 𝜇ℎ𝐸ℎ − 𝛼ℎ𝐸ℎ 

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ 

𝑑𝐸𝑚
𝑑𝑡

=
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚

𝑁ℎ
− 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 

𝑑𝐼𝑚
𝑑𝑡

= 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − 𝜇ℎ𝑆ℎ −
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
 

𝑑𝑅ℎ
𝑑𝑡

= (𝑏 + 𝜏𝑢2)𝐼ℎ − 𝜇ℎ𝑅ℎ − 𝜓𝑅ℎ 

𝑑𝑆𝑚
𝑑𝑡

= Λ𝑚 −
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚

𝑁ℎ
− (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚. 

           (3.11) 

From the system (3.11), ℱ𝑖 and 𝑉𝑖 are defined as: 

ℱ𝑖 =

[
 
 
 
 
 
(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
0

(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚
𝑁ℎ
0 ]

 
 
 
 
 

 

and 

𝑉𝑖 =

[
 
 
 

(𝜇ℎ + 𝛼ℎ)𝐸ℎ
(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝐼ℎ − 𝛼ℎ𝐸ℎ
(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 − 𝛼𝑚𝐸𝑚 ]

 
 
 
 

           (3.12) 
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The square matrices ℱ and 𝑉 of order (𝑚 ×𝑚) is computed by obtaining the Jacobian 

matrices of ℱ𝑖 and 𝑉𝑖 , where 𝑚 is the number of infected classes, defined by ℱ =

[
𝜕ℱ𝑖

𝜕𝑥𝑗
(𝑥0)] and 𝑉 = [

𝜕𝑉𝑖

𝜕𝑥𝑖
(𝑥0)] with 1 ≤ 𝑖, 𝑗 ≤ 𝑚, such that 𝐹 is nonnegative, 𝑉 is a 

nonsingular M-matrix and 𝑥0 is the disease-free equilibrium point (DFE). 

The partial derivatives of (3.12) with respect to (𝐼ℎ, 𝐼𝑚) and the Jacobian matrix of ℱ𝑖 

𝐹 =

[
 
 
 
 0
0
0
0

   

0
0

(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚
𝑁ℎ
0

   

0
0
0
0

   

(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ

+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
0
0
0

  

]
 
 
 
 

 

           (3.13) 

substituting the equilibrium points 𝑆ℎ
∗ =

Λℎ

𝜇ℎ
 , 𝑆𝑚

∗ =
Λ𝑚

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)
 , 𝑁ℎ =

Λℎ

𝜇ℎ
 into the 

Jacobian matrix of ℱ𝑖 we have 

𝐹 =

[
 
 
 
 0
0
0
0

   

0
0

(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λℎ

0

   

0
0
0
0

   

(1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙
0
0
0

  

]
 
 
 
 

. 

Similarly, the partial derivatives of (3.13) with respect to (𝐸ℎ, 𝐼ℎ, 𝐸𝑚, 𝐼𝑚) and the 

Jacobian matrix of 𝑉𝑖 is : 

𝑉 = [

(𝜇ℎ + 𝛼ℎ)
𝛼ℎ
0
0

 

0
(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

0
0

 

0
0

𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
−𝛼𝑚

 

0
0
0

𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3

  ]. 

           (3.14) 

The inverse of 𝑉 is given as 

𝑉−1 =

[
 
 
 
 
 

1

(𝜇ℎ + 𝛼ℎ)
𝛼ℎ

(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

0
0

 

0
1

(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)
0
0

 

0
0
1

𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
𝛼𝑚

(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

 

0
0
0
1

𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3

  

]
 
 
 
 
 

. 

           (3.15) 
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We compute the matrix 𝐹𝑉−1 

[
 
 
 
 0
0
0
0

   

0
0

(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇𝑚
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λℎ

0

   

0
0
0
0

   

(1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙
0
0
0

  

]
 
 
 
 

 

×

[
 
 
 
 
 

1

(𝜇ℎ + 𝛼ℎ)
𝛼ℎ

(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

0
0

 

0
1

(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)
0
0

 

0
0
1

𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
𝛼𝑚

(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

 

0
0
0
1

𝜇𝑚 + +𝑎𝑢1 + 𝑝𝑢3

  

]
 
 
 
 
 

 

𝐹𝑉−1 =

[
 
 
 
 

0
0

𝛼ℎ(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ

0

 

0
0

(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ

0

× 
(

(1 − 𝑢1)𝛽𝜖𝜙𝛼𝑚 + (1 − 𝑢4)𝛽𝜖∅𝛼𝑚
𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

0
0
0

 

(1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
0
0
0

  

]
 
 
 
 

 

 

𝐹𝑉−1 = [

0
−𝛼ℎ
𝑐
0

  

0
(𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)

𝑑
0

  

𝑎
0
0
0

   

𝑏
0
0
0

  ] 

           (3.16) 

where 𝑎 =
(1−𝑢1)𝛽𝜖𝜙𝛼𝑚+(1−𝑢4)𝛽𝜖𝜙𝛼𝑚

(𝛼𝑚+𝜇𝑚+𝑎𝑢1+𝑝𝑢3)(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)
 , 𝑏 =

(1−𝑢1)𝛽𝜖𝜙+(1−𝑢4)𝛽𝜖𝜙

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)
,  

𝑐 =
𝛼ℎ(1−𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)(𝜇ℎ+𝛼ℎ)(𝛿ℎ+𝜇ℎ+𝑏+𝜏𝑢2)Λℎ
 , 𝑑 =

(1−𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)(𝛿ℎ+𝜇ℎ+𝑏+𝜏𝑢2)Λℎ
. 

 

From (3.16), we can now calculate the eigenvalues to determine the basic reproduction 

number 𝑅0 by taking the spectral radius (dominant eigenvalue) of the matrix 𝐹𝑉−1. 

The eigenvalues of 𝐹𝑉−1 are calculated as 𝐽 = [𝐹𝑉−1 − 𝜆𝐼], we have 

𝐽 = [

0 − 𝜆
0
𝑐
0

 

0
0 − 𝜆
𝑑
0

 

𝑎
0

0 − 𝜆
0

 

𝑏
0
0

0 − 𝜆

  ]. 
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Therefore |𝐽| = |𝐹𝑉−1 − 𝜆𝐼| = 0 , we have 

|𝐽| = |

0 − 𝜆
0
𝑐
0

 

0
0 − 𝜆
𝑑
0

 

𝑎
0

0 − 𝜆
0

 

𝑏
0
0

0 − 𝜆

| = |

−𝜆
0
𝑐
0

 

0
−𝜆
𝑑
0

 

𝑎
0
−𝜆
0

 

𝑏
0
0
−𝜆

| = 0 

= −𝑏 |
0 −𝜆 0
𝑐 𝑑 −𝜆
0 0 0

| − 𝜆 |
−𝜆 0 𝑎
0 −𝜆 0
𝑐 𝑑 −𝜆

| = −𝑏(0) − 𝜆(−𝜆3 + 𝜆𝑎𝑐) = 0 

= 𝜆2(𝜆2 − 𝑎𝑐) = 0 ⇒ 𝜆2 = 0 𝑜𝑟 𝜆2 − 𝑎𝑐 = 0 

⟹ 𝜆2 = 𝑎𝑐 

𝜆 = ±√𝑎𝑐. 

Therefore 𝜆1 = 0, 𝜆2 = 0, 𝜆3 = √𝑎𝑐  and 𝜆4 = −√𝑎𝑐. 

From the four eigenvalues, the dominant eigenvalue of the matrix 𝐹𝑉−1 is 𝜆 = √𝑎𝑐. 

Therefore the basic reproduction number 𝑅0 = √𝑎𝑐.   

Hence 

𝑅0

= √
𝛼ℎ(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ
×

(1 − 𝑢1)𝛽𝜖𝜙𝛼𝑚 + (1 − 𝑢4)𝛽𝜖𝜙𝛼𝑚
(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

 

𝑅0 = √
𝛼ℎ(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ(1 − 𝑢1)𝛽𝜖𝜙𝛼𝑚 + 𝛼ℎ(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ(1 − 𝑢4)𝛽𝜖𝜙𝛼𝑚

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

           (3.17) 

where 

𝛼ℎ

𝛼ℎ+𝜇ℎ
 means the probability that a human will survive the exposed state to become 

infectious. 

𝛼𝑚

𝛼𝑚+𝜇𝑚+𝑎𝑢1+𝑝𝑢3
 is the probability that a mosquito will survive the exposed state to 

become infectious. 
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𝛼𝑚𝜆𝜖𝜙(1−𝑢1)

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)(𝛼𝑚+𝜇𝑚+𝑎𝑢1+𝑝𝑢3)
 is the number of humans that one mosquito infects 

during its infectious lifetime, provided all humans are susceptible. 

𝛽𝜖𝜙(1−𝑢1)+𝛽𝜖𝜙(1−𝑢4)

(𝜇ℎ+𝛼ℎ)(𝛿ℎ+𝜇ℎ+𝑏+𝜏𝑢2)
 is the number of mosquitoes that one human infects during the 

duration of the infectious period, provided all mosquitoes are susceptible. 

The threshold parameter 𝑅0 can be defined as square roots of the product of number of 

humans one mosquito infects during its infectious lifetime (𝑅𝑜ℎ) and number of 

mosquitoes one human infects during the duration of the infectious period (𝑅𝑜𝑚) 

provided all humans and mosquitoes are susceptible. 

𝑅0 = √𝑅𝑜ℎ × 𝑅𝑜𝑚 

𝑅0

= √
(1 − 𝑢1)𝛽𝜖𝜙𝛼ℎ𝜇ℎ + (1 − 𝑢4)𝛽𝜖𝜙𝛼ℎ𝜇ℎ
(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ

×
𝛼𝑚(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)2(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

           (3.18) 

where 

𝑅𝑜ℎ =
(1 − 𝑢1)𝛽𝜖𝜙𝛼ℎ𝜇ℎ + (1 − 𝑢4)𝛽𝜖𝜙𝛼ℎ𝜇ℎ
(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ

 

and 

𝑅𝑜𝑚 =
𝛼𝑚(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)2(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

 

where 

𝛼ℎ(1−𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝛿ℎ+𝜇ℎ+𝑏+𝜏𝑢2)Λℎ
 is the number of latent infections produced by a typical infectious 

individual during the mean infectious period. 
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(1−𝑢1)𝛽𝜖𝜙𝛼𝑚+(1−𝑢4)𝛽𝜖𝜙𝛼𝑚

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)
2(𝛼𝑚+𝜇𝑚+𝑎𝑢1+𝑝𝑢3)

 is the number of latent infections produced by a 

typical infectious mosquitoes during the mean infectious period. 

The parameter 𝜖 and 𝜙 appear in both expressions because the mosquito biting rate (𝜖) 

and mosquito contact rate with human (𝜙) controls the transmission from humans to 

mosquitoes and from mosquitoes to humans. 

The basic reproduction number can be used to determine the local stability of the disease 

free equilibrium point. 

 

3.3.7 Local Stability Analysis of Disease Free Equilibrium 

The local stability of the DFE, 𝐸0, can be analyzed using the Jacobian matrix of the 

malaria model (3.1) at the disease free equilibrium point. We state and prove the 

following theorem (Van den Driessche & Watmough, 2002) to establish the stability of 

disease free equilibrium point. 

 

Theorem 3.3 

The disease free equilibrium point for system (3.1) is locally asymptotically stable if 

𝑅0 < 1. 

Proof: 

The Jacobian matrix (J) of the malaria model (3.1) with 𝑆ℎ = 𝑁ℎ − (𝐸ℎ + 𝐼ℎ + 𝑅ℎ) and 

𝑆𝑚 = 𝑁𝑚 − (𝐸𝑚 + 𝐼𝑚) at the disease-free equilibrium point is given by 

 

[
 
 
 
 
 −(𝛼ℎ + 𝜇ℎ)

𝛼ℎ
0
0
0

  

0
−(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

(𝑏 + 𝜏𝑢2)
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λℎ
0

  

0
0

−(𝜓 + 𝜇ℎ)
0
0

  

0
0
0

−(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
𝛼𝑚

  

(1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙
0
0
0

−(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
]
 
 
 
 
 

. 
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The eigenvalues of the Jacobian matrix are the solutions of the characteristic equation 

|𝐽 − 𝜆𝐼| = 0. 

That is 

[
 
 
 
 
 −(𝛼ℎ + 𝜇ℎ + 𝜆)

𝛼ℎ
0
0
0

  

0
−(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2 + 𝜆)

(𝑏 + 𝜏𝑢2)
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λℎ

0

  

0
0

−(𝜓 + 𝜇ℎ + 𝜆)
0
0

  

0
0
0

−(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝜆)
𝛼𝑚

  

(1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙
0
0
0

−(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝜆)
]
 
 
 
 
 

= 0 

The third column has diagonal entry, therefore one of the eigenvalues of the Jacobian 

matrix is −(𝜓 + 𝜇ℎ). 

The remaining eigenvalues can be obtained as follows: 

 

|
|
−(𝛼ℎ + 𝜇ℎ + 𝜆)

𝛼ℎ
0
0

  

0
−(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2 + 𝜆)

(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λℎ
0

   

0
0

−(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝜆)
𝛼𝑚

   

(1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙
0
0

−(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝜆)

 
|
|

= 0 

(𝛼ℎ + 𝜇ℎ + 𝜆)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2 + 𝜆)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝜆)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3

+ 𝜆)

−
(1 − 𝑢1)

2𝜆𝜖2𝜙2Λ𝑚𝜇ℎ𝛼𝑚𝛽𝛼ℎ + (1 − 𝑢4)(1 − 𝑢1)𝜆𝜖
2𝜙2Λ𝑚𝜇ℎ𝛼𝑚𝛽𝛼ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λ𝑚

= 0. 

           (3.19) 

To simplify the equation, we let 𝐴1 = (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3), 𝐴2 = (𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 +

𝑝𝑢3), 𝐴3 = (𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2), 𝐴4 = (𝛼ℎ + 𝜇ℎ) and  

𝑄 =
(1 − 𝑢1)

2𝜆𝜖2𝜙2Λ𝑚𝜇ℎ𝛼𝑚𝛽𝛼ℎ ++(1 − 𝑢4)(1 − 𝑢1)𝜆𝜖
2𝜙2Λ𝑚𝜇ℎ𝛼𝑚𝛽𝛼ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)Λ𝑚
 

This implies that  

(𝜆 + 𝐴1)(𝜆 + 𝐴2)(𝜆 + 𝐴3)(𝜆 + 𝐴4) − 𝑄 = 0 
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𝜆4 + 𝐵1𝜆
3 + 𝐵2𝜆

2 + 𝐵3𝜆 + 𝐵4 = 0 

           (3.20) 

where 

𝐵1 = 𝐴4 + 𝐴3 + 𝐴2 + 𝐴1 

𝐵2 = 𝐴4(𝐴3 + 𝐴2 + 𝐴1) + 𝐴3(𝐴2 + 𝐴1) + 𝐴1𝐴2 

𝐵3 = 𝐴4𝐴3𝐴2 + 𝐴4𝐴3𝐴1 + 𝐴4𝐴2𝐴1 + 𝐴3𝐴2𝐴1 

𝐵4 = 𝐴4𝐴3𝐴2𝐴1 − 𝑄. 

           (3.21) 

The expression of 𝑅0 can be written in terms of 𝐴𝑖 

𝑅0
2 =

𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)
2𝜙2𝜖2𝛽𝜆 + +(1 − 𝑢4)𝜆𝜖

2𝜙2Λ𝑚𝜇ℎ𝛼𝑚𝛽𝛼ℎ

Λℎ𝐴4𝐴3𝐴2𝐴1
2  

           (3.22) 

Routh - Hurwitz Criteria is applied to equation (3.20) to determine whether all roots of 

the polynomial (3.20) have negative real parts (Oduro et al., 2015). 

Lemma 3.1 (Routh - Hurwitz Criteria): The roots of the characteristic equation has a 

negative real parts if and only if all the principal diagonal minors of the Hurwitz matrix 

provided 𝐵𝑖 > 0 

For the characteristic polynomial, when 𝑛 =  4, the Routh-Hurwitz criteria as described 

by Flores (2011) are 

𝐵1 > 0, 𝐵2 > 0, 𝐵3 > 0, 𝐵4 > 0  

𝑑𝑒𝑡(𝐻1) = 𝐵1 > 0 

𝑑𝑒𝑡(𝐻2) = (
𝐵1 1
0 𝐵2

) = 𝐵1𝐵2 > 0 

𝑑𝑒𝑡(𝐻3) =(
𝐵1 1 0
𝐵3 𝐵2 𝐵1
0 0 𝐵3

) = 𝐵1𝐵2𝐵3 − 𝐵3
2 > 0 ⟹ 𝐵1𝐵2 − 𝐵3 > 0 
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𝑑𝑒𝑡(𝐻4) = (

𝐵1
𝐵3
0
0

   

1
𝐵2
𝐵4
0

   

0
𝐵1
𝐵3
0

   

0
1
𝐵2
𝐵4

) = 𝐵3(𝐵2𝐵1 − 𝐵3) − 𝐵4𝐵1
2 > 0. 

We now show that all determinants of Hurwitz matrices are positive, which means that 

all the Eigen values of the Jacobian (3.20) have negative real parts implying that DFE 

point is stable 

det(𝐻1) = 𝐵1 = 𝐴4 + 𝐴3 + 𝐴2 + 𝐴1 > 0 

det(𝐻2) = 𝐵1𝐵2 

= 3𝐴4𝐴3(𝐴1 + 𝐴2) + 3𝐴2𝐴1(𝐴4 + 𝐴3) + 𝐴4
2(𝐴3 + 𝐴2 + 𝐴1) + 𝐴3

2(𝐴4 + 𝐴2 + 𝐴1)

+ 𝐴2
2(𝐴4 + 𝐴3 + 𝐴1) + 𝐴1

2(𝐴4 + 𝐴3 + 𝐴2) > 0 

det(𝐻4) = 𝐵3(𝐵2𝐵1 − 𝐵3) − 𝐵4𝐵1
2 

= 𝐵3𝐶 + 𝑄𝐵1
2 − 𝐴4𝐴3𝐴2𝐴1𝐵1

2 > 0 

where 𝐶 = 𝐵2𝐵1 − 𝐵3. 

This means that all determinants of the Hurwitz matrices are positive. Hence all the 

eigenvalues of the Jacobian have negative real part, implying that the DFE point is (at 

least) locally stable(𝑅0 < 1). 

Conversely, if 𝑅0 > 1 it implies that 𝐵4 < 0 , and since the remaining coefficients 

(𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3) of the polynomial are positive then all the roots of this polynomial 

cannot have negative real parts. Hence, the DFE point is unstable (𝑅0 > 1). 

 

3.3.8 Global Stability Analysis of the Disease Free Equilibrium Point 

Theorem 3.4. The DFE, 𝐸0, of system of equations (3.1) is globally asymptotically stable 

if 𝑅0 < 1. 

Proof: 

We consider the following Lyapunov function 
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𝐿 = 𝑐1𝐸ℎ + 𝑐2𝐼ℎ + 𝑐3𝐸𝑚 + 𝑐4𝐼𝑚 

Where 𝑐1 =
𝛼ℎ

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)(𝛼ℎ+𝜇ℎ)(𝑏+𝜏𝑢2+𝛿ℎ+𝜇ℎ)
 , 𝑐2 =

1

(𝜇𝑚+𝑎𝑢1+𝑝𝑢3)(𝑏+𝜏𝑢2+𝛿ℎ+𝜇ℎ)
 ,  

𝑐3 =
1

(1−𝑢1)𝜖𝜙𝜆Λ𝑚
 , 𝑐4 =

𝛼𝑚+𝜇𝑚+𝑎𝑢1+𝑝𝑢3

(1−𝑢1)𝜖𝜙𝜆Λ𝑚𝛼𝑚
. 

Computing the derivative of 𝐿 along the solution of the system of differential equation 

(3.1) 

�̇� =
𝛼ℎ

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝑏 + 𝜏𝑢2 + 𝛿ℎ + 𝜇ℎ)
[(1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ

− (𝛼ℎ + 𝜇ℎ)𝐸ℎ]

+
1

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝑏 + 𝜏𝑢2 + 𝛿ℎ + 𝜇ℎ)
[𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ]

+
1

(1 − 𝑢1)𝜖𝜙𝜆Λ𝑚
[(1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚]

+
𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
(1 − 𝑢1)𝜖𝜙𝜆Λ𝑚𝛼𝑚

[𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚] 

�̇� = [
𝛼ℎ[(1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)]

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝑏 + 𝜏𝑢2 + 𝛿ℎ + 𝜇ℎ)
] 𝐸ℎ

+ [
[𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)]

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝑏 + 𝜏𝑢2 + 𝛿ℎ + 𝜇ℎ)
] 𝐼ℎ

+ [
[(1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]

(1 − 𝑢1)𝜖𝜙𝜆Λ𝑚
]𝐸𝑚

+ [
(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

(1 − 𝑢1)𝜖𝜙𝜆Λ𝑚𝛼𝑚
] 𝐼𝑚 

�̇�

=
(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝛿ℎ)

(1 − 𝑢1)𝜖𝜙𝜆Λ𝑚𝛼𝑚

× [
𝛼ℎ(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ(1 − 𝑢1)𝛽𝜖𝜙𝛼𝑚 + 𝛼ℎ(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ(1 − 𝑢4)𝛽𝜖𝜙𝛼𝑚

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇ℎ + 𝛼ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)Λℎ(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

− 1] 𝐼ℎ 

�̇� =
(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + 𝛿ℎ)

(1 − 𝑢1)𝜖𝜙𝜆Λ𝑚𝛼𝑚
[𝑅0 − 1]𝐼ℎ ≤ 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑅0 ≤ 1. 

 

Thus we have established that �̇� ≤ 0 if 𝑅0 < 1 and the equality �̇� = 0 hold if and only if 

𝑅0 = 1 and 𝐸ℎ = 𝐼ℎ = 𝐸𝑚 = 𝐼𝑚 = 0 . If 𝑅0 > 1 then �̇� > 0 when 𝑆ℎ(𝑡) and 𝑆𝑚(𝑡) is 
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sufficiently close to 
Λℎ

𝜇ℎ
 and 

Λ𝑚

𝜇𝑚+𝑎𝑢1+𝑝𝑢3
 respectively except when 𝐸ℎ = 𝐼ℎ = 𝐸𝑚 = 𝐼𝑚 =

0. 

On the boundary when 𝐸ℎ = 𝐼ℎ = 𝐸𝑚 = 𝐼𝑚 = 0 ; 𝑁ℎ̇(𝑡) = Λℎ − 𝜇ℎ𝑁ℎ and 𝑁�̇�(𝑡) =

Λ𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3) and 𝑁ℎ(𝑡) ⟶
Λℎ

𝜇ℎ
 , 𝑁𝑚(𝑡) ⟶

Λ𝑚

𝜇𝑚+𝑎𝑢1+𝑝𝑢3
 as 𝑡 ⟶ ∞. 

Therefore the largest compact invariant 𝐷 = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ 𝑅+
7 : �̇� = 0} 

when 𝑅0 < 1 is the singleton {𝐸0}. By LaSalle’s invariant principle (LaSalle, 1976), 𝐸0 is 

globally asymptotically stable.  

 

3.3.9 Existence and Stability Analysis of the Endemic Equilibrium Point, 𝑬𝟏 

Endemic equilibrium points are steady state solutions where the disease persists in the 

population (all the state variables are positive). That is, malaria infection will persists in 

the population and the endemic equilibrium (𝐸1) of the model is given by 

𝐸1 = (𝑆ℎ
∗∗, 𝐸ℎ

∗∗, 𝐼ℎ
∗∗, 𝑅ℎ

∗∗, 𝑆𝑚
∗∗, 𝐸𝑚

∗∗, 𝐼𝑚
∗∗) 

           (3.23) 

where (𝑆ℎ
∗∗, 𝐸ℎ

∗∗, 𝐼ℎ
∗∗, 𝑅ℎ

∗∗, 𝑆𝑚
∗∗, 𝐸𝑚

∗∗, 𝐼𝑚
∗∗) > 0. 

To derive the 𝐸1, we have to solve model (3.1) by equating it to zero 

Λℎ + 𝜓𝑅ℎ −
(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ𝑤
− 𝜇ℎ𝑆ℎ = 0 

(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ

+
(1 − 𝑢4)𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ𝑤
− (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0 

𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ = 0 

(𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ = 0 

Λ𝑚 −
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚

𝑁ℎ
− (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 = 0 
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(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚
𝑁ℎ

− 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 = 0 

𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 = 0. 

           (3.24) 

Solving the second equation of (3.1) for 𝐸∗∗ we have 

(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ𝐼𝑚
𝑁ℎ

+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
− (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0 

𝐸ℎ
∗∗ =

(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚
∗∗ + (1 − 𝑢4)𝛽𝜖𝜙𝐼𝑚

∗∗

𝑁ℎ𝑤𝑁ℎ(𝜇ℎ + 𝛼ℎ)
𝑆ℎ
∗∗. 

From the sixth equation of the model (3.1) we have 

(1 − 𝑢1)𝜆𝜖𝜙𝐼𝑚𝑆𝑚
𝑁ℎ

− 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 = 0 

𝐸𝑚
∗∗ =

(1 − 𝑢1)𝛼ℎ𝜆𝜖𝜙𝐼𝑚
∗∗

𝑁ℎ(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
𝑆𝑚
∗∗. 

           (3.25) 

From the seventh equation we have 

𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 = 0 

𝐼𝑚
∗∗ =

𝛼𝑚
(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝐸𝑚
∗∗. 

           (3.26) 

Substituting equation (3.25) into equation (3.26) for 𝐼𝑚
∗∗ gives 

𝐼𝑚
∗∗ =

𝛼𝑚(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗𝑆𝑚

∗∗

𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
. 

           (3.27) 

From the fifth equation of the model (3.1) we have 
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Λℎ −
(1 − 𝑢1)𝜆𝜖𝜙𝐼𝑚𝑆𝑚

𝑁ℎ
− (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 = 0 

𝑆𝑚
∗∗ =

Λ𝑚𝑁ℎ
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑁ℎ
. 

           (3.28) 

Substituting (3.28) into equation (3.27) we have 

𝐼𝑚
∗∗

=
𝛼𝑚Λ𝑚(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

 

𝐼𝑚
∗∗ =

(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅𝑜𝑚𝐼ℎ
∗∗

(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

. 

           (3.29) 

From the second equation of model (3.1) we have 

(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ𝐼𝑚
𝑁ℎ

+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
− (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0. 

Substituting equation (3.29) into the second equation we have 

(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝐼ℎ

∗∗𝑆ℎ
∗∗

𝑁ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

+
(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝐼ℎ

∗∗𝑆ℎ
∗∗

𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3) + (1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ

= 0. 

           (3.30) 

From the third equation of model (3.1) we have 

𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ = 0 

𝐸ℎ
∗∗ =

(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝐼ℎ
∗∗

𝛼ℎ
. 

