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Abstract: The rising demand for both water and energy has intensified the urgency of addressing the
water–energy nexus. Energy is required for water treatment and distribution, and energy production
processes require water. The increasing demand for energy requires substantial amounts of water,
primarily for cooling. The emergence of new persistent contaminants has necessitated the use of
advanced, energy-intensive water treatment methods. Coupled with the energy demands of water
distribution, this has significantly strained the already limited energy resources. Regrettably, no
straightforward, universal model exists for estimating water usage and energy consumption in power
and water treatment plants, respectively. Current approaches rely on data from direct surveys of plant
operators, which are often unreliable and incomplete. This has significantly undermined the efficiency
of the plants as these surveys often miss out on complex interactions, lack robust predictive power
and fail to account for dynamic temporal changes. The study thus aims to evaluate the potential of
mathematical modeling and simulation in the water–energy nexus. It formulates a mathematical
framework and subsequent simulation in Java programming to estimate the water use in hydroelectric
power and geothermal energy, the energy consumption of the advanced water treatment processes
focusing on advanced oxidation processes and membrane separation processes and energy demands
of water distribution. The importance of mathematical modeling and simulation in the water–energy
nexus has been extensively discussed. The paper then addresses the challenges and prospects
and provides a way forward. The findings of this study strongly demonstrate the effectiveness of
mathematical modeling and simulation in navigating the complexities of the water–energy nexus.

Keywords: water–energy nexus; renewable energy; water footprint; water treatment; energy
consumption

1. Introduction

The intricate and intertwined interrelationship between water and energy often re-
ferred to as the water–energy nexus is becoming increasingly important as the demand for
both resources rises [1,2]. The rapid global economic expansion and the rising of living
standards, accompanied by swift industrial growth have resulted to increase in the global
energy demand which is projected to further exacerbate by a 15% increase in the near
future [3]. To meet this growing energy demand, alternative sources of energy generation
are being explored globally. Chief among these are the renewable energy technologies
due to the growing awareness of depletion of non-renewable energy technologies and
destructive impact of fossil fuels particularly in relation to climate change as the world
aims for net zero emissions by 2050.

The shift to renewable energy technologies, now at a 38% of the global energy con-
sumption [4] and expected to increase in the coming years, has put significant pressure on
the water resources in the regions where they are situated since they require substantial
amount of water primarily for cooling and some consumed through evaporation. This
coincidentally comes at a time when the world is facing a water crisis in alarming pro-
portions characterized by water scarcity and deterioration of water quality [5]. Water
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purification emerges as a vital component in addressing the crisis with variety of water
treatment methods being examined worldwide [6]. The emergence of new persistent con-
taminants such as pharmaceutical and personal care products (PPCPs), dyes, heavy metals
and radioactive substances have necessitated the utilization of advanced, energy intensive
water treatment methods specially advanced oxidation processes (AOPs) and membrane
separation processes [7]. Coupled with the energy demands of water distribution, this
has put significant strain on the already limited energy resources further increasing the
global energy demand. Hence, understanding both the water footprint of renewable energy
technologies and energy consumption of advanced water treatment methods becomes a
mandatory concern in order to make informed decisions about the location of the plants
and optimal utilization of these scarce resources [8]. This aligns seamlessly with the global
sustainable development goals (SDGs), particularly SDG 6 (universal access to clean water)
and SDG 7 (affordable, reliable and sustainable energy for all). Unfortunately, there is no
straightforward and universally applicable model for assessing water usage and energy
consumption in power and water treatment plants.

Current techniques rely on plant operator survey data, which is often incomplete and
unreliable. This has compromised the efficiency of the plants, with most of them operating
significantly below their optimal capacity [9]. The plant operator surveys while valuable
in gathering operational insights often fall short in capturing the complex interactions
and feedback loops in the water–energy nexus. These surveys miss important variables
and relationships resulting in oversimplified analyses that do not reflect the dynamics of
plant operations. Additionally, they lack robust predictive power, making it challenging to
anticipate future performance under varying conditions. The temporal changes with the
plant such as fluctuations in water use, energy consumption and changing environmental
conditions are usually not adequately accounted for, resulting in inefficient operations
and suboptimal optimization procedures [10]. This underscores the pressing need for
mathematical modeling and simulation which provides a more comprehensive under-
standing of the water–energy nexus, enabling operators to simulate different scenarios,
predict outcomes, identify optimal strategies for improving efficiency and performance
and provides a quantitative basis for making informed decisions.

The present study evaluates the potential of mathematical modeling and simulation
in the water energy nexus. The second section provides an overview of the water–energy
nexus. Section 3 discusses the commonly utilized mathematical models and simulation
approaches. Sections 4 and 5 focus on the application of mathematical modeling and
simulation in the water–energy nexus. The formulation of the mathematical framework
and subsequent simulation in Java programming to estimate the water use in hydropower
and geothermal energy is presented. The energy consumption of the advanced water
treatment processes, particularly the advanced oxidation processes (AOPs) and membrane
separation processes and water distribution considering the hydrodynamics and hydraulic
transients are discussed. Section 6 gives the importance of mathematical modeling and
simulation in the water–energy nexus. Section 7 addresses the challenges arising and
potential benefits of applying mathematical modeling and simulation to the water–energy
nexus. Finally, Section 8 gives the conclusions and future research directions.

2. The Water–Energy Nexus

The water–energy nexus is an inseparable interdependence between water and en-
ergy [1]. Every stage of the water cycle from water purification, distribution and wastewater
treatment consumes energy. Conversely, every power source demands water in one form
or another for fuel processing, thermoelectric cooling and evaporation. Figure 1 sum-
marizes the water energy nexus. The water footprint of energy generation technologies
refers to the ratio of the amount of fresh water consumed in energy production to the
electricity generated.
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Figure 1. The water–energy nexus.

The water consumed, utilized directly for power consumption, cooling processes or
other operational processes, varies depending on the type of fuel used. Table 1 summarizes
the average water footprint of various energy production processes.

Table 1. Water footprint of major energy generation technologies.

Energy Generation
Technology Description Water Footprint

(m3/GJ) References

Hydroelectric power
Water lost evaporation from the
large reservoirs creating behind

the dam.
16.5 [11]

Nuclear energy
Significant amounts of water are

lost in the cooling reactors through
evaporation.

