Please use this identifier to cite or link to this item: http://ir.mu.ac.ke:8080/jspui/handle/123456789/4974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Anil-
dc.contributor.authorKiriamiti, Kirimi-
dc.contributor.authorMusonge, Paul-
dc.contributor.authorOchieng, Aoyi-
dc.contributor.authorS. Onyango, Maurice-
dc.date.accessioned2021-08-02T10:10:04Z-
dc.date.available2021-08-02T10:10:04Z-
dc.date.issued2008-05-05-
dc.identifier.urihttps://doi.org/10.1016/j.cep.2007.01.034-
dc.identifier.urihttp://ir.mu.ac.ke:8080/jspui/handle/123456789/4974-
dc.description.abstractMixing efficiency in stirred tanks is an important consideration in the design of many industrial processes. Computational fluid dynamics (CFD) techniques have been employed in the present work to study the hydrodynamics in a tank stirred by a Rushton turbine. The effect of the impeller clearance on the velocity field and mixing has been investigated. It has been shown that at a low impeller clearance, the Rushton turbine generates a flow field that evolves from the typical two loops to a single loop flow pattern similar to that of an axial impeller. This single loop flow pattern resulted in an increase in axial flow and a decrease in mixing time at a constant power number. It has been found that a draft tube can be used with a single Rushton turbine, at a low clearance to aid axial flow and mixing, and this resulted in 50% reduction in mixing time. There was a good comparison between laser Doppler velocimetry (LDV) experimental and CFD simulation flow fields, both of which showed that the draft tube improved mixing in the tank by suppressing secondary circulation loops.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectRushton turbineen_US
dc.subjectstirred tanksen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjecthydrodynamicsen_US
dc.titleMixing in a tank stirred by a Rushton turbine at a low clearanceen_US
dc.typeArticleen_US
Appears in Collections:School of Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.