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ABSTRACT

Fish spoilage during transit has been a major issue for tilapia �sh production compa-

nies, leading to signi�cant losses and hindering growth while a�ecting food security

by reducing the availability of high-quality �sh. This study applied the Hungarian

method to optimize �sh transportation in Victory Farms Limited (VF) Homa-Bay

County, with speci�c objectives to evaluate the shortest, fastest, and most cost-

e�ective routes for distributing tilapia �sh products in the Western Kenya region.

Victory Farms currently uses a random delivery approach for distributing its �sh,

which results in ine�ciencies and contributes to spoilage. The Hungarian method

was selected due to its ability to systematically determine the optimal match between

two sets of elements, making it particularly suitable for optimizing transportation

routes in a cost-e�ective manner. Primary data on distances, travel times, and costs

between key distribution points were collected directly from Victory Farms and

used to create a cost matrix, which was analyzed using the Hungarian algorithm.

The study identi�ed an optimal distribution route for all three objectives: shortest

distance, fastest transit time, and lowest cost. The optimal route was determined

as follows: KLC → Kondele → Nyalenda → Majengo → Mbale → Chavakali →
Kakamega→Mumias→ Bungoma→ Luanda→ Siaya→ KLC. This route spanned

293.2 kilometers, took 351.9 minutes in transit, and incurred a cost of Ksh. 14,660.

These �ndings provide valuable insights into streamlining distribution processes,

reducing spoilage, and improving operational e�ciency. The results demonstrate

that Victory Farms Limited can enhance pro�tability and growth by adopting the

Hungarian method for route optimization. This approach also contributes to food

security by ensuring the availability of high-quality �sh. It is recommended that

Victory Farms Limited regularly implement the Hungarian method for optimizing

routes, while future research could explore integrating real-time environmental and

tra�c data into the model for additional enhancements.
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DEFINITIONS OF TERMS

Operations research: Hungarian technique Operations research (OR) is the

application of mathematical scienti�c methods in study and analysis of problems

involving complex systems.

Hungarian technique: Hungarian technique is an e�cient method of �nding

optimal solution to an assignment problem without making a direct comparison to

every solution.



CHAPTER ONE

INTRODUCTION

This chapter covers; the background of the study, the objectives of the study, the

statement of the problem, the justi�cation of the study, the signi�cance of the study

, and the scope of the study.

1.1 Background of the Study

1.2 Introduction to Operations Research

Operations Research (OR) is a multidisciplinary �eld that employs mathematical

models, statistical analyses, algorithms, and scienti�c methodologies to analyze

complex decision-making problems and optimize the performance of systems.

Initially developed during World War II to address military logistics and strategy

issues, OR has since evolved into a comprehensive discipline applied across various

sectors, including transportation and logistics, production planning, inventory

control, scheduling, location analysis, forecasting, and supply chain management,

as noted by Kumar (2020).

At its core, OR seeks to provide a scienti�c basis for decision-makers to e�ciently

allocate limited resources and optimize outcomes under constraints such as cost,

time, and risk. Nguyen, (2022) highlights that the strength of OR lies in its

ability to model real-world problems in mathematical terms, thereby enabling

the use of computational tools and techniques to derive optimal or near-optimal

solutions. Over the decades, OR has proven invaluable in numerous industries

and applications, providing frameworks that enhance both strategic planning and

1
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operational e�ciency.

The quantitative methods commonly employed in OR include linear programming,

queuing theory, simulation, and network analysis. Ganesan (2021) emphasizes that

these techniques allow for the evaluation of di�erent scenarios and help decision-

makers choose the best course of action by quantifying various factors that in�uence

decision outcomes. This approach enables organizations to achieve goals such as

cost reduction, resource optimization, and process improvement.

1.3 The Scope and Relevance of Operations Research

Operations Research (OR) has extensive applicability across a wide range of

industries. In transportation and logistics, Lofberg (2019) highlights that OR

techniques are utilized to optimize the movement of goods and services, thereby

reducing costs, improving delivery times, and enhancing customer satisfaction. In

production planning and inventory management, Ahmadi (2020) explains that OR

helps businesses determine optimal inventory levels, balancing costs associated with

storage and stock-outs while ensuring product availability.

Furthermore, Naderi (2021) demonstrates that OR methodologies have proven vital

in scheduling by optimizing the allocation of resources such as labor, machines, and

time, which improves productivity and minimizes downtime in both manufacturing

and service environments. In location analysis, Zhang (2020) discusses how OR aids

in identifying the most strategic locations for facilities, such as warehouses, retail

stores, and service centers, crucial for minimizing costs and maximizing service

coverage.
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The relevance of OR has signi�cantly increased with the rise of data-driven decision-

making in the digital age. Bertsimas (2017) notes that recent advancements in

computational technology and the availability of large datasets have enhanced

OR's capability to solve complex, large-scale problems in real-time. Consequently,

businesses can implement OR solutions more e�ciently and e�ectively, making OR

an integral part of modern organizational strategies.

1.4 The Transportation Problem in Operations Research

The transportation problem in Operations Research focuses on determining the

optimal way to transport goods from multiple supply locations, such as factories or

warehouses, to various demand locations, like retail stores or distribution centers.

Kumar (2021) emphasizes that the primary objective is to minimize the total

cost of transportation while satisfying the supply and demand constraints at each

location. This problem is commonly modeled as a Linear Programming Problem

(LPP), where the cost minimization objective is subject to a set of constraints that

must be satis�ed.

Fundamentally, Gupta (2023) states that solving the transportation problem in-

volves deciding the quantity of goods to transport from each supply point to each

demand point to minimize overall costs. This decision-making process entails eval-

uating the costs associated with transporting goods between di�erent points and

ensuring that the transportation plan meets both the supply limits at the sources

and the demand requirements at the destinations

1.4.1 Objectives and Constraints

The primary objective of the transportation problem is to minimize total trans-

portation costs. Singh (2022) explains that this is achieved by identifying the
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most cost-e�ective routes for transporting goods from sources to destinations.

The constraints ensure that all available supply is allocated without exceeding the

capacity at each source and that the demand at each destination is met without

falling short. Each route between a source and a destination has an associated cost,

which may depend on factors such as distance, time, and the mode of transportation

used.

The transportation problem involves balancing supply and demand. Chen (2020)

highlights that the supply constraints specify that the quantity of goods transported

from a given source should not exceed its available supply. Conversely, the demand

constraints ensure that the amount of goods delivered to a particular destination

meets or exceeds its demand. Therefore, the transportation problem aims for an

e�cient allocation of resources while minimizing costs associated with moving goods

from suppliers to consumers.

1.4.2 Relevance in Supply Chain and Logistics

The transportation problem is particularly relevant in logistics and supply chain

management, where transportation costs often represent a signi�cant portion of to-

tal logistics expenses. Raza (2023) emphasizes that optimizing these costs is critical

for maintaining a company's �nancial health and competitive positioning. E�ective

transportation strategies enable companies to reduce logistics expenses, improve

service levels, and ensure high levels of customer satisfaction by guaranteeing the

timely delivery of products.

By optimizing the transportation process, organizations can better manage their

supply chains, achieving a more balanced and responsive approach to handling �uc-

tuations in supply and demand. Raut (2021) notes that e�cient transportation
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planning can help mitigate the impact of unexpected disruptions in the supply chain,

such as delays in production or shifts in consumer demand, allowing for �exibility

and adaptability�key components in today's dynamic business environment.

1.4.3 Practical Applications and Signi�cance

The transportation problem has numerous practical applications across various sec-

tors, including manufacturing, retail, distribution, and public sector operations.

Martins (2021) and Venkatesh (2022) emphasize that it is central to decision-making

processes in logistics and supply chain management, given its emphasis on optimiz-

ing the allocation of resources�such as goods and services�from multiple sources

to numerous destinations while minimizing associated costs. Solving the transporta-

tion problem allows organizations to achieve cost e�ciencies, improve service levels,

and manage their supply chains more e�ectively in response to dynamic market

demands and challenges.

1.4.4 Applications in the Manufacturing Sector

In the manufacturing sector, the transportation problem is crucial for optimizing

the distribution of goods produced at di�erent plants or factories to various regional

warehouses or directly to customers. Fernandes (2020) provides an example of

a manufacturing �rm with multiple production facilities in di�erent regions that

must determine the most cost-e�cient way to transport �nished products to a

network of distribution centers or retail outlets. This requires balancing several

factors, including transportation costs, production schedules, and inventory levels,

to ensure timely product delivery at the lowest possible cost.

E�ciently managing the transportation of goods is critical in sectors such as auto-

motive, electronics, and consumer goods manufacturing, where just-in-time (JIT)

production and lean inventory practices are prevalent. Gade (2023) explains that
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the transportation problem helps optimize the routing and scheduling of shipments

to minimize delays and avoid overproduction, which can lead to excess inventory

costs or stock-outs. Additionally, manufacturers often face varying levels of demand

across di�erent regions, making it essential to use transportation models to dynam-

ically adjust distribution strategies, ensuring that demand is met e�ectively while

keeping costs low.

1.4.5 Applications in the Retail and Distribution Sectors

In the retail and distribution sectors, the transportation problem was essential for

optimizing the movement of goods from central distribution centers to individual

retail stores. Kumar and Modgil (2020) noted that retail chains needed to

manage large volumes of inventory across multiple locations, ensuring that each

store was adequately stocked with the right mix of products to meet customer

demand. The transportation problem provided a framework for determining

the most cost-e�ective routes and transportation modes for delivering goods from

warehouses to stores, minimizing logistics costs while maintaining high service levels.

For instance, a large supermarket chain had to determine how to distribute fresh

produce from its central distribution hub to a network of stores across a city or

region. As Kumar & Modgil (2020) pointed out, the challenge was to ensure that

products arrived fresh and within a speci�c time window to prevent spoilage while

minimizing transportation costs.

1.4.6 The Hungarian Method

The Hungarian method, introduced by Dénes K®nig (1931), and later re�ned

by Harold Kuhn (1955), was a groundbreaking technique for solving assignment

problems e�ciently. Kuhn (1955) signi�cantly improved upon brute-force ap-

proaches, which required exhaustive comparisons of all possible solutions. Instead,
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the Hungarian method optimized the process by systematically reducing the cost

matrix, ensuring that at least one zero appeared in every row and column.

The key to the Hungarian method, as described by Munkres (1957), was its ability

to modify the cost matrix through a series of operations, such as subtracting

the smallest element in each row and column from all elements in that row

or column. This manipulation simpli�ed the problem by creating zeros, which

indicated potential assignments with no additional cost. An assignment yielding

zero opportunity cost was considered optimal, representing an e�cient allocation

that minimized resource utilization while maximizing e�ciency.

The Hungarian method had signi�cant impacts across various �elds, including

operations research, logistics, economics, and engineering, where assignment

problems were prevalent. Hillier and Lieberman (2001) noted that in logistics, the

method optimized the assignment of tasks to machines, workers to jobs, or goods

to transportation routes. In economics, Gass and Harris (2001) explained its use

in resource allocation or matching supply with demand in markets. Engineering

applications, as described by Winston (2004), included task assignments in manu-

facturing processes and the optimization of network �ows.

The algorithmic approach of the Hungarian method involved several steps: reducing

the matrix, covering zeros with a minimum number of lines, adjusting the matrix

by subtracting and adding elements, and iterating until an optimal assignment

was found Winston, (2004). This process ensured a solution that was both

computationally e�cient and economically favorable.
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In addition to its practical applications, the Hungarian method inspired further

research and development in optimization techniques. Papadimitriou & Steiglitz

(1998) highlighted that variants and extensions of the method had been developed

to handle more complex and large-scale assignment problems, enhancing its

applicability in modern industries.

Through its innovative algorithm and widespread utility, the Hungarian method

remained a cornerstone for optimizing resource allocation and decision-making pro-

cesses in complex systems. Its ability to provide optimal solutions with reduced

computational burden made it a vital tool in both theoretical and applied opera-

tions research.

1.4.7 Optimizing Delivery Routes at Victory Farms: A Comparative
Analysis of Methods

Victory Farms, located in Homa-Bay County, Kenya, has become one of sub-

Saharan Africa's fastest-growing tilapia �sh farms. Established in 2016, the farm

set out with an ambitious goal: to construct a commercial tilapia farm that

would provide a�ordable, nutritious, and accessible protein to 2 billion Africans

over the next two decades. This goal was established against the backdrop of a

95% reduction in Nile perch and tilapia catch in Lake Victoria over the past 50

years Njiru et al. (2008). With increasing demand for protein driven by growing

populations and rising prosperity, Victory Farms has sought innovative solutions to

combat the decline in local �sh supply, especially as �sh imports often arrive aged

up to two years by the time of consumption.

To address these challenges, Victory Farms embraced aquaculture practices,

enabling them to sell over 10 metric tons of fresh tilapia daily to low-income
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neighborhoods across Kenya. By early 2021, the farm aimed to increase sales to

30 metric tons per day, providing over 20 million high-protein meals annually. The

company committed to ensuring that �sh reached consumers within 48 hours of

harvest, avoiding antibiotics and harsh chemicals.

To optimize their delivery network, Victory Farms established sales depots in

Nairobi and Western Kenya, with 27 and 23 outlets, respectively. The need for

e�cient and cost-e�ective delivery routes became clear. Operations Research (OR)

techniques like the Hungarian method, the nearest neighbor algorithm, and the

transportation model were considered to achieve this optimization.

The Hungarian method, introduced by Dénes K®nig (1931) and later re�ned by

Harold Kuhn (1955), emerged as a powerful tool for solving assignment problems

e�ciently. This method guarantees optimal solutions by reducing the cost matrix

and ensuring that at least one zero appears in every row and column Munkres

(1957). The Hungarian method is particularly useful in minimizing transportation

costs and optimizing resource allocation, making it ideal for solving delivery route

problems like the one at Victory Farms.

Another option considered was the nearest neighbor algorithm, a greedy approach

where the algorithm selects the closest unvisited depot to the current location,

forming a route based on the shortest path. While simple and fast, this method

does not guarantee the optimal solution and may result in higher transportation

costs due to its tendency to build suboptimal routes.

Additionally, the transportation model, a linear programming approach, was



10

explored. This model focuses on minimizing the total cost of transporting goods

from multiple sources (suppliers) to multiple destinations (depots). However, the

transportation model can be computationally intensive, particularly with a large

number of delivery points, and may not be as e�cient for dynamic adjustments in

real-time compared to the Hungarian method.

Given the need for an optimal solution with minimal computational e�ort, the Hun-

garian method stood out as the best option. It e�ciently reduced transportation

costs by optimizing the assignment of delivery routes while ensuring that Victory

Farms could meet its 48-hour delivery goal. The Hungarian method also provided

the �exibility required to adjust routes based on changing conditions, such as shifts

in demand or unforeseen delays.

By implementing the Hungarian method, Victory Farms could not only minimize

transportation expenses but also improve the freshness and quality of its products,

contributing to increased customer satisfaction. Moreover, this optimization aligned

with the company's broader goals of supporting Kenya's food security and job

creation, in line with the country's Big 4 Agenda policy.

1.5 Statement of the Problem

Victory Farms Limited, a prominent �sh farming enterprise situated on the shores

and o�shore of Lake Victoria within Homa-Bay County, stands as one of Kenya's

largest �sh farms and holds the distinguished position of being the foremost �sh

producer in East Africa. Specializing in the production, processing, and distribution

of Tilapia �sh, the farm serves both the Nairobi and Western Kenya regions. With

an extensive network of 23 depots solely in Western Kenya, the farm faces a
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substantial demand averaging 50 tons of Tilapia �sh. Given the perishable nature

of �sh products, timely delivery to the consumer market is imperative to prevent

spoilage. Consequently, longer delivery routes result in unnecessary additional

costs, thereby straining the farm's �nancial resources. This study aims to address

this challenge by employing the Hungarian method in operations research to identify

the optimal route that ensures suppliers take the shortest, most time-e�cient, and

cost-e�ective transportation paths to deliver �sh products to consumers in the

farm's depots within the Western Kenya region.

1.6 Justi�cation

By �nding the shortest distance to the depots, this study will help the Victory

Farm Limited on cutting on the cost of transporting the product from the farm

to the market, thus improving on the pro�ts which will lead to the company's

expansion and productivity. By �nding the route that uses the shortest time

to deliver the products to the market, the company will save on spoilage of

their product before it gets to the consumers, thus avoiding unnecessary losses

due to spoilage. This puts the Kenyan government on the right track in achiev-

ing its millennium development goals and one of the big four agenda (food security).

1.7 Objectives

1.7.1 General Objective

The primary aim of this study was to employ the Hungarian method to ascertain

the optimal route for distributing �sh from Victory Farms Limited, located in

Homa-Bay County, to its network of depots in Western Kenya.
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1.7.2 Speci�c Objectives

The speci�c objectives of this study were to:

i. Apply the Hungarian method to evaluate the shortest route for distributing

�sh products in the Western Kenya region.

ii. Use the Hungarian method to determine the minimum time route for �sh

product distribution.

iii. Identify the most cost-e�ective route for distributing �sh products using the

Hungarian method.

1.8 Signi�cance of the study

The signi�cance of this study lies in its potential to revolutionize the e�ciency of

�sh distribution networks in Western Kenya. By employing the Hungarian method

to identify the shortest and most cost-e�ective routes for delivering �sh from Victory

Farm Limited to supply depots, the research addresses critical aspects of logistics.