0.42–0.76 [12]

Geothermal energy
Tower and once-through Cooling

systems and extraction of
geothermal fluids (steam)

0.005 [13]

Solar energy

Minimal, mostly through cleaning
the photovoltaic panels and

cooling, especially in concentrated
solar power (CSP) mirrors.

0.021 [14]

Wind energy

Negligible water consumption
during operation, usually for some

cleaning operations. However,
much water is consumed during
manufacturing and construction.

0.001 [15]

Coal energy Cooling systems and fuel
preparation (washing) 0.15–0.58 [16]

Biofuels
Irrigation in growing raw material
like corn and sugarcane and in the

conversion process.
121.51 [17]

Natural gas Cooling systems and gas
extraction processes. 2.9474 [14]
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The energy consumption of water treatment systems constitute the amount of energy
required to process raw water into potable water for distribution to consumers and treating
wastewater before discharging it back to the environment [18]. Depending with the tech-
nology utilized, plant design and desired quality of the effluent treated water, wastewater
treatment plants consumed about 0.5–2 kWh/m3 of treated water [19] with conventional
water treatment plants operating at 0.11–0.91 kWh/m3 [20]. Table 2 summarizes the average
energy consumption of major water treatment processes.

Table 2. Energy consumption of major water treatment processes.

Water Treatment
Technology Description Energy Consumption

(kWh/H2O Treated) References

Coagulation Mechanical mixing to
distribute coagulants evenly. 0.008–0.022 [21]

Sedimentation
Energy is negligible with most

of the sedimentation basins
operating solely under gravity.

0.0005–0.001 [18]

Dissolved air flotation
(DAF) systems

Compressors and pumps are
utilized to dissolve air under

pressure, creating bubbles that
lift particles.

9.5–35.5 [21]

Filtration
Pump water through filters

and backwashing particularly
in sand filters

0.4–0.45 [22]

Adsorption
Pumping water through

adsorption media
and regeneration.

0.225 [23]

Advanced oxidation
processes

Energy intensive as they utilize
UV lamps, Xenon and

mercury lamps.
6.4–41.1 [24]

Membrane separation
High pressure pumps needed

to push water
through membranes

2.5 (Desalination) [25]

3. Mathematical Modelling and Simulation
3.1. Mathematical Modeling

Mathematical modeling is the process of translating real-world problems or phe-
nomenon into a mathematical representation using equations, functions and graphs [26,27].
Table 3 shows some of the most utilized mathematical models.

Table 3. Commonly utilized mathematical models.

Category Classification Description References

Formulation Fundamental models

Formulated based on fundamental
chemical and physical principles

such as mass and energy balances,
thermodynamics, chemical

reaction kinetics.

[28]

Empirical models

Formulated based on data and
observations of the system’s

behavior mainly through least
squares or factorial

experimental designs.
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Table 3. Cont.

Category Classification Description References

Linearity Linear models
Models in which the dependent

variable and/or their derivatives
appear only to the first power.

[29]

Non-linear models

Models where the dependent
variable and/or their derivatives

are raised to powers greater
than one.

Temporality Steady state

Also known as time invariant or
static refers to models in which the

dependent variable remains
constant with respect to time.

[30]

Unsteady state

Also called transient or dynamic
represent situations where the
dependent variable changes

with time.

Spatial variation Lumped parameter
model

The spatial variations are ignored,
and the dependent variable is

considered homogeneous
throughout the system.

[31]

Distributed
parameter model

Considers the detailed variations
in the dependent variable from

point to point throughout
the system.

Nature of
variables Continuous models

Deals with variables that can take
on any value within a

specific interval.
[32]

Discrete models
Dealing with variables that take
only distinct separate values in

the interval.

3.2. Simulation

Process simulation refers to a virtual imitation of a real-world process or system de-
signed to study its behavior under controlled conditions [33]. There are two approaches to
simulation: programming-based simulation and software-based simulation. Programming
based simulation involves writing a custom code to create simulations. The user programs
simulation from scratch using either of the diverse programming languages such as C, C++,
Java and Python. This approach is best for highly specialized simulations, when specific
control over the simulation process is needed, or when integrating with other custom
software [34]. Software-based simulation involves using pre-built simulation software
tools that provide user interfaces and built-in functionalities to create simulations without
writing extensive code, usually ideal for standard simulations and when rapid prototyping
is required [35,36].

4. Application of Mathematical Modelling to the Water–Energy Nexus

The application of mathematical modeling to the water–energy nexus, helps us to
understand the intricate connection between water and energy systems providing a quan-
titaive framework for analysis, optimization, prediction and ensuring sustainable and
equitable allocation of these scarce resources [37]. We thus utilize mathematical modeling
to estimate the water consumption in renewable energy technologies like hydroelectric
power and geothermal energy. Additionally, we analyze the energy consumption of the
advanced water treatment such as advanced oxidation processes (AOPs) and membrane
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separation processes as well as the energy associated water distribution considering the
hydrodynamics and hydraulic transients.

4.1. Water Footprint of Renewable Energy Technologies

A mathematical analysis of the renewable energy water footprint provides a quantita-
tive basis for facilitating scenario analysis and informed decision-making, ensuring these
technologies are truly sustainable and contribute to a more water-secure future [38]. The fol-
lowing is the water footprint mathematical modeling of major renewable energy technologies.

4.1.1. Hydroelectric Power

Hydroelectric power is a renewable energy source that harnesses the potential and
kinetic energy of flowing water to generate electricity [39]. Water is released from the
reservoir through a controlled opening in the dam and enters a large pipe called the
penstock, which channels the water towards the turbine. The water, under high pressure,
strikes the blades of the turbine initiating rotation. A generator coupled with the rotating
turbine converts the mechanical energy into electrical energy, which is transmitted through
cables to a substation, transformed and distributed to the electrical grid. Figure 2 shows
the schematic of a hydroelectric power plant.

Foundations 2025, 5, x FOR PEER REVIEW 6 of 27 
 

 

simulations without writing extensive code, usually ideal for standard simulations and 
when rapid prototyping is required [35,36]. 

