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ABSTRACT

Introduction Anaemia during pregnancy is a widespread
health burden globally, especially in low- and middle-
income countries, posing a serious risk to both maternal
and neonatal health. The primary challenge is that
anaemia is frequently undetected or is detected too late,
worsening pregnancy complications. The gold standard
for diagnosing anaemia is a clinical laboratory blood
haemoglobin (Hgb) or haematocrit (Hct) test involving

a venous blood draw. However, this approach presents
several challenges in resource-limited settings regarding
accessibility and feasibility. Although non-invasive blood
Hgb testing technologies are gaining attention, they
remain limited in availability, affordability and practicality.
This study aims to develop and validate a mobile health
(mHealth) machine learning model to reliably predict blood
Hgb and Hct levels in Black African pregnant women using
smartphone photos of the conjunctiva.

Methods and analysis This is a single-centre, cross-
sectional and observational study, leveraging existing
antenatal care services for pregnant women aged 15

to 49 years in Kenya. The study involves collecting
smartphone photos of the conjunctiva alongside
conventional blood Hgb tests. Relevant clinical data
related to each participant’s anaemia status will also be
collected. The photo acquisition protocol will incorporate
diverse scenarios to reflect real-world variability. A clinical
training dataset will be used to refine a machine learning
model designed to predict blood Hgb and Hct levels from
smartphone images of the conjunctiva. Using a separate
testing dataset, comprehensive analyses will assess its
performance by comparing predicted blood Hgb and Hct
levels with clinical laboratory and/or finger-prick readings.
Ethics and dissemination This study is approved by
the Moi University Institutional Research and Ethics
Committee (Reference: IREC/585/2023 and Approval
Number: 004514), Kenya’s National Commission for
Science, Technology, and Innovation (NACOSTI Reference:
491921) and Purdue University’s Institutional Review
Board (Protocol Number: IRB-2023-1235). Participants
will include emancipated or mature minors. In Kenya,
pregnant women aged 15 to 18 years are recognised

1,8,9

STRENGTHS AND LIMITATIONS OF THIS STUDY

= Unmodified smartphone cameras and machine
learning approaches are used to non-invasively
predict blood haemoglobin (Hgb) and haematocrit
(Hct) levels from an easily accessible site—the
conjunctiva.

= Development and validation of the model are tai-
lored to predict blood Hgb and Hct levels in a quan-
titative manner similar to clinical laboratory testing,
rather than detecting anaemia as a binary outcome.

= Study population is specifically designed to address
healthcare disparities impacting Black African preg-
nant women.

= Target gestation includes all three trimesters with
approximately equal representation from each
trimester.

= Due to the observational nature of the study, there is
no intervention administered.

as emancipated or mature minors, allowing them to
provide informed consent independently. The study poses
minimal risk to participants. Findings and results will

be disseminated through submissions to peer-reviewed
journals and presentations at the participating institutions,
including Moi Teaching and Referral Hospital and Kenya’s
Ministry of Health. On completion of data collection and
modelling, this study will demonstrate how machine
learning-driven mHealth technologies can reduce reliance
on clinical laboratories and complex equipment, offering
accessible and scalable solutions for resource-limited and
at-home settings.

INTRODUCTION

The prevalence of anaemia remains high,
affecting nearly one-quarter of the global
population (1.92 billion) in 2021."7 It is
especially predominant among women of
reproductive age in low- and middle-income
countries, impacting 45% of pregnant and