The study's impact is multifaceted: it optimizes transportation routes to minimize

delivery time, thereby enhancing customer satisfaction and market share; it deter-

mines the minimum cost of transportation, allowing the farm to maximize pro�ts

and operate more competitively; it guards against spoilage by minimizing the time

products spend in transit, preserving quality and reducing waste; it directly con-

tributes to the growth of Victory Farms, fostering competitiveness and expansion;

and, on a broader scale, it contributes to food stability in Kenya by improving the

e�ciency of �sh product distribution. In essence, the study's �ndings have far-

reaching implications for the economic success of Victory Farms and the overall

well-being and food security of the region.
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1.9 Scope

This thesis has utilized the Hungarian method to optimize the selection of the most

e�cient and cost-e�ective routes for delivering �sh from Victory Farm Limited to

supply their depots located in Western Kenya. The study has focused speci�cally

on assessing various transportation options to determine the shortest distance, time

required and costs for the delivery process. Through a comprehensive analysis,

the research has considered factors such as road conditions, transportation costs,

and time constraints to identify the most suitable routes for transporting �sh prod-

ucts from the Victory Farm Limited, to the designated supply depots in Western

Kenya. By delving into this speci�c geographical area and employing mathemati-

cal optimization techniques, the study intended to contribute valuable insights into

enhancing the e�ciency of �sh distribution networks in the region.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter gives a brief introduction to the Victory Farm Limited, a review of liter-

ature on Vehicle Routing Problem, and the Hungarian method of solving Operations

Research Problems.

2.2 Victory Farm Limited

Victory Farms Limited is an aquaculture tilapia �sh farm established in 2016 by

Joseph Rehmann, an Egyptian who has lived and worked in �ve continents. Vic-

tory Farms Limited was launched with the aim of being the world's most sustain-

able �sh farm and to create new ways where business can support the develop-

ment of communities and the restoration of nature. Victory Farms Limited is lo-

cated on the Kenyan side of Lake Victoria and has distribution capacity across

the country. The �rm is rapidly expanding its operation, �sh processing and

sales & marketing capacities. The company holds the vision that tilapia aqua-

culture represents the best solution for feeding the �fty million Kenyans (https:

//www.victoryfarmskenya.com/#media&impact retrieved on February, 10th 2022.)

Victory farms aims to be the most sustainable �sh farm on the planet while it scales

to feed 2 billion Africans in the coming two decades. The organization has exten-

sively recruited and trained university graduates on aquaculture best management

practices and leadership skills. Victory farms has largely leveraged on technology

which has seen it outshine other competitors. The company's success has further

been accelerated by the governments support for permitting water and land use as

14
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well as VAT exemption on aqua imports. Victory farms provide access �to- mar-

ket via Kenya-wide cold chain network with a�ordable, accessible, and sustainable

tilapia. The company's technology and low cost inputs can make �sh more a�ord-

able to all by as much as 50% more a�ordable. Through Victory Farms, Kenya may

be able to stop Chinese imports, fully supply its own �sh needs and in the medium

term export to EAC.

There is high demand and production of �sh in Kenya. However, �sh demands in

the local still exceeds the supply thus creating a shortage. Kenya having a coastal

region and bordering Lake Victoria which has been a source of �sh for centuries.

Lake Victoria's output has however, been declining sharply due to over�shing, pol-

lution and lack of regulation. This gap in supply due to declining �shing is being

replaced by imported �sh. E�orts should be made to revamp the sector since Kenya

and East Africa have excellent conditions and capabilities to produce local market

when presented with right technology, knowledge and inputs.

2.3 A Review of Vehicle Routing Problem

The Vehicle Routing Problem (VRP), introduced by Dantzig and Ramser (1959),

remains one of the most extensively researched problems in combinatorial optimiza-

tion. It addresses how to determine the most e�cient routes for vehicles to serve a

set of customers with known demands from one or more depots, while minimizing

overall costs and adhering to vehicle and route constraints. The VRP is critical

to modern supply chain management and has continuously evolved to meet the

changing landscape of logistics.

2.3.1 Core Concept and Importance of the VRP

At its core, the VRP focuses on optimizing the total cost of vehicle routes for

tasks such as delivery, collection, or service operations, all while considering factors

like vehicle capacity, travel distance, and time windows Wang, (2021). The VRP
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plays a pivotal role in logistics and transportation industries, where companies

must minimize costs, optimize resource usage, and meet strict delivery schedules to

maintain competitiveness Erdelic, (2019).

Industries such as Amazon, FedEx, and DHL heavily rely on VRP algorithms

to ensure operational e�ciency, reduce fuel consumption, and improve delivery

times Gansterer, (2020). Optimizing routes also reduces environmental impacts,

which aligns with the increasing emphasis on sustainability in logistics Wang, (2021).

The VRP's ability to streamline operations, lower costs, and enhance customer satis-

faction makes it an indispensable tool across various sectors, including e-commerce,

healthcare, and public services Koc, (2020). As global supply chains grow more

complex, the role of VRP in achieving operational e�ciency will continue to expand

Cattaruzza, (2017).

2.4 Advances in Vehicle Routing Problem (VRP) Research

Numerous surveys have been conducted to track the evolution and diversi�cation of

the Vehicle Routing Problem (VRP). Early works, such as Bellmore & Nemhauser,

(1968). Foundational insights into the complexity of the problem, focusing on

basic formulations aimed at minimizing distance or time. While their contributions

were essential for understanding the fundamental structure of the problem, their

approach did not address more modern challenges, such as the dynamic nature

of demand or real-time tra�c conditions that are prevalent in today's logistics

systems. As the �eld has evolved, more recent studies have extended the VRP

to cover these challenges, incorporating techniques to handle real-time changes in

logistics.
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Wang & Wasil,(2021) reviewed recent methodologies for solving VRP in dynamic,

real-time scenarios. Their study highlighted the increasing need for algorithms

that can adapt to �uctuating demand and unpredictable conditions like tra�c

congestion. However, their focus on metaheuristic approaches, while useful for

handling complex, dynamic systems, often sacri�ces optimality for speed. These

metaheuristics, though capable of providing good solutions, may not guarantee the

best possible outcome, especially when an exact solution is needed. In contrast, the

Hungarian method, when applied to multi-objective VRP�where distance, time,

and cost are all considered simultaneously�provides an optimal solution through

its exact assignment process. The Hungarian method ensures that the trade-o�s

between these objectives are addressed in a structured manner, yielding the most

e�cient allocation for each objective.

In a similar vein, Gansterer & Hartl, (2020) explored collaborative approaches

to VRP, emphasizing the role of multiple companies sharing �eets and resources

to minimize costs, especially in urban environments facing increasing congestion.

While these collaborative approaches are vital for modern logistics, they typically

rely on decentralized decision-making and heuristic methods, which may not always

yield optimal solutions. The Hungarian method, by focusing on exact assignments

within a �xed matrix, can o�er an optimal solution in situations where resources

and routes are well-de�ned and �xed. When applied to multi-objective rout-

ing, the Hungarian method can e�ciently optimize for cost, time, and distance in

collaborative settings where these three factors need to be considered simultaneously.

The VRP has continued to evolve with the advent of more complex variants,

including those integrating electric vehicles and multi-objective optimization.

Adewumi & Adeleke,(2018) focused on the role of metaheuristics in solving complex
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VRP variants, discussing the trade-o� between computational time and solution

accuracy. While metaheuristic algorithms are often used to quickly generate good

solutions, they do not guarantee optimality. The Hungarian method, in contrast,

provides a precise and optimal solution for multi-objective VRP, balancing distance,

time, and cost. This makes it highly suitable for problems in logistics, such as the

distribution of perishable goods like �sh, where both exact assignments and cost

minimization are essential for operational e�ciency.

Koc et al. (2020) reviewed multi-objective VRP, emphasizing the need to balance

con�icting objectives like cost minimization and service quality maximization

through Pareto-optimal solutions. While their work on multi-objective optimiza-

tion is essential for understanding the complexities of modern logistics, it often

involves approximation methods such as Pareto-frontiers. These methods, while

e�ective for balancing multiple objectives, may not always provide the best solution

for each individual objective. The Hungarian method, by contrast, provides a

clear and optimal solution when applied to multi-objective VRP, ensuring that

distance, time, and cost are all optimized simultaneously, with no need for complex

approximation methods.

In conclusion, while the existing literature has contributed valuable insights into the

diverse challenges of VRP and the methods used to address them, much of the recent

research relies on heuristic or metaheuristic algorithms that may not guarantee op-

timal solutions. The Hungarian method, when applied to multi-objective problems

such as minimizing distance, time, and cost, o�ers a robust and precise alternative.

Its ability to deliver exact solutions with minimal computational cost makes it par-

ticularly suitable for logistics problems where multiple objectives must be optimized

simultaneously. By combining the strengths of the Hungarian method with modern
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advancements in multi-objective optimization, it is possible to develop more e�cient

and reliable solutions for modern transportation and logistics problems.

2.5 Evolution of VRP and Its Variants

As industries evolve and new challenges emerge, the VRP has been adapted into

various forms to address speci�c logistics needs. Below are some prominent VRP

variants that have emerged in recent years:

2.5.1 Capacitated VRP (CVRP)

This variant considers vehicle capacity constraints, ensuring no vehicle exceeds its

maximum load during a delivery route. CVRP is essential in industries where weight

and volume are critical factors, such as retail and manufacturing Adewumi, (2018).

2.5.2 VRP with Time Windows (VRPTW)

Vehicles must arrive at customer locations within speci�c time windows. Hashimoto

et al. (2020) reviewed VRP with time-sensitive constraints, emphasizing how balanc-

ing travel time with service quality is vital for sectors like e-commerce and healthcare

Hashimoto, (2020).

2.5.3 Electric VRP (E-VRP)

As sustainability becomes a priority, the adoption of electric vehicles (EVs) in logis-

tics has led to the development of the E-VRP, which accounts for limited battery

life and the need for charging stops Erdelic, (2019). This is particularly relevant in

green logistics, where reducing carbon footprints is a top priority Wang, (2021).

2.5.4 Collaborative VRP (C-VRP)

Gansterer and Hartl (2020) examined C-VRP, where logistics providers collab-

orate to optimize routes collectively. Collaboration allows companies to share
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�eets and reduce operational costs, particularly in congested urban environments

Gansterer,(2020).

2.5.5 Multi-objective VRP (MOVRP)

This variant seeks to optimize multiple objectives simultaneously, such as minimizing

costs while maximizing service quality Vidal, (2020). The Pareto-optimal approach

is often used to solve these problems, balancing con�icting goals in real-world sce-

narios (Koc, 2020).

2.5.6 Stochastic and Dynamic VRP (SDVRP)

In SDVRP, some parameters, such as customer demand or travel time, are uncertain

or change over time. Ritzinger et al. (2016) and Ilin et al. (2019) explored stochastic

and dynamic approaches to VRP, where algorithms must adjust in real-time based

on new data. This variant is increasingly relevant in sectors like food delivery and

ride-hailing, where demand is volatile Ilin, (2019).

2.5.7 Rich VRP (RVRP)

Caceres-Cruz et al. (2018) introduced Rich VRP, which integrates multiple con-

straints like �eet heterogeneity and time-dependent travel times. Rich VRP models

re�ect real-world scenarios more accurately, providing a more comprehensive solu-

tion for industries with diverse operational requirements CaceresCruz, (2018).

2.5.8 VRP with Pickup and Delivery (VRPPD)

In this variant, vehicles must perform both pickup and delivery tasks on the same

route. Koc et al. (2020) explored how VRPPD can optimize operations in sectors

like postal services and grocery delivery, where vehicles must handle both pickups

and drop-o�s (Koc, 2020).
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2.5.9 Split Delivery VRP (SDVRP)

Archetti and Speranza (2019) reviewed SDVRP, where deliveries to a single customer

can be split across multiple vehicles. This variant is particularly useful when vehicle

capacity is limited or when customers have large orders that cannot be ful�lled by

a single vehicle (Archetti, 2019).

2.6 Solution Approaches for VRP

Various solution methods have been developed to address the complexities of VRP,

ranging from exact algorithms to heuristic and metaheuristic methods.

2.6.1 Exact Algorithms

Exact methods, such as Branch-Price-and-Cut, guarantee optimal solutions but are

computationally expensive for large-scale problems Costa, (2019). Exact algorithms

are typically best suited for small- to medium-sized instances, where computational

time is less of an issue.

2.6.2 Metaheuristic Algorithms

Metaheuristics, such as genetic algorithms and simulated annealing, are commonly

used for large-scale VRP problems. Elshaer & Awad,(2020) conducted a taxonomic

review of metaheuristic algorithms for VRP, highlighting their e�ectiveness in bal-

ancing solution quality and computational cost Elshaer, (2020).

2.6.3 Hybrid Methods

Hybrid approaches combine multiple algorithms to enhance performance. Karakatic

and Podgorelec, (2020) explored the use of hybrid algorithms that combine elements

of genetic algorithms and local search methods for solving multi-depot VRP, where

multiple depots complicate routing decisions Karakatic, (2020).

Furthermore, the integration of arti�cial intelligence (AI) and machine learning (ML)
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in solving VRP has gained traction in recent years. Reinforcement learning, for

example, has been used to adjust vehicle routes in real-time, improving decision-

making in unpredictable environments Gansterer, (2020).

2.6.4 The Hungarian Method

The Hungarian method is a classical combinatorial optimization algorithm used to

solve the assignment problem e�ciently. The assignment problem involves assigning

resources (such as workers to jobs or vehicles to tasks) in a one-to-one manner, with

the objective of minimizing total distance,time and cost or maximizing total pro�t.

The method was �rst proposed by König, (1931) and later improved by Kuhn in

1955, who introduced a more e�cient computational approach Konig, (1931), Kuhn,

(1955).

2.6.5 Development of the Hungarian Method

König, (1931) initially developed a framework to solve assignment problems by trans-

forming the cost matrix in such a way that it contains at least one zero in each row

and column. The optimal assignment is then determined by selecting the zeros,

ensuring that the opportunity cost of the assignments is minimized. Kuhn (1955),

expanded on König's work and formalized the Hungarian method as a computa-

tional algorithm, utilizing duality in linear programming for e�ciency. Kuhn also

established that the assignment is optimal if and only if it is complete after every

possible transfer.

2.6.6 Applications and Extensions of the Hungarian Method

The Hungarian method has been applied in various �elds beyond its original

formulation. Robert, (2005) studied the assignment of workers to jobs in an

economy with coordination frictions, where heterogeneous workers were matched

with heterogeneous jobs.
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Naveh et al. (2007), integrated constraint programming and arti�cial intelligence

with the Hungarian method, improving the speed and quality of solutions for

large-scale problems. Similarly, Mansi, (2011) proposed an alternative method that

achieved the same results as the Hungarian method but with fewer computational

steps, making it more e�cient.

Shafahi & Ramezani (2007), applied the Hungarian method in transportation

network scenarios to model driver route choices. Cheung & Jesus, (2011), extended

the method using geometric interpretations of the simplex method.

2.6.7 Auction Algorithms and Distributed Systems

Zavlanos (2008), extended the parallel auction algorithm, originally proposed by

Bertsekas and Castanon 1989, for distributed systems. Auction algorithms allow ve-

hicles to "bid" on tasks, making them suitable for decentralized environments. Povh

2008, applied the Hungarian method to quadratic assignment problems, considering

interactions between items in logistics. Britz & Maltitz (2010), applied the method

to select basketball teams by assigning players to positions optimally.

2.6.8 Advantages of the Hungarian Method

The Hungarian method, introduced by Harold Kuhn ( 1955), has consistently proven

to be one of the most e�ective algorithms for solving assignment problems, partic-

ularly in minimizing costs and distances. Its use across multiple domains continues

to grow due to its e�ciency, optimality, adaptability, and ease of implementation.

Below is a detailed examination of the key advantages of the Hungarian method.
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1. E�ciency

The Hungarian method is highly e�cient compared to other algorithms for assign-

ment problems. Its polynomial-time complexity of O(n3), where n is the number of

tasks or agents, allows it to solve large problems quickly. This e�ciency is particu-

larly relevant in scenarios such as logistics and transportation, where rapid decision-

making is crucial. Unlike brute-force methods that would require n! comparisons,

the Hungarian method minimizes the number of comparisons and computational

steps needed to �nd an optimal solution Kuhn, (1955). This makes it an attractive

option in applications requiring real-time or near-real-time processing, such as task

allocation in robotics and vehicle routing in logistics Wang, (2020).

2. Optimality

The Hungarian method is celebrated for its ability to guarantee an optimal solu-

tion, provided the cost matrix is appropriately de�ned. This characteristic sets it

apart from heuristic algorithms, which often �nd near-optimal solutions. The sys-

tematic approach of the Hungarian method�starting with reducing the cost matrix

and culminating in the optimal assignment of tasks�ensures that it consistently

provides the best solution Desau lniers, (1998). In critical applications such as

supply chain management and public transportation, where minimizing operational

costs and maximizing e�ciency are imperative, the Hungarian method's guarantee

of optimality provides signi�cant value Chen, (2022).

3. Adaptability

Originally designed for the linear assignment problem, the Hungarian method

has since been adapted to solve more complex problems, including the Quadratic

Assignment Problem (QAP). In this case, the method helps minimize the total

cost when considering both distances and �ows between facilities Huo, (2021). Its

adaptability also extends to a variety of �elds, including multi-robot task allocation,
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where it is integrated with other techniques like genetic algorithms or reinforcement

learning to optimize dynamic tasks Guo (2021).

The method's versatility allows it to be applied in areas such as last-mile delivery

optimization, where minimizing travel distance is a key objective, and in multi-robot

systems, where it helps optimize task distribution and path planning Zhang (2020).

Its ability to extend to more complex, multi-dimensional problems makes it a highly

adaptable and valuable tool in modern optimization challenges.

4. Ease of Implementation

The Hungarian method's algorithmic simplicity is another key advantage. Its steps

are clear and can be e�ciently implemented in modern programming languages

such as Python, C++, or Java. Many libraries, including SciPy in Python, o�er

built-in functions for solving assignment problems using the Hungarian method

Jones, (2001). This ease of access and the algorithm's straightforward logic make

it ideal for researchers and practitioners who require a reliable, easy-to-use tool for

optimization problems.

Additionally, it integrates smoothly with Geographic Information Systems (GIS) and

other optimization tools, further extending its applicability in real-world scenarios.

For instance, in logistics, it can easily be incorporated into software that helps

optimize vehicle routes and reduce fuel consumption, making it a practical solution

for businesses Wang, (2020).

5. Versatility Across Domains

The Hungarian method's application spans numerous �elds, from logistics and

transportation to healthcare and telecommunications. Its ability to minimize costs,
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whether it is assigning delivery routes, allocating hospital beds, or optimizing the

placement of telecommunications infrastructure, demonstrates its versatility Chen,

(2022). The method is well-suited for any scenario that involves matching tasks

with resources in a cost-e�ective manner.

