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ABSTRACT
Introduction Anaemia during pregnancy is a widespread 
health burden globally, especially in low- and middle- 
income countries, posing a serious risk to both maternal 
and neonatal health. The primary challenge is that 
anaemia is frequently undetected or is detected too late, 
worsening pregnancy complications. The gold standard 
for diagnosing anaemia is a clinical laboratory blood 
haemoglobin (Hgb) or haematocrit (Hct) test involving 
a venous blood draw. However, this approach presents 
several challenges in resource- limited settings regarding 
accessibility and feasibility. Although non- invasive blood 
Hgb testing technologies are gaining attention, they 
remain limited in availability, affordability and practicality. 
This study aims to develop and validate a mobile health 
(mHealth) machine learning model to reliably predict blood 
Hgb and Hct levels in Black African pregnant women using 
smartphone photos of the conjunctiva.
Methods and analysis This is a single- centre, cross- 
sectional and observational study, leveraging existing 
antenatal care services for pregnant women aged 15 
to 49 years in Kenya. The study involves collecting 
smartphone photos of the conjunctiva alongside 
conventional blood Hgb tests. Relevant clinical data 
related to each participant’s anaemia status will also be 
collected. The photo acquisition protocol will incorporate 
diverse scenarios to reflect real- world variability. A clinical 
training dataset will be used to refine a machine learning 
model designed to predict blood Hgb and Hct levels from 
smartphone images of the conjunctiva. Using a separate 
testing dataset, comprehensive analyses will assess its 
performance by comparing predicted blood Hgb and Hct 
levels with clinical laboratory and/or finger- prick readings.
Ethics and dissemination This study is approved by 
the Moi University Institutional Research and Ethics 
Committee (Reference: IREC/585/2023 and Approval 
Number: 004514), Kenya’s National Commission for 
Science, Technology, and Innovation (NACOSTI Reference: 
491921) and Purdue University’s Institutional Review 
Board (Protocol Number: IRB- 2023- 1235). Participants 
will include emancipated or mature minors. In Kenya, 
pregnant women aged 15 to 18 years are recognised 

as emancipated or mature minors, allowing them to 
provide informed consent independently. The study poses 
minimal risk to participants. Findings and results will 
be disseminated through submissions to peer- reviewed 
journals and presentations at the participating institutions, 
including Moi Teaching and Referral Hospital and Kenya’s 
Ministry of Health. On completion of data collection and 
modelling, this study will demonstrate how machine 
learning- driven mHealth technologies can reduce reliance 
on clinical laboratories and complex equipment, offering 
accessible and scalable solutions for resource- limited and 
at- home settings.

INTRODUCTION
The prevalence of anaemia remains high, 
affecting nearly one- quarter of the global 
population (1.92 billion) in 2021.1–3 It is 
especially predominant among women of 
reproductive age in low- and middle- income 
countries, impacting 45% of pregnant and 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ Unmodified smartphone cameras and machine 
learning approaches are used to non- invasively 
predict blood haemoglobin (Hgb) and haematocrit 
(Hct) levels from an easily accessible site—the 
conjunctiva.

 ⇒ Development and validation of the model are tai-
lored to predict blood Hgb and Hct levels in a quan-
titative manner similar to clinical laboratory testing, 
rather than detecting anaemia as a binary outcome.

 ⇒ Study population is specifically designed to address 
healthcare disparities impacting Black African preg-
nant women.

 ⇒ Target gestation includes all three trimesters with 
approximately equal representation from each 
trimester.

 ⇒ Due to the observational nature of the study, there is 
no intervention administered.
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40% of non- pregnant women.4 5 In East Africa, it is esti-
mated that 42% of pregnant women are anaemic.6 In 
Kenya, cases among pregnant women surged from 55 539 
in 2016 to 295 642 in 2019.7 At the country’s largest mater-
nity unit, 57% of women in their second and third trimes-
ters were affected by anaemia.8 Even in the USA, more 
than 40% of females aged 12 to 21 years are estimated to 
have iron deficiency or iron- deficiency anaemia.9