           (3.31) 
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Substituting equation (3.31) into equation (3.30) we have 

(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝐼ℎ

∗∗𝑆ℎ
∗∗

𝑁ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

+
(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝐼ℎ

∗∗𝑆ℎ
∗∗

𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3) + (1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗

−
(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝐼ℎ

∗∗

𝛼ℎ
= 0 

𝑁ℎ𝑤𝛼ℎ(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝐼ℎ

∗∗𝑆ℎ
∗∗

+ 𝑁ℎ𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝐼ℎ
∗∗𝑆ℎ

∗∗

− 𝑁ℎ𝑁ℎ𝑤(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝐼ℎ
∗∗((1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗

+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)) = 0 

𝐼ℎ
∗∗[𝑁ℎ𝑤𝛼ℎ(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ
∗∗

+ 𝑁ℎ𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ
∗∗

− 𝑁ℎ𝑁ℎ𝑤(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)((1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗

+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))] = 0. 

           (3.32) 

Hence 𝐼ℎ
∗∗ = 0 or 

𝑁ℎ𝑤𝛼ℎ(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗

+ 𝑁ℎ𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ
∗∗

− 𝑁ℎ𝑤𝑁ℎ(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)((1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗

+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)) = 0. 

           (3.33) 

Dividing equation (3.33) by 𝑁ℎ(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) we have 
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𝑁ℎ𝑤𝛼ℎ(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗

𝑁ℎ(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

+
𝑁ℎ𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗

𝑁ℎ(𝛼ℎ + 𝜇ℎ)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

− 𝑁ℎ𝑤((1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)) = 0  

We know that  

𝑁ℎ =
Λℎ
𝜇ℎ
. 

𝑁ℎ𝑤𝜇ℎ𝛼ℎ(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗

Λℎ(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

+
𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗

(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

− 𝑁ℎ𝑤((1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)) = 0.  

𝑅0ℎ × 𝑅0𝑚(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑁ℎ𝑤𝑆ℎ

∗∗𝜇ℎ

+
𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

− 𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ − Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3) = 0. 

𝑅0ℎ × 𝑅0𝑚(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑁ℎ𝑤𝑆ℎ

∗∗𝜇ℎ

+
𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

= 𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3). 

Let 𝑅0ℎ × 𝑅0𝑚 = 𝑅0
2 hence we have 

𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑁ℎ𝑤𝑆ℎ
∗∗𝜇ℎ

+
𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝑆ℎ

∗∗𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

= 𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3). 

Which gives  

𝑆ℎ
∗∗ =

𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
. 
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           (3.34) 

From the fourth equation of model (3.1) 

(𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ = 0 

𝑅ℎ =
(𝑏 + 𝜏𝑢2)𝐼ℎ

∗∗

(𝜓 + 𝜇ℎ)
. 

           (3.35) 

Using the first equation of model (3.1) we can solve for 𝐼ℎ
∗∗ 

Λℎ + 𝜓𝑅ℎ −
(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ𝑤
− 𝜇ℎ𝑆ℎ = 0. 

           (3.36) 

Substituting equation (3.29), (3.34), and (3.35) into equation (3.36), and solving for 𝐼ℎ
∗∗ 

(as an expression of parameters only) through some algebraic manipulation gives  

Λℎ + 𝜓
(𝑏 + 𝜏𝑢2)𝐼ℎ

∗∗

(𝜓 + 𝜇ℎ)
+ [
(1 − 𝑢1)𝛽𝜖𝜙

𝑁ℎ
] [

(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚𝐼ℎ
∗∗

(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

]

× [
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
]

+ [
(1 − 𝑢4)𝛽𝜖𝜙

𝑁ℎ𝑤
] [

(1 − 𝑢4)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚𝐼ℎ
∗∗

(1 − 𝑢4)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

]

× [
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
]

− 𝜇ℎ [
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
]

= 0 

which can be written as 
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(𝜓 + 𝜇ℎ)Λℎ[𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

+ 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ][(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗

+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤𝑁ℎ + 𝜓(𝑏

+ 𝜏𝑢2)𝐼ℎ
∗∗[𝜇ℎ𝑁ℎ𝑤𝑅0

2(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏

+ 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ][(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤𝑁ℎ

+ (𝜓 + 𝜇ℎ)[(1 − 𝑢1)𝛽𝜖𝜙][(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)𝑅0𝑚𝐼ℎ
∗∗][𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤

+ (𝜓 + 𝜇ℎ)[(1 − 𝑢4)𝛽𝜖𝜙][(1 − 𝑢4)(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)𝑅0𝑚𝐼ℎ
∗∗][𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ

− (𝜓 + 𝜇ℎ)𝜇ℎ[𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗

+ Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)][(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)]𝑁ℎ𝑤𝑁ℎ = 0 

or   

𝐴(𝐼ℎ
∗∗)2 + 𝐵𝐼ℎ

∗∗ + 𝐶 = 0. 

           (3.37) 

 

where 

𝐴 = (𝜓 + 𝜇ℎ)Λℎ[𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)

+ 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ][(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗

+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤𝑁ℎ + 𝜓(𝑏

+ 𝜏𝑢2)𝐼ℎ
∗∗[𝜇ℎ𝑁ℎ𝑤𝑅0

2(1 − 𝑢1)
2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏

+ 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ][(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤𝑁ℎ 

𝐵 = (𝜓 + 𝜇ℎ)[(1 − 𝑢1)𝛽𝜖𝜙][(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)𝑅0𝑚𝐼ℎ
∗∗][𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤

+ (𝜓 + 𝜇ℎ)[(1 − 𝑢4)𝛽𝜖𝜙][(1 − 𝑢4)(𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3)𝑅0𝑚𝐼ℎ
∗∗][𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ 
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𝐶 = (𝜓 + 𝜇ℎ)𝜇ℎ[𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ
∗∗ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)][(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ

∗∗

+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)]𝑁ℎ𝑤𝑁ℎ 

 

We use the quadratic formula to find the roots of equation (3.37)  

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Which gives 

𝐼ℎ
∗ =

−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 

=
−𝐵 + √𝐵2 − 4𝑎𝑐

2𝐴
 𝑜𝑟 

−𝐵 − √𝐵2 − 4𝑎𝑐

2𝐴
 

=
−𝐵 + √𝐵2 − 4𝑎𝑐

2𝐴
=
−𝐵 − √𝐵2 − 4𝑎𝑐

2𝐴
= Φ 

Hence substituting Φ as the value of  𝐼ℎ
∗  in model (3.1) gives,  

𝑆ℎ
∗∗

=
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙Φ+ Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ

 

𝐸ℎ
∗∗

= [
((1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚Φ

𝑁ℎ𝑤𝑁ℎ(𝜇ℎ + 𝛼ℎ)((1 − 𝑢1)𝜆𝜖𝜙Φ +𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))
]

× [
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙Φ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
] 

𝐼ℎ
∗∗ = Φ

= [
𝛼ℎ((1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚Φ

(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝑁ℎ𝑤𝑁ℎ(𝜇ℎ + 𝛼ℎ)((1 − 𝑢1)𝜆𝜖𝜙Φ+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))
]

× [
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙Φ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
] ≥ 0 

𝑅ℎ
∗∗

= [
(𝑏 + 𝜏𝑢2)𝛼ℎ((1 − 𝑢1)𝛽𝜖𝜙 + (1 − 𝑢4)𝛽𝜖𝜙)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚Φ

(𝜇ℎ + 𝜓)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝑁ℎ𝑤𝑁ℎ(𝜇ℎ + 𝛼ℎ)((1 − 𝑢1)𝜆𝜖𝜙Φ+ 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))
]

× [
𝑁ℎ𝑤𝜇ℎ(1 − 𝑢1)𝜆𝜖𝜙Φ + Λℎ𝑁ℎ𝑤(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

𝜇ℎ𝑁ℎ𝑤𝑅0
2(1 − 𝑢1)

2(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼ℎ + 𝜇ℎ)(𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2) + 𝛼ℎ(1 − 𝑢4)(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝛽𝜖𝜙𝑅0𝑚𝜇ℎ
] 
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𝑆𝑚
∗∗ =

Λ𝑚𝑁ℎ
(1 − 𝑢1)𝜆𝜖𝜙Φ + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑁ℎ

 

𝐸𝑚
∗∗ = [

(1 − 𝑢1)𝛼ℎ𝜆𝜖𝜙((1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚Φ)Λ𝑚𝑁ℎ

𝑁ℎ(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)((1 − 𝑢1)𝜆𝜖𝜙Φ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))((1 − 𝑢1)𝜆𝜖𝜙Φ+ (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑁ℎ)
] 

𝐼𝑚
∗∗ =

(1 − 𝑢1)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑅0𝑚Φ

(1 − 𝑢1)𝜆𝜖𝜙Φ + 𝑁ℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

 

From the quadratic equation (3.37) we analyze the possibility of multiple equilibria. It is 

important to note that the coefficient A is always positive with 𝐵 and 𝐶 having different 

signs. We realize that 𝐶 is positive if 𝑅0 is less than unity, and 𝐵 is negative if 𝑅0 is 

greater than 𝑅𝑐.  

It follows that:  

(i) There is a unique endemic equilibrium if 𝐵 < 0 and 𝐶 = 0 or 𝐵2 − 4𝐴𝐶 = 0, 

(ii) There is a unique endemic equilibrium if 𝐶 < 0 (i.e. 𝑅0 > 1); 

(iii) There are two endemic equilibria if 𝐶 > 0, 𝐵 < 0 𝑎𝑛𝑑 𝐵2 − 4𝐴𝐶 > 0, 

(iv)  There are no endemic equilibria otherwise. 

Note that the hypotheses 𝐶 > 0 is equivalent to 𝑅𝑜 < 1 

Hence the endemic equilibrium points have been determined 

The results of this section can be summarized in the following Theorem 

Theorem 3.5: If 𝑅0 < 1 , the 𝐸0 is an equilibrium of the system (3.1) and it is locally 

asymptotically stable. Furthermore, there exist an endemic equilibrium if conditions (i) 

are satisfied, or two endemic equilibria if conditions (iii) are satisfied. If 𝑅0 > 1, then 𝐸0 

is unstable and there exist a unique endemic equilibrium. 

The item (iii) indicates the possibility of backward bifurcation in the model (3.1) when 

𝑅0 < 1. In the next section we will prove the occurrence of multiple equilibria for 𝑅0 < 1 

comes from the backward bifurcation and this will give information on the local stability 

of the endemic equilibria. We will also prove that if 𝑅0 > 1 , then the unique endemic 

equilibrium is globally asymptotically stable in the interior of 𝐷. 
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3.3.10 Local Stability Analysis of the Endemic Equilibrium  

The stability analysis of the endemic equilibrium of the model (3.1) can be analyzed 

using the Centre Manifold Theory (Castilo-Chavez & Song, 2004) where we carry out 

bifurcation analysis of the system (1) at 𝑅0 = 1. We consider a transmission rate 𝛽 as 

bifurcation parameter Ψ so that 𝑅0 = 1.  

We intend to determine the stability of the endemic equilibrium and to investigate the 

possibility of the existence of backward bifurcation due to existence of multiple 

equilibrium and reinfection (The possible presence of two endemic equilibria shown in 

Remark 1, Case (iii)). Bifurcation makes the control of disease to be difficult.  

To apply the theory, we introduce dimensionless state variables into the system (3.1). 

The system of equations (3.1) can be written as  

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − 𝜇ℎ𝑆ℎ −
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
 

𝑑𝐸ℎ
𝑑𝑡

=
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ𝐼𝑚

𝑁ℎ𝑤
− 𝜇ℎ𝐸ℎ − 𝛼ℎ𝐸ℎ 

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ 

𝑑𝑅ℎ
𝑑𝑡

= (𝑏 + 𝜏𝑢2)𝐼ℎ − 𝜇ℎ𝑅ℎ − 𝜓𝑅ℎ 

𝑑𝑆𝑚
𝑑𝑡

= Λ𝑚 −
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚

𝑁ℎ
− (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 

𝑑𝐸𝑚
𝑑𝑡

=
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ𝑆𝑚

𝑁ℎ
− 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 

𝑑𝐼𝑚
𝑑𝑡

= 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚. 

           (3.38) 
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Let 𝑥1 = 𝑆ℎ, 𝑥2 = 𝐸ℎ, 𝑥3 = 𝐼ℎ, 𝑥4 = 𝑅ℎ, 𝑥5 = 𝑆𝑚, 𝑥6 = 𝐸𝑚, and 𝑥7 = 𝐼𝑚 

Therefore system (3.1) is written in vector form as 

𝑑𝑋𝑖
𝑑𝑡

= 𝐻(𝑋𝑖) 

Where 𝑋𝑖 = (𝑥1, 𝑥2, … , 𝑥7)
𝑇 and 𝐻𝑖 = (ℎ1, ℎ2, … , ℎ7)

𝑇 are transposed matrices and 𝑁ℎ =

Λℎ

𝜇ℎ
 with Ψ∗ = 𝛽 

 

𝑑𝑥1
𝑑𝑡

= Λℎ + 𝜓𝑥4 − 𝜇ℎ𝑆ℎ −
(1 − 𝑢1)Ψ

∗𝜙𝑥7𝑥1𝜇ℎ
Λℎ

−
(1 − 𝑢4)Ψ

∗𝜙𝑥7𝑥1𝜇ℎ
Λℎ

= ℎ1 

𝑑𝑥2
𝑑𝑡

=
(1 − 𝑢1)Ψ

∗𝜙𝑥7𝑥1𝜇ℎ
Λℎ

+
(1 − 𝑢4)Ψ

∗𝜙𝑥7𝑥1𝜇ℎ
Λℎ

− (𝜇ℎ + 𝛼ℎ)𝑥2 = ℎ2 

𝑑𝑥3
𝑑𝑡

= 𝛼1𝑥2 − (𝛿ℎ + 𝜇ℎ + 𝑏 +  𝜏𝑢2)𝑥3 = ℎ3 

𝑑𝑥4
𝑑𝑡

= (𝑏 +  𝜏𝑢2)𝑥3 − (𝜇ℎ + 𝜓)𝑥4 = ℎ4 

𝑑𝑥5
𝑑𝑡

= Λ𝑚 −
(1 − 𝑢1)𝜆𝜖𝜙𝑥3𝑥5𝜇ℎ

Λℎ
− (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑥5 = ℎ5 

𝑑𝑥6
𝑑𝑡

=
(1 − 𝑢1)𝜆𝜖𝜙𝑥3𝑥5𝜇ℎ

Λℎ
− (𝛼2 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑥6 = ℎ6 

𝑑𝑥7
𝑑𝑡

= 𝛼2𝑥6 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑥7 = ℎ7 

           (3.39) 

 

 

The following theorem is used to analyze the dynamics of the model (3.39) 

 



52 

Theorem 3.6  

Consider the following general system of ordinary differential equation with a parameter 

𝛹 (Castilo-Chavez & Song, 2004; Gumel & Song, 2008) 

𝑑𝑥

𝑑𝑡
= ℎ(𝑥,𝛹), ℎ: ℝ𝑛 × ℝ⟶ ℝ  𝑎𝑛𝑑 ℎ𝜖ℂ2(ℝ𝑛 × ℝ) 

Where 0 is an equilibrium point of the system (that is, ℎ(0,𝛹) ≡ 0 for all 𝛹) and 

1. 𝐴 = 𝐷𝑥ℎ(0,0) = (
𝜕ℎ𝑖

𝜕𝑥𝑖
(0,0)) is the linearization matrix of the system around the 

equilibrium 0 with 𝛹 evaluated at 0. 

2. Zero is a simple eigenvalue of 𝐴 and other eigenvalues of 𝐴 have negative real 

parts. 

3. Matrix 𝐴 has a nonnegative right eigenvector w and a left eigenvector 𝑣 

corresponding to the zero eigenvalue. 

Let ℎ𝑘 be the 𝑘𝑡ℎ component of ℎ and 

𝑎 =∑ 𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)
𝑛

𝑘,𝑖,𝑗=1
 

and 

𝑏 =∑ 𝑣𝑘𝑤𝑖
𝑛

𝑘,𝑖=1

𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝛹

(0,0). 

Then, the local dynamics of the system (1) around the equilibrium point (0,0) is totally 

determined by the sign of 𝑎 and 𝑏. 

i. 𝑎 > 0, 𝑏 > 0. When 𝛹 < 0  with |𝛹| ≪ 1,0  is locally asymptotically stable and 

there exists a positive unstable equilibrium; when 0 < 𝛹 ≪ 1,0 is unstable and 

there exists a negative, locally asymptotically stable equilibrium. 

ii. 𝑎 < 0, 𝑏 < 0. When 𝛹 < 0  with |𝛹| ≪ 0,1  is unstable; when 0 < 𝛹 ≪ 1,0 is 

locally asymptotically stable, and there exist a positive unstable equilibrium. 
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iii. 𝑎 > 0, 𝑏 < 0. When 𝛹 < 0 with |𝛹| ≪ 0,1 is unstable, and there exist a locally 

asymptotically stable negative equilibrium; when 0 < 𝛹 ≪ 1,0 is stable, and a 

positive unstable equilibrium appears. 

iv. 𝑎 < 0, 𝑏 > 0. When 𝛹 changes from negative to positive, 0 changes its stability 

from stable to unstable. Correspondingly a negative unstable equilibrium 

becomes positive and locally asymptotically stable. 

If 𝑎 > 0 and 𝑏 > 0, then a backward bifurcation occurs at 𝛹 = 0. 

 

Let Ψ∗ be the bifurcation parameter, the system (3.39) is linearized at disease free 

equilibrium point when 𝛽 = Ψ∗ with 𝑅0 = 1 

Thus Ψ∗ can be solved from (3.39) when 𝛽 = Ψ∗ with 𝑅0 = 1. Thus Ψ∗ can be solved 

from (3.17) when 

𝑅0 = √
𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)2𝜙2𝜖𝛽𝜆 + 𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)(1 − 𝑢4)𝜙2𝜖2𝛽

Λℎ(𝑝𝑢3 + 𝑎𝑢1 + 𝜇𝑚)2(𝜇ℎ + 𝛼1)(𝑝𝑢3 + 𝜇𝑚 + 𝑎𝑢1 + 𝛼 𝑚)(𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2)
 

12 =
𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)

2𝜙2𝜖𝛽𝜆 + 𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)(1 − 𝑢4)𝜙
2𝜖2𝛽

Λℎ(𝑝𝑢3 + 𝑎𝑢1 + 𝜇𝑚)2(𝜇ℎ + 𝛼1)(𝑝𝑢3 + 𝜇𝑚 + 𝑎𝑢1 + 𝛼 𝑚)(𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2)
 

Ψ∗ =
Λℎ(𝑝𝑢3 + 𝑎𝑢1 + 𝜇𝑚)

2(𝜇ℎ + 𝛼ℎ)(𝑝𝑢3 + 𝜇𝑚 + 𝑎𝑢1 + 𝛼 𝑚)(𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2)

𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)2𝜙2𝜖𝜆 + 𝛼ℎ𝛼𝑚Λ𝑚𝜇ℎ(1 − 𝑢1)(1 − 𝑢4)𝜙2𝜖2
 

The Jacobian matrix of (3.1) calculated at Ψ∗ is given by 

(

 
 
 
 
 
 
 −𝜇ℎ
0
0
0
0
0
0

  

0
−𝛼ℎ − 𝜇ℎ

𝛼ℎ
0
0
0
0

  

0
0

−𝛿ℎ − 𝜇ℎ − 𝑏 − 𝜏𝑢2
𝑏 + 𝜏𝑢2

−(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

0

  

𝜓
0
0

−𝜇ℎ − 𝜓
0
0
0

  

0
0
0
0

−(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

0
0

  

0
0
0
0
0

−𝛼𝑚 − 𝜇𝑚 − 𝑎𝑢1 − 𝑝𝑢3
−𝛼𝑚

  

−Ψ∗𝜖𝜙
Ψ∗𝜖𝜙
0
0
0
0

−𝜇𝑚 − 𝑎𝑢1 − 𝑝𝑢3

)

 
 
 
 
 
 
 

. 

           (3.40) 

A right eigen vector associated with the eigen value zero is 𝑤 = (𝑤1, 𝑤2, … , 𝑤7). 

We get the following system 
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−𝜇ℎ𝑤1 +𝜓𝑤4 −Ψ
∗𝜙𝑤7 = 0 

−(𝛼ℎ + 𝜇ℎ)𝑤2 +Ψ
∗𝜙𝑤7 = 0 

𝛼ℎ𝑤2 − (𝛿ℎ + 𝜇ℎ + 𝑏 + 𝜏𝑢2)𝑤3 = 0 

(𝑏 + 𝜏𝑢2)𝑤3 − (𝜇ℎ + 𝜓)𝑤4 = 0 

−(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑤3
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

− 𝑤5(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3) = 0 

(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑤3
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

− (𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑤6 = 0 

−𝛼𝑚𝑤6 − 𝑤7(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3) = 0. 

           (3.41) 

Solving the system (3.41), the Jacobian matrix of (3.1) at Ψ∗ has the following right 

eigenvector 

𝑤1 =
𝜓𝑤4 − Ψ∗𝜖𝜙𝑤7

𝜇ℎ
 

𝑤2 =
Ψ∗𝜖𝜙𝑤7
𝛼ℎ + 𝜇ℎ

 

𝑤3 =
𝛼ℎ𝑤2

𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ
 

𝑤4 =
(𝑏 + 𝜏𝑢2)𝑤3
𝜇ℎ + 𝜓

 

𝑤5 =
−(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑤3
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

2
 

𝑤6 =
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑤3

Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

𝑤7 =
𝛼𝑚𝑤6

𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
> 0. 

           (3.42) 
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The left eigenvectors satisfying 𝑣.𝑤 = 1 is 𝑣 = (𝑣1, 𝑣2, … , 𝑣7). 

To find these left eigenvector associated with the eigenvalue 0 at Ψ∗, the matrix (3.40) 

should be transposed to give 𝐽𝑙𝑒𝑓𝑡 

(

 
 
 
 
 

−𝜇ℎ
0
0
𝜓
0
0

−Ψ∗𝜙

  

0
−𝛼ℎ − 𝜇ℎ

0
0
0
0
Ψ∗𝜙

  

0
𝛼ℎ

−𝛿ℎ − 𝜇ℎ − 𝑏 − 𝜏𝑢2
0
0
0
0

  

0
0

𝑏 + 𝜏𝑢2
−𝜇ℎ − 𝜓

0
0
0

  

0
0

−(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ −

Λℎ𝜇𝑚
0

−𝜇𝑚
0
0

  

0
0

−(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ − (1 − 𝑢4)𝜆𝜖𝜙Λ𝑚𝜇ℎ
Λℎ𝜇𝑚
0
0

−𝛼ℎ − 𝜇𝑚
0

  

0
0
0
0
0
𝛼𝑚
−𝜇𝑚)

 
 
 
 
 

. 

           (3.43) 

We have the following system 

−𝜇ℎ𝑣1 = 0 

𝑣3(−𝛿ℎ − 𝜇ℎ − 𝑏 − 𝜏𝑢2) + 𝑣3(𝑏 + 𝜏𝑢2) −
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑣5
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

+
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑣6
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

= 𝑣3(−𝛿ℎ − 𝜇ℎ − 𝑏 − 𝜏𝑢2) +
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑣6
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

= 0 

𝜓𝑣1 − (𝜇ℎ + 𝜓)𝑣4 = 0 

−(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑣5 = 0 

−(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑣6 + 𝛼𝑚𝑣7 = 0 

−Ψ∗𝜖𝜙𝑣1 +Ψ
∗𝜖𝜙𝑣2 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑣7 = 0. 

           (3.44) 

Solving the system, the left eigenvector is given by 

𝑣1 = 0 

𝑣2 =
𝛼ℎ𝑣3
𝛼ℎ + 𝜇ℎ

 

𝑣3 =
𝑣6(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(−𝛿ℎ − 𝑢ℎ − 𝑏 − 𝜏𝑢2)
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𝑣4 = 0 

𝑣5 = 0 

𝑣6 =
𝛼𝑚𝑣7

−𝜇𝑚 − 𝛼𝑚 − 𝑎𝑢1 − 𝑝𝑢3
 

𝑣7 =
Ψ∗𝜖𝜙𝑣2

𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
. 

           (3.45) 

The sign of 𝑎 and 𝑏 is computed as indicated in the theorem 

𝑤1 =
𝜓𝑤4 − Ψ∗𝜖𝜙𝑤7

𝜇ℎ
 

𝑤2 =
Ψ∗𝜖𝜙𝑤7
𝛼ℎ + 𝜇ℎ

 

𝑤3 =
𝛼ℎ𝑤2

𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ
 

𝑤4 =
(𝑏 + 𝜏𝑢2)𝑤3
𝜇ℎ + 𝜓

 

𝑤5 =
−(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑤3
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)2

 

𝑤6 =
(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ𝑤3

Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

𝑤7 =
𝛼𝑚𝑤6

𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
 

𝑣1 = 0 

𝑣2 =
𝛼ℎ𝑣3
𝛼ℎ + 𝜇ℎ

 

𝑣3 =
𝑣6(1 − 𝑢1)𝜆𝜖𝜙Λ𝑚𝜇ℎ

Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(−𝛿ℎ − 𝑢ℎ − 𝑏 − 𝜏𝑢2)
 

𝑣4 = 0 
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𝑣5 = 0 

𝑣6 =
𝛼𝑚𝑣7

−𝜇𝑚 − 𝛼𝑚 − 𝑎𝑢1 − 𝑝𝑢3
 

𝑣7 =
Ψ∗𝜖𝜙𝑣2

𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3
. 

For the system (3.39), the associated non-zero second order partial derivatives (at DFE) 

are given by 

𝜕2ℎ2
𝜕𝑥2𝜕𝑥7

=
−(1 − 𝑢1)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

−
(1 − 𝑢4)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

 

𝜕2ℎ2
𝜕𝑥3𝜕𝑥7

=
−(1 − 𝑢1)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

−
(1 − 𝑢4)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

 

𝜕2ℎ6
𝜕𝑥6𝜕𝑥3

=
−(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ

Λℎ
 

𝜕2ℎ6
𝜕𝑥7𝜕𝑥3

=
−(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ

Λℎ
. 

Considering only the non-zero components of left eigen vector, it follows that 

𝑎 = ∑ 𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0) +

3

𝑘,𝑖,𝑗=2

∑ 𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)

7

𝑘,𝑖,𝑗=6

 

𝑏 = ∑ 𝑣𝑘𝑤𝑖
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0) +

3

𝑘,𝑖=2

∑ 𝑣𝑘𝑤𝑖
𝜕2ℎ𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)

7

𝑘,𝑖=6

. 

Since 𝑣1 = 𝑣4 = 𝑣5 = 0 for 𝑘 = 1,4,5 then 𝑘 = 2,3,6,7 should be considered. That is, 

the following functions will be used to compute 𝑎 and 𝑏 

ℎ2 =
(1 − 𝑢1)Ψ

∗𝜙𝑥7
Λℎ

𝜇ℎ(𝑁ℎ − 𝑥2 − 𝑥3) − (𝜇ℎ + 𝛼ℎ)𝑥2

=
(1 − 𝑢1)Ψ

∗𝜙𝜇ℎ𝑥7𝑁ℎ
Λℎ

−
(1 − 𝑢1)Ψ

∗𝜙𝜇ℎ𝑥7𝑥2
Λℎ

−
(1 − 𝑢1)Ψ

∗𝜙𝜇ℎ𝑥7𝑥3
Λℎ

− (𝜇ℎ + 𝛼ℎ)𝑥2 
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ℎ6 =
(1 − 𝑢1)𝜆𝜖𝜙𝑥3𝜇ℎ(𝑁𝑚 − 𝑥6 − 𝑥7)

Λℎ
− ((𝜇𝑚 + 𝑝𝑢3) + 𝛼𝑚)𝑥6

=
(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ𝑥3𝑁𝑚

Λℎ
−
(1 − 𝑢1)Ψ

∗𝜙𝜇ℎ𝑥7𝑥2
Λℎ

−
(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ𝑥6𝑥3

Λℎ

−
(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ𝑥7𝑥3

Λℎ
− (𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑥6. 