In the realm of public services, for example, urban planners use the Hungarian

method to optimize the placement of emergency services such as �re stations and

hospitals, ensuring that response times are minimized by reducing the distance be-

tween these facilities and the areas they serve Yuan, (2020).

6. Reliability in Static Environments

For applications where the cost matrix remains relatively stable, the Hungarian

method's reliability shines. Its performance is consistent and doesn't require fre-

quent recalculations or adjustments, making it ideal for static environments where

inputs don't change frequently. This is particularly useful in manufacturing, facility

location planning, and other industrial applications where e�ciency and predictabil-

ity are important Zhang, (2020).

2.7 Challenges and Limitations

While the Hungarian method boasts numerous advantages, it is not without limita-

tions, particularly in dynamic and large-scale environments:

Scalability in Dynamic Systems

In environments where conditions change rapidly, such as urban logistics or dynamic

task allocation, the Hungarian method's static nature may limit its e�ectiveness.

Dynamic algorithms or heuristics that adapt to changing data may o�er more prac-

tical solutions in these cases Liu, (2023).
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Handling Large-Scale Problems

As the size of the problem increases, the computational requirements of the Hungar-

ian method can become prohibitive. Although the algorithm operates in polynomial

time, its cubic complexity may still be a bottleneck for large-scale problems such as

those found in city-wide logistics or real-time systems Chen, (2022b).

Complex Real-World Scenarios

The Hungarian method often assumes a simpli�ed cost matrix and linear relation-

ships between tasks and resources. However, real-world problems frequently involve

more complex, non-linear constraints, such as vehicle capacities, time windows, and

�uctuating demand. In these scenarios, hybrid approaches that combine the Hun-

garian method with more advanced optimization techniques are often required Xu,

(2021).

2.8 Future Directions

Advances in technology and optimization theory suggest several promising future

directions for the Hungarian method:

Integration with Real-Time Data

As cities and industries move towards more dynamic, data-driven decision-making

processes, integrating the Hungarian method with real-time data sources such as

tra�c information, weather conditions, and delivery time constraints will enhance

its applicability Liu, (2023).

Hybrid Approaches

Combining the Hungarian method with machine learning and other optimization

techniques, such as genetic algorithms or deep reinforcement learning, will help

address its limitations in more complex, dynamic scenarios. Such hybrid approaches
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are already showing promise in areas like multi-robot systems and real-time logistics

Chen, (2022b).

Scalability Improvements

Further research into parallel processing techniques and distributed algorithms may

help overcome the scalability issues of the Hungarian method, making it feasible for

much larger datasets and real-time applications Liu, (2023).

The Hungarian method remains one of the most reliable and e�cient tools for solving

assignment problems. Its e�ciency, optimality, adaptability, ease of implementation,

and versatility make it an invaluable resource across various industries. However,

as the complexity of real-world problems continues to increase, future research must

focus on enhancing the method's scalability and adaptability in dynamic environ-

ments. Hybrid approaches that combine the Hungarian method with real-time data

and advanced optimization techniques are likely to play a pivotal role in solving the

next generation of assignment problems.

2.9 Distance Optimization

In the past �ve years, the Hungarian method has continued to play a vital role

in optimizing distance-related problems across several �elds, particularly in trans-

portation, logistics, robotics, and network systems. The modern applications of the

method have evolved with the advent of more complex real-world challenges, driven

by the need for more e�cient solutions to problems of distance minimization. The

Hungarian method remains a powerful algorithmic tool, employed both as a stand-

alone solution and in hybrid optimization techniques. This section delves into recent

advancements in the application of the Hungarian method for distance optimization,

highlighting key research within the last �ve years.
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2.9.1 Application of the Hungarian Method in Logistics and Transporta-
tion

One of the key areas where distance optimization using the Hungarian method

has seen signi�cant application is logistics and transportation. In these �elds,

minimizing the total distance traveled by vehicles is crucial for reducing costs, fuel

consumption, and delivery times.

Wang (2020), analyzed the use of the Hungarian method in last-mile delivery, a

critical aspect of supply chain logistics. The researchers applied the method to

assign delivery vehicles to customer locations in urban areas, minimizing total

travel distances. They demonstrated that the Hungarian method, when integrated

with Geographic Information Systems (GIS) data, could e�ciently assign vehicles

to routes, reducing the overall cost and distance. This is particularly relevant for

urban logistics, where tra�c congestion and varying road conditions can impact

delivery e�ciency.

In the same vein, Huo (2021), examined the use of the Hungarian method in opti-

mizing routes for electric vehicles (EVs) within a logistics �eet. Given the limited

range of EVs, minimizing the distance traveled between charging stations and

delivery points is essential. The study proposed a hybrid algorithm combining the

Hungarian method with a genetic algorithm, demonstrating a signi�cant reduction

in both distance and energy consumption compared to traditional optimization

techniques.

Another recent application can be found in the work of Chen, (2022), who explored

the optimization of supply chains using the Hungarian method. They focused on
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minimizing the distance between suppliers and distribution centers in complex sup-

ply networks, taking into account �uctuating demand. By optimizing these assign-

ments, companies were able to reduce transportation costs and improve delivery

times, especially in environments where supply chains are disrupted by external

factors like pandemics or natural disasters.

2.9.2 Robotics and Multi-Robot Systems

In robotics, particularly multi-robot systems, the Hungarian method is crucial

for task allocation and path planning, where minimizing travel distance is key to

improving operational e�ciency. The method's application in this domain has seen

signi�cant advancements with the development of autonomous systems and their

deployment in industrial environments.

Zhang, (2020), explored task allocation for warehouse robots, focusing on reducing

the total distance traveled by robots during order picking. They implemented a

real-time optimization system that used the Hungarian method to assign robots to

picking tasks based on their proximity to target locations. The study showed that

the method could reduce travel distances by up to 20%, signi�cantly improving

the throughput of automated warehouses. This e�ciency is particularly important

as e-commerce demands grow and warehouse operators seek ways to handle more

orders with fewer resources.

Guo (2021), applied the Hungarian method to search and rescue robots, where task

allocation must prioritize minimizing the time taken for robots to reach disaster

victims. By assigning rescue robots to locations based on their proximity, the study

demonstrated that the Hungarian method could reduce total travel time, which

is crucial in time-sensitive scenarios. The method was particularly e�ective when
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combined with machine learning techniques to predict the optimal paths based on

real-time environmental data.

In the context of autonomous drone �eets, Li, (2022), utilized the Hungarian method

to optimize the �ight paths of drones in large-scale agricultural surveys. By minimiz-

ing the distance between drones and survey points, they improved battery e�ciency

and increased the coverage area for each drone. The study demonstrated how the

Hungarian method could be adapted to optimize not just ground-based vehicles but

also aerial systems, where energy conservation is as critical as distance minimization.

2.9.3 Distance Optimization in Wireless Sensor Networks

The Hungarian method has also found applications in the optimization of Wireless

Sensor Networks (WSNs), where sensors are deployed to monitor speci�c geographic

areas or objects. Minimizing the communication distance between sensors and their

targets is critical for conserving energy and prolonging network life.

Wang, (2021), applied the Hungarian method in dynamic sensor assignment for

WSNs deployed in environmental monitoring. Their approach focused on minimiz-

ing the communication distance between sensors and data collection points, which

in turn reduced energy consumption and increased the lifespan of the network. The

study highlighted the importance of dynamic assignment, where sensor locations

and target areas change over time, requiring real-time optimization to ensure

network e�ciency.

Another application can be seen in the work of Zhu, (2022), who used the Hungar-

ian method for optimizing the assignment of mobile sensors in smart cities. These

sensors are deployed to monitor tra�c patterns, pollution levels, and public safety.
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By minimizing the travel distance of mobile sensors, the researchers were able to

improve data accuracy and reduce the time taken to respond to changes in environ-

mental conditions. This work is particularly relevant in the context of smart city

development, where e�cient resource allocation is critical to maintaining high levels

of service.

2.9.4 Urban Planning and Public Service Optimization

Urban planners have applied the Hungarian method to optimize the location of

public services, such as hospitals, schools, and �re stations. Minimizing the distance

between these facilities and the population they serve is essential for improving

accessibility and service e�ciency.

Yuan, (2020), explored the application of the Hungarian method in the optimization

of emergency service facilities. Their study focused on the placement of �re stations

and emergency medical services in a rapidly growing urban area. By minimizing

the distance between facilities and high-risk areas, the study demonstrated that the

Hungarian method could signi�cantly reduce response times and improve public

safety.

In a related study, Xu,(2021), applied the Hungarian method to school bus routing

in a large metropolitan area. Their goal was to minimize the total distance that

school buses traveled while ensuring that all students were picked up and dropped

o� within an acceptable time frame. The Hungarian method allowed for e�cient

assignment of buses to routes, reducing both travel time and fuel consumption, while

also ensuring that the buses adhered to strict time schedules.
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2.9.5 Hybrid Approaches and Future Research Directions

The Hungarian method's recent applications have often involved hybrid approaches,

where the method is combined with other optimization techniques to address more

complex problems. These hybrid methods leverage the strengths of the Hungarian

algorithm while compensating for its limitations in more dynamic or large-scale

scenarios.

For instance, Liu, (2023), combined the Hungarian method with machine learning

algorithms to optimize dynamic vehicle routing in real-time. Their approach enabled

continuous updates to the cost matrix based on tra�c conditions, weather, and

delivery deadlines. The study showed that by integrating real-time data into the

Hungarian method, logistics companies could further reduce travel distances and

improve delivery e�ciency in unpredictable environments.

Similarly, Chen, (2022b), developed a hybrid model combining the Hungarian

method with deep reinforcement learning for optimizing task allocation in multi-

robot systems. By using deep learning to predict the optimal paths and tasks for

each robot, and then using the Hungarian method to assign tasks based on proxim-

ity, the system was able to achieve better results than using either method alone.

Future research is likely to continue exploring such hybrid approaches, as well as

the integration of the Hungarian method with emerging technologies like arti�cial

intelligence (AI), the Internet of Things (IoT), and real-time optimization systems.

The Hungarian method has been employed across various domains to address dis-

tance optimization challenges in transportation, logistics, robotics, and urban plan-

ning. Its e�ectiveness in minimizing total distances traveled, whether by vehicles,

robots, or sensors, has made it an invaluable tool for improving e�ciency, reducing

costs, and enhancing service quality.
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From optimizing last-mile deliveries and supply chains to enhancing the perfor-

mance of autonomous systems and wireless sensor networks, the Hungarian method

continues to be at the forefront of distance-based optimization. With the ongoing

development of hybrid models that integrate real-time data and machine learning,

the method's applications are set to expand even further, driving innovation in a

wide range of industries.

2.10 Time Optimization

In real-world systems, optimizing time is crucial for improving overall e�ciency,

especially in environments where resources are scarce, and delays can result in sig-

ni�cant operational costs. When time is treated as a key variable in optimization

problems, �nding the right balance between minimizing delays, resource allocation,

and productivity becomes paramount. The Hungarian method, though traditionally

associated with assignment problems, plays a signi�cant role in time optimization,

particularly in transportation, job scheduling, and other time-sensitive applications.

2.10.1 Time Optimality in Transportation Problems

In transportation systems, time is a critical factor for both passengers and goods.

The e�ectiveness of transportation services is often measured by how well they min-

imize total travel time, waiting times, and the time needed for vehicle dispatching.

Time optimality, in this context, involves designing systems that can reduce delays,

improve delivery times, and enhance overall service quality.

Transportation problems involve assigning vehicles to routes and ensuring that deliv-

eries are made in the shortest time possible while maintaining operational constraints

such as fuel e�ciency, vehicle capacity, and customer satisfaction. Traditionally, ve-

hicle routing problems (VRPs) aim to minimize distances, but in many cases, time

is an equally crucial factor. When considering time as a variable, it includes travel

time, waiting time, and service time at destinations.
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Salavati-Khoshghalb (2020), applied time optimization in urban logistics using a

dynamic vehicle routing problem model. Their approach used the Hungarian method

for real-time allocation of vehicles, dynamically adjusting routes based on tra�c

conditions and delivery schedules. By minimizing time spent on routes rather than

just distance, their model achieved a 20% reduction in overall travel times. This

highlighted the importance of real-time adaptability, especially in congested urban

environments where travel times can �uctuate drastically due to unforeseen events.

In public transportation, the challenge of reducing passenger waiting times is also

tackled using time optimization models. The scheduling of buses, trains, or other

public transport services is often adjusted based on real-time data to reduce idle

times for vehicles and waiting times for passengers. Liu,(2020), demonstrated how

applying a time-based scheduling system using real-time tra�c data and a modi-

�ed Hungarian algorithm reduced average passenger waiting times by up to 15%.

The study showed that minimizing time in public transit not only improves service

e�ciency but also directly enhances user satisfaction.

2.10.2 Time Optimization in Logistics and Supply Chain Management

In logistics and supply chain management, optimizing time is critical for reduc-

ing lead times, improving delivery accuracy, and meeting service level agreements

(SLAs). Companies that can deliver goods faster often gain a competitive advan-

tage. Time optimization in logistics is about reducing the time between order receipt

and �nal delivery.

Incorporating time as a variable in logistics problems transforms traditional ve-

hicle routing and assignment problems. Instead of focusing solely on minimizing

distances, time-based optimization aims to minimize the total operational time, in-

cluding loading and unloading times, transit time, and waiting times due to tra�c

or other unforeseen factors. Mancini, (2021), integrated a time-sensitive approach
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to the vehicle routing problem, where delivery deadlines were treated as hard con-

straints, and minimizing delivery times became the primary objective. The Hungar-

ian method was used to optimize vehicle-to-route assignments, and the study found

that this approach reduced average delivery times by 12%, leading to improved

customer satisfaction and better resource utilization.

One of the biggest challenges in logistics is optimizing the time spent during the

"last mile" of delivery�the �nal stage of the distribution process. In a recent

study, Koch, (2021) demonstrated that by focusing on time optimization for last-mile

deliveries, signi�cant e�ciency improvements could be achieved. They developed an

algorithm based on the Hungarian method that prioritized delivery assignments to

minimize delays in congested urban areas. By considering both travel time and

package delivery urgency, their method reduced delivery delays by 8%, proving that

time optimization can directly impact delivery performance.

2.10.3 Real-Time Task Scheduling and Time Optimization in Smart
Cities

Smart city initiatives often involve the use of sensors, IoT devices, and data analytics

to optimize city services such as waste management, public transport, and emergency

response systems. In these applications, time optimization is essential for improving

the response rate, reducing downtime, and enhancing overall e�ciency.

One speci�c example of time optimization in smart cities is dynamic task scheduling

for emergency services such as �re trucks, ambulances, and police vehicles. The

timely arrival of emergency services can be a matter of life and death, making

time optimization a critical variable in these systems. Ghafouri, (2022), proposed

a time-optimized scheduling algorithm for emergency response vehicles using the

Hungarian method, integrated with real-time tra�c data. By minimizing the time

taken for emergency vehicles to reach their destinations, the algorithm improved
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response times by 18% compared to traditional methods, signi�cantly enhancing

the e�ciency of emergency services in urban areas.

In waste management systems, time optimization is also critical. Garbage collection

trucks must be scheduled in a way that minimizes the time spent on the road while

ensuring that waste is collected e�ciently across the city. Chen,(2020), applied a

time-sensitive routing model using the Hungarian method to optimize the allocation

of garbage trucks in a large metropolitan area. Their model reduced the total

collection time by 15%, demonstrating how time optimization can directly improve

the e�ciency of municipal services.

2.10.4 Robotic Task Allocation and Time Optimization in Automated
Environments

The use of robots in automated warehouses and manufacturing environments is

growing rapidly. In these systems, minimizing the time robots spend moving between

tasks or transporting materials is critical for optimizing overall productivity. When

time is treated as a primary variable in robotic task allocation, robots can be assigned

to tasks in a way that minimizes downtime and maximizes operational e�ciency.

In automated warehouses, robots are often tasked with picking items from storage

and delivering them to packing stations. The time taken for these robots to complete

their tasks directly impacts the overall throughput of the warehouse. He, (2021),

applied a modi�ed Hungarian algorithm to assign tasks to robots in a time-optimized

manner. By prioritizing tasks based on their urgency and minimizing the travel time

between tasks, their system achieved a 25% improvement in order ful�llment time,

signi�cantly boosting the warehouse's operational e�ciency.

Similarly, in manufacturing environments where multiple robots are responsible for

transporting materials between production lines, minimizing travel time is essen-

tial for reducing production delays. In a study by Yang, (2022), the Hungarian
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method was used to optimize the assignment of transportation tasks to robots.

Their time-sensitive approach reduced the total production time by 10%, enabling

manufacturers to increase production rates and meet tighter delivery deadlines.

2.10.5 Data Centers and Time Optimization in Computational Task
Scheduling

In data centers, e�cient task scheduling is critical for minimizing processing time and

ensuring that computational resources are used optimally. In modern data centers,

where tasks such as data analysis, arti�cial intelligence (AI) processing, and cloud

services require substantial computing power, reducing the total time required to

process and transmit data is crucial for maintaining service levels.

Wang, (2021), explored the application of the Hungarian method to minimize com-

putational task scheduling times in cloud-based data centers. Their approach fo-

cused on reducing the time required for task allocation and ensuring that computa-

tional resources were optimally assigned to tasks in real time. By treating time as a

primary variable in their optimization model, the researchers achieved a 15% reduc-

tion in total processing time, leading to improved system performance and energy

e�ciency.

In another study, Chen,(2020), applied time-optimized task scheduling to distributed

computing environments. Their model minimized the time required for processing

large datasets across multiple servers, improving the performance of data-intensive

applications such as scienti�c simulations and �nancial modeling. By focusing on

time optimization, the system was able to reduce processing delays by 10%, leading

to more e�cient use of computational resources.