Anaemia is a major contributor to maternal and 
neonatal mortality. Moderate to severe anaemia exacer-
bates critical conditions such as haemorrhage and sepsis 
during pregnancy.10 11 Anaemia- associated pregnancy 
complications include preterm labour, low birth weight, 
stillbirth and neonatal mortality, all of which increase 
the risk of adverse outcomes for both mothers and 
newborns.10 11 Maternal anaemia during pregnancy can 
have long- term consequences on a child’s neurocognitive 
development.12 Importantly, interventions are available 
to address anaemia even in resource- limited settings, 
including dietary modifications with iron- rich foods, 
supplementation with iron, folic acid, vitamin B12

13–16 and 
blood transfusion in cases of severe anaemia.17

Anaemia management during pregnancy relies on the 
ability to quantitatively assess blood haemoglobin (Hgb) 
and haematocrit (Hct) levels in a timely manner. The main 
challenge in resource- limited settings is that anaemia 
during pregnancy is often not detected or is detected 
too late. The World Health Organization (WHO) recom-
mends at least one blood Hgb test per trimester. Unfor-
tunately, women in these settings often lack access to 
recommended diagnostic testing. For instance, in Kenya, 
only 17% of women had access to minimally adequate 
delivery care with routine antenatal tests.18 Other coun-
tries in sub- Saharan Africa and South Asia face similar 
challenges. However, there are only a limited number of 
studies using non- invasive or point- of- care (POC) blood 
Hgb tests specifically for pregnant women in general.19–22

The gold standard for diagnosing anaemia is a clinical 
laboratory blood Hgb test to measure Hgb content in the 
blood (grams per decilitre).23–26 However, venous blood 
draw- based Hgb tests have several limitations, including 
the need for specialised equipment (haematology anal-
yser), pain, discomfort, risk of haematoma, infection and 
iatrogenic blood loss.27 Non- invasive and cost- effective 
blood Hgb testing technologies remain limited.28–32 For 
example, Masimo and OrSense devices require expensive 
specialised equipment available only in advanced hospital 
settings.33–35 Alternatively, POC blood analysers that 
use capillary blood sampling (finger- prick testing) (eg, 
Abbott i- STAT, HemoCue and VERI- Q) are commercially 
available, but require environmentally sensitive cartridges 
with short shelf lives.36 37

Non- invasive POC blood Hgb assessment technolo-
gies have received considerable attention,38 including 
HemaApp,39 fingernail mobile app,40–42 fingertip 
devices,43 44 lip mucosal imaging45 and palpebral conjunc-
tiva smartphone imaging.46–59 Specifically, the palpe-
bral conjunctiva, a common site for assessing paleness 

and anaemia, offers the advantages of easy, non- contact 
imaging without surface pressure.60 Its underlying micro-
vasculature is unaffected by skin pigmentation (eg, mela-
nocytes), removing the need for personal calibration.61 In 
addition, the conjunctiva may not be easily recognisable, 
providing enhanced privacy protection.62 63

Objectives and hypothesis
The primary objective of this study is to develop and vali-
date a mobile health (mHealth) computational model 
using machine learning to accurately and precisely 
predict blood Hgb and Hct levels in Black African preg-
nant women using photos of the conjunctiva acquired 
by a smartphone camera. The central hypothesis is that 
blood Hgb levels can be reliably predicted from red- 
green- blue (RGB) images of the conjunctiva in a non- 
invasive manner with performance comparable to POC 
finger- prick testing. First, we will capture high- quality 
conjunctiva photos under diverse photo acquisition 
settings from pregnant women across all three trimes-
ters, encompassing a broad range of Hgb and Hct levels. 
Second, we will refine the mHealth prediction model 
and compare the predictions with conventional blood 
Hgb and Hct testing methods. Given the physiological 
changes during pregnancy that vary by trimester, this 
study emphasises acquiring data from all stages to ensure 
reliable predictions.

METHODS: PARTICIPANTS, STUDY PROCEDURES AND 
OUTCOMES
Study design
This is a single- centre, non- interventional, cross- sectional 
and observational study involving the acquisition of 
photos of the conjunctiva alongside conventional blood 
Hgb and Hct tests. Relevant clinical data related to the 
participant’s anaemia status will also be collected. The 
blood Hgb and Hct values computed from the mHealth 
prediction model will not be used to guide interventions 
or diagnostics. All data collection will take place during a 
single study visit. Thus, a retention plan is not required.