4. Application of Mathematical Modelling to the Water–Energy Nexus 
The application of mathematical modeling to the water–energy nexus, helps us to 

understand the intricate connection between water and energy systems providing a 
quantitaive framework for analysis, optimization, prediction and ensuring sustainable 
and equitable allocation of these scarce resources [37]. We thus utilize mathematical mod-
eling to estimate the water consumption in renewable energy technologies like hydroelec-
tric power and geothermal energy. Additionally, we analyze the energy consumption of 
the advanced water treatment such as advanced oxidation processes (AOPs) and mem-
brane separation processes as well as the energy associated water distribution considering 
the hydrodynamics and hydraulic transients. 

4.1. Water Footprint of Renewable Energy Technologies 

A mathematical analysis of the renewable energy water footprint provides a quanti-
tative basis for facilitating scenario analysis and informed decision-making, ensuring 
these technologies are truly sustainable and contribute to a more water-secure future [38]. 
The following is the water footprint mathematical modeling of major renewable energy 
technologies. 

4.1.1. Hydroelectric Power 

Hydroelectric power is a renewable energy source that harnesses the potential and 
kinetic energy of flowing water to generate electricity [39]. Water is released from the res-
ervoir through a controlled opening in the dam and enters a large pipe called the penstock, 
which channels the water towards the turbine. The water, under high pressure, strikes the 
blades of the turbine initiating rotation. A generator coupled with the rotating turbine 
converts the mechanical energy into electrical energy, which is transmitted through cables 
to a substation, transformed and distributed to the electrical grid. Figure 2 shows the sche-
matic of a hydroelectric power plant. 

 

Figure 2. Schematic of a hydroelectric power plant reprinted with permission from [40] © Elsevier 
1994. 
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Hydroelectric power plants do not consume water directly in the process of generating
electricity as the water simply passes through the turbines and continues downstream.
However, the large reservoir created behind the dam disrupts the local water balance by
significantly increasing the surface area exposed to evaporation. This leads to greater
water loss to the atmosphere than would occur in a natural river flow. This evaporative
loss of water is the contributor to the hydroelectric power water footprint as it represents
the permanent reduction in the water available for the downstream ecosystems. The
water footprint of hydroelectric power is thus the ratio of the amount of water lost through
evaporation from the reservoir to the amount of energy generated mathematically expressed
as [41,42],

WF =
Q
E

(1)
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where Q is volume of water evaporated from the reservoir annually (m3/yr.) and E is the
energy generated (GJ/yr.),

Q = 10A
365

∑
i=1

Eo (2)

where A is reservoir area (ha) and Eo is the daily evaporation (mm/day) given by the
Penman–Monteith equation,

Eo =
1
λ

(
∆w(Rn − G) + γ(ew − ea) f (u)

∆w + γ

)
(3)

where λ is the latent heat of evaporation at air temperature, Rn is the net radiation, G is the
change in heat storage of the water body, γ is the psychometric constant, ∆w is the slope of
the temperature saturation water vapor curve, ew and ea are the saturated vapor pressure
at water temperature and air temperature respectively and f (u) is calculated from wind
function. The latent heat of evaporation, λ (MJ/Kg) at Ta (◦C) air temperature and the
psychometric constant, γ (kPa/◦C), are calculated from Equations (4) and (5),

λ = 2.501 − 2.361 × 10−3Ta (4)

γ =
1.63 × 10−3P

λ
(5)

where P is the atmospheric pressure in kPa, which varies with elevation above the sea level,
and H (m) is given by the expression

P = 101.3
(

293 − 0.0065H
293

)5.26
(6)

The saturated vapor pressure at water temperature, ew, air temperature, ea, and the
slope of the temperature saturation water vapor, ∆w, are calculated from Equations (7)–(9)

ew = 0.6108 exp
(

17.27Tw

Tw + 237.3

)
(7)

ea = 0.6108 exp
(

17.27Ta

Ta + 237.3

)
(8)

∆w =
4098

[
0.6108 exp

(
17.27Tw

Tw+237.3

)]
(Tw + 237.3)2 (9)

where Tw and Ta are the water surface temperature (◦C) and air temperature (◦C) respec-
tively. The wind function f (u) is calculated from wind speed at 10 m, u10 (m/s), and the
equivalent area, Ae (km2). as shown,

f (u) = (3.8 + 1.57u10)×
(

5
Ae

)0.05
(10)

The net radiation, Rn, is given by the difference between the net incoming short-wave
radiation, Rns (MJ m−2 day−1), and the net outgoing long-wave radiation Rnl .

Rn = Rns − Rnl (11)

The net incoming short waves and outgoing long-wave radiation are mostly deter-
mined experimentally using net radiometers. Nevertheless, theoretical calculations have
been carried out and discussed by various studies [41,43,44]. The change in the heat storage
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of a water body, G, is calculated from the change in temperature difference in the water of
successive measurements

G = ρwcwhw(Tw,i − Tw,i−1) (12)

where ρw is the density of water (1000 kg m−3), cw is the specific heat of water (0.0042 MJ
kg−1 K−1) and hw is the depth of water in the reservoir (m).

4.1.2. Geothermal Energy

Geothermal energy is a renewable energy source that uses heat stored within the
earth’s crust generated by radioactive decay and residual heat during planetary formation
to produce electricity [45]. Depending on the driving mechanism of the turbine, temper-
ature and pressure requirements, geothermal power plants can be classified into three
categories: dry steam, flash steam and binary cycle. Dry steam power plants use steam
(235 ◦C) directly to drive turbines, which generate electricity. Flash steam power plants
utilize hot water from the ground (180 ◦C) pumped under high pressure to the surface
where its pressure is reduced causing the water to be flashed into steam which then drives
a turbine to generate electricity. Binary cycle power plants use either steam, hot water or
both to heat secondary fluids such as ammonia to vapor which drives a turbine to generate
electricity, making it one of the most used and versatile techniques, operating at relatively
low temperatures. Figure 3 shows the schematic of a binary cycle geothermal power plant.
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print of a geothermal power plant varies depending on the type of cooling system em-
ployed, either once-through cooling or evaporation cooling. Once-through cooling, also 
referred to as open-loop cooling, involves drawing water from a water body, passing it 
through a heat exchanger where it absorbs heat and discharging it back to the water body, 
relatively warmer. The water footprint of the cooling system is due to the increased evap-
oration, attributed by the elevated temperatures of the discharge water. Consider the cool-
ing water flowrate of a once-through cooling system, mathematically expressed as, 𝑚ሶ = 𝑄ሶ ௗ𝐶,௪Δ𝑇 (16)

Figure 3. Schematic of a binary cycle geothermal power plant reprinted with permission from [46]
© Royal Society of Chemistry 2024.