 

Computing the sign 𝑎 and 𝑏 as indicated in the theorem. 

Considering only the non-zero components of left eigen vector, it follows that 

𝑎 = 𝑣2𝑤2𝑤7
𝜕2ℎ2
𝜕𝑥2𝜕𝑥7

+ 𝑣2𝑤3𝑤7
𝜕2ℎ2
𝜕𝑥3𝜕𝑥7

+ 𝑣6𝑤6𝑤3
𝜕2ℎ6
𝜕𝑥6𝜕𝑥3

+ 𝑣6𝑤7𝑤3
𝜕2ℎ6
𝜕𝑥7𝜕𝑥3

= 𝑣2𝑤2𝑤7 (
−(1 − 𝑢1)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

−
(1 − 𝑢4)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

)

+ 𝑣2𝑤3𝑤7 (
−(1 − 𝑢1)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

−
(1 − 𝑢4)Ψ

∗𝜖𝜙𝜇ℎ
Λℎ

)

+ 𝑣6𝑤6𝑤3 (
−(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ

Λℎ
) + 𝑣6𝑤7𝑤3 (

−(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ
Λℎ

) 

𝑎

= 𝑣2𝑤7 [
−(1 − 𝑢1)Ψ

∗𝜖𝜙𝜇ℎ − (1 − 𝑢4)Ψ
∗𝜖𝜙𝜇ℎ

Λℎ
] ([

Ψ∗𝜖𝑤7
(𝛼ℎ + 𝜇ℎ)

]

+ [
𝛼ℎ𝑤2

(𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)
])

+ 𝑣6𝑤3 [
−(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎ

Λℎ
] ([

(1 − 𝑢1)𝜆𝜖𝜙𝜇ℎΛ𝑚𝑤3
Λℎ(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)

]

+ [
α𝑚𝑤3

(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
]). 

The partial derivatives that are not zero when calculating 𝑏 are 

𝜕ℎ2
𝜕𝜓

=
−(1 − 𝑢1)𝜖𝜙𝑥1𝑥7

Λℎ
−
(1 − 𝑢4)𝜖𝜙𝑥1𝑥7

Λℎ
 

𝜕2ℎ2
𝜕𝑥7𝜕𝜓

=
−(1 − 𝑢1)𝜖𝜙𝑥1

Λℎ
−
(1 − 𝑢4)𝜖𝜙𝑥1

Λℎ
= 𝜙. 
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Therefore 

𝑏 = 𝑣2𝑤7𝜖𝜙 > 0 

so that 𝑏 is always positive. 

Therefore the following result is established: 

 

Theorem 3.7 

The model (3.1) exhibits backward bifurcation at 𝑅0 = 1 whenever 𝑎 > 0 and 𝑏 > 0 and 

𝑅0 < 1.  

Whenever 𝑎 < 0 and 𝑏 > 0 then model (3.1) exhibits a forward bifurcation at 𝑅0 = 1. 

 

3.3.11 Global Stability Analysis of the Endemic Equilibrium 

Global stability results for the endemic equilibrium can be obtained when it is unique and 

whenever it exists. We have established in theorem 3.5 that if 𝑅0 > 1 implies the 

existence and uniqueness of the endemic equilibrium.  

The global behavior of the endemic equilibrium of the model (3.1) when it exists is 

explored by proving that such an equilibrium is globally asymptotic stable in the interior 

of the feasible region 𝐷. We will use the geometric approach to global stability as 

described by Li & Muldowney (1996). The following conditions are required for the 

global stability of the endemic equilibrium, 𝐸1: (i) the uniqueness of 𝐸1 in the interior of 

𝐷; (ii) the existence of an absorbing compact set in the interior of 𝐷; and (iii) the 

fulfillment of a Bendixson criterion (i.e. the inequality (2a)). 

 

Theorem 3.8: If 𝑅0 > 1, then the unique endemic equilibrium of the malaria model (3.1) 

is globally asymptotically stable in the interior of 𝐷. 
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Proof. 

The general method considered is the one developed by Li & Muldowney (1996). 

Consider the autonomous dynamical system: 

�̇� = 𝑓(𝑥) 

           (1a) 

where 𝑓: 𝐷 → ℝ𝑛 , 𝐷 ⊂ ℝ𝑛 open set and simply connected and 𝑓 ∈ 𝐶𝐷. Let 𝑥∗ be an 

equilibrium of (1a), i.e. 𝑓(𝑥∗) = 0 . We recall that 𝑥∗ is said to be globally stable in 𝐷 if 

it is locally stable and all trajectories in 𝐷 converge to 𝑥∗ 

Assume that the following hypotheses hold: 

(𝐻1) there exists a compact absorbing set 𝐾 ⊂ 𝐷; 

(𝐻2) the equation (1a) has a unique equilibrium 𝑥∗ in 𝐷 

The basic idea of this method is that if the equilibrium 𝑥∗ is (locally) stable, then the 

global stability is assured provided that (𝐻1) − (𝐻2) hold and no non-constant periodic 

solution of (1a) exists. 

Bendixson criterion 

Li and Muldowney (1996) showed that if (𝐻1) − (𝐻2) hold and (1a) satisfies a Bendixson 

criterion that is robust under 𝐶 local 𝜖 −perturbations of 𝑓 at all non-equilibrium non-

wandering points for (1a), then 𝑥∗ is globally stable in 𝐷 provided it is stable. Then, a 

new Bendixson criterion robust under C local 𝜖 −perturbation and based on the use of 

the Lozinskii˘ measure is introduced. 

A function 𝑔 ∈ 𝐶(𝐷 → ℝ𝑛) is called 𝐶  local 𝜖 −perturbations of 𝑓 at 𝑥0 ∈ 𝐷 if there 

exists an open neighbourhood 𝑈 of 𝑥0 in 𝐷 such that the support 𝑠𝑢𝑝𝑝(𝑓 − 𝑔) ⊂ 𝑈 and 

|𝑓 − 𝑔|𝐶 < 𝜖 , where |𝑓 − 𝑔|𝐶 = 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑔(𝑥)| + |𝑓𝑥(𝑥) − 𝑔𝑥(𝑥)|: 𝑥 ∈ 𝐷}. 

A point 𝑥0 ∈ 𝐷 is said to be non-wandering for (1a) if for any neighborhood 𝑈 of 𝑥0 in 𝐷 

and there exists arbitrary large 𝑡 such that 𝑈 ∩ 𝑥(𝑡, 𝑈) ≠ 𝜙. 

Let 𝑃(𝑥) be a (
𝑛
2
) × (

𝑛
2
) matrix-valued function that is 𝐶  on 𝐷 and consider 
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𝐵 = 𝑃𝑓𝑃
−1 + 𝑃𝐽|2|𝑃−1 

where the matrix 𝑃𝑓 is  

(𝑝𝑖𝑗(𝑥))𝑓 = (
𝜕𝑝𝑖𝑗(𝑥)

𝜕𝑥
⁄ )

𝑇

. 𝑓(𝑥) = 𝛻𝑝𝑖𝑗. 𝑓(𝑥). 

And 𝐽|2| is the second additive compound matrix of the Jacobian matrix, 𝐽, i.e. 𝐽(𝑥) =

𝐷𝑓(𝑥). Generally speaking, for a 𝑛 × 𝑛 matrix 𝐽 = (𝐽𝑖𝑗), 𝐽
|2| is a (

𝑛
2
) × (

𝑛
2
) matrix (for a 

survey on compound matrices and their relations to differential equations as described by 

Muldowney (1990) and in the special case 𝑛 = 3, one has 

𝐽|2| = [
𝐽11 + 𝐽22 𝐽23 −𝐽13
𝐽23 𝐽11 + 𝐽33 𝐽12
−𝐽31 𝐽21 𝐽22 + 𝐽33

]. 

Consider Lozinskii measure ℒ of 𝐵 with respect to a vector norm |. | in ℝ𝑛 , 𝑁 =
𝑛

2
 

(Martin Jr, 1974) 

ℒ(𝐵) = 𝑙𝑖𝑚
ℎ→0+

|1 + ℎ𝐵| − 1

ℎ
. 

It is proved in (Li & Muldowney, 1996) that if (𝐻1) and (𝐻2) hold, condition 

𝑙𝑖𝑚 𝑠𝑢𝑝𝑠𝑢𝑝
𝑡→∞ 𝑥0∈𝐷

1

𝑡
∫ ℒ (𝐵(𝑥(𝑠, 𝑥0))) 𝑑𝑠 < 0
𝑡

0

 

           (2a) 

guarantees that there are no orbits giving rise to a simple closed rectifiable curve in 𝐷 

which is invariant for (1a), i.e. periodic orbits, homoclinic orbits, heteroclinic cycles. In 

particular, condition (2a) is proved to be a robust Bendixson criterion for (1a). Besides, 

it is remarked that under the assumptions (𝐻1) − (𝐻2), condition (2a) also implies the 

local stability of 𝑥∗. 

As a consequence, the following theorem holds (Li & Muldowney,1996): 
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Theorem: Assume that conditions (𝐻1) − (𝐻2) hold. Then 𝑥∗ is globally asymptotically 

stable in 𝐷 provided that a function 𝑃(𝑥) and a Lozinskii˘ measure ℒ exist such that 

condition (a2) is satisfied. 

 

For system (3.1), under the assumption of 𝑅0 > 1 , satisfies conditions  (𝐻1) − (𝐻2), the 

existence of the endemic equilibrium has also been shown and the instability of DFE 

implies the uniform persistence (Freedman et al., 1994) i.e. there exists a constant 𝑐 > 0 

such that any solutions (𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝐼𝑚(𝑡)) with (𝑆ℎ(0), 𝐼ℎ(0), 𝐼𝑚(0)) in the interior of 

𝐷 satisfies: 

𝑚𝑖𝑛 {lim
𝑡→∞

𝑖𝑛𝑓 𝑆ℎ(𝑡), lim
𝑡→∞

𝑖𝑛𝑓 𝐼ℎ(𝑡), lim
𝑡→∞

𝑖𝑛𝑓 𝐼𝑚(𝑡),  }. 

The uniform persistence together with boundedness of 𝐷, is equivalent to the existence of 

a compact set in the interior of 𝐷 which is absorbing for (2) (Hutson & Schmitt, 1992). 

Thus, (𝐻1) is verified. Moreover, 𝐸1 is the only equilibrium in the interior of 𝐷, so that 

(𝐻2) is also verified. 

It remains to find conditions for which the Bendixson criterion given by (2a) is verified. 

To this aim, let us begin by observing that from the Jacobian matrix (3.16) associated 

with a general solution (𝑆ℎ, 𝐼ℎ, 𝐼𝑚) of reduced system (3.1), we get the second additive 

compound matrix 𝐽|2|: 

𝐽|2|(𝑆ℎ, 𝐼ℎ , 𝐼𝑚)

= (

−𝑎11 𝑎12 (1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ + (1 − 𝑢4)𝜖𝜙𝛽𝑆ℎ
(1 − 𝑢1)𝜖𝜙𝜆(𝑁𝑚 − 𝐸𝑚 − 𝐼𝑚) −𝑎22 −𝛿ℎ

0 (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 −𝑎33

) 

 

where  

𝑎11 = 𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + 𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2 

𝑎12 = (1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ + (1 − 𝑢4)𝜖𝛽𝜙𝑆ℎ 
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𝑎22 = 𝜇ℎ + 𝛿ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ + 𝜇𝑚 + 𝑎𝑢1

+ 𝑝𝑢3 

𝑎33 = 𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 

where 𝑚 = (Λ𝑚 𝜇𝑚⁄ + 𝑎𝑢1 + 𝑝𝑢3) (Λℎ 𝜇ℎ⁄ )⁄ . 

Choose now matrix 𝑃(𝑥) = 𝑃(𝑆ℎ, 𝐼ℎ, 𝐼𝑚) = 𝑑𝑖𝑎𝑔(1, 𝐼ℎ/𝐼𝑚, 𝐼ℎ/𝐼𝑚). Then 𝑃𝑓𝑃
−1 =

𝑑𝑖𝑎𝑔(0, 𝐼ℎ̇/𝐼ℎ − 𝐼�̇�/𝐼𝑚, 𝐼ℎ̇/𝐼ℎ − 𝐼�̇�/𝐼𝑚), and the matrix 𝐵 = 𝑃𝑓𝑃
−1 + 𝑃𝐽|2|𝑃−1 can be 

written in block form as 

𝐵 = [
𝐵11 𝐵12
𝐵21 𝐵22

] 

Where 

𝐵11 = −(𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + 𝜇ℎ + 𝑏 + 𝜏𝑢2 + 𝛿ℎ) 

𝐵12 = [((1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ + (1 − 𝑢4)𝜖𝜙𝛽𝑆ℎ).
𝐼𝑚
𝐼ℎ
, (1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ.

𝐼𝑚
𝐼ℎ

+ (1 − 𝑢4)𝜖𝜙𝛽𝑆ℎ.
𝐼𝑚
𝐼ℎ
] 

𝐵21 = [(1 − 𝑢1)𝜖𝜆𝜙𝐼𝑚(𝑁𝑚 − 𝐸𝑚 − 𝐼𝑚)(𝐼ℎ 𝐼𝑚⁄ )]𝑇 

𝐵22 =

[
 
 
 
 

𝐼ℎ̇
𝐼ℎ
−
𝐼�̇�
𝐼𝑚
− 𝑎22 0

(1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 − (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 − (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ
𝐼ℎ̇
𝐼ℎ
−
𝐼�̇�
𝐼𝑚
− 𝑎33]

 
 
 
 

. 

The vector norm |. | in ℝ+
3  is here chosen to be  

|(𝑥, 𝑦, 𝑧)| = 𝑚𝑎𝑥{|𝑥|, |𝑦|, |𝑧|}. 

Let 𝜎(. ) denote the Lozinskii measure with respect to this norm. Using the method of 

estimating 𝜎(. ) in (Li & Muldowney, 1996), we have 

𝜎(𝐵) ≤ 𝑠𝑢𝑝{𝑔1, 𝑔2} = 𝑠𝑢𝑝{𝜎1(𝐵11) + |𝐵12|, 𝜎1(𝐵22) + |𝐵21| } 

where 
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 |𝐵12| and |𝐵21| are matrix  norms with respect to the 𝐿 vector norm and 𝜎1 denotes the 

Lozinskii measure with respect to 𝐿 𝑛𝑜𝑟𝑚 . Since 𝐵11 is a scalar, its Lozinskii measure 

with respect to any norm in ℝ is equal to 𝐵11.  

Therefore 

𝜎1(𝐵11) = −(𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + 𝜇ℎ + 𝑏 + 𝜏𝑢2 + 𝛿ℎ) 

𝜎1(𝐵22) = 𝑚𝑎𝑥 {
𝐼ℎ̇
𝐼ℎ
−
𝐼�̇�
𝐼𝑚

− (𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ + 𝜇𝑚

+ 𝑎𝑢1 + 𝑝𝑢3),
𝐼ℎ̇
𝐼ℎ
−
𝐼�̇�
𝐼𝑚
− (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 − (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚

− (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ − 𝜇ℎ − 𝛿ℎ − 𝑏 − 𝜏𝑢2 − 𝜇𝑚 − 𝑎𝑢1 − 𝑝𝑢3} 

𝜎1(𝐵22) =
𝐼ℎ̇
𝐼ℎ
−
𝐼�̇�
𝐼𝑚

− (𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ + 𝜇𝑚

+ 𝑎𝑢1 + 𝑝𝑢3) 

|𝐵12| = ((1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ + (1 − 𝑢4)𝜖𝜙𝛽𝑆ℎ).
𝐼𝑚
𝐼ℎ

 

|𝐵21| = (1 − 𝑢1)𝜖𝜙𝜆(𝑁𝑚 − 𝐸𝑚 − 𝐼𝑚).
𝐼ℎ
𝐼𝑚
. 

Therefore 

𝑔1 = −(𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚 + 𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2)

+ ((1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ + (1 − 𝑢4)𝜖𝜙𝛽𝑆ℎ).
𝐼𝑚
𝐼ℎ

 

           (3.46) 

𝑔2 = (1 − 𝑢1)𝜖𝜙𝜆(𝑁𝑚 − 𝐸𝑚 − 𝐼𝑚).
𝐼ℎ
𝐼𝑚
+
𝐼ℎ̇
𝐼ℎ
−
𝐼�̇�
𝐼𝑚

− (𝜇ℎ + 𝛼ℎ + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3 + (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ). 
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           (3.47) 

We rewrite the last two equations of system (3.1) for 𝐼ℎ̇ and 𝐼�̇� as 

𝐼ℎ̇
𝐼ℎ
= ((1 − 𝑢1)𝜖𝜙𝛽𝑆ℎ + (1 − 𝑢4)𝜖𝜙𝛽𝑆ℎ).

𝐼𝑚
𝐼ℎ
− (𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2) 

           (3.48) 

𝐼�̇�
𝐼𝑚
= (1 − 𝑢1)𝜖𝜙𝜆(𝑁𝑚 − 𝐸𝑚 − 𝐼𝑚).

𝐼ℎ
𝐼𝑚
− 𝜇𝑚 − 𝑎𝑢1 − 𝑝𝑢3. 

           (3.49) 

Substituting equation (3.48) into (3.46) and (3.49) into (3.47) we have 

𝑔1(𝑡) =
𝐼ℎ̇
𝐼ℎ
− (𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚) 

           (3.50) 

𝑔2(𝑡) =
𝐼ℎ̇
𝐼ℎ
− (𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝜆𝐼ℎ + (1 − 𝑢1)𝜖𝜙𝛽𝐼𝑚 + (1 − 𝑢4)𝜖𝜙𝛽𝐼𝑚). 

           (3.51) 

For the uniform persistence constant > 0 , there exists a time 𝑇0 > 0 independent of 

𝑥(0) ∈ 𝐾, the compact absorbing set, such that 

𝐼ℎ(𝑡) > 휀 

𝐼𝑚(𝑡) > 휀 

for 𝑡 > 𝑇0 we have 

𝑔1(𝑡) ≤
𝐼ℎ̇
𝐼ℎ
− (𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽휀 + (1 − 𝑢4)𝜖𝜙𝛽휀) 

𝑔2(𝑡) ≤
𝐼ℎ̇
𝐼ℎ
− (𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝜆휀). 
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Relations (3.50) and (3.51) imply  

𝜎(𝐵) ≤
𝐼ℎ̇
𝐼ℎ
− 𝜇 𝑓𝑜𝑟 𝑡 > 𝑇0 

where 

𝜇 = 𝑚𝑖𝑛{𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝛽휀 + (1 − 𝑢4)𝜖𝜙𝛽휀, 𝜇ℎ + 𝛼ℎ + (1 − 𝑢1)𝜖𝜙𝜆휀}. 

Along each solution (𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝐼𝑚(𝑡)) to (1) with (𝑆ℎ(0), 𝐼ℎ(0), 𝐼𝑚(0)) ∈ 𝐾 where 𝐾 

is the compact absorbing set, we have for 𝑡 > 𝑇0, 

1

𝑡
∫ 𝜎(𝐵)𝑑𝑠 ≤
𝑡

0

1

𝑡
∫ 𝜎(𝐵)𝑑𝑠 +

1

𝑡
ln
𝐼ℎ(𝑡)

𝐼ℎ(𝑇0)
− 𝜇

𝑡 − 𝑇0
𝑡

𝑇0

0

 

which implies �̅�2 <
𝜇
2⁄ < 0 . This proves that the unique endemic equilibrium is 

globally asymptotically stable whenever it exist. Thus completing the proof.  

 

3.3.12 Sensitivity Analysis 

Sensitivity analysis of the basic reproductive number is conducted to assess the relative 

impact of each of parameters to the disease transmission and prevalence by calculating 

the sensitivity index of the basic reproductive number to the model’s parameters. 

Sensitivity analysis is commonly used to determine the robustness of model predictions 

to parameter values since there are errors in data collection and the presumed parameter 

values.  

This will enable us to determine which of the controls causes the most reduction in 𝑅0 

and determine the control measure that is the most effective in controlling malaria 

transmission. The normalized forward sensitivity index of the reproduction number with 

respect to these parameters given in Table 3.1 is computed. The index measures the 

relative change in a variable with respect to relative changes in parameters. The analysis 

of these indices will help to determine which parameter is more crucial for disease 

transmission and prevalence. 
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Definition 

The normalized forward sensitivity index of a variable, ℎ , that depends on a parameter, 𝑙 

, is defined as (Chitnis et al., 2008) : 𝜉𝑙 =
𝑙

ℎ
×
𝜕ℎ

𝜕𝑙
 . This process is carried out for all the 

parameters in the expression for 𝑅0. 

Therefore the sensitivity index of 𝑅0 on parameter 𝛼ℎ is given as 

𝜉𝛼ℎ
𝑅0 =

𝛼ℎ
𝑅0
×
𝜕𝑅0
𝜕𝛼ℎ

 

𝛼ℎ
𝑅0

=
𝛼ℎ(𝜇ℎ + 𝛼ℎ)

1
2

𝛼ℎ
1
2

 

𝜕𝑅0
𝜕𝛼ℎ

=
𝛼ℎ

1
−2(𝜇ℎ + 𝛼ℎ)

1
2 ×

1
2 − 𝛼ℎ

1
2(𝜇ℎ + 𝛼ℎ)

1
2 ×

1
2

(𝜇ℎ + 𝛼ℎ)
 

which gives 

𝜉𝛼ℎ
𝑅0 =

𝛼ℎ(𝜇ℎ + 𝛼ℎ)
1
2

𝛼ℎ
1
2

×
𝛼ℎ

1
−2(𝜇ℎ + 𝛼ℎ)

1
2 ×

1
2 − 𝛼ℎ

1
2(𝜇ℎ + 𝛼ℎ)

1
2 ×

1
2

(𝜇ℎ + 𝛼ℎ)
. 

Therefore 

𝜉𝛼ℎ
𝑅0 =

𝜇ℎ
2(𝛼ℎ + 𝜇ℎ)

. 

The sensitivity index of the other parameters are given by 

𝜉𝛼𝑚
𝑅0 =

𝑝𝑢3 + 𝜇𝑚 + 𝑎𝑢1
2(𝛼𝑚 + 𝑝𝑢3 + 𝑎𝑢1 + 𝜇𝑚)

 

𝜉𝜇𝑚
𝑅0 =

−𝜇𝑚(2𝛼𝑚 + 3(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3))

2(𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)
 

𝜉𝛿ℎ
𝑅0 =

−𝛿ℎ
2(𝑏 + 𝜏𝑢2 + 𝛿ℎ + 𝜇ℎ)

 

𝜉𝑏
𝑅0 =

−𝑏

2(𝑏 + 𝜏𝑢2 + 𝛿ℎ + 𝜇ℎ)
 



68 

𝜉𝜇ℎ
𝑅0 =

−𝜇ℎ
2 + 𝛼ℎ𝛿ℎ + 𝛼ℎ𝑏 + 𝛼ℎ𝜏𝑢2

2(𝜇ℎ + 𝛿ℎ + 𝑏 + 𝜏𝑢2)(𝜇ℎ + 𝛼ℎ)
. 

Sensitivity indices for the control parameters 

𝜉𝑢1
𝑅0 =

−𝜇1
1 − 𝜇1

 

𝜉𝑢2
𝑅0 =

−𝜏𝜇2
2(𝜇ℎ + 𝜖 + 𝑏 + 𝜏𝜇2)

 

𝜉𝑢3
𝑅0 =

−𝑝(3𝑝𝑢3 + 3𝜇𝑚 + 𝑎𝑢1 + 2𝛼𝑚)𝑢3
2(𝑝𝑢3 + 𝑎𝑢1 + 𝜇𝑚)(𝑝𝑢3 + 𝜇𝑚 + 𝛼𝑚)

 

𝜉𝑢4
𝑅0 =

−𝑢4
(1 − 𝑢4)

. 

 

The positive sign of the index shows that an increase in the value of the parameter results 

into an increase in the value of 𝑅0 and decrease in the value of the parameter results into 

the decrease in the value of 𝑅0. The negative sign of the index shows that an increase in 

the values of the parameter will result to a decrease in the value of 𝑅0  and a decrease in 

the value of the parameter will result to increase in the value of 𝑅0 . The magnitudes of 

the indices are used to compare and determine sensitivity of the parameters of the model. 

In the next section, we apply the optimal control method using Pontryagin’s Maximum 

Principle to determine the best strategy for minimizing malaria transmission in the 

population. 

3.4 Analysis of Optimal Control of Malaria Model with Intervention 

Strategies 

We consider the case of time-dependent control variables. The malaria dynamics model 

is extended and an optimal control problem is formulated. We formulate an optimal 

control model for malaria disease in order to determine optimal malaria control strategies 

(ITNs, IRS, IPTp and treatment) with minimal implementation cost.  
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For the optimal control problem of the given system, we consider the control variables  

𝑢(𝑡) = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝜖𝑈 relative to the state variables 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚where 

control variables are bounded and measured with. 

𝑈 = {(𝑢1, 𝑢2, 𝑢3, 𝑢4)𝜖𝑈 𝑖𝑠 𝐿𝑒𝑏𝑠𝑒𝑔𝑢𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑜𝑛 [0,1], 0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑡 ∈

[0, 𝑇], 𝑖 = 1,2,3,4. }. We define the objective function as 

𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) = ∫ (𝐴1𝑁𝑚 + 𝐴2𝐼ℎ + 𝐴3𝐸ℎ +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2 + 𝐵4𝑢4
2)) 𝑑𝑡

𝑇

0
  

subject to 

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝑆ℎ 

𝑑𝐸ℎ
𝑑𝑡

= (1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ 

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ 

𝑑𝑅ℎ
𝑑𝑡

= (𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ 

𝑑𝑆𝑚
𝑑𝑡

= Λ𝑚 − (1 − 𝑢1)𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 

𝑑𝐸𝑚
𝑑𝑡

=  (1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 

𝑑𝐼𝑚
𝑑𝑡

= 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 

𝑆ℎ(0) ≥ 0, 𝐸ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝑅ℎ(0) ≥ 0, 𝑆𝑚(0) ≥ 0, 𝐸𝑚(0) ≥ 0, 𝐼𝑚(0) ≥ 0. 