Setting and recruitment
Figure 1 outlines the setting, enrolment and data collec-
tion. The primary clinical setting is the Maternal Child 
Health (MCH) clinic at Moi Teaching and Referral 
Hospital (MTRH) in Eldoret, Kenya, in collaboration 
with the Academic Model Providing Access to Healthcare 
(AMPATH). MTRH is the second- largest referral hospital 
in Kenya. The MCH clinic at MTRH has 20 obstetricians 
and over 40 residents who care for approximately 900 
pregnant women per month. AMPATH also provides a 
framework for sustainable research and scalable health-
care access. AMPATH is a partnership between the Moi 
University School of Medicine, MTRH and a consortium 
of US institutions.

Study participants
Our study will recruit volunteer pregnant women 
receiving antenatal care at the MCH clinic, targeting 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

b
y g

u
est

 
o

n
 Ju

n
e 24, 2025

 
h

ttp
://b

m
jo

p
en

.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
8 M

ay 2025. 
10.1136/b

m
jo

p
en

-2024-097342 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/


3Sakthivel H, et al. BMJ Open 2025;15:e097342. doi:10.1136/bmjopen-2024-097342

Open access

600 participants, with approximately 200 women per 
trimester, aged 15 to 49 years. Because the mHealth 
prediction model for blood Hgb computation relies on 
machine learning, conventional statistical methods are 
not directly applicable for estimating power and sample 
size. However, our estimates are conservative based on 
the previous study at MTRH.49 For 200 participants per 
trimester, the 95% confidence intervals (CIs) for the 
correlation coefficient between the mHealth and clin-
ical laboratory blood Hgb levels are expected to range 
from 0.09 to 0.13, assuming a correlation coefficient of 
0.85. Similarly, the 95% CI for the intraclass correlation 
coefficient (ICC) will range from 0.07 to 0.13, assuming 
an expected ICC of 0.85. To mitigate the risk of overfit-
ting, a separate masked testing dataset comprising 30% 
of the total data will be used. This testing dataset will be 
independent of the training dataset, which consists of the 
remaining 70% of the data.

Inclusion and exclusion criteria
The study inclusion criteria (figure 1) are as follows:
1. Women with confirmed pregnancy at any gestational 

stage (first, second or third trimester).
2. Aged 15 to 49 years.

3. Able to provide written informed consent.
Participants will be excluded if they have hypoten-

sion, active or ongoing bleeding, conjunctivitis (or 
visible conjunctival inflammation), trauma or infection 
affecting the eyes or eyelids, or if laboratory blood Hgb 
and Hct testing may be delayed beyond 24 hours after 
photography.

Overall procedure
If the patient agrees to participate in this study, study 
personnel will provide simple instructions on how to 
gently pull down the inner eyelid using the participant’s 
index finger. Then, the study personnel will hold a colour 
reference chart on the patient’s forehead and capture 
photos of both the left and right eyes using three different 
smartphone models. The total time required for imaging 
is approximately 5 minutes. Clinical data will also be 
collected, including laboratory Hgb and Hct values from 
blood samples drawn within 24 hours before or after the 
conjunctiva photo timestamp. The study personnel will 
complete a clinical data collection sheet and attach the 
results of the clinical laboratory test. All photos and asso-
ciated data will be submitted through a customised data 
collection application (app).

METHODS: DATA COLLECTION, MANAGEMENT AND ANALYSIS
Timepoints for data collection
All data collection for the study will take place during 
a single visit, lasting approximately 10 minutes, with no 
follow- up required. During the visit, consented partic-
ipants’ baseline demographic and clinical data will be 
recorded on a study form. Smartphone photography and 
venous blood draw and/or finger- prick testing will then 
be performed. To ensure data reliability, smartphone 
photography must occur within 24 hours of the blood 
draw. Once data collection is complete, all information 
will be uploaded to a customised data collection app 
linked to a Health Insurance Portability and Account-
ability Act (HIPAA)- compliant server, where it will be 
organised and processed for analysis.

Demographic and clinical data
Demographic data collected from participants will 
include date of birth, marital status and highest level of 
education completed. Clinical data will cover details of 
the current pregnancy, obstetric history, medical and 
surgical history (including blood pressure), family history 
and antenatal profile.