The water footprint of geothermal energy refers to the amount of water consumed
through cooling which can be either once-through cooling or evaporation cooling (evapora-
tion and blowdown) to the net electricity generated [47,48]. A non-cooling process intensity
coefficient, WFproc, is usually added to account for the water use in all the non-cooling
processes in the plant

WF =

.
m

.
Enet

+ WFproc (13)
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where
.

m is the rate of water consumption during cooling and
.
Enet is the net electricity

generated. Consider the heat balance around the cooling system,

.
Qload =

.
Qinput(1 − ηnet − kls) (14)

where
.

Qload is the heat load of the cooling system,
.

Qinput is the rate of thermal energy input
into the plant, ηnet is the net efficiency and kls is the fraction of heat lost to sinks besides the
cooling system mathematically calculated as

ηnet =

.
Enet

.
Qinput

and kls =

.
Qls

.
Qinput

(15)

where
.

Qls is the rate of heat lost to sinks other than the cooling system. The water footprint
of a geothermal power plant varies depending on the type of cooling system employed,
either once-through cooling or evaporation cooling. Once-through cooling, also referred
to as open-loop cooling, involves drawing water from a water body, passing it through a
heat exchanger where it absorbs heat and discharging it back to the water body, relatively
warmer. The water footprint of the cooling system is due to the increased evaporation,
attributed by the elevated temperatures of the discharge water. Consider the cooling water
flowrate of a once-through cooling system, mathematically expressed as,

.
m =

.
Qload

Cp,w∆T
(16)

where ∆T is the temperature difference between the inlet and outlet cooling water and Cp,w
is the specific heat of water (4184 J kg−1 K−1 at 20 ◦C). Substituting Equation (14) into (16),
we obtain

.
m =

.
Qinput(1 − ηnet − kls)

Cp,w∆T
(17)

WF =

.
m

.
Enet

+ WFproc =

.
Qinput(1 − ηnet − kls)

.
EnetCp,w∆T

+ WFproc (18)

WF =
(1 − ηnet − kls)

ηnetCp,w∆T
+ WFproc (19)

Equation (19) is the water footprint equation for a once-through cooling system. An
evaporative cooling system uses a recirculating loop of cooling water and flow of air to
effectively cool the geothermal or secondary fluid. It operates based on the principle that
evaporation of water removes heat and some water must be replaced (blowdown) to control
the concentration of dissolved materials in the water. The total amount of water consumed
during the process is thus water lost through both evaporation and blowdown. The rate of
water consumption through evaporation is expressed as,

.
mevap =

.
Qload(1 − ksens)

h f g
(20)

where h f g is the latent heat of vaporization (2454 kJ kg−1 at 20 ◦C) and ksens represents the
fraction of heat load rejects through sensible heat transfer, mathematically expressed as,

ksens = 1 − kevap
h f g

Cp,w∆T
(21)

The evaporation coefficient, kevap is related to the cooling tower temperature range
by the equation, kevap = 0.01∆T/7 ◦C based on the industry rules of the thumb. These
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simplifying assumptions implicitly assume that ksens is a constant. The rate of water
consumption through blowdown is related to the rate of water lost through evaporation
in terms of the number of cycles of concentration, ncc, a parameter that determines how
many times water is reused before blowdown occurs usually in the range of 2–10 for most
geothermal plants.

.
mblowdown =

.
mevap

(
1

ncc − 1

)
(22)

The summation of Equations (20) and (22) gives the total amount of water consumed
in an evaporative cooling system.

.
m =

.
mevap +

.
mblowdown (23)

.
m =

.
Qload(1 − ksens)

h f g
+

.
mevap

(
1

ncc − 1

)
(24)

.
m =

.
Qload(1 − ksens)

h f g
+

.
Qload(1 − ksens)

h f g

(
1

ncc − 1

)
(25)

.
m =

.
Qload(1 − ksens)

h f g

(
1 +

1
ncc − 1

)
(26)

Substituting Equations (11) into (16),

.
m =

.
Qinput(1 − ηnet − kls)(1 − ksens)

h f g

(
1 +

1
ncc − 1

)
(27)

WF =

.
m

.
Enet

+ WFproc =

.
Qinput(1 − ηnet − kls)(1 − ksens)

.
Eneth f g

(
1 +

1
ncc − 1

)
+ WFproc (28)

WF =
(1 − ηnet − kls)(1 − ksens)

ηneth f g

(
1 +

1
ncc − 1

)
+ WFproc (29)

Equation (29) is the water footprint equation for an evaporating cooling system.

4.2. Energy Consumption in Advanced Water Treatment and Distribution

Advanced water treatment processes such as advanced oxidation processes (AOPs)
and membrane separation, while effective in eliminating persistent contaminants and
improving water quality, come with significant energy consumption. Thus, understanding
the energy requirements of advanced water treatment processes is essential in improving
the sustainability and overall efficiency of water treatment plants [18]. We thus utilize
mathematical modeling to understand the energy requirements of the advanced oxidation
processes (AOPs) and membrane separation processes as well as the energy demands of
water distribution.