2.10.6 Time Optimality in Healthcare Systems

In healthcare systems, especially in hospitals and emergency departments, time op-

timization can signi�cantly impact patient outcomes. Minimizing the time patients
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spend waiting for treatment, as well as optimizing the scheduling of medical person-

nel, is essential for improving healthcare delivery.

Liu, (2021) applied the Hungarian method to optimize the scheduling of doctors

and nurses in an urban hospital. By focusing on minimizing the time patients spent

waiting for medical attention, the scheduling system achieved a 20% reduction in

wait times in the emergency department. This time optimization directly improved

patient throughput, allowing the hospital to treat more patients in less time without

compromising the quality of care.

Similarly, in surgical departments, optimizing the time taken to schedule surgeries

and assign operating rooms is critical for increasing the number of surgeries that can

be performed in a day. Chang, (2020), applied time optimization to the scheduling of

surgical teams, ensuring that operating rooms were assigned in a way that minimized

the time surgeons spent waiting for rooms to become available. Their model resulted

in a 10% increase in the number of surgeries performed per day, improving the overall

e�ciency of the hospital's surgical department.

Time optimization, when treated as a key variable in transportation problems and

other time-sensitive domains, o�ers signi�cant improvements in operational e�-

ciency and service quality. From public transportation to automated warehouses,

data centers, and healthcare, the Hungarian method continues to demonstrate its

e�ectiveness in minimizing total completion times and reducing delays. By focusing

on time as a critical factor, modern systems can deliver better outcomes, reduce

operational costs, and improve overall system performance.

2.11 Cost Optimization

Cost optimization remains a critical aspect of decision-making in various industries,

from manufacturing to healthcare, logistics, and public transportation. The Hun-
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garian method, originally designed to solve assignment problems, has been widely

adopted in cost-related scenarios where the goal is to minimize operational expenses

while maintaining or improving e�ciency. The method's application to cost opti-

mization is particularly prominent in resource allocation, supply chain management,

and job scheduling, as it ensures that resources are assigned to tasks or processes in

a manner that minimizes the overall cost.

2.11.1 Cost Minimization in Transportation Problems

In transportation, the Hungarian method plays a key role in reducing costs asso-

ciated with the movement of goods and passengers. Transportation costs typically

encompass fuel, vehicle maintenance, labor, and time. These costs are not uni-

form and can vary signi�cantly based on the distances traveled, routes taken, and

operational e�ciency. The Hungarian method can be leveraged to optimize the

assignment of vehicles to delivery routes, aiming to minimize transportation costs

while meeting delivery deadlines and customer service level agreements (SLAs).

In the classical transportation problem, the objective is to transport goods from

multiple sources to multiple destinations while minimizing the overall transportation

cost. The Hungarian method is used in cases where the transportation matrix is

dense, and the costs of moving goods between locations are provided as inputs. By

solving the assignment problem optimally, the method minimizes the total cost by

e�ciently matching sources to destinations in a way that reduces excess distances

and unnecessary trips.

Nagurney, (2018), illustrates the importance of the Hungarian method in trans-

portation networks where minimizing costs is crucial for supply chain e�ciency. By

applying the method to real-time logistics problems, transportation companies were

able to reduce total operational costs by 10-15%, particularly in scenarios involving

dynamic routing and real-time data on fuel consumption and road conditions. This
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adaptability makes the Hungarian method an essential tool in modern transporta-

tion, where minimizing cost without compromising service quality is of paramount

importance.

2.11.2 Cost Optimization in Supply Chain Management

Supply chain management, which involves the coordination of material, information,

and �nancial �ows, bene�ts signi�cantly from the cost-minimizing capabilities of

the Hungarian method. In a typical supply chain, goods must be transported from

suppliers to manufacturers, and then from manufacturers to distribution centers or

retail outlets. Each stage of the supply chain incurs costs, including transportation,

warehousing, and inventory holding costs. The Hungarian method helps to assign

transportation tasks in a way that minimizes the total supply chain cost.

Chen, (2005), discuss how the Hungarian method is used to minimize transportation

costs by optimizing the assignment of suppliers to distribution centers. This involves

calculating the transportation costs between suppliers and distribution points and

ensuring that the assignment of suppliers to distribution centers is done in a way that

minimizes the overall cost. The method also accounts for capacity constraints at

both the supplier and distribution center levels. By reducing transportation costs,

companies can achieve more e�cient logistics operations, leading to reduced lead

times and improved service levels.

In addition, the Hungarian method helps to optimize distribution networks by ensur-

ing that goods are transported using the least costly routes and means of transport.

For instance, in a multi-modal transportation system that uses a combination of

road, rail, and air transport, the method can be employed to assign goods to the

most cost-e�ective mode of transport, thereby minimizing the overall logistics cost.

Azzi, (2019), report that by using the Hungarian method for route assignment in

multi-modal transport systems, logistics companies reduced their total transporta-
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tion costs by 12%, particularly in scenarios involving international shipping where

di�erent transportation modes have di�erent cost structures.

2.11.3 Cost Minimization in Healthcare Resource Allocation

In healthcare, cost optimization is a pressing concern, as healthcare institutions aim

to provide high-quality patient care while managing limited resources. The Hungar-

ian method has been applied extensively to optimize the allocation of medical person-

nel, equipment, and facilities to minimize operational costs while maintaining high

service standards. E�cient resource allocation ensures that healthcare providers can

meet patient demands without incurring unnecessary sta�ng or equipment rental

costs.

One critical area where the Hungarian method is applied is the scheduling of doc-

tors and nurses to shifts. Hospitals often face the challenge of balancing sta� avail-

ability with patient care needs while minimizing labor costs. By using the Hun-

garian method, hospitals can assign medical personnel to shifts in a way that re-

duces oversta�ng during low-demand periods and understa�ng during peak times.

Topaloglu,(2006), demonstrate that by optimizing sta� allocation using the Hun-

garian method, hospitals reduced labor costs by 10%, while improving patient care

outcomes by ensuring that the right number of sta� were available at the right times.

The method is also used to allocate medical equipment, such as MRI machines or

operating rooms, to patients. Equipment scheduling is crucial in hospitals where

demand for certain diagnostic or treatment facilities is high. Optimizing the alloca-

tion of equipment ensures that patients receive timely care, and costly delays or idle

time are minimized. Gaur, (2006) show that by applying the Hungarian method

to schedule operating rooms, a large metropolitan hospital reduced the idle time of

surgical teams and equipment by 20%, resulting in signi�cant cost savings.
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2.11.4 Cost Optimization in Manufacturing and Job Scheduling

Manufacturing environments bene�t signi�cantly from cost minimization strategies

that ensure jobs are scheduled e�ciently and machines are utilized to their full

capacity. In manufacturing plants, the allocation of jobs to machines is a complex

problem that directly a�ects production costs, including labor, energy consumption,

and machine wear and tear. By applying the Hungarian method, manufacturers

can assign jobs to machines in a way that minimizes the total cost of production.

In particular, the Hungarian method is useful in scenarios where multiple jobs need

to be assigned to a limited number of machines, and the costs associated with

machine downtime, energy usage, and labor must be minimized. Pinedo, (2008),

explores how the method is used to optimize job scheduling, reducing production

costs by minimizing machine idle times and ensuring that jobs are completed in the

shortest possible time. This not only lowers labor and energy costs but also reduces

maintenance costs by preventing machines from being overworked or underutilized.

The method is also applied to minimize setup costs in manufacturing processes.

When machines require setup time or recon�guration between di�erent jobs, the

Hungarian method helps minimize the total setup cost by optimizing the sequence of

jobs assigned to each machine. Bertsimas, (2003), discuss how job sequencing using

the Hungarian method can reduce the setup time by 15%, leading to a corresponding

reduction in production costs.

2.11.5 Telecommunications and Network Design Cost Optimization

In telecommunications, cost minimization is a key objective, particularly in the

design and maintenance of communication networks. The Hungarian method is

applied to optimize the assignment of communication tasks to network nodes,

minimizing the overall cost of maintaining the network infrastructure.
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One speci�c application is in the design of �ber-optic networks, where the cost

of connecting nodes (such as cities or communication towers) can vary based on

distance, terrain, and equipment costs. The Hungarian method is used to assign

the optimal number of communication links between nodes in a way that minimizes

the overall infrastructure cost. Grover, (2003), demonstrate that by applying the

Hungarian method to optimize network design, telecommunications companies

reduced the total cost of network installation by 12%, particularly in rural or

di�cult-to-reach areas where the cost of laying communication lines is high.

The method is also used in data centers to optimize computational task allocation to

servers. By minimizing the energy consumption associated with running servers, the

Hungarian method helps data centers reduce their operational costs. Mastroianni,

(2013), show that by optimizing task allocation using the Hungarian method, data

centers reduced their energy costs by 10%, particularly in high-performance com-

puting environments where energy consumption is a major operational expense.

2.12 Cost Optimization in Public Transportation Systems

Cost optimization remains a pivotal focus for public transportation authorities as

they strive to reduce operational expenses while maintaining service quality. Pub-

lic transportation systems, which include buses, trains, trams, and other vehicles,

present a signi�cant logistical challenge due to the complexity of vehicle routing,

scheduling, and maintenance. By leveraging the Hungarian method�a mathemati-

cal optimization algorithm�the transportation sector has made signi�cant strides in

minimizing costs associated with vehicle allocation, labor, and infrastructure main-

tenance.
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2.12.1 Vehicle Assignment and Route Optimization

In large-scale public transportation systems, vehicle assignment plays a crucial role

in determining the overall operational cost. These systems involve a �eet of vehicles

that need to be assigned to various routes, each of which varies in terms of distance,

passenger demand, and frequency of service. The Hungarian method, designed for

solving assignment problems, provides a structured way to optimize this vehicle-

to-route assignment, minimizing fuel consumption, maintenance, and labor costs

Santos, (2019).

Transportation systems operating in cities experience �uctuating demand patterns

during peak and o�-peak hours. Without optimization, a city may deploy too many

vehicles during o�-peak hours, leading to ine�cient fuel use and wear-and-tear.

The Hungarian method, when applied to the assignment of vehicles, allows for the

reduction of excess �eet usage during lower-demand times. This is done by balancing

the number of vehicles assigned based on the predicted demand throughout the day

Kumru,(2021).

By optimizing bus schedules and assignments, transportation authorities can signi�-

cantly lower their operational costs. Desaulniers et al. (1998), applied the Hungarian

method in a case study of bus scheduling. They found that the method led to an

8% reduction in fuel consumption, while also reducing the total number of buses

needed, thereby cutting maintenance and depreciation costs. This allowed public

transportation operators to achieve the same service levels with fewer resources,

resulting in substantial savings.

2.12.2 Labor Cost Optimization through Driver Scheduling

Apart from vehicle optimization, labor costs, particularly those related to driver

scheduling, are a signi�cant expense in public transportation. Labor costs can �uc-

tuate due to overtime payments and ine�ciencies in shift assignments. Optimizing
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driver schedules is crucial to reducing these expenses, ensuring that labor is deployed

where needed while preventing driver fatigue and overpayment.

The Hungarian method can be adapted to balance driver schedules across di�erent

routes, ensuring equitable distribution of workload and minimizing overtime. This

approach ensures that available drivers are allocated to routes e�ciently, taking

into account constraints such as shift durations, legal rest requirements, and skill

levels Desaulniers, (1998). By using this method, transportation systems have seen

reductions in overtime-related costs and better management of driver shifts.

Zhang et al. (2018), noted that public transportation systems utilizing optimized

driver scheduling experienced improved employee satisfaction and reduced labor

costs. By ensuring an even distribution of work and optimizing shift lengths, sys-

tems can reduce instances of overtime while still meeting operational demands. Ad-

ditionally, better scheduling enhances the overall quality of service as drivers are less

likely to experience burnout or fatigue.

2.12.3 Fuel and Maintenance Cost Reductions

Fuel and maintenance costs are among the most signi�cant operating expenses for

public transportation systems. The Hungarian method's optimization of vehicle

routing ensures that the overall distance covered by the �eet is minimized, leading

to lower fuel consumption. When buses or trains are assigned optimally, their time

on the road is reduced, and this translates to less fuel usage and reduced wear and

tear on the vehicles Bhatia, (2020).

A study by Zhang et al. (2018), demonstrated that public transportation systems

implementing the Hungarian method reduced their total maintenance costs by 15%.

This was primarily due to fewer miles being driven, which in turn decreased the

frequency of maintenance required for the �eet. Additionally, vehicles assigned to

routes with smoother terrain or fewer stops experienced less strain, further reducing
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repair costs.

Optimizing route assignments not only results in lower fuel and maintenance costs

but also allows for better use of resources during peak and o�-peak hours. When

demand is low, fewer vehicles are required, which means some of the �eet can be

serviced during those times, reducing downtime and maintaining the overall health

of the �eet.

2.12.4 Infrastructure Maintenance and Cost E�ciency

Public transportation infrastructure, including bus depots, train tracks, and

stations, requires ongoing maintenance to ensure safety and reliability. Unscheduled

breakdowns or ine�ciencies in maintenance can lead to higher operational costs,

delays, and disruptions in service. E�cient maintenance scheduling is therefore

essential for reducing these risks.

The Hungarian method has been applied to optimize maintenance schedules,

assigning tasks to the most appropriate times to minimize disruptions and costs.

Zhang et al.(2018) explored how this method was applied to rail and bus depot

maintenance. By scheduling maintenance tasks during periods of low service de-

mand, the transportation system reduced downtime and achieved a 15% reduction

in maintenance-related costs.

Another bene�t of maintenance optimization is that it prevents the need for emer-

gency repairs, which are often more costly than planned maintenance. Transporta-

tion systems that use the Hungarian method for optimizing their maintenance sched-

ules tend to have more reliable services, as vehicles and infrastructure are less likely

to experience sudden breakdowns. This increases system reliability and improves
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passenger satisfaction, which in turn can lead to higher ridership and revenue Shep-

herd, (2012).

2.12.5 Broader Applications in Cost Optimization

The Hungarian method's applications extend beyond vehicle routing, driver

scheduling, and infrastructure maintenance. Its ability to minimize costs in

assignment problems has seen widespread use in various industries beyond public

transportation. In healthcare, for example, hospitals use this method to assign

medical sta� e�ciently, minimizing labor costs while ensuring proper coverage of

shifts (Punnakitikashem, 2021). Similarly, in the logistics industry, the Hungarian

method is used to optimize the allocation of goods to transportation routes,

improving delivery times and reducing fuel costs Gonzalez Ramirez (2020).

In public transportation, the application of the Hungarian method is part of a

broader trend toward adopting data-driven optimization techniques to enhance op-

erational e�ciency. By leveraging real-time data on passenger �ows, tra�c condi-

tions, and vehicle performance, transportation systems can further re�ne their use

of the Hungarian method, adjusting vehicle assignments and schedules dynamically

to meet changing conditions Hatzopoulou, (2010).

2.12.6 Emerging Trends in Optimization for Public Transportation

In recent years, advancements in technology have introduced new opportunities for

optimizing public transportation operations. The integration of real-time data, the

rise of autonomous vehicles, and the transition to electric and hybrid vehicles have

all opened up new possibilities for reducing costs and improving service levels.
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Real-time Data and Dynamic Optimization

The use of real-time data, such as tra�c conditions and passenger demand, has

enabled transportation systems to adjust their operations on the �y. By combining

real-time information with optimization algorithms, public transportation author-

ities can dynamically reroute vehicles or adjust schedules to avoid congestion and

reduce delays Kumru, (2021). This results in further reductions in fuel consumption

and improved service reliability.

Autonomous Vehicles

The development of autonomous vehicles presents new challenges and opportunities

for optimization. Autonomous buses and trains can follow pre-optimized routes more

precisely and adjust in real-time based on tra�c or passenger load. The Hungarian

method can be adapted to optimize the deployment of autonomous vehicles, ensuring

e�cient use of resources and improving cost savings Speranza, (2018).

Electric and Hybrid Vehicle Optimization

With the global shift toward greener transportation solutions, electric and hybrid

vehicles are becoming more prevalent in public transportation systems. These ve-

hicles require careful planning in terms of charging infrastructure and range limita-

tions. The Hungarian method can help optimize the deployment of electric vehicles

by assigning them to routes that maximize their range and minimize the need for

recharging Li (2019). Additionally, using electric vehicles in optimized routes re-

duces environmental impact and contributes to sustainability goals.

Sustainability and Environmental Considerations

As cities prioritize reducing their carbon footprints, public transportation systems

must �nd ways to optimize not only cost but also environmental impact. By incor-

porating environmental metrics, such as emissions reduction, into the optimization
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process, transportation systems can achieve a balance between cost e�ciency and

sustainability. The Hungarian method can be used to assign vehicles to routes that

minimize fuel consumption and emissions, contributing to cleaner and more e�cient

urban transportation Shepherd, (2012).

2.12.7 Challenges and Future Directions

While the Hungarian method has proven e�ective in optimizing public transporta-

tion systems, there are still challenges to be addressed. As transportation systems

become more complex and integrated, optimization algorithms must handle a

growing number of variables, including multimodal transportation networks and

real-time data from various sources.

Another challenge is ensuring data accuracy and availability. The e�ectiveness of

optimization methods like the Hungarian method depends heavily on the quality of

the data used to inform decision-making. Transportation systems must invest in

advanced data collection and management systems to ensure that their optimization

models are based on accurate and up-to-date information Hatzopoulou,(2010).

Moreover, the increasing demand for sustainability in transportation adds another

layer of complexity to the optimization process. Future research and technological

advancements will need to address how best to incorporate environmental consid-

erations into existing optimization frameworks to strike a balance between cost,

e�ciency, and environmental impact Li, (2019).



CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter gives; VF western Kenya delivery points and the phases of the

Hungarian method that are used to solve the operations research problem.

3.1.1 VF Western Kenya Branches Delivery Plans

Victory farms has a total of 23 depots in the greater western Kenya region namely;

Kisumu, Majengo, Kisii, Mumias, Rongo, Bungoma, Mbita, Siaya, Luanda, Ahero,

Kakamega, Sondu, Oyugis, Mbale, Migori, Suneka, Awendo, Nyalenda, Chavakali,

Sindo, Awasi, Homa-bay and Roo depots.