Clinical laboratory blood Hgb test and/or finger-prick test
We will assess the results of complete blood count (CBC) 
tests, specifically measuring clinical laboratory- based 
blood Hgb and Hct levels using the Beckman Coulter 
AcT 5diff or a similar device from samples collected on 
the same day. CBC tests will be conducted at a clinical 
reference laboratory certified by the College of Amer-
ican Pathologists’ External Quality Assurance Program. 

Figure 1 Flowchart of recruitment, enrolment and 
data collection. This single- centre, cross- sectional and 
observational study leverages existing antenatal care services 
for pregnant women aged 15 to 49 years at the Maternal 
Child Health (MCH) clinic at Moi Teaching and Referral 
Hospital (MTRH) in Eldoret, Kenya. CBC, complete blood 
count; Hgb, haemoglobin.
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In addition, capillary blood sampling using VERI- Q will 
be performed either before or after photographing the 
conjunctiva.

Smartphone conjunctiva photographing
Photos acquired with a digital (or smartphone) camera 
exhibit different colours depending on smartphone 
models, image formats and light conditions.64 65 To 
develop an mHealth prediction model that is accurate 
under diverse data acquisition conditions, the photo acqui-
sition protocol will incorporate a custom- made colour 
reference chart,54 different smartphone models (Google 
Pixel 5, Samsung Galaxy A52 and Samsung Galaxy S21) 
and file formats. The colour reference chart, roughly 
the size of a business card, is designed to support colour 
recovery with reduced dependence on photo acquisition 
settings by being physically captured within each photo. 
Instead of commercially available colour reference charts 
(eg, Macbeth ColorChecker, ColorChecker Classic Mini), 
we will use a custom- designed colour chart that can be 
mass- printed with a standard inkjet printer. Due to sani-
tation requirements and participant tracking, disposable 
colour charts are necessary. However, the high cost of 
commercially available options makes them impractical 
for single- use applications.

For Samsung Galaxy S21, both DNG (also known as 
RAW) and JPEG formats will be generated using Pro 
Mode. Google Pixel 5 and Samsung Galaxy A52 will use 
a third- party app (Adobe Lightroom or Halide Mark) to 
capture photos in DNG format. As a key specification of 
smartphone cameras, we evaluated the spatial resolution 
of the three different smartphone models using the edge 

method in a laboratory setting.66 The measurements were 
conducted at a typical distance of 100–150 mm between 
the camera and the participant’s eye. Google Pixel 5 has 
a spatial resolution of 137 µm, while Samsung Galaxy 
S21 has a spatial resolution of 172 µm. Despite being a 
lower- end smartphone, the Samsung Galaxy A52 has a 
spatial resolution of 108 µm.

Data collection mobile app
We developed a mobile app for Android to facilitate the 
collection and transfer of photos (figure 2). This app is 
specifically designed to ensure proper use of the colour 
reference chart during photo acquisition. It allows study 
personnel to upload photos taken with the smartphone 
camera, requiring them to complete form fields before 
selecting photos from the smartphone gallery for upload. 
All data, including the photos collected, are stored on 
a HIPAA- compliant cloud server and can be securely 
accessed through a high- security portal. Importantly, the 
data collection app is designed to efficiently handle large 
photo files in the DNG (RAW) format. The DNG format 
reduces non- linear rendering and image compression.65 
With a 10- bit colour depth in each RGB channel, DNG 
allows for 210×3 combinations of RGB values. In contrast, 
JPEG with an 8- bit colour depth (28×3≈16.77 million 
colours) involves non- linear filtering and image compres-
sion. As a result, DNG photos are substantially larger than 
JPEG photos. Recent smartphone models support direct 
access to the DNG format either in the default camera 
settings or through third- party applications (eg, Adobe 
Lightroom or Halide Mark). The app also enables photo 
uploads even when network connectivity is interrupted; it 

Figure 2 Representative screenshots of the customised data collection mobile app for Android smartphones. The app’s 
flow and processes are designed to efficiently manage large photo files. The user interface enables study personnel to upload 
photos to a Health Insurance Portability and Accountability Act (HIPAA)- compliant cloud server, which can be securely 
accessed through a high- security portal.
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automatically uploads photos from a temporary folder in 
the background, one photo at a time, to reduce the data 
payload. Once all photos are uploaded, the temporary 
folder is deleted from the device.