           (3.52) 

In the objective function 𝑇 is the final time, quantities 𝐴1, 𝐴2 and 𝐴3 are weights 

constants of the total mosquito population, infected individuals and exposed individuals 

respectively, while 𝐵1, 𝐵2, 𝐵3 and 𝐵4 are weight constants for use with ITNs, treatment 

effort, IRS and IPTp efforts respectively. The total mosquito population (𝑁𝑚 = 𝑆𝑚 +

𝐸𝑚 + 𝐼𝑚) is part of the objective function because it is affected by the use of IRS and 
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ITNs. In addition, 𝐸ℎ and 𝐼ℎ are included in the objective function because individuals in 

these classes are affected by the use of ITNs, IPTps and treatment respectively. A 

quadratic cost on the controls was chosen in line with what is known in the literature on 

epidemic optimal controls for malaria (Okosun et al., 2013; Mwamtobe et al., 2014). The 

cost of implementing personal protection using ITNs is 𝐵1𝑢1
2, treatment of infected 

individuals is 𝐵2𝑢2
2, spraying of houses with IRS is 𝐵3𝑢3

2 and preventive method of IPTp 

is 𝐵4𝑢4
2. A linear function has been chosen for the cost incurred by exposed individuals 

𝐴3𝐸ℎ , infected individuals, 𝐴2𝐼ℎ  and the mosquito population, 𝐴1𝑁𝑚 . A quadratic form 

is used for the cost on the controls 𝐵1𝑢1
2, 𝐵2𝑢2

2, 𝐵3𝑢3
2 and 𝐵4𝑢4

2, such that the terms 

1

2
𝐵1𝑢1

2,
1

2
𝐵2𝑢2

2,
1

2
𝐵3𝑢3

2 and 
1

2
𝐵4𝑢4

2 describe the cost associated with the ITNs, treatment, 

mosquito control (IRS) and chemoprevention (IPTp) respectively. 

Our aim with the given objective function is to minimize the number of latent humans 

𝐸ℎ(𝑡)  and infected humans 𝐼ℎ(𝑡)  while minimizing the cost of control 

𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)  and 𝑢4(𝑡) . We select to model the control efforts via a linear 

combination of quadratic terms and the constants which represents a measure of the 

relative cost of the interventions over [0, 1]. We seek an optimal control 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗  and 𝑢4

∗  

such that 

𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) = min
𝑢1,𝑢2,𝑢3,𝑢4𝜖𝑈

𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) 

         (3.53) 

Where 𝑈 is the set of measurable functions defined from [0, 𝑇] onto [0,1] subject to 

system (3.1) and appropriate initial conditions.  

Pontryagin’s Maximum Principle is used to solve this optimal control problem and the 

derivation of necessary conditions that an optimal control must satisfy (Pontryagin et al., 

1962). Pontryagin’s Maximum Principle converts the state system (3.1) and objective 

function (3.52) into a problem of minimizing pointwise the Langragian, 𝐿 , and 

Hamiltonian, 𝐻 , with respect to 𝑢1, 𝑢2, 𝑢3 and 𝑢4 . 
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3.4.1 Existence of Optimal Control Problem 

The existence of an optimal control can be proved by using the theorem given in Fleming 

and Rishel (1975). It can be clearly seen that the system of Equation (3.1) is bounded 

from above by a linear system. According to the result in (Fleming & Rishel, 1975), the 

solution exists if the following hypotheses are met: 

(𝐻1) : The set of controls and corresponding state variables is nonempty. 

(𝐻2) : The control set,𝑈  , is convex and closed. 

(𝐻3) : Right hand side of each equation in (3.1) is continuous, bounded above by a sum 

of the bounded control and state, and can be written as a linear function of 𝑢 with 

coefficients depending on time and state. 

(𝐻4) : There exist constants 𝑐1, 𝑐2 > 0 and 𝛽 > 1 such that the integrand 𝐿(𝑦, 𝑢, 𝑡) of the 

objective functional 𝐽 is convex and satisfies 

𝐿(𝑦, 𝑢, 𝑡) ≥ 𝑐1(|𝑢1|
2 + |𝑢2|

2 + |𝑢3|
2 + |𝑢4|

2)
𝛽
2 − 𝑐2. 

In order to confirm the above hypotheses, a result given by Lukes (1982) is used to 

establish the existence of solutions of state system (3.1). Since the coefficients are 

bounded, (𝐻1) is satisfied. The solutions are bounded, hence the control set satisfies (𝐻2) 

as well. The system is bilinear in 𝑢1, 𝑢2, 𝑢3, 𝑢4 hence, the right hand side of (3.1) satisfies 

the condition (𝐻3) (since the solutions are bounded). Note that the integrand of the 

objective functional is convex. The last condition is also satisfied. 

The state and the control variables of the system (3.1) are non-negative values and non-

empty. The control set 𝑈 is closed and convex. The integrand of the objective cost 

function 𝐽  expressed by (3.52) is a convex function of (𝑢1, 𝑢2, 𝑢3, 𝑢4) on the control set 

𝑈 . The Lipschitz property of the state system with respect to the state variables is 

satisfied since the state solutions are bounded. It can easily be shown that there exist 

positive numbers 𝜉1, 𝜉2 and a constant 휀 > 1 such that  



72 

𝐴1𝑁𝑚 + 𝐴2𝐼ℎ + 𝐴3𝐸ℎ +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2 + 𝐵4𝑢4
2)

≥ 𝜉1(|𝑢1|
2 + |𝑢2|

2 + |𝑢3|
2 + |𝑢4|

2) 2⁄ − 𝜉2 

where 𝜉1, 𝜉2 > 0, 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐵3, 𝐵4 > 0 and 휀 > 1. 

This concludes existence of an optimal control since the state variables are bounded. 

Hence we have the following Theorem: 

 

Theorem 3.9: Given the objective functional 𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) = ∫ (𝐴1𝑁𝑚 + 𝐴2𝐼ℎ +
𝑇

0

𝐴3𝐸ℎ +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2 + 𝐵4𝑢4
2)) 𝑑𝑡 where 𝑈 = {(𝑢1, 𝑢2, 𝑢3, 𝑢4)|0 ≤

𝑢1, 𝑢2, 𝑢3, 𝑢4 ≤ 1, 0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇], 𝑖 = 1,2,3,4. } subject to Equations (3.1) with 

initial conditions, then there exists an optimal control 𝑢∗ = (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) such that 

𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) = min
𝑈
𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4). 

 

Lagrangian for a problem discusses how the techniques come and Hamiltonian helps in 

solving for the adjoint variable. In order to find an optimal solution, first we find the 

Lagrangian and Hamiltonian for the optimal control problem (3.52). The Lagrangian of 

the optimal problem is given by 

𝐿(𝐼ℎ, 𝐸ℎ, 𝑁𝑚, 𝑢1, 𝑢2, 𝑢3, 𝑢4)

= 𝐴1𝑁𝑚 + 𝐴2𝐼ℎ + 𝐴3𝐸ℎ +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2 + 𝐵4𝑢4
2). 

We need to find the minimal value of the Lagrangian. To do this, we define the 

Hamiltonian 𝐻 for the control problem which consists of the integrand of the objective 

function (Lagrangian, 𝐿 ) and the inner product of the right hand sides of the state 

equations and the co-state variables or adjoint variables (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7) as 

𝐻 = 𝐿 + 𝜆1
𝑑𝑆ℎ
𝑑𝑡

+ 𝜆2
𝑑𝐸ℎ
𝑑𝑡

+ 𝜆3
𝑑𝐼ℎ
𝑑𝑡

+ 𝜆4
𝑑𝑅ℎ
𝑑𝑡

+ 𝜆5
𝑑𝑆𝑚
𝑑𝑡

+ 𝜆6
𝑑𝐸𝑚
𝑑𝑡

+ 𝜆7
𝑑𝐼𝑚
𝑑𝑡
. 

Taking 𝑋 = (𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚) , 𝑈 = (𝑢1, 𝑢2, 𝑢3, 𝑢4) and  
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𝜆 = (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7) we obtain the Hamiltonian given by 

𝐻(𝑋, 𝑈, 𝜆) = 𝐿(𝐼ℎ, 𝐸ℎ, 𝑁𝑚, 𝑢1, 𝑢2, 𝑢3, 𝑢4)

+ 𝜆1[Λℎ + 𝜓𝑅ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝑆ℎ]

+ 𝜆2[(1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ]

+ 𝜆3[𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ]

+ 𝜆4[(𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ]

+ 𝜆5[Λℎ − (1 − 𝑢1)𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚]

+ 𝜆6[ (1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚]

+ 𝜆7[𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚]. 

           (3.54) 

3.4.2 The Optimality System 

In order to find the necessary conditions for this optimal control, we apply the 

Pontryagin’s Maximum Principle (Lenhart & Workman, 2007) as follows: 

If 𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗  is an optimal solution of an optimal control problem, then there exists a 

nontrivial vector function 𝜆(𝑡) = (𝜆1(𝑡), 𝜆2(𝑡), … , 𝜆𝑛(𝑡)) satisfying the following 

conditions 

The state equation is 

𝑑𝑥

𝑑𝑡
=
𝜕𝐻(𝑡, 𝑢1

∗, 𝑢2
∗ , 𝑢3

∗ , 𝑢4
∗ , 𝜆(𝑡))

𝜕𝜆
. 

The optimality condition 

0 =
𝜕𝐻(𝑡, 𝑢1

∗, 𝑢2
∗ , 𝑢3

∗ , 𝑢4
∗ , 𝜆(𝑡))

𝜕𝑢
 

and the adjoint equation 

𝑑𝜆

𝑑𝑡
=
𝜕𝐻(𝑡, 𝑢1

∗ , 𝑢2
∗ , 𝑢3

∗ , 𝑢4
∗ , 𝜆(𝑡))

𝜕𝑥
. 

Now, we apply the necessary conditions to the Hamiltonian. 
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Theorem 3.10: Given the optimal controls 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗  and solutions 

𝑆ℎ
∗ , 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑚
∗ , 𝐸𝑚

∗ , 𝐼𝑚
∗  of the corresponding state system (3.1), there exist adjoint 

variables 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7 satisfying 

−
𝑑𝜆1
𝑑𝑡

=
𝜕𝐻

𝜕𝑆ℎ
= (1 − 𝑢1)𝜆ℎ(𝜆2 − 𝜆1) + (1 − 𝑢4)𝜆ℎ𝑤(𝜆2 − 𝜆1) − 𝜇ℎ𝜆1 

−
𝑑𝜆2
𝑑𝑡

=
𝜕𝐻

𝜕𝐸ℎ
= 𝛼ℎ(𝜆3 − 𝜆2) − 𝜇ℎ𝜆2 + 𝐴3 

−
𝑑𝜆3
𝑑𝑡

=
𝜕𝐻

𝜕𝐼ℎ
= (𝑏 + 𝜏𝑢2)𝜆4 − (𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)𝜆3 + 𝐴2 − (

(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚
𝑁ℎ

) 𝜆5

+ (
(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚

𝑁ℎ
) 𝜆6 

−
𝑑𝜆4
𝑑𝑡

=
𝜕𝐻

𝜕𝑅ℎ
= 𝜓𝜆1 − (𝜇ℎ +𝜓)𝜆4 

−
𝑑𝜆5
𝑑𝑡

=
𝜕𝐻

𝜕𝑆𝑚
= (1 − 𝑢1)(𝜆6 − 𝜆5)𝜆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆5 + 𝐴1 

−
𝑑𝜆6
𝑑𝑡

=
𝜕𝐻

𝜕𝐸𝑚
= 𝛼𝑚(𝜆7 − 𝜆6) − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆6 + 𝐴1 

−
𝑑𝜆7
𝑑𝑡

=
𝜕𝐻

𝜕𝐼𝑚
= −(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆7 + 𝐴1

+ (−
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
)𝜆1

+ (
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
) 𝜆2 

           (3.55) 

with transversality conditions 

𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) = 𝜆4(𝑇) = 𝜆5(𝑇) = 𝜆6(𝑇) = 𝜆7(𝑇) = 0. 

           (3.56) 

Furthermore 𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗  are represented by 
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𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜆2 − 𝜆1)𝜆ℎ𝑆ℎ
∗ + (𝜆6 − 𝜆5)𝜆𝑚𝑆𝑚

∗ + 𝑎𝑆𝑚
∗ 𝜆5 + 𝑎𝐸𝑚

∗ 𝜆6 + 𝑎𝐼𝑚
∗ 𝜆7

𝐵1
)} 

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

𝜏(𝜆3 − 𝜆4)𝐼ℎ
∗

𝐵2
)} 

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

𝑝(𝜆5𝑆𝑚
∗ + 𝜆6𝐸𝑚

∗ + 𝜆7𝐼𝑚
∗ )

𝐵3
)} 

𝑢4
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜆2 − 𝜆1)𝜆ℎ𝑤𝑆ℎ
∗

𝐵4
)}. 

           (3.57) 

Proof: 

To determine the adjoint equations and the transversality conditions we use the 

Hamiltonian 𝐻 . The Hamiltonian function, 𝐻, is differentiated with respect to 

𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐸𝑚 and 𝐼𝑚 . The adjoint/ costate equation is given by 

−
𝑑𝜆1
𝑑𝑡

=
𝜕𝐻

𝜕𝑆ℎ
= (1 − 𝑢1)𝜆ℎ(𝜆2 − 𝜆1) + (1 − 𝑢4)𝜆ℎ𝑤(𝜆2 − 𝜆1) − 𝜇ℎ𝜆1 

−
𝑑𝜆2
𝑑𝑡

=
𝜕𝐻

𝜕𝐸ℎ
= 𝛼ℎ(𝜆3 − 𝜆2) − 𝜇ℎ𝜆2 + 𝐴3 

−
𝑑𝜆3
𝑑𝑡

=
𝜕𝐻

𝜕𝐼ℎ
= (𝑏 + 𝜏𝑢2)𝜆4 − (𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)𝜆3 + 𝐴2 − (

(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚
𝑁ℎ

) 𝜆5

+ (
(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚

𝑁ℎ
) 𝜆6 

−
𝑑𝜆4
𝑑𝑡

=
𝜕𝐻

𝜕𝑅ℎ
= 𝜓𝜆1 − (𝜇ℎ +𝜓)𝜆4 

−
𝑑𝜆5
𝑑𝑡

=
𝜕𝐻

𝜕𝑆𝑚
= (1 − 𝑢1)(𝜆6 − 𝜆5)𝜆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆5 + 𝐴1 

−
𝑑𝜆6
𝑑𝑡

=
𝜕𝐻

𝜕𝐸𝑚
= 𝛼𝑚(𝜆7 − 𝜆6) − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆6 + 𝐴1 
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−
𝑑𝜆7
𝑑𝑡

=
𝜕𝐻

𝜕𝐼𝑚
= −(𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆7 + 𝐴1

+ (−
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
)𝜆1

+ (
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
) 𝜆2 

with transversality conditions 

𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) = 𝜆4(𝑇) = 𝜆5(𝑇) = 𝜆6(𝑇) = 𝜆7(𝑇) = 0. 

 

Using the optimality conditions we have and the property of the control space 𝑈.   

In order to minimize Hamiltonian, 𝐻 , with respect to the controls at the optimal controls, 

𝐻 , is differentiated with respect to 𝑢1, 𝑢2, 𝑢3 and 𝑢4 on the set 𝑈, and the solution for the 

optimal control point is obtained after equating to zero. This is the optimality condition. 

Solving 
𝜕𝐻

𝜕𝑢1
= 0, 

𝜕𝐻

𝜕𝑢2
= 0, 

𝜕𝐻

𝜕𝑢3
= 0, and 

𝜕𝐻

𝜕𝑢4
= 0, evaluating at the optimal control on the 

interior of the control set, where 0 < 𝑢𝑖 < 1, for 𝑖 = 1,2,3,4, and letting 𝑆ℎ = 𝑆ℎ
∗ , 𝐸ℎ =

𝐸ℎ
∗ , 𝐼ℎ = 𝐼ℎ

∗ , 𝑅ℎ = 𝑅ℎ
∗ , 𝑆𝑚 = 𝑆𝑚

∗ , 𝐸𝑚 = 𝐸𝑚
∗  , and 𝐼𝑚 = 𝐼𝑚

∗  yields  

𝜕𝐻

𝜕𝑢1
= 𝐵1𝑢1

∗ + 𝜆1𝜆ℎ𝑆ℎ
∗ − 𝜆2𝜆ℎ𝑆ℎ

∗ + 𝜆5𝜆𝑚𝑆𝑚
∗ − 𝑎𝑆𝑚

∗ 𝜆5 − 𝑎𝐸𝑚
∗ 𝜆6 − 𝑎𝐼𝑚

∗ 𝜆7 = 0 

𝜕𝐻

𝜕𝑢2
= 𝐵2𝑢2

∗ − 𝜏𝜆3𝐼ℎ
∗ + 𝜏𝜆4𝐼ℎ

∗ = 0 

𝜕𝐻

𝜕𝑢3
= 𝐵3𝑢3

∗ − 𝑝𝜆5𝑆𝑚
∗ − 𝑝𝜆6𝐸𝑚

∗ − 𝑝𝜆7𝐼𝑚
∗ = 0 

𝜕𝐻

𝜕𝑢4
= 𝐵4𝑢4

∗ + 𝜆ℎ𝑤𝜆2𝑆ℎ
∗ − 𝜆1𝜆ℎ𝑤𝑆ℎ

∗ = 0 

for which 

𝑢1
∗ =

(𝜆2 − 𝜆1)𝜆ℎ𝑆ℎ
∗ + (𝜆6 − 𝜆5)𝜆𝑚𝑆𝑚

∗ + 𝑎𝑆𝑚
∗ 𝜆5 + 𝑎𝐸𝑚

∗ 𝜆6 + 𝑎𝐼𝑚
∗ 𝜆7

𝐵1
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𝑢2
∗ =

𝜏(𝜆3 − 𝜆4)𝐼ℎ
∗

𝐵2
 

𝑢3
∗ =

𝑝(𝜆5𝑆𝑚
∗ + 𝜆6𝐸𝑚

∗ + 𝜆7𝐼𝑚
∗ )

𝐵3
 

𝑢4
∗ =

(𝜆2 − 𝜆1)𝜆ℎ𝑤𝑆ℎ
∗

𝐵4
. 

           (3.58) 

By applying the boundary condition of each control, the solution of Equation (3.58) 

becomes  

𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜆2 − 𝜆1)𝜆ℎ𝑆ℎ
∗ + (𝜆6 − 𝜆5)𝜆𝑚𝑆𝑚

∗ + 𝑎𝑆𝑚
∗ 𝜆5 + 𝑎𝐸𝑚

∗ 𝜆6 + 𝑎𝐼𝑚
∗ 𝜆7

𝐵1
)} 

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

𝜏(𝜆3 − 𝜆4)𝐼ℎ
∗

𝐵2
)} 

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

𝑝(𝜆5𝑆𝑚
∗ + 𝜆6𝐸𝑚

∗ + 𝜆7𝐼𝑚
∗ )

𝐵3
)} 

𝑢4
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜆2 − 𝜆1)𝜆ℎ𝑤𝑆ℎ
∗

𝐵4
)}. 

 

We achieve the uniqueness of the optimal control for small 𝑇 due to the prior 

boundedness of the state and adjoint functions and the resulting Lipschitz structure of the 

ordinary differential equations. The uniqueness of the optimal control trails from the 

uniqueness of the optimal system, which consists of state equation (3.1), the adjoint/ 

costate equation (3.55), and initial conditions at 𝑡 = 0, boundary conditions (3.56) with 

characterization of the optimal control (3.57). 

Hence the state and optimal control can be calculated using the optimality system. Hence 

using the fact that the second derivatives of the Lagrangian with respect to 𝑢1, 𝑢2, 𝑢3 and 

𝑢4, respectively, are positive indicates that the optimal problem is a minimum at controls 

𝑢1
∗, 𝑢2

∗ , 𝑢3
∗  and 𝑢4

∗  . 
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The optimality system is solved using the forward-backward fourth order Runge-Kutta 

scheme in R statistical Computing platform (R Development Core Team, 2011). The 

optimal strategy is obtained by solving the state and adjoint systems and the 

transversality conditions. First we start to solve the state (3.1) using the Runge-Kutta 

fourth order forward in time with a guess for the controls 𝑢1, 𝑢2, 𝑢3 and 𝑢4 over the 

simulated time. Then, using the current iteration of the state equations with the initial 

guess for the controls, the adjoint/ costate equations in system (3.55) are solved by a 

backward method with the transversality conditions (3.56). Then the controls are updated 

by using a convex combination of the previous controls and the value from the 

characterizations (3.57). This process is repeated and iterations stopped if the values of 

the unknowns at the previous iterations are very close to the ones at the present iterations 

(Lenhart & Workman, 2007). 

In the next section we look at cost effective analysis by using optimal control theory by 

developing the objective function and the corresponding Hamiltonian equation.  

3.5 Cost Effectiveness Analysis of Optimal Malaria Control Strategies  

After using the optimal control to investigate the optimality of the intervention strategies 

being practiced at different transmission settings in Kenya, economic evaluation of the 

strategies is carried out by performing a cost-effectiveness study to determine the most 

cost-effective as one or combination of the four intervention strategies namely, treatment 

effort of infected individuals, ITNs, IRS and IPTp. Cost-effectiveness analysis is 

undertaken in order to assess the extent to which the intervention strategies are beneficial 

and cost effective. The aim is to maximize the level of benefits (health effects) relative to 

the level of resources available as shown by Okosun et al., (2013). The appraisal of the 

difference between the costs and health outcomes of the considered intervention 

strategies will help to achieve the purpose of this study. The health-care effects of the 

intervention strategies campaigned in the community are maximized under minimal 

resources. Since the intervention strategies being practiced in the community are 

mutually exclusive interventions, it is essential to use incremental cost-effectiveness 

ratios (ICER). The ICER is calculated in order to achieve the goal of comparing the costs 



79 

and the effectiveness of the intervention strategies. We start by performing economic 

evaluation of the intervention strategies then use the ICER. 

3.5.1 Economic Evaluation 

The economic evaluation of all four intervention techniques is evaluated in which 

effectiveness and cost-effectiveness of the interventions are investigated in order to 

minimize or eradicate malaria disease in the area under study. The following cost 

objective function is used 

𝐸𝑐(𝑢1, 𝑢2, 𝑢3, 𝑢3)

= min
(𝑢1,𝑢2,𝑢3,𝑢4)∈𝑈

∫ [𝑏1𝑢1(𝑡)(𝑆ℎ(𝑡) + 𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡))
𝑇𝑓

0

+ 𝑏2𝜏𝑢2(𝑡)𝐼ℎ(𝑡) + 𝑏3𝑝𝑢3(𝑡)(𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡))

+ 𝑏4𝑢4(𝑡)(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡))]𝑒
−𝜑𝑡𝑑𝑡 

           (3.59) 

subject to the system of differential equations (3.1), where 𝑏1 denotes the per capita cost 

of ITNs (𝑢1); 𝑏2 denotes the per capita cost of treating an individual with malaria (𝑢2), 𝑏3 

represents the per capita area cost of IRS effort (𝑢3) and spraying houses and 𝑏4 

represents the use of IPTp among the pregnant women (𝑢4). 

The compartments of the model which are highly affected by the use of ITNs, IPTp, and 

treatment are the susceptible, latent and infected individuals, hence the inclusion of these 

in the cost function. Part of objective function uses the sprayed houses (IRS) which 

affects the whole mosquito population. The discount rate of 3-5% has been exponentially 

considered with a parameter 𝜑. The Lagrangian of the cost objective function is 

𝐿𝑏 = [𝑏1𝑢1(𝑡)(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡)) + 𝑏2𝜏𝑢2(𝑡)𝐼ℎ(𝑡)

+ 𝑏3𝑝𝑢3(𝑡)(𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡)) + 𝑏4𝑢4(𝑡)(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡))]𝑒
−𝜑𝑡 

Then the Hamiltonian equation with Lagrangian, state variables and adjoint variables is 

𝐻𝑏 = 𝐿𝑏 + 𝜆1
∗
𝑑𝑆ℎ
𝑑𝑡

+ 𝜆2
∗
𝑑𝐸ℎ
𝑑𝑡

+ 𝜆3
∗
𝑑𝐼ℎ
𝑑𝑡

+ 𝜆4
∗
𝑑𝑅ℎ
𝑑𝑡

+ 𝜆5
∗
𝑑𝑆𝑚
𝑑𝑡

+ 𝜆6
∗
𝑑𝐸𝑚
𝑑𝑡

+ 𝜆7
∗
𝑑𝐼𝑚
𝑑𝑡
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The developed corresponding Hamiltonian equation is as follows:  

𝐻𝑏 = [𝑏1𝑢1(𝑡)(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡)) + 𝑏2𝜏𝑢2(𝑡)𝐼ℎ(𝑡)

+ 𝑏3𝑝𝑢3(𝑡)(𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡)) + 𝑏4𝑢4(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡))]𝑒
−𝜑𝑡

+ {Λℎ −
(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
−
(1 − 𝑢4)𝛽𝜖𝜙𝐼𝑚(𝑡)𝑆ℎ(𝑡)

𝑁ℎ𝑤(𝑡)
− 𝜇ℎ𝑆ℎ(𝑡)

+ 𝜓𝑅ℎ(𝑡)} 𝜆1
∗

+ {
(1 − 𝑢1)𝛽𝜖𝜙𝐼𝑚(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
+
(1 − 𝑢4)𝛽𝜖𝜙𝐼𝑚(𝑡)𝑆ℎ(𝑡)

𝑁ℎ𝑤(𝑡)
− 𝛼ℎ𝐸ℎ(𝑡)

− 𝜇ℎ𝐸ℎ(𝑡)} 𝜆2
∗ + {𝛼ℎ𝐸ℎ(𝑡) − (𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ(𝑡)}𝜆3

∗

+ {(𝑏 + 𝜏𝑢2)𝐼ℎ(𝑡) − (𝜇ℎ + 𝜓)𝑅ℎ(𝑡)}𝜆4
∗

+ {Λ𝑚 −
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ(𝑡)𝑆𝑚(𝑡)

𝑁ℎ(𝑡)
− (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚(𝑡)} 𝜆5

∗

+ {
(1 − 𝑢1)𝜆𝜖𝜙𝐼ℎ(𝑡)𝑆𝑚(𝑡)

𝑁ℎ(𝑡)
− (𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚(𝑡)} 𝜆6

∗

+ {𝛼𝑚𝐸𝑚(𝑡) − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚(𝑡)}𝜆7
∗  

           (3.60) 

where 𝜆1
∗ , 𝜆2

∗ , 𝜆3
∗ , 𝜆4

∗ , 𝜆5
∗ , 𝜆6

∗  and 𝜆7
∗  denote the marginal value linked to their corresponding 

classes. The 𝜆𝑖
∗ where 𝑖 = (1,2, … ,7) represent the changes in the objective value of an 

optimal solution of an optimization problem by relaxing the constraint by one unit 

(Pontryagin et al., 1964). These can be calculated by using Pontryagin’s Maximum 

Principle as we did previously and give 

𝑑𝜆1
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝑆ℎ

,
𝑑𝜆2

∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐸ℎ

,
𝑑𝜆3

∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐼ℎ

,
𝑑𝜆4

∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝑅ℎ

 

𝑑𝜆5
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝑆𝑚

,
𝑑𝜆6

∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐸𝑚

,
𝑑𝜆7

∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐼𝑚

 

Hence using the Hamiltonian equation (3.60) gives 
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𝑑𝜆1
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝑆ℎ

= −𝑏1𝑢1𝑒
−𝜑𝑡 − 𝑏4𝑢4𝑒

−𝜑𝑡 + (1 − 𝑢1)𝜆ℎ𝜆1
∗ + (1 − 𝑢4)𝜆ℎ𝑤𝜆1

∗ + 𝜇ℎ𝜆1
∗

− (1 − 𝑢1)𝜆ℎ𝜆2
∗ − (1 − 𝑢4)𝜆ℎ𝑤𝜆2

∗ . 