4.2.1. Advanced Oxidation Processes (AOPs)

AOPs use highly reactive oxidative species called hydroxyl radicals to break down
and eliminate contaminants in the presence of radiation, mostly UV from either a mercury
or a xenon lamp. They include the photo-Fenton process, the photo-catalysis and ozonation
processes, which use an iron (Fe2+) catalyst and a hydrogen peroxide oxidant, a photo-
catalyst such as TiO2 and ozone (O3), and a powerful oxidizing agent, respectively, to
effectively eliminate organic pollutants in the presence of UV radiation [49]. Consider the
schematic of photocatalytic degradation of organic pollutants that occurs in the presence of
UV radiation from either a mercury or a xenon lamp as shown in Figure 4.
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The UV light source receives electrical energy from a power supply which is converted
to thermal energy in the lamp electrodes emitting electrons through thermionic emissions
which are accelerated across the lamp because of the applied electric field. The accelerated
electrons collide with gas atoms such as mercury vapor or a noble gas (Xenon) exciting the
electrons in the atoms to higher energy states. As the electrons transition back to their lower
energy states, they emit photons in the UV range [50,51]. The emitted UV photons travel
to the photo-catalyst to initiate the photocatalytic degradation of the organic pollutant
through the creation of electron–hole pairs. Consider the general equation for energy
conversion in the UV lamp,

Pelect = ηoverall Nh
c
λ

(30)

where Pelec is the power supply, t is time, N is the number of photons emitted, h is the
Planck’s constant and ηoverall is the overall efficiency, which is given by

ηoverall = ηelec × ηexcit × ηrad (31)

where ηelec is the electrical efficiency, which takes into account the ohmic and thermal losses,
and ηexcit is the excitation efficiency, which considers the fraction of collisions between
electrons and gas atoms that will result in the desired excitation to higher energy levels, and
ηrad is the irradiation efficiency, which accounts for the fraction of excited states that result
in UV photon emission. The excitation efficiency is often calculated from the Maxwell–
Boltzmann distribution, which gives the probability of finding a particle with energy E, at
a given temperature [52]

f (E) = 2
(

m
2πkBT

) 3
2
E

1
2 e−

E
kBT (32)

where f (E) is probability distribution density function of particle energies in a gas at
thermal equilibrium, m is the particle mass, kB is the Boltzmann constant and T is the
thermodynamic temperature. Incorporating the inverse square law of radiation, which
states that the intensity of radiation diminishes proportionally to the square of the distance
d from the UV lamp [53] into Equation (30).

Pelect = ηoverall Nh
c

4πd2λ
(33)
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Pelec =
ηoverall Nhc

4πd2λt
(34)

Equation (34) is the general equation for the energy requirements for a UV photocatalytic
degradation of organic pollutants.

4.2.2. Membrane Separation Processes

Membrane separation processes utilize a semi-permeable membrane with tiny pores to
selectively remove pollutant particles and macromolecules from water. Pressure difference
is the main driving mechanism for most membrane separation. Figure 5 illustrates the
membrane separation processes [54].
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The membranes are classified based on their pore size into microfiltration, ultrafil-
tration, nano-filtration and reverse osmosis. Microfiltration uses 0.1–10 µm pore size
membranes and pressure difference as the main driving mechanism to effectively remove
turbidity in water. Ultrafiltration uses 0.01–0.1 µm pore size membranes and pressure
difference to remove particles from water. Nano-filtration is a charged 0.001–0.01 µm pore
size charged membrane to remove ions from water. Reverse osmosis utilizes less than
0.001 µm pore size membranes and pressure difference against osmotic pressure to remove
molecules from water. In a steady state process, water is pressurized from a low pressure
to a high pressure using a circulation pump which maintains a high crossflow velocity. The
power of the circulation pump is calculated based on the geometry of the path where the
water flows. Two geometries are usually employed: rectangular (spiral wound, plate and
frame) and cylindrical (hollow fibers, capillaries, tubular systems) [55,56]. Consider the
general energy balance equation for a reversible steady-state fluid flow:

∆H +
∆U2

2
+ g∆z = Q + Ws (35)

Assuming negligible kinetic and potential energy,

Ws = ∆H (36)

dH = TdS + VdP (37)



Foundations 2024, 4 725

For a compressible fluid under isentropic conditions:

Ws = ∆H = V∆P (38)

However, the actual work is usually higher since the process occurs irreversibly and
thus some work is wasted. We define thermodynamic efficiency (η) as the ratio of the
minimum to the actual work. The efficiency is usually between 0.5 and 0.8 [55]. Thus:

Ws =
V∆P

η
(39)

Energy is defined as work per unit time

E =
V∆P

tη
=

q∆P
η

(40)

The Hagen–Poiseuille equation can describe the pressure drop for an incompressible
Newtonian fluid. Thus, for a rectangular geometry:

E =
q∆P

η
=

6µAv2

ηa
(41)

For cylindrical geometry:

E =
q∆P

η
=

8µAv2

ηd
(42)

4.2.3. Water Distribution Systems

Water distribution systems are facilities that ensure the supply of clean drinking water
to the final consumers.

The operation of these systems, however, requires significant energy consumption,
which poses a problem on the already rising energy demand and strain on the limited
energy resources [57]. Thus, understanding the energy dynamics of water distribution is
essential in improving efficiency, reducing costs and minimizing the environmental foot-
print of water utilities. The mathematical modeling and simulation presented here on the
energy consumption of water distribution is carried out by considering the energy required
in pumping water accounting for the losses due to frictional drag between the water and
the pipe walls and losses due to hydraulic transient caused by the rapid fluctuation of
pressure and velocity. Consider the flow of water through a conduit as shown in Figure 6.
To understand the energy consumption of water distribution, we first model the flow of
water through a conduit by solving the Navier–Stokes equations in cylindrical coordinates.

ρ
DV
dt

= −∆P + ρ
→
g + µ∇2

→
V = 0 (43)
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ρ

(
∂Vr

∂t
+ Vr

∂Vr

∂r
+

Vθ

r
∂Vr

∂θ
−

V2
θ

r
+ Vz

∂Vr

∂z

)
= −∂P

∂r
+ ρgr + µ

(
1
r

∂

∂r

(
r

∂Vr

∂r

)
− Vr

r2 +
1
r2

∂2Vr

∂θ2 − 2
r2

∂Vθ

∂θ
+

∂2Vr

∂z2

)
(44)

ρ

(
∂Vθ

∂t
+ Vr

∂Vθ

∂r
+

Vθ

r
∂Vθ

∂θ
+

VrVθ

r
+ Vz

∂Vθ

∂z

)
= −1

r
∂P
∂θ

+ ρgθ + µ

(
1
r

∂
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(
r

∂Vθ

∂r

)
− Vθ

r2 +
1
r2

∂2Vθ

∂θ2 +
2
r2

∂Vr

∂θ
+

∂2Vθ

∂z2

)
(45)