BM) Group

Sakthivel H, et al. BMJ Open 2025;15:€097342. doi:10.1136/bmjopen-2024-097342 1

'sai1fojouyoal Jejiwis pue ‘Buiuresy |v ‘Buluiw elep pue 1xa1 01 pale|al sasn 1o Buipnjoul ‘1ybliAdod Aq palosalold
"1s89n6 Aq Gz0z ‘S Jlequisidas uo jwod fwg uadolway/:diy wolj papeojumod ‘5zZ0zZ AN 8 UO Z¥E.60-720z-uadolwag/9eTT 0T se paysignd 1si1y :uado (NG


http://bmjopen.bmj.com/
http://orcid.org/0000-0003-3796-9643
https://doi.org/10.1136/bmjopen-2024-097342
https://doi.org/10.1136/bmjopen-2024-097342
https://doi.org/10.1136/bmjopen-2024-097342
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2024-097342&domain=pdf&date_stamp=2025-05-09
http://bmjopen.bmj.com/

40% of non-pregnant women.*” In East Africa, it is esti-
mated that 42% of pregnant women are anaemic.” In
Kenya, cases among pregnant women surged from 55539
in 2016 to 295642 in 2019.” At the country’s largest mater-
nity unit, 57% of women in their second and third trimes-
ters were affected by anaemia.® Even in the USA, more
than 40% of females aged 12 to 21 years are estimated to
have iron deficiency or iron-deficiency anaemia.’

Anaemia is a major contributor to maternal and
neonatal mortality. Moderate to severe anaemia exacer-
bates critical conditions such as haemorrhage and sepsis
during pregnancy."” "' Anaemia-associated pregnancy
complications include preterm labour, low birth weight,
stillbirth and neonatal mortality, all of which increase
the risk of adverse outcomes for both mothers and
newborns.'” " Maternal anaemia during pregnancy can
have long-term consequences on a child’s neurocognitive
development.' Importantly, interventions are available
to address anaemia even in resource-limited settings,
including dietary modifications with iron-rich foods,
supplementation with iron, folic acid, vitamin Bl;?’_w and
blood transfusion in cases of severe anaemia.'”

Anaemia management during pregnancy relies on the
ability to quantitatively assess blood haemoglobin (Hgb)
and haematocrit (Hct) levelsin a timely manner. The main
challenge in resource-limited settings is that anaemia
during pregnancy is often not detected or is detected
too late. The World Health Organization (WHO) recom-
mends at least one blood Hgb test per trimester. Unfor-
tunately, women in these settings often lack access to
recommended diagnostic testing. For instance, in Kenya,
only 17% of women had access to minimally adequate
delivery care with routine antenatal tests.'® Other coun-
tries in sub-Saharan Africa and South Asia face similar
challenges. However, there are only a limited number of
studies using non-invasive or point-of-care (POC) blood
Hgb tests specifically for pregnant women in general.'*>?

The gold standard for diagnosing anaemia is a clinical
laboratory blood Hgb test to measure Hgb content in the
blood (grams per decilitre).**** However, venous blood
draw-based Hgb tests have several limitations, including
the need for specialised equipment (haematology anal-
yser), pain, discomfort, risk of haematoma, infection and
iatrogenic blood loss.”” Non-invasive and cost-effective
blood Hgb testing technologies remain limited.”*?* For
example, Masimo and OrSense devices require expensive
specialised equipment available only in advanced hospital
settings.”™ Alternatively, POC blood analysers that
use capillary blood sampling (finger-prick testing) (eg,
Abbott i-STAT, HemoCue and VERI-Q)) are commercially
available, but require environmentally sensitive cartridges
with short shelf lives.***

Non-invasive POC blood Hgb assessment technolo-
gies have received considerable attention,” including
HemaApp,” fingernail mobile app,**™ fingertip
devices,* ** lip mucosal imaging* and palpebral conjunc-
tiva smartphone imaging.*™™ Specifically, the palpe-
bral conjunctiva, a common site for assessing paleness

and anaemia, offers the advantages of easy, non-contact
imaging without surface pressure.” Its underlying micro-
vasculature is unaffected by skin pigmentation (eg, mela-
nocytes), removing the need for personal calibration.”’ In
addition, the conjunctiva may not be easily recognisable,
providing enhanced privacy protection.’ **