𝑑𝜆2
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐸ℎ

= −𝑏1𝑢1𝑒
−𝜑𝑡 − 𝑏4𝑢4𝑒

−𝜑𝑡 + 𝛼ℎ𝜆2
∗ + 𝜇ℎ𝜆2

∗ − 𝛼ℎ𝜆3
∗  

𝑑𝜆3
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐼ℎ

= −𝑏2𝜏𝑢2𝑒
−𝜑𝑡 + (𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)𝜆3

∗ − (𝑏 + 𝜏𝑢2)𝜆4
∗

+ (
(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚

𝑁ℎ
)𝜆5 − (

(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚
𝑁ℎ

)𝜆6 

𝑑𝜆4
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝑅ℎ

= −𝜓𝜆1
∗ + (𝜇ℎ + 𝜓)𝜆4

∗  

𝑑𝜆5
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝑆𝑚

= −𝑏1𝑢1𝑒
−𝜑𝑡 − 𝑏3𝑝𝑢3𝑒

−𝜑𝑡 + (1 − 𝑢1)𝜆𝑚𝜆5
∗ + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆5

∗

− (1 − 𝑢1)𝜆𝑚𝜆6
∗  

𝑑𝜆6
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐸𝑚

= −𝑏1𝑢1𝑒
−𝜑𝑡 − 𝑏3𝑝𝑢3𝑒

−𝜑𝑡 + (𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆6
∗ + 𝛼𝑚𝜆6

∗

− 𝛼𝑚𝜆7
∗  

𝑑𝜆7
∗

𝑑𝑡
= −

𝜕𝐻𝑏
𝜕𝐼𝑚

= −𝑏1𝑢1𝑒
−𝜑𝑡 − 𝑏3𝑝𝑢3𝑒

−𝜑𝑡 + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆7
∗

+ (
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
)𝜆1

+ (−
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
) 𝜆2. 

Each intervention strategy is assessed by developing the Hamiltonian equation thereafter 

the economic tool will be employed. 

 

3.5.1.1 Economic Evaluation of ITNs 

The prevention parameter for the ITNs is denoted by 𝑢1(𝑡) . The Hamiltonian equation, 

𝐻𝑏 , is differentiated with respect to 𝑢1 to obtain 
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𝜕𝐻𝑏
𝜕𝑢1

= −𝑏1𝑒
−𝜑𝑡(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝑆𝑚(𝑡) + 𝐸𝑚(𝑡)+𝐼𝑚(𝑡)) +

𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ

(𝜆2
∗ − 𝜆1

∗)

+ (𝜆6 − 𝜆5)
𝜆𝜖𝜙𝐼ℎ
𝑁ℎ

𝑆𝑚
∗ + 𝑎(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗) 

in which 
𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ
(𝜆2
∗ − 𝜆1

∗) + (𝜆6 − 𝜆5)
𝜆𝜖𝜙𝐼ℎ

𝑁ℎ
𝑆𝑚
∗ + 𝑎(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗) is the total 

marginal benefit due to the use of ITNs while 𝑏1𝑒
−𝜑𝑡(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝑆𝑚(𝑡) +

𝐸𝑚(𝑡)+𝐼𝑚(𝑡)) is the marginal cost of acquiring the ITNs. The equivalency of the 

marginal cost and marginal benefit leads one to achieve the optimal policy. 

Hence; 

𝑢1(𝑡)

=

{
  
 

  
 0     𝑖𝑓     𝑏1𝑒

−𝜑𝑡(𝑆ℎ + 𝐸ℎ + 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚) >
𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ

(𝜆2
∗ − 𝜆1

∗) + (𝜆6 − 𝜆5)
𝜆𝜖𝜙𝐼ℎ
𝑁ℎ

𝑆𝑚
∗ + 𝑎(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗ )

(0,1)    𝑖𝑓    𝑏1𝑒
−𝜑𝑡(𝑆ℎ + 𝐸ℎ + 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚) =

𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ

(𝜆2
∗ − 𝜆1

∗) + (𝜆6 − 𝜆5)
𝜆𝜖𝜙𝐼ℎ
𝑁ℎ

𝑆𝑚
∗ + 𝑎(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗ ) 

1    𝑖𝑓     𝑏1𝑒
−𝜑𝑡(𝑆ℎ + 𝐸ℎ + 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚) <

𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ

(𝜆2
∗ − 𝜆1

∗) + (𝜆6 − 𝜆5)
𝜆𝜖𝜙𝐼ℎ
𝑁ℎ

𝑆𝑚
∗ + 𝑎(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗ ) 

. 

           (3.61) 

The third equation of (3.61), shows that if this is achieved then the total marginal benefit 

of using ITNs is more than the total marginal cost; hence the gain of optimal malaria 

prevention. Then we can conclude that the susceptible and exposed individuals should 

best (effectively) use this prevention strategy in order to fight the epidemic. On the other 

hand, few susceptible and exposed individuals will use ITNs if the marginal cost is more 

than the marginal benefit. The effective use of this strategy will lead to achieve the 

optimal policy which says that increasing the use of ITNs increases the number of 

susceptible humans and uninfected mosquitoes. 

 

3.4.1.2 Economic Evaluation of Treatment Effort of Infected Individuals 

Here the control parameter for treatment of infectious individuals is given by 𝑢2(𝑡) . The 

Hamiltonian equation, 𝐻𝑏, (3.60) is differentiated with respect to 𝑢2(𝑡) , giving; 
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𝜕𝐻𝑏
𝜕𝑢1

= −𝑏2𝜏𝐼ℎ𝑒
−𝜑𝑡 + 𝜏𝐼ℎ(𝜆4

∗ − 𝜆3
∗) 

in which 𝑏2𝜏𝐼ℎ is the marginal cost and 𝜏𝐼ℎ(𝜆4
∗ − 𝜆3

∗) is the marginal benefit of treating 

infectious individuals. Hence, 

𝑢2(𝑡) = {

0     𝑖𝑓     𝑏2𝜏𝐼ℎ𝑒
−𝜑𝑡 > 𝜏𝐼ℎ(𝜆4

∗ − 𝜆3
∗)

(0,1)    𝑖𝑓    𝑏2𝜏𝐼ℎ𝑒
−𝜑𝑡 = 𝜏𝐼ℎ(𝜆4

∗ − 𝜆3
∗) 

1   𝑖𝑓    𝑏2𝜏𝐼ℎ𝑒
−𝜑𝑡 < 𝜏𝐼ℎ(𝜆4

∗ − 𝜆3
∗) 

. 

           (3.62) 

The optimal policy is to guarantee that the marginal costs for being treated is equal to the 

marginal benefit for the individuals being treated. Therefore, from (3.62) all infected 

individuals must look for full treatment if the marginal benefit, 𝐼ℎ(𝜆4
∗ − 𝜆3

∗) , must be 

greater than the marginal cost, 𝑏2𝜏𝐼ℎ𝑒
−𝜑𝑡, for being treated. Otherwise, only few infected 

individuals will look for treatment. 

 

3.5.1.3 Economic Evaluation of IRS 

Insecticide residual spraying (IRS) prevention parameter in the system (3.1) and in the 

Hamiltonian equation, 𝐻𝑏 , (3.60) is 𝑢3(𝑡) . Then differentiating 𝐻𝑏 with respect to 𝑢3  

gives 

𝜕𝐻𝑏
𝜕𝑢3

= 𝑏3𝑝(𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚)𝑒
−𝜑𝑡 − 𝑝(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗) 

where 𝑏3𝑝(𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚) is the marginal cost for IRS and 𝑝(𝑆𝑚𝜆5
∗ + 𝐸𝑚𝜆6

∗ + 𝐼𝑚𝜆7
∗) is 

the marginal benefit for using the sprayed houses. Furthermore, it can be deduced that the 

optimal policy for a sprayed house is given by 

𝑢3(𝑡) = {

0     𝑖𝑓     𝑏3𝑝(𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚)𝑒
−𝜑𝑡 > 𝑝(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗)

(0,1)    𝑖𝑓    𝑏3𝑝(𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚)𝑒
−𝜑𝑡 = 𝑝(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗) 

1   𝑖𝑓    𝑏3𝑝(𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚)𝑒
−𝜑𝑡 < 𝑝(𝑆𝑚𝜆5

∗ + 𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗) 

. 

           (3.63) 
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The spraying of insecticides against mosquitoes is optimal for malaria disease control if 

the marginal cost 𝑏3𝑝(𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚), is less than the marginal benefit, 𝑝(𝑆𝑚𝜆5
∗ +

𝐸𝑚𝜆6
∗ + 𝐼𝑚𝜆7

∗)). 

In addition, we will quantitatively analyze the marginal benefit and marginal costs of the 

four interventions. 

 

3.5.1.4 Economic Evaluation of IPTp 

Intermittent Preventive Treatment (IPTp) prevention parameter in the system (3.1) and in 

the Hamiltonian equation, 𝐻𝑏, (3.60) is 𝑢4(𝑡). Then differentiating 𝐻𝑏with respect to 𝑢4 

gives 

𝜕𝐻𝑏
𝜕𝑢4

= −𝑏4𝑒
−𝜑𝑡(𝑆ℎ + 𝐸ℎ) +

𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ𝑤

(𝜆2
∗ − 𝜆1

∗) 

in which 
𝛽𝜖𝜙𝐼𝑚𝑆ℎ

𝑁ℎ𝑤
(𝜆1
∗ − 𝜆1

∗) is the total marginal benefit due to the use of IPTp while 

𝑏4𝑒
−𝜑𝑡(𝑆ℎ + 𝐸ℎ) is the marginal cost of acquiring the IPTp. The equivalency of the 

marginal cost and marginal benefit leads one to achieve the optimal policy. 

Hence; 

𝑢4(𝑡) =

{
  
 

  
 0     𝑖𝑓     𝑏4𝑒

−𝜑𝑡(𝑆ℎ + 𝐸ℎ) >
𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ𝑤

(𝜆2
∗ − 𝜆1

∗)

(0,1)    𝑖𝑓    𝑏4𝑒
−𝜑𝑡(𝑆ℎ + 𝐸ℎ) =

𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ𝑤

(𝜆2
∗ − 𝜆1

∗) 

1    𝑖𝑓     𝑏4𝑒
−𝜑𝑡(𝑆ℎ + 𝐸ℎ) <

𝛽𝜖𝜙𝐼𝑚𝑆ℎ
𝑁ℎ𝑤

(𝜆2
∗ − 𝜆1

∗) 

. 

           (3.64) 

 

Numerical simulations are done to show the impact of the shadow prices (marginal value/ 

cost) and marginal benefits by evaluating the shadow prices at the start of the malaria 

epidemic and as a function of the numbers of recovered or protected at the time of 

outbreak (susceptible human beings).  
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3.5.2 Analysis of Optimal Control 

We consider the objective function 

𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) = ∫ (𝐴1𝑁𝑚 + 𝐴2𝐼ℎ + 𝐴3𝐸ℎ + (𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝐵3𝑢3
2 + 𝐵4𝑢4

2))𝑒−𝜑𝑡𝑑𝑡
𝑇

0
  

           (3.65) 

subject to 

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝜓𝑅ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝑆ℎ 

𝑑𝐸ℎ
𝑑𝑡

= (1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ 

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ 

𝑑𝑅ℎ
𝑑𝑡

= (𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ 

𝑑𝑆𝑚
𝑑𝑡

= Λ𝑚 − (1 − 𝑢1)𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚 

𝑑𝐸𝑚
𝑑𝑡

=  (1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚 

𝑑𝐼𝑚
𝑑𝑡

= 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚 

𝑆ℎ(0) ≥ 0, 𝐸ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝑅ℎ(0) ≥ 0, 𝑆𝑚(0) ≥ 0, 𝐸𝑚(0) ≥ 0, 𝐼𝑚(0) ≥ 0 

and the total cost at time 𝑡 is given by 

𝐶 = ∫ [𝑏1𝑢1(𝑆ℎ + 𝑆𝑚 + 𝐸𝑚+𝐼𝑚) + 𝑏2𝑢2𝐼ℎ + 𝑏3𝑢3(𝑆𝑚 + 𝐸𝑚+𝐼𝑚)
𝑇

0

+ 𝑏4𝑢4(𝑆ℎ + 𝐸ℎ)]𝑑𝑡 

           (3.66) 

where 𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3, 𝐵4  are desired positive weights on the benefits of preventing 

infection and exposure plus total mosquito population. Here, we assume that there is no 
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linear relationship between the coverage of these interventions and their corresponding 

costs, hence we choose a quadratic cost on the controls in keeping with what is in other 

literature on cost of control of epidemics (Adams et al., 2004; Okosun et al., 2013; 

Mwamtobe et al., 2014; Joshi, 2002). Our goal with the given objective function is to 

minimize the number of infected humans, exposed humans and total mosquito population 

while minimizing the cost of control 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) and 𝑢4(𝑡). We seek an optimal 

control 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗  and 𝑢4

∗  such that 

𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) = min
𝑢1,𝑢2,𝑢3,𝑢4𝜖𝑈

𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4)    

          (3.67) 

where 𝑈 is the set of measurable functions defined from [0, 𝑇] onto [0,1]. 

The necessary conditions that an optimal control must satisfy come from the Pontryagin’s 

Maximum Principle (Pontryagin et al., 1962). This consists in minimizing, with respect 

to (𝑢1, 𝑢2, 𝑢3, 𝑢4). 

Forming the Hamiltonian from the objective function (3.65) subject to equations (3.1) 

and (3.66) 

𝐻 = (𝐴1𝑁𝑚 + 𝐴2𝐼ℎ + 𝐴3𝐸ℎ + (𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝐵3𝑢3
2 + 𝐵4𝑢4

2))𝑒−𝜑𝑡

+ {Λℎ + 𝜓𝑅ℎ − (1 − 𝑢1)𝜆ℎ𝑆ℎ − (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − 𝜇ℎ𝑆ℎ}𝜆1

+ {(1 − 𝑢1)𝜆ℎ𝑆ℎ + (1 − 𝑢4)𝜆ℎ𝑤𝑆ℎ − (𝛼ℎ + 𝜇ℎ)𝐸ℎ}𝜆2

+ {𝛼ℎ𝐸ℎ − (𝛿ℎ + 𝜇ℎ)𝐼ℎ − (𝑏 + 𝜏𝑢2)𝐼ℎ}𝜆3

+ {(𝑏 + 𝜏𝑢2)𝐼ℎ − (𝜓 + 𝜇ℎ)𝑅ℎ}𝜆4

+ {Λ𝑚 − (1 − 𝑢1)𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝑆𝑚}𝜆5

+ {(1 − 𝑢1)𝜆𝑚𝑆𝑚 − 𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐸𝑚}𝜆6

+ {𝛼𝑚𝐸𝑚 − (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝐼𝑚}𝜆7

+ {[𝑏1𝑢1(𝑆ℎ + 𝑆𝑚 + 𝐸𝑚+𝐼𝑚) + 𝑏2𝑢2𝐼ℎ + 𝑏3𝑢3(𝑆𝑚 + 𝐸𝑚+𝐼𝑚)

+ 𝑏4𝑢4(𝑆ℎ + 𝐸ℎ)]}𝜆𝐶 

           (3.68) 

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6 and 𝜆7 are the adjoint variables or co-state variables given by 

the following system: 
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𝑑𝜆1
𝑑𝑡

= −
𝜕𝐻

𝜕𝑆ℎ
= (1 − 𝑢1)𝜆ℎ𝜆1

∗ + (1 − 𝑢4)𝜆ℎ𝑤𝜆1
∗ + 𝜇ℎ𝜆1

∗ − (1 − 𝑢1)𝜆ℎ𝜆2
∗

− (1 − 𝑢4)𝜆ℎ𝑤𝜆2
∗ − 𝜆𝐶(𝑏1𝑢1 + 𝑏4𝑢4) 

𝑑𝜆2
𝑑𝑡

= −
𝜕𝐻

𝜕𝐸ℎ
= −𝐴3 + 𝛼ℎ𝜆2

∗ + 𝜇ℎ𝜆2
∗ − 𝛼ℎ𝜆3

∗ − 𝜆𝐶(𝑏1𝑢1 + 𝑏4𝑢4) 

𝑑𝜆3
𝑑𝑡

= −
𝜕𝐻

𝜕𝐼ℎ
= −𝐴2 + (𝑏 + 𝜏𝑢2 + 𝜇ℎ + 𝛿ℎ)𝜆3

∗ − (𝑏 + 𝜏𝑢2)𝜆4
∗ − 𝜆𝐶𝑏2𝑢2

+ (
(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚

𝑁ℎ
) 𝜆5 − (

(1 − 𝑢1)𝜆𝜖𝜙𝑆𝑚
𝑁ℎ

) 𝜆6 

𝑑𝜆4
𝑑𝑡

= −
𝜕𝐻

𝜕𝑅ℎ
= −𝜓𝜆1

∗ + (𝜇ℎ + 𝜓)𝜆4
∗  

𝑑𝜆5
𝑑𝑡

= −
𝜕𝐻

𝜕𝑆𝑚
= −𝐴1 + (1 − 𝑢1)𝜆𝑚𝜆5

∗ + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆5
∗ − (1 − 𝑢1)𝜆𝑚𝜆6

∗

− 𝜆𝐶(𝑏1𝑢1 + 𝑏3𝑢3) 

𝑑𝜆6
𝑑𝑡

= −
𝜕𝐻

𝜕𝐸𝑚
= −𝐴1 + 𝛼𝑚𝜆6

∗ + (𝛼𝑚 + 𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆6
∗ − 𝛼𝑚𝜆7

∗

− 𝜆𝐶(𝑏1𝑢1 + 𝑏3𝑢3) 

𝑑𝜆7
𝑑𝑡

= −
𝜕𝐻

𝜕𝐼𝑚
= −𝐴1 + (𝜇𝑚 + 𝑎𝑢1 + 𝑝𝑢3)𝜆7

∗ − 𝜆𝐶(𝑏1𝑢1 + 𝑏3𝑢3)

+ (
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
+
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
) 𝜆1

+ (−
(1 − 𝑢1)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ
−
(1 − 𝑢4)𝛽𝜖𝜙𝑆ℎ

𝑁ℎ𝑤
) 𝜆2 

𝑑𝜆𝐶
𝑑𝑡

= 0 

           (3.69) 

 

By applying Pontryagin’s Maximum Principle (Pontryagin et al., 1962) and the existence 

result for the optimal control from Fleming & Rishel (1975), we obtain 
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Proposition 1: The optimal control (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) that minimizes 𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) over 

𝑈 is given by 

𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜆2 − 𝜆1)𝜆ℎ𝑆ℎ
∗ + (𝜆6 − 𝜆5)𝜆𝑚𝑆𝑚

∗ + 𝑎𝑆𝑚
∗ 𝜆5 + 𝑎𝐸𝑚

∗ 𝜆6 + 𝑎𝐼𝑚
∗ 𝜆7 + 𝜆𝐶𝑏1(𝑆ℎ

∗ + 𝑆𝑚
∗ )

2𝐵1𝑒
−𝜑𝑡

)} 

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜏(𝜆3 − 𝜆4)𝐼ℎ
∗ + 𝜆𝐶𝑏2𝐼ℎ

∗)𝑒𝜑𝑡

𝐵2
)} 

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝑝(𝜆5𝑆𝑚
∗ + 𝜆6𝐸𝑚

∗ + 𝜆7𝐼𝑚
∗ ) + 𝜆𝐶𝑏3(𝑆𝑚

∗ + 𝐸𝑚
∗ + 𝐼𝑚

∗ ))𝑒𝜑𝑡

𝐵3
)} 

𝑢4
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 (1,

(𝜆2 − 𝜆1)𝜆ℎ𝑤𝑆ℎ
∗ + 𝜆𝐶𝑏4(𝑆ℎ

∗ + 𝐸ℎ
∗)

2𝐵4𝑒
−𝜑𝑡

)} 

           (3.70) 

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6 and 𝜆7 are the adjoint variables or co-state variables satisfying 

(3.69) and the following transversality conditions: 

𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) = 𝜆4(𝑇) = 𝜆5(𝑇) = 𝜆6(𝑇) = 𝜆7(𝑇) = 𝜆𝐶(𝑇) = 0. 

           (3.71) 

Proof: From Fleming and Rishel (1975), the existence of an optimal control is a 

consequence of the convexity of the integrand of 𝐽 with respect to 𝑢1, 𝑢2, 𝑢3, 𝑢4, a priori 

boundedness of the state variables, and the Lipschitz property of the state system with 

respect to the state variables. The differential equations governing the adjoint variables 

are obtained by differentiation of the Hamiltonian function, evaluated at the optimal 

control. Then the adjoint system can be written as, 

0 =
𝜕𝐻

𝜕𝑢1
= −𝑢1

𝑐2𝐵1𝑒
−𝜑𝑡 + (𝜆2 − 𝜆1)𝜆ℎ𝑆ℎ

∗ + (𝜆6 − 𝜆5)𝜆𝑚𝑆𝑚
∗ + 𝑎𝑆𝑚

∗ 𝜆5 + 𝑎𝐸𝑚
∗ 𝜆6

+ 𝑎𝐼𝑚
∗ 𝜆7 + 𝜆𝐶𝑏1(𝑆ℎ

∗ + 𝑆𝑚
∗ ) 

0 =
𝜕𝐻

𝜕𝑢2
= 𝑢2

𝑐2𝐵2 − (𝜏(𝜆3 − 𝜆4)𝐼ℎ
∗ + 𝜆𝐶𝑏2𝐼ℎ

∗)𝑒𝜑𝑡 

0 =
𝜕𝐻

𝜕𝑢3
= 𝑢3

𝑐2𝐵3 − (𝑝(𝜆5𝑆𝑚
∗ + 𝜆6𝐸𝑚

∗ + 𝜆7𝐼𝑚
∗ ) + 𝜆𝐶𝑏3(𝑆𝑚

∗ + 𝐸𝑚
∗ + 𝐼𝑚

∗ ))𝑒𝜑𝑡 
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0 =
𝜕𝐻

𝜕𝑢4
= −𝑢4

𝑐2𝐵4𝑒
−𝜑𝑡 − (𝜆2 − 𝜆1)𝜆ℎ𝑤𝑆ℎ

∗ + 𝜆𝐶𝑏4(𝑆ℎ
∗ + 𝐸ℎ

∗) 

Due to the a priori boundedness of the solutions of both the state and adjoint equations 

and the resulting Lipschitz structure of these equations, we obtain the uniqueness of the 

optimality system ((3.69) – (3.71)) for small 𝑇. 

The restriction on the length of time interval [0, 𝑇] is common in control problems 

(Okosun et al., 2013; Felippe de Souza et al., 2000; Joshi, 2002), it guarantees the 

uniqueness of the optimality system. 

By standard control arguments involving the bounds on the controls, we conclude that 

𝑢1
∗ = {

0 𝑖𝑓 𝑢1
𝑐 ≤ 0

𝑢1
𝑐 𝑖𝑓0 < 𝑢1

𝑐 < 1 

1 𝑖𝑓 𝑢1
𝑐 ≥ 0

, 𝑢2
∗ = {

0 𝑖𝑓 𝑢2
𝑐 ≤ 0

𝑢2
𝑐 𝑖𝑓0 < 𝑢2

𝑐 < 1 

1 𝑖𝑓 𝑢2
𝑐 ≥ 0

, 𝑢3
∗ = {

0 𝑖𝑓 𝑢3
𝑐 ≤ 0

𝑢1
𝑐 𝑖𝑓0 < 𝑢3

𝑐 < 1 

1 𝑖𝑓 𝑢3
𝑐 ≥ 0

,  

𝑢4
∗ = {

0 𝑖𝑓 𝑢4
𝑐 ≤ 0

𝑢1
𝑐 𝑖𝑓0 < 𝑢4

𝑐 < 1 

1 𝑖𝑓 𝑢4
𝑐 ≥ 0

. 

 

The optimal control is obtained by solving the optimality system ((3.69) – (3.71)). An 

iterative scheme is used for solving the optimality system. We start by solving the state 

equations with a guess for the controls over the simulated time using fourth order Runge–

Kutta scheme. Because of the transversality conditions (3.70), the adjoint equations are 

solved by the backward fourth order Runge–Kutta scheme using the current iterations 

solutions of the state equation. Then the controls are updated by using a convex 

combination of the previous controls and the value from the characterizations (3.70). This 

process is repeated and iterations stopped if the values of the unknowns at the previous 

iterations are very close to the ones at the present iterations (Lenhart & Workman, 2007). 

Parameter values from Table 4.1 are used for the numerical simulation.  
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3.5.3 Cost–Effectiveness Analysis  

The intervention strategies in practice are mutually exclusive interventions, therefore it is 

essential to use incremental cost-effectiveness ratios. Mutually exclusive interventions 

occur where the implementation of one intervention results in changes to the cost and 

effects of the other. The incremental cost-effectiveness ratio (ICER) is calculated in order 

to achieve the goal of comparing the costs and the effectiveness of the intervention 

strategies. 

The ICER is mostly defined as the additional cost per additional health outcome (effect). 

It provides a means of comparing interventions across various disease status and 

interventions strategies being implemented in the community or in the nation.  

The different intervention measures are compared to determine which provides a most 

cost-effective control to malaria disease. ICER required the ranking of the alternative 

intervention strategies according to their effectiveness on the basis of securing maximum 

effect rather than considering cost.  

Then one intervention strategy was compared with the next less effective alternative 

intervention strategy when relating two or more competing intervention strategies.  

We use a more classical approach to analyze the cost-effectiveness of the 15 alternative 

strategies by using the ICER in Okosun et al., (2013). ICER is applied to achieve the goal 

of comparing the costs and the health outcomes of two alternative intervention strategies 

that compete for the same resources. It is generally described as the additional cost per 

additional health outcomes. The ICER numerator includes the differences in the 

intervention strategy costs, averted disease costs, costs of prevented cases and averted 

productivity losses if applicable. The ICER denominator is the differences in health 

effects (e.g. total number of infections averted, number of susceptibility cases prevented). 

ICER is given by  

𝐼𝐶𝐸𝑅 𝑓𝑜𝑟 𝑄 =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑄 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑃

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑄 − 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑃
 

where 𝑃 and 𝑄 are the two intervention strategies being compared in this case, and the 

effect or benefits in health status are measured in terms of quality-adjusted life years 
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(QALYs) gained or lost. Alternatives that are more expensive and less ineffective are 

then excluded.  This is done after simulating the optimal control model and then ranking 

strategies in order of increasing effectiveness measured as the total infections averted.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION  

4.1 Numerical Results for Malaria Model with Intervention Strategies 

In this section the model is solved using Runge-Kutta fourth order scheme in R Statistical 

computing platform (R Development Core Team, 2011). The aim is to verify some of the 

analytical results on the stability of system (3.1). 

4.1.1 Summary of Data 

Data was collected from the literature, Division of Malaria Control (DOMC), Kenya 

National Bureau of Statistics, Malaria Indicator Survey for Kenya, Demographic Health 

Survey (DHS) for Kenya, WHO websites and hospital records (from Kisumu, Kisii, 

Chuka (Tharaka-Nithi) and Nyeri counties representing the four different transmission 

settings/ epidemiological zones in Kenya). All these collected data guided in the 

calculations/ estimation of parameter for the malaria model (3.1) while some values were 

assumed. 