ρ

(
∂Vz

∂t
+ Vr

∂Vz

∂r
+

Vθ

r
∂Vz

∂θ
+ Vz

∂Vz

∂z

)
= − ∂P

∂z
+ ρgz + µ

(
1
r

∂

∂r

(
r

∂Vz

∂r

)
+

1
r2

∂2Vz

∂θ2 +
∂2Vz

∂z2

)
(46)

We assume that the flow is steady with negligible entrance effects, resulting in a devel-
oped flow in a single coordinate (z) direction. Additionally, the flow is circumferentially
symmetric, so properties do not vary in the θ direction. The no-slip boundary condition is
invoked such that the velocity of the fluid is zero at the walls of the conduit and approaches
infinity towards the center of the tube. The equations simplify to:

0 = −∂P
∂z

+ µ

(
1
r

∂

∂r

(
r

∂Vz

∂r

))
(47)

∂

∂r

(
r

∂Vz

∂r

)
=

1
µ

(
∂P
∂z

)
r (48)

Solving the velocity profile and inserting the boundary conditions we obtain:

Vz =
1

4µ

(
−∂P

∂z

)(
R2 − r2

)
(49)

The volumetric flowrate is calculated from the velocity profile

Q =
∫ Q

0
dQ =

∫ Q

0
VzdA =

∫ Q

0
Vz2πrdr (50)

Q = 2π
∫ R

0

(
1

4µ

(
−∂P

∂z

)(
R2 − r2

))
rdr (51)

Q =
πR4

8µ

(
−∂P

∂z

)
=

πR4(−∆P)
8µl

(52)

The equation changes based on the main driving mechanisms that can be Poiseuille,
gravitational or both based on the geometry of the channel. The power required for
pumping is given by

P =
γQ∆h

η
(53)

P =
γπR4(−∆P)

8µlη
∆h (54)

where γ is the specific weight of the fluid and ∆h is the pump head calculated as shown
by considering the static head, pressure head and losses due to frictional drag and hy-
draulic transients,

∆h = ∆z +
∆P
ρg

+ h f + ht (55)

∆h = ∆z +
∆P
ρg

+ 4 f
(

∑ LeT
di

)
u2

2g
+

a
g

Vo (56)
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where LeT is the total equivalent length, u is the fluid velocity, g is the gravitational constant,
f is the fanning friction factor, Vo is the initial flow velocity through a valve and a is pressure
wave speed given by

a =

√√√√ K f

ρ
[
1 + c

(K f D
eE

)] (57)

where K f is the fluid bulk modulus of elasticity, D is the conduit inside diameter, e is the
wall thickness and E is the material of the conduit wall Young’s modulus of elasticity.
Parameter c = 1 for a pipe fitted with expansion joints throughout. The fanning friction
factor f is calculated for laminar flow as

f =
16
Re

(58)

where Re is the Reynolds number. For turbulent flows, the fanning friction factor is
calculated from the von Kármán equation and the Colebrook and White expression shown
in Equations (59) and (60) for smooth and rough pipes, respectively.

1√
f
= 4log

(
Re
√

f
)
− 0.4 (59)

1√
f
== −4log

(
ε

D
+

4.67
Re
√

f

)
+ 2.28 (60)

are ε/D is the relative roughness.

5. Process Simulation in the Water–Energy Nexus

With the growing complexity of modern systems, simulation has become indispensable
for analysis and improving the water–energy nexus. More precisely, programming-based
simulation allows engineers to model real-world scenarios, predict outcomes and explore
trade-offs between water and energy ranging from the water footprint of energy produc-
tion technologies such as hydropower and geothermal energy to assessing the energy
consumption in advanced water treatment and water distribution systems. We have thus
utilized programming-based simulation in Java to model and visualize the effects of various
parameters in the water–energy nexus.

5.1. Simulation of Hydroelectric Power Water Footprint

The hydropower mathematical model and subsequent simulation were applied to
the 2080MW Hoover Dam hydroelectric power plant between Nevada and Arizona in
the Black Canyon of the Colorado River [58] to investigate the effect of air temperature,
water temperature and wind speed on the water footprint. The Hoover Dam is one of the
most iconic and well-known hydroelectric power plants in the world with a long history
of power generation. It is in the arid region of the southwestern United States where
water management is critical. The reservoir behind the dam, Lake Mead faces significant
evaporation due to high temperatures making it an ideal case scenario for analyzing the
water footprint of large hydroelectric power plants. Figure 7 shows the output of the
simulation. As wind speed increases across the Hoover Dam, which is at an average
ambient temperature of 30 ◦C at the time of analysis (month of June), air saturated with
water vapor is removed more efficiently allowing for more water vapor to escape to the
atmosphere and thus an increase in the water footprint [59]. Conversely, the increase in the
temperature difference between air and water varies proportional to the water footprint.
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Figure 7. Simulation of the effect of water temperature, air temperature and wind speed on the
Hoover Dam hydroelectric power water footprint.

5.2. Simulation of Geothermal Energy Water Footprint

The geothermal energy mathematical model and simulation were utilized to investi-
gate the effect of the number of cycles of concentration on the geothermal energy water
footprint. The cycles of concentration are important parameters in most geothermal power
plants, particularly those using cooling water tower systems that help manage water effi-
ciency and minimize environmental impact [60]. It refers to the ratio of the concentration
of impurities such as minerals and salts in the cooling water compared to the concentration
in the make-up water. Figure 8 shows the output of the simulation.
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A high number of cycles of concentration translates to a lower water footprint, which
means the cooling system is reusing the same water for more cycles reducing water con-
sumption. While this is advantageous, it increases the concentration of dissolved salts,
which can lead to scaling, corrosion or fouling of the cooling system. Conversely, a low
number of concentration cycles results in a higher water footprint, approaching infinity
as the number of cycles goes to one. As such, optimization techniques are demanded
to minimize water consumption while ensuring the safety of equipment against scaling
and fouling-related issues with most geothermal power plants operating between 3 and
7 cycles.