Objectives and hypothesis

The primary objective of this study is to develop and vali-
date a mobile health (mHealth) computational model
using machine learning to accurately and precisely
predict blood Hgb and Hct levels in Black African preg-
nant women using photos of the conjunctiva acquired
by a smartphone camera. The central hypothesis is that
blood Hgb levels can be reliably predicted from red-
green-blue (RGB) images of the conjunctiva in a non-
invasive manner with performance comparable to POC
finger-prick testing. First, we will capture high-quality
conjunctiva photos under diverse photo acquisition
settings from pregnant women across all three trimes-
ters, encompassing a broad range of Hgb and Hct levels.
Second, we will refine the mHealth prediction model
and compare the predictions with conventional blood
Hgb and Hct testing methods. Given the physiological
changes during pregnancy that vary by trimester, this
study emphasises acquiring data from all stages to ensure
reliable predictions.

METHODS: PARTICIPANTS, STUDY PROCEDURES AND
OUTCOMES

Study design

This is a single-centre, non-interventional, cross-sectional
and observational study involving the acquisition of
photos of the conjunctiva alongside conventional blood
Hgb and Hct tests. Relevant clinical data related to the
participant’s anaemia status will also be collected. The
blood Hgb and Hct values computed from the mHealth
prediction model will not be used to guide interventions
or diagnostics. All data collection will take place during a
single study visit. Thus, a retention plan is not required.

Setting and recruitment

Figure 1 outlines the setting, enrolment and data collec-
tion. The primary clinical setting is the Maternal Child
Health (MCH) clinic at Moi Teaching and Referral
Hospital (MTRH) in Eldoret, Kenya, in collaboration
with the Academic Model Providing Access to Healthcare
(AMPATH). MTRH is the second-largest referral hospital
in Kenya. The MCH clinic at MTRH has 20 obstetricians
and over 40 residents who care for approximately 900
pregnant women per month. AMPATH also provides a
framework for sustainable research and scalable health-
care access. AMPATH is a partnership between the Moi
University School of Medicine, MTRH and a consortium
of US institutions.

Study participants
Our study will recruit volunteer pregnant women
receiving antenatal care at the MCH clinic, targeting
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Antenatal care visit
at MCH-MTRH

Interested?

RECRUITMENT
Not

NO enrolled

Exclusion
* Active bleeding
* Conjunctivitis
« Cognitive or decision-
making impairments

Inclusion
* Women with confirmed
pregnancy at any trimester
* Aged between 15 and 49
years
* Able to provide written
informed consent

Not

e
Eligible? enrolled

Informed consent

DATA COLLECTION

Demographic
and clinical data

L2
Data collected

Blood Hgb Venous blood

fingerprick test I draw (CBC)

Acquired within

Smartphone
photography

Data is
removed

24 hours of each
other?

Data collection
completed

Figure 1 Flowchart of recruitment, enrolment and

data collection. This single-centre, cross-sectional and
observational study leverages existing antenatal care services
for pregnant women aged 15 to 49 years at the Maternal
Child Health (MCH) clinic at Moi Teaching and Referral
Hospital (MTRH) in Eldoret, Kenya. CBC, complete blood
count; Hgb, haemoglobin.

600 participants, with approximately 200 women per
trimester, aged 15 to 49 years. Because the mHealth
prediction model for blood Hgb computation relies on
machine learning, conventional statistical methods are
not directly applicable for estimating power and sample
size. However, our estimates are conservative based on
the previous study at MTRH.* For 200 participants per
trimester, the 95% confidence intervals (CIs) for the
correlation coefficient between the mHealth and clin-
ical laboratory blood Hgb levels are expected to range
from 0.09 to 0.13, assuming a correlation coefficient of
0.85. Similarly, the 95% CI for the intraclass correlation
coefficient (ICC) will range from 0.07 to 0.13, assuming
an expected ICC of 0.85. To mitigate the risk of overfit-
ting, a separate masked testing dataset comprising 30%
of the total data will be used. This testing dataset will be
independent of the training dataset, which consists of the
remaining 70% of the data.