4.1.2 Parameter Values for Malaria Transmission Model 

The parameters in the model (3.1) were estimated using clinical malaria data and 

demographics statistics of Kenya. Those that were not available were obtained from 

literature published by researchers in malaria endemic countries which have similar 

environmental conditions compare to Kenya. The total population for pregnant women in 

Kisumu in 2015 is 266343, Kisii is 324658, Chuka (Tharaka Nithi) is 94857 and Nyeri is 

200216 (based on census 2009 estimates) (KNBS, 2010). The total number of children 

under five in Kisumu is 173826, Kisii is 210,435, Chuka is 52975 and Nyeri is 90487 

(based on census 2009 estimates). The population growth rate per year is 2.1% for 

Kisumu, 2.1% for Kisii, 2.0% for Tharaka Nithi and 1.3% for Nyeri. The population of 

pregnant women was estimated as the population for the fertility/ reproductive age (15-49 

years). Furthermore, Life expectancy at birth in 2014 is 51years for Kisumu, 59 years for 

Kisii, 64 years for Tharaka Nithi and 60 years for Nyeri (KNBS Estimates based on 2009 

Census). We estimate that it will take 7 days for human to recover from malaria infection 
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through chemotherapy and the incubation period of malaria in humans is from 10 to 14 

days as per the National Guidelines for Diagnosis, Treatment and Prevention of Malaria 

in Kenya (DOMC, 2010). Disease induced deaths/ mortality was calculated based on 

information from hospital records and KDHS. Finally, the probability of transmission of 

malaria infection from infectious humans to susceptible mosquitoes is estimated to be 

0.42 and we also assume that person who has completely recovered from malaria will 

lose his/her malaria acquired immunity after 3 months based on information received 

from medical malaria researchers in Kenya. 

Gimnig et al., (2003) provided quarterly data for the average number of Anopheles 

gambiae and Anopheles funestus mosquitoes in a region of Western Kenya (Asembo). 

From this data, Chitnis (2005) used an estimate of 2 Anopheles gambiae and 0.8 

Anopheles funestus mosquitoes per house for his PhD thesis in high malaria transmission 

areas; therefore we can also conservatively estimate that we have 10 female Anopheles 

mosquitoes in each house in Kenya and hence the number of the female Anopheles 

mosquito population for each region is approximated by multiplying the population by 

10. We use an estimate of 0.40 bites on humans per mosquito per day in Kenya. The 

estimation of biting includes both, the dependence on the mosquito's gonotrophic cycle 

(the number of days a mosquito requires to produce eggs before it searches for a blood 

meal again), and the dependence on the mosquito's anthropophilic rate (the mosquito's 

preference for human blood as opposed to other mammalian blood). The probability of 

transmission of infection from an infectious mosquito to a susceptible human is estimated 

to be 0.0655. Latent period in mosquitoes is estimated to be 11 days for malaria endemic 

areas (Chitnis, 2005) and finally, the life expectancy of an adult anopheles mosquito is 

assumed to be 25 days considering mortality of mosquitoes due to indoor residual 

spraying, mosquito coils and insecticide-treated bed nets. 

The rate of human infection and rate of mosquito being infected by feeding on blood 

meal and the disease induced death were varied to represent the different transmission 

settings/ epidemiological zones in Kenya.  

Table 4.1 provides a summary of the estimated values of all parameters. 

 



94 

Table 4.1: Parameter values for the full malaria model 

Parameter Estimated Value Source 

 
Endemic Epidemic Seasonal Low risk 

𝜇ℎ 0.00005447 0.00004644 0.00004281 0.00004566 KNBS  (2010)  

𝜇𝑚 0.04    Estimated 

𝛼ℎ 0.07143    Estimated 

𝛼𝑚 0.0909    Chitnis (2005) 

𝜆 0.42    Estimated 

𝛽 0.0655    Estimated 

𝜖 0.2    Kbenesh et al., 

(2009)  

𝜓 0.01095    Estimated 

Λℎ 0.00000575 0.00000575 0.00000548 0.00000438 KNBS (2015)  

Λ𝑚 0.071    Niger & Gumel 

(2008)  

𝑏 0.005    Chiyaka et al., 

(2008)  

𝜏 0.5    Assumed  

𝛿ℎ 0.05    KNBS & ICF 

Macro (2010)  

𝑝 0.25    Assumed 

𝑎 0.25    Assumed 

𝜙 0.502    Kbenesh et al., 

(2009)  

𝜆ℎ 0.00000149 0.00000123 0.00000445 0.00000226 Estimated 

𝜆ℎ𝑤 0.00000247 0.00000203 0.00000693 0.00000328 Estimated 

𝜆𝑚 0.00000048 0.00000394 0.00000143 0.00000073 Estimated 

𝑁ℎ 440169 535093 147832 290703 KNBS (2010) 

𝑁ℎ𝑤 266343 324658 94857 200216 KNBS (2010) 

𝑁𝑚 4401690 5350930 1478320 2907030 Estimated 
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In addition the effect of the different intervention strategies are estimated as: 𝑢1 =

0.0904, 𝑢2 = 0.165, 𝑢3 = 0.076, 𝑢4 = 0.035. The initial state variables are constant 

across all the epidemiological zones and are chosen as 𝑆ℎ(0) = 700 , 𝐸ℎ(0) = 250 , 

𝐼ℎ(0) = 0 , 𝑅ℎ(0) = 00 , 𝑆𝑚(0) = 5000 , 𝐸𝑚(0) = 500 , and 𝐼𝑚(0) = 100.   

 

4.1.3 Sensitivity Indices of 𝑹𝟎 

Numerical simulations are carried out to for the different parameters impacting on the 

reproduction number. The resulting sensitivity indices of 𝑅0 to the different parameters in 

the model is presented in the Table 3.5. 

The most sensitive parameter to 𝑅0 across all the epidemiological zones is the mosquito’s 

natural death rate, 𝜇𝑚 , (𝜉𝜇𝑚
𝑅0 = −1.07211) followed by the mosquito biting rate, 𝜖 , 

(𝜉𝜖
𝑅0 = 1) and the mosquito contact rate with humans, 𝜙,  

Its evident that an increase (or decrease) in mosquito biting rate, 𝜖 , by 10% increases or 

decreases 𝑅0 by 10%. On the other hand an increase (or decrease) in mosquito death rate 

𝜇𝑚 by 10% decreases (or increases) 𝑅0 by 10%. It’s suggested that strategies that can be 

applied in controlling and eradicating malaria are to target mosquito biting rate, mosquito 

contact rate with humans and mosquito death rates. 

Further, this is followed by the transmission probability per bite from infectious human to 

susceptible mosquito, 𝜆 , the transmission probability of infection to humans per bite, 𝛽 , 

and the recruitment rate of mosquitoes, Λ𝑚. Other key parameters include the recruitment 

rate of individuals, Λℎ. With 𝜉𝛼ℎ
𝑅0 = 0.00038817, the progression rate of individuals from 

the exposed to infectious malaria state, 𝛼ℎ , is the least sensitive. 
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Table 4.2: Sensitivity indices (SI) of 𝑹𝟎 to parameters for the malaria model  

Parameter Sensitivity Indices 

Endemic Seasonal Epidemic Low risk 

𝜇ℎ −0.0402531 −0.0402531 −0.0402531 −0.0402531 

𝜇𝑚 −1.07211 −1.07211 −1.07211 −1.07211 

𝛼ℎ 0.00038817 0.00038817 0.00038817 0.00038817 

𝛼𝑚 0.22445 0.22445 0.22445 0.22445 

𝜆 0.5 0.5 0.5 0.5 

𝛽 0.5 0.5 0.5 0.5 

𝜖 1 1 1 1 

Λℎ −0.4980 −0.4980 −0.4980 −0.4980 

Λ𝑚 0.5 0.5 0.5 0.5 

𝑏 −0.01818 −0.02048 −0.01639 −0.02563 

𝜏 −0.322497 −0.322497 −0.322497 −0.322497 

𝛿ℎ −0.13695 −0.10336 −011321 −0.03508 

𝜙 1 1 1 1 

 

Sensitivity analysis showed that the most sensitive parameters were mosquito biting rate 

(𝜖) and mosquito death rate (𝜇𝑚) (Mwamtobe et al., 2014; Agusto et al., 2012; Oduro et 

al., 2015). This shows that reducing mosquito deaths and biting rates plays an important 

role in reducing malaria transmission in Kenya. This can be achieved through use of IRS 

and ITNs which are regarded as vector control measures (Mwamtobe et al., 2014; Agusto 

et al., 2012; Oduro et al., 2015). These findings agree with Oduro et al., (2015) who also 

stated that combinations of control strategies would result in reducing infected mosquito 

and human population. This may be attributed to the fact that malaria is spared by a bite 

of an infected mosquito and hence reducing infected mosquito will have impact on the 

spread of the disease. 
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Therefore, interventions strategies which targets to reduce mosquito population should be 

implemented. This will help to reduce the mosquito biting rates and transmission from 

infectious mosquitoes and humans. 

 

4.1.4 Numerical Simulations  

Numerical simulation using the fourth order Range-Kutta method in R Statistical 

Computing platform is use to solve the malaria model (3.1) using the initial state 

variables and the parameter values from table (4.1). This will help study the numerically 

the behavior of the system (3.1). The malaria model 3.1 was simulated when there was no 

any intervention strategies and when there were the intervention strategies. The 

simulation was generated in a hundred and forty days’ time to show the effect of these 

intervention strategies on the infected humans and mosquito populations.  

 

4.1.4.1 Dynamics of Human Population of Malaria Model without Intervention 

Strategies 

The simulation of the malaria model with intervention strategies was simulated to find 

out the dynamics of the disease in the population when there were no intervention 

strategies. 
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Figure 4.1: Simulations showing the dynamics of human population of malaria 

model without intervention strategies across all transmission settings 

 

In the absence of the interventions strategies, the susceptible population decreases (Figure 

4.1). This explains that the susceptible population will continue being exposed to the 

disease and as such exposed population will increase. The infected population increases 

due to the increase in the exposure to the disease. This supports the theorem that disease 

is endemic when 𝑅0 > 1. The recovered population decreases as a result of the presence 

of the disease in the society in which no intervention strategies are being practiced.  

The existence of multiple endemic equilibria emphasizes the fact that 𝑅0 < 1 is not 

sufficient to eradicate disease from the population and the need to lower 𝑅0 much below 

one to make the disease free equilibrium to be stable globally. 𝑅0 must further reduced 

below new 𝑅0
∗ in order to avoid endemic states and guarantee the eradication. These 
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findings agree with Chitnis et al., (2006) and Wan & Cui (2009) who showed the 

possibility of backward bifurcation. Malaria transmission therefore can be reduced by 

deployment of different combinations of malaria control strategies (Mwamtobe et al., 

2014; Agusto et al., 2012; Oduro et al., 2015). 

 

4.1.4.2 Dynamics of Human Population with Intervention Strategies 

We simulated malaria model with intervention strategies to find the dynamics of human 

and mosquito populations as shown in Figure 4.2 and Figure 4.3 below. It is observed 

that the control strategy leads to decrease in the number of infected human (𝐼ℎ). The 

uncontrollable case leads to a decrease in the number of infected mosquitoes (𝐼𝑚), while 

the control strategy lead to decrease in the infected number. 

The number of 𝑆ℎ increases as the exposed and infected human population decreases due 

to positive effect of the intervention strategies being implemented (Figure 4.2). 
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Figure 4.2: Simulations showing the dynamics of human population with 

intervention strategies across all transmission settings  
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4.1.4.3 Dynamics of Mosquito Population 

 

 

Figure 4.3: Simulations showing the effect of intervention strategies on mosquito 

population across all transmission settings  

 

Figure 4.3 shows that 𝑆𝑚 , 𝐸𝑚 and 𝐼𝑚 increases with time when there are no intervention 

strategies but reduces when there are intervention strategies. This confirms the role of 

intervention strategies in reducing mosquito population.  

The effect on the number of infected humans, mosquito population and exposed humans 

were compared in situations where there were no intervention/ control variable versus 

when there were the intervention variables. Numerical simulations were used to confirm 

the analytic results and to explore the behavior of the formulated model. The findings 
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from our study showed that when there were no intervention strategies the numbers of 

exposed and infected humans and mosquitoes increases while when there were 

interventions then the number in the classes increase. This is comparable to the findings 

from Griffin et al., (2010) who found that for the use of LLINs, IRS coupled with mass 

screening and treatment would result in the reduction of parasitic prevalence to below 

1%. The results confirm the roles that the control strategies have in lowering the exposed 

and infected classes of mosquito and human populations. This is because malaria control 

strategies have effect on minimizing transmission of malaria.   

Our study was slightly different from other modeling approach for malaria transmission 

with intervention strategies (Okosun et al., 2013; Mwamtobe et al., 2014) in that we 

considered the most at risk group (the pregnant and the under five children) and can be 

applied to different transmission settings for malaria. We also considered the use of IPTp 

as an intervention strategy for the pregnant women which is recommended by WHO 

(WHO, 2014). This study provided a useful tool for assessing the effectiveness and the 

potential impact of the intervention strategies in minimizing malaria transmission.  

Since this is the first ever modeling and simulation of four malaria intervention strategies 

in free R statistical computing platform, more future testing and refinement of the model 

together with simulation with data form other representative settings should be done to 

improve the results and the model. This modeling approach can be extended to optimal 

control theory and cost effectiveness analysis to assess the cost aspect and health benefits 

of the interventions strategies being practiced in Kenya. 

Mathematical models provide a framework for understanding disease dynamics which 

forms the basis of designing and analyzing the potential impact of intervention strategies. 

This modeling approach can guide the post-2015 malaria eradication strategies and the 

achievement of the Sustainable Development Goals. 

 

4.2 Numerical Results on Optimal Control Analysis 

In this section we discuss the method and present the results obtained from solving the 

optimality system numerically using the parameter values in Table 4.1. The initial state 
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variables for the different epidemiological zones fixed with values 𝑆ℎ(0) = 700 , 

𝐸ℎ(0) = 250 , 𝐼ℎ(0) = 0 , 𝑅ℎ(0) = 0 , 𝑆𝑚(0) = 5000 , 𝐸𝑚(0) = 500 , and 𝐼𝑚(0) =

100 . The following weight factors were also fixed for the different epidemiological 

scenarios as 𝐵1 = 20 , 𝐵2 = 65 , 𝐵3 = 10 , 𝐵4 = 10 , 𝐴3 = 100 , 𝐴2 = 92 , and 𝐴1 =

20. These factors were used for our model numerical simulation purposes on which there 

is no significant meaning attached. We balance the host populations and control functions 

in the cost function 3.52 by choosing weight constant values because the magnitudes of 

the host populations and control functions are on different scales. It is assumed that the 

weight factor of 𝐴1 < 𝐴2 < 𝐴3. We assign the weight factor 𝑢1 when using ITNs greater 

than the weight factors for treatment 𝑢2 , IRS 𝑢3 and IPTp 𝑢4. 

The effect of the several optimal control strategies on the spread of malaria is 

investigated numerically. We compare the numerical results from the simulation using 

one control and various combinations of two, three and four control strategies. This was 

done by comparing when there were no any intervention strategies and when there were 

the intervention strategies. There are 15 different control strategies for each of the four 

different epidemiological zones in Kenya that are explored. We use the case of endemic 

zone with the case of one control variable, two control variables, three control variables 

and all the four control variables are in use for the illustration purpose. 

Results of only one intervention strategies for the 4 epidemiological zones for the 

different combinations of the control strategies are shown in Figure 4.4 – Figure 4.18. 

Part (a) represents the endemic situation, part (b) represent the epidemic situation, part (c) 

represent the seasonal situation and part (d) represent the low risk situation. In each of the 

cases, the results in Figure 4.1 – 4.15 shows a significant difference in 𝐼ℎ and 𝐼𝑚 with the 

control strategy compared to  𝐼ℎ and 𝐼𝑚  without the control strategy. It is observed that 

the control strategy leads to decrease in the number of infected human (𝐼ℎ). The 

uncontrollable case leads to a decrease in the number of infected mosquitoes (𝐼𝑚), while 

the control strategy lead to decrease in the infected number. The control profiles shows 

the upper bound time for each strategy for each settings before dropping to the lower 

bound.  
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The control profile shows the upper bound time for each strategy for each of the 

transmission setting before dropping to the lower bound. The time at which its dropping 

shows the time at which the intervention effect is being felt in reducing the number of 

infectious humans and mosquito population.  

 

Results of only one intervention strategies for the 4 epidemiological zones 

a. Optimal protection using ITN 

Only the control (𝑢1) on ITNs is used to optimize the objective function 𝐽, while the 

control on treatment (𝑢2), the control on IRS (𝑢3) and control on IPTp (𝑢4) are set to 

zero.  

 

 

  (a)        (b) 
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  (c)        (d) 

Figure 4.4: Simulations of the model showing the effect of ITNs only on the spread 

of malaria for the different transmission settings 

 

b. Optimal treatment 

Only the control (𝑢2) on treatment is used to optimize the objective function 𝐽, while the 

control on ITNs (𝑢1), the control on IRS (𝑢3) and control on IPTp (𝑢4) are set to zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.5: Simulations of the model showing the effect of treatment only on the 

spread of malaria for the different transmission settings 

 

c. Optimal IRS 

Only the control (𝑢3) on IRS is used to optimize the objective function 𝐽, while the 

control on treatment (𝑢2), the control on ITNs (𝑢1) and control on IPTp (𝑢4) are set to 

zero. 
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  (a)        (b) 
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  (c)        (d) 

Figure 4.6: Simulations of the model showing the effect of IRS only on the spread of 

malaria for the different transmission settings 

 

d. Optimal IPTp 

Only the control (𝑢4) on IPTp is used to optimize the objective function 𝐽, while the 

control on treatment (𝑢2), the control on IRS (𝑢3) and control on ITNs (𝑢1) are set to 

zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.7: Simulations of the model showing the effect of IPTp only on the spread 

of malaria for the different transmission settings 

 

Results of combining 2 intervention strategies for the 4 epidemiological zones 

a. Optimal ITNs and treatment 

With this strategy, the control on ITNs (𝑢1) and the treatment (𝑢2) are used to optimize 

the objective function 𝐽 while setting the control on IRS (𝑢3) and control on IPTp (𝑢4) to 

zero. The control 𝑢1 is at the upper bound all the time, while control on treatment 𝑢2 

starts and remain at upper bound for 48 days before dropping gradually to the lower 

bound. The results shows that with ITNs coverage of 100% for 140 days (all the time) 



112 

and treatment coverage of 100% for 48 days, the disease incidence will be greatly 

reduced. 

 

 

 

  (a)        (b) 
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  (c)        (d) 

Figure 4.8: Simulations of the model showing the effect of ITNs and treatment on 

the spread of malaria for the different transmission settings 

 

b. Optimal ITN and IRS 

With this strategy, the control on ITNs (𝑢1) and the IRS (𝑢3) are used to optimize the 

objective function 𝐽 while setting the control on treatment (𝑢2) and control on IPTp (𝑢4) 

to zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.9: Simulations of the model showing the effect of ITNs and IRS on the 

spread of malaria for the different transmission settings 

 

c. Optimal ITN and IPTp 

With this strategy, the control on ITNs (𝑢1) and IPTp (𝑢4) are used to optimize the 

objective function 𝐽 while setting the control on treatment (𝑢2) and control on IRS (𝑢3) to 

zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.10: Simulations of the model showing the effect of ITNs and IPTp on the 

spread of malaria for the different transmission settings 

 

d. Optimal Treatment and IRS 

With this strategy, the control on treatment (𝑢2) and the IRS (𝑢3) are used to optimize the 

objective function 𝐽 while setting the control on ITNs (𝑢1) and control on IPTp (𝑢4) to 

zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.11: Simulations of the model showing the effect of treatment and IRS on 

the spread of malaria for the different transmission settings 

 

e. Optimal Treatment and IPTp 

With this strategy, the control on treatment (𝑢2) and the IPTp (𝑢4) are used to optimize 

the objective function 𝐽 while setting the control on IRS (𝑢3) and control on ITNs (𝑢1) to 

zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.12: Simulations of the model showing the effect of treatment and IPTp on 

the spread of malaria for the different transmission settings 

 

f. Optimal IRS and IPTp 

With this strategy, the control on IRS (𝑢3) and the IPTp (𝑢4) are used to optimize the 

objective function 𝐽 while setting the control on treatment (𝑢2) and control on ITNs (𝑢1) 

to zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.13: Simulations of the model showing the effect of IRS and IPTp on the 

spread of malaria for the different transmission settings 

 

Results of combining three intervention strategies for the 4 epidemiological zones 

a. Optimal ITN, treatment and IRS 

Figure 4.11 shows the simulation of the model whereby ITN control (𝑢1), treatment 

control (𝑢2), and IRS control (𝑢3) are used to optimize the objective function 𝐽,  while 

IPTp control (𝑢4) is set to zero. The control profile suggest that the control on ITN (𝑢1) 

to be at the upper bound until the final time (140 days) while the control on treatment 

(𝑢2) to be at the upper bound for 10 days. The optimal IRS is at the upper bound until 48 
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days before dropping gradually to the lower bound. Therefore an effective IRS use and 

treatment will be beneficial to the community for the control of malaria disease. 

 

 

 

  (a)        (b) 
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  (c)        (d) 

Figure 4.14: Simulations of the model showing the effect of ITNs, treatment and IRS 

on the spread of malaria for the different transmission settings 

 

b. Optimal ITN, treatment and IPTp 

In this case ITNs control (𝑢1), treatment control (𝑢2), and IPTp control (𝑢4) are used to 

optimize the objective function 𝐽,  while IRS control (𝑢3) is set to zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.15: Simulations of the model showing the effect of ITNs, treatment and 

IPTp on the spread of malaria for the different transmission settings 

 

c. Optimal ITN, IRS and IPTp 

In this case ITNs control (𝑢1), IRS control (𝑢3), and IPTp control (𝑢4) are used to 

optimize the objective function 𝐽,  while treatment control (𝑢2) is set to zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.16: Simulations of the model showing the effect of ITNs, IRS and IPTp on 

the spread of malaria for the different transmission settings 

 

d. Optimal Treatment, IRS and IPTp 

In this case ITNs control (𝑢1), IRS control (𝑢3), and IPTp control (𝑢4) are used to 

optimize the objective function 𝐽,  while treatment control (𝑢2) is set to zero.  
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  (a)        (b) 
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  (c)        (d) 

Figure 4.17: Simulations of the model showing the effect of treatment, IRS and IPTp 

on the spread of malaria for the different transmission settings 

 

Results of combining the four intervention strategies for the 4 epidemiological zones 

a. Optimal ITN, treatment, IRS and IPTp 

In this case all the control function ITNs control (𝑢1), treatment control (𝑢2), IRS control 

(𝑢3) and IPTp control (𝑢4) are used to optimize the objective function 𝐽. The control 

profile suggest that the control on ITN (𝑢1) and on IPTp (𝑢4) to be at the upper bound 

until the final time (140 days) while the control on IRS (𝑢3) to be at the upper bound for 
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10 days. The optimal treatment is at the upper bound until 48 days before dropping 

gradually to the lower bound. Therefore an effective IRS use and treatment will be 

beneficial to the community for the control of malaria disease (Figure 4.18). 

 

 

  (a)        (b) 
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  (c)        (d) 

Figure 4.18: Simulations of the model showing the effect of ITNs, treatment, IRS 

and IPTp on the spread of malaria for the different transmission settings 

 

Based on the findings for the highest number of infections being inverted at a lower cost, 

it is evident that the combined use of treatment and IRS reduces the infected human and 

mosquito population faster at a lower cost for the endemic settings (105 infections at 

$368.258). For the epidemic prone settings the use of treatment and IRS (111.03 

infections at $388.6051) has more impact in reducing the infected human and mosquito 

population. For seasonal areas much impact will be felt when treatment are used 
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(115.6983 infections at $231.3967). For the low risk areas, the use ITNs and treatment 

(119.0659 infections at 595.32) will be sufficient to reduce infected human and mosquito 

population. This is deduced from the intervention which takes shorter time to start 

reducing the number of infected mosquitoes and humans. It takes much effort/ scale up to 

reduce more infections in the endemic areas compared to the low risk areas.  

In the optimal control problem considered, we use one control at a time and the 

combination of two controls at a time or three at a time or all four while setting the 

other(s) to zero to investigate and compare the effects of the control strategies on malaria 

eradication. This was different from what was investigated by Mwamtobe et al., (2014), 

Okosun et al., (2013), Kim et al., (2012) where only three, three and two malaria control 

measures respectively were used. Numerical results indicate that the optimal control 

strategies for malaria control in endemic areas that an effective IRS use and treatment 

will be beneficial to the community for the control of malaria disease (infected human 

and mosquito population) faster at a lower cost for the endemic settings. This is slightly 

different from the findings of Agusto et al., (2012) who found that the combination of the 

personal protection, treatment and insecticides spray had the highest impact on the 

control of the disease. This could be in endemic settings both preventive and treatment 

measures work better which implies that the effect of protection using IRS is better. 

Griffin et al., (2010) found that use of treatment, LLITNs and IRS with high levels 

coverage would result in reducing malaria transmission for high settings though the study 

did not consider the cost aspect. 

The findings shows that for the epidemic prone areas, the optimal control strategy for 

reducing the infected human and mosquito population was the use of treatment and IRS. 

This is slightly different from Agusto et al., (2012) findings on resource limited settings 

in which the study recommended the use of personal protection and insecticides. This 

was further different from the findings of Mwamtobe et al., (2014) who noted that the 

prevention strategies (use of ITNs and IRS) lead to the reduction of both the mosquito 

population and infected human individuals. This is because in epidemic areas emphasis is 

usually more placed on preventive strategies.  
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The results shows that for seasonal areas much impact will be felt when treatment are 

used which is different from Mwamtobe et al., (2014) who recommended IRS and ITNS. 

This also comparable to Kim et al., (2012) findings that mosquito-reduction strategies is 

more effective than personal protection. This is because in seasonal areas malaria 

transmission is usually not so high and hence if the mosquito reduction strategies can be 

implemented then malaria transmission can be reduced. Griffin et al., (2010) found that 

for the high seasonal transmission settings the use of LLITNs, IRS and treatment would 

help reduce the transmission of malaria. 

The results shows that for the low risk areas, just the use ITNs and treatment will be 

sufficient to reduce infected human and mosquito population. This is comparable to Silva 

& Torres (2013) who found the optimal use of ITNS would prevent malaria transmission 

same to Kim et al., (2012). The findings are comparable to by Griffin et al., (2010). In 

low transmission areas prevention strategies seems to be better because the population is 

not infected.  

These findings supports the WHO concerns on the capability of only one intervention 

strategy in reducing malaria transmission. The findings are however applicable to the 

designing of intervention strategies for malaria especially when costs aspects are of 

concern. This modeling approach also addresses effectiveness of the recommended 

intervention for at risk group of malaria (pregnant women) by the WHO. The modeling 

approach has also been implemented in the R statistical computing platform which is free 

statistical software. 