Smartphone photographing procedure
Figure 3 summarises the photo acquisition protocol.
1. Direct the participant to sit facing the ceiling light 

source. Adjust the room brightness if necessary to en-
sure clear photos without shadows or glares.

2. Write the participant identifier (ID) and date on the 
colour reference chart to distinguish photos.

3. Ask the participant to remove glasses or any objects 
that may obstruct the forehead.

4. Rehearse pulling down the inner eyelid with the partic-
ipant to ensure adequate and accurate exposure.

5. Hold the chart against the participant’s forehead with 
one hand. Instruct the participant to use their finger-
tips to pull down the inner eyelid.

6. Ensure the colour reference chart is horizontally 
aligned with the participant’s eye and visible in the 
camera view.

7. While holding the chart with one hand, use the other 
hand to operate the smartphone.
a. Ask the participant to look up at the ceiling while 

exposing the conjunctiva.

b. Include both the entire colour reference chart and 
the conjunctiva within the frame.

c. The colour reference chart must remain horizontal.
d. Avoid covering the chart with fingers or casting 

shadows on it.
e. Keep the chart flat without bending.
f. Ensure consistent lighting; the colour reference 

chart and conjunctiva should have similar bright-
ness.

8. Use the smartphones in this sequence: Samsung Gal-
axy A52, Google Pixel 5 and Samsung Galaxy S21.
a. Capture four photos of the left conjunctiva with 

each smartphone.
b. Capture four photos of the right conjunctiva with 

each smartphone.
9. Input the participant’s information and upload the 

photos to the data collection app (figure 2).

Model refinement and optimisation
The mHealth prediction model will be refined and opti-
mised for the target population, as it has not yet been 
tailored to this group. The current version of the mHealth 
model comprises four submodules47 49 52–54 67–69:
1. Colour correction: extracts absolute colour values of 

the conjunctiva, ensuring consistency across different 
smartphone models and light conditions.68

2. Automated segmentation: automatically identifies and 
delineates the conjunctival region of interest.67 69

3. Hyperspectral learning (also referred to as spectral 
reconstruction, spectral super- resolution or spectral 
reflectance estimation): reconstructs high- resolution 
spectral data from RGB values of photos captured by 
smartphone cameras.49 53

4. Blood Hgb and Hct content computation: estimates 
blood Hgb and Hct levels using the reconstructed hy-
perspectral data.47 49

To mitigate the risk of overfitting in the blood Hgb 
and Hct content computation, photo data will be divided 
into training (70% of participants) and testing (30%) 
datasets based on participant IDs. The photos from the 
same participants will be assigned exclusively to either 
the training or testing datasets to prevent data leakage. 
Cross- validation will be conducted to evaluate the model’s 
performance across different subsets of the data. It should 
be noted that colour correction, automated segmen-
tation and hyperspectral learning are not subjected to 
training, as these processes were already completed using 
separate data from our previous studies.47 49 52–54 67–69 This 
compound machine learning model integrates domain 
knowledge (eg, tissue optics and computer vision) into 
the learning process. Notably, this is designed to miti-
gate the constraints of relatively limited data. It allows 
the model to be trained effectively with a limited clinical 
dataset, addressing the limitations of purely data- driven 
methods.70 71

Figure 3 Photo acquisition instructions and procedure. 
Preparation materials and instructional examples guide study 
personnel in quickly capturing high- quality photos of the 
participant’s conjunctiva. The original demonstration photos, 
featuring the authors performing the procedure, are further 
rendered using ChatGPT.
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Performance evaluation
To assess the performance of the mHealth model 
compared with clinical laboratory blood Hgb, Hct 
and/or finger- prick blood Hgb values, we will perform 
the following analyses using a testing dataset or cross- 
validation methods.
1. Linear correlation analysis: Quantifies the strength of 

the relationship between mHealth and clinical labora-
tory blood Hgb and Hct values.

2. Bland–Altman analysis: Uses multiple measurement 
pairs to evaluate whether mHealth blood Hgb and Hct 
values align reliably with clinical laboratory results, re-
turning bias and 95% limits of agreement.