Inclusion and exclusion criteria

The study inclusion criteria (figure 1) are as follows:

1. Women with confirmed pregnancy at any gestational
stage (first, second or third trimester).

2. Aged 15 to 49 years.

3. Able to provide written informed consent.

Participants will be excluded if they have hypoten-
sion, active or ongoing bleeding, conjunctivitis (or
visible conjunctival inflammation), trauma or infection
affecting the eyes or eyelids, or if laboratory blood Hgb
and Hct testing may be delayed beyond 24 hours after
photography.

Overall procedure

If the patient agrees to participate in this study, study
personnel will provide simple instructions on how to
gently pull down the inner eyelid using the participant’s
index finger. Then, the study personnel will hold a colour
reference chart on the patient’s forehead and capture
photos of both the left and right eyes using three different
smartphone models. The total time required for imaging
is approximately 5 minutes. Clinical data will also be
collected, including laboratory Hgb and Hct values from
blood samples drawn within 24 hours before or after the
conjunctiva photo timestamp. The study personnel will
complete a clinical data collection sheet and attach the
results of the clinical laboratory test. All photos and asso-
ciated data will be submitted through a customised data
collection application (app).

METHODS: DATA COLLECTION, MANAGEMENT AND ANALYSIS
Timepoints for data collection

All data collection for the study will take place during
a single visit, lasting approximately 10 minutes, with no
follow-up required. During the visit, consented partic-
ipants’ baseline demographic and clinical data will be
recorded on a study form. Smartphone photography and
venous blood draw and/or finger-prick testing will then
be performed. To ensure data reliability, smartphone
photography must occur within 24 hours of the blood
draw. Once data collection is complete, all information
will be uploaded to a customised data collection app
linked to a Health Insurance Portability and Account-
ability Act (HIPAA)-compliant server, where it will be
organised and processed for analysis.

Demographic and clinical data

Demographic data collected from participants will
include date of birth, marital status and highest level of
education completed. Clinical data will cover details of
the current pregnancy, obstetric history, medical and
surgical history (including blood pressure), family history
and antenatal profile.

Clinical laboratory blood Hgb test and/or finger-prick test

We will assess the results of complete blood count (CBC)
tests, specifically measuring clinical laboratory-based
blood Hgb and Hct levels using the Beckman Coulter
AcT 5diff or a similar device from samples collected on
the same day. CBC tests will be conducted at a clinical
reference laboratory certified by the College of Amer-
ican Pathologists’ External Quality Assurance Program.
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In addition, capillary blood sampling using VERI-Q will
be performed either before or after photographing the
conjunctiva.

Smartphone conjunctiva photographing

Photos acquired with a digital (or smartphone) camera
exhibit different colours depending on smartphone
models, image formats and light conditions.”* ® To
develop an mHealth prediction model that is accurate
under diverse data acquisition conditions, the photo acqui-
sition protocol will incorporate a custom-made colour
reference chart,” different smartphone models (Google
Pixel 5, Samsung Galaxy A52 and Samsung Galaxy S21)
and file formats. The colour reference chart, roughly
the size of a business card, is designed to support colour
recovery with reduced dependence on photo acquisition
settings by being physically captured within each photo.
Instead of commercially available colour reference charts
(eg, Macbeth ColorChecker, ColorChecker Classic Mini),
we will use a custom-designed colour chart that can be
mass-printed with a standard inkjet printer. Due to sani-
tation requirements and participant tracking, disposable
colour charts are necessary. However, the high cost of
commercially available options makes them impractical
for single-use applications.