Optimal control approach can help provide Information on the optimal malaria 

intervention strategies that can be tailored to specific transmission patterns of malaria 

when costs of interventions are also considered. This will provide basis for informed 

decision making about malaria control, guide the post-2015 malaria eradication strategies 

and the achievement of the Sustainable Development Goals and hence the path towards 

malaria elimination. 
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4.3 Numerical Results on Cost Effectiveness Analysis 

The data collected on the parameters of the model representing different epidemiological 

zones (transmission settings) in Kenya are summarized in Table 4.1. The rate of human 

infection and rate of mosquito being infected by feeding on blood meal and the disease 

induced death were varied to represent the different transmission settings/ 

epidemiological zones in Kenya. In addition the effect of the different intervention 

strategies are estimated as: 𝑢1 = 0.0904, 𝑢2 = 0.165, 𝑢3 = 0.076, 𝑢4 = 0.035 and the 

cost of intervention are for: 𝑢1 = $2.5 − 5, 𝑢2 = $2.5, 𝑢3 = $1.5, 𝑢4 = $2.5  . The 

initial state variables are constant across all the epidemiological zones and are chosen as 

𝑆ℎ(0) = 700 , 𝐸ℎ(0) = 250 , 𝐼ℎ(0) = 0 , 𝑅ℎ(0) = 0 , 𝑆𝑚(0) = 5000 , 𝐸𝑚(0) = 500 , 

and 𝐼𝑚(0) = 100 .  The values of 𝑁ℎ = 800 and 𝑁ℎ𝑤 = 240. The discount 𝜑 =

3
365⁄ − 5 365⁄ %. 

 

4.3.1 Numerical Simulations of the Economic Evaluations of the Malaria Model  

Numerical simulations showing the impact of the shadow prices (marginal value/ cost) 

and marginal benefits by evaluating the shadow prices at the start of the malaria epidemic 

and as a function of the numbers of recovered or protected at the time of outbreak 

(susceptible human beings).  

The marginal cost and effect of the intervention strategies for the four different malaria 

transmission settings are simulated and the results are shown in Figure 4.19. 
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Figure 4.19: Numerical simulations of the economic evaluations of the malaria 

model across all transmission settings  

 

Across all the transmission settings, it’s observed that the marginal value (shadow price) 

of 𝐼ℎ is much less damaging than the marginal values of 𝐸ℎ and 𝑆ℎ (Figure 4.19). The 

shadow price on the susceptible humans are increasing overtime while the shadow prices 

of exposed starts dropping at t=5 days and shadow prices on infected starts dropping at t= 

3 days. It’s also observed that across all the settings, the shadow price on 𝑆ℎ starts at 

higher positive values, increases and stabilizes at higher prices closer to the total 

susceptible population. As more individuals recover from the disease the cost of the 

disease is still higher. It’s further observed that across all the transmission settings, the 

marginal benefit of use of treatment is much smaller than the marginal benefit of IPTp, 
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ITNs and IRS in that order. Smaller amounts of treatment are needed compared to IPTp, 

ITNs and IRS in that order to be able to eliminate the disease.  

 

4.3.2 Numerical Simulation of the Optimal Malaria Control Strategies and Cost-

Effectiveness Analysis 

Numerical simulations are further done to show the infections averted and the cost 

associated with the infections averted by the intervention strategies for the four different 

transmission settings. Rankings of the number infections averted (effectiveness) is then 

done so that ICER can be applied. 

For the different transmission settings we compute the optimal solution for the 15 

strategies and their associated effectiveness �̅� (infections averted) which is the difference 

between the numbers of infections when there is no intervention and when there are 

interventions. The strategies were classified as follows: ITN only (Strategy A), treatment 

only (Strategy B), IRS only (Strategy C), IPTp only (Strategy D), treatment and ITNs  

(Strategy E), ITNs and IRS (Strategy F), ITNs and IPTp (Strategy G), treatment and IRS 

(Strategy H), treatment and IPTp (Strategy I), IPTp and IRS (Strategy J), ITNs, treatment 

and IRS (Strategy K), ITNs, treatment and IPTp (Strategy L), ITNs, IRS and IPTp 

(Strategy M), IRS, treatment and IPTp (Strategy N), ITNs, treatment, IRS and IPTp 

(Strategy O). Based on the model simulation results, the strategies practiced in Kenya for 

different epidemiological settings were ranked in the order of increasing effectiveness.   

The infections averted and cost of the intervention used is used to determine the cost-

effectiveness of different combinations of the four intervention strategies. We determined 

the total cost of the combined intervention strategies and the infections averted for 

different transmission settings. Interventions that didn’t have any effectiveness were 

dropped. The ICER for every two competing strategies for each epidemiological scenario 

is calculated and this shows the cost effectiveness for each strategy. The cost-

effectiveness calculations are further verified using the computation of incremental cost-

effectiveness ratios in table form for each epidemiological zone in order to have a 

complete overview of the outcome. 
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4.3.2.1 Simulation Results on Effectiveness for the Endemic Region 

The Table 4.3 below summarizes the ranking of simulation results on the effectiveness 

(infections averted) and the total costs by the different strategies for endemic scenario in 

Kenya.  

Table 4.3: Intervention strategies and its corresponding infections averted plus cost 

for Endemic region  

Strategies Infections averted Cost 

C 0.0000121135 0.00001817024 

A 1.687 5.0613 

F 1.6871 7.59196 

G 3.68444 20.2644 

M 3.6876 4.337343 

D 5.35895 13.339738 

J 5.368965 21.47586 

I 101.7332 57.7995 

N 101.7393 610.4358 

L 102.8135 771.1012 

O 102.818 925.3622 

B 105.2167 210.4334 

H 105.2167 368.2585 

E 106.301 531.5846 

K 106.3167 691.0584 
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The ICER for every two competing strategies was calculated and the results are presented 

in table 4.4.  

Table 4.4: Incremental cost-effectiveness ratios of all combined strategies for 

Endemic region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999 

A 1.687 5.0613 5.06128183 1.686987887 3.000189 

F 1.6871 7.59196 2.53066 0.000099999 25306.6 

G 3.68444 20.2644 12.67244 1.99734 6.344658 

M 3.6876 4.337343 -15.927057 0.00316 -5040.21 

D 5.35895 13.339738 9.002395 1.67135 5.386301 

J 5.368965 21.47586 8.136122 0.010015 812.3936 

I 101.7332 57.7995 36.32364 96.364235 0.376941 

N 101.7393 610.4358 552.6363 0.0061 90596.11 

L 102.8135 771.1012 160.6654 1.0742 149.5675 

O 102.818 925.3622 154.261 0.0045 34280.22 

B 105.2167 210.4334 -714.9288 2.3987 -298.048 

H 105.2167 368.2585 157.8251 0 Inf 

E 106.301 531.5846 163.3261 1.0843 150.6281 

K 106.3167 691.0584 159.4738 0.0157 10157.57 
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Alternatives that are more expensive and less ineffective are excluded (A, F, D, J, N, O 

and H).  These are the strategies that have higher ICER when compared. Having excluded 

strategy A, F, D, J, N, O and H, ICERs are recalculated for the remaining strategies (C, 

G, M, I, L, B, E and K) and are shown in Table 4.5.  

 

Table 4.5: Exclusion of more costly and less effective intervention strategies for 

Endemic region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999 

G 3.68444 20.2644 20.26438183 3.684427887 5.500008 

M 3.6876 4.337343 -15.927057 0.00316 -5040.21 

I 101.7332 57.7995 53.462157 98.0456 0.545278 

L 102.8135 771.1012 713.3017 1.0803 660.2811 

B 105.2167 210.4334 -560.6678 2.4032 -233.301 

E 106.301 531.5846 321.1512 1.0843 296.183 

K 106.3167 691.0584 322.7999 1.1 293.4545 

 

The dominated strategies (G, I, L and K) are then excluded and the ICERs are 

recalculated again (Table 4.6). These are the strategies that have higher ICER when 

compared 

 

 



142 

 

 

Table 4.6: Exclusion of dominated alternative intervention strategies for Endemic 

region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.0000121135 0.00001817024 0.00001817024 0.0000121135 1.499999 

M 3.6876 4.337343 4.33732483 3.687587887 1.176196 

B 105.2167 210.4334 206.096057 101.5291 2.029921 

E 106.301 531.5846 321.1512 1.0843 296.183 

 

In Table 4.6 the most cost effective quadrant will be strategy M and strategy B and in 

deciding between them the size of the available budget must be brought to bear. Strategy 

M is the combination of ITNs, IRS and IPTp while strategy B is the use of treatment 

only.  

 

4.3.2.2 Simulation Results on Effectiveness for the Epidemic prone Region 

The Table 4.7 below summarizes the simulation results on the effectiveness (infections 

averted) and the total costs by the different strategies for endemic scenario in Kenya.  
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Table 4.7: Intervention strategies and its corresponding infections averted plus cost 

for Epidemic prone region  

Strategies Infections averted Cost 

C 0.0000136 0.0000204639 

F 0.173697 0.78166366 

M 0.3772208 2.640546 

G 0.3773461 2.0754 

D 0.5507769 1.376942 

J 0.5509108 2.203643 

B 11.0302 222.0604 

A 17.369998 5210994 

N 110.6783 664.07 

I 110.6784 498.053 

O 110.7885 997.0963 

L 110.7889 830.917 

H 111.03 388.6051 

K 111.1405 722.4134 

E 111.1409 555.7043 

 

The ICER for every two competing strategies was calculated and the results are presented 

in table 4.8. 
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Table 4.8: Incremental cost-effectiveness ratios of all combined strategies for 

Epidemic region  

Strategy Strategy 

effects [E] 

Cost ($)  

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]/[∆𝐸] 

C 0.0000136 0.0000204639 0.0000204639 0.0000136 1.504699 

F 0.173697 0.78166366 0.781643196 0.1736834 4.500391 

M 0.3772208 2.640546 1.85888234 0.2035238 9.133489 

G 0.3773461 2.0754 -0.565146 0.0001253 -4510.34 

D 0.5507769 1.376942 -0.698458 0.1734308 -4.0273 

J 0.5509108 2.203643 0.826701 0.0001339 6174.018 

B 11.0302 222.0604 219.856757 10.4792892 20.98012 

A 17.369998 52.10994 -169.95046 6.339798 -26.8069 

N 110.6783 664.07 611.96006 93.308302 6.558474 

I 110.6784 498.053 -166.017 0.0001 -1660170 

O 110.7885 997.0963 499.0433 0.1101 4532.637 

L 110.7889 830.917 -166.1793 0.0004 -415448 

H 111.03 388.6051 -442.3119 0.2411 -1834.56 

K 111.1405 722.4134 333.8083 0.1105 3020.89 

E 111.1409 555.7043 -166.7091 0.0004 -416773 
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Alternatives that are more expensive and less ineffective are excluded.  Having excluded 

strategy F, M, J, B, N, O and K, ICERs are recalculated for the remaining strategies (C, 

G, D, A, I, L, H and E) and are shown in Table 4.9.  

 

Table 4.9: Exclusion of more costly and less effective intervention strategies for 

Epidemic region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]/[∆𝐸] 

C 0.0000136 0.0000204639 0.0000204639 0.0000136 1.504699 

G 0.3773461 2.0754 2.075379536 0.3773325 5.500135 

D 0.5507769 1.376942 -0.698458 0.1734308 -4.0273 

A 17.369998 52.10994 50.732998 16.8192211 3.01637 

I 110.6784 498.053 445.94306 93.308402 4.779238 

L 110.7889 830.917 332.864 0.1105 3012.344 

H 111.03 388.6051 -442.3119 0.2411 -1834.56 

E 111.1409 555.7043 167.0992 0.1109 1506.756 

 

The dominated strategies (G, A, L and E) are then excluded and the ICERs are 

recalculated again (Table 4.10). 
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Table 4.10: Exclusion of dominated alternative intervention strategies for Epidemic 

region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]/[∆𝐸] 

C 0.0000136 0.0000204639 0.0000204639 0.0000136 1.504699 

D 0.5507769 1.376942 1.376921536 0.5507633 2.500024 

I 110.6784 498.053 496.676058 110.1276231 4.510004 

H 111.03 388.6051 -109.4479 0.3516 -311.285 

 

In Table 4.10 the most cost effective quadrant will be strategy C and strategy H and in 

deciding between them the size of the available budget must be brought to consideration. 

Strategy H is the combination of treatment and IRS while strategy C is the use of IRS 

only. 

 

4.3.2.3 Simulation Results on Effectiveness for the Seasonal Region  

The Table 4.11 below summarizes the simulation results on the effectiveness (infections 

averted) and the total costs by the different strategies for endemic scenario in Kenya.  
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Table 4.11: Intervention strategies and its corresponding infections averted plus cost 

for Seasonal region  

Strategies Infections averted Cost 

C 0.00003463761 0.00005195642 

F 0.0640685 0.2883082 

A 0.06416182 0.1924855 

G 0.1331041 0.7324025 

M 0.1332328 0.9326293 

D 0.1972578 0.493144 

J 0.1973375 0.7893501 

I 115.5753 520.0888 

N 115.5754 693.4524 

L 115.6155 867.1166 

O 115.6157 1040.541 

B 115.6983 231.3967 

H 115.6985 404.9447 

E 115.7387 578.6933 

K 115.7387 752.3019 

 

The ICER for every two competing strategies was calculated and the results are presented 

in table 4.12.  
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Table 4.12: Incremental cost-effectiveness ratios of all combined strategies for 

Seasonal region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.00003463761 0.00005195642 0.00005195642 0.00003463761 1.5 

F 0.0640685 0.2883082 0.288256244 0.064033862 4.501622 

A 0.06416182 0.1924855 -0.0958227 9.332E-05 -1026.82 

G 0.1331041 0.7324025 0.539917 0.06894228 7.831435 

M 0.1332328 0.9326293 0.2002268 0.0001287 1555.764 

D 0.1972578 0.493144 -0.4394853 0.064025 -6.86428 

J 0.1973375 0.7893501 0.2962061 7.97E-05 3716.513 

I 115.5753 520.0888 519.2994499 115.3779625 4.500855 

N 115.5754 693.4524 173.3636 0.0001 1733636 

L 115.6155 867.1166 173.6642 0.0401 4330.778 

O 115.6157 1040.541 173.4244 0.0002 867122 

B 115.6983 231.3967 -809.1443 0.0826 -9795.94 

H 115.6985 404.9447 173.548 0.0002 867740 

E 115.7387 578.6933 173.7486 0.0402 4322.104 

K 115.7387 752.3019 173.6086 0 Inf 
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Alternatives that are more expensive and less ineffective are excluded.  Having excluded 

strategy F, G, M, J, N, O, H and K, the ICERs are recalculated for the remaining 

strategies (C, A, D, I, L, B and E) and are shown in Table 4.13.  

 

Table 4.13: Exclusion of more costly and less effective intervention strategies for 

Seasonal region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.00003463761 0.00005195642 0.00005195642 0.00003463761 1.5 

A 0.06416182 0.1924855 0.192433544 0.064127182 3.000811 

D 0.1972578 0.493144 0.3006585 0.13309598 2.25896 

I 115.5753 520.0888 519.595656 115.3780422 4.503419 

L 115.6155 867.1166 347.0278 0.0402 8632.532 

B 115.6983 231.3967 -635.7199 0.0828 -7677.78 

E 115.7387 578.6933 347.2966 0.0404 8596.45 

 

The dominated strategies (A, I, and L) are then excluded and the ICERs are recalculated 

again (Table 4.14). 
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Table 4.14: Exclusion of dominated alternative intervention strategies for Seasonal 

region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.00003463761 0.00005195642 0.00005195642 0.00003463761 1.5 

D 0.1972578 0.493144 0.493092044 0.197223162 2.500173 

B 115.6983 231.3967 230.903556 115.5010422 1.999147 

E 115.7387 578.6933 347.2966 0.0404 8596.45 

 

In Table 4.14 the most cost effective quadrant will be strategy C and strategy B and in 

deciding between them the size of the available budget must be brought to consideration. 

Strategy B is the use of treatment only while strategy C is the use of IRS only. 

 

4.3.2.4 Simulation Results on Effectiveness for the Low risk Region 

The Table 4.15 below summarizes the simulation results on the effectiveness (infections 

averted) and the total costs by the different strategies for low risk region in Kenya.  
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Table 4.15: Intervention strategies and its corresponding infections averted plus cost 

for low risk region  

Strategies Infections averted Cost 

C 0.0000485669 0.00007285036 

M 0.00104092 0.007286437 

G 0.001050199 0.005776093 

D 0.001090816 0.00272704 

J 0.001139414 0.004557057 

F 0.002131766 0.009592945 

A 0.002141062 0.06423186 

I 119.0639 535.7877 

N 119.0641 714.3848 

B 119.0646 238.1291 

H 119.0647 416.7266 

L 119.0653 892.9895 

O 119.0656 1071.59 

E 119.0659 595.3293 

K 119.0662 773.9302 

 

The ICER for every two competing strategies was calculated and the results are presented 

in table 4.16. 
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Table 4.16: Incremental cost-effectiveness ratios of all combined strategies for Low 

risk region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.0000485669 0.00007285036 0.00007285036 0.0000485669 1.5 

M 0.00104092 0.007286437 0.007213587 0.000992353 7.269173 

G 0.001050199 0.005776093 -0.001510344 0.000009295978 -162.77 

D 0.001090816 0.00272704 -0.003049053 4. 0.000040617 -75.0684 

J 0.001139414 0.004557057 0.001830017 0.000048598 37.65622 

F 0.002131766 0.009592945 0.005035888 0.000992352 5.074699 

A 0.002141062 0.06423186 0.054638915 0.000009296 5877.68 

I 119.0639 535.7877 535.7234681 119.0617589 4.499543 

N 119.0641 714.3848 178.5971 0.0002 892985.5 

B 119.0646 238.1291 -476.2557 0.0005 -952511 

H 119.0647 416.7266 178.5975 0.0001 1785975 

L 119.0653 892.9895 476.2629 0.0006 793771.5 

O 119.0656 1071.59 178.6005 0.0003 595335 

E 119.0659 595.3293 -476.2607 0.0003 -1587536 

K 119.0662 773.9302 178.6009 0.0003 595336.3 

 

Alternatives that are more expensive and less ineffective are excluded.  Having excluded 

strategy M, D, J, A, N, H and O, then the ICERs are recalculated for the remaining 

strategies (C, G, F, I, B, L, E and K) and are shown in Table 4.17.  
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Table 4.17: Exclusion of more costly and less effective intervention strategies for 

Low risk region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.0000485669 0.00007285036 0.00007285036 0.0000485669 1.5 

G 0.001050199 0.005776093 0.005703243 0.001001632 5.69395 

F 0.002131766 0.009592945 0.003816852 0.001081567 3.529002 

I 119.0639 535.7877 535.7781071 119.0617682 4.500001 

B 119.0646 238.1291 -297.6586 0.0007 -425227 

L 119.0653 892.9895 654.8604 0.0007 935514.9 

E 119.0659 595.3293 -297.6602 0.0006 -496100 

K 119.0662 773.9302 178.6009 0.0003 595336.3 

 

 

The dominated strategies (G, I, L, K) are then excluded and the ICERs are recalculated 

again (Table 4.18). 
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Table 4.18: Exclusion of dominated alternative intervention strategies for Low risk 

region  

Strategy Strategy 

effects [E] 

Cost ($) 

[C] 

Incremental 

cost [∆𝐶] 

Incremental 

effect [∆𝐸] 

ICER 

[∆𝐶]

/[∆𝐸] 

C 0.0000485669 0.00007285036 0.00007285036 0.0000485669 1.5 

F 0.002131766 0.009592945 0.009520095 0.002083199 4.56994 

B 119.0646 238.1291 238.1195071 119.0624682 1.999954 

E 119.0659 595.3293 357.2002 0.0013 274769.4 

 

In Table 4.18 the most cost effective quadrant will be strategy C and strategy B and in 

deciding between them the size of the available budget must be brought to consideration. 

Strategy B is the use of treatment only while strategy C is the use of IRS only. 

The cost-effectiveness analysis of one or all possible combinations of malaria control 

strategies for the optimal control problem has been done for the different transmission 

settings using ICER based on the findings of the simulation optimal control model. The 

findings indicated that the most cost effective intervention strategies in endemic areas and 

the endemic region is the combination of ITNs, IRS, and IPTp was the most cost-

effective of all the combined strategies developed in this study for malaria disease control 

and prevention. This finding is different from the findings of Okosun et al., (2013), who 

found that the combination of the spray of insecticides and treatment of infective 

individuals were the cost effective strategies. This may be due to the fact that in our study 

we considered the at most risk groups while in the Okusun et al., (2013) they considered 

whole population. The findings shows that preventive measures tends to have a greater 

health benefit in a cost effective or economical manner in minimizing malaria 

transmission for the most at risk groups. Stuckey et al., (2014) showed that increasing 

coverage of vector control interventions (preventive strategies) had a larger simulated 

impact compared to adding treatment measures.  
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Our results show that for the epidemic prone areas the cost effective strategy was the 

combination of the treatment and IRS which agrees with Okosun et al., (2013). This is 

because the combination of the preventive and treatment actions tend to be more effective 

in the reduction of parasitic prevalence to below 1% (Griffin et al., 2010). This is due to 

the fact that infected mosquito population is reduced by IRS and the infected human 

population is reduced via the treatment.  

For seasonal areas, the findings of this study showed that the combination ITNs and 

treatment would be the most cost effective intervention strategy to reduce malaria 

transmission among the under-five and the pregnant women.  This is slightly different 

with the findings of Griffin et al (2010) who found that for the high seasonal transmission 

settings the use of LLITNs, IRS and treatment would help reduce the transmission of 

malaria. 

The results showed that for the low risk areas is the use of treatment only. These findings 

were different from Hansen et al., (2012) who found that the most cost effective strategy 

was the use of ITNs alone in Uganda low transmission settings.  

The result confirms the role which the four intervention strategies are playing in order to 

eradicate or minimize the spreading of the malaria disease among the at risk groups. The 

policy implications of these findings are that different transmission settings require 

different interventions that are health beneficial and cost effective. The results can guide 

decision makers in making more informed and evidence-based choices on the health 

resources being allocated. These findings may help inform the development of guidelines 

for prevention of malaria among the under-five and the pregnant women in different 

transmission settings in Kenya as well as in other African countries. 

Mathematical models can help in getting Information on the optimal malaria intervention 

strategies tailored to specific transmission patterns of malaria. This will provide basis for 

informed decision making about malaria control that are beneficial and cost effective and 

hence the path towards malaria elimination.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, a malaria transmission dynamics model (using a deterministic system of 

nonlinear ordinary differential equations) incorporating intervention strategies being 

practiced in Kenya was formulated and analyzed. The aim was to investigate the effect of 

these control strategies in minimizing malaria transmission in Kenya among the most at 

risk group of malaria (children under-five years of age and the pregnant women) for 

different transmission settings in Kenya which represents the different transmission 

settings across Africa. Interventions considered were those recommended by WHO for 

the most at risk group for malaria i.e. the use of insecticide treated bednets (ITNs), 

treatment, Indoor Residual Spray (IRS) and Intermittent Preventive Treatment for 

Pregnant women (IPTp). 

We assumed that the control parameters are constant so as to determine the basic 

reproduction number, steady states and their stability as well as the bifurcation analysis. 

From the analysis of the malaria model with intervention strategies, there exists a domain 

where the model is epidemiologically and mathematically well-posed and that if 𝑅0 < 1, 

the disease cannot survive in the Kenya (different epidemiological zones). The disease 

free equilibrium is globally asymptotically stable if 𝑅0 < 1. The model may exhibit a 

backward bifurcation (a situation where disease free and endemic equilibrium coexist) at 

𝑅0 = 1 implying the existence of multiple endemic equilibria for 𝑅0 < 1 . However, If 

𝑅0 ≥ 1, the model admits a unique endemic equilibrium which is globally asymptotically 

stable in the interior of the feasible region 𝐷 . The most sensitive parameters were 

mosquito biting rate (𝜖) and mosquito death rate (𝜇𝑚). Control measures have effect in 

lowering exposed and infected members of both human and mosquito population. When 

there are no intervention strategies put in place the number of exposed and infected 

classes for humans and mosquitoes increases and decreases when there are interventions. 

The study formulated and performed optimal control analysis for malaria model with 

intervention strategies from which we considered the time dependent controls. Using 
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Pontryagin maximum principle we derived and analyzed the necessary conditions for the 

optimal control of malaria with effective use of ITNs, treatment, IRS and IPTp. Using the 

optimal control approach, we can conclude that, according to our model, the optimal 

control strategies for malaria control in endemic areas that an effective IRS use and 

treatment will be beneficial to the community for the control of malaria disease (infected 

human and mosquito population) faster at a lower cost for the endemic settings. For the 

epidemic prone areas, the optimal control strategy for reducing the infected human and 

mosquito population was the use of treatment and IRS. For seasonal areas much impact 

will be felt when treatment and for the low risk areas, just the use ITNs and treatment will 

be sufficient to reduce infected human and mosquito population. 

In assessing the cost effectiveness of the optimal control strategies for malaria, we can 

conclude that for the endemic regions the combination of ITNs, IRS, and IPTp is the 

most cost-effective of all the combined strategies developed in this study for malaria 

disease control and prevention; for the epidemic prone areas is the combination of the 

treatment, and IRS; for seasonal areas is the combination ITNs plus treatment; and for 

the low risk areas is the use of treatment only.  

Mathematical models can help provide basis for informed decision making about malaria 

control that are beneficial and cost effective and hence the path towards malaria 

elimination. Control programs that follow these strategies can effectively reduce the 

spread of malaria disease in different malaria transmission settings in Kenya. 

 

5.2 Recommendations 

Policy makers have to be informed about the research results. The following 

recommendations should be considered 

1. Combination of malaria control strategies plays a bigger role in reducing malaria 

transmission, the study recommends scale up of intervention strategies being used 

in Kenya around those who are at most risk of malaria/ exposed to malaria in 

different transmission settings. 
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2. Strategies targeting to reduce mosquito population and mosquito biting rates 

(vector control) such as ITNs and IRS should be implemented since they are 

proving to be effective in reducing transmission of malaria in Kenya. There will 

be need for the National Control Programme to create awareness on mosquito 

reduction strategies.  

3. The recommended optimal control strategies are the combined use of treatment 

and IRS for endemic areas; use of treatment and IRS for endemic regions; use of 

treatment for seasonal areas; and use of ITNs and treatment for low risk areas. 

These are the strategies that will minimize malaria transmission at minimum cost 

4. The recommended cost effective strategies are the combination of ITNs, IRS and 

IPTp for endemic areas; use of treatment and IRS for epidemic prone areas; use of 

ITNs and treatment for seasonal areas; and use of treatment only for low risk 

areas. These are the strategies which produces health improvements in the most 

cost effective way for different epidemiological zones.  

 

5.3 Future Work 

The proposed model has some limitations. We did not consider immigrants into the 

susceptible population. Hence the inclusion of immigrants in the model would 

supplement on the information that would be used on which intervention strategy to 

prioritize to specific groups.  

Other preventive measures that may help to eliminate the existence of mosquitoes such as 

eradicating breeding grounds for mosquitoes also need to be considered.  

Since this is the first ever modeling, simulation, optimal control and cost effectiveness 

analysis of malaria intervention strategies in free R statistical computing platform, future 

testing and refinement of the model together with simulation with data from amore 

designed study from other representative settings should be done to improve the results. 