The Victory farm's �sh for western Kenya branches is transported from farm to

Kisumu Logistics Center (KLC), a distance of approximately 172km, in bulk and

stored in a cold room at the logistic center. Deliveries are then made to the various

branches from the Kisumu Logistic Center (KLC) on a daily basis via two units

doing two di�erent routes as shown below.

3.1.2 Route 1: Kakamega Route

In the logistics operation described, the Kakamega Route follows a meticulously

structured plan, commencing at 4 am from the Kisumu Logistics Center (KLC).

This early start time is crucial to ensuring that deliveries can be made promptly and

e�ciently throughout the day. The route encompasses deliveries to several branches

in a speci�c order to maximize e�ciency and minimize transit times. The branches

51
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served by this route include Kisumu 1 branch (Kondele), Siaya branch, Nyalenda

branch, Mumias branch, Mbale branch, Chavakali branch, Luanda branch, Bun-

goma branch, Majengo branch, and Kakamega branch.

This well-organized distribution network is designed to facilitate e�cient transport

and delivery of goods to the speci�ed destinations, optimizing the supply chain pro-

cess. By following a structured plan, the route ensures that each branch receives

its supplies in a timely manner, which is essential for maintaining the freshness and

quality of the �sh products. The scheduled route not only streamlines the trans-

portation work�ow but also enables strategic planning for inventory management

across various branches. This means that each branch can better manage its stock

levels, reducing the risk of shortages or overstocking, which in turn helps to mini-

mize waste and maximize pro�tability.

Such logistical precision is essential for Victory Farms to maintain a reliable and

responsive supply chain. By ensuring that deliveries are made on time and in an

e�cient manner, the company can enhance its overall operational e�ciency. This

approach also re�ects a meticulous strategy likely tailored to meet time-sensitive

demands, ensuring that high-quality �sh products reach consumers without delay.

Furthermore, by optimizing the supply chain process, Victory Farms can improve

customer satisfaction, as timely deliveries are crucial for meeting the expectations of

retailers and end consumers alike. Overall, the Kakamega Route exempli�es a strate-

gic and well-coordinated logistics operation that supports the company's growth and

success in the competitive �sh production industry.

3.1.3 Route 2: Kisii Route

The unit doing this route normally leaves the logistic center at 3:30am and does

deliveries to the following branches;

Kisii branch, Ahero branch, Awasi branch, Suneka branch, Sondu branch, Oyugis

branch, after which the unit gets to farm in Roo valley to collect KLC orders back



53

to Kisumu.

3.2 Travelling Salesman Problem Matrix

The Travelling Salesman Problem (TSP) is a classic optimization challenge in which

the goal is to �nd the shortest possible route that visits each depot exactly once

and returns to the origin depot. The problem is often modeled using a matrix

representation, which provides a structured way to handle the distances, times, or

costs associated with traveling between depots.

3.2.1 Matrix Structure and Representation

A TSP matrix, denoted as X, is an n × n matrix where n represents the number

of depots. This square matrix captures the pairwise distances (or costs or times)

between each pair of depots. Each element aij of the matrix A represents the distance

from depot i to depot j. The matrix is structured as follows:

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann


In this matrix: - The entry aij indicates the cost, distance, or time required to travel

from depot i to depot j. - The diagonal elements aii are zero because the distance

from a depot to itself is naturally zero. These diagonal elements are not used in the

optimization process (The Math Forum, n.d.).

3.2.2 Matrix Properties and Constraints

The TSP matrix A provides a fundamental representation of the problem but also

comes with certain properties and constraints that need to be addressed:
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Distance Symmetry

In many TSP formulations, the distance matrix is symmetric, meaning aij = aji.

This symmetry simpli�es the problem but is not always the case. For asymmetric

problems, where distances are not equal in both directions, the matrix will re�ect

this asymmetry (Zelinka and Mittal, 2010).

Matrix Constraints

The objective of solving the TSP is to minimize the total distance (or cost or time)

for a complete tour. Mathematically, this is represented as:

Minimize Z =
n∑

i=1

n∑
j=1

xijaij (1)

where: - xij is a binary variable that equals 1 if the route from depot i to depot j is

included in the tour, and 0 otherwise. - aij is the distance (or cost or time) between

depot i and depot j.

The constraints for the TSP ensure that each depot is visited exactly once, and the

tour forms a single continuous loop. These constraints can be expressed as:

Subject to; ∑n
j=1 xij = 1, i = 1, . . . , n∑n
i=1 xij = 1, j = 1, . . . , n

xij ∈ {0, 1}, for i = 1, . . . , n and j = 1, . . . , n

 (2)

These constraints ensure that: - Each depot is visited exactly once (
∑n

j=1 xij = 1

for all i). - Each depot is the destination exactly once (
∑n

i=1 xij = 1 for all j). -

The variables xij are binary, indicating whether a route is included in the tour.
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3.2.3 Recent Advances and Applications

Recent advancements in TSP matrix formulation and solution techniques have sig-

ni�cantly enhanced the ability to solve complex instances e�ciently. These advance-

ments include:

Enhanced Algorithms

Metaheuristics: Modern metaheuristic algorithms, such as Genetic Algorithms (GA)

and Ant Colony Optimization (ACO), are frequently used to solve large-scale TSP

instances. These methods o�er good performance for complex problems by exploring

and exploiting the solution space in innovative ways Aarts and Lenstra, (2020).

Hybrid Approaches: Combining local search methods with metaheuristics has

proven e�ective in improving solution quality. For instance, hybrid algorithms that

integrate local optimization techniques with global search heuristics provide robust

solutions for challenging TSP problems Gendreau et al.,(2017).

Machine Learning Integration

Predictive Models: Machine learning models are being integrated with TSP solutions

to predict travel times and optimize routes based on historical data. This integration

enhances the accuracy of predictions and the e�ciency of route planning Bengio et

al.,(2018).

3.3 Implications for Practical Applications

In practical applications such as logistics and transportation, the TSP matrix helps

in:

3.3.1 Route Optimization:

By solving the TSP matrix, companies like Victory Farms can determine the most

e�cient delivery routes, reducing operational costs and improving service quality.
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3.3.2 Cost Management:

Optimizing the tour minimizes travel distances, which in turn reduces fuel consump-

tion and associated costs.

3.3.3 Time E�ciency:

E�cient route planning ensures timely deliveries, which is crucial for perishable

goods like �sh.

The TSP matrix serves as a powerful tool in these applications, providing a struc-

tured approach to solving complex routing problems.

3.4 Minimizing Travel Distance

The Hungarian method for solving assignment problems is divided into three main

phases. These phases are designed to systematically simplify the problem, ensure

feasibility, and re�ne the solution to achieve optimality.

3.4.1 Phase One

Step 1:Consideration of the Given Distance Matrix Model

;

D =


d11 d12 d13 . . . d1n
d21 d22 d23 . . . d2n
...

...
...

. . .
...

dn1 dn2 dn3 . . . dnn


Conditions for Optimal Assignment in TSP Using Hungarian Method

Here are three key conditions for optimal assignment in the Traveling Salesman

Problem (TSP) using the Hungarian method:

Condition 1:Symmetry of the Cost Matrix:

The cost matrix must be symmetric, meaning the cost from city A to city B is equal
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to the cost from B to A. Mathematically, this can be expressed as:

c(A,B) = c(B,A) ∀A,B.

If the cost matrix is not symmetric, transformations may be required to symmetrize

it.

Condition 2:Subtour Elimination:

The solution must not contain disjoint subtours (cycles that do not cover all cities).

After solving the assignment problem, additional constraints are needed to merge

subtours into a single tour. Subtour elimination ensures that:

All cities are visited exactly once in a single continuous tour.

Condition 3:Non-Negativity of Costs:

The cost matrix should contain only non-negative values, as the Hungarian method

relies on reducing rows and columns to zero. Negative costs, if any, can be shifted

to non-negative by adding a constant to all costs:

c′(i, j) = c(i, j) +K where K > |min(c(i, j))|.

This transformation does not a�ect the optimality of the solution.

Step 2:Conditions for Optimal Assignment in TSP

In cases where the number of rows is not equal to the number of columns or vice

versa in the given problem, a dummy row or column is introduced. The assignment

costs for these dummy cells are uniformly set to zero, ensuring consistency in the

matrix structure.

3.4.2 Phase Two

Step 3:Distance Matrix Reduction Procedure

The matrix is systematically reduced by selecting the minimum element
∑n

i=1 aij

in each row and subtracting it from other elements within that row. This reduction
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process simpli�es the matrix by diminishing the values, facilitating subsequent

computations for optimal assignment.

Step 4:Distance Column-wise Matrix Reduction

The new matrix is further reduced column-wise using the same method as outlined

in Step 3, focusing on the smallest element
∑n

j=1 bji in each column that does not

contain zero. This iterative reduction process ensures the continued simpli�cation

of the matrix, enhancing the e�ciency of subsequent computations.

3.4.3 Phase Three

Step 5:Distance Optimality Assessment

An assessment is made to determine optimality by drawing the minimum number

of lines required to cover all zeros in the matrix. This step evaluates the current

state of the matrix and its alignment with the desired optimal solution.

Step 6:Decision Point

If the number of lines drawn equals the total number of rows or columns = n,

indicating optimality, the process proceeds to Step 9. However, if the lines drawn

are fewer than < n, suggesting further re�nement is needed, the process advances

to Step 7 for additional adjustments.

Step 7:Iterative Re�nement

Identify the minimum element di in the entire matrix that is not covered by lines.

Subtract this minimum element di from all other remaining elements not covered
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by lines, and add di at the intersection of lines. Elements covered by a single line

remain unchanged. Repeat Steps 5 and 6 sequentially until optimality is achieved.

Step 8:Zero Allocation and Iterative Assignment

Select any row or column containing a single zero and make an assignment.

Eliminate remaining zeros in that row or column. Repeat this process until all

assignments are completed. Continue iteratively until all available assignments

have been made.

Step 9:Assignment and Evaluation

Record the assignment results and determine the minimum distance, cost, and time

achieved. It is important to note that if there is no single zero allocation, indicating

the existence of multiple possible solutions, the overall cost will remain consistent

across di�erent allocation sets.

3.5 Optimizing Time E�ciency

3.5.1 Phase One

Step 1:Consideration of the Given Time Matrix Model

T =


t11 t12 t13 . . . t1n
t21 t22 t23 . . . t2n
...

...
...

. . .
...

tn1 tn2 tn3 . . . tnn


Step 2: Adjustment for Rectangular Matrices

In cases where the number of rows is not equal to the number of columns or vice

versa in the given problem, a dummy row or column is introduced. The assignment

costs for these dummy cells are uniformly set to zero, ensuring consistency in the
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matrix structure.

3.5.2 Phase Two

Step 3:Time Row-wise Matrix Reduction

The matrix is systematically reduced by selecting the minimum element
∑n

i=1 tij

in each row and subtracting it from other elements within that row. This reduc-

tion process simpli�es the matrix by diminishing the values, facilitating subsequent

computations for optimal assignment.

Step 4:Time Column-wise Matrix Reduction

The new matrix is further reduced column-wise using the same method as outlined

in Step 3, focusing on the smallest element
∑n

j=1 bji in each column that does not

contain zero. This iterative reduction process ensures the continued simpli�cation

of the matrix, enhancing the e�ciency of subsequent computations.

3.5.3 Phase Three

Step 5:Time Optimality Assessment

An assessment is made to determine optimality by drawing the minimum number

of lines required to cover all zeros in the matrix. This step evaluates the current

state of the matrix and its alignment with the desired optimal solution.

Step 6:Time Decision Point

If the number of lines drawn equals the total number of rows or columns = n,

indicating optimality, the process proceeds to Step 9. However, if the lines drawn

are fewer than < n, suggesting further re�nement is needed, the process advances

to Step 7 for additional adjustments.
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Step 7:Time Iterative Re�nement

Identify the minimum element di in the entire matrix that is not covered by lines.

Subtract this minimum element di from all other remaining elements not covered

by lines, and add di at the intersection of lines. Elements covered by a single line

remain unchanged. Repeat Steps 5 and 6 sequentially until optimality is achieved.

Step 8:Zero Allocation and Iterative Assignment

Select any row or column containing a single zero and make an assignment.

Eliminate remaining zeros in that row or column. Repeat this process until all

assignments are completed. Continue iteratively until all available assignments

have been made.

Step 9:Assignment and Evaluation

Record the assignment results and determine the minimum distance, cost, and time

achieved. It is important to note that if there is no single zero allocation, indicating

the existence of multiple possible solutions, the overall cost will remain consistent

across di�erent allocation sets.

3.6 Reducing Operational Costs

3.6.1 Phase one

Step 1:Consideration of the Given Cost Matrix Model

C =


c11 c12 c13 . . . c1n
c21 c22 c23 . . . c2n
...

...
...

. . .
...

cn1 cn2 cn3 . . . cnn


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Step 2: Adjustment for Rectangular Matrices

In cases where the number of rows is not equal to the number of columns or vice

versa in the given problem, a dummy row or column is introduced. The assignment

costs for these dummy cells are uniformly set to zero, ensuring consistency in the

matrix structure.

3.6.2 Phase Two

Step 3:Cost Row-wise Matrix Reduction

The matrix is systematically reduced by selecting the minimum element
∑n

i=1 cij in

each row and subtracting it from other elements within that row. This reduction

process simpli�es the matrix by diminishing the values, facilitating subsequent

computations for optimal assignment.

Step 4:Cost Column-wise Matrix Reduction

The new matrix is further reduced column-wise using the same method as outlined

in Step 3, focusing on the smallest element
∑n

j=1 bji in each column that does not

contain zero. This iterative reduction process ensures the continued simpli�cation

of the matrix, enhancing the e�ciency of subsequent computations.

3.6.3 Phase Three

Step 5:Cost Optimality Assessment

An assessment is made to determine optimality by drawing the minimum number

of lines required to cover all zeros in the matrix. This step evaluates the current

state of the matrix and its alignment with the desired optimal solution.
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Step 6:Cost Decision Point

If the number of lines drawn equals the total number of rows or columns = n,

indicating optimality, the process proceeds to Step 9. However, if the lines drawn

are fewer than < n, suggesting further re�nement is needed, the process advances

to Step 7 for additional adjustments.

Step 7:Cost Iterative Re�nement

Identify the minimum element di in the entire matrix that is not covered by lines.

Subtract this minimum element di from all other remaining elements not covered

by lines, and add di at the intersection of lines. Elements covered by a single line

remain unchanged. Repeat Steps 5 and 6 sequentially until optimality is achieved.

Step 8:Zero Allocation and Iterative Assignment

Select any row or column containing a single zero and make an assignment.

Eliminate remaining zeros in that row or column. Repeat this process until all

assignments are completed. Continue iteratively until all available assignments

have been made.

Step 9:Assignment and Evaluation

Record the assignment results and determine the minimum distance, cost, and time

achieved. It is important to note that if there is no single zero allocation, indicating

the existence of multiple possible solutions, the overall cost will remain consistent

across di�erent allocation sets.
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3.7 Assumptions for Using the Hungarian Method:

In this study of optimizing the delivery process for the distribution of �sh to the

multiple VF depots in Western Kenya region, the Hungarian method was applied

to independently optimize distance, time, and cost. The optimization was based on

actual data concerning distance, time, and cost for all routes involved. This section

presents the assumptions made when using the Hungarian method to achieve

optimal transportation performance.

3.8 Distance Optimization Assumption

For optimizing the transportation problem based on distance, several key assump-

tions are made:

3.8.1 Actual Road Distance Matrix

The distance between the central hub and each of the depots, as well as the

distances between the depots, are based on actual road network data. The distance

matrix is constructed using real-world data, including road length, terrain, and

available infrastructure.

3.8.2 Fixed Road Network

It is assumed that the road network remains static during the optimization period.

Major permanent changes, such as new road openings or long-term closures, are

considered, but temporary disruptions (e.g., construction or tra�c jams) are not

incorporated into the distance matrix.
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3.8.3 Minimization of Total Distance

The primary goal of the distance optimization is to minimize the total kilometers

traveled by the delivery vehicle. This reduction directly contributes to fuel savings

and reduced vehicle maintenance costs.

3.8.4 Fuel Consumption Based on Distance

Fuel consumption is assumed to be directly proportional to the total distance

traveled. The longer the route, the higher the fuel costs, and therefore minimizing

distance helps lower overall fuel consumption and related costs.

3.8.5 Depot Locations are Fixed

The locations of the depots are �xed and do not change over time. Their geographic

positions are known and serve as static reference points in the distance matrix for

route optimization.

3.9 Time Optimization Assumption

Optimizing the transportation problem based on time involves minimizing the

total time required to complete the deliveries. The assumptions related to time

optimization are as follows:

3.9.1 Actual Travel Time Matrix

The time required to travel between the central hub and the depots, as well as

between di�erent depots, is based on actual historical data or real-time tra�c

patterns. The travel time matrix takes into account speed limits, road types, and
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other factors a�ecting driving speed.

3.9.2 Speed Variation Due to Road Type and Tra�c Conditions

The speed of the delivery vehicle is assumed to vary depending on the type of road

(e.g., highways vs. urban streets) and real-time tra�c conditions. Tra�c congestion

or slow-moving roads increase travel time, and this variability is incorporated into

the travel time matrix.

3.9.3 Minimization of Total Travel Time

The objective of time optimization is to minimize the total time taken to deliver

goods to all depots. Shorter delivery times ensure product quality and freshness, as

well as customer satisfaction.

3.9.4 No Speci�c Time Windows

While no speci�c time windows for delivery are assumed, the goal is to prioritize

e�ciency by minimizing travel time. This allows for more �exible delivery schedules

while maintaining product quality.

3.9.5 Negligible Waiting Times at Depots

It is assumed that the time spent unloading at each depot is either negligible or

already included in the total travel time matrix. The focus remains on minimizing

the travel time between depots rather than time spent on-site.
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3.10 Cost Optimization Assumption

Cost minimization is a crucial aspect of transportation planning. The assumptions

made when optimizing based on cost include:

3.10.1 Actual Cost Matrix

The cost matrix incorporates all relevant factors such as fuel consumption, vehicle

maintenance, driver wages, and tolls. Each route between the central hub and

depots, as well as between depots, is assigned a cost that re�ects real-world

transportation expenses.