5.3. Simulation of Energy Consumption in Advanced Oxidation Processes

The mathematical model and subsequent simulation wer applied to investigate the
effect of distance from a UV source and light intensity (number of photons) on the power
requirements of UV mercury lamp utilized in the photocatalytic degradation of natural
organic matter [61] in water using the silver-doped titanium dioxide (Ag-TiO2) nanocom-
posite photo-catalyst. Figure 9 shows the output of the simulation.
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Figure 9. Simulation of the effect of UV light source distance and intensity on the power requirements
of UV mercury lamp for the Ag-TiO2 photo-catalysis.

The intensity of radiation weakens proportionally to the square of distance from the
source, as the distance between the UV lamp and the photo-catalyst increases, the intensity
decreases rapidly, potentially requiring higher power input to achieve the desired photo-
catalytic degradation efficiency. On the other hand, reducing the lamp-to-photocatalyst
distance will increase the intensity of the radiation, hence necessitating power adjust-
ments to avoid overexposure and energy waste. Rigorous optimization producers are thus
required to achieve the best photocatalytic efficiency at minimal energy consumption.

5.4. Simulation of Energy Consumption in Membrane Separation Processes

The mathematical model and subsequent simulation were applied to investigate
the required crossflow velocity on energy consumption in the desalination of brackish
water [62,63] using a hollow fiber reverse osmosis membrane. Figure 10 shows the output
of the simulation. Reverse osmosis is one of the most efficient and widely used technologies
for desalination and water purification. Of particular interest, the hollow fiber reverse
osmosis systems have gained much attention in recent times, due to their high surface-
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area-to-volume ratio, compact design and high filtration capacity. However, the energy
demands of this process are a significant concern, especially in large-scale desalination
plants where operational costs are heavily influenced by energy requirements. One critical
factor influencing the performance and energy efficiency of these RO systems is the cross-
flow velocity across the membrane. Thus, understanding the cross-flow velocity on the
energy requirements of RO systems is essential for maintaining high operation efficiency at
minimum energy consumption.
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Figure 10. Simulation of the effect of crossflow velocity on the energy requirements of a hollow fiber
reverse osmosis membrane.

5.5. Simulation of the Water Distribution Energy Demands

The mathematical models and subsequent simulations have been utilized to investigate
the effect of applied pressure difference and water flow velocity on the power requirements
of distributing water on a one-kilometer horizontal SDR 13.6 standard polythene water
pipe [64]. Figure 11 shows the results of the simulation.
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Figure 11. Results of simulation showing the effect of water velocity and applied pressure on the
power requirements.



Foundations 2024, 4 731

The SRD polyethylene standard pipes are one of the most used pipes in water distri-
bution networks due to their flexibility, durability and resistance to corrosion, ensuring
efficiency, reliability and longevity. The simulation has investigated the energy performance
of these pipes under varying operating conditions such as applied pressure difference and
flow velocity, providing insights into the design, operation and optimization of water
distribution systems.

6. Importance of Mathematical Modelling and Simulation-BasedApproach of the
Water–Energy Nexus
6.1. Securing the Future of Hydropower

Climate change has significantly impacted hydropower production through the alter-
ation of precipitation patterns, increasing temperatures and causing more frequent and
prolonged droughts [65], reshaping the water availability in many regions. Hydropower
plants rely heavily on the water flow consistency of rivers filling up the reservoirs which in
recent times have faced increasing variability as the environmental changes disrupt natural
hydrological cycles with most of the plants struggling with significant power reduction
and even to some extent closing down [66]. The Hoover Dam in the southwestern United
States with an annual drying rate of 0.54% [67], the Guri Dam in Venezuela where water is
gradually depleting, resulting in rolling blackouts and power rationing in the country [68],
the Kariba Dam in Zambia and Zimbabwe, which has had its water recently depleted
with the countries experiencing frequent power blackouts [69,70], the Itaipu hydroelectric
power plant in Brazil and Uruguay, affected by the disruption of water flow in Paraná River
due to droughts [71], and the Three Gorges Dam in China impacted by the Yangtze River
Basin’s severe drought [72] are a few examples highlighting the widespread consequences
of climate change on hydropower, emphasizing the need for adaptive sophisticated man-
agement techniques. Mathematical modeling and simulation of the hydropower water
footprint is thus demanded in understanding and mitigating these impacts. Through the
integration of reservoir surface area, local climate conditions, such as temperature, humid-
ity, wind speed, and solar radiation, and hydrological patterns, these techniques provide a
quantitative basis for the water loss through evaporation and predict future availability of
the plants under different climate change scenarios. These valuable insights are important
to hydropower operators and policy makes who would use the data to develop strategies
to manage water resources more effectively.

6.2. Optimization of Water Consumption and Reducing Damage of Equipment in Geothermal
Cooling Systems

In geothermal cooling systems, excessive water and equipment damage due to scaling
and corrosion have been a major challenge to plant operators. This problem comes from the
need to manage mineral buildup in the system, which results from the continuous water
circulation in the cooling towers [73]. When water evaporates it leaves behind dissolved
minerals, increasing the concentration of solids which when left unchecked results to
mineral deposit scales, which reduces heat transfer and may even clog pipes. Additionally,
the accumulation of these minerals, particularly salts, tends to accelerate corrosion which
weakens components and increases the risk of system breakdown. To mitigate these issues,
operators often resort to blowing down where part of the circulating water is discharged
and replaced with fresh make-up water. However frequent blow down, while effective in
preventing mineral accumulation in the system, it increases water consumption, making
the cooling process costly and environmentally sustainable [74]. One worthwhile strategy
to navigate this problem is through optimization of the number of cycles of concentration
using mathematical models and simulation. Using these notable tools, plant operators
can predict the impact of the various concentration cycles on the water consumption,
water chemistry, scaling and corrosion rates and hence find the most efficient number of
concentration cycles that minimizes water consumption without compromising equipment
longevity. This in turn translates to lower operating costs and reduces the environmental
impact while extending equipment life and reducing maintenance needs.
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6.3. Achieving the Desired Overall Efficiency at Minimal Energy Consumption in Advanced
Oxidation Processes