Future studies may explore the use of stochastic models to understand the malaria 

dynamics which was not covered by our study. Bayesian approaches may also be 

explored to cater for the uncertainties of the parameters.  
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The model can be extended to include other environmental effect impacting on the spread 

of malaria such as climatic change, temperature, rainfall and humidity. These factors may 

affect some parameters that have been included in the malaria model such as birth rate of 

mosquito population among others.  
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APPENDICES 

APPENDIX I: R CODES 

#ODE solution in R 

library(ggplot2) 

library(gridExtra) 

library(deSolve) 

 

#Model 

Lorenz<-function(t, state, parameters) { 

  with(as.list(c(state, parameters)),{ 

    # rate of change 

    dS<- v+w*R-(1-u1)*x*S-(1-u4)*q*S-z*S 

    dE<- (1-u1)*x*S-(1-u4)*q*S-(n+z)*E 

    dI<- n*E-(g+z)*I-(b+f*u2)*I 

    dR<- (b+f*u2)*I-(w+z)*R 

    dX<- m-(1-u1)*d*X-(e+a*u1+p*u3)*X 

    dY<- (1-u1)*d*X-k*Y-(e+a*u1+p*u3)*Y 

    dZ<- k*Y-(e+a*u1+p*u3)*Z 

    # return the rate of change 

    list(c(dS, dE, dI, dR, dX, dY, dZ)) 

  }) # end with(as.list... 

} 

 

 

#Parameters 

parameters <- c(v=0.2326, w=0.0014, x=0.0001045, 

q=0.0003485, z=0.0000457, n=0.058, g=0.05, b=0.5, f=0.5, 

m=0.071, d=0.00001130, e=0.1429,k=0.0556, a=0.5, p=0.85) 

 

#Initial conditions 

state <- c(S=700, E=250, I=0, R=0, X=5000, Y=500, Z=100) 

 

#Interventions 

interventions <- c(u1=0.0904 ,u2=0.165, u3=0.076, u4=0.035) 

 

Us<-expand.grid(u1=0:1,u2=0:1,u3=0:1,u4=0:1) 

 

#Time specification 

times <-seq(0,140,by=1) 

length(times) 

 

 

#Model Intergration 

######################## 
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Us<-

expand.grid(u1=c(0,0.1),u2=c(0,0.3),u3=c(0,0.7),u4=c(0,0.51

)) 

 

 

outlist<-list() 

for(i in 1:nrow(Us)){ 

  outlist[[i]]<-as.data.frame(ode(y=state,times=times, 

method="ode45", func=Lorenz,parms=c(parameters,Us[i,]))) 

} 

 

for(i in 2:nrow(Us)){ 

  dat1<-outlist[[1]][,c("time","I","Z")] 

  dat2<-outlist[[i]][,c("time","I","Z")] 

  dat1$int<-1 

  dat2$int<-2 

  dat<-rbind(dat1,dat2) 

  UU<-Us[i,] 

  dat$int<-factor(dat$int,labels=c("no 

intervention",paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep=""

,collapse = ","))) 

  plot1<-

ggplot(dat,aes(x=time,y=I,colour=int))+geom_line()+theme_cl

assic()+theme(legend.position="top",legend.direction

 ="vertical")+ 

    

scale_color_manual("",values=c("red","blue"))+labs(y="Infec

ted humans") 

  plot2<-

ggplot(dat,aes(x=time,y=Z,colour=int))+geom_line()+theme_cl

assic()+theme(legend.position="top",legend.direction

 ="vertical")+ 

    

scale_color_manual("",values=c("red","blue"))+labs(y="Infec

ted Mosquitoes") 

  

png(file=paste0(paste(c("u1","u2","u3","u4"),"=",UU,sep="",

collapse = ","),".png")) 

  grid.arrange(plot1,plot2,nrow=1) 

  dev.off() 

} 

# dev.off() 

 

infectionlist<-matrix(NA,nrow=nrow(Us),ncol=2) 

for(i in 1:nrow(Us)){ 
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  infectionlist[i,]<-

c(all=sum(outlist[[i]][,"I"]),diff=sum(outlist[[1]][,"I"])-

sum(outlist[[i]][,"I"])) 

} 

infectiondata<-as.data.frame(infectionlist) 

names(infectiondata)<-c("Incidence","Difference") 

 

labs<-NULL 

for(i in 1:nrow(Us)){ 

   

  labs[i]<-

paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep="",collapse = 

",") 

} 

 

infectiondata$comb<-labs 

 

 

###Optimal control 

################################################## 

rm(list=ls()) 

library(ggplot2) 

library(gridExtra) 

library(deSolve) 

library(reshape2) 

#The Lorenz function 

Lorenz2<-function(t, state, parameters) { 

  with(as.list(c(state, parameters)),{ 

    # rate of change 

    #Optimal control equation 

    u1<-(max(0,min(1,(((L2-L1)*x*S+(L6-

L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/b1))))*u1_ 

    u2<-(max(0,min(1,((f*(L3-L4)*I)/b2))))*u2_ 

    u3<-(max(0,min(1,((p*X*L5+Y*L6+Z*L7)/b3))))*u3_ 

    u4<-(max(0,min(1,((L2-L1)*q*S/b))))*u4_ 

     

    dL1<-(-(1-u1)*x*L1-(1-u4)*q*L1-z*L1+(1-u1)*x*L2+(1-

u4)*q*L2)*(1) 

    dL2<-(a3-(n+z)*L2+L3*n) 

    dL3<-(a2-(g+z)*L3-(b+f*u2)*L3+L4*(b+f*u2)) 

    dL4<-(w*L1-(w+z)*L4) 

    dL5<-(-(1-u1)*d*L5-(e+a*u1+p*u3)*L5+(1-u1)*d*L6+a1) 

    dL6<-(-(k)*L6-(e+a*u1+p*u3)*L6+k*L7+a1) 

    dL7<-(-(e+a*u1+p*u3)*L7+a1) 

     

    dS<- v+w*R-(1-u1)*x*S-(1-u4)*q*S-z*S 

    dE<- (1-u1)*x*S-(1-u4)*q*S-(n+z)*E 
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    dI<- n*E-(g+z)*I-(b+f*u2)*I 

    dR<- (b+f*u2)*I-(w+z)*R 

    dX<- m-(1-u1)*d*X-(e+a*u1+p*u3)*X 

    dY<- (1-u1)*d*X-k*Y-(e+a*u1+p*u3)*Y 

    dZ<- k*Y-(e+a*u1+p*u3)*Z 

    # return the rate of change 

    list(c(dS, dE, dI, dR, dX, dY, 

dZ,dL1,dL2,dL3,dL4,dL5,dL6,dL7)) 

  }) # end with(as.list... 

} 

 

 

 

#Parameters 

parameters <- c(v=0.2326, w=0.0014, x=0.0001045, 

q=0.0003485, z=0.0000457, n=0.058, 

                g=0.05, b=0.5, f=0.5, m=0.071, 

d=0.00001130, e=0.1429,k=0.0556, a=0.5,a1=20, p=0.85, 

                c=0.6,j=0.35,l=0.09,lw=0.015,a3=100, 

                a2=92,b1=20,b2=65,b3=10,b4=10,i=0.833 

                ) 

 

#Initial conditions 

state <- c(S=700, E=250, I=00, R=00, X=5000, Y=500, 

Z=100,L1=100,L2=0.02,L3=0.025,L4=000,L5=0000,L6=000,L7=0.04

5) 

 

#Time specification 

 

times <-seq(0,140,by=1) 

length(times) 

 

#Model Intergration 

Us<-expand.grid(u1_=0:1,u2_=0:1,u3_=0:1,u4_=0:1) 

 

outlist<-list() 

for(i in 1:nrow(Us)){ 

  outlist[[i]]<-as.data.frame(ode(y=state,times=times, 

method="ode45", func=Lorenz2,parms=c(parameters,Us[i,]))) 

} 

 

str(outlist) 

 

maxm<-NULL 

cost<-NULL 

comb<-NULL 

costs<-c(3.0,2.0,1.5,2.5) 
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for(i in 1:nrow(Us)){ 

  maxm[i]<-

match(max(outlist[[i]][,"I"]),outlist[[i]][,"I"]) 

  comb[i]<-

paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep="",collapse = 

",") 

  cost[i]<-sum((Us[i,]>0)*costs) 

   

} 

maxm_dat<-data.frame(comb,maxm) 

 

 

for(i in 2:nrow(Us)){ 

  dat1<-outlist[[1]][,c("time","I","Z")] 

  dat2<-outlist[[i]][,c("time","I","Z")] 

   

  dat1$int<-1 

  dat2$int<-2 

  dat<-rbind(dat1,dat2) 

  UU<-Us[i,] 

  dat$int<-factor(dat$int,labels=c("no 

intervention",paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep=""

,collapse = ","))) 

  plot1<-

ggplot(dat,aes(x=time,y=I,colour=int))+geom_line()+theme_cl

assic()+theme(legend.position="top",legend.direction

 ="vertical")+ 

    

scale_color_manual("",values=c("red","blue"))+labs(y="Infec

ted humans") 

  plot2<-

ggplot(dat,aes(x=time,y=Z,colour=int))+geom_line()+theme_cl

assic()+theme(legend.position="top",legend.direction

 ="vertical")+ 

    

scale_color_manual("",values=c("red","blue"))+labs(y="Infec

ted Mosquitoes") 

  

png(file=paste0(paste(c("u1","u2","u3","u4"),"=",UU,sep="",

collapse = ","),".png")) 

  grid.arrange(plot1,plot2,nrow=1) 

  dev.off() 

} 

 

 

infectionlist<-matrix(NA,nrow=nrow(Us),ncol=2) 

for(i in 1:nrow(Us)){ 
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  infectionlist[i,]<-

c(all=sum(outlist[[i]][,"I"]),diff=sum(outlist[[1]][,"I"])-

sum(outlist[[i]][,"I"])) 

} 

infectiondata<-as.data.frame(infectionlist) 

names(infectiondata)<-c("Incidence","Difference") 

 

labs<-NULL 

for(i in 1:nrow(Us)){ 

   

  labs[i]<-

paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep="",collapse = 

",") 

} 

 

infectiondata$comb<-labs 

infectiondata$cost<-cost 

infectiondata$cost_diff<-

with(infectiondata,cost*Difference) 

 

infectiondata<-dplyr::arrange(infectiondata,Difference) 

infectiondata$icer<-NA 

infectiondata$diff_cost<-NA 

infectiondata$diff_effect<-NA 

for(i in 2:nrow(Us)){ 

  infectiondata$diff_cost[i]<-

with(infectiondata,(cost_diff[i]-cost_diff[i-1])) 

  infectiondata$diff_effect[i]<-

with(infectiondata,(Difference[i]-Difference[i-1])) 

  infectiondata$icer[i]<-with(infectiondata,(cost_diff[i]-

cost_diff[i-1])/(Difference[i]-Difference[i-1])) 

} 

 

tab<-

infectiondata[,c("comb","cost_diff","Difference","diff_cost

","diff_effect","icer")] 

tab<-tab[tab$icer<0,] 

 

tab$icer<-NA 

tab$diff_cost<-NA 

tab$diff_effect<-NA 

for(i in 2:nrow(tab)){ 

  tab$diff_cost[i]<-with(tab,(cost_diff[i]-cost_diff[i-1])) 

  tab$diff_effect[i]<-with(tab,(Difference[i]-Difference[i-

1])) 

  tab$icer[i]<-with(tab,(cost_diff[i]-cost_diff[i-

1])/(Difference[i]-Difference[i-1])) 
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} 

 

tab<-tab[tab$icer<0,] 

 

tab$icer<-NA 

tab$diff_cost<-NA 

tab$diff_effect<-NA 

for(i in 2:nrow(tab)){ 

  tab$diff_cost[i]<-with(tab,(cost_diff[i]-cost_diff[i-1])) 

  tab$diff_effect[i]<-with(tab,(Difference[i]-Difference[i-

1])) 

  tab$icer[i]<-with(tab,(cost_diff[i]-cost_diff[i-

1])/(Difference[i]-Difference[i-1])) 

} 

 

 

############################################ 

u1<-(max(0,min(1,(((L2-L1)*x*S+(L6-

L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/b1))))*u1_ 

u2<-(max(0,min(1,((f*(L3-L4)*I)/b2))))*u2_ 

u3<-(max(0,min(1,((p*X*L5+Y*L6+Z*L7)/b3))))*u3_ 

u4<-(max(0,min(1,((L2-L1)*q*S/b))))*u4_ 

 

outlist2<-outlist 

for(i in 1:length(outlist2)){ 

  # outlist2[[i]]["u1"]<-NA 

  if(Us[i,"u1_"]) outlist2[[i]]["u1"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,(((L2-L1)*x*S+(L6-

L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/b1)))) 

  if(Us[i,"u2_"]) outlist2[[i]]["u2"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,((f*(L3-L4)*I)/b2))))*Us[i,"u2_"] 

  if(Us[i,"u3_"]) outlist2[[i]]["u3"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,((p*X*L5+Y*L6+Z*L7)/b3)))) 

   

  if(Us[i,"u4_"]) outlist2[[i]]["u4"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,((L2-L1)*q*S/b)))) 

   

} 

 

#pdf(file="us.pdf") 

for(i in 2:length(outlist2)){ 

  cols<-names(outlist2[[i]]) 

  cols2<-cols[!grepl("u",cols)] 
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  dat_temp<-melt(outlist2[[i]],id=cols2) 

  dat_temp$variable<-paste0(dat_temp$variable," = 1") 

  dat_temp$variable<-as.factor(dat_temp$variable) 

  plot<-

ggplot(dat_temp,aes(x=time,y=value,colour=variable))+geom_l

ine() 

  plot<-plot+labs(x="Time(days)",y="Control 

profile")+theme_classic() 

  # plot<-plot+scale_colour_manual("",values=1:sum(Us[i,])) 

  print(plot) 

  png(file=paste0("figure ",i,".png")) 

  print(plot) 

  dev.off()  

} 

 

#dev.off() 

 

 

####Cost effectiveness analysis 

########cost effectiveness analysis 

rm(list=ls()) 

library(ggplot2) 

library(gridExtra) 

library(deSolve) 

library(reshape2) 

 

#Costate function 

Lorenz2<-function(t, state, parameters) { 

  with(as.list(c(state, parameters)),{ 

    # rate of change 

    #Optimal control equation 

    u1<-(max(0,min(1,(((L2-L1)*x*S+(L6-

L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/b1))))*u1_ 

    u2<-(max(0,min(1,((f*(L3-L4)*I)/b2))))*u2_ 

    u3<-(max(0,min(1,((p*X*L5+Y*L6+Z*L7)/b3))))*u3_ 

    u4<-(max(0,min(1,((L2-L1)*q*S/b))))*u4_ 

     

    dL1<-(-b1*u1*exp(-phi)-b4*u1*exp(-phi)-(1-u1)*x*L1-(1-

u4)*q*L1-z*L1+(1-u1)*x*L2+(1-u4)*q*L2)*(1) 

    dL2<-(-b1*u1*exp(-phi)-b4*u1*exp(-phi)+a3-

(n+z)*L2+L3*n) 

    dL3<-(-b2*u2*f*exp(-phi)+a2-(g+z)*L3-

(b+f*u2)*L3+L4*(b+f*u2)) 

    dL4<-(w*L1-(w+z)*L4) 

    dL5<-(-b1*u1*exp(-phi)-b3*p*u3*exp(-phi)-(1-u1)*d*L5-

(e+a*u1+p*u3)*L5+(1-u1)*d*L6+a1) 
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    dL6<-(-b1*u1*exp(-phi)-b3*p*u3*exp(-phi)-(k)*L6-

(e+a*u1+p*u3)*L6+k*L7+a1) 

    dL7<-(-b1*u1*exp(-phi)-b3*p*u3*exp(-phi)-

(e+a*u1+p*u3)*L7+a1) 

     

     

    dS<- v+w*R-(1-u1)*x*S-(1-u4)*q*S-z*S 

    dE<- (1-u1)*x*S-(1-u4)*q*S-(n+z)*E 

    dI<- n*E-(g+z)*I-(b+f*u2)*I 

    dR<- (b+f*u2)*I-(w+z)*R 

    dX<- m-(1-u1)*d*X-(e+a*u1+p*u3)*X 

    dY<- (1-u1)*d*X-k*Y-(e+a*u1+p*u3)*Y 

    dZ<- k*Y-(e+a*u1+p*u3)*Z 

     

     

    # return the rate of change 

    list(c(dS, dE, dI, dR, dX, dY, 

dZ,dL1,dL2,dL3,dL4,dL5,dL6,dL7)) 

  }) # end with(as.list... 

} 

 

#Parameters 

parameters <- c(v=0.2326, w=0.0014, x=0.0001045, 

q=0.0003485, z=0.0000457, n=0.058, 

                g=0.05, b=0.5, f=0.5, m=0.071, 

d=0.00001130, e=0.1429,k=0.0556, a=0.5,a1=20, p=0.85, 

                c=0.6,j=0.35,l=0.09,lw=0.015,a3=100,phi=3, 

                a2=92,b1=20,b2=65,b3=10,b4=10,i=0.833 

) 

 

#Initial conditions 

state <- c(S=700, E=250, I=00, R=00, X=5000, Y=500, 

Z=100,L1=100,L2=0.02,L3=0.025,L4=000,L5=0000,L6=000,L7=0.04

5) 

 

#Time specification 

#0.01 daily intervals. R's function seq() creates the time 

sequence. 

 

times <-seq(0,140,by=1) 

length(times) 

 

 

#Model Intergration 

Us<-expand.grid(u1_=0:1,u2_=0:1,u3_=0:1,u4_=0:1) 
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outlist<-list() 

for(i in 1:nrow(Us)){ 

  outlist[[i]]<-as.data.frame(ode(y=state,times=times, 

method="ode45", func=Lorenz2,parms=c(parameters,Us[i,]))) 

} 

 

maxm<-NULL 

cost<-NULL 

comb<-NULL 

costs<-c(3.0,2.0,1.5,2.5) 

for(i in 1:nrow(Us)){ 

  maxm[i]<-

match(max(outlist[[i]][,"I"]),outlist[[i]][,"I"]) 

  comb[i]<-

paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep="",collapse = 

",") 

  cost[i]<-sum((Us[i,]>0)*costs) 

   

} 

 

maxm_dat<-data.frame(comb,maxm) 

 

for(i in 2:nrow(Us)){ 

  dat1<-outlist[[1]][,c("time","I","Z")] 

  dat2<-outlist[[i]][,c("time","I","Z")] 

   

  dat1$int<-1 

  dat2$int<-2 

  dat<-rbind(dat1,dat2) 

  UU<-Us[i,] 

  dat$int<-factor(dat$int,labels=c("no 

intervention",paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep=""

,collapse = ","))) 

  plot1<-

ggplot(dat,aes(x=time,y=I,colour=int))+geom_line()+theme_cl

assic()+theme(legend.position="top",legend.direction  

="vertical")+ 

    

scale_color_manual("",values=c("red","blue"))+labs(y="Infec

ted humans") 

  plot2<-

ggplot(dat,aes(x=time,y=Z,colour=int))+geom_line()+theme_cl

assic()+theme(legend.position="top",legend.direction

 ="vertical")+ 

    

scale_color_manual("",values=c("red","blue"))+labs(y="Infec

ted Mosquitoes") 
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png(file=paste0(paste(c("u1","u2","u3","u4"),"=",UU,sep="",

collapse = ","),".png")) 

  grid.arrange(plot1,plot2,nrow=1) 

  dev.off() 

} 

# dev.off() 

 

infectionlist<-matrix(NA,nrow=nrow(Us),ncol=2) 

for(i in 1:nrow(Us)){ 

  infectionlist[i,]<-

c(all=sum(outlist[[i]][,"I"]),diff=sum(outlist[[1]][,"I"])-

sum(outlist[[i]][,"I"])) 

} 

infectiondata<-as.data.frame(infectionlist) 

names(infectiondata)<-c("Incidence","Difference") 

 

labs<-NULL 

for(i in 1:nrow(Us)){ 

   

  labs[i]<-

paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep="",collapse = 

",") 

} 

 

infectiondata$comb<-labs 

infectiondata$cost<-cost 

infectiondata$cost_diff<-

with(infectiondata,cost*Difference) 

 

infectiondata<-dplyr::arrange(infectiondata,Difference) 

infectiondata$icer<-NA 

infectiondata$diff_cost<-NA 

infectiondata$diff_effect<-NA 

for(i in 2:nrow(Us)){ 

  infectiondata$diff_cost[i]<-

with(infectiondata,(cost_diff[i]-cost_diff[i-1])) 

  infectiondata$diff_effect[i]<-

with(infectiondata,(Difference[i]-Difference[i-1])) 

  infectiondata$icer[i]<-with(infectiondata,(cost_diff[i]-

cost_diff[i-1])/(Difference[i]-Difference[i-1])) 

} 

 

tab<-

infectiondata[,c("comb","cost_diff","Difference","diff_cost

","diff_effect","icer")] 

tab<-tab[tab$icer<0,] 
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tab$icer<-NA 

tab$diff_cost<-NA 

tab$diff_effect<-NA 

for(i in 2:nrow(tab)){ 

  tab$diff_cost[i]<-with(tab,(cost_diff[i]-cost_diff[i-1])) 

  tab$diff_effect[i]<-with(tab,(Difference[i]-Difference[i-

1])) 

  tab$icer[i]<-with(tab,(cost_diff[i]-cost_diff[i-

1])/(Difference[i]-Difference[i-1])) 

} 

 

tab<-tab[tab$icer<0,] 

 

tab$icer<-NA 

tab$diff_cost<-NA 

tab$diff_effect<-NA 

for(i in 2:nrow(tab)){ 

  tab$diff_cost[i]<-with(tab,(cost_diff[i]-cost_diff[i-1])) 

  tab$diff_effect[i]<-with(tab,(Difference[i]-Difference[i-

1])) 

  tab$icer[i]<-with(tab,(cost_diff[i]-cost_diff[i-

1])/(Difference[i]-Difference[i-1])) 

} 

 

 

 

###control profile 

u1<-(max(0,min(1,(((L2-L1)*x*S+(L6-

L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/b1))))*u1_ 

u2<-(max(0,min(1,((f*(L3-L4)*I)/b2))))*u2_ 

u3<-(max(0,min(1,((p*X*L5+Y*L6+Z*L7)/b3))))*u3_ 

u4<-(max(0,min(1,((L2-L1)*q*S/b))))*u4_ 

 

outlist2<-outlist 

for(i in 1:length(outlist2)){ 

  # outlist2[[i]]["u1"]<-NA 

  if(Us[i,"u1_"]) outlist2[[i]]["u1"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,(((L2-L1)*x*S+(L6-

L5)*d*X+a*X*L5+a*Y*L6+a*Z+L7)/b1)))) 

  if(Us[i,"u2_"]) outlist2[[i]]["u2"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,((f*(L3-L4)*I)/b2))))*Us[i,"u2_"] 

  if(Us[i,"u3_"]) outlist2[[i]]["u3"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,((p*X*L5+Y*L6+Z*L7)/b3)))) 
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  if(Us[i,"u4_"]) outlist2[[i]]["u4"]<-

with(c(as.list(outlist2[[i]]),as.list(parameters)),pmax(0,p

min(1,((L2-L1)*q*S/b)))) 

   

} 

 

 

for(i in 2:length(outlist2)){ 

  cols<-names(outlist2[[i]]) 

  cols2<-cols[!grepl("u",cols)] 

  dat_temp<-melt(outlist2[[i]],id=cols2) 

  dat_temp$variable<-paste0(dat_temp$variable," = 1") 

  dat_temp$variable<-as.factor(dat_temp$variable) 

  plot<-

ggplot(dat_temp,aes(x=time,y=value,colour=variable))+geom_l

ine() 

  plot<-plot+labs(x="Time(days)",y="Control 

profile")+theme_classic() 

  # plot<-plot+scale_colour_manual("",values=1:sum(Us[i,])) 

  print(plot) 

  png(file=paste0("figure ",i,".png")) 

  print(plot) 

  dev.off()  

} 

 

 

###shadow prices 

outlist3<-outlist 

for(i in 1:length(outlist3)){ 

  outlist3[[i]]["sps"]<-

with(c(as.list(outlist3[[i]]),as.list(parameters)),b1*S*(ex

p(-phi))+b4*S*(exp(-phi))) 

  outlist3[[i]]["spe"]<-

with(c(as.list(outlist3[[i]]),as.list(parameters)),b1*E*(ex

p(-phi))+b4*E*(exp(-phi))) 

  outlist3[[i]]["spi"]<-

with(c(as.list(outlist3[[i]]),as.list(parameters)),b2*I*(ex

p(-phi))) 

} 

 

#plot shadow prices against time in one plot 

pdf(file="shadow prices.pdf") 

for(i in 1:length(outlist3)){ 

  data<-outlist3[[i]] 

  data<-melt(data[,c("time","sps","spe","spi")],id="time") 
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  plot<-

ggplot(data,aes(x=time,y=value,colour=variable))+geom_line(

) 

  plot<-

plot+labs(title=paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep=

"",collapse = ",")) 

  print(plot) 

} 

 

dev.off() 

#plot shadow prices on Sh against Rh in one plot 

 

pdf(file="shadow prices against Rh.pdf") 

for(i in 1:length(outlist3)){ 

  data<-outlist3[[i]] 

  # data<-

melt(data[,c("time","sps","spe","spi")],id="time") 

  plot<-ggplot(data,aes(x=R,y=sps))+geom_point() 

  plot<-

plot+labs(title=paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep=

"",collapse = ",")) 

  print(plot) 

   

} 

 

dev.off() 

 

###marginal benefit 

mbu1<-x*(L1-L2)+(L6-L5)*d*X+a*(X*L5+Y*L6+Z*L7) 

mbu2<-f*I*(L4-L3) 

mbu3<-p*(X*L5+Y*L6+Z*L7) 

mbu4<-q*(L2-L1) 

 

outlist4<-outlist 

for(i in 1:length(outlist4)){ 

  outlist4[[i]]["mbu1"]<-

with(c(as.list(outlist4[[i]]),as.list(parameters)),x*(L1-

L2)+(L6-L5)*d*X+a*(X*L5+Y*L6+Z*L7)) 

  outlist4[[i]]["mbu2"]<-

with(c(as.list(outlist4[[i]]),as.list(parameters)),f*I*(L4-

L3)) 

  outlist4[[i]]["mbu3"]<-

with(c(as.list(outlist4[[i]]),as.list(parameters)),p*(X*L5+

Y*L6+Z*L7)) 

  outlist4[[i]]["mbu4"]<-

with(c(as.list(outlist4[[i]]),as.list(parameters)),q*(L2-

L1)) 
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} 

 

#plot marginal benefits of (itn, treatment, irs, iptp) 

against time in one plot 

 

pdf(file="marginal benefits.pdf") 

for(i in 1:length(outlist3)){ 

  data<-outlist4[[i]] 

  data<-

melt(data[,c("time","mbu1","mbu2","mbu3","mbu4")],id="time"

) 

  plot<-

ggplot(data,aes(x=time,y=value,colour=variable))+geom_line(

) 

  plot<-

plot+labs(title=paste(paste0("u",1:4),"=",(Us[i,]>0)*1,sep=

"",collapse = ",")) 

  print(plot) 

} 

 

dev.off() 
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