Please use this identifier to cite or link to this item: http://ir.mu.ac.ke:8080/jspui/handle/123456789/9044
Title: Performance comparison of linear and nonlinear precoding for massive MIMO
Authors: Chili, Nompumelelo
Mukubwa, Emmanuel
Pillay, Nelendran
Keywords: Wireless communication
Multiple-input multiple-output
Issue Date: 2023
Publisher: IEEE
Abstract: Massive Multiple-Input Multiple-Output (MIMO) answers the exponentially increasing demand for comprehensive fixed broadband and broadcast wireless communication services. Massive MIMO is a pivotal technology in the 5G and beyond (5GaB) wireless communication systems. This paper compares linear precoding algorithms such as Minimum Mean Square Error (MMSE), Neumann Series Approximation (NSA) with nonlinear precoders such as Tomlinson-Harashima Precoder (THP), and Lattice Reduction (LR) algorithm, the Lenstra-Lenstra-Lov'asz (LLL) precoder. The comparison was conducted using Bit-Error Rate (BER) and signal-to-noise ratio (SNR) performance measures. Simulated results prove that nonlinear precoders outperform linear precoding in high SNR regions.
URI: https://doi.org/10.1109/ICECET58911.2023.10389321
http://ir.mu.ac.ke:8080/jspui/handle/123456789/9044
Appears in Collections:School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.