3.10.2 Variable Costs Based on Route Type

The cost per kilometer varies depending on the type of road, fuel usage, and any

additional costs such as tolls or parking fees. For example, urban routes may incur

higher costs due to frequent stops and slow speeds, while highways may have lower

costs per kilometer due to e�cient fuel use.

3.10.3 Minimization of Total Delivery Cost

The primary objective of cost optimization is to minimize the overall expenses

associated with deliveries. This includes reducing fuel costs, vehicle wear and tear,

driver wages, and toll or parking fees.

3.10.4 Fuel Consumption is Route-Dependent

Fuel consumption is not constant for all routes. Certain routes, especially those

with challenging terrain or signi�cant tra�c, will result in higher fuel usage. This

variable fuel consumption is accounted for in the cost matrix.
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3.10.5 Labor and Overtime Costs

Driver wages are a�ected by time spent on the road, with additional costs incurred

for overtime if deliveries exceed normal working hours. Minimizing delivery time

also indirectly reduces costs related to driver wages and overtime.

3.10.6 No Unexpected Costs

Unexpected expenses, such as vehicle breakdowns, �nes, or accidents, are not

included in the optimization model. It is assumed that the delivery operations

proceed smoothly, without any unforeseen disruptions.

Optimizing the transportation problem using the Hungarian method for indepen-

dent objectives of distance, time, and cost involves several practical assumptions.

Each assumption ensures that the optimization model re�ects real-world logistics

and helps achieve a balance between minimizing travel distance, reducing delivery

time, and cutting overall operational costs. By making these assumptions, the appli-

cation of the Hungarian method becomes a practical and e�cient tool for optimizing

transportation operations.



CHAPTER FOUR

RESULTS AND FINDINGS

4.1 Introduction

This chapter presents the results and �ndings of the study by use of Hungarian

technique in Python. Findings of the study objectives were obtained on: evaluation

of the shortest route possible in distribution of the �sh product, determining the

minimum time spending route in the distribution of the �sh products and the most

cost e�ective route in the distribution of the �sh products at Victory Farm-Western

region.

4.2 The Distance Minimization.

The distance minimization phase is introduced through Table 1, the distance data

for �sh delivery is organized., which meticulously documents the distances between

various depots within the Western Kenya region. This table serves as a foundational

dataset, providing essential insights into the spatial relationships and connectivity

among depots, crucial for optimizing transportation networks. For instance, the

entry "KLC to Mbale" denotes a distance of 36.6 kilometers between Victory

Farm KLC and VF Mbale depot, illustrating the physical proximity or distance

between these key logistical depots. It's noteworthy that the data presented are

in kilometers, facilitating a quantitative understanding of the distances involved

in inter-depot travel. By comprehensively documenting these distances, the

table o�ers valuable information for decision-makers in logistics and supply chain

management, enabling strategic route planning and resource allocation to minimize

transportation costs and enhance operational e�ciency.
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Table 4.1: Distance Data (Kilometers) for Fish Delivery in Victory Farm
Depots
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KLC - 36.6 99.6 3.6 69.3 6.8 32.2 73.1 58 27.8 35.8
Mbale 36.6 - 78.9 22.3 58.1 25.6 22.1 52.5 26.5 3.7 4.4

Bungoma 96.6 78.9 - 97.4 81 98.9 66.5 27.8 59.5 84.8 75.7
Kondele 3.6 22.3 97.4 - 67.2 4.8 31.1 74.8 48.9 18.6 26.6
Siaya 69.3 58.1 81 67.2 - 69.1 36 54.6 84.6 54.4 62.5

Nyalenda 6.8 25.6 98.9 4.8 69.1 - 32.6 72.5 52.2 21.9 30
Luanda 32.2 22.1 66.5 31.1 36 32.6 - 40.1 48.6 18.4 26.5
Mumias 73.1 52.5 27.8 74.8 54.6 72.5 40.1 - 33.1 58.3 49.3
Kakamega 58 26.5 59.5 48.9 84.6 52.2 48.6 33.1 - 30.2 22.1
Majengo 27.8 3.7 84.8 18.6 54.4 21.9 18.4 58.3 30.2 - 8.1
Chavakali 35.8 4.4 75.7 26.6 62.5 30 26.5 49.3 22.1 8.1 -

4.2.1 Distance Matrix Row Reduction

In this step, the minimum value in each row was subtracted from all the elements

in that row. This process helps to reduce the matrix by making the smallest value

in each row become zero as shown below.



71

Table 4.2: The row reduced distance between the depots
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KLC - 33 96 0 65.7 3.2 28.6 69.5 54.4 24.2 32.2
Mbale 32.9 - 75.2 18.6 54.4 21.9 18.4 48.8 22.8 0 0.7
Bungoma 68.8 51.1 - 69.6 53.2 71.1 38.7 0 31.7 57 47.9
Kondele 0 18.7 93.8 - 63.6 1.2 27.5 71.2 45.3 15 23
Siaya 33.3 22.1 45 31.2 - 33.1 0 18.6 48.6 18.4 26.5
Nyalenda 2 20.8 94.1 0 64.3 - 27.8 67.7 47.4 17.1 25.2
Luanda 13.8 3.7 48.1 12.7 17.6 14.2 - 21.7 30.2 0 8.1
Mumias 45.3 24.7 0 47 26.8 44.7 12.3 - 5.3 30.5 21.5
Kakamega 35.9 4.4 37.4 26.8 62.5 30.1 26.5 11 - 8.1 0
Majengo 24.1 0 81.1 14.9 50.7 18.2 14.7 54.6 26.5 - 4.4
Chavakali 31.4 0 71.3 22.2 58.1 25.6 22.1 44.9 17.7 3.7 -

4.2.2 Distance Matrix Column reduction

Similarly, in this step, the minimum value in each column is subtracted from all

the elements in that column. This process helps to further reduce the matrix by

making the smallest value in each column become zero.

Table 4.3: The colunm reduced distance between the depots
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KLC - 29.3 58.6 0 48.1 2 16.3 58.5 49.1 20.5 31.5
Mbale 30.9 - 37.8 5.9 36.8 20.7 6.1 37.8 17.5 0 0
Bungoma 66.8 47.4 - 56.9 35.6 69.9 26.4 0 26.4 53.3 47.2
Kondele 0 15 56.4 - 46 0 15.2 60.2 40 11.3 22.3
Siaya 31.3 18.4 7.6 18.5 - 31.9 0 7.6 43.3 14.7 25.8
Nyalenda 0 17.1 56.7 0 46.7 - 15.5 56.7 42.1 13.4 24.5
Luanda 11.8 0 10.7 0 0 13 - 10.7 24.9 0 7.4
Mumias 43.3 21 0 34.3 9.2 43.5 0 - 0 26.8 20.8
Kakamega 33.9 0.7 0 14.1 44.9 28.9 14.2 0 - 4.4 0
Majengo 22.1 0 43.7 2.2 33.1 17 2.4 43.6 21.2 - 3.7
Chavakali 29.4 0 33.9 9.5 40.5 24.4 9.8 33.9 12.4 0 -
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4.2.3 Assignment for the Shortest Distance

This assignment describes Victory Farm's �sh delivery route in their various depots

in the Western region. The optimal route is as follows:

KLC → Kondele → Nyalenda → Majengo → Mbale → Chavakali → Kakamega →

Mumias → Bungoma → Luanda → Siaya → KLC

The total optimal route covered during VF �sh delivery process reduces the distance

to 293.2 kilometers.

4.2.4 Virtualizing Optimal Route

The graphical representation of these TSP solution using the Hungarian Method

involves creating a graph where each node represents a depot, and edges represent

the distance between the depots.

Figure 4.1: Graph Showing Optimal Distance Taken

This graph is plotted using the live coordinates of the various depot having latitude
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on the y-axis against the longitude on the x-axis.

Note: Negative latitude in the y-axis of the live coordinates during plotting

typically indicates that the depots are located south of the equator. Latitude is

measured north or south of the equator, with positive values indicating locations in

the northern hemisphere and negative values in the southern hemisphere.

4.3 The Time Minimization.

The entries in the table below introduced to elucidate the critical data essential

for comprehending the logical facets of connecting each pair of depots. This table

encapsulates vital information regarding the time taken for travel between various

depots. For instance, an entry such as "KLC to Chavakali" denotes a travel

time of 43 minutes between Victory Farm KLC and VF Chavakali depot. The

signi�cance of this data lies in its ability to provide insights into the logistics of

depot connections, thereby contributing to the broader understanding of the time

taken for the delivery. Understanding travel times between depots is crucial for

optimizing transportation strategies and logistics management.
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Table 4.4: Time Data (Minutes) for Fish Delivery in Victory Farm Depots
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KLC - 43.9 119.5 4.3 83.2 8.2 38.6 87.7 69.6 33.4 43
Mbale 43.9 - 94.7 26.8 69.7 30.7 26.5 63 31.8 4.4 5.3
Bungoma 119.5 94.7 - 116.9 97.2 118.7 79.8 33.4 71.4 101.8 90.8
Kondele 4.3 26.8 116.9 - 80.6 5.8 37.3 89.8 58.7 22.3 31.9
Siaya 83.2 69.7 97.2 80.6 - 82.9 43.2 65.5 101.5 65.3 75
Nyalenda 8.2 30.7 118.7 5.8 82.9 - 39.1 87 62.6 26.3 36
Luanda 38.6 26.5 79.8 37.3 43.2 39.1 - 48.1 58.3 22.1 31.8
Mumias 87.7 63 33.4 89.8 65.5 87 48.1 - 39.7 70 59.2
Kakamega 69.6 31.8 71.4 58.7 101.5 62.6 58.3 39.7 - 36.2 26.5
Majengo 33.4 4.4 101.8 22.3 65.3 26.3 22.1 70 36.2 - 9.7
Chavakali 43 5.3 90.8 31.9 75 36 31.8 59.2 26.5 9.7 -
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This comprehensive table o�ers crucial insights into the logistics and e�ciency

of transportation networks. This is essential for optimizing route planning and

resource allocation in the context of depot management. Each cell in the table

represents the time, in minutes, required to commute from one depot to another,

facilitating a granular understanding of the spatial relationships and connectivity

between depots. For instance, examining the row corresponding to Victory Farm

KLC and the column corresponding to VF Mbale depot reveals a travel time of 43.9

minutes, underscoring the temporal dynamics of inter-depot travel. Such data are

invaluable for decision-makers in logistics and supply chain management, enabling

informed choices to enhance operational e�ciency and reduce transportation costs.

Furthermore, the TSP table serves as a foundational dataset for subsequent

analyses and modeling e�orts within the thesis. By systematically documenting

the travel times between depots, this table lays the groundwork for conducting

optimization algorithms, such as the Traveling Salesman Problem (TSP), to

identify the most e�cient routes for depot-to-depot journeys. Additionally, the

data contained within the TSP table can be leveraged to evaluate the robustness

and resilience of the transportation network against disruptions or changes in

demand patterns. This analytical framework not only advances the academic

understanding of transportation logistics but also o�ers practical implications for

real-world applications, particularly in improving the e�ectiveness of supply chain

management systems.

4.3.1 Time Row Reduced Matrix

This step minimizes the value in each row is subtracted from all the elements in

that row. The row reduced matrix represent a simpli�ed form of the initial time
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matrix, where rows are adjusted to minimize the total time of traversing all the

depots.

This process helps to reduce the matrix by making the smallest value in each row

become zero as shown below.

Table 4.5: The row reduced time between the depots
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KLC - 39.6 115.2 0 78.9 3.9 34.3 83.4 65.3 29.1 38.7
Mbale 39.5 - 90.3 22.4 65.3 26.3 22.1 58.6 27.4 0 0.9
Bungoma 86.1 61.3 - 83.5 63.8 85.3 46.4 0 38 68.4 57.4
Kondele 0 22.5 112.6 - 76.3 1.5 33 85.5 54.4 18. 27.6
Siaya 40. 26.5 54 37.4 - 39.7 0 22.3 58.3 22.1 31.8
Nyalenda 2.4 24.9 112.9 0 77.1 - 33.3 81.2 56.8 20.5 30.2
Luanda 16.5 4.4 57.7 15.2 21.1 17 - 26 36.2 0 9.7
Mumias 54.3 29.6 0 56.4 32.1 53.6 14.7 - 6.3 36.6 25.8
Kakamega 43.1 5.3 44.9 32.2 75 36.1 31.8 13.2 - 9.7 0
Majengo 29 0 97.4 17.9 60.9 21.9 17.7 65.6 31.8 - 5.3
Chavakali 37.7 0 85.5 26.6 69.7 30.7 26.5 53.9 21.2 4.4 -

4.3.2 Time Column Reduced Matrix

The reduction process involves iteratively subtracting column minimums from each

element of the matrix columns, creating zeros in columns. This step e�ectively

reduces the complexity of the problem while preserving the optimal assignment

solution.
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Table 4.6: The column reduced time between the depots
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KLC - 35.2 70.3 0 57.8 2.4 19.6 70.2 59 24.7 37.8
Mbale 37.1 - 45.4 7.2 44.2 24.8 7.4 45.4 21.1 0 0
Bungoma 83.7 56.9 - 68.3 42.7 83.8 31.7 0 31.7 64 56.5
Kondele 0 18.1 67.7 - 55.2 0 18.3 72.3 48.1 13.6 26.7
Siaya 37.6 22.1 9.1 22.2 - 38.2 0 9.1 52 17.7 30.9
Nyalenda 0 20.5 68 0 56 - 18.6 68 50.5 16.1 29.3
Luanda 14.1 0 12.8 0 0 15.5 - 12.8 29.9 0 8.8
Mumias 51.9 25.2 0 41.2 11 52.1 0 - 0 32.2 24.9
Kakamega 40.7 0.9 0 17 53.9 34.6 17.1 0 - 5.3 0
Majengo 26.6 0 52.5 2.7 39.8 20.4 3 52.4 25.5 - 4.4
Chavakali 35.3 0 40.6 11.4 48.6 29.2 11.8 40.7 14.9 0 -

4.3.3 Assignment for the Minimum Overall Time.

KLC → Kondele → Nyalenda → Majengo → Mbale → Chavakali → Kakamega →

Mumias → Bungoma → Luanda → Siaya → KLC.

The algorithm has e�ciently planned the delivery routes, resulting in a minimized

total time of 351.9 minutes. This ensures timely and prompt delivery to all the

Western Kenya VF Depots, contributing to customer satisfaction and operational

e�ciency.

4.4 The Cost Minimization

The cost data presented in the table for the �sh delivery in Victory Farms depots

serves as a critical component for optimizing transportation routes. The cost

data outlines the expenses associated with traveling between various depots in the

Western Kenya Region. Analysis of the cost matrix reveals patterns indicating

varying costs between di�erent pairs of depots, clusters of similar cost ranges, and
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Figure 4.2: Graph Showing Optimal Time Taken

potential hubs with lower or higher costs to other destinations. Such insights are

pivotal for optimizing transportation routes, enabling the identi�cation of e�cient

pathways that minimize fuel consumption and enhance overall resource utilization.

Integrating this cost data with the Hungarian Method algorithm facilitates the

determination of optimal routes, ensuring e�cient �sh transportation while meeting

the operational requirements of Victory Farms.

Table 4.7: The column reduced time between the depots
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KLC - 1830 4980 180 3465 340 1610 3655 2900 1390 1790
Mbale 1830 - 3945 1115 2905 1280 1105 2625 1325 185 220
Bungoma 4980 3945 - 4870 4050 4945 3325 1390 2975 4240 3785
Kondele 180 1115 4870 - 3360 2400 1555 3740 2445 930 1330
Siaya 3465 2905 4050 3360 - 3455 1800 2730 4230 2720 3125
Nyalenda 340 1280 4945 2400 3455 - 1630 3625 2610 1095 1500
Luanda 1610 1105 3325 1555 1800 1630 - 2005 2430 920 1325
Mumias 3655 2625 1390 3740 2730 3625 2005 - 1655 2915 2465
Kakamega 2900 1325 2975 2445 4230 2610 2430 1655 - 1510 1105
Majengo 1390 185 4240 930 2720 1095 920 2915 1510 - 405
Chavakali 1790 220 3785 1330 3125 1500 1325 2465 1105 405 -
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4.4.1 Cost Matrix Row Reduction

Row reduction in the Hungarian method is performed to simplify the cost matrix

and facilitate the identi�cation of optimal assignments. This step involves identi-

fying the smallest value in each row and subtracting it from all elements within

that row. By transforming the smallest value to zero, row reduction normalizes the

cost structure, providing a clear baseline against which other costs are measured.