For Samsung Galaxy S21, both DNG (also known as
RAW) and JPEG formats will be generated using Pro
Mode. Google Pixel 5 and Samsung Galaxy A52 will use
a third-party app (Adobe Lightroom or Halide Mark) to
capture photos in DNG format. As a key specification of
smartphone cameras, we evaluated the spatial resolution
of the three different smartphone models using the edge

method in a laboratory setting.” The measurements were
conducted at a typical distance of 100-150 mm between
the camera and the participant’s eye. Google Pixel 5 has
a spatial resolution of 137 pm, while Samsung Galaxy
S21 has a spatial resolution of 172 pm. Despite being a
lower-end smartphone, the Samsung Galaxy A52 has a
spatial resolution of 108 pm.

Data collection mobile app

We developed a mobile app for Android to facilitate the
collection and transfer of photos (figure 2). This app is
specifically designed to ensure proper use of the colour
reference chart during photo acquisition. It allows study
personnel to upload photos taken with the smartphone
camera, requiring them to complete form fields before
selecting photos from the smartphone gallery for upload.
All data, including the photos collected, are stored on
a HIPAA-compliant cloud server and can be securely
accessed through a high-security portal. Importantly, the
data collection app is designed to efficiently handle large
photo files in the DNG (RAW) format. The DNG format
reduces non-linear rendering and image compression.”
With a 10-bit colour depth in each RGB channel, DNG
allows for 2'”* combinations of RGB values. In contrast,
JPEG with an 8bit colour depth (2¥°~16.77 million
colours) involves non-linear filtering and image compres-
sion. As a result, DNG photos are substantially larger than
JPEG photos. Recent smartphone models support direct
access to the DNG format either in the default camera
settings or through third-party applications (eg, Adobe
Lightroom or Halide Mark). The app also enables photo
uploads even when network connectivity is interrupted; it

1. START

Click ENTER PATIENT DATA button
to begin data entry

2. ENTER PARTICIPANT DATA

Fill out fields: Photo Taker, Location, Patient ID
Select eyelid photos captured from patient

3. REVIEW DATA

Review entries and preview photos
Click submit

ENTER PATIENT DATA
PHOTO TAKER

PHOTO LOCATION
THIS APP IS THE PROPERTY OF PURDUE
UNIVERSITY OR ITS LICENSORS. USE THIS [ ]
APP ONLY TO COLEECT DATA FOR THE
STUDY WITH PURDUE UNIVERSITY.

DATA COLLECTION APP

PATIENT ID

[ )

FILES

PLEASE PROVIDE ONLY THE
INFORMATION REQUESTED AND
NO ADDITIONAL INFORMATION [

SELECT FILES }

COMMENTS

ENTER PATIENT DATA

NEXT

SYNC

< «
ENTER PATIENT DATA

PHOTO TAKER REVIEW PATIENT DATA

l PHOTO TAKER

[ PT0001

PHOTO LOCATION [ AL

[ — l PHOTO LOCATION

PL0001

PATIENT ID [
l PATIENT ID

l 1D0001

FILES

[ 1D0001

JPG Remove FILES

Name: Screenshot_20240216_155855_Data JPG

Collection App.jpg
AINE Tome Name: Screenshot 20240216_155855_Data
ypeimage/ipeg Collection App.jpg

Preview MIME Type: image/jpeg

Preview

SUBMIT

I CHANGE FILE SELECTION J

COMMENTS

\ |

NEXT

Figure 2 Representative screenshots of the customised data collection mobile app for Android smartphones. The app’s
flow and processes are designed to efficiently manage large photo files. The user interface enables study personnel to upload
photos to a Health Insurance Portability and Accountability Act (HIPAA)-compliant cloud server, which can be securely

accessed through a high-security portal.
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Figure 3 Photo acquisition instructions and procedure.
Preparation materials and instructional examples guide study
personnel in quickly capturing high-quality photos of the
participant’s conjunctiva. The original demonstration photos,
featuring the authors performing the procedure, are further
rendered using ChatGPT.

automatically uploads photos from a temporary folder in
the background, one photo at a time, to reduce the data
payload. Once all photos are uploaded, the temporary
folder is deleted from the device.

Smartphone photographing procedure

Figure 3 summarises the photo acquisition protocol.