3. ICC analysis: Assesses the reliability of mHealth blood 
Hgb and Hct values, focusing on reproducibility—the 
ability of different users to obtain consistent results. 
Given that multiple smartphones will be used to cap-
ture photos from the same participant, we will empha-
sise inter- reliability (reproducibility), which measures 
variation across different users evaluating the same 
group of participants.

4. Paired t- tests: Determines whether blood Hgb and Hct 
values obtained from the left and right conjunctivae 
are statistically identical.

In addition, we will follow the STARD (Standards for 
Reporting of Diagnostic Accuracy Studies) guideline72 73 
for assessing the diagnostic performance of our mHealth 
prediction model as well as the TRIPOD+AI (Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis + Artificial Intelligence) 
guideline74 for reporting our machine learning- based 
prediction study.

ETHICS AND DISSEMINATION
Ethics approval and consent
This study is approved by the Moi University Institu-
tional Research and Ethics Committee (Reference: 
IREC/585/2023 and Approval Number: 004514), 
Kenya’s National Commission for Science, Technology, 
and Innovation (NACOSTI Reference: 491921) and 
Purdue University’s Institutional Review Board (Protocol 
Number: IRB- 2023- 1235). Our study involves recruiting 
participants from vulnerable populations, specifically 
pregnant women, including some who are emancipated 
or mature minors. In Kenya, pregnant women aged 
15 to 18 years are considered emancipated or mature 
minors, allowing them to provide informed consent inde-
pendently, without parental involvement. The informed 
consent form is available in both English and Swahili, 
the native and widely spoken language in Kenya. Study 
personnel responsible for communicating with partici-
pants are fluent in both languages to ensure clear and 
effective communication.

Confidentiality, data storage and security
All study data will be stored and accessed in compliance 
with HIPAA and the Kenya Data Protection Act, 2019.

Specifically, photos will be labelled with the participant 
ID, smartphone model and left/right. Demographic and 
clinical information recorded on paper forms by site 
personnel will be scanned using the smartphone. Data 
will be uploaded via a custom data collection app devel-
oped for this study. This app transmits data to a secure 
Amazon Web Services server, which is HIPAA- compliant. 
Access to the server is restricted to study investigators and 
authorised personnel. Computer records will be stored 
on password- protected systems, and paper records will be 
secured in locked cabinets accessible only to authorised 
study personnel.

Dissemination
We will disseminate results through publications in 
peer- reviewed journals and presentations at the partici-
pating institutions, including Moi Teaching and Referral 
Hospital, and Kenya’s Ministry of Health. This study 
primarily focuses on developing a machine learning 
model for blood Hgb and Hct assessments. Our next steps 
are to scale the project towards developing a minimally 
viable product—a functional mobile app for bloodless, 
quantitative blood Hgb assessment—for larger clinical 
trials. Building on further collaboration with healthcare 
philanthropy organisations, we plan to evaluate the effec-
tiveness and implementation of the mHealth prediction 
model through pilot studies and real- world applications.

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting, or dissemination plans of this 
research.

DISCUSSION
Digital health technologies have experienced rapid 
growth and are now widely adopted across various clin-
ical settings. In particular, photos captured with mobile 
devices (eg, smartphones and tablets) have emerged 
as pivotal tools in digital health applications, including 
telemedicine and mHealth.75–78 Clinical photos are 
instrumental in healthcare diagnostics, monitoring 
and management, especially in at- home healthcare and 
resource- limited settings where traditional equipment 
may be scarce. Consequently, healthcare professionals 
increasingly regard smartphones and tablets as indis-
pensable components of modern healthcare practice. 
However, guidelines on conducting clinical studies using 
high- quality clinical photos from mobile devices are often 
not available.

This protocol paper outlines a clinical study exploring 
the use of smartphone cameras as diagnostic tools. 
Building on prior research demonstrating the diagnostic 
potential of clinical photography, this study leverages 
smartphone technology to improve access to high- quality 
clinical images. Furthermore, advancements in machine 
learning and artificial intelligence enhance the diag-
nostic accuracy of photo- based analyses. The protocols 
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and procedures described here aim to extend the reach 
of diagnostic imaging in low- resource environments, 
where traditional diagnostic tools are often inaccessible. 
These methods may also be applicable to other clinical 
studies requiring high- quality imaging.
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