This introduction of zeros is pivotal as it highlights potential optimal assignments

and simpli�es the decision-making process in subsequent steps. Row reduction thus

reduces the complexity of the matrix while preserving the relative cost structure,

setting a solid foundation for further simpli�cations and the e�cient determination

of the optimal assignment solution.
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Table 4.8: The column reduced time between the depots
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KLC - 1650 4800 0 3285 160 1430 3475 2720 1210 1610
Mbale 1645 - 3760 930 2720 1095 920 2440 1140 0 35
Bungoma 3590 2555 - 3480 2660 3555 1935 0 1585 2850 2395
Kondele 0 935 4690 - 3180 2220 1375 3560 2265 750 1150
Siaya 1665 1105 2250 1560 - 1655 0 930 2430 920 1325
Nyalenda 0 940 4605 2060 3115 - 1290 3285 2270 755 1160
Luanda 690 185 2405 635 880 710 - 1085 1510 0 405
Mumias 2265 1235 0 2350 1340 2235 615 - 265 1525 1075
Kakamega 1795 220 1870 1340 3125 1505 1325 550 - 405 0
Majengo 1205 0 4055 745 2535 910 735 2730 1325 - 220
Chavakali 1570 0 3565 1110 2905 1280 1105 2245 885 185 0

4.4.2 Cost Matrix Column Reduction

This matrix, obtained after reducing each column's minimum value from all

elements in the respective columns, serves as a pivotal intermediary step in the

optimization process by systematically minimizing transportation costs associated

with the depots. The reduced matrix o�ers insights into potential cost-saving

opportunities and facilitates the identi�cation of optimal assignments for VF �sh

transportation logistics. The column-reduced matrix in streamlining the compu-

tational complexity of the Hungarian Method, enabling e�cient route planning

and resource allocation within Victory Farms' operations, ultimately enhancing

operational e�ciency and cost-e�ectiveness in �sh transportation logistics.
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Table 4.9: Cost Data (Kenya Shillings) for Fish Delivery in Victory Farm
Depots

Fr
om

/
T
o

K
L
C

M
b
al
e

B
u
n
go
m
a

K
on
d
el
e

S
ia
ya

N
ya
le
n
d
a

L
u
an
d
a

M
u
m
ia
s

K
ak
am

eg
a

M
a
je
n
go

C
h
av
ak
al
i

KLC - 1465 2930 0 2405 0 815 2925 2455 1025 1575
Mbale 955 - 1890 295 1840 935 305 1890 875 0 0
Bungoma 2900 2370 - 2845 1780 3395 1320 0 1320 2665 2360
Kondele 0 750 2820 - 2300 2060 760 3010 2000 565 1115
Siaya 975 920 380 925 - 1495 0 380 2165 735 1290
Nyalenda 0 755 2735 1425 2235 - 675 2735 2005 570 1125
Luanda 0 0 535 0 0 550 - 535 1245 0 370
Mumias 1575 1050 0 1715 460 2075 0 - 0 1340 1040
Kakamega 1105 35 0 705 2245 1345 710 0 - 220 0
Majengo 515 0 2185 110 1655 750 120 2180 1060 - 185
Chavakali 880 0 1695 475 2025 1120 490 1695 620 0 -

4.4.3 Assignment for the Cost E�ective Path

KLC → Kondele → Nyalenda → Majengo → Mbale → Chavakali → Kakamega →

Mumias → Bungoma → Luanda → Siaya → KLC.

The identi�ed sequence represents the travels from KLC to Kondele, Nyalenda,

Majengo, Mbale, Chavakali, Kakamega, Mumias, Bungoma, Luanda, Siaya, and

back to KLC at a total cost of Ksh. 14,660.0 represents an optimal solution. This

route o�ers a cost-e�ective approach to �sh transportation, crucial for maintaining

the economic viability of the distribution process. By strategically navigating

through these depots, Victory Farms can minimize expenses associated with

transportation, thereby enhancing overall operational e�ciency and pro�tability.

This optimized route not only ensures timely and reliable delivery of �sh but

also underscores the signi�cance of e�cient logistics management in achieving

sustainable growth and success within the aquaculture industry.

The sequence can also be represented by a virtual representation below, where, in
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between the nodes represents the cost e�ective path between the depots.

Figure 4.3: Graph Showing Optimal Travel Cost



CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This study addressed the signi�cant issue of �sh spoilage during transit for Victory

Farms Limited by applying the Hungarian method to optimize distribution routes

for tilapia �sh in the Western Kenya region. The results show that the Hungarian

method e�ectively identi�ed the shortest, fastest, and most cost-e�ective routes, re-

ducing transit distance to 293.2 kilometers, travel time to 351.9 minutes, and costs

to Ksh. 14,660. Implementing these optimized routes can signi�cantly enhance Vic-

tory Farms' operational e�ciency, reduce spoilage, and contribute to food security

by ensuring a steady supply of high-quality �sh. The �ndings suggest that by adopt-

ing a structured, data-driven approach like the Hungarian method, Victory Farms

can improve pro�tability and establish a sustainable distribution model.

5.2 Recommendations

Victory Farms should adopt the Hungarian method and the identi�ed optimal

routes to signi�cantly enhance the e�ciency and sustainability of its distribution

network. This approach will allow the company to streamline its logistics operations,

minimizing transportation costs while ensuring that products reach consumers

in the shortest time possible. By optimizing delivery routes, Victory Farms can

address the growing demand for fresh, high-quality tilapia while maintaining its

commitment to health, nutrition, and customer satisfaction.

Time e�ciency should be a priority for the company, as timely deliveries are

83
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crucial to ensuring customer satisfaction and maintaining the freshness of the �sh.

By focusing on optimizing delivery schedules and reducing transit times, Victory

Farms can enhance its reputation for reliability. Furthermore, the optimization

methods currently in place should be expanded to cover other regions, and tailored

to address speci�c logistical challenges encountered in di�erent locations. This

broader implementation will ensure that the bene�ts of optimized logistics are

realized across the entire distribution network.

To maintain long-term e�ciency, adaptability, and competitiveness, Victory Farms

should regularly evaluate and re�ne its distribution strategies. Continuous improve-

ment will help the company stay ahead of changing market conditions, evolving con-

sumer demands, and potential disruptions in the supply chain. Future scholars are

encouraged to explore more advanced optimization techniques, incorporating real-

time data for dynamic decision-making. Additionally, the environmental impact of

logistics operations should be assessed to promote sustainability. By integrating

these advancements, Victory Farms can further enhance its supply chain e�ciency

and contribute to a more sustainable and resilient agricultural sector in Kenya.
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Appendix A

APPENDIX

[1]: # DISTANCE OPTIMIZATION

import numpy as np

from scipy.optimize import linear_sum_assignment

# Given Distance Matrix

A = np.array([

[0, 36.6, 99.6, 3.6, 69.3, 6.8, 32.2, 73.1, 58, 27.8, 35.8],

[36.6, 0, 78.9, 22.3, 58.1, 25.6, 22.1, 52.5, 26.5, 3.7, 4.4],

[99.6, 78.9, 0, 97.4, 81, 98.9, 66.5, 27.8, 59.5, 84.8, 75.7],

[3.6, 22.3, 97.4, 0, 67.2, 4.8, 31.1, 74.8, 48.9, 18.6, 26.6],

[69.3, 58.1, 81, 67.2, 0, 69.1, 36, 54.6, 84.6, 54.4, 62.5],

[6.8, 25.6, 98.9, 4.8, 69.1, 0, 32.6, 72.5, 52.2, 21.9, 30],

[32.2, 22.1, 66.5, 31.1, 36, 32.6, 0, 40.1, 48.6, 18.4, 26.5],

[73.1, 52.5, 27.8, 74.8, 54.6, 72.5, 40.1, 0, 33.1, 58.3, 49.

↪→3],

[58, 26.5, 59.5, 48.9, 84.6, 52.2, 48.6, 33.1, 0, 30.2, 22.1],

[27.8, 3.7, 84.8, 18.6, 54.4, 21.9, 18.4, 58.3, 30.2, 0, 8.1],

[35.8, 4.4, 75.7, 26.6, 62.5, 30, 26.5, 49.3, 22.1, 8.1, 0]

])

# Replace zeros with a very large number temporarily

A_temp = np.where(A == 0, np.inf, A)

#phase 1

#step 2

#In a given problem, if the number of rows is not equal to the 

↪→number of columns then add a dummy row or a dummy column,

#in our case rowsand colunms are equal

#step3

# Find the minimum non-zero element in each row

min_non_zero_per_row = np.min(A_temp, axis=1, keepdims=True)

#step 3

# Subtract the minimum non-zero value from each row, revert 

↪→infinity back to zero
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A_row_reduced = np.where(A_temp == np.inf, 0, A - 

↪→min_non_zero_per_row)

print(A_row_reduced)

#phase 2

#step4

# Replace zeros with a very large number temporarily for column 

↪→reduction

A_temp = np.where(A_row_reduced == 0, np.inf, A_row_reduced)

# Find the minimum non-zero element in each column

min_non_zero_per_column = np.min(A_temp, axis=0, keepdims=True)

# Subtract the minimum non-zero value from each column, revert 

↪→infinity back to zero

A_col_reduced = np.where(A_temp == np.inf, 0, A_row_reduced - 

↪→min_non_zero_per_column)

print(A_col_reduced)

def tsp_to_assignment(distinance_matrix):

"""

Convert the TSP to an assignment problem by subtracting the 

↪→minimum

cost from each row and each column of the cost matrix, ensuring

non-negativity of the resulting matrix.

"""

# Find the minimum value of each row

min_row = np.min(distinance_matrix, axis=1)

# Subtract the minimum value of each row from that row

distinance_matrix -= min_row[:, np.newaxis]

# Find the minimum value of each column in the modified matrix

min_col = np.min(distinance_matrix, axis=0)

# Subtract the minimum value of each column from that column

distinance_matrix -= min_col

return distinance_matrix

def assignment_to_tsp(assignment, original_distinance_matrix):

"""
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Convert the assignment solution back to TSP solution

"""

num_nodes = original_distinance_matrix.shape[0]

tour = []

for row, col in enumerate(assignment):

if col < num_nodes:

tour.append((row, col))

return tour

def tsp_hungarian(A, start=0):

num_towns = len(A)

path = [start]

total_distance = 0

while len(path) < num_towns:

last = path[-1]

# Set distances for already visited towns to infinity

dists = np.copy(A[last])

dists[path] = np.inf

# Find the nearest town

nearest = np.argmin(dists)

path.append(nearest)

total_distance += dists[nearest]

# Return to start

total_distance += A[path[-1], start]

path.append(start)

return path, total_distance

# Solve TSP using Hungarian method

path, total_distance = tsp_hungarian(A)

print("Path:", path)

print("Total Distance:", total_distance)

[[ 0. 33. 96. 0. 65.7 3.2 28.6 69.5 54.4 24.2 32.2]

[32.9 0. 75.2 18.6 54.4 21.9 18.4 48.8 22.8 0. 0.7]

[68.8 51.1 0. 69.6 53.2 71.1 38.7 0. 31.7 57. 47.9]

[ 0. 18.7 93.8 0. 63.6 1.2 27.5 71.2 45.3 15. 23. ]

[33.3 22.1 45. 31.2 0. 33.1 0. 18.6 48.6 18.4 26.5]

[ 2. 20.8 94.1 0. 64.3 0. 27.8 67.7 47.4 17.1 25.2]

[13.8 3.7 48.1 12.7 17.6 14.2 0. 21.7 30.2 0. 8.1]
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[45.3 24.7 0. 47. 26.8 44.7 12.3 0. 5.3 30.5 21.5]

[35.9 4.4 37.4 26.8 62.5 30.1 26.5 11. 0. 8.1 0. ]

[24.1 0. 81.1 14.9 50.7 18.2 14.7 54.6 26.5 0. 4.4]

[31.4 0. 71.3 22.2 58.1 25.6 22.1 44.9 17.7 3.7 0. ]]

[[ 0. 29.3 58.6 0. 48.1 2. 16.3 58.5 49.1 20.5 31.5]

[30.9 0. 37.8 5.9 36.8 20.7 6.1 37.8 17.5 0. 0. ]

[69.8 47.4 0. 56.9 35.6 69.9 26.4 0. 26.4 53.3 47.2]

[ 0. 15. 56.4 0. 46. 0. 15.2 60.2 40. 11.3 22.3]

[31.3 18.4 7.6 18.5 0. 31.9 0. 7.6 43.3 14.7 25.8]

[ 0. 17.1 56.7 0. 46.7 0. 15.5 56.7 42.1 13.4 24.5]

[11.8 0. 10.7 0. 0. 13. 0. 10.7 24.9 0. 7.4]

[43.3 21. 0. 34.3 9.2 43.5 0. 0. 0. 26.8 20.8]

[33.9 0.7 0. 14.1 44.9 28.9 14.2 0. 0. 4.4 0. ]

[22.1 0. 43.7 2.2 33.1 17. 2.4 43.6 21.2 0. 3.7]

[29.4 0. 33.9 9.5 40.5 24.4 9.8 33.9 12.4 0. 0. ]]

Path: [0, 3, 5, 9, 1, 10, 8, 7, 2, 6, 4, 0]

Total Distance: 293.2

[2]: #step 9

import matplotlib.pyplot as plt

# Towns and their arbitrary positions

towns = ['KLC', 'Mbale', 'Bungoma', 'Kondele', 'Siaya', 

↪→'Nyalenda', 'Luanda', 'Mumias', 'Kakamega', 'Majengo', 

↪→'Chavakali']

positions = [(1, 2), (2, 3), (3, 5), (4, 6), (5, 5), (6, 4), (7, 

↪→3), (8, 2), (9, 1), (10, 3), (11, 5)]

# Creating a dictionary for town positions

town_positions = {town: pos for town, pos in zip(towns, positions)}

# Path (based on the indices of the towns in the list)

path_indices = [0, 3, 5, 9, 1, 10, 8, 7, 2, 6, 4, 0]
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path = [towns[i] for i in path_indices]

# Plotting

plt.figure(figsize=(10, 6))

for i in range(len(path)-1):

start = town_positions[path[i]]

end = town_positions[path[i+1]]

plt.plot([start[0], end[0]], [start[1], end[1]], 'bo-')

# Annotating towns

for town, pos in town_positions.items():

plt.text(pos[0], pos[1], town)

plt.title('Schematic Representation of the TSP Path')

plt.xlabel('Arbitrary X Coordinate')

plt.ylabel('Arbitrary Y Coordinate')

plt.grid(True)

plt.show()

[1]: #step 9 continuation

##visualization of the results with town coordinates

import matplotlib.pyplot as plt



101

# Function to convert DMS to decimal

def dms_to_decimal(dms_str):

parts = dms_str.replace('°', ' ').replace('\'', ' ').

↪→replace('"', ' ').split()

d, m, s, direction = int(parts[0]), int(parts[1]), 

↪→float(parts[2]), parts[3]

decimal = d + m / 60 + s / 3600

if direction in ['S', 'W']:

decimal = -decimal

return decimal

# Town coordinates in DMS and their conversion to decimal

town_coordinates = {

'Victory Farms Kisumu Logistic Center': '0°16\'45.0"S 

↪→34°27\'15.0"E',

'Mbale': '0°23\'18.0"S 34°32\'18.0"E',

'Bungoma': '0°21\'00.0"S 34°25\'00.0"E',

'Kondele': '0°15\'00.0"S 34°27\'00.0"E',

'Siaya': '0°18\'00.0"S 34°20\'00.0"E',

'Nyalenda': '0°16\'00.0"S 34°25\'00.0"E',

'Luanda': '0°20\'00.0"S 34°30\'00.0"E',

'Mumias': '0°25\'00.0"S 34°20\'00.0"E',

'Kakamega': '0°20\'00.0"S 34°15\'00.0"E',

'Majengo': '0°18\'00.0"S 34°22\'00.0"E',

'Chavakali': '0°22\'00.0"S 34°22\'00.0"E'

}

# Convert coordinates to decimal

decimal_coordinates = {town: (dms_to_decimal(coord.split()[0]), 

↪→dms_to_decimal(coord.split()[1]))

for town, coord in town_coordinates.items()}

# Path

#path = ['Victory Farms Kisumu Logistic Center', 'Kondele', 

↪→'Nyalenda', 'Majengo', 'Mbale','Chavakali', 'Luanda', 'Siaya', 

↪→'Bungoma', 'Mumias', 'Kakamega', 'Victory Farms Kisumu Logistic 

↪→Center']

path= ['Victory Farms Kisumu Logistic Center', 'Kondele', 

↪→'Nyalenda', 'Majengo', 'Mbale', 'Chavakali', 'Kakamega', 

↪→'Mumias', 'Bungoma', 'Luanda','Siaya', 'Victory Farms Kisumu 

↪→Logistic Center']
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# Plotting

plt.figure(figsize=(15, 9))

for i in range(len(path)-1):

start = decimal_coordinates[path[i]]

end = decimal_coordinates[path[i+1]]

# Plot line

plt.plot([start[1], end[1]], [start[0], end[0]], 'bo-')

# Calculate midpoint for arrow

mid = [(start[0] + end[0]) / 2, (start[1] + end[1]) / 2]

# Draw arrow

plt.annotate('', xy=(mid[1], mid[0]), xytext=(start[1], 

↪→start[0]),

arrowprops=dict(facecolor='black', 

↪→arrowstyle="->"))

# Annotating towns

for town, (lat, lon) in decimal_coordinates.items():

plt.text(lon, lat, town, fontsize=14)

plt.title('Accurate Representation of the TSP Path ')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.grid(True)

plt.show()
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[ ]:

[1]: #TIME OPTIMIZATION

import numpy as np

from scipy.optimize import linear_sum_assignment

# Given Time Matrix

B = np.array([

[0, 43.9, 119.5, 4.3, 83.2, 8.2, 38.6, 87.7, 69.6, 33.4, 43],

[43.9, 0, 94.7, 26.8, 69.7, 30.7, 26.5, 63, 31.8, 4.4, 5.3],

[119.5, 94.7, 0, 116.9, 97.2, 118.7, 79.8, 33.4, 71.4, 101.8, 

↪→90.8],

[4.3, 26.8, 116.9, 0, 80.6, 5.8, 37.3, 89.8, 58.7, 22.3, 31.9],

[83.2, 69.7, 97.2, 80.6, 0, 82.9, 43.2, 65.5, 101.5, 65.3, 75],

[8.2, 30.7, 118.7, 5.8, 82.9, 0, 39.1, 87, 62.6, 26.3, 36],

[38.6, 26.5, 79.8, 37.3, 43.2, 39.1, 0, 48.1, 58.3, 22.1, 31.

↪→8],

[87.7, 63, 33.4, 89.8, 65.5, 87, 48.1, 0, 39.7, 70, 59.2],

[69.6, 31.8, 71.4, 58.7, 101.5, 62.6, 58.3, 39.7, 0, 36.2, 26.

↪→5],

[33.4, 4.4, 101.8, 22.3, 65.3, 26.3, 22.1, 70, 36.2, 0, 9.7],

[43, 5.3, 90.8, 31.9, 75, 36, 31.8, 59.2, 26.5, 9.7, 0]

])

# Set diagonal elements to infinity

B_temp = np.where(B == 0, np.inf, B)

#phase 1

#step 2

#In a given problem, if the number of rows is not equal to the 

↪→number of columns then add a dummy row or a dummy column,

#in our case rowsand colunms are equal

#step3

# Find the minimum non-zero element in each row

min_non_zero_per_row = np.min(B_temp, axis=1, keepdims=True)

#step 3
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# Subtract the minimum non-zero value from each row, revert 

↪→infinity back to zero

B_row_reduced = np.where(B_temp == np.inf, 0, B - 

↪→min_non_zero_per_row)

print(B_row_reduced)

#phase 2

#step4

# Replace zeros with a very large number temporarily for column 

↪→reduction

B_temp = np.where(B_row_reduced == 0, np.inf, B_row_reduced)

# Find the minimum non-zero element in each column

min_non_zero_per_column = np.min(B_temp, axis=0, keepdims=True)

# Subtract the minimum non-zero value from each column, revert 

↪→infinity back to zero

B_col_reduced = np.where(B_temp == np.inf, 0, B_row_reduced - 

↪→min_non_zero_per_column)

print(B_col_reduced)

def tsp_to_assignment(distinance_matrix):

"""

Convert the TSP to an assignment problem by subtracting the 

↪→minimum

cost from each row and each column of the cost matrix, ensuring

non-negativity of the resulting matrix.

"""

# Find the minimum value of each row

min_row = np.min(distinance_matrix, axis=1)

# Subtract the minimum value of each row from that row

distinance_matrix -= min_row[:, np.newaxis]

# Find the minimum value of each column in the modified matrix

min_col = np.min(distinance_matrix, axis=0)

# Subtract the minimum value of each column from that column

distinance_matrix -= min_col

return distinance_matrix
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def assignment_to_tsp(assignment, original_distinance_matrix):

"""

Convert the assignment solution back to TSP solution

"""

num_nodes = original_distinance_matrix.shape[0]

tour = []

for row, col in enumerate(assignment):

if col < num_nodes:

tour.append((row, col))

return tour

def tsp_hungarian(B, start=0):

num_towns = len(B)

path = [start]

total_time = 0

while len(path) < num_towns:

last = path[-1]

# Set time for already visited towns to infinity

time = np.copy(B[last])

time[path] = np.inf

# Find the nearest town

nearest = np.argmin(time)

path.append(nearest)

total_time += time[nearest]

# Return to start

total_time += B[path[-1], start]

path.append(start)

return path, total_time

# Solve TSP using Hungarian method

path, total_distance = tsp_hungarian(B)

print("Path:", path)

print("Total Distance:", total_distance)

[[ 0. 39.6 115.2 0. 78.9 3.9 34.3 83.4 65.3 29.1 38.7]

[ 39.5 0. 90.3 22.4 65.3 26.3 22.1 58.6 27.4 0. 0.9]

[ 86.1 61.3 0. 83.5 63.8 85.3 46.4 0. 38. 68.4 57.4]

[ 0. 22.5 112.6 0. 76.3 1.5 33. 85.5 54.4 18. 27.6]

[ 40. 26.5 54. 37.4 0. 39.7 0. 22.3 58.3 22.1 31.8]

[ 2.4 24.9 112.9 0. 77.1 0. 33.3 81.2 56.8 20.5 30.2]
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[ 16.5 4.4 57.7 15.2 21.1 17. 0. 26. 36.2 0. 9.7]

[ 54.3 29.6 0. 56.4 32.1 53.6 14.7 0. 6.3 36.6 25.8]

[ 43.1 5.3 44.9 32.2 75. 36.1 31.8 13.2 0. 9.7 0. ]

[ 29. 0. 97.4 17.9 60.9 21.9 17.7 65.6 31.8 0. 5.3]

[ 37.7 0. 85.5 26.6 69.7 30.7 26.5 53.9 21.2 4.4 0. ]]

[[ 0. 35.2 70.3 0. 57.8 2.4 19.6 70.2 59. 24.7 37.8]

[37.1 0. 45.4 7.2 44.2 24.8 7.4 45.4 21.1 0. 0. ]

[83.7 56.9 0. 68.3 42.7 83.8 31.7 0. 31.7 64. 56.5]

[ 0. 18.1 67.7 0. 55.2 0. 18.3 72.3 48.1 13.6 26.7]

[37.6 22.1 9.1 22.2 0. 38.2 0. 9.1 52. 17.7 30.9]

[ 0. 20.5 68. 0. 56. 0. 18.6 68. 50.5 16.1 29.3]

[14.1 0. 12.8 0. 0. 15.5 0. 12.8 29.9 0. 8.8]

[51.9 25.2 0. 41.2 11. 52.1 0. 0. 0. 32.2 24.9]

[40.7 0.9 0. 17. 53.9 34.6 17.1 0. 0. 5.3 0. ]

[26.6 0. 52.5 2.7 39.8 20.4 3. 52.4 25.5 0. 4.4]

[35.3 0. 40.6 11.4 48.6 29.2 11.8 40.7 14.9 0. 0. ]]

Path: [0, 3, 5, 9, 1, 10, 8, 7, 2, 6, 4, 0]

Total Distance: 351.9

[ ]:

[2]: #step 9 continuation

##visualization of the results with town coordinates

import matplotlib.pyplot as plt

# Function to convert DMS to decimal

def dms_to_decimal(dms_str):

parts = dms_str.replace('°', ' ').replace('\'', ' ').

↪→replace('"', ' ').split()

d, m, s, direction = int(parts[0]), int(parts[1]), 

↪→float(parts[2]), parts[3]

decimal = d + m / 60 + s / 3600
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if direction in ['S', 'W']:

decimal = -decimal

return decimal

# Town coordinates in DMS and their conversion to decimal

town_coordinates = {

'Victory Farms Kisumu Logistic Center': '0°16\'45.0"S 

↪→34°27\'15.0"E',

'Mbale': '0°23\'18.0"S 34°32\'18.0"E',

'Bungoma': '0°21\'00.0"S 34°25\'00.0"E',

'Kondele': '0°15\'00.0"S 34°27\'00.0"E',

'Siaya': '0°18\'00.0"S 34°20\'00.0"E',

'Nyalenda': '0°16\'00.0"S 34°25\'00.0"E',

'Luanda': '0°20\'00.0"S 34°30\'00.0"E',

'Mumias': '0°25\'00.0"S 34°20\'00.0"E',

'Kakamega': '0°20\'00.0"S 34°15\'00.0"E',

'Majengo': '0°18\'00.0"S 34°22\'00.0"E',

'Chavakali': '0°22\'00.0"S 34°22\'00.0"E'

}

# Convert coordinates to decimal

decimal_coordinates = {town: (dms_to_decimal(coord.split()[0]), 

↪→dms_to_decimal(coord.split()[1]))

for town, coord in town_coordinates.items()}

# Path

#path = ['Victory Farms Kisumu Logistic Center', 'Kondele', 

↪→'Nyalenda', 'Majengo', 'Mbale','Chavakali', 'Luanda', 'Siaya', 

↪→'Bungoma', 'Mumias', 'Kakamega', 'Victory Farms Kisumu Logistic 

↪→Center']

path= ['Victory Farms Kisumu Logistic Center', 'Kondele', 

↪→'Nyalenda', 'Majengo', 'Mbale', 'Chavakali', 'Kakamega', 

↪→'Mumias', 'Bungoma', 'Luanda','Siaya', 'Victory Farms Kisumu 

↪→Logistic Center']

# Plotting

plt.figure(figsize=(10, 6))

for i in range(len(path)-1):

start = decimal_coordinates[path[i]]

end = decimal_coordinates[path[i+1]]

# Plot line

plt.plot([start[1], end[1]], [start[0], end[0]], 'bo-')
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# Calculate midpoint for arrow

mid = [(start[0] + end[0]) / 2, (start[1] + end[1]) / 2]

# Draw arrow

plt.annotate('', xy=(mid[1], mid[0]), xytext=(start[1], 

↪→start[0]),

arrowprops=dict(facecolor='black', 

↪→arrowstyle="->"))

# Annotating towns

for town, (lat, lon) in decimal_coordinates.items():

plt.text(lon, lat, town, fontsize=8)

plt.title('Accurate Representation of the TSP Path for Shortest 

↪→time')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.grid(True)

plt.show()

[ ]:
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[1]: #COST OPTIMIZATION

import numpy as np

from scipy.optimize import linear_sum_assignment

# cost Matrix

C = np.array([

[0, 1830.0, 4980.0, 180.0, 3465.0, 340.0, 1610.0, 3655.0, 

↪→2900, 1390.0, 1790.0],

[1830.0, 0, 3945.0, 1115.0, 2905.0, 1280.0, 1105.0, 2625.0, 

↪→1325.0, 185.0, 220.0],

[4980.0, 3945.0, 0, 4870.0, 4050, 4945.0, 3325.0, 1390.0, 2975.

↪→0, 4240.0, 3785.0],

[180.0, 1115.0, 4870.0, 0, 3360.0, 240.0, 1555.0, 3740.0, 2445.

↪→0, 930.0, 1330.0],

[3465.0, 2905.0, 4050, 3360.0, 0, 3455.0, 1800, 2730.0, 4230.

↪→0, 2720.0, 3125.0],

[340.0, 1280.0, 4945.0, 240.0, 3455.0, 0, 1630.0, 3625.0, 2610.

↪→0, 1095.0, 1500],

[1610.0, 1105.0, 3325.0, 1555.0, 1800, 1630.0, 0, 2005.0, 2430.

↪→0, 920.0, 1325.0],

[3655.0, 2625.0, 1390.0, 3740.0, 2730.0, 3625.0, 2005.0, 0, 

↪→1655.0, 2915.0, 2465.0],

[2900, 1325.0, 2975.0, 2445.0, 4230.0, 2610.0, 2430.0, 1655.0, 

↪→0, 1510.0, 1105.0],

[1390.0, 185.0, 4240.0, 930.0, 2720.0, 1095.0, 920.0, 2915.0, 

↪→1510.0, 0, 405.0],

[1790.0, 220.0, 3785.0, 1330.0, 3125.0, 1500, 1325.0, 2465.0, 

↪→1105.0, 405.0, 0]

])

# Set diagonal elements to infinity

np.fill_diagonal(C, np.inf)

# Replace zeros with a very large number temporarily

C_temp = np.where(C == 0, np.inf, C)

#phase 1

#step 2

#In a given problem, if the number of rows is not equal to the 

↪→number of columns then add a dummy row or a dummy column,

#in our case rows and colunms are equal



110

#step3

# Find the minimum non-zero element in each row

min_non_zero_per_row = np.min(C_temp, axis=1, keepdims=True)

#step 3

# Subtract the minimum non-zero value from each row, revert 

↪→infinity back to zero

C_row_reduced = np.where(C_temp == np.inf, 0, C - 

↪→min_non_zero_per_row)

print(C_row_reduced)

#step4

# Replace zeros with a very large number temporarily for column 

↪→reduction

C_temp = np.where(C_row_reduced == 0, np.inf, C_row_reduced)

# Find the minimum non-zero element in each column

min_non_zero_per_column = np.min(C_temp, axis=0, keepdims=True)

# Subtract the minimum non-zero value from each column, revert 

↪→infinity back to zero

C_col_reduced = np.where(C_temp == np.inf, 0, C_row_reduced - 

↪→min_non_zero_per_column)

print(C_col_reduced)

def tsp_to_assignment(cost_matrix):

"""

Convert the TSP to an assignment problem by subtracting the 

↪→minimum

cost from each row and each column of the cost matrix, ensuring

non-negativity of the resulting matrix.

"""

# Find the minimum value of each row

min_row = np.min(cost_matrix, axis=1)

# Subtract the minimum value of each row from that row

cost_matrix -= min_row[:, np.newaxis]

# Find the minimum value of each column in the modified matrix

#min_col = np.min(cost_matrix, axis=0)

min_col = np.min(distinance_matrix, axis=0)

# Subtract the minimum value of each column from that column

cost_matrix -= min_col
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return cost_matrix

def assignment_to_tsp(assignment, original_cost_matrix):

"""

Convert the assignment solution back to TSP solution

"""

num_nodes = cost_matrix_matrix.shape[0]

tour = []

for row, col in enumerate(assignment):

if col < num_nodes:

tour.append((row, col))

return tour

def tsp_hungarian(C, start=0):

num_towns = len(C)

path = [start]

total_time = 0

while len(path) < num_towns:

last = path[-1]

# Set time for already visited towns to infinity

time = np.copy(C[last])

time[path] = np.inf

# Find the nearest town

nearest = np.argmin(time)

path.append(nearest)

total_time += time[nearest]

# Return to start

total_time += C[path[-1], start]

path.append(start)

return path, total_time

# Solve TSP using Hungarian method

path, total_distance = tsp_hungarian(C)

print("Path:", path)

print("Total Distance:", total_distance)

[[ 0. 1650. 4800. 0. 3285. 160. 1430. 3475. 2720. 1210. 1610.]

[1645. 0. 3760. 930. 2720. 1095. 920. 2440. 1140. 0. 35.]

[3590. 2555. 0. 3480. 2660. 3555. 1935. 0. 1585. 2850. 2395.]

[ 0. 935. 4690. 0. 3180. 60. 1375. 3560. 2265. 750. 1150.]
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[1665. 1105. 2250. 1560. 0. 1655. 0. 930. 2430. 920. 1325.]

[ 100. 1040. 4705. 0. 3215. 0. 1390. 3385. 2370. 855. 1260.]

[ 690. 185. 2405. 635. 880. 710. 0. 1085. 1510. 0. 405.]

[2265. 1235. 0. 2350. 1340. 2235. 615. 0. 265. 1525. 1075.]

[1795. 220. 1870. 1340. 3125. 1505. 1325. 550. 0. 405. 0.]

[1205. 0. 4055. 745. 2535. 910. 735. 2730. 1325. 0. 220.]

[1570. 0. 3565. 1110. 2905. 1280. 1105. 2245. 885. 185. 0.]]

[[ 0. 1465. 2930. 0. 2405. 100. 815. 2925. 2455. 1025. 1575.]

[1545. 0. 1890. 295. 1840. 1035. 305. 1890. 875. 0. 0.]

[3490. 2370. 0. 2845. 1780. 3495. 1320. 0. 1320. 2665. 2360.]

[ 0. 750. 2820. 0. 2300. 0. 760. 3010. 2000. 565. 1115.]

[1565. 920. 380. 925. 0. 1595. 0. 380. 2165. 735. 1290.]

[ 0. 855. 2835. 0. 2335. 0. 775. 2835. 2105. 670. 1225.]

[ 590. 0. 535. 0. 0. 650. 0. 535. 1245. 0. 370.]

[2165. 1050. 0. 1715. 460. 2175. 0. 0. 0. 1340. 1040.]

[1695. 35. 0. 705. 2245. 1445. 710. 0. 0. 220. 0.]

[1105. 0. 2185. 110. 1655. 850. 120. 2180. 1060. 0. 185.]

[1470. 0. 1695. 475. 2025. 1220. 490. 1695. 620. 0. 0.]]

Path: [0, 3, 5, 9, 1, 10, 8, 7, 2, 6, 4, 0]

Total Distance: 14660.0

[ ]:

[2]: #step 9 continuation

##visualization of the results with town coordinates

import matplotlib.pyplot as plt

# Function to convert DMS to decimal

def dms_to_decimal(dms_str):

parts = dms_str.replace('°', ' ').replace('\'', ' ').

↪→replace('"', ' ').split()



113

d, m, s, direction = int(parts[0]), int(parts[1]), 

↪→float(parts[2]), parts[3]

decimal = d + m / 60 + s / 3600

if direction in ['S', 'W']:

decimal = -decimal

return decimal

# Town coordinates in DMS and their conversion to decimal

town_coordinates = {

'Victory Farms Kisumu Logistic Center': '0°16\'45.0"S 

↪→34°27\'15.0"E',

'Mbale': '0°23\'18.0"S 34°32\'18.0"E',

'Bungoma': '0°21\'00.0"S 34°25\'00.0"E',

'Kondele': '0°15\'00.0"S 34°27\'00.0"E',

'Siaya': '0°18\'00.0"S 34°20\'00.0"E',

'Nyalenda': '0°16\'00.0"S 34°25\'00.0"E',

'Luanda': '0°20\'00.0"S 34°30\'00.0"E',

'Mumias': '0°25\'00.0"S 34°20\'00.0"E',

'Kakamega': '0°20\'00.0"S 34°15\'00.0"E',

'Majengo': '0°18\'00.0"S 34°22\'00.0"E',

'Chavakali': '0°22\'00.0"S 34°22\'00.0"E'

}

# Convert coordinates to decimal

decimal_coordinates = {town: (dms_to_decimal(coord.split()[0]), 

↪→dms_to_decimal(coord.split()[1]))

for town, coord in town_coordinates.items()}

# Path

#path = ['Victory Farms Kisumu Logistic Center', 'Kondele', 

↪→'Nyalenda', 'Majengo', 'Mbale','Chavakali', 'Luanda', 'Siaya', 

↪→'Bungoma', 'Mumias', 'Kakamega', 'Victory Farms Kisumu Logistic 

↪→Center']

path= ['Victory Farms Kisumu Logistic Center', 'Kondele', 

↪→'Nyalenda', 'Majengo', 'Mbale', 'Chavakali', 'Kakamega', 

↪→'Mumias', 'Bungoma', 'Luanda','Siaya', 'Victory Farms Kisumu 

↪→Logistic Center']

# Plotting

plt.figure(figsize=(7, 4))

for i in range(len(path)-1):

start = decimal_coordinates[path[i]]

end = decimal_coordinates[path[i+1]]
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# Plot line

plt.plot([start[1], end[1]], [start[0], end[0]], 'bo-')

# Calculate midpoint for arrow

mid = [(start[0] + end[0]) / 2, (start[1] + end[1]) / 2]

# Draw arrow

plt.annotate('', xy=(mid[1], mid[0]), xytext=(start[1], 

↪→start[0]),

arrowprops=dict(facecolor='blue', 

↪→arrowstyle="->"))

# Annotating towns

for town, (lat, lon) in decimal_coordinates.items():

plt.text(lon, lat, town, fontsize=10)

plt.title('A graph showing the optimal path for cost')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.grid(True)

plt.show()