1. Direct the participant to sit facing the ceiling light
source. Adjust the room brightness if necessary to en-
sure clear photos without shadows or glares.

2. Write the participant identifier (ID) and date on the
colour reference chart to distinguish photos.

3. Ask the participant to remove glasses or any objects
that may obstruct the forehead.

4. Rehearse pulling down the inner eyelid with the partic-
ipant to ensure adequate and accurate exposure.

5. Hold the chart against the participant’s forehead with
one hand. Instruct the participant to use their finger-
tips to pull down the inner eyelid.

6. Ensure the colour reference chart is horizontally
aligned with the participant’s eye and visible in the
camera view.

7. While holding the chart with one hand, use the other
hand to operate the smartphone.

a. Ask the participant to look up at the ceiling while
exposing the conjunctiva.

b. Include both the entire colour reference chart and
the conjunctiva within the frame.

c. The colour reference chart must remain horizontal.

d. Avoid covering the chart with fingers or casting
shadows on it.

e. Keep the chart flat without bending.

f. Ensure consistent lighting; the colour reference
chart and conjunctiva should have similar bright-
ness.

8. Use the smartphones in this sequence: Samsung Gal-
axy Ab2, Google Pixel 5 and Samsung Galaxy S21.

a. Capture four photos of the left conjunctiva with
each smartphone.

b. Capture four photos of the right conjunctiva with
each smartphone.

9. Input the participant’s information and upload the

photos to the data collection app (figure 2).

Model refinement and optimisation

The mHealth prediction model will be refined and opti-

mised for the target population, as it has not yet been

tailored to this group. The current version of the mHealth

model comprises four submodules 195254 6769,

1. Colour correction: extracts absolute colour values of
the conjunctiva, ensuring consistency across different
smartphone models and light conditions.®

2. Automated segmentation: automatically identifies and
delineates the conjunctival region of interest.%” %

3. Hyperspectral learning (also referred to as spectral
reconstruction, spectral superresolution or spectral
reflectance estimation): reconstructs high-resolution
spectral data from RGB values of photos captured by
smartphone cameras." **

4. Blood Hgb and Hct content computation: estimates
blood Hgb and Hct levels using the reconstructed hy-
perspectral data.'” *

To mitigate the risk of overfitting in the blood Hgb
and Hct content computation, photo data will be divided
into training (70% of participants) and testing (30%)
datasets based on participant IDs. The photos from the
same participants will be assigned exclusively to either
the training or testing datasets to prevent data leakage.
Cross-validation will be conducted to evaluate the model’s
performance across different subsets of the data. It should
be noted that colour correction, automated segmen-
tation and hyperspectral learning are not subjected to
training, as these processes were already completed using
separate data from our previous studies,!” 1952546769 g
compound machine learning model integrates domain
knowledge (eg, tissue optics and computer vision) into
the learning process. Notably, this is designed to miti-
gate the constraints of relatively limited data. It allows
the model to be trained effectively with a limited clinical
dataset, addressing the limitations of purely data-driven
methods.” "
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Performance evaluation

To assess the performance of the mHealth model

compared with clinical laboratory blood Hgb, Hct

and/or finger-prick blood Hgb values, we will perform
the following analyses using a testing dataset or cross-
validation methods.

1. Linear correlation analysis: Quantifies the strength of
the relationship between mHealth and clinical labora-
tory blood Hgb and Hct values.

2. Bland-Altman analysis: Uses multiple measurement
pairs to evaluate whether mHealth blood Hgb and Hct
values align reliably with clinical laboratory results, re-
turning bias and 95% limits of agreement.

3. ICC analysis: Assesses the reliability of mHealth blood
Hgb and Hct values, focusing on reproducibility—the
ability of different users to obtain consistent results.
Given that multiple smartphones will be used to cap-
ture photos from the same participant, we will empha-
sise inter-reliability (reproducibility), which measures
variation across different users evaluating the same
group of participants.

4. Paired t-tests: Determines whether blood Hgb and Hct
values obtained from the left and right conjunctivae
are statistically identical.

In addition, we will follow the STARD (Standards for
Reporting of Diagnostic Accuracy Studies) guideline72 ™
for assessing the diagnostic performance of our mHealth
prediction model as well as the TRIPOD+AI (Transparent
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis + Artificial Intelligence)
guideline74 for reporting our machine learning-based
prediction study.

ETHICS AND DISSEMINATION

Ethics approval and consent

This study is approved by the Moi University Institu-
tional Research and Ethics Committee (Reference:
IREC/585/2023 and Approval Number: 004514),
Kenya’s National Commission for Science, Technology,
and Innovation (NACOSTI Reference: 491921) and
Purdue University’s Institutional Review Board (Protocol
Number: IRB-2023-1235). Our study involves recruiting
participants from vulnerable populations, specifically
pregnant women, including some who are emancipated
or mature minors. In Kenya, pregnant women aged
15 to 18 years are considered emancipated or mature
minors, allowing them to provide informed consent inde-
pendently, without parental involvement. The informed
consent form is available in both English and Swabhili,
the native and widely spoken language in Kenya. Study
personnel responsible for communicating with partici-
pants are fluent in both languages to ensure clear and
effective communication.

Confidentiality, data storage and security
All study data will be stored and accessed in compliance
with HIPAA and the Kenya Data Protection Act, 2019.

Specifically, photos will be labelled with the participant
ID, smartphone model and left/right. Demographic and
clinical information recorded on paper forms by site
personnel will be scanned using the smartphone. Data
will be uploaded via a custom data collection app devel-
oped for this study. This app transmits data to a secure
Amazon Web Services server, which is HIPAA-compliant.
Access to the server is restricted to study investigators and
authorised personnel. Computer records will be stored
on password-protected systems, and paper records will be
secured in locked cabinets accessible only to authorised
study personnel.

Dissemination

We will disseminate results through publications in
peerreviewed journals and presentations at the partici-
pating institutions, including Moi Teaching and Referral
Hospital, and Kenya’s Ministry of Health. This study
primarily focuses on developing a machine learning
model for blood Hgb and Hct assessments. Our next steps
are to scale the project towards developing a minimally
viable product—a functional mobile app for bloodless,
quantitative blood Hgb assessment—for larger clinical
trials. Building on further collaboration with healthcare
philanthropy organisations, we plan to evaluate the effec-
tiveness and implementation of the mHealth prediction
model through pilot studies and real-world applications.

Patient and public involvement

Patients or the public were not involved in the design,
conduct, reporting, or dissemination plans of this
research.

DISCUSSION

Digital health technologies have experienced rapid
growth and are now widely adopted across various clin-
ical settings. In particular, photos captured with mobile
devices (eg, smartphones and tablets) have emerged
as pivotal tools in digital health applications, including
telemedicine and mHealth.”™ Clinical photos are
instrumental in healthcare diagnostics, monitoring
and management, especially in athome healthcare and
resource-limited settings where traditional equipment
may be scarce. Consequently, healthcare professionals
increasingly regard smartphones and tablets as indis-
pensable components of modern healthcare practice.
However, guidelines on conducting clinical studies using
high-quality clinical photos from mobile devices are often
not available.

This protocol paper outlines a clinical study exploring
the use of smartphone cameras as diagnostic tools.
Building on prior research demonstrating the diagnostic
potential of clinical photography, this study leverages
smartphone technology to improve access to high-quality
clinical images. Furthermore, advancements in machine
learning and artificial intelligence enhance the diag-
nostic accuracy of photo-based analyses. The protocols
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and procedures described here aim to extend the reach
of diagnostic imaging in low-resource environments,
where traditional diagnostic tools are often inaccessible.
These methods may also be applicable to other clinical
studies requiring high-quality imaging.
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