Optimizing pollutant degradation efficiency in advanced oxidation processes (AOPs)
while minimizing energy consumption presents a significant engineering challenge that
involves navigating the complex interplay of light intensity, radical generation and contam-
inant concentration [75]. The chief mechanism in AOPs revolves around the generation of
highly reactive species and hydroxyl radicals in the presence of UV radiation which aggres-
sively attacks and oxidizes pollutants to simple non-toxic compounds. The effectiveness
of the process hinges on precise control over the distance and orientation of the radiation
source relative to the contaminated medium and intensity of the radiation. The radiation
intensity that diminishes from the source due to the inverse square law is a fundamental
parameter as a too-distant source reduces the radical production while a closer source
increases energy consumption without guaranteeing proportional contaminant degrada-
tion [53]. Mathematical modeling and simulation offer a pathway to predict and adjust
these spatial- and intensity-related factors, enabling optimization of AOP configuration
to ensure contaminants are effectively degraded with the least energy input. Through the
simulation of these dynamics, plant operators can determine the most ideal operating pa-
rameters such as UV lamp placements, optimal distance and angle adjustments, predicting
the most effective set-up, thereby minimizing energy consumption while ensuring high
pollutant removal.

6.4. Minimizing Energy Consumption in Membrane Separation Processes

The pursuit of sustainable and cost-effective membrane separation systems is strongly
intertwined with the reduction in energy consumption of the processes especially in water
treatment, wastewater treatment and water desalination [76]. Membrane systems rely
on applied pressure gradients and in some processes against osmotic pressure, to drive
fluids through a selective permeable membrane which consumes considerable energy. The
energy requirement for the process is influenced majorly by the trans-membrane pressure,
feed flow rate, solute concentration and membrane properties such as permeability and
selectivity. Mathematical modeling and simulation come in handy to help understand and
identify optimal operating parameters that minimize energy use, predict energy-intensive
conditions, optimize settings and experiment with innovative system designs, ultimately
leading to more energy-efficient and sustainable membrane separation technologies [77].
This entails selecting the right computational methods for solving the models and ensuring
the mathematical framework is robust enough to be applied across diverse membrane
operating conditions, incorporating both mathematical precision and practical insights.

6.5. Paving the Way for Smart Water Distribution Networks

With the aging infrastructure, fluctuating water supply sources, the ever increasing
demand and environmental factors such as climate change, water distribution networks
face significant challenges in improving their efficiency, reliability and sustainability [78].
Maintaining optimal pressure and flow velocity while minimizing leaks and energy costs
is becoming increasingly difficult, often resulting in issues such as frequent pipe bursts,
pump failures and water contamination that lead to water disruptions accompanied by
costly and time-consuming repairs. Conventional manual monitoring often falls short of
providing the responsiveness required for modern water treatment technologies. Mathe-
matical modeling and simulation provide a dynamic and detailed approach to extensively
analyze the pressure distribution, water flow and demand patterns allowing the testing of
various scenarios such as in the case of equipment failures and peak consumer demands,
without disrupting actual operation which helps identify system inefficiencies, predict
system responses and refine network’s performance under diverse conditions. Further, the
integration of IoT devices with mathematical modeling and simulation has paved the way
for smart water distribution networks [79]. Real-time data from IoT sensors provides a
continuous update on flow rates and pressure changes that enable simulation to adjust and
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predict responses in real time. This adaptive water distribution system is not only efficient
but also capable of meeting the demands of modern, sustainable water management.

7. Challenges and Prospects

Mathematical modeling and simulation offer a comprehensive framework for ex-
amining the intricate dynamics of the water–energy nexus [80]. Despite the numerous
advantages associated with these tools, such as improved process efficiency, sustainability
and optimum resource utilization, their application is still limited which can be attributed
to various factors. Firstly, the complexity of the water–energy nexus makes capturing
all its numerous interactions into a mathematical model challenging, computationally
expensive and difficult to interpret [81]. Modular and hierarchical modeling should thus be
implemented breaking down the water–energy nexus into smaller and more manageable
components and leveraging high-performance computing (HPC) and machine learning to
handle the complex computation demands. Further, the spatial and temporal variability
of the water–energy nexus with both resources fluctuating significantly requires high-
resolution data in formulating the models which is often unavailable [82]. Enhanced data
collection using remote sensing, IoT devices and other modern technologies and integration
of data from multiple sources could immensely improve the data resolution. Addition-
ally, the aging infrastructures, unforeseen breakdowns and human operating errors that
disrupt energy production and supply and water treatment and distribution require the
incorporation of probabilistic elements, which would make the models so complex limiting
further their applicability [83]. To address this, stochastic elements should be incorporated
into models to account for uncertainties and probabilistic events to provide an array of
possible outcomes and improve robustness of the model. By responding to these challenges,
mathematical modeling and simulation have the potential to become even more powerful
in navigating the complexities of the water–energy nexus.

8. Conclusions and Future Research Directions

Mathematical modeling and simulation are essential in the water–energy nexus, being
indispensable for improving efficiency and sustainability and ensuring optimum resource
utilization. The study first provided an in-depth description of the water–energy nexus
and a review of the mathematical models and simulation strategies commonly used. A
mathematical model and subsequent simulation for the water footprint of hydropower
and geothermal renewable energy technologies has been presented considering water
consumed through evaporation and cooling respectively. Mathematical modeling and
simulation were also applied in determining the energy demands of advanced oxidation
processes and membrane separation advanced water treatment. The energy requirements
of water distribution have been modeled considering hydrodynamics and accounting for
various losses such as frictional drag between the fluid and the pipe walls and the hydraulic
transients. The importance of mathematical modeling and simulation to the water–energy
nexus has also been extensively discussed. Finally, the paper explores the challenges and
prospects of implementing mathematical modeling and simulation to the water–energy
nexus. The findings of this study demonstrate mathematical modeling and simulation
provide a reliable approach for addressing the complexities of the water–energy nexus,
ushering in a new era of sustainability and optimum resource utilization. However, further
research is required to realize the full potential of these tools. Future research should
focus on the extension of mathematical models and simulation to decentralized renewable
energy technologies such as biofuels, green hydrogen fuel cells and solar energy and water
treatment technologies such as adsorption, sedimentation and filtration. Additionally, it
is necessary to explore the use of frontier new technologies such as machine learning, big
data, IoT, digital twin and edge computing to enhance real-time data collection on water
and energy consumption, leading to more accurate simulation and predictive capabilities